src/share/vm/opto/node.hpp

Fri, 18 Oct 2013 10:41:56 +0200

author
rbackman
date
Fri, 18 Oct 2013 10:41:56 +0200
changeset 5997
59e8ad757e19
parent 5791
c9ccd7b85f20
child 6375
085b304a1cc5
child 6478
044b28168e20
permissions
-rw-r--r--

8026844: Various Math functions needs intrinsification
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class BoolNode;
    46 class BoxLockNode;
    47 class CMoveNode;
    48 class CallDynamicJavaNode;
    49 class CallJavaNode;
    50 class CallLeafNode;
    51 class CallNode;
    52 class CallRuntimeNode;
    53 class CallStaticJavaNode;
    54 class CatchNode;
    55 class CatchProjNode;
    56 class CheckCastPPNode;
    57 class ClearArrayNode;
    58 class CmpNode;
    59 class CodeBuffer;
    60 class ConstraintCastNode;
    61 class ConNode;
    62 class CountedLoopNode;
    63 class CountedLoopEndNode;
    64 class DecodeNarrowPtrNode;
    65 class DecodeNNode;
    66 class DecodeNKlassNode;
    67 class EncodeNarrowPtrNode;
    68 class EncodePNode;
    69 class EncodePKlassNode;
    70 class FastLockNode;
    71 class FastUnlockNode;
    72 class FlagsProjNode;
    73 class IfNode;
    74 class IfFalseNode;
    75 class IfTrueNode;
    76 class InitializeNode;
    77 class JVMState;
    78 class JumpNode;
    79 class JumpProjNode;
    80 class LoadNode;
    81 class LoadStoreNode;
    82 class LockNode;
    83 class LoopNode;
    84 class MachBranchNode;
    85 class MachCallDynamicJavaNode;
    86 class MachCallJavaNode;
    87 class MachCallLeafNode;
    88 class MachCallNode;
    89 class MachCallRuntimeNode;
    90 class MachCallStaticJavaNode;
    91 class MachConstantBaseNode;
    92 class MachConstantNode;
    93 class MachGotoNode;
    94 class MachIfNode;
    95 class MachNode;
    96 class MachNullCheckNode;
    97 class MachProjNode;
    98 class MachReturnNode;
    99 class MachSafePointNode;
   100 class MachSpillCopyNode;
   101 class MachTempNode;
   102 class Matcher;
   103 class MathExactNode;
   104 class MemBarNode;
   105 class MemBarStoreStoreNode;
   106 class MemNode;
   107 class MergeMemNode;
   108 class MulNode;
   109 class MultiNode;
   110 class MultiBranchNode;
   111 class NeverBranchNode;
   112 class Node;
   113 class Node_Array;
   114 class Node_List;
   115 class Node_Stack;
   116 class NullCheckNode;
   117 class OopMap;
   118 class ParmNode;
   119 class PCTableNode;
   120 class PhaseCCP;
   121 class PhaseGVN;
   122 class PhaseIterGVN;
   123 class PhaseRegAlloc;
   124 class PhaseTransform;
   125 class PhaseValues;
   126 class PhiNode;
   127 class Pipeline;
   128 class ProjNode;
   129 class RegMask;
   130 class RegionNode;
   131 class RootNode;
   132 class SafePointNode;
   133 class SafePointScalarObjectNode;
   134 class StartNode;
   135 class State;
   136 class StoreNode;
   137 class SubNode;
   138 class Type;
   139 class TypeNode;
   140 class UnlockNode;
   141 class VectorNode;
   142 class LoadVectorNode;
   143 class StoreVectorNode;
   144 class VectorSet;
   145 typedef void (*NFunc)(Node&,void*);
   146 extern "C" {
   147   typedef int (*C_sort_func_t)(const void *, const void *);
   148 }
   150 // The type of all node counts and indexes.
   151 // It must hold at least 16 bits, but must also be fast to load and store.
   152 // This type, if less than 32 bits, could limit the number of possible nodes.
   153 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   154 typedef unsigned int node_idx_t;
   157 #ifndef OPTO_DU_ITERATOR_ASSERT
   158 #ifdef ASSERT
   159 #define OPTO_DU_ITERATOR_ASSERT 1
   160 #else
   161 #define OPTO_DU_ITERATOR_ASSERT 0
   162 #endif
   163 #endif //OPTO_DU_ITERATOR_ASSERT
   165 #if OPTO_DU_ITERATOR_ASSERT
   166 class DUIterator;
   167 class DUIterator_Fast;
   168 class DUIterator_Last;
   169 #else
   170 typedef uint   DUIterator;
   171 typedef Node** DUIterator_Fast;
   172 typedef Node** DUIterator_Last;
   173 #endif
   175 // Node Sentinel
   176 #define NodeSentinel (Node*)-1
   178 // Unknown count frequency
   179 #define COUNT_UNKNOWN (-1.0f)
   181 //------------------------------Node-------------------------------------------
   182 // Nodes define actions in the program.  They create values, which have types.
   183 // They are both vertices in a directed graph and program primitives.  Nodes
   184 // are labeled; the label is the "opcode", the primitive function in the lambda
   185 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   186 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   187 // the Node's function.  These inputs also define a Type equation for the Node.
   188 // Solving these Type equations amounts to doing dataflow analysis.
   189 // Control and data are uniformly represented in the graph.  Finally, Nodes
   190 // have a unique dense integer index which is used to index into side arrays
   191 // whenever I have phase-specific information.
   193 class Node {
   194   friend class VMStructs;
   196   // Lots of restrictions on cloning Nodes
   197   Node(const Node&);            // not defined; linker error to use these
   198   Node &operator=(const Node &rhs);
   200 public:
   201   friend class Compile;
   202   #if OPTO_DU_ITERATOR_ASSERT
   203   friend class DUIterator_Common;
   204   friend class DUIterator;
   205   friend class DUIterator_Fast;
   206   friend class DUIterator_Last;
   207   #endif
   209   // Because Nodes come and go, I define an Arena of Node structures to pull
   210   // from.  This should allow fast access to node creation & deletion.  This
   211   // field is a local cache of a value defined in some "program fragment" for
   212   // which these Nodes are just a part of.
   214   // New Operator that takes a Compile pointer, this will eventually
   215   // be the "new" New operator.
   216   inline void* operator new( size_t x, Compile* C) throw() {
   217     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   218 #ifdef ASSERT
   219     n->_in = (Node**)n; // magic cookie for assertion check
   220 #endif
   221     n->_out = (Node**)C;
   222     return (void*)n;
   223   }
   225   // Delete is a NOP
   226   void operator delete( void *ptr ) {}
   227   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   228   void destruct();
   230   // Create a new Node.  Required is the number is of inputs required for
   231   // semantic correctness.
   232   Node( uint required );
   234   // Create a new Node with given input edges.
   235   // This version requires use of the "edge-count" new.
   236   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   237   Node( Node *n0 );
   238   Node( Node *n0, Node *n1 );
   239   Node( Node *n0, Node *n1, Node *n2 );
   240   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   242   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   243   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   244             Node *n4, Node *n5, Node *n6 );
   246   // Clone an inherited Node given only the base Node type.
   247   Node* clone() const;
   249   // Clone a Node, immediately supplying one or two new edges.
   250   // The first and second arguments, if non-null, replace in(1) and in(2),
   251   // respectively.
   252   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   253     Node* nn = clone();
   254     if (in1 != NULL)  nn->set_req(1, in1);
   255     if (in2 != NULL)  nn->set_req(2, in2);
   256     return nn;
   257   }
   259 private:
   260   // Shared setup for the above constructors.
   261   // Handles all interactions with Compile::current.
   262   // Puts initial values in all Node fields except _idx.
   263   // Returns the initial value for _idx, which cannot
   264   // be initialized by assignment.
   265   inline int Init(int req, Compile* C);
   267 //----------------- input edge handling
   268 protected:
   269   friend class PhaseCFG;        // Access to address of _in array elements
   270   Node **_in;                   // Array of use-def references to Nodes
   271   Node **_out;                  // Array of def-use references to Nodes
   273   // Input edges are split into two categories.  Required edges are required
   274   // for semantic correctness; order is important and NULLs are allowed.
   275   // Precedence edges are used to help determine execution order and are
   276   // added, e.g., for scheduling purposes.  They are unordered and not
   277   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   278   // are required, from _cnt to _max-1 are precedence edges.
   279   node_idx_t _cnt;              // Total number of required Node inputs.
   281   node_idx_t _max;              // Actual length of input array.
   283   // Output edges are an unordered list of def-use edges which exactly
   284   // correspond to required input edges which point from other nodes
   285   // to this one.  Thus the count of the output edges is the number of
   286   // users of this node.
   287   node_idx_t _outcnt;           // Total number of Node outputs.
   289   node_idx_t _outmax;           // Actual length of output array.
   291   // Grow the actual input array to the next larger power-of-2 bigger than len.
   292   void grow( uint len );
   293   // Grow the output array to the next larger power-of-2 bigger than len.
   294   void out_grow( uint len );
   296  public:
   297   // Each Node is assigned a unique small/dense number.  This number is used
   298   // to index into auxiliary arrays of data and bitvectors.
   299   // It is declared const to defend against inadvertant assignment,
   300   // since it is used by clients as a naked field.
   301   const node_idx_t _idx;
   303   // Get the (read-only) number of input edges
   304   uint req() const { return _cnt; }
   305   uint len() const { return _max; }
   306   // Get the (read-only) number of output edges
   307   uint outcnt() const { return _outcnt; }
   309 #if OPTO_DU_ITERATOR_ASSERT
   310   // Iterate over the out-edges of this node.  Deletions are illegal.
   311   inline DUIterator outs() const;
   312   // Use this when the out array might have changed to suppress asserts.
   313   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   314   // Does the node have an out at this position?  (Used for iteration.)
   315   inline bool has_out(DUIterator& i) const;
   316   inline Node*    out(DUIterator& i) const;
   317   // Iterate over the out-edges of this node.  All changes are illegal.
   318   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   319   inline Node*    fast_out(DUIterator_Fast& i) const;
   320   // Iterate over the out-edges of this node, deleting one at a time.
   321   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   322   inline Node*    last_out(DUIterator_Last& i) const;
   323   // The inline bodies of all these methods are after the iterator definitions.
   324 #else
   325   // Iterate over the out-edges of this node.  Deletions are illegal.
   326   // This iteration uses integral indexes, to decouple from array reallocations.
   327   DUIterator outs() const  { return 0; }
   328   // Use this when the out array might have changed to suppress asserts.
   329   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   331   // Reference to the i'th output Node.  Error if out of bounds.
   332   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   333   // Does the node have an out at this position?  (Used for iteration.)
   334   bool has_out(DUIterator i) const { return i < _outcnt; }
   336   // Iterate over the out-edges of this node.  All changes are illegal.
   337   // This iteration uses a pointer internal to the out array.
   338   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   339     Node** out = _out;
   340     // Assign a limit pointer to the reference argument:
   341     max = out + (ptrdiff_t)_outcnt;
   342     // Return the base pointer:
   343     return out;
   344   }
   345   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   346   // Iterate over the out-edges of this node, deleting one at a time.
   347   // This iteration uses a pointer internal to the out array.
   348   DUIterator_Last last_outs(DUIterator_Last& min) const {
   349     Node** out = _out;
   350     // Assign a limit pointer to the reference argument:
   351     min = out;
   352     // Return the pointer to the start of the iteration:
   353     return out + (ptrdiff_t)_outcnt - 1;
   354   }
   355   Node*    last_out(DUIterator_Last i) const  { return *i; }
   356 #endif
   358   // Reference to the i'th input Node.  Error if out of bounds.
   359   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
   360   // Reference to the i'th output Node.  Error if out of bounds.
   361   // Use this accessor sparingly.  We are going trying to use iterators instead.
   362   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   363   // Return the unique out edge.
   364   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   365   // Delete out edge at position 'i' by moving last out edge to position 'i'
   366   void  raw_del_out(uint i) {
   367     assert(i < _outcnt,"oob");
   368     assert(_outcnt > 0,"oob");
   369     #if OPTO_DU_ITERATOR_ASSERT
   370     // Record that a change happened here.
   371     debug_only(_last_del = _out[i]; ++_del_tick);
   372     #endif
   373     _out[i] = _out[--_outcnt];
   374     // Smash the old edge so it can't be used accidentally.
   375     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   376   }
   378 #ifdef ASSERT
   379   bool is_dead() const;
   380 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   381 #endif
   382   // Check whether node has become unreachable
   383   bool is_unreachable(PhaseIterGVN &igvn) const;
   385   // Set a required input edge, also updates corresponding output edge
   386   void add_req( Node *n ); // Append a NEW required input
   387   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   388   void del_req( uint idx ); // Delete required edge & compact
   389   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
   390   void ins_req( uint i, Node *n ); // Insert a NEW required input
   391   void set_req( uint i, Node *n ) {
   392     assert( is_not_dead(n), "can not use dead node");
   393     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
   394     assert( !VerifyHashTableKeys || _hash_lock == 0,
   395             "remove node from hash table before modifying it");
   396     Node** p = &_in[i];    // cache this._in, across the del_out call
   397     if (*p != NULL)  (*p)->del_out((Node *)this);
   398     (*p) = n;
   399     if (n != NULL)      n->add_out((Node *)this);
   400   }
   401   // Light version of set_req() to init inputs after node creation.
   402   void init_req( uint i, Node *n ) {
   403     assert( i == 0 && this == n ||
   404             is_not_dead(n), "can not use dead node");
   405     assert( i < _cnt, "oob");
   406     assert( !VerifyHashTableKeys || _hash_lock == 0,
   407             "remove node from hash table before modifying it");
   408     assert( _in[i] == NULL, "sanity");
   409     _in[i] = n;
   410     if (n != NULL)      n->add_out((Node *)this);
   411   }
   412   // Find first occurrence of n among my edges:
   413   int find_edge(Node* n);
   414   int replace_edge(Node* old, Node* neww);
   415   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
   416   // NULL out all inputs to eliminate incoming Def-Use edges.
   417   // Return the number of edges between 'n' and 'this'
   418   int  disconnect_inputs(Node *n, Compile *c);
   420   // Quickly, return true if and only if I am Compile::current()->top().
   421   bool is_top() const {
   422     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   423     return (_out == NULL);
   424   }
   425   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   426   void setup_is_top();
   428   // Strip away casting.  (It is depth-limited.)
   429   Node* uncast() const;
   430   // Return whether two Nodes are equivalent, after stripping casting.
   431   bool eqv_uncast(const Node* n) const {
   432     return (this->uncast() == n->uncast());
   433   }
   435 private:
   436   static Node* uncast_helper(const Node* n);
   438   // Add an output edge to the end of the list
   439   void add_out( Node *n ) {
   440     if (is_top())  return;
   441     if( _outcnt == _outmax ) out_grow(_outcnt);
   442     _out[_outcnt++] = n;
   443   }
   444   // Delete an output edge
   445   void del_out( Node *n ) {
   446     if (is_top())  return;
   447     Node** outp = &_out[_outcnt];
   448     // Find and remove n
   449     do {
   450       assert(outp > _out, "Missing Def-Use edge");
   451     } while (*--outp != n);
   452     *outp = _out[--_outcnt];
   453     // Smash the old edge so it can't be used accidentally.
   454     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   455     // Record that a change happened here.
   456     #if OPTO_DU_ITERATOR_ASSERT
   457     debug_only(_last_del = n; ++_del_tick);
   458     #endif
   459   }
   461 public:
   462   // Globally replace this node by a given new node, updating all uses.
   463   void replace_by(Node* new_node);
   464   // Globally replace this node by a given new node, updating all uses
   465   // and cutting input edges of old node.
   466   void subsume_by(Node* new_node, Compile* c) {
   467     replace_by(new_node);
   468     disconnect_inputs(NULL, c);
   469   }
   470   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   471   // Find the one non-null required input.  RegionNode only
   472   Node *nonnull_req() const;
   473   // Add or remove precedence edges
   474   void add_prec( Node *n );
   475   void rm_prec( uint i );
   476   void set_prec( uint i, Node *n ) {
   477     assert( is_not_dead(n), "can not use dead node");
   478     assert( i >= _cnt, "not a precedence edge");
   479     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   480     _in[i] = n;
   481     if (n != NULL) n->add_out((Node *)this);
   482   }
   483   // Set this node's index, used by cisc_version to replace current node
   484   void set_idx(uint new_idx) {
   485     const node_idx_t* ref = &_idx;
   486     *(node_idx_t*)ref = new_idx;
   487   }
   488   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   489   void swap_edges(uint i1, uint i2) {
   490     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   491     // Def-Use info is unchanged
   492     Node* n1 = in(i1);
   493     Node* n2 = in(i2);
   494     _in[i1] = n2;
   495     _in[i2] = n1;
   496     // If this node is in the hash table, make sure it doesn't need a rehash.
   497     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   498   }
   500   // Iterators over input Nodes for a Node X are written as:
   501   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   502   // NOTE: Required edges can contain embedded NULL pointers.
   504 //----------------- Other Node Properties
   506   // Generate class id for some ideal nodes to avoid virtual query
   507   // methods is_<Node>().
   508   // Class id is the set of bits corresponded to the node class and all its
   509   // super classes so that queries for super classes are also valid.
   510   // Subclasses of the same super class have different assigned bit
   511   // (the third parameter in the macro DEFINE_CLASS_ID).
   512   // Classes with deeper hierarchy are declared first.
   513   // Classes with the same hierarchy depth are sorted by usage frequency.
   514   //
   515   // The query method masks the bits to cut off bits of subclasses
   516   // and then compare the result with the class id
   517   // (see the macro DEFINE_CLASS_QUERY below).
   518   //
   519   //  Class_MachCall=30, ClassMask_MachCall=31
   520   // 12               8               4               0
   521   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   522   //                                  |   |   |   |
   523   //                                  |   |   |   Bit_Mach=2
   524   //                                  |   |   Bit_MachReturn=4
   525   //                                  |   Bit_MachSafePoint=8
   526   //                                  Bit_MachCall=16
   527   //
   528   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   529   // 12               8               4               0
   530   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   531   //                              |   |   |
   532   //                              |   |   Bit_Region=8
   533   //                              |   Bit_Loop=16
   534   //                              Bit_CountedLoop=32
   536   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   537   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   538   Class_##cl = Class_##supcl + Bit_##cl , \
   539   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   541   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   542   // so that it's values fits into 16 bits.
   543   enum NodeClasses {
   544     Bit_Node   = 0x0000,
   545     Class_Node = 0x0000,
   546     ClassMask_Node = 0xFFFF,
   548     DEFINE_CLASS_ID(Multi, Node, 0)
   549       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   550         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   551           DEFINE_CLASS_ID(CallJava,         Call, 0)
   552             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   553             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   554           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   555             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   556           DEFINE_CLASS_ID(Allocate,         Call, 2)
   557             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   558           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   559             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   560             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   561       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   562         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   563           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   564           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   565         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   566           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   567         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   568       DEFINE_CLASS_ID(Start,       Multi, 2)
   569       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   570         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
   571         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
   572       DEFINE_CLASS_ID(MathExact,   Multi, 4)
   574     DEFINE_CLASS_ID(Mach,  Node, 1)
   575       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   576         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   577           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   578             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   579               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   580               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   581             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   582               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   583       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   584         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   585         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   586         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   587       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   588       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   589       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   590       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   592     DEFINE_CLASS_ID(Type,  Node, 2)
   593       DEFINE_CLASS_ID(Phi,   Type, 0)
   594       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   595       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   596       DEFINE_CLASS_ID(CMove, Type, 3)
   597       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   598       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
   599         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
   600         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
   601       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
   602         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
   603         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
   605     DEFINE_CLASS_ID(Proj,  Node, 3)
   606       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   607       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   608       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   609       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   610       DEFINE_CLASS_ID(Parm,      Proj, 4)
   611       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   613     DEFINE_CLASS_ID(Mem,   Node, 4)
   614       DEFINE_CLASS_ID(Load,  Mem, 0)
   615         DEFINE_CLASS_ID(LoadVector,  Load, 0)
   616       DEFINE_CLASS_ID(Store, Mem, 1)
   617         DEFINE_CLASS_ID(StoreVector, Store, 0)
   618       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   620     DEFINE_CLASS_ID(Region, Node, 5)
   621       DEFINE_CLASS_ID(Loop, Region, 0)
   622         DEFINE_CLASS_ID(Root,        Loop, 0)
   623         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   625     DEFINE_CLASS_ID(Sub,   Node, 6)
   626       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   627         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   628         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   629         DEFINE_CLASS_ID(FlagsProj, Cmp, 2)
   631     DEFINE_CLASS_ID(MergeMem, Node, 7)
   632     DEFINE_CLASS_ID(Bool,     Node, 8)
   633     DEFINE_CLASS_ID(AddP,     Node, 9)
   634     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   635     DEFINE_CLASS_ID(Add,      Node, 11)
   636     DEFINE_CLASS_ID(Mul,      Node, 12)
   637     DEFINE_CLASS_ID(Vector,   Node, 13)
   638     DEFINE_CLASS_ID(ClearArray, Node, 14)
   640     _max_classes  = ClassMask_ClearArray
   641   };
   642   #undef DEFINE_CLASS_ID
   644   // Flags are sorted by usage frequency.
   645   enum NodeFlags {
   646     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   647     Flag_rematerialize       = Flag_is_Copy << 1,
   648     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   649     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   650     Flag_is_Con              = Flag_is_macro << 1,
   651     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   652     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
   653     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   654     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
   655     Flag_has_call            = Flag_avoid_back_to_back << 1,
   656     Flag_is_expensive        = Flag_has_call << 1,
   657     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
   658   };
   660 private:
   661   jushort _class_id;
   662   jushort _flags;
   664 protected:
   665   // These methods should be called from constructors only.
   666   void init_class_id(jushort c) {
   667     assert(c <= _max_classes, "invalid node class");
   668     _class_id = c; // cast out const
   669   }
   670   void init_flags(jushort fl) {
   671     assert(fl <= _max_flags, "invalid node flag");
   672     _flags |= fl;
   673   }
   674   void clear_flag(jushort fl) {
   675     assert(fl <= _max_flags, "invalid node flag");
   676     _flags &= ~fl;
   677   }
   679 public:
   680   const jushort class_id() const { return _class_id; }
   682   const jushort flags() const { return _flags; }
   684   // Return a dense integer opcode number
   685   virtual int Opcode() const;
   687   // Virtual inherited Node size
   688   virtual uint size_of() const;
   690   // Other interesting Node properties
   691   #define DEFINE_CLASS_QUERY(type)                           \
   692   bool is_##type() const {                                   \
   693     return ((_class_id & ClassMask_##type) == Class_##type); \
   694   }                                                          \
   695   type##Node *as_##type() const {                            \
   696     assert(is_##type(), "invalid node class");               \
   697     return (type##Node*)this;                                \
   698   }                                                          \
   699   type##Node* isa_##type() const {                           \
   700     return (is_##type()) ? as_##type() : NULL;               \
   701   }
   703   DEFINE_CLASS_QUERY(AbstractLock)
   704   DEFINE_CLASS_QUERY(Add)
   705   DEFINE_CLASS_QUERY(AddP)
   706   DEFINE_CLASS_QUERY(Allocate)
   707   DEFINE_CLASS_QUERY(AllocateArray)
   708   DEFINE_CLASS_QUERY(Bool)
   709   DEFINE_CLASS_QUERY(BoxLock)
   710   DEFINE_CLASS_QUERY(Call)
   711   DEFINE_CLASS_QUERY(CallDynamicJava)
   712   DEFINE_CLASS_QUERY(CallJava)
   713   DEFINE_CLASS_QUERY(CallLeaf)
   714   DEFINE_CLASS_QUERY(CallRuntime)
   715   DEFINE_CLASS_QUERY(CallStaticJava)
   716   DEFINE_CLASS_QUERY(Catch)
   717   DEFINE_CLASS_QUERY(CatchProj)
   718   DEFINE_CLASS_QUERY(CheckCastPP)
   719   DEFINE_CLASS_QUERY(ConstraintCast)
   720   DEFINE_CLASS_QUERY(ClearArray)
   721   DEFINE_CLASS_QUERY(CMove)
   722   DEFINE_CLASS_QUERY(Cmp)
   723   DEFINE_CLASS_QUERY(CountedLoop)
   724   DEFINE_CLASS_QUERY(CountedLoopEnd)
   725   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
   726   DEFINE_CLASS_QUERY(DecodeN)
   727   DEFINE_CLASS_QUERY(DecodeNKlass)
   728   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
   729   DEFINE_CLASS_QUERY(EncodeP)
   730   DEFINE_CLASS_QUERY(EncodePKlass)
   731   DEFINE_CLASS_QUERY(FastLock)
   732   DEFINE_CLASS_QUERY(FastUnlock)
   733   DEFINE_CLASS_QUERY(FlagsProj)
   734   DEFINE_CLASS_QUERY(If)
   735   DEFINE_CLASS_QUERY(IfFalse)
   736   DEFINE_CLASS_QUERY(IfTrue)
   737   DEFINE_CLASS_QUERY(Initialize)
   738   DEFINE_CLASS_QUERY(Jump)
   739   DEFINE_CLASS_QUERY(JumpProj)
   740   DEFINE_CLASS_QUERY(Load)
   741   DEFINE_CLASS_QUERY(LoadStore)
   742   DEFINE_CLASS_QUERY(Lock)
   743   DEFINE_CLASS_QUERY(Loop)
   744   DEFINE_CLASS_QUERY(Mach)
   745   DEFINE_CLASS_QUERY(MachBranch)
   746   DEFINE_CLASS_QUERY(MachCall)
   747   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   748   DEFINE_CLASS_QUERY(MachCallJava)
   749   DEFINE_CLASS_QUERY(MachCallLeaf)
   750   DEFINE_CLASS_QUERY(MachCallRuntime)
   751   DEFINE_CLASS_QUERY(MachCallStaticJava)
   752   DEFINE_CLASS_QUERY(MachConstantBase)
   753   DEFINE_CLASS_QUERY(MachConstant)
   754   DEFINE_CLASS_QUERY(MachGoto)
   755   DEFINE_CLASS_QUERY(MachIf)
   756   DEFINE_CLASS_QUERY(MachNullCheck)
   757   DEFINE_CLASS_QUERY(MachProj)
   758   DEFINE_CLASS_QUERY(MachReturn)
   759   DEFINE_CLASS_QUERY(MachSafePoint)
   760   DEFINE_CLASS_QUERY(MachSpillCopy)
   761   DEFINE_CLASS_QUERY(MachTemp)
   762   DEFINE_CLASS_QUERY(MathExact)
   763   DEFINE_CLASS_QUERY(Mem)
   764   DEFINE_CLASS_QUERY(MemBar)
   765   DEFINE_CLASS_QUERY(MemBarStoreStore)
   766   DEFINE_CLASS_QUERY(MergeMem)
   767   DEFINE_CLASS_QUERY(Mul)
   768   DEFINE_CLASS_QUERY(Multi)
   769   DEFINE_CLASS_QUERY(MultiBranch)
   770   DEFINE_CLASS_QUERY(Parm)
   771   DEFINE_CLASS_QUERY(PCTable)
   772   DEFINE_CLASS_QUERY(Phi)
   773   DEFINE_CLASS_QUERY(Proj)
   774   DEFINE_CLASS_QUERY(Region)
   775   DEFINE_CLASS_QUERY(Root)
   776   DEFINE_CLASS_QUERY(SafePoint)
   777   DEFINE_CLASS_QUERY(SafePointScalarObject)
   778   DEFINE_CLASS_QUERY(Start)
   779   DEFINE_CLASS_QUERY(Store)
   780   DEFINE_CLASS_QUERY(Sub)
   781   DEFINE_CLASS_QUERY(Type)
   782   DEFINE_CLASS_QUERY(Vector)
   783   DEFINE_CLASS_QUERY(LoadVector)
   784   DEFINE_CLASS_QUERY(StoreVector)
   785   DEFINE_CLASS_QUERY(Unlock)
   787   #undef DEFINE_CLASS_QUERY
   789   // duplicate of is_MachSpillCopy()
   790   bool is_SpillCopy () const {
   791     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   792   }
   794   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   795   // The data node which is safe to leave in dead loop during IGVN optimization.
   796   bool is_dead_loop_safe() const {
   797     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   798            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   799             (!is_Proj() || !in(0)->is_Allocate()));
   800   }
   802   // is_Copy() returns copied edge index (0 or 1)
   803   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   805   virtual bool is_CFG() const { return false; }
   807   // If this node is control-dependent on a test, can it be
   808   // rerouted to a dominating equivalent test?  This is usually
   809   // true of non-CFG nodes, but can be false for operations which
   810   // depend for their correct sequencing on more than one test.
   811   // (In that case, hoisting to a dominating test may silently
   812   // skip some other important test.)
   813   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   815   // When building basic blocks, I need to have a notion of block beginning
   816   // Nodes, next block selector Nodes (block enders), and next block
   817   // projections.  These calls need to work on their machine equivalents.  The
   818   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   819   bool is_block_start() const {
   820     if ( is_Region() )
   821       return this == (const Node*)in(0);
   822     else
   823       return is_Start();
   824   }
   826   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   827   // Goto and Return.  This call also returns the block ending Node.
   828   virtual const Node *is_block_proj() const;
   830   // The node is a "macro" node which needs to be expanded before matching
   831   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   832   // The node is expensive: the best control is set during loop opts
   833   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
   835 //----------------- Optimization
   837   // Get the worst-case Type output for this Node.
   838   virtual const class Type *bottom_type() const;
   840   // If we find a better type for a node, try to record it permanently.
   841   // Return true if this node actually changed.
   842   // Be sure to do the hash_delete game in the "rehash" variant.
   843   void raise_bottom_type(const Type* new_type);
   845   // Get the address type with which this node uses and/or defs memory,
   846   // or NULL if none.  The address type is conservatively wide.
   847   // Returns non-null for calls, membars, loads, stores, etc.
   848   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   849   virtual const class TypePtr *adr_type() const { return NULL; }
   851   // Return an existing node which computes the same function as this node.
   852   // The optimistic combined algorithm requires this to return a Node which
   853   // is a small number of steps away (e.g., one of my inputs).
   854   virtual Node *Identity( PhaseTransform *phase );
   856   // Return the set of values this Node can take on at runtime.
   857   virtual const Type *Value( PhaseTransform *phase ) const;
   859   // Return a node which is more "ideal" than the current node.
   860   // The invariants on this call are subtle.  If in doubt, read the
   861   // treatise in node.cpp above the default implemention AND TEST WITH
   862   // +VerifyIterativeGVN!
   863   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   865   // Some nodes have specific Ideal subgraph transformations only if they are
   866   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   867   // for the transformations to happen.
   868   bool has_special_unique_user() const;
   870   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   871   Node* find_exact_control(Node* ctrl);
   873   // Check if 'this' node dominates or equal to 'sub'.
   874   bool dominates(Node* sub, Node_List &nlist);
   876 protected:
   877   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   878 public:
   880   // Idealize graph, using DU info.  Done after constant propagation
   881   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   883   // See if there is valid pipeline info
   884   static  const Pipeline *pipeline_class();
   885   virtual const Pipeline *pipeline() const;
   887   // Compute the latency from the def to this instruction of the ith input node
   888   uint latency(uint i);
   890   // Hash & compare functions, for pessimistic value numbering
   892   // If the hash function returns the special sentinel value NO_HASH,
   893   // the node is guaranteed never to compare equal to any other node.
   894   // If we accidentally generate a hash with value NO_HASH the node
   895   // won't go into the table and we'll lose a little optimization.
   896   enum { NO_HASH = 0 };
   897   virtual uint hash() const;
   898   virtual uint cmp( const Node &n ) const;
   900   // Operation appears to be iteratively computed (such as an induction variable)
   901   // It is possible for this operation to return false for a loop-varying
   902   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   903   bool is_iteratively_computed();
   905   // Determine if a node is Counted loop induction variable.
   906   // The method is defined in loopnode.cpp.
   907   const Node* is_loop_iv() const;
   909   // Return a node with opcode "opc" and same inputs as "this" if one can
   910   // be found; Otherwise return NULL;
   911   Node* find_similar(int opc);
   913   // Return the unique control out if only one. Null if none or more than one.
   914   Node* unique_ctrl_out();
   916 //----------------- Code Generation
   918   // Ideal register class for Matching.  Zero means unmatched instruction
   919   // (these are cloned instead of converted to machine nodes).
   920   virtual uint ideal_reg() const;
   922   static const uint NotAMachineReg;   // must be > max. machine register
   924   // Do we Match on this edge index or not?  Generally false for Control
   925   // and true for everything else.  Weird for calls & returns.
   926   virtual uint match_edge(uint idx) const;
   928   // Register class output is returned in
   929   virtual const RegMask &out_RegMask() const;
   930   // Register class input is expected in
   931   virtual const RegMask &in_RegMask(uint) const;
   932   // Should we clone rather than spill this instruction?
   933   bool rematerialize() const;
   935   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   936   virtual JVMState* jvms() const;
   938   // Print as assembly
   939   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   940   // Emit bytes starting at parameter 'ptr'
   941   // Bump 'ptr' by the number of output bytes
   942   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   943   // Size of instruction in bytes
   944   virtual uint size(PhaseRegAlloc *ra_) const;
   946   // Convenience function to extract an integer constant from a node.
   947   // If it is not an integer constant (either Con, CastII, or Mach),
   948   // return value_if_unknown.
   949   jint find_int_con(jint value_if_unknown) const {
   950     const TypeInt* t = find_int_type();
   951     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   952   }
   953   // Return the constant, knowing it is an integer constant already
   954   jint get_int() const {
   955     const TypeInt* t = find_int_type();
   956     guarantee(t != NULL, "must be con");
   957     return t->get_con();
   958   }
   959   // Here's where the work is done.  Can produce non-constant int types too.
   960   const TypeInt* find_int_type() const;
   962   // Same thing for long (and intptr_t, via type.hpp):
   963   jlong get_long() const {
   964     const TypeLong* t = find_long_type();
   965     guarantee(t != NULL, "must be con");
   966     return t->get_con();
   967   }
   968   jlong find_long_con(jint value_if_unknown) const {
   969     const TypeLong* t = find_long_type();
   970     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   971   }
   972   const TypeLong* find_long_type() const;
   974   const TypePtr* get_ptr_type() const;
   976   // These guys are called by code generated by ADLC:
   977   intptr_t get_ptr() const;
   978   intptr_t get_narrowcon() const;
   979   jdouble getd() const;
   980   jfloat getf() const;
   982   // Nodes which are pinned into basic blocks
   983   virtual bool pinned() const { return false; }
   985   // Nodes which use memory without consuming it, hence need antidependences
   986   // More specifically, needs_anti_dependence_check returns true iff the node
   987   // (a) does a load, and (b) does not perform a store (except perhaps to a
   988   // stack slot or some other unaliased location).
   989   bool needs_anti_dependence_check() const;
   991   // Return which operand this instruction may cisc-spill. In other words,
   992   // return operand position that can convert from reg to memory access
   993   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
   994   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
   996 //----------------- Graph walking
   997 public:
   998   // Walk and apply member functions recursively.
   999   // Supplied (this) pointer is root.
  1000   void walk(NFunc pre, NFunc post, void *env);
  1001   static void nop(Node &, void*); // Dummy empty function
  1002   static void packregion( Node &n, void* );
  1003 private:
  1004   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
  1006 //----------------- Printing, etc
  1007 public:
  1008 #ifndef PRODUCT
  1009   Node* find(int idx) const;         // Search the graph for the given idx.
  1010   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
  1011   void dump() const { dump("\n"); }  // Print this node.
  1012   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
  1013   void dump(int depth) const;        // Print this node, recursively to depth d
  1014   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
  1015   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
  1016   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
  1017   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
  1018   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
  1019   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
  1020   void verify() const;               // Check Def-Use info for my subgraph
  1021   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
  1023   // This call defines a class-unique string used to identify class instances
  1024   virtual const char *Name() const;
  1026   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  1027   // RegMask Print Functions
  1028   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1029   void dump_out_regmask() { out_RegMask().dump(); }
  1030   static int _in_dump_cnt;
  1031   static bool in_dump() { return _in_dump_cnt > 0; }
  1032   void fast_dump() const {
  1033     tty->print("%4d: %-17s", _idx, Name());
  1034     for (uint i = 0; i < len(); i++)
  1035       if (in(i))
  1036         tty->print(" %4d", in(i)->_idx);
  1037       else
  1038         tty->print(" NULL");
  1039     tty->print("\n");
  1041 #endif
  1042 #ifdef ASSERT
  1043   void verify_construction();
  1044   bool verify_jvms(const JVMState* jvms) const;
  1045   int  _debug_idx;                     // Unique value assigned to every node.
  1046   int   debug_idx() const              { return _debug_idx; }
  1047   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1049   Node* _debug_orig;                   // Original version of this, if any.
  1050   Node*  debug_orig() const            { return _debug_orig; }
  1051   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1053   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1054   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1055   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1057   static void init_NodeProperty();
  1059   #if OPTO_DU_ITERATOR_ASSERT
  1060   const Node* _last_del;               // The last deleted node.
  1061   uint        _del_tick;               // Bumped when a deletion happens..
  1062   #endif
  1063 #endif
  1064 };
  1066 //-----------------------------------------------------------------------------
  1067 // Iterators over DU info, and associated Node functions.
  1069 #if OPTO_DU_ITERATOR_ASSERT
  1071 // Common code for assertion checking on DU iterators.
  1072 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1073 #ifdef ASSERT
  1074  protected:
  1075   bool         _vdui;               // cached value of VerifyDUIterators
  1076   const Node*  _node;               // the node containing the _out array
  1077   uint         _outcnt;             // cached node->_outcnt
  1078   uint         _del_tick;           // cached node->_del_tick
  1079   Node*        _last;               // last value produced by the iterator
  1081   void sample(const Node* node);    // used by c'tor to set up for verifies
  1082   void verify(const Node* node, bool at_end_ok = false);
  1083   void verify_resync();
  1084   void reset(const DUIterator_Common& that);
  1086 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1087   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1088 #else
  1089   #define I_VDUI_ONLY(i,x) { }
  1090 #endif //ASSERT
  1091 };
  1093 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1095 // Default DU iterator.  Allows appends onto the out array.
  1096 // Allows deletion from the out array only at the current point.
  1097 // Usage:
  1098 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1099 //    Node* y = x->out(i);
  1100 //    ...
  1101 //  }
  1102 // Compiles in product mode to a unsigned integer index, which indexes
  1103 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1104 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1105 // before continuing the loop.  You must delete only the last-produced
  1106 // edge.  You must delete only a single copy of the last-produced edge,
  1107 // or else you must delete all copies at once (the first time the edge
  1108 // is produced by the iterator).
  1109 class DUIterator : public DUIterator_Common {
  1110   friend class Node;
  1112   // This is the index which provides the product-mode behavior.
  1113   // Whatever the product-mode version of the system does to the
  1114   // DUI index is done to this index.  All other fields in
  1115   // this class are used only for assertion checking.
  1116   uint         _idx;
  1118   #ifdef ASSERT
  1119   uint         _refresh_tick;    // Records the refresh activity.
  1121   void sample(const Node* node); // Initialize _refresh_tick etc.
  1122   void verify(const Node* node, bool at_end_ok = false);
  1123   void verify_increment();       // Verify an increment operation.
  1124   void verify_resync();          // Verify that we can back up over a deletion.
  1125   void verify_finish();          // Verify that the loop terminated properly.
  1126   void refresh();                // Resample verification info.
  1127   void reset(const DUIterator& that);  // Resample after assignment.
  1128   #endif
  1130   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1131     { _idx = 0;                         debug_only(sample(node)); }
  1133  public:
  1134   // initialize to garbage; clear _vdui to disable asserts
  1135   DUIterator()
  1136     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1138   void operator++(int dummy_to_specify_postfix_op)
  1139     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1141   void operator--()
  1142     { VDUI_ONLY(verify_resync());       --_idx; }
  1144   ~DUIterator()
  1145     { VDUI_ONLY(verify_finish()); }
  1147   void operator=(const DUIterator& that)
  1148     { _idx = that._idx;                 debug_only(reset(that)); }
  1149 };
  1151 DUIterator Node::outs() const
  1152   { return DUIterator(this, 0); }
  1153 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1154   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1155 bool Node::has_out(DUIterator& i) const
  1156   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1157 Node*    Node::out(DUIterator& i) const
  1158   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1161 // Faster DU iterator.  Disallows insertions into the out array.
  1162 // Allows deletion from the out array only at the current point.
  1163 // Usage:
  1164 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1165 //    Node* y = x->fast_out(i);
  1166 //    ...
  1167 //  }
  1168 // Compiles in product mode to raw Node** pointer arithmetic, with
  1169 // no reloading of pointers from the original node x.  If you delete,
  1170 // you must perform "--i; --imax" just before continuing the loop.
  1171 // If you delete multiple copies of the same edge, you must decrement
  1172 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1173 class DUIterator_Fast : public DUIterator_Common {
  1174   friend class Node;
  1175   friend class DUIterator_Last;
  1177   // This is the pointer which provides the product-mode behavior.
  1178   // Whatever the product-mode version of the system does to the
  1179   // DUI pointer is done to this pointer.  All other fields in
  1180   // this class are used only for assertion checking.
  1181   Node**       _outp;
  1183   #ifdef ASSERT
  1184   void verify(const Node* node, bool at_end_ok = false);
  1185   void verify_limit();
  1186   void verify_resync();
  1187   void verify_relimit(uint n);
  1188   void reset(const DUIterator_Fast& that);
  1189   #endif
  1191   // Note:  offset must be signed, since -1 is sometimes passed
  1192   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1193     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1195  public:
  1196   // initialize to garbage; clear _vdui to disable asserts
  1197   DUIterator_Fast()
  1198     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1200   void operator++(int dummy_to_specify_postfix_op)
  1201     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1203   void operator--()
  1204     { VDUI_ONLY(verify_resync());       --_outp; }
  1206   void operator-=(uint n)   // applied to the limit only
  1207     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1209   bool operator<(DUIterator_Fast& limit) {
  1210     I_VDUI_ONLY(*this, this->verify(_node, true));
  1211     I_VDUI_ONLY(limit, limit.verify_limit());
  1212     return _outp < limit._outp;
  1215   void operator=(const DUIterator_Fast& that)
  1216     { _outp = that._outp;               debug_only(reset(that)); }
  1217 };
  1219 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1220   // Assign a limit pointer to the reference argument:
  1221   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1222   // Return the base pointer:
  1223   return DUIterator_Fast(this, 0);
  1225 Node* Node::fast_out(DUIterator_Fast& i) const {
  1226   I_VDUI_ONLY(i, i.verify(this));
  1227   return debug_only(i._last=) *i._outp;
  1231 // Faster DU iterator.  Requires each successive edge to be removed.
  1232 // Does not allow insertion of any edges.
  1233 // Usage:
  1234 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1235 //    Node* y = x->last_out(i);
  1236 //    ...
  1237 //  }
  1238 // Compiles in product mode to raw Node** pointer arithmetic, with
  1239 // no reloading of pointers from the original node x.
  1240 class DUIterator_Last : private DUIterator_Fast {
  1241   friend class Node;
  1243   #ifdef ASSERT
  1244   void verify(const Node* node, bool at_end_ok = false);
  1245   void verify_limit();
  1246   void verify_step(uint num_edges);
  1247   #endif
  1249   // Note:  offset must be signed, since -1 is sometimes passed
  1250   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1251     : DUIterator_Fast(node, offset) { }
  1253   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1254   void operator<(int)                              {} // do not use
  1256  public:
  1257   DUIterator_Last() { }
  1258   // initialize to garbage
  1260   void operator--()
  1261     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1263   void operator-=(uint n)
  1264     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1266   bool operator>=(DUIterator_Last& limit) {
  1267     I_VDUI_ONLY(*this, this->verify(_node, true));
  1268     I_VDUI_ONLY(limit, limit.verify_limit());
  1269     return _outp >= limit._outp;
  1272   void operator=(const DUIterator_Last& that)
  1273     { DUIterator_Fast::operator=(that); }
  1274 };
  1276 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1277   // Assign a limit pointer to the reference argument:
  1278   imin = DUIterator_Last(this, 0);
  1279   // Return the initial pointer:
  1280   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1282 Node* Node::last_out(DUIterator_Last& i) const {
  1283   I_VDUI_ONLY(i, i.verify(this));
  1284   return debug_only(i._last=) *i._outp;
  1287 #endif //OPTO_DU_ITERATOR_ASSERT
  1289 #undef I_VDUI_ONLY
  1290 #undef VDUI_ONLY
  1292 // An Iterator that truly follows the iterator pattern.  Doesn't
  1293 // support deletion but could be made to.
  1294 //
  1295 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1296 //     Node* m = i.get();
  1297 //
  1298 class SimpleDUIterator : public StackObj {
  1299  private:
  1300   Node* node;
  1301   DUIterator_Fast i;
  1302   DUIterator_Fast imax;
  1303  public:
  1304   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1305   bool has_next() { return i < imax; }
  1306   void next() { i++; }
  1307   Node* get() { return node->fast_out(i); }
  1308 };
  1311 //-----------------------------------------------------------------------------
  1312 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1313 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1314 // Note that the constructor just zeros things, and since I use Arena
  1315 // allocation I do not need a destructor to reclaim storage.
  1316 class Node_Array : public ResourceObj {
  1317   friend class VMStructs;
  1318 protected:
  1319   Arena *_a;                    // Arena to allocate in
  1320   uint   _max;
  1321   Node **_nodes;
  1322   void   grow( uint i );        // Grow array node to fit
  1323 public:
  1324   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1325     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1326     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1327       _nodes[i] = NULL;
  1331   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1332   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1333   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1334   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1335   Node **adr() { return _nodes; }
  1336   // Extend the mapping: index i maps to Node *n.
  1337   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1338   void insert( uint i, Node *n );
  1339   void remove( uint i );        // Remove, preserving order
  1340   void sort( C_sort_func_t func);
  1341   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1342   void clear();                 // Set all entries to NULL, keep storage
  1343   uint Size() const { return _max; }
  1344   void dump() const;
  1345 };
  1347 class Node_List : public Node_Array {
  1348   friend class VMStructs;
  1349   uint _cnt;
  1350 public:
  1351   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1352   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1353   bool contains(Node* n) {
  1354     for (uint e = 0; e < size(); e++) {
  1355       if (at(e) == n) return true;
  1357     return false;
  1359   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1360   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1361   void push( Node *b ) { map(_cnt++,b); }
  1362   void yank( Node *n );         // Find and remove
  1363   Node *pop() { return _nodes[--_cnt]; }
  1364   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1365   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1366   uint size() const { return _cnt; }
  1367   void dump() const;
  1368 };
  1370 //------------------------------Unique_Node_List-------------------------------
  1371 class Unique_Node_List : public Node_List {
  1372   friend class VMStructs;
  1373   VectorSet _in_worklist;
  1374   uint _clock_index;            // Index in list where to pop from next
  1375 public:
  1376   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1377   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1379   void remove( Node *n );
  1380   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1381   VectorSet &member_set(){ return _in_worklist; }
  1383   void push( Node *b ) {
  1384     if( !_in_worklist.test_set(b->_idx) )
  1385       Node_List::push(b);
  1387   Node *pop() {
  1388     if( _clock_index >= size() ) _clock_index = 0;
  1389     Node *b = at(_clock_index);
  1390     map( _clock_index, Node_List::pop());
  1391     if (size() != 0) _clock_index++; // Always start from 0
  1392     _in_worklist >>= b->_idx;
  1393     return b;
  1395   Node *remove( uint i ) {
  1396     Node *b = Node_List::at(i);
  1397     _in_worklist >>= b->_idx;
  1398     map(i,Node_List::pop());
  1399     return b;
  1401   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1402   void  clear() {
  1403     _in_worklist.Clear();        // Discards storage but grows automatically
  1404     Node_List::clear();
  1405     _clock_index = 0;
  1408   // Used after parsing to remove useless nodes before Iterative GVN
  1409   void remove_useless_nodes(VectorSet &useful);
  1411 #ifndef PRODUCT
  1412   void print_set() const { _in_worklist.print(); }
  1413 #endif
  1414 };
  1416 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1417 inline void Compile::record_for_igvn(Node* n) {
  1418   _for_igvn->push(n);
  1421 //------------------------------Node_Stack-------------------------------------
  1422 class Node_Stack {
  1423   friend class VMStructs;
  1424 protected:
  1425   struct INode {
  1426     Node *node; // Processed node
  1427     uint  indx; // Index of next node's child
  1428   };
  1429   INode *_inode_top; // tos, stack grows up
  1430   INode *_inode_max; // End of _inodes == _inodes + _max
  1431   INode *_inodes;    // Array storage for the stack
  1432   Arena *_a;         // Arena to allocate in
  1433   void grow();
  1434 public:
  1435   Node_Stack(int size) {
  1436     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1437     _a = Thread::current()->resource_area();
  1438     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1439     _inode_max = _inodes + max;
  1440     _inode_top = _inodes - 1; // stack is empty
  1443   Node_Stack(Arena *a, int size) : _a(a) {
  1444     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1445     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1446     _inode_max = _inodes + max;
  1447     _inode_top = _inodes - 1; // stack is empty
  1450   void pop() {
  1451     assert(_inode_top >= _inodes, "node stack underflow");
  1452     --_inode_top;
  1454   void push(Node *n, uint i) {
  1455     ++_inode_top;
  1456     if (_inode_top >= _inode_max) grow();
  1457     INode *top = _inode_top; // optimization
  1458     top->node = n;
  1459     top->indx = i;
  1461   Node *node() const {
  1462     return _inode_top->node;
  1464   Node* node_at(uint i) const {
  1465     assert(_inodes + i <= _inode_top, "in range");
  1466     return _inodes[i].node;
  1468   uint index() const {
  1469     return _inode_top->indx;
  1471   uint index_at(uint i) const {
  1472     assert(_inodes + i <= _inode_top, "in range");
  1473     return _inodes[i].indx;
  1475   void set_node(Node *n) {
  1476     _inode_top->node = n;
  1478   void set_index(uint i) {
  1479     _inode_top->indx = i;
  1481   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1482   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1483   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1484   bool is_empty() const { return (_inode_top < _inodes); }
  1485   void clear() { _inode_top = _inodes - 1; } // retain storage
  1487   // Node_Stack is used to map nodes.
  1488   Node* find(uint idx) const;
  1489 };
  1492 //-----------------------------Node_Notes--------------------------------------
  1493 // Debugging or profiling annotations loosely and sparsely associated
  1494 // with some nodes.  See Compile::node_notes_at for the accessor.
  1495 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1496   friend class VMStructs;
  1497   JVMState* _jvms;
  1499 public:
  1500   Node_Notes(JVMState* jvms = NULL) {
  1501     _jvms = jvms;
  1504   JVMState* jvms()            { return _jvms; }
  1505   void  set_jvms(JVMState* x) {        _jvms = x; }
  1507   // True if there is nothing here.
  1508   bool is_clear() {
  1509     return (_jvms == NULL);
  1512   // Make there be nothing here.
  1513   void clear() {
  1514     _jvms = NULL;
  1517   // Make a new, clean node notes.
  1518   static Node_Notes* make(Compile* C) {
  1519     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1520     nn->clear();
  1521     return nn;
  1524   Node_Notes* clone(Compile* C) {
  1525     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1526     (*nn) = (*this);
  1527     return nn;
  1530   // Absorb any information from source.
  1531   bool update_from(Node_Notes* source) {
  1532     bool changed = false;
  1533     if (source != NULL) {
  1534       if (source->jvms() != NULL) {
  1535         set_jvms(source->jvms());
  1536         changed = true;
  1539     return changed;
  1541 };
  1543 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1544 inline Node_Notes*
  1545 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1546                            int idx, bool can_grow) {
  1547   assert(idx >= 0, "oob");
  1548   int block_idx = (idx >> _log2_node_notes_block_size);
  1549   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1550   if (grow_by >= 0) {
  1551     if (!can_grow)  return NULL;
  1552     grow_node_notes(arr, grow_by + 1);
  1554   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1555   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1558 inline bool
  1559 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1560   if (value == NULL || value->is_clear())
  1561     return false;  // nothing to write => write nothing
  1562   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1563   assert(loc != NULL, "");
  1564   return loc->update_from(value);
  1568 //------------------------------TypeNode---------------------------------------
  1569 // Node with a Type constant.
  1570 class TypeNode : public Node {
  1571 protected:
  1572   virtual uint hash() const;    // Check the type
  1573   virtual uint cmp( const Node &n ) const;
  1574   virtual uint size_of() const; // Size is bigger
  1575   const Type* const _type;
  1576 public:
  1577   void set_type(const Type* t) {
  1578     assert(t != NULL, "sanity");
  1579     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1580     *(const Type**)&_type = t;   // cast away const-ness
  1581     // If this node is in the hash table, make sure it doesn't need a rehash.
  1582     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1584   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1585   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1586     init_class_id(Class_Type);
  1588   virtual const Type *Value( PhaseTransform *phase ) const;
  1589   virtual const Type *bottom_type() const;
  1590   virtual       uint  ideal_reg() const;
  1591 #ifndef PRODUCT
  1592   virtual void dump_spec(outputStream *st) const;
  1593 #endif
  1594 };
  1596 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial