src/cpu/x86/vm/vm_version_x86.hpp

Fri, 18 Oct 2013 10:41:56 +0200

author
rbackman
date
Fri, 18 Oct 2013 10:41:56 +0200
changeset 5997
59e8ad757e19
parent 5353
b800986664f4
child 6378
8a8ff6b577ed
permissions
-rw-r--r--

8026844: Various Math functions needs intrinsification
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                clmul    : 1,
    65                         : 1,
    66                monitor  : 1,
    67                         : 1,
    68                vmx      : 1,
    69                         : 1,
    70                est      : 1,
    71                         : 1,
    72                ssse3    : 1,
    73                cid      : 1,
    74                         : 2,
    75                cmpxchg16: 1,
    76                         : 4,
    77                dca      : 1,
    78                sse4_1   : 1,
    79                sse4_2   : 1,
    80                         : 2,
    81                popcnt   : 1,
    82                         : 1,
    83                aes      : 1,
    84                         : 1,
    85                osxsave  : 1,
    86                avx      : 1,
    87                         : 3;
    88     } bits;
    89   };
    91   union StdCpuid1Edx {
    92     uint32_t value;
    93     struct {
    94       uint32_t          : 4,
    95                tsc      : 1,
    96                         : 3,
    97                cmpxchg8 : 1,
    98                         : 6,
    99                cmov     : 1,
   100                         : 3,
   101                clflush  : 1,
   102                         : 3,
   103                mmx      : 1,
   104                fxsr     : 1,
   105                sse      : 1,
   106                sse2     : 1,
   107                         : 1,
   108                ht       : 1,
   109                         : 3;
   110     } bits;
   111   };
   113   union DcpCpuid4Eax {
   114     uint32_t value;
   115     struct {
   116       uint32_t cache_type    : 5,
   117                              : 21,
   118                cores_per_cpu : 6;
   119     } bits;
   120   };
   122   union DcpCpuid4Ebx {
   123     uint32_t value;
   124     struct {
   125       uint32_t L1_line_size  : 12,
   126                partitions    : 10,
   127                associativity : 10;
   128     } bits;
   129   };
   131   union TplCpuidBEbx {
   132     uint32_t value;
   133     struct {
   134       uint32_t logical_cpus : 16,
   135                             : 16;
   136     } bits;
   137   };
   139   union ExtCpuid1Ecx {
   140     uint32_t value;
   141     struct {
   142       uint32_t LahfSahf     : 1,
   143                CmpLegacy    : 1,
   144                             : 4,
   145                lzcnt        : 1,
   146                sse4a        : 1,
   147                misalignsse  : 1,
   148                prefetchw    : 1,
   149                             : 22;
   150     } bits;
   151   };
   153   union ExtCpuid1Edx {
   154     uint32_t value;
   155     struct {
   156       uint32_t           : 22,
   157                mmx_amd   : 1,
   158                mmx       : 1,
   159                fxsr      : 1,
   160                          : 4,
   161                long_mode : 1,
   162                tdnow2    : 1,
   163                tdnow     : 1;
   164     } bits;
   165   };
   167   union ExtCpuid5Ex {
   168     uint32_t value;
   169     struct {
   170       uint32_t L1_line_size : 8,
   171                L1_tag_lines : 8,
   172                L1_assoc     : 8,
   173                L1_size      : 8;
   174     } bits;
   175   };
   177   union ExtCpuid7Edx {
   178     uint32_t value;
   179     struct {
   180       uint32_t               : 8,
   181               tsc_invariance : 1,
   182                              : 23;
   183     } bits;
   184   };
   186   union ExtCpuid8Ecx {
   187     uint32_t value;
   188     struct {
   189       uint32_t cores_per_cpu : 8,
   190                              : 24;
   191     } bits;
   192   };
   194   union SefCpuid7Eax {
   195     uint32_t value;
   196   };
   198   union SefCpuid7Ebx {
   199     uint32_t value;
   200     struct {
   201       uint32_t fsgsbase : 1,
   202                         : 2,
   203                    bmi1 : 1,
   204                         : 1,
   205                    avx2 : 1,
   206                         : 2,
   207                    bmi2 : 1,
   208                    erms : 1,
   209                         : 22;
   210     } bits;
   211   };
   213   union XemXcr0Eax {
   214     uint32_t value;
   215     struct {
   216       uint32_t x87 : 1,
   217                sse : 1,
   218                ymm : 1,
   219                    : 29;
   220     } bits;
   221   };
   223 protected:
   224   static int _cpu;
   225   static int _model;
   226   static int _stepping;
   227   static int _cpuFeatures;     // features returned by the "cpuid" instruction
   228                                // 0 if this instruction is not available
   229   static const char* _features_str;
   231   enum {
   232     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   233     CPU_CMOV   = (1 << 1),
   234     CPU_FXSR   = (1 << 2),
   235     CPU_HT     = (1 << 3),
   236     CPU_MMX    = (1 << 4),
   237     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   238                                     // may not necessarily support other 3dnow instructions
   239     CPU_SSE    = (1 << 6),
   240     CPU_SSE2   = (1 << 7),
   241     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   242     CPU_SSSE3  = (1 << 9),
   243     CPU_SSE4A  = (1 << 10),
   244     CPU_SSE4_1 = (1 << 11),
   245     CPU_SSE4_2 = (1 << 12),
   246     CPU_POPCNT = (1 << 13),
   247     CPU_LZCNT  = (1 << 14),
   248     CPU_TSC    = (1 << 15),
   249     CPU_TSCINV = (1 << 16),
   250     CPU_AVX    = (1 << 17),
   251     CPU_AVX2   = (1 << 18),
   252     CPU_AES    = (1 << 19),
   253     CPU_ERMS   = (1 << 20), // enhanced 'rep movsb/stosb' instructions
   254     CPU_CLMUL  = (1 << 21) // carryless multiply for CRC
   255   } cpuFeatureFlags;
   257   enum {
   258     // AMD
   259     CPU_FAMILY_AMD_11H       = 0x11,
   260     // Intel
   261     CPU_FAMILY_INTEL_CORE    = 6,
   262     CPU_MODEL_NEHALEM        = 0x1e,
   263     CPU_MODEL_NEHALEM_EP     = 0x1a,
   264     CPU_MODEL_NEHALEM_EX     = 0x2e,
   265     CPU_MODEL_WESTMERE       = 0x25,
   266     CPU_MODEL_WESTMERE_EP    = 0x2c,
   267     CPU_MODEL_WESTMERE_EX    = 0x2f,
   268     CPU_MODEL_SANDYBRIDGE    = 0x2a,
   269     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
   270     CPU_MODEL_IVYBRIDGE_EP   = 0x3a
   271   } cpuExtendedFamily;
   273   // cpuid information block.  All info derived from executing cpuid with
   274   // various function numbers is stored here.  Intel and AMD info is
   275   // merged in this block: accessor methods disentangle it.
   276   //
   277   // The info block is laid out in subblocks of 4 dwords corresponding to
   278   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   279   struct CpuidInfo {
   280     // cpuid function 0
   281     uint32_t std_max_function;
   282     uint32_t std_vendor_name_0;
   283     uint32_t std_vendor_name_1;
   284     uint32_t std_vendor_name_2;
   286     // cpuid function 1
   287     StdCpuid1Eax std_cpuid1_eax;
   288     StdCpuid1Ebx std_cpuid1_ebx;
   289     StdCpuid1Ecx std_cpuid1_ecx;
   290     StdCpuid1Edx std_cpuid1_edx;
   292     // cpuid function 4 (deterministic cache parameters)
   293     DcpCpuid4Eax dcp_cpuid4_eax;
   294     DcpCpuid4Ebx dcp_cpuid4_ebx;
   295     uint32_t     dcp_cpuid4_ecx; // unused currently
   296     uint32_t     dcp_cpuid4_edx; // unused currently
   298     // cpuid function 7 (structured extended features)
   299     SefCpuid7Eax sef_cpuid7_eax;
   300     SefCpuid7Ebx sef_cpuid7_ebx;
   301     uint32_t     sef_cpuid7_ecx; // unused currently
   302     uint32_t     sef_cpuid7_edx; // unused currently
   304     // cpuid function 0xB (processor topology)
   305     // ecx = 0
   306     uint32_t     tpl_cpuidB0_eax;
   307     TplCpuidBEbx tpl_cpuidB0_ebx;
   308     uint32_t     tpl_cpuidB0_ecx; // unused currently
   309     uint32_t     tpl_cpuidB0_edx; // unused currently
   311     // ecx = 1
   312     uint32_t     tpl_cpuidB1_eax;
   313     TplCpuidBEbx tpl_cpuidB1_ebx;
   314     uint32_t     tpl_cpuidB1_ecx; // unused currently
   315     uint32_t     tpl_cpuidB1_edx; // unused currently
   317     // ecx = 2
   318     uint32_t     tpl_cpuidB2_eax;
   319     TplCpuidBEbx tpl_cpuidB2_ebx;
   320     uint32_t     tpl_cpuidB2_ecx; // unused currently
   321     uint32_t     tpl_cpuidB2_edx; // unused currently
   323     // cpuid function 0x80000000 // example, unused
   324     uint32_t ext_max_function;
   325     uint32_t ext_vendor_name_0;
   326     uint32_t ext_vendor_name_1;
   327     uint32_t ext_vendor_name_2;
   329     // cpuid function 0x80000001
   330     uint32_t     ext_cpuid1_eax; // reserved
   331     uint32_t     ext_cpuid1_ebx; // reserved
   332     ExtCpuid1Ecx ext_cpuid1_ecx;
   333     ExtCpuid1Edx ext_cpuid1_edx;
   335     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   336     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   337     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   338     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   340     // cpuid function 0x80000005 // AMD L1, Intel reserved
   341     uint32_t     ext_cpuid5_eax; // unused currently
   342     uint32_t     ext_cpuid5_ebx; // reserved
   343     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   344     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   346     // cpuid function 0x80000007
   347     uint32_t     ext_cpuid7_eax; // reserved
   348     uint32_t     ext_cpuid7_ebx; // reserved
   349     uint32_t     ext_cpuid7_ecx; // reserved
   350     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
   352     // cpuid function 0x80000008
   353     uint32_t     ext_cpuid8_eax; // unused currently
   354     uint32_t     ext_cpuid8_ebx; // reserved
   355     ExtCpuid8Ecx ext_cpuid8_ecx;
   356     uint32_t     ext_cpuid8_edx; // reserved
   358     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
   359     XemXcr0Eax   xem_xcr0_eax;
   360     uint32_t     xem_xcr0_edx; // reserved
   361   };
   363   // The actual cpuid info block
   364   static CpuidInfo _cpuid_info;
   366   // Extractors and predicates
   367   static uint32_t extended_cpu_family() {
   368     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   369     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   370     return result;
   371   }
   373   static uint32_t extended_cpu_model() {
   374     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   375     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   376     return result;
   377   }
   379   static uint32_t cpu_stepping() {
   380     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   381     return result;
   382   }
   384   static uint logical_processor_count() {
   385     uint result = threads_per_core();
   386     return result;
   387   }
   389   static uint32_t feature_flags() {
   390     uint32_t result = 0;
   391     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   392       result |= CPU_CX8;
   393     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   394       result |= CPU_CMOV;
   395     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   396         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   397       result |= CPU_FXSR;
   398     // HT flag is set for multi-core processors also.
   399     if (threads_per_core() > 1)
   400       result |= CPU_HT;
   401     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   402         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   403       result |= CPU_MMX;
   404     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   405       result |= CPU_SSE;
   406     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   407       result |= CPU_SSE2;
   408     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   409       result |= CPU_SSE3;
   410     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   411       result |= CPU_SSSE3;
   412     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   413       result |= CPU_SSE4_1;
   414     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   415       result |= CPU_SSE4_2;
   416     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   417       result |= CPU_POPCNT;
   418     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
   419         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
   420         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
   421         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
   422       result |= CPU_AVX;
   423       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
   424         result |= CPU_AVX2;
   425     }
   426     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
   427       result |= CPU_TSC;
   428     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
   429       result |= CPU_TSCINV;
   430     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
   431       result |= CPU_AES;
   432     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
   433       result |= CPU_ERMS;
   434     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
   435       result |= CPU_CLMUL;
   437     // AMD features.
   438     if (is_amd()) {
   439       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   440           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   441         result |= CPU_3DNOW_PREFETCH;
   442       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   443         result |= CPU_LZCNT;
   444       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   445         result |= CPU_SSE4A;
   446     }
   448     return result;
   449   }
   451   static void get_processor_features();
   453 public:
   454   // Offsets for cpuid asm stub
   455   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   456   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   457   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   458   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
   459   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   460   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   461   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
   462   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   463   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   464   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   465   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   466   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
   468   // Initialization
   469   static void initialize();
   471   // Asserts
   472   static void assert_is_initialized() {
   473     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   474   }
   476   //
   477   // Processor family:
   478   //       3   -  386
   479   //       4   -  486
   480   //       5   -  Pentium
   481   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   482   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   483   //    family 6 model:   9,        13,       14,        15
   484   //    0x0f   -  Pentium 4, Opteron
   485   //
   486   // Note: The cpu family should be used to select between
   487   //       instruction sequences which are valid on all Intel
   488   //       processors.  Use the feature test functions below to
   489   //       determine whether a particular instruction is supported.
   490   //
   491   static int  cpu_family()        { return _cpu;}
   492   static bool is_P6()             { return cpu_family() >= 6; }
   493   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   494   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   496   static bool supports_processor_topology() {
   497     return (_cpuid_info.std_max_function >= 0xB) &&
   498            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   499            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   500            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   501   }
   503   static uint cores_per_cpu()  {
   504     uint result = 1;
   505     if (is_intel()) {
   506       if (supports_processor_topology()) {
   507         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   508                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   509       } else {
   510         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   511       }
   512     } else if (is_amd()) {
   513       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   514     }
   515     return result;
   516   }
   518   static uint threads_per_core()  {
   519     uint result = 1;
   520     if (is_intel() && supports_processor_topology()) {
   521       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   522     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   523       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   524                cores_per_cpu();
   525     }
   526     return result;
   527   }
   529   static intx prefetch_data_size()  {
   530     intx result = 0;
   531     if (is_intel()) {
   532       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   533     } else if (is_amd()) {
   534       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   535     }
   536     if (result < 32) // not defined ?
   537       result = 32;   // 32 bytes by default on x86 and other x64
   538     return result;
   539   }
   541   //
   542   // Feature identification
   543   //
   544   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   545   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   546   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   547   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   548   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   549   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   550   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   551   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   552   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   553   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   554   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   555   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   556   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   557   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
   558   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
   559   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
   560   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
   561   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
   562   static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
   564   // Intel features
   565   static bool is_intel_family_core() { return is_intel() &&
   566                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
   568   static bool is_intel_tsc_synched_at_init()  {
   569     if (is_intel_family_core()) {
   570       uint32_t ext_model = extended_cpu_model();
   571       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
   572           ext_model == CPU_MODEL_WESTMERE_EP    ||
   573           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
   574           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
   575         // <= 2-socket invariant tsc support. EX versions are usually used
   576         // in > 2-socket systems and likely don't synchronize tscs at
   577         // initialization.
   578         // Code that uses tsc values must be prepared for them to arbitrarily
   579         // jump forward or backward.
   580         return true;
   581       }
   582     }
   583     return false;
   584   }
   586   // AMD features
   587   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   588   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   589   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   590   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   592   static bool is_amd_Barcelona()  { return is_amd() &&
   593                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
   595   // Intel and AMD newer cores support fast timestamps well
   596   static bool supports_tscinv_bit() {
   597     return (_cpuFeatures & CPU_TSCINV) != 0;
   598   }
   599   static bool supports_tscinv() {
   600     return supports_tscinv_bit() &&
   601            ( (is_amd() && !is_amd_Barcelona()) ||
   602              is_intel_tsc_synched_at_init() );
   603   }
   605   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   606   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   607                                            supports_sse3() && _model != 0x1C; }
   609   static bool supports_compare_and_exchange() { return true; }
   611   static const char* cpu_features()           { return _features_str; }
   613   static intx allocate_prefetch_distance() {
   614     // This method should be called before allocate_prefetch_style().
   615     //
   616     // Hardware prefetching (distance/size in bytes):
   617     // Pentium 3 -  64 /  32
   618     // Pentium 4 - 256 / 128
   619     // Athlon    -  64 /  32 ????
   620     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   621     // Core      - 128 /  64
   622     //
   623     // Software prefetching (distance in bytes / instruction with best score):
   624     // Pentium 3 - 128 / prefetchnta
   625     // Pentium 4 - 512 / prefetchnta
   626     // Athlon    - 128 / prefetchnta
   627     // Opteron   - 256 / prefetchnta
   628     // Core      - 256 / prefetchnta
   629     // It will be used only when AllocatePrefetchStyle > 0
   631     intx count = AllocatePrefetchDistance;
   632     if (count < 0) {   // default ?
   633       if (is_amd()) {  // AMD
   634         if (supports_sse2())
   635           count = 256; // Opteron
   636         else
   637           count = 128; // Athlon
   638       } else {         // Intel
   639         if (supports_sse2())
   640           if (cpu_family() == 6) {
   641             count = 256; // Pentium M, Core, Core2
   642           } else {
   643             count = 512; // Pentium 4
   644           }
   645         else
   646           count = 128; // Pentium 3 (and all other old CPUs)
   647       }
   648     }
   649     return count;
   650   }
   651   static intx allocate_prefetch_style() {
   652     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   653     // Return 0 if AllocatePrefetchDistance was not defined.
   654     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   655   }
   657   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   658   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   659   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   660   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   662   // gc copy/scan is disabled if prefetchw isn't supported, because
   663   // Prefetch::write emits an inlined prefetchw on Linux.
   664   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   665   // The used prefetcht0 instruction works for both amd64 and em64t.
   666   static intx prefetch_copy_interval_in_bytes() {
   667     intx interval = PrefetchCopyIntervalInBytes;
   668     return interval >= 0 ? interval : 576;
   669   }
   670   static intx prefetch_scan_interval_in_bytes() {
   671     intx interval = PrefetchScanIntervalInBytes;
   672     return interval >= 0 ? interval : 576;
   673   }
   674   static intx prefetch_fields_ahead() {
   675     intx count = PrefetchFieldsAhead;
   676     return count >= 0 ? count : 1;
   677   }
   678 };
   680 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial