src/cpu/x86/vm/templateInterpreter_x86_64.cpp

Fri, 18 Oct 2013 10:41:56 +0200

author
rbackman
date
Fri, 18 Oct 2013 10:41:56 +0200
changeset 5997
59e8ad757e19
parent 5987
5ccbab1c69f3
child 6039
bd3237e0e18d
permissions
-rw-r--r--

8026844: Various Math functions needs intrinsification
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    51 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //-----------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62 #ifdef ASSERT
    63   {
    64     Label L;
    65     __ lea(rax, Address(rbp,
    66                         frame::interpreter_frame_monitor_block_top_offset *
    67                         wordSize));
    68     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
    69                          // grows negative)
    70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    71     __ stop ("interpreter frame not set up");
    72     __ bind(L);
    73   }
    74 #endif // ASSERT
    75   // Restore bcp under the assumption that the current frame is still
    76   // interpreted
    77   __ restore_bcp();
    79   // expression stack must be empty before entering the VM if an
    80   // exception happened
    81   __ empty_expression_stack();
    82   // throw exception
    83   __ call_VM(noreg,
    84              CAST_FROM_FN_PTR(address,
    85                               InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
    90         const char* name) {
    91   address entry = __ pc();
    92   // expression stack must be empty before entering the VM if an
    93   // exception happened
    94   __ empty_expression_stack();
    95   // setup parameters
    96   // ??? convention: expect aberrant index in register ebx
    97   __ lea(c_rarg1, ExternalAddress((address)name));
    98   __ call_VM(noreg,
    99              CAST_FROM_FN_PTR(address,
   100                               InterpreterRuntime::
   101                               throw_ArrayIndexOutOfBoundsException),
   102              c_rarg1, rbx);
   103   return entry;
   104 }
   106 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   107   address entry = __ pc();
   109   // object is at TOS
   110   __ pop(c_rarg1);
   112   // expression stack must be empty before entering the VM if an
   113   // exception happened
   114   __ empty_expression_stack();
   116   __ call_VM(noreg,
   117              CAST_FROM_FN_PTR(address,
   118                               InterpreterRuntime::
   119                               throw_ClassCastException),
   120              c_rarg1);
   121   return entry;
   122 }
   124 address TemplateInterpreterGenerator::generate_exception_handler_common(
   125         const char* name, const char* message, bool pass_oop) {
   126   assert(!pass_oop || message == NULL, "either oop or message but not both");
   127   address entry = __ pc();
   128   if (pass_oop) {
   129     // object is at TOS
   130     __ pop(c_rarg2);
   131   }
   132   // expression stack must be empty before entering the VM if an
   133   // exception happened
   134   __ empty_expression_stack();
   135   // setup parameters
   136   __ lea(c_rarg1, ExternalAddress((address)name));
   137   if (pass_oop) {
   138     __ call_VM(rax, CAST_FROM_FN_PTR(address,
   139                                      InterpreterRuntime::
   140                                      create_klass_exception),
   141                c_rarg1, c_rarg2);
   142   } else {
   143     // kind of lame ExternalAddress can't take NULL because
   144     // external_word_Relocation will assert.
   145     if (message != NULL) {
   146       __ lea(c_rarg2, ExternalAddress((address)message));
   147     } else {
   148       __ movptr(c_rarg2, NULL_WORD);
   149     }
   150     __ call_VM(rax,
   151                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
   152                c_rarg1, c_rarg2);
   153   }
   154   // throw exception
   155   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   156   return entry;
   157 }
   160 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   161   address entry = __ pc();
   162   // NULL last_sp until next java call
   163   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   164   __ dispatch_next(state);
   165   return entry;
   166 }
   169 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   170   address entry = __ pc();
   172   // Restore stack bottom in case i2c adjusted stack
   173   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   174   // and NULL it as marker that esp is now tos until next java call
   175   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   177   __ restore_bcp();
   178   __ restore_locals();
   180   if (state == atos) {
   181     Register mdp = rbx;
   182     Register tmp = rcx;
   183     __ profile_return_type(mdp, rax, tmp);
   184   }
   186   Label L_got_cache, L_giant_index;
   187   if (EnableInvokeDynamic) {
   188     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
   189     __ jcc(Assembler::equal, L_giant_index);
   190   }
   191   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   192   __ bind(L_got_cache);
   193   __ movl(rbx, Address(rbx, rcx,
   194                        Address::times_ptr,
   195                        in_bytes(ConstantPoolCache::base_offset()) +
   196                        3 * wordSize));
   197   __ andl(rbx, 0xFF);
   198   __ lea(rsp, Address(rsp, rbx, Address::times_8));
   199   __ dispatch_next(state, step);
   201   // out of the main line of code...
   202   if (EnableInvokeDynamic) {
   203     __ bind(L_giant_index);
   204     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   205     __ jmp(L_got_cache);
   206   }
   208   return entry;
   209 }
   212 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   213                                                                int step) {
   214   address entry = __ pc();
   215   // NULL last_sp until next java call
   216   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   217   __ restore_bcp();
   218   __ restore_locals();
   219   // handle exceptions
   220   {
   221     Label L;
   222     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
   223     __ jcc(Assembler::zero, L);
   224     __ call_VM(noreg,
   225                CAST_FROM_FN_PTR(address,
   226                                 InterpreterRuntime::throw_pending_exception));
   227     __ should_not_reach_here();
   228     __ bind(L);
   229   }
   230   __ dispatch_next(state, step);
   231   return entry;
   232 }
   234 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   235   int i = 0;
   236   switch (type) {
   237     case T_BOOLEAN: i = 0; break;
   238     case T_CHAR   : i = 1; break;
   239     case T_BYTE   : i = 2; break;
   240     case T_SHORT  : i = 3; break;
   241     case T_INT    : i = 4; break;
   242     case T_LONG   : i = 5; break;
   243     case T_VOID   : i = 6; break;
   244     case T_FLOAT  : i = 7; break;
   245     case T_DOUBLE : i = 8; break;
   246     case T_OBJECT : i = 9; break;
   247     case T_ARRAY  : i = 9; break;
   248     default       : ShouldNotReachHere();
   249   }
   250   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   251          "index out of bounds");
   252   return i;
   253 }
   256 address TemplateInterpreterGenerator::generate_result_handler_for(
   257         BasicType type) {
   258   address entry = __ pc();
   259   switch (type) {
   260   case T_BOOLEAN: __ c2bool(rax);            break;
   261   case T_CHAR   : __ movzwl(rax, rax);       break;
   262   case T_BYTE   : __ sign_extend_byte(rax);  break;
   263   case T_SHORT  : __ sign_extend_short(rax); break;
   264   case T_INT    : /* nothing to do */        break;
   265   case T_LONG   : /* nothing to do */        break;
   266   case T_VOID   : /* nothing to do */        break;
   267   case T_FLOAT  : /* nothing to do */        break;
   268   case T_DOUBLE : /* nothing to do */        break;
   269   case T_OBJECT :
   270     // retrieve result from frame
   271     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   272     // and verify it
   273     __ verify_oop(rax);
   274     break;
   275   default       : ShouldNotReachHere();
   276   }
   277   __ ret(0);                                   // return from result handler
   278   return entry;
   279 }
   281 address TemplateInterpreterGenerator::generate_safept_entry_for(
   282         TosState state,
   283         address runtime_entry) {
   284   address entry = __ pc();
   285   __ push(state);
   286   __ call_VM(noreg, runtime_entry);
   287   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   288   return entry;
   289 }
   293 // Helpers for commoning out cases in the various type of method entries.
   294 //
   297 // increment invocation count & check for overflow
   298 //
   299 // Note: checking for negative value instead of overflow
   300 //       so we have a 'sticky' overflow test
   301 //
   302 // rbx: method
   303 // ecx: invocation counter
   304 //
   305 void InterpreterGenerator::generate_counter_incr(
   306         Label* overflow,
   307         Label* profile_method,
   308         Label* profile_method_continue) {
   309   Label done;
   310   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
   311   if (TieredCompilation) {
   312     int increment = InvocationCounter::count_increment;
   313     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   314     Label no_mdo;
   315     if (ProfileInterpreter) {
   316       // Are we profiling?
   317       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   318       __ testptr(rax, rax);
   319       __ jccb(Assembler::zero, no_mdo);
   320       // Increment counter in the MDO
   321       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   322                                                 in_bytes(InvocationCounter::counter_offset()));
   323       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   324       __ jmp(done);
   325     }
   326     __ bind(no_mdo);
   327     // Increment counter in MethodCounters
   328     const Address invocation_counter(rax,
   329                   MethodCounters::invocation_counter_offset() +
   330                   InvocationCounter::counter_offset());
   331     __ get_method_counters(rbx, rax, done);
   332     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx,
   333                                false, Assembler::zero, overflow);
   334     __ bind(done);
   335   } else {
   336     const Address backedge_counter(rax,
   337                   MethodCounters::backedge_counter_offset() +
   338                   InvocationCounter::counter_offset());
   339     const Address invocation_counter(rax,
   340                   MethodCounters::invocation_counter_offset() +
   341                   InvocationCounter::counter_offset());
   343     __ get_method_counters(rbx, rax, done);
   345     if (ProfileInterpreter) {
   346       __ incrementl(Address(rax,
   347               MethodCounters::interpreter_invocation_counter_offset()));
   348     }
   349     // Update standard invocation counters
   350     __ movl(rcx, invocation_counter);
   351     __ incrementl(rcx, InvocationCounter::count_increment);
   352     __ movl(invocation_counter, rcx); // save invocation count
   354     __ movl(rax, backedge_counter);   // load backedge counter
   355     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
   357     __ addl(rcx, rax);                // add both counters
   359     // profile_method is non-null only for interpreted method so
   360     // profile_method != NULL == !native_call
   362     if (ProfileInterpreter && profile_method != NULL) {
   363       // Test to see if we should create a method data oop
   364       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   365       __ jcc(Assembler::less, *profile_method_continue);
   367       // if no method data exists, go to profile_method
   368       __ test_method_data_pointer(rax, *profile_method);
   369     }
   371     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   372     __ jcc(Assembler::aboveEqual, *overflow);
   373     __ bind(done);
   374   }
   375 }
   377 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   379   // Asm interpreter on entry
   380   // r14 - locals
   381   // r13 - bcp
   382   // rbx - method
   383   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
   384   // rbp - interpreter frame
   386   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   387   // Everything as it was on entry
   388   // rdx is not restored. Doesn't appear to really be set.
   390   // InterpreterRuntime::frequency_counter_overflow takes two
   391   // arguments, the first (thread) is passed by call_VM, the second
   392   // indicates if the counter overflow occurs at a backwards branch
   393   // (NULL bcp).  We pass zero for it.  The call returns the address
   394   // of the verified entry point for the method or NULL if the
   395   // compilation did not complete (either went background or bailed
   396   // out).
   397   __ movl(c_rarg1, 0);
   398   __ call_VM(noreg,
   399              CAST_FROM_FN_PTR(address,
   400                               InterpreterRuntime::frequency_counter_overflow),
   401              c_rarg1);
   403   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   404   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
   405   // and jump to the interpreted entry.
   406   __ jmp(*do_continue, relocInfo::none);
   407 }
   409 // See if we've got enough room on the stack for locals plus overhead.
   410 // The expression stack grows down incrementally, so the normal guard
   411 // page mechanism will work for that.
   412 //
   413 // NOTE: Since the additional locals are also always pushed (wasn't
   414 // obvious in generate_method_entry) so the guard should work for them
   415 // too.
   416 //
   417 // Args:
   418 //      rdx: number of additional locals this frame needs (what we must check)
   419 //      rbx: Method*
   420 //
   421 // Kills:
   422 //      rax
   423 void InterpreterGenerator::generate_stack_overflow_check(void) {
   425   // monitor entry size: see picture of stack set
   426   // (generate_method_entry) and frame_amd64.hpp
   427   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   429   // total overhead size: entry_size + (saved rbp through expr stack
   430   // bottom).  be sure to change this if you add/subtract anything
   431   // to/from the overhead area
   432   const int overhead_size =
   433     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
   435   const int page_size = os::vm_page_size();
   437   Label after_frame_check;
   439   // see if the frame is greater than one page in size. If so,
   440   // then we need to verify there is enough stack space remaining
   441   // for the additional locals.
   442   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
   443   __ jcc(Assembler::belowEqual, after_frame_check);
   445   // compute rsp as if this were going to be the last frame on
   446   // the stack before the red zone
   448   const Address stack_base(r15_thread, Thread::stack_base_offset());
   449   const Address stack_size(r15_thread, Thread::stack_size_offset());
   451   // locals + overhead, in bytes
   452   __ mov(rax, rdx);
   453   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
   454   __ addptr(rax, overhead_size);
   456 #ifdef ASSERT
   457   Label stack_base_okay, stack_size_okay;
   458   // verify that thread stack base is non-zero
   459   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   460   __ jcc(Assembler::notEqual, stack_base_okay);
   461   __ stop("stack base is zero");
   462   __ bind(stack_base_okay);
   463   // verify that thread stack size is non-zero
   464   __ cmpptr(stack_size, 0);
   465   __ jcc(Assembler::notEqual, stack_size_okay);
   466   __ stop("stack size is zero");
   467   __ bind(stack_size_okay);
   468 #endif
   470   // Add stack base to locals and subtract stack size
   471   __ addptr(rax, stack_base);
   472   __ subptr(rax, stack_size);
   474   // Use the maximum number of pages we might bang.
   475   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   476                                                                               (StackRedPages+StackYellowPages);
   478   // add in the red and yellow zone sizes
   479   __ addptr(rax, max_pages * page_size);
   481   // check against the current stack bottom
   482   __ cmpptr(rsp, rax);
   483   __ jcc(Assembler::above, after_frame_check);
   485   // Restore sender's sp as SP. This is necessary if the sender's
   486   // frame is an extended compiled frame (see gen_c2i_adapter())
   487   // and safer anyway in case of JSR292 adaptations.
   489   __ pop(rax); // return address must be moved if SP is changed
   490   __ mov(rsp, r13);
   491   __ push(rax);
   493   // Note: the restored frame is not necessarily interpreted.
   494   // Use the shared runtime version of the StackOverflowError.
   495   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   496   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   498   // all done with frame size check
   499   __ bind(after_frame_check);
   500 }
   502 // Allocate monitor and lock method (asm interpreter)
   503 //
   504 // Args:
   505 //      rbx: Method*
   506 //      r14: locals
   507 //
   508 // Kills:
   509 //      rax
   510 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
   511 //      rscratch1, rscratch2 (scratch regs)
   512 void InterpreterGenerator::lock_method(void) {
   513   // synchronize method
   514   const Address access_flags(rbx, Method::access_flags_offset());
   515   const Address monitor_block_top(
   516         rbp,
   517         frame::interpreter_frame_monitor_block_top_offset * wordSize);
   518   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   520 #ifdef ASSERT
   521   {
   522     Label L;
   523     __ movl(rax, access_flags);
   524     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   525     __ jcc(Assembler::notZero, L);
   526     __ stop("method doesn't need synchronization");
   527     __ bind(L);
   528   }
   529 #endif // ASSERT
   531   // get synchronization object
   532   {
   533     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   534     Label done;
   535     __ movl(rax, access_flags);
   536     __ testl(rax, JVM_ACC_STATIC);
   537     // get receiver (assume this is frequent case)
   538     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
   539     __ jcc(Assembler::zero, done);
   540     __ movptr(rax, Address(rbx, Method::const_offset()));
   541     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   542     __ movptr(rax, Address(rax,
   543                            ConstantPool::pool_holder_offset_in_bytes()));
   544     __ movptr(rax, Address(rax, mirror_offset));
   546 #ifdef ASSERT
   547     {
   548       Label L;
   549       __ testptr(rax, rax);
   550       __ jcc(Assembler::notZero, L);
   551       __ stop("synchronization object is NULL");
   552       __ bind(L);
   553     }
   554 #endif // ASSERT
   556     __ bind(done);
   557   }
   559   // add space for monitor & lock
   560   __ subptr(rsp, entry_size); // add space for a monitor entry
   561   __ movptr(monitor_block_top, rsp);  // set new monitor block top
   562   // store object
   563   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
   564   __ movptr(c_rarg1, rsp); // object address
   565   __ lock_object(c_rarg1);
   566 }
   568 // Generate a fixed interpreter frame. This is identical setup for
   569 // interpreted methods and for native methods hence the shared code.
   570 //
   571 // Args:
   572 //      rax: return address
   573 //      rbx: Method*
   574 //      r14: pointer to locals
   575 //      r13: sender sp
   576 //      rdx: cp cache
   577 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   578   // initialize fixed part of activation frame
   579   __ push(rax);        // save return address
   580   __ enter();          // save old & set new rbp
   581   __ push(r13);        // set sender sp
   582   __ push((int)NULL_WORD); // leave last_sp as null
   583   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
   584   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
   585   __ push(rbx);        // save Method*
   586   if (ProfileInterpreter) {
   587     Label method_data_continue;
   588     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   589     __ testptr(rdx, rdx);
   590     __ jcc(Assembler::zero, method_data_continue);
   591     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   592     __ bind(method_data_continue);
   593     __ push(rdx);      // set the mdp (method data pointer)
   594   } else {
   595     __ push(0);
   596   }
   598   __ movptr(rdx, Address(rbx, Method::const_offset()));
   599   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   600   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   601   __ push(rdx); // set constant pool cache
   602   __ push(r14); // set locals pointer
   603   if (native_call) {
   604     __ push(0); // no bcp
   605   } else {
   606     __ push(r13); // set bcp
   607   }
   608   __ push(0); // reserve word for pointer to expression stack bottom
   609   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
   610 }
   612 // End of helpers
   614 // Various method entries
   615 //------------------------------------------------------------------------------------------------------------------------
   616 //
   617 //
   619 // Call an accessor method (assuming it is resolved, otherwise drop
   620 // into vanilla (slow path) entry
   621 address InterpreterGenerator::generate_accessor_entry(void) {
   622   // rbx: Method*
   624   // r13: senderSP must preserver for slow path, set SP to it on fast path
   626   address entry_point = __ pc();
   627   Label xreturn_path;
   629   // do fastpath for resolved accessor methods
   630   if (UseFastAccessorMethods) {
   631     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
   632     //       thereof; parameter size = 1
   633     // Note: We can only use this code if the getfield has been resolved
   634     //       and if we don't have a null-pointer exception => check for
   635     //       these conditions first and use slow path if necessary.
   636     Label slow_path;
   637     // If we need a safepoint check, generate full interpreter entry.
   638     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   639              SafepointSynchronize::_not_synchronized);
   641     __ jcc(Assembler::notEqual, slow_path);
   642     // rbx: method
   643     __ movptr(rax, Address(rsp, wordSize));
   645     // check if local 0 != NULL and read field
   646     __ testptr(rax, rax);
   647     __ jcc(Assembler::zero, slow_path);
   649     // read first instruction word and extract bytecode @ 1 and index @ 2
   650     __ movptr(rdx, Address(rbx, Method::const_offset()));
   651     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   652     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   653     // Shift codes right to get the index on the right.
   654     // The bytecode fetched looks like <index><0xb4><0x2a>
   655     __ shrl(rdx, 2 * BitsPerByte);
   656     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   657     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   659     // rax: local 0
   660     // rbx: method
   661     // rdx: constant pool cache index
   662     // rdi: constant pool cache
   664     // check if getfield has been resolved and read constant pool cache entry
   665     // check the validity of the cache entry by testing whether _indices field
   666     // contains Bytecode::_getfield in b1 byte.
   667     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
   668            "adjust shift below");
   669     __ movl(rcx,
   670             Address(rdi,
   671                     rdx,
   672                     Address::times_8,
   673                     ConstantPoolCache::base_offset() +
   674                     ConstantPoolCacheEntry::indices_offset()));
   675     __ shrl(rcx, 2 * BitsPerByte);
   676     __ andl(rcx, 0xFF);
   677     __ cmpl(rcx, Bytecodes::_getfield);
   678     __ jcc(Assembler::notEqual, slow_path);
   680     // Note: constant pool entry is not valid before bytecode is resolved
   681     __ movptr(rcx,
   682               Address(rdi,
   683                       rdx,
   684                       Address::times_8,
   685                       ConstantPoolCache::base_offset() +
   686                       ConstantPoolCacheEntry::f2_offset()));
   687     // edx: flags
   688     __ movl(rdx,
   689             Address(rdi,
   690                     rdx,
   691                     Address::times_8,
   692                     ConstantPoolCache::base_offset() +
   693                     ConstantPoolCacheEntry::flags_offset()));
   695     Label notObj, notInt, notByte, notShort;
   696     const Address field_address(rax, rcx, Address::times_1);
   698     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   699     // because they are different sizes.
   700     // Use the type from the constant pool cache
   701     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   702     // Make sure we don't need to mask edx after the above shift
   703     ConstantPoolCacheEntry::verify_tos_state_shift();
   705     __ cmpl(rdx, atos);
   706     __ jcc(Assembler::notEqual, notObj);
   707     // atos
   708     __ load_heap_oop(rax, field_address);
   709     __ jmp(xreturn_path);
   711     __ bind(notObj);
   712     __ cmpl(rdx, itos);
   713     __ jcc(Assembler::notEqual, notInt);
   714     // itos
   715     __ movl(rax, field_address);
   716     __ jmp(xreturn_path);
   718     __ bind(notInt);
   719     __ cmpl(rdx, btos);
   720     __ jcc(Assembler::notEqual, notByte);
   721     // btos
   722     __ load_signed_byte(rax, field_address);
   723     __ jmp(xreturn_path);
   725     __ bind(notByte);
   726     __ cmpl(rdx, stos);
   727     __ jcc(Assembler::notEqual, notShort);
   728     // stos
   729     __ load_signed_short(rax, field_address);
   730     __ jmp(xreturn_path);
   732     __ bind(notShort);
   733 #ifdef ASSERT
   734     Label okay;
   735     __ cmpl(rdx, ctos);
   736     __ jcc(Assembler::equal, okay);
   737     __ stop("what type is this?");
   738     __ bind(okay);
   739 #endif
   740     // ctos
   741     __ load_unsigned_short(rax, field_address);
   743     __ bind(xreturn_path);
   745     // _ireturn/_areturn
   746     __ pop(rdi);
   747     __ mov(rsp, r13);
   748     __ jmp(rdi);
   749     __ ret(0);
   751     // generate a vanilla interpreter entry as the slow path
   752     __ bind(slow_path);
   753     (void) generate_normal_entry(false);
   754   } else {
   755     (void) generate_normal_entry(false);
   756   }
   758   return entry_point;
   759 }
   761 // Method entry for java.lang.ref.Reference.get.
   762 address InterpreterGenerator::generate_Reference_get_entry(void) {
   763 #if INCLUDE_ALL_GCS
   764   // Code: _aload_0, _getfield, _areturn
   765   // parameter size = 1
   766   //
   767   // The code that gets generated by this routine is split into 2 parts:
   768   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   769   //    2. The slow path - which is an expansion of the regular method entry.
   770   //
   771   // Notes:-
   772   // * In the G1 code we do not check whether we need to block for
   773   //   a safepoint. If G1 is enabled then we must execute the specialized
   774   //   code for Reference.get (except when the Reference object is null)
   775   //   so that we can log the value in the referent field with an SATB
   776   //   update buffer.
   777   //   If the code for the getfield template is modified so that the
   778   //   G1 pre-barrier code is executed when the current method is
   779   //   Reference.get() then going through the normal method entry
   780   //   will be fine.
   781   // * The G1 code can, however, check the receiver object (the instance
   782   //   of java.lang.Reference) and jump to the slow path if null. If the
   783   //   Reference object is null then we obviously cannot fetch the referent
   784   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   785   //   regular method entry code to generate the NPE.
   786   //
   787   // This code is based on generate_accessor_enty.
   788   //
   789   // rbx: Method*
   791   // r13: senderSP must preserve for slow path, set SP to it on fast path
   793   address entry = __ pc();
   795   const int referent_offset = java_lang_ref_Reference::referent_offset;
   796   guarantee(referent_offset > 0, "referent offset not initialized");
   798   if (UseG1GC) {
   799     Label slow_path;
   800     // rbx: method
   802     // Check if local 0 != NULL
   803     // If the receiver is null then it is OK to jump to the slow path.
   804     __ movptr(rax, Address(rsp, wordSize));
   806     __ testptr(rax, rax);
   807     __ jcc(Assembler::zero, slow_path);
   809     // rax: local 0
   810     // rbx: method (but can be used as scratch now)
   811     // rdx: scratch
   812     // rdi: scratch
   814     // Generate the G1 pre-barrier code to log the value of
   815     // the referent field in an SATB buffer.
   817     // Load the value of the referent field.
   818     const Address field_address(rax, referent_offset);
   819     __ load_heap_oop(rax, field_address);
   821     // Generate the G1 pre-barrier code to log the value of
   822     // the referent field in an SATB buffer.
   823     __ g1_write_barrier_pre(noreg /* obj */,
   824                             rax /* pre_val */,
   825                             r15_thread /* thread */,
   826                             rbx /* tmp */,
   827                             true /* tosca_live */,
   828                             true /* expand_call */);
   830     // _areturn
   831     __ pop(rdi);                // get return address
   832     __ mov(rsp, r13);           // set sp to sender sp
   833     __ jmp(rdi);
   834     __ ret(0);
   836     // generate a vanilla interpreter entry as the slow path
   837     __ bind(slow_path);
   838     (void) generate_normal_entry(false);
   840     return entry;
   841   }
   842 #endif // INCLUDE_ALL_GCS
   844   // If G1 is not enabled then attempt to go through the accessor entry point
   845   // Reference.get is an accessor
   846   return generate_accessor_entry();
   847 }
   849 /**
   850  * Method entry for static native methods:
   851  *   int java.util.zip.CRC32.update(int crc, int b)
   852  */
   853 address InterpreterGenerator::generate_CRC32_update_entry() {
   854   if (UseCRC32Intrinsics) {
   855     address entry = __ pc();
   857     // rbx,: Method*
   858     // r13: senderSP must preserved for slow path, set SP to it on fast path
   859     // c_rarg0: scratch (rdi on non-Win64, rcx on Win64)
   860     // c_rarg1: scratch (rsi on non-Win64, rdx on Win64)
   862     Label slow_path;
   863     // If we need a safepoint check, generate full interpreter entry.
   864     ExternalAddress state(SafepointSynchronize::address_of_state());
   865     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   866              SafepointSynchronize::_not_synchronized);
   867     __ jcc(Assembler::notEqual, slow_path);
   869     // We don't generate local frame and don't align stack because
   870     // we call stub code and there is no safepoint on this path.
   872     // Load parameters
   873     const Register crc = rax;  // crc
   874     const Register val = c_rarg0;  // source java byte value
   875     const Register tbl = c_rarg1;  // scratch
   877     // Arguments are reversed on java expression stack
   878     __ movl(val, Address(rsp,   wordSize)); // byte value
   879     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
   881     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
   882     __ notl(crc); // ~crc
   883     __ update_byte_crc32(crc, val, tbl);
   884     __ notl(crc); // ~crc
   885     // result in rax
   887     // _areturn
   888     __ pop(rdi);                // get return address
   889     __ mov(rsp, r13);           // set sp to sender sp
   890     __ jmp(rdi);
   892     // generate a vanilla native entry as the slow path
   893     __ bind(slow_path);
   895     (void) generate_native_entry(false);
   897     return entry;
   898   }
   899   return generate_native_entry(false);
   900 }
   902 /**
   903  * Method entry for static native methods:
   904  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
   905  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
   906  */
   907 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
   908   if (UseCRC32Intrinsics) {
   909     address entry = __ pc();
   911     // rbx,: Method*
   912     // r13: senderSP must preserved for slow path, set SP to it on fast path
   914     Label slow_path;
   915     // If we need a safepoint check, generate full interpreter entry.
   916     ExternalAddress state(SafepointSynchronize::address_of_state());
   917     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   918              SafepointSynchronize::_not_synchronized);
   919     __ jcc(Assembler::notEqual, slow_path);
   921     // We don't generate local frame and don't align stack because
   922     // we call stub code and there is no safepoint on this path.
   924     // Load parameters
   925     const Register crc = c_rarg0;  // crc
   926     const Register buf = c_rarg1;  // source java byte array address
   927     const Register len = c_rarg2;  // length
   928     const Register off = len;      // offset (never overlaps with 'len')
   930     // Arguments are reversed on java expression stack
   931     // Calculate address of start element
   932     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
   933       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
   934       __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
   935       __ addq(buf, off); // + offset
   936       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
   937     } else {
   938       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
   939       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
   940       __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
   941       __ addq(buf, off); // + offset
   942       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
   943     }
   944     // Can now load 'len' since we're finished with 'off'
   945     __ movl(len, Address(rsp, wordSize)); // Length
   947     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
   948     // result in rax
   950     // _areturn
   951     __ pop(rdi);                // get return address
   952     __ mov(rsp, r13);           // set sp to sender sp
   953     __ jmp(rdi);
   955     // generate a vanilla native entry as the slow path
   956     __ bind(slow_path);
   958     (void) generate_native_entry(false);
   960     return entry;
   961   }
   962   return generate_native_entry(false);
   963 }
   965 // Interpreter stub for calling a native method. (asm interpreter)
   966 // This sets up a somewhat different looking stack for calling the
   967 // native method than the typical interpreter frame setup.
   968 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   969   // determine code generation flags
   970   bool inc_counter  = UseCompiler || CountCompiledCalls;
   972   // rbx: Method*
   973   // r13: sender sp
   975   address entry_point = __ pc();
   977   const Address constMethod       (rbx, Method::const_offset());
   978   const Address access_flags      (rbx, Method::access_flags_offset());
   979   const Address size_of_parameters(rcx, ConstMethod::
   980                                         size_of_parameters_offset());
   983   // get parameter size (always needed)
   984   __ movptr(rcx, constMethod);
   985   __ load_unsigned_short(rcx, size_of_parameters);
   987   // native calls don't need the stack size check since they have no
   988   // expression stack and the arguments are already on the stack and
   989   // we only add a handful of words to the stack
   991   // rbx: Method*
   992   // rcx: size of parameters
   993   // r13: sender sp
   994   __ pop(rax);                                       // get return address
   996   // for natives the size of locals is zero
   998   // compute beginning of parameters (r14)
   999   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1001   // add 2 zero-initialized slots for native calls
  1002   // initialize result_handler slot
  1003   __ push((int) NULL_WORD);
  1004   // slot for oop temp
  1005   // (static native method holder mirror/jni oop result)
  1006   __ push((int) NULL_WORD);
  1008   // initialize fixed part of activation frame
  1009   generate_fixed_frame(true);
  1011   // make sure method is native & not abstract
  1012 #ifdef ASSERT
  1013   __ movl(rax, access_flags);
  1015     Label L;
  1016     __ testl(rax, JVM_ACC_NATIVE);
  1017     __ jcc(Assembler::notZero, L);
  1018     __ stop("tried to execute non-native method as native");
  1019     __ bind(L);
  1022     Label L;
  1023     __ testl(rax, JVM_ACC_ABSTRACT);
  1024     __ jcc(Assembler::zero, L);
  1025     __ stop("tried to execute abstract method in interpreter");
  1026     __ bind(L);
  1028 #endif
  1030   // Since at this point in the method invocation the exception handler
  1031   // would try to exit the monitor of synchronized methods which hasn't
  1032   // been entered yet, we set the thread local variable
  1033   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1034   // check this flag.
  1036   const Address do_not_unlock_if_synchronized(r15_thread,
  1037         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1038   __ movbool(do_not_unlock_if_synchronized, true);
  1040   // increment invocation count & check for overflow
  1041   Label invocation_counter_overflow;
  1042   if (inc_counter) {
  1043     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1046   Label continue_after_compile;
  1047   __ bind(continue_after_compile);
  1049   bang_stack_shadow_pages(true);
  1051   // reset the _do_not_unlock_if_synchronized flag
  1052   __ movbool(do_not_unlock_if_synchronized, false);
  1054   // check for synchronized methods
  1055   // Must happen AFTER invocation_counter check and stack overflow check,
  1056   // so method is not locked if overflows.
  1057   if (synchronized) {
  1058     lock_method();
  1059   } else {
  1060     // no synchronization necessary
  1061 #ifdef ASSERT
  1063       Label L;
  1064       __ movl(rax, access_flags);
  1065       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1066       __ jcc(Assembler::zero, L);
  1067       __ stop("method needs synchronization");
  1068       __ bind(L);
  1070 #endif
  1073   // start execution
  1074 #ifdef ASSERT
  1076     Label L;
  1077     const Address monitor_block_top(rbp,
  1078                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1079     __ movptr(rax, monitor_block_top);
  1080     __ cmpptr(rax, rsp);
  1081     __ jcc(Assembler::equal, L);
  1082     __ stop("broken stack frame setup in interpreter");
  1083     __ bind(L);
  1085 #endif
  1087   // jvmti support
  1088   __ notify_method_entry();
  1090   // work registers
  1091   const Register method = rbx;
  1092   const Register t      = r11;
  1094   // allocate space for parameters
  1095   __ get_method(method);
  1096   __ movptr(t, Address(method, Method::const_offset()));
  1097   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
  1098   __ shll(t, Interpreter::logStackElementSize);
  1100   __ subptr(rsp, t);
  1101   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1102   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
  1104   // get signature handler
  1106     Label L;
  1107     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1108     __ testptr(t, t);
  1109     __ jcc(Assembler::notZero, L);
  1110     __ call_VM(noreg,
  1111                CAST_FROM_FN_PTR(address,
  1112                                 InterpreterRuntime::prepare_native_call),
  1113                method);
  1114     __ get_method(method);
  1115     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1116     __ bind(L);
  1119   // call signature handler
  1120   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
  1121          "adjust this code");
  1122   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
  1123          "adjust this code");
  1124   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
  1125           "adjust this code");
  1127   // The generated handlers do not touch RBX (the method oop).
  1128   // However, large signatures cannot be cached and are generated
  1129   // each time here.  The slow-path generator can do a GC on return,
  1130   // so we must reload it after the call.
  1131   __ call(t);
  1132   __ get_method(method);        // slow path can do a GC, reload RBX
  1135   // result handler is in rax
  1136   // set result handler
  1137   __ movptr(Address(rbp,
  1138                     (frame::interpreter_frame_result_handler_offset) * wordSize),
  1139             rax);
  1141   // pass mirror handle if static call
  1143     Label L;
  1144     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1145     __ movl(t, Address(method, Method::access_flags_offset()));
  1146     __ testl(t, JVM_ACC_STATIC);
  1147     __ jcc(Assembler::zero, L);
  1148     // get mirror
  1149     __ movptr(t, Address(method, Method::const_offset()));
  1150     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1151     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1152     __ movptr(t, Address(t, mirror_offset));
  1153     // copy mirror into activation frame
  1154     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
  1155             t);
  1156     // pass handle to mirror
  1157     __ lea(c_rarg1,
  1158            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1159     __ bind(L);
  1162   // get native function entry point
  1164     Label L;
  1165     __ movptr(rax, Address(method, Method::native_function_offset()));
  1166     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1167     __ movptr(rscratch2, unsatisfied.addr());
  1168     __ cmpptr(rax, rscratch2);
  1169     __ jcc(Assembler::notEqual, L);
  1170     __ call_VM(noreg,
  1171                CAST_FROM_FN_PTR(address,
  1172                                 InterpreterRuntime::prepare_native_call),
  1173                method);
  1174     __ get_method(method);
  1175     __ movptr(rax, Address(method, Method::native_function_offset()));
  1176     __ bind(L);
  1179   // pass JNIEnv
  1180   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
  1182   // It is enough that the pc() points into the right code
  1183   // segment. It does not have to be the correct return pc.
  1184   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
  1186   // change thread state
  1187 #ifdef ASSERT
  1189     Label L;
  1190     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
  1191     __ cmpl(t, _thread_in_Java);
  1192     __ jcc(Assembler::equal, L);
  1193     __ stop("Wrong thread state in native stub");
  1194     __ bind(L);
  1196 #endif
  1198   // Change state to native
  1200   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1201           _thread_in_native);
  1203   // Call the native method.
  1204   __ call(rax);
  1205   // result potentially in rax or xmm0
  1207   // Verify or restore cpu control state after JNI call
  1208   __ restore_cpu_control_state_after_jni();
  1210   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
  1211   // in order to extract the result of a method call. If the order of these
  1212   // pushes change or anything else is added to the stack then the code in
  1213   // interpreter_frame_result must also change.
  1215   __ push(dtos);
  1216   __ push(ltos);
  1218   // change thread state
  1219   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1220           _thread_in_native_trans);
  1222   if (os::is_MP()) {
  1223     if (UseMembar) {
  1224       // Force this write out before the read below
  1225       __ membar(Assembler::Membar_mask_bits(
  1226            Assembler::LoadLoad | Assembler::LoadStore |
  1227            Assembler::StoreLoad | Assembler::StoreStore));
  1228     } else {
  1229       // Write serialization page so VM thread can do a pseudo remote membar.
  1230       // We use the current thread pointer to calculate a thread specific
  1231       // offset to write to within the page. This minimizes bus traffic
  1232       // due to cache line collision.
  1233       __ serialize_memory(r15_thread, rscratch2);
  1237   // check for safepoint operation in progress and/or pending suspend requests
  1239     Label Continue;
  1240     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1241              SafepointSynchronize::_not_synchronized);
  1243     Label L;
  1244     __ jcc(Assembler::notEqual, L);
  1245     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1246     __ jcc(Assembler::equal, Continue);
  1247     __ bind(L);
  1249     // Don't use call_VM as it will see a possible pending exception
  1250     // and forward it and never return here preventing us from
  1251     // clearing _last_native_pc down below.  Also can't use
  1252     // call_VM_leaf either as it will check to see if r13 & r14 are
  1253     // preserved and correspond to the bcp/locals pointers. So we do a
  1254     // runtime call by hand.
  1255     //
  1256     __ mov(c_rarg0, r15_thread);
  1257     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1258     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1259     __ andptr(rsp, -16); // align stack as required by ABI
  1260     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1261     __ mov(rsp, r12); // restore sp
  1262     __ reinit_heapbase();
  1263     __ bind(Continue);
  1266   // change thread state
  1267   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1269   // reset_last_Java_frame
  1270   __ reset_last_Java_frame(true, true);
  1272   // reset handle block
  1273   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
  1274   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1276   // If result is an oop unbox and store it in frame where gc will see it
  1277   // and result handler will pick it up
  1280     Label no_oop, store_result;
  1281     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
  1282     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1283     __ jcc(Assembler::notEqual, no_oop);
  1284     // retrieve result
  1285     __ pop(ltos);
  1286     __ testptr(rax, rax);
  1287     __ jcc(Assembler::zero, store_result);
  1288     __ movptr(rax, Address(rax, 0));
  1289     __ bind(store_result);
  1290     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
  1291     // keep stack depth as expected by pushing oop which will eventually be discarde
  1292     __ push(ltos);
  1293     __ bind(no_oop);
  1298     Label no_reguard;
  1299     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
  1300             JavaThread::stack_guard_yellow_disabled);
  1301     __ jcc(Assembler::notEqual, no_reguard);
  1303     __ pusha(); // XXX only save smashed registers
  1304     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1305     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1306     __ andptr(rsp, -16); // align stack as required by ABI
  1307     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1308     __ mov(rsp, r12); // restore sp
  1309     __ popa(); // XXX only restore smashed registers
  1310     __ reinit_heapbase();
  1312     __ bind(no_reguard);
  1316   // The method register is junk from after the thread_in_native transition
  1317   // until here.  Also can't call_VM until the bcp has been
  1318   // restored.  Need bcp for throwing exception below so get it now.
  1319   __ get_method(method);
  1321   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  1322   // r13 == code_base()
  1323   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
  1324   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
  1325   // handle exceptions (exception handling will handle unlocking!)
  1327     Label L;
  1328     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1329     __ jcc(Assembler::zero, L);
  1330     // Note: At some point we may want to unify this with the code
  1331     // used in call_VM_base(); i.e., we should use the
  1332     // StubRoutines::forward_exception code. For now this doesn't work
  1333     // here because the rsp is not correctly set at this point.
  1334     __ MacroAssembler::call_VM(noreg,
  1335                                CAST_FROM_FN_PTR(address,
  1336                                InterpreterRuntime::throw_pending_exception));
  1337     __ should_not_reach_here();
  1338     __ bind(L);
  1341   // do unlocking if necessary
  1343     Label L;
  1344     __ movl(t, Address(method, Method::access_flags_offset()));
  1345     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1346     __ jcc(Assembler::zero, L);
  1347     // the code below should be shared with interpreter macro
  1348     // assembler implementation
  1350       Label unlock;
  1351       // BasicObjectLock will be first in list, since this is a
  1352       // synchronized method. However, need to check that the object
  1353       // has not been unlocked by an explicit monitorexit bytecode.
  1354       const Address monitor(rbp,
  1355                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
  1356                                        wordSize - sizeof(BasicObjectLock)));
  1358       // monitor expect in c_rarg1 for slow unlock path
  1359       __ lea(c_rarg1, monitor); // address of first monitor
  1361       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  1362       __ testptr(t, t);
  1363       __ jcc(Assembler::notZero, unlock);
  1365       // Entry already unlocked, need to throw exception
  1366       __ MacroAssembler::call_VM(noreg,
  1367                                  CAST_FROM_FN_PTR(address,
  1368                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  1369       __ should_not_reach_here();
  1371       __ bind(unlock);
  1372       __ unlock_object(c_rarg1);
  1374     __ bind(L);
  1377   // jvmti support
  1378   // Note: This must happen _after_ handling/throwing any exceptions since
  1379   //       the exception handler code notifies the runtime of method exits
  1380   //       too. If this happens before, method entry/exit notifications are
  1381   //       not properly paired (was bug - gri 11/22/99).
  1382   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1384   // restore potential result in edx:eax, call result handler to
  1385   // restore potential result in ST0 & handle result
  1387   __ pop(ltos);
  1388   __ pop(dtos);
  1390   __ movptr(t, Address(rbp,
  1391                        (frame::interpreter_frame_result_handler_offset) * wordSize));
  1392   __ call(t);
  1394   // remove activation
  1395   __ movptr(t, Address(rbp,
  1396                        frame::interpreter_frame_sender_sp_offset *
  1397                        wordSize)); // get sender sp
  1398   __ leave();                                // remove frame anchor
  1399   __ pop(rdi);                               // get return address
  1400   __ mov(rsp, t);                            // set sp to sender sp
  1401   __ jmp(rdi);
  1403   if (inc_counter) {
  1404     // Handle overflow of counter and compile method
  1405     __ bind(invocation_counter_overflow);
  1406     generate_counter_overflow(&continue_after_compile);
  1409   return entry_point;
  1412 //
  1413 // Generic interpreted method entry to (asm) interpreter
  1414 //
  1415 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1416   // determine code generation flags
  1417   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1419   // ebx: Method*
  1420   // r13: sender sp
  1421   address entry_point = __ pc();
  1423   const Address constMethod(rbx, Method::const_offset());
  1424   const Address access_flags(rbx, Method::access_flags_offset());
  1425   const Address size_of_parameters(rdx,
  1426                                    ConstMethod::size_of_parameters_offset());
  1427   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
  1430   // get parameter size (always needed)
  1431   __ movptr(rdx, constMethod);
  1432   __ load_unsigned_short(rcx, size_of_parameters);
  1434   // rbx: Method*
  1435   // rcx: size of parameters
  1436   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1438   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
  1439   __ subl(rdx, rcx); // rdx = no. of additional locals
  1441   // YYY
  1442 //   __ incrementl(rdx);
  1443 //   __ andl(rdx, -2);
  1445   // see if we've got enough room on the stack for locals plus overhead.
  1446   generate_stack_overflow_check();
  1448   // get return address
  1449   __ pop(rax);
  1451   // compute beginning of parameters (r14)
  1452   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1454   // rdx - # of additional locals
  1455   // allocate space for locals
  1456   // explicitly initialize locals
  1458     Label exit, loop;
  1459     __ testl(rdx, rdx);
  1460     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
  1461     __ bind(loop);
  1462     __ push((int) NULL_WORD); // initialize local variables
  1463     __ decrementl(rdx); // until everything initialized
  1464     __ jcc(Assembler::greater, loop);
  1465     __ bind(exit);
  1468   // initialize fixed part of activation frame
  1469   generate_fixed_frame(false);
  1471   // make sure method is not native & not abstract
  1472 #ifdef ASSERT
  1473   __ movl(rax, access_flags);
  1475     Label L;
  1476     __ testl(rax, JVM_ACC_NATIVE);
  1477     __ jcc(Assembler::zero, L);
  1478     __ stop("tried to execute native method as non-native");
  1479     __ bind(L);
  1482     Label L;
  1483     __ testl(rax, JVM_ACC_ABSTRACT);
  1484     __ jcc(Assembler::zero, L);
  1485     __ stop("tried to execute abstract method in interpreter");
  1486     __ bind(L);
  1488 #endif
  1490   // Since at this point in the method invocation the exception
  1491   // handler would try to exit the monitor of synchronized methods
  1492   // which hasn't been entered yet, we set the thread local variable
  1493   // _do_not_unlock_if_synchronized to true. The remove_activation
  1494   // will check this flag.
  1496   const Address do_not_unlock_if_synchronized(r15_thread,
  1497         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1498   __ movbool(do_not_unlock_if_synchronized, true);
  1500   __ profile_parameters_type(rax, rcx, rdx);
  1501   // increment invocation count & check for overflow
  1502   Label invocation_counter_overflow;
  1503   Label profile_method;
  1504   Label profile_method_continue;
  1505   if (inc_counter) {
  1506     generate_counter_incr(&invocation_counter_overflow,
  1507                           &profile_method,
  1508                           &profile_method_continue);
  1509     if (ProfileInterpreter) {
  1510       __ bind(profile_method_continue);
  1514   Label continue_after_compile;
  1515   __ bind(continue_after_compile);
  1517   // check for synchronized interpreted methods
  1518   bang_stack_shadow_pages(false);
  1520   // reset the _do_not_unlock_if_synchronized flag
  1521   __ movbool(do_not_unlock_if_synchronized, false);
  1523   // check for synchronized methods
  1524   // Must happen AFTER invocation_counter check and stack overflow check,
  1525   // so method is not locked if overflows.
  1526   if (synchronized) {
  1527     // Allocate monitor and lock method
  1528     lock_method();
  1529   } else {
  1530     // no synchronization necessary
  1531 #ifdef ASSERT
  1533       Label L;
  1534       __ movl(rax, access_flags);
  1535       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1536       __ jcc(Assembler::zero, L);
  1537       __ stop("method needs synchronization");
  1538       __ bind(L);
  1540 #endif
  1543   // start execution
  1544 #ifdef ASSERT
  1546     Label L;
  1547      const Address monitor_block_top (rbp,
  1548                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1549     __ movptr(rax, monitor_block_top);
  1550     __ cmpptr(rax, rsp);
  1551     __ jcc(Assembler::equal, L);
  1552     __ stop("broken stack frame setup in interpreter");
  1553     __ bind(L);
  1555 #endif
  1557   // jvmti support
  1558   __ notify_method_entry();
  1560   __ dispatch_next(vtos);
  1562   // invocation counter overflow
  1563   if (inc_counter) {
  1564     if (ProfileInterpreter) {
  1565       // We have decided to profile this method in the interpreter
  1566       __ bind(profile_method);
  1567       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1568       __ set_method_data_pointer_for_bcp();
  1569       __ get_method(rbx);
  1570       __ jmp(profile_method_continue);
  1572     // Handle overflow of counter and compile method
  1573     __ bind(invocation_counter_overflow);
  1574     generate_counter_overflow(&continue_after_compile);
  1577   return entry_point;
  1580 // Entry points
  1581 //
  1582 // Here we generate the various kind of entries into the interpreter.
  1583 // The two main entry type are generic bytecode methods and native
  1584 // call method.  These both come in synchronized and non-synchronized
  1585 // versions but the frame layout they create is very similar. The
  1586 // other method entry types are really just special purpose entries
  1587 // that are really entry and interpretation all in one. These are for
  1588 // trivial methods like accessor, empty, or special math methods.
  1589 //
  1590 // When control flow reaches any of the entry types for the interpreter
  1591 // the following holds ->
  1592 //
  1593 // Arguments:
  1594 //
  1595 // rbx: Method*
  1596 //
  1597 // Stack layout immediately at entry
  1598 //
  1599 // [ return address     ] <--- rsp
  1600 // [ parameter n        ]
  1601 //   ...
  1602 // [ parameter 1        ]
  1603 // [ expression stack   ] (caller's java expression stack)
  1605 // Assuming that we don't go to one of the trivial specialized entries
  1606 // the stack will look like below when we are ready to execute the
  1607 // first bytecode (or call the native routine). The register usage
  1608 // will be as the template based interpreter expects (see
  1609 // interpreter_amd64.hpp).
  1610 //
  1611 // local variables follow incoming parameters immediately; i.e.
  1612 // the return address is moved to the end of the locals).
  1613 //
  1614 // [ monitor entry      ] <--- rsp
  1615 //   ...
  1616 // [ monitor entry      ]
  1617 // [ expr. stack bottom ]
  1618 // [ saved r13          ]
  1619 // [ current r14        ]
  1620 // [ Method*            ]
  1621 // [ saved ebp          ] <--- rbp
  1622 // [ return address     ]
  1623 // [ local variable m   ]
  1624 //   ...
  1625 // [ local variable 1   ]
  1626 // [ parameter n        ]
  1627 //   ...
  1628 // [ parameter 1        ] <--- r14
  1630 address AbstractInterpreterGenerator::generate_method_entry(
  1631                                         AbstractInterpreter::MethodKind kind) {
  1632   // determine code generation flags
  1633   bool synchronized = false;
  1634   address entry_point = NULL;
  1635   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
  1637   switch (kind) {
  1638   case Interpreter::zerolocals             :                                                      break;
  1639   case Interpreter::zerolocals_synchronized: synchronized = true;                                 break;
  1640   case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false); break;
  1641   case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);  break;
  1642   case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();       break;
  1643   case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();    break;
  1644   case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();    break;
  1646   case Interpreter::java_lang_math_sin     : // fall thru
  1647   case Interpreter::java_lang_math_cos     : // fall thru
  1648   case Interpreter::java_lang_math_tan     : // fall thru
  1649   case Interpreter::java_lang_math_abs     : // fall thru
  1650   case Interpreter::java_lang_math_log     : // fall thru
  1651   case Interpreter::java_lang_math_log10   : // fall thru
  1652   case Interpreter::java_lang_math_sqrt    : // fall thru
  1653   case Interpreter::java_lang_math_pow     : // fall thru
  1654   case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
  1655   case Interpreter::java_lang_ref_reference_get
  1656                                            : entry_point = ig_this->generate_Reference_get_entry(); break;
  1657   case Interpreter::java_util_zip_CRC32_update
  1658                                            : entry_point = ig_this->generate_CRC32_update_entry();  break;
  1659   case Interpreter::java_util_zip_CRC32_updateBytes
  1660                                            : // fall thru
  1661   case Interpreter::java_util_zip_CRC32_updateByteBuffer
  1662                                            : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
  1663   default:
  1664     fatal(err_msg("unexpected method kind: %d", kind));
  1665     break;
  1668   if (entry_point) {
  1669     return entry_point;
  1672   return ig_this->generate_normal_entry(synchronized);
  1675 // These should never be compiled since the interpreter will prefer
  1676 // the compiled version to the intrinsic version.
  1677 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1678   switch (method_kind(m)) {
  1679     case Interpreter::java_lang_math_sin     : // fall thru
  1680     case Interpreter::java_lang_math_cos     : // fall thru
  1681     case Interpreter::java_lang_math_tan     : // fall thru
  1682     case Interpreter::java_lang_math_abs     : // fall thru
  1683     case Interpreter::java_lang_math_log     : // fall thru
  1684     case Interpreter::java_lang_math_log10   : // fall thru
  1685     case Interpreter::java_lang_math_sqrt    : // fall thru
  1686     case Interpreter::java_lang_math_pow     : // fall thru
  1687     case Interpreter::java_lang_math_exp     :
  1688       return false;
  1689     default:
  1690       return true;
  1694 // How much stack a method activation needs in words.
  1695 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1696   const int entry_size = frame::interpreter_frame_monitor_size();
  1698   // total overhead size: entry_size + (saved rbp thru expr stack
  1699   // bottom).  be sure to change this if you add/subtract anything
  1700   // to/from the overhead area
  1701   const int overhead_size =
  1702     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1704   const int stub_code = frame::entry_frame_after_call_words;
  1705   const int method_stack = (method->max_locals() + method->max_stack()) *
  1706                            Interpreter::stackElementWords;
  1707   return (overhead_size + method_stack + stub_code);
  1710 int AbstractInterpreter::layout_activation(Method* method,
  1711                                            int tempcount,
  1712                                            int popframe_extra_args,
  1713                                            int moncount,
  1714                                            int caller_actual_parameters,
  1715                                            int callee_param_count,
  1716                                            int callee_locals,
  1717                                            frame* caller,
  1718                                            frame* interpreter_frame,
  1719                                            bool is_top_frame,
  1720                                            bool is_bottom_frame) {
  1721   // Note: This calculation must exactly parallel the frame setup
  1722   // in AbstractInterpreterGenerator::generate_method_entry.
  1723   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1724   // The frame interpreter_frame, if not NULL, is guaranteed to be the
  1725   // right size, as determined by a previous call to this method.
  1726   // It is also guaranteed to be walkable even though it is in a skeletal state
  1728   // fixed size of an interpreter frame:
  1729   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1730   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1731                      Interpreter::stackElementWords;
  1733   int overhead = frame::sender_sp_offset -
  1734                  frame::interpreter_frame_initial_sp_offset;
  1735   // Our locals were accounted for by the caller (or last_frame_adjust
  1736   // on the transistion) Since the callee parameters already account
  1737   // for the callee's params we only need to account for the extra
  1738   // locals.
  1739   int size = overhead +
  1740          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
  1741          moncount * frame::interpreter_frame_monitor_size() +
  1742          tempcount* Interpreter::stackElementWords + popframe_extra_args;
  1743   if (interpreter_frame != NULL) {
  1744 #ifdef ASSERT
  1745     if (!EnableInvokeDynamic)
  1746       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1747       // Probably, since deoptimization doesn't work yet.
  1748       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1749     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1750 #endif
  1752     interpreter_frame->interpreter_frame_set_method(method);
  1753     // NOTE the difference in using sender_sp and
  1754     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
  1755     // the original sp of the caller (the unextended_sp) and
  1756     // sender_sp is fp+16 XXX
  1757     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1759 #ifdef ASSERT
  1760     if (caller->is_interpreted_frame()) {
  1761       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1763 #endif
  1765     interpreter_frame->interpreter_frame_set_locals(locals);
  1766     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1767     BasicObjectLock* monbot = montop - moncount;
  1768     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1770     // Set last_sp
  1771     intptr_t*  esp = (intptr_t*) monbot -
  1772                      tempcount*Interpreter::stackElementWords -
  1773                      popframe_extra_args;
  1774     interpreter_frame->interpreter_frame_set_last_sp(esp);
  1776     // All frames but the initial (oldest) interpreter frame we fill in have
  1777     // a value for sender_sp that allows walking the stack but isn't
  1778     // truly correct. Correct the value here.
  1779     if (extra_locals != 0 &&
  1780         interpreter_frame->sender_sp() ==
  1781         interpreter_frame->interpreter_frame_sender_sp()) {
  1782       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
  1783                                                          extra_locals);
  1785     *interpreter_frame->interpreter_frame_cache_addr() =
  1786       method->constants()->cache();
  1788   return size;
  1791 //-----------------------------------------------------------------------------
  1792 // Exceptions
  1794 void TemplateInterpreterGenerator::generate_throw_exception() {
  1795   // Entry point in previous activation (i.e., if the caller was
  1796   // interpreted)
  1797   Interpreter::_rethrow_exception_entry = __ pc();
  1798   // Restore sp to interpreter_frame_last_sp even though we are going
  1799   // to empty the expression stack for the exception processing.
  1800   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1801   // rax: exception
  1802   // rdx: return address/pc that threw exception
  1803   __ restore_bcp();    // r13 points to call/send
  1804   __ restore_locals();
  1805   __ reinit_heapbase();  // restore r12 as heapbase.
  1806   // Entry point for exceptions thrown within interpreter code
  1807   Interpreter::_throw_exception_entry = __ pc();
  1808   // expression stack is undefined here
  1809   // rax: exception
  1810   // r13: exception bcp
  1811   __ verify_oop(rax);
  1812   __ mov(c_rarg1, rax);
  1814   // expression stack must be empty before entering the VM in case of
  1815   // an exception
  1816   __ empty_expression_stack();
  1817   // find exception handler address and preserve exception oop
  1818   __ call_VM(rdx,
  1819              CAST_FROM_FN_PTR(address,
  1820                           InterpreterRuntime::exception_handler_for_exception),
  1821              c_rarg1);
  1822   // rax: exception handler entry point
  1823   // rdx: preserved exception oop
  1824   // r13: bcp for exception handler
  1825   __ push_ptr(rdx); // push exception which is now the only value on the stack
  1826   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
  1828   // If the exception is not handled in the current frame the frame is
  1829   // removed and the exception is rethrown (i.e. exception
  1830   // continuation is _rethrow_exception).
  1831   //
  1832   // Note: At this point the bci is still the bxi for the instruction
  1833   // which caused the exception and the expression stack is
  1834   // empty. Thus, for any VM calls at this point, GC will find a legal
  1835   // oop map (with empty expression stack).
  1837   // In current activation
  1838   // tos: exception
  1839   // esi: exception bcp
  1841   //
  1842   // JVMTI PopFrame support
  1843   //
  1845   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1846   __ empty_expression_stack();
  1847   // Set the popframe_processing bit in pending_popframe_condition
  1848   // indicating that we are currently handling popframe, so that
  1849   // call_VMs that may happen later do not trigger new popframe
  1850   // handling cycles.
  1851   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  1852   __ orl(rdx, JavaThread::popframe_processing_bit);
  1853   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
  1856     // Check to see whether we are returning to a deoptimized frame.
  1857     // (The PopFrame call ensures that the caller of the popped frame is
  1858     // either interpreted or compiled and deoptimizes it if compiled.)
  1859     // In this case, we can't call dispatch_next() after the frame is
  1860     // popped, but instead must save the incoming arguments and restore
  1861     // them after deoptimization has occurred.
  1862     //
  1863     // Note that we don't compare the return PC against the
  1864     // deoptimization blob's unpack entry because of the presence of
  1865     // adapter frames in C2.
  1866     Label caller_not_deoptimized;
  1867     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
  1868     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1869                                InterpreterRuntime::interpreter_contains), c_rarg1);
  1870     __ testl(rax, rax);
  1871     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1873     // Compute size of arguments for saving when returning to
  1874     // deoptimized caller
  1875     __ get_method(rax);
  1876     __ movptr(rax, Address(rax, Method::const_offset()));
  1877     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
  1878                                                 size_of_parameters_offset())));
  1879     __ shll(rax, Interpreter::logStackElementSize);
  1880     __ restore_locals(); // XXX do we need this?
  1881     __ subptr(r14, rax);
  1882     __ addptr(r14, wordSize);
  1883     // Save these arguments
  1884     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1885                                            Deoptimization::
  1886                                            popframe_preserve_args),
  1887                           r15_thread, rax, r14);
  1889     __ remove_activation(vtos, rdx,
  1890                          /* throw_monitor_exception */ false,
  1891                          /* install_monitor_exception */ false,
  1892                          /* notify_jvmdi */ false);
  1894     // Inform deoptimization that it is responsible for restoring
  1895     // these arguments
  1896     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1897             JavaThread::popframe_force_deopt_reexecution_bit);
  1899     // Continue in deoptimization handler
  1900     __ jmp(rdx);
  1902     __ bind(caller_not_deoptimized);
  1905   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
  1906                        /* throw_monitor_exception */ false,
  1907                        /* install_monitor_exception */ false,
  1908                        /* notify_jvmdi */ false);
  1910   // Finish with popframe handling
  1911   // A previous I2C followed by a deoptimization might have moved the
  1912   // outgoing arguments further up the stack. PopFrame expects the
  1913   // mutations to those outgoing arguments to be preserved and other
  1914   // constraints basically require this frame to look exactly as
  1915   // though it had previously invoked an interpreted activation with
  1916   // no space between the top of the expression stack (current
  1917   // last_sp) and the top of stack. Rather than force deopt to
  1918   // maintain this kind of invariant all the time we call a small
  1919   // fixup routine to move the mutated arguments onto the top of our
  1920   // expression stack if necessary.
  1921   __ mov(c_rarg1, rsp);
  1922   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1923   // PC must point into interpreter here
  1924   __ set_last_Java_frame(noreg, rbp, __ pc());
  1925   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  1926   __ reset_last_Java_frame(true, true);
  1927   // Restore the last_sp and null it out
  1928   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1929   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1931   __ restore_bcp();  // XXX do we need this?
  1932   __ restore_locals(); // XXX do we need this?
  1933   // The method data pointer was incremented already during
  1934   // call profiling. We have to restore the mdp for the current bcp.
  1935   if (ProfileInterpreter) {
  1936     __ set_method_data_pointer_for_bcp();
  1939   // Clear the popframe condition flag
  1940   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1941           JavaThread::popframe_inactive);
  1943 #if INCLUDE_JVMTI
  1944   if (EnableInvokeDynamic) {
  1945     Label L_done;
  1946     const Register local0 = r14;
  1948     __ cmpb(Address(r13, 0), Bytecodes::_invokestatic);
  1949     __ jcc(Assembler::notEqual, L_done);
  1951     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1952     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1954     __ get_method(rdx);
  1955     __ movptr(rax, Address(local0, 0));
  1956     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, r13);
  1958     __ testptr(rax, rax);
  1959     __ jcc(Assembler::zero, L_done);
  1961     __ movptr(Address(rbx, 0), rax);
  1962     __ bind(L_done);
  1964 #endif // INCLUDE_JVMTI
  1966   __ dispatch_next(vtos);
  1967   // end of PopFrame support
  1969   Interpreter::_remove_activation_entry = __ pc();
  1971   // preserve exception over this code sequence
  1972   __ pop_ptr(rax);
  1973   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  1974   // remove the activation (without doing throws on illegalMonitorExceptions)
  1975   __ remove_activation(vtos, rdx, false, true, false);
  1976   // restore exception
  1977   __ get_vm_result(rax, r15_thread);
  1979   // In between activations - previous activation type unknown yet
  1980   // compute continuation point - the continuation point expects the
  1981   // following registers set up:
  1982   //
  1983   // rax: exception
  1984   // rdx: return address/pc that threw exception
  1985   // rsp: expression stack of caller
  1986   // rbp: ebp of caller
  1987   __ push(rax);                                  // save exception
  1988   __ push(rdx);                                  // save return address
  1989   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1990                           SharedRuntime::exception_handler_for_return_address),
  1991                         r15_thread, rdx);
  1992   __ mov(rbx, rax);                              // save exception handler
  1993   __ pop(rdx);                                   // restore return address
  1994   __ pop(rax);                                   // restore exception
  1995   // Note that an "issuing PC" is actually the next PC after the call
  1996   __ jmp(rbx);                                   // jump to exception
  1997                                                  // handler of caller
  2001 //
  2002 // JVMTI ForceEarlyReturn support
  2003 //
  2004 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  2005   address entry = __ pc();
  2007   __ restore_bcp();
  2008   __ restore_locals();
  2009   __ empty_expression_stack();
  2010   __ load_earlyret_value(state);
  2012   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  2013   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
  2015   // Clear the earlyret state
  2016   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  2018   __ remove_activation(state, rsi,
  2019                        false, /* throw_monitor_exception */
  2020                        false, /* install_monitor_exception */
  2021                        true); /* notify_jvmdi */
  2022   __ jmp(rsi);
  2024   return entry;
  2025 } // end of ForceEarlyReturn support
  2028 //-----------------------------------------------------------------------------
  2029 // Helper for vtos entry point generation
  2031 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  2032                                                          address& bep,
  2033                                                          address& cep,
  2034                                                          address& sep,
  2035                                                          address& aep,
  2036                                                          address& iep,
  2037                                                          address& lep,
  2038                                                          address& fep,
  2039                                                          address& dep,
  2040                                                          address& vep) {
  2041   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  2042   Label L;
  2043   aep = __ pc();  __ push_ptr();  __ jmp(L);
  2044   fep = __ pc();  __ push_f();    __ jmp(L);
  2045   dep = __ pc();  __ push_d();    __ jmp(L);
  2046   lep = __ pc();  __ push_l();    __ jmp(L);
  2047   bep = cep = sep =
  2048   iep = __ pc();  __ push_i();
  2049   vep = __ pc();
  2050   __ bind(L);
  2051   generate_and_dispatch(t);
  2055 //-----------------------------------------------------------------------------
  2056 // Generation of individual instructions
  2058 // helpers for generate_and_dispatch
  2061 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2062   : TemplateInterpreterGenerator(code) {
  2063    generate_all(); // down here so it can be "virtual"
  2066 //-----------------------------------------------------------------------------
  2068 // Non-product code
  2069 #ifndef PRODUCT
  2070 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  2071   address entry = __ pc();
  2073   __ push(state);
  2074   __ push(c_rarg0);
  2075   __ push(c_rarg1);
  2076   __ push(c_rarg2);
  2077   __ push(c_rarg3);
  2078   __ mov(c_rarg2, rax);  // Pass itos
  2079 #ifdef _WIN64
  2080   __ movflt(xmm3, xmm0); // Pass ftos
  2081 #endif
  2082   __ call_VM(noreg,
  2083              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
  2084              c_rarg1, c_rarg2, c_rarg3);
  2085   __ pop(c_rarg3);
  2086   __ pop(c_rarg2);
  2087   __ pop(c_rarg1);
  2088   __ pop(c_rarg0);
  2089   __ pop(state);
  2090   __ ret(0);                                   // return from result handler
  2092   return entry;
  2095 void TemplateInterpreterGenerator::count_bytecode() {
  2096   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  2099 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  2100   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  2103 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2104   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  2105   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  2106   __ orl(rbx,
  2107          ((int) t->bytecode()) <<
  2108          BytecodePairHistogram::log2_number_of_codes);
  2109   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  2110   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  2111   __ incrementl(Address(rscratch1, rbx, Address::times_4));
  2115 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2116   // Call a little run-time stub to avoid blow-up for each bytecode.
  2117   // The run-time runtime saves the right registers, depending on
  2118   // the tosca in-state for the given template.
  2120   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  2121          "entry must have been generated");
  2122   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  2123   __ andptr(rsp, -16); // align stack as required by ABI
  2124   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  2125   __ mov(rsp, r12); // restore sp
  2126   __ reinit_heapbase();
  2130 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2131   Label L;
  2132   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  2133            StopInterpreterAt);
  2134   __ jcc(Assembler::notEqual, L);
  2135   __ int3();
  2136   __ bind(L);
  2138 #endif // !PRODUCT
  2139 #endif // ! CC_INTERP

mercurial