src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Fri, 18 Oct 2013 10:41:56 +0200

author
rbackman
date
Fri, 18 Oct 2013 10:41:56 +0200
changeset 5997
59e8ad757e19
parent 5987
5ccbab1c69f3
child 6039
bd3237e0e18d
permissions
-rw-r--r--

8026844: Various Math functions needs intrinsification
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    52 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //------------------------------------------------------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62   // Note: There should be a minimal interpreter frame set up when stack
    63   // overflow occurs since we check explicitly for it now.
    64   //
    65 #ifdef ASSERT
    66   { Label L;
    67     __ lea(rax, Address(rbp,
    68                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    69     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    70                         //  (stack grows negative)
    71     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    72     __ stop ("interpreter frame not set up");
    73     __ bind(L);
    74   }
    75 #endif // ASSERT
    76   // Restore bcp under the assumption that the current frame is still
    77   // interpreted
    78   __ restore_bcp();
    80   // expression stack must be empty before entering the VM if an exception
    81   // happened
    82   __ empty_expression_stack();
    83   __ empty_FPU_stack();
    84   // throw exception
    85   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    90   address entry = __ pc();
    91   // expression stack must be empty before entering the VM if an exception happened
    92   __ empty_expression_stack();
    93   __ empty_FPU_stack();
    94   // setup parameters
    95   // ??? convention: expect aberrant index in register rbx,
    96   __ lea(rax, ExternalAddress((address)name));
    97   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    98   return entry;
    99 }
   101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   102   address entry = __ pc();
   103   // object is at TOS
   104   __ pop(rax);
   105   // expression stack must be empty before entering the VM if an exception
   106   // happened
   107   __ empty_expression_stack();
   108   __ empty_FPU_stack();
   109   __ call_VM(noreg,
   110              CAST_FROM_FN_PTR(address,
   111                               InterpreterRuntime::throw_ClassCastException),
   112              rax);
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   117   assert(!pass_oop || message == NULL, "either oop or message but not both");
   118   address entry = __ pc();
   119   if (pass_oop) {
   120     // object is at TOS
   121     __ pop(rbx);
   122   }
   123   // expression stack must be empty before entering the VM if an exception happened
   124   __ empty_expression_stack();
   125   __ empty_FPU_stack();
   126   // setup parameters
   127   __ lea(rax, ExternalAddress((address)name));
   128   if (pass_oop) {
   129     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   130   } else {
   131     if (message != NULL) {
   132       __ lea(rbx, ExternalAddress((address)message));
   133     } else {
   134       __ movptr(rbx, NULL_WORD);
   135     }
   136     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   137   }
   138   // throw exception
   139   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   140   return entry;
   141 }
   144 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   145   address entry = __ pc();
   146   // NULL last_sp until next java call
   147   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   148   __ dispatch_next(state);
   149   return entry;
   150 }
   153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   154   TosState incoming_state = state;
   155   address entry = __ pc();
   157 #ifdef COMPILER2
   158   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   159   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   160     for (int i = 1; i < 8; i++) {
   161         __ ffree(i);
   162     }
   163   } else if (UseSSE < 2) {
   164     __ empty_FPU_stack();
   165   }
   166 #endif
   167   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   168     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   169   } else {
   170     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   171   }
   173   // In SSE mode, interpreter returns FP results in xmm0 but they need
   174   // to end up back on the FPU so it can operate on them.
   175   if (incoming_state == ftos && UseSSE >= 1) {
   176     __ subptr(rsp, wordSize);
   177     __ movflt(Address(rsp, 0), xmm0);
   178     __ fld_s(Address(rsp, 0));
   179     __ addptr(rsp, wordSize);
   180   } else if (incoming_state == dtos && UseSSE >= 2) {
   181     __ subptr(rsp, 2*wordSize);
   182     __ movdbl(Address(rsp, 0), xmm0);
   183     __ fld_d(Address(rsp, 0));
   184     __ addptr(rsp, 2*wordSize);
   185   }
   187   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   189   // Restore stack bottom in case i2c adjusted stack
   190   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   191   // and NULL it as marker that rsp is now tos until next java call
   192   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   194   __ restore_bcp();
   195   __ restore_locals();
   197   if (incoming_state == atos) {
   198     Register mdp = rbx;
   199     Register tmp = rcx;
   200     __ profile_return_type(mdp, rax, tmp);
   201   }
   203   Label L_got_cache, L_giant_index;
   204   if (EnableInvokeDynamic) {
   205     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
   206     __ jcc(Assembler::equal, L_giant_index);
   207   }
   208   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   209   __ bind(L_got_cache);
   210   __ movl(rbx, Address(rbx, rcx,
   211                     Address::times_ptr, ConstantPoolCache::base_offset() +
   212                     ConstantPoolCacheEntry::flags_offset()));
   213   __ andptr(rbx, 0xFF);
   214   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
   215   __ dispatch_next(state, step);
   217   // out of the main line of code...
   218   if (EnableInvokeDynamic) {
   219     __ bind(L_giant_index);
   220     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   221     __ jmp(L_got_cache);
   222   }
   224   return entry;
   225 }
   228 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   229   address entry = __ pc();
   231   // In SSE mode, FP results are in xmm0
   232   if (state == ftos && UseSSE > 0) {
   233     __ subptr(rsp, wordSize);
   234     __ movflt(Address(rsp, 0), xmm0);
   235     __ fld_s(Address(rsp, 0));
   236     __ addptr(rsp, wordSize);
   237   } else if (state == dtos && UseSSE >= 2) {
   238     __ subptr(rsp, 2*wordSize);
   239     __ movdbl(Address(rsp, 0), xmm0);
   240     __ fld_d(Address(rsp, 0));
   241     __ addptr(rsp, 2*wordSize);
   242   }
   244   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   246   // The stack is not extended by deopt but we must NULL last_sp as this
   247   // entry is like a "return".
   248   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   249   __ restore_bcp();
   250   __ restore_locals();
   251   // handle exceptions
   252   { Label L;
   253     const Register thread = rcx;
   254     __ get_thread(thread);
   255     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   256     __ jcc(Assembler::zero, L);
   257     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   258     __ should_not_reach_here();
   259     __ bind(L);
   260   }
   261   __ dispatch_next(state, step);
   262   return entry;
   263 }
   266 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   267   int i = 0;
   268   switch (type) {
   269     case T_BOOLEAN: i = 0; break;
   270     case T_CHAR   : i = 1; break;
   271     case T_BYTE   : i = 2; break;
   272     case T_SHORT  : i = 3; break;
   273     case T_INT    : // fall through
   274     case T_LONG   : // fall through
   275     case T_VOID   : i = 4; break;
   276     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   277     case T_DOUBLE : i = 6; break;
   278     case T_OBJECT : // fall through
   279     case T_ARRAY  : i = 7; break;
   280     default       : ShouldNotReachHere();
   281   }
   282   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   283   return i;
   284 }
   287 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   288   address entry = __ pc();
   289   switch (type) {
   290     case T_BOOLEAN: __ c2bool(rax);            break;
   291     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   292     case T_BYTE   : __ sign_extend_byte (rax); break;
   293     case T_SHORT  : __ sign_extend_short(rax); break;
   294     case T_INT    : /* nothing to do */        break;
   295     case T_DOUBLE :
   296     case T_FLOAT  :
   297       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   298         __ pop(t);                            // remove return address first
   299         // Must return a result for interpreter or compiler. In SSE
   300         // mode, results are returned in xmm0 and the FPU stack must
   301         // be empty.
   302         if (type == T_FLOAT && UseSSE >= 1) {
   303           // Load ST0
   304           __ fld_d(Address(rsp, 0));
   305           // Store as float and empty fpu stack
   306           __ fstp_s(Address(rsp, 0));
   307           // and reload
   308           __ movflt(xmm0, Address(rsp, 0));
   309         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   310           __ movdbl(xmm0, Address(rsp, 0));
   311         } else {
   312           // restore ST0
   313           __ fld_d(Address(rsp, 0));
   314         }
   315         // and pop the temp
   316         __ addptr(rsp, 2 * wordSize);
   317         __ push(t);                           // restore return address
   318       }
   319       break;
   320     case T_OBJECT :
   321       // retrieve result from frame
   322       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   323       // and verify it
   324       __ verify_oop(rax);
   325       break;
   326     default       : ShouldNotReachHere();
   327   }
   328   __ ret(0);                                   // return from result handler
   329   return entry;
   330 }
   332 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   333   address entry = __ pc();
   334   __ push(state);
   335   __ call_VM(noreg, runtime_entry);
   336   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   337   return entry;
   338 }
   341 // Helpers for commoning out cases in the various type of method entries.
   342 //
   344 // increment invocation count & check for overflow
   345 //
   346 // Note: checking for negative value instead of overflow
   347 //       so we have a 'sticky' overflow test
   348 //
   349 // rbx,: method
   350 // rcx: invocation counter
   351 //
   352 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   353   Label done;
   354   // Note: In tiered we increment either counters in MethodCounters* or in MDO
   355   // depending if we're profiling or not.
   356   if (TieredCompilation) {
   357     int increment = InvocationCounter::count_increment;
   358     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   359     Label no_mdo;
   360     if (ProfileInterpreter) {
   361       // Are we profiling?
   362       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   363       __ testptr(rax, rax);
   364       __ jccb(Assembler::zero, no_mdo);
   365       // Increment counter in the MDO
   366       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   367                                                 in_bytes(InvocationCounter::counter_offset()));
   368       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   369       __ jmp(done);
   370     }
   371     __ bind(no_mdo);
   372     // Increment counter in MethodCounters
   373     const Address invocation_counter(rax,
   374                   MethodCounters::invocation_counter_offset() +
   375                   InvocationCounter::counter_offset());
   377     __ get_method_counters(rbx, rax, done);
   378     __ increment_mask_and_jump(invocation_counter, increment, mask,
   379                                rcx, false, Assembler::zero, overflow);
   380     __ bind(done);
   381   } else {
   382     const Address backedge_counter  (rax,
   383                   MethodCounters::backedge_counter_offset() +
   384                   InvocationCounter::counter_offset());
   385     const Address invocation_counter(rax,
   386                   MethodCounters::invocation_counter_offset() +
   387                   InvocationCounter::counter_offset());
   389     __ get_method_counters(rbx, rax, done);
   391     if (ProfileInterpreter) {
   392       __ incrementl(Address(rax,
   393               MethodCounters::interpreter_invocation_counter_offset()));
   394     }
   396     // Update standard invocation counters
   397     __ movl(rcx, invocation_counter);
   398     __ incrementl(rcx, InvocationCounter::count_increment);
   399     __ movl(invocation_counter, rcx);             // save invocation count
   401     __ movl(rax, backedge_counter);               // load backedge counter
   402     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   404     __ addl(rcx, rax);                            // add both counters
   406     // profile_method is non-null only for interpreted method so
   407     // profile_method != NULL == !native_call
   408     // BytecodeInterpreter only calls for native so code is elided.
   410     if (ProfileInterpreter && profile_method != NULL) {
   411       // Test to see if we should create a method data oop
   412       __ cmp32(rcx,
   413                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   414       __ jcc(Assembler::less, *profile_method_continue);
   416       // if no method data exists, go to profile_method
   417       __ test_method_data_pointer(rax, *profile_method);
   418     }
   420     __ cmp32(rcx,
   421              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   422     __ jcc(Assembler::aboveEqual, *overflow);
   423     __ bind(done);
   424   }
   425 }
   427 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   429   // Asm interpreter on entry
   430   // rdi - locals
   431   // rsi - bcp
   432   // rbx, - method
   433   // rdx - cpool
   434   // rbp, - interpreter frame
   436   // C++ interpreter on entry
   437   // rsi - new interpreter state pointer
   438   // rbp - interpreter frame pointer
   439   // rbx - method
   441   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   442   // rbx, - method
   443   // rcx - rcvr (assuming there is one)
   444   // top of stack return address of interpreter caller
   445   // rsp - sender_sp
   447   // C++ interpreter only
   448   // rsi - previous interpreter state pointer
   450   // InterpreterRuntime::frequency_counter_overflow takes one argument
   451   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   452   // The call returns the address of the verified entry point for the method or NULL
   453   // if the compilation did not complete (either went background or bailed out).
   454   __ movptr(rax, (intptr_t)false);
   455   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   457   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   459   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   460   // and jump to the interpreted entry.
   461   __ jmp(*do_continue, relocInfo::none);
   463 }
   465 void InterpreterGenerator::generate_stack_overflow_check(void) {
   466   // see if we've got enough room on the stack for locals plus overhead.
   467   // the expression stack grows down incrementally, so the normal guard
   468   // page mechanism will work for that.
   469   //
   470   // Registers live on entry:
   471   //
   472   // Asm interpreter
   473   // rdx: number of additional locals this frame needs (what we must check)
   474   // rbx,: Method*
   476   // destroyed on exit
   477   // rax,
   479   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   480   // generate_method_entry) so the guard should work for them too.
   481   //
   483   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   484   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   486   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   487   // be sure to change this if you add/subtract anything to/from the overhead area
   488   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   490   const int page_size = os::vm_page_size();
   492   Label after_frame_check;
   494   // see if the frame is greater than one page in size. If so,
   495   // then we need to verify there is enough stack space remaining
   496   // for the additional locals.
   497   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   498   __ jcc(Assembler::belowEqual, after_frame_check);
   500   // compute rsp as if this were going to be the last frame on
   501   // the stack before the red zone
   503   Label after_frame_check_pop;
   505   __ push(rsi);
   507   const Register thread = rsi;
   509   __ get_thread(thread);
   511   const Address stack_base(thread, Thread::stack_base_offset());
   512   const Address stack_size(thread, Thread::stack_size_offset());
   514   // locals + overhead, in bytes
   515   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   517 #ifdef ASSERT
   518   Label stack_base_okay, stack_size_okay;
   519   // verify that thread stack base is non-zero
   520   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   521   __ jcc(Assembler::notEqual, stack_base_okay);
   522   __ stop("stack base is zero");
   523   __ bind(stack_base_okay);
   524   // verify that thread stack size is non-zero
   525   __ cmpptr(stack_size, 0);
   526   __ jcc(Assembler::notEqual, stack_size_okay);
   527   __ stop("stack size is zero");
   528   __ bind(stack_size_okay);
   529 #endif
   531   // Add stack base to locals and subtract stack size
   532   __ addptr(rax, stack_base);
   533   __ subptr(rax, stack_size);
   535   // Use the maximum number of pages we might bang.
   536   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   537                                                                               (StackRedPages+StackYellowPages);
   538   __ addptr(rax, max_pages * page_size);
   540   // check against the current stack bottom
   541   __ cmpptr(rsp, rax);
   542   __ jcc(Assembler::above, after_frame_check_pop);
   544   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   546   // Restore sender's sp as SP. This is necessary if the sender's
   547   // frame is an extended compiled frame (see gen_c2i_adapter())
   548   // and safer anyway in case of JSR292 adaptations.
   550   __ pop(rax); // return address must be moved if SP is changed
   551   __ mov(rsp, rsi);
   552   __ push(rax);
   554   // Note: the restored frame is not necessarily interpreted.
   555   // Use the shared runtime version of the StackOverflowError.
   556   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   557   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   558   // all done with frame size check
   559   __ bind(after_frame_check_pop);
   560   __ pop(rsi);
   562   __ bind(after_frame_check);
   563 }
   565 // Allocate monitor and lock method (asm interpreter)
   566 // rbx, - Method*
   567 //
   568 void InterpreterGenerator::lock_method(void) {
   569   // synchronize method
   570   const Address access_flags      (rbx, Method::access_flags_offset());
   571   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   572   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   574   #ifdef ASSERT
   575     { Label L;
   576       __ movl(rax, access_flags);
   577       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   578       __ jcc(Assembler::notZero, L);
   579       __ stop("method doesn't need synchronization");
   580       __ bind(L);
   581     }
   582   #endif // ASSERT
   583   // get synchronization object
   584   { Label done;
   585     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   586     __ movl(rax, access_flags);
   587     __ testl(rax, JVM_ACC_STATIC);
   588     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   589     __ jcc(Assembler::zero, done);
   590     __ movptr(rax, Address(rbx, Method::const_offset()));
   591     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   592     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
   593     __ movptr(rax, Address(rax, mirror_offset));
   594     __ bind(done);
   595   }
   596   // add space for monitor & lock
   597   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   598   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   599   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   600   __ mov(rdx, rsp);                                                    // object address
   601   __ lock_object(rdx);
   602 }
   604 //
   605 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   606 // and for native methods hence the shared code.
   608 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   609   // initialize fixed part of activation frame
   610   __ push(rax);                                       // save return address
   611   __ enter();                                         // save old & set new rbp,
   614   __ push(rsi);                                       // set sender sp
   615   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   616   __ movptr(rsi, Address(rbx,Method::const_offset())); // get ConstMethod*
   617   __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase
   618   __ push(rbx);                                      // save Method*
   619   if (ProfileInterpreter) {
   620     Label method_data_continue;
   621     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   622     __ testptr(rdx, rdx);
   623     __ jcc(Assembler::zero, method_data_continue);
   624     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   625     __ bind(method_data_continue);
   626     __ push(rdx);                                       // set the mdp (method data pointer)
   627   } else {
   628     __ push(0);
   629   }
   631   __ movptr(rdx, Address(rbx, Method::const_offset()));
   632   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   633   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   634   __ push(rdx);                                       // set constant pool cache
   635   __ push(rdi);                                       // set locals pointer
   636   if (native_call) {
   637     __ push(0);                                       // no bcp
   638   } else {
   639     __ push(rsi);                                     // set bcp
   640     }
   641   __ push(0);                                         // reserve word for pointer to expression stack bottom
   642   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   643 }
   645 // End of helpers
   647 //
   648 // Various method entries
   649 //------------------------------------------------------------------------------------------------------------------------
   650 //
   651 //
   653 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   655 address InterpreterGenerator::generate_accessor_entry(void) {
   657   // rbx,: Method*
   658   // rcx: receiver (preserve for slow entry into asm interpreter)
   660   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   662   address entry_point = __ pc();
   663   Label xreturn_path;
   665   // do fastpath for resolved accessor methods
   666   if (UseFastAccessorMethods) {
   667     Label slow_path;
   668     // If we need a safepoint check, generate full interpreter entry.
   669     ExternalAddress state(SafepointSynchronize::address_of_state());
   670     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   671              SafepointSynchronize::_not_synchronized);
   673     __ jcc(Assembler::notEqual, slow_path);
   674     // ASM/C++ Interpreter
   675     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   676     // Note: We can only use this code if the getfield has been resolved
   677     //       and if we don't have a null-pointer exception => check for
   678     //       these conditions first and use slow path if necessary.
   679     // rbx,: method
   680     // rcx: receiver
   681     __ movptr(rax, Address(rsp, wordSize));
   683     // check if local 0 != NULL and read field
   684     __ testptr(rax, rax);
   685     __ jcc(Assembler::zero, slow_path);
   687     // read first instruction word and extract bytecode @ 1 and index @ 2
   688     __ movptr(rdx, Address(rbx, Method::const_offset()));
   689     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   690     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   691     // Shift codes right to get the index on the right.
   692     // The bytecode fetched looks like <index><0xb4><0x2a>
   693     __ shrl(rdx, 2*BitsPerByte);
   694     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   695     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   697     // rax,: local 0
   698     // rbx,: method
   699     // rcx: receiver - do not destroy since it is needed for slow path!
   700     // rcx: scratch
   701     // rdx: constant pool cache index
   702     // rdi: constant pool cache
   703     // rsi: sender sp
   705     // check if getfield has been resolved and read constant pool cache entry
   706     // check the validity of the cache entry by testing whether _indices field
   707     // contains Bytecode::_getfield in b1 byte.
   708     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   709     __ movl(rcx,
   710             Address(rdi,
   711                     rdx,
   712                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   713     __ shrl(rcx, 2*BitsPerByte);
   714     __ andl(rcx, 0xFF);
   715     __ cmpl(rcx, Bytecodes::_getfield);
   716     __ jcc(Assembler::notEqual, slow_path);
   718     // Note: constant pool entry is not valid before bytecode is resolved
   719     __ movptr(rcx,
   720               Address(rdi,
   721                       rdx,
   722                       Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   723     __ movl(rdx,
   724             Address(rdi,
   725                     rdx,
   726                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   728     Label notByte, notShort, notChar;
   729     const Address field_address (rax, rcx, Address::times_1);
   731     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   732     // because they are different sizes.
   733     // Use the type from the constant pool cache
   734     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   735     // Make sure we don't need to mask rdx after the above shift
   736     ConstantPoolCacheEntry::verify_tos_state_shift();
   737     __ cmpl(rdx, btos);
   738     __ jcc(Assembler::notEqual, notByte);
   739     __ load_signed_byte(rax, field_address);
   740     __ jmp(xreturn_path);
   742     __ bind(notByte);
   743     __ cmpl(rdx, stos);
   744     __ jcc(Assembler::notEqual, notShort);
   745     __ load_signed_short(rax, field_address);
   746     __ jmp(xreturn_path);
   748     __ bind(notShort);
   749     __ cmpl(rdx, ctos);
   750     __ jcc(Assembler::notEqual, notChar);
   751     __ load_unsigned_short(rax, field_address);
   752     __ jmp(xreturn_path);
   754     __ bind(notChar);
   755 #ifdef ASSERT
   756     Label okay;
   757     __ cmpl(rdx, atos);
   758     __ jcc(Assembler::equal, okay);
   759     __ cmpl(rdx, itos);
   760     __ jcc(Assembler::equal, okay);
   761     __ stop("what type is this?");
   762     __ bind(okay);
   763 #endif // ASSERT
   764     // All the rest are a 32 bit wordsize
   765     // This is ok for now. Since fast accessors should be going away
   766     __ movptr(rax, field_address);
   768     __ bind(xreturn_path);
   770     // _ireturn/_areturn
   771     __ pop(rdi);                               // get return address
   772     __ mov(rsp, rsi);                          // set sp to sender sp
   773     __ jmp(rdi);
   775     // generate a vanilla interpreter entry as the slow path
   776     __ bind(slow_path);
   778     (void) generate_normal_entry(false);
   779     return entry_point;
   780   }
   781   return NULL;
   783 }
   785 // Method entry for java.lang.ref.Reference.get.
   786 address InterpreterGenerator::generate_Reference_get_entry(void) {
   787 #if INCLUDE_ALL_GCS
   788   // Code: _aload_0, _getfield, _areturn
   789   // parameter size = 1
   790   //
   791   // The code that gets generated by this routine is split into 2 parts:
   792   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   793   //    2. The slow path - which is an expansion of the regular method entry.
   794   //
   795   // Notes:-
   796   // * In the G1 code we do not check whether we need to block for
   797   //   a safepoint. If G1 is enabled then we must execute the specialized
   798   //   code for Reference.get (except when the Reference object is null)
   799   //   so that we can log the value in the referent field with an SATB
   800   //   update buffer.
   801   //   If the code for the getfield template is modified so that the
   802   //   G1 pre-barrier code is executed when the current method is
   803   //   Reference.get() then going through the normal method entry
   804   //   will be fine.
   805   // * The G1 code below can, however, check the receiver object (the instance
   806   //   of java.lang.Reference) and jump to the slow path if null. If the
   807   //   Reference object is null then we obviously cannot fetch the referent
   808   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   809   //   regular method entry code to generate the NPE.
   810   //
   811   // This code is based on generate_accessor_enty.
   813   // rbx,: Method*
   814   // rcx: receiver (preserve for slow entry into asm interpreter)
   816   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   818   address entry = __ pc();
   820   const int referent_offset = java_lang_ref_Reference::referent_offset;
   821   guarantee(referent_offset > 0, "referent offset not initialized");
   823   if (UseG1GC) {
   824     Label slow_path;
   826     // Check if local 0 != NULL
   827     // If the receiver is null then it is OK to jump to the slow path.
   828     __ movptr(rax, Address(rsp, wordSize));
   829     __ testptr(rax, rax);
   830     __ jcc(Assembler::zero, slow_path);
   832     // rax: local 0 (must be preserved across the G1 barrier call)
   833     //
   834     // rbx: method (at this point it's scratch)
   835     // rcx: receiver (at this point it's scratch)
   836     // rdx: scratch
   837     // rdi: scratch
   838     //
   839     // rsi: sender sp
   841     // Preserve the sender sp in case the pre-barrier
   842     // calls the runtime
   843     __ push(rsi);
   845     // Load the value of the referent field.
   846     const Address field_address(rax, referent_offset);
   847     __ movptr(rax, field_address);
   849     // Generate the G1 pre-barrier code to log the value of
   850     // the referent field in an SATB buffer.
   851     __ get_thread(rcx);
   852     __ g1_write_barrier_pre(noreg /* obj */,
   853                             rax /* pre_val */,
   854                             rcx /* thread */,
   855                             rbx /* tmp */,
   856                             true /* tosca_save */,
   857                             true /* expand_call */);
   859     // _areturn
   860     __ pop(rsi);                // get sender sp
   861     __ pop(rdi);                // get return address
   862     __ mov(rsp, rsi);           // set sp to sender sp
   863     __ jmp(rdi);
   865     __ bind(slow_path);
   866     (void) generate_normal_entry(false);
   868     return entry;
   869   }
   870 #endif // INCLUDE_ALL_GCS
   872   // If G1 is not enabled then attempt to go through the accessor entry point
   873   // Reference.get is an accessor
   874   return generate_accessor_entry();
   875 }
   877 /**
   878  * Method entry for static native methods:
   879  *   int java.util.zip.CRC32.update(int crc, int b)
   880  */
   881 address InterpreterGenerator::generate_CRC32_update_entry() {
   882   if (UseCRC32Intrinsics) {
   883     address entry = __ pc();
   885     // rbx,: Method*
   886     // rsi: senderSP must preserved for slow path, set SP to it on fast path
   887     // rdx: scratch
   888     // rdi: scratch
   890     Label slow_path;
   891     // If we need a safepoint check, generate full interpreter entry.
   892     ExternalAddress state(SafepointSynchronize::address_of_state());
   893     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   894              SafepointSynchronize::_not_synchronized);
   895     __ jcc(Assembler::notEqual, slow_path);
   897     // We don't generate local frame and don't align stack because
   898     // we call stub code and there is no safepoint on this path.
   900     // Load parameters
   901     const Register crc = rax;  // crc
   902     const Register val = rdx;  // source java byte value
   903     const Register tbl = rdi;  // scratch
   905     // Arguments are reversed on java expression stack
   906     __ movl(val, Address(rsp,   wordSize)); // byte value
   907     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
   909     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
   910     __ notl(crc); // ~crc
   911     __ update_byte_crc32(crc, val, tbl);
   912     __ notl(crc); // ~crc
   913     // result in rax
   915     // _areturn
   916     __ pop(rdi);                // get return address
   917     __ mov(rsp, rsi);           // set sp to sender sp
   918     __ jmp(rdi);
   920     // generate a vanilla native entry as the slow path
   921     __ bind(slow_path);
   923     (void) generate_native_entry(false);
   925     return entry;
   926   }
   927   return generate_native_entry(false);
   928 }
   930 /**
   931  * Method entry for static native methods:
   932  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
   933  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
   934  */
   935 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
   936   if (UseCRC32Intrinsics) {
   937     address entry = __ pc();
   939     // rbx,: Method*
   940     // rsi: senderSP must preserved for slow path, set SP to it on fast path
   941     // rdx: scratch
   942     // rdi: scratch
   944     Label slow_path;
   945     // If we need a safepoint check, generate full interpreter entry.
   946     ExternalAddress state(SafepointSynchronize::address_of_state());
   947     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   948              SafepointSynchronize::_not_synchronized);
   949     __ jcc(Assembler::notEqual, slow_path);
   951     // We don't generate local frame and don't align stack because
   952     // we call stub code and there is no safepoint on this path.
   954     // Load parameters
   955     const Register crc = rax;  // crc
   956     const Register buf = rdx;  // source java byte array address
   957     const Register len = rdi;  // length
   959     // Arguments are reversed on java expression stack
   960     __ movl(len,   Address(rsp,   wordSize)); // Length
   961     // Calculate address of start element
   962     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
   963       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
   964       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
   965       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
   966     } else {
   967       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
   968       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
   969       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
   970       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
   971     }
   973     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
   974     // result in rax
   976     // _areturn
   977     __ pop(rdi);                // get return address
   978     __ mov(rsp, rsi);           // set sp to sender sp
   979     __ jmp(rdi);
   981     // generate a vanilla native entry as the slow path
   982     __ bind(slow_path);
   984     (void) generate_native_entry(false);
   986     return entry;
   987   }
   988   return generate_native_entry(false);
   989 }
   991 //
   992 // Interpreter stub for calling a native method. (asm interpreter)
   993 // This sets up a somewhat different looking stack for calling the native method
   994 // than the typical interpreter frame setup.
   995 //
   997 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   998   // determine code generation flags
   999   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1001   // rbx,: Method*
  1002   // rsi: sender sp
  1003   // rsi: previous interpreter state (C++ interpreter) must preserve
  1004   address entry_point = __ pc();
  1006   const Address constMethod       (rbx, Method::const_offset());
  1007   const Address access_flags      (rbx, Method::access_flags_offset());
  1008   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
  1010   // get parameter size (always needed)
  1011   __ movptr(rcx, constMethod);
  1012   __ load_unsigned_short(rcx, size_of_parameters);
  1014   // native calls don't need the stack size check since they have no expression stack
  1015   // and the arguments are already on the stack and we only add a handful of words
  1016   // to the stack
  1018   // rbx,: Method*
  1019   // rcx: size of parameters
  1020   // rsi: sender sp
  1022   __ pop(rax);                                       // get return address
  1023   // for natives the size of locals is zero
  1025   // compute beginning of parameters (rdi)
  1026   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1029   // add 2 zero-initialized slots for native calls
  1030   // NULL result handler
  1031   __ push((int32_t)NULL_WORD);
  1032   // NULL oop temp (mirror or jni oop result)
  1033   __ push((int32_t)NULL_WORD);
  1035   // initialize fixed part of activation frame
  1036   generate_fixed_frame(true);
  1038   // make sure method is native & not abstract
  1039 #ifdef ASSERT
  1040   __ movl(rax, access_flags);
  1042     Label L;
  1043     __ testl(rax, JVM_ACC_NATIVE);
  1044     __ jcc(Assembler::notZero, L);
  1045     __ stop("tried to execute non-native method as native");
  1046     __ bind(L);
  1048   { Label L;
  1049     __ testl(rax, JVM_ACC_ABSTRACT);
  1050     __ jcc(Assembler::zero, L);
  1051     __ stop("tried to execute abstract method in interpreter");
  1052     __ bind(L);
  1054 #endif
  1056   // Since at this point in the method invocation the exception handler
  1057   // would try to exit the monitor of synchronized methods which hasn't
  1058   // been entered yet, we set the thread local variable
  1059   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1060   // check this flag.
  1062   __ get_thread(rax);
  1063   const Address do_not_unlock_if_synchronized(rax,
  1064         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1065   __ movbool(do_not_unlock_if_synchronized, true);
  1067   // increment invocation count & check for overflow
  1068   Label invocation_counter_overflow;
  1069   if (inc_counter) {
  1070     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1073   Label continue_after_compile;
  1074   __ bind(continue_after_compile);
  1076   bang_stack_shadow_pages(true);
  1078   // reset the _do_not_unlock_if_synchronized flag
  1079   __ get_thread(rax);
  1080   __ movbool(do_not_unlock_if_synchronized, false);
  1082   // check for synchronized methods
  1083   // Must happen AFTER invocation_counter check and stack overflow check,
  1084   // so method is not locked if overflows.
  1085   //
  1086   if (synchronized) {
  1087     lock_method();
  1088   } else {
  1089     // no synchronization necessary
  1090 #ifdef ASSERT
  1091       { Label L;
  1092         __ movl(rax, access_flags);
  1093         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1094         __ jcc(Assembler::zero, L);
  1095         __ stop("method needs synchronization");
  1096         __ bind(L);
  1098 #endif
  1101   // start execution
  1102 #ifdef ASSERT
  1103   { Label L;
  1104     const Address monitor_block_top (rbp,
  1105                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1106     __ movptr(rax, monitor_block_top);
  1107     __ cmpptr(rax, rsp);
  1108     __ jcc(Assembler::equal, L);
  1109     __ stop("broken stack frame setup in interpreter");
  1110     __ bind(L);
  1112 #endif
  1114   // jvmti/dtrace support
  1115   __ notify_method_entry();
  1117   // work registers
  1118   const Register method = rbx;
  1119   const Register thread = rdi;
  1120   const Register t      = rcx;
  1122   // allocate space for parameters
  1123   __ get_method(method);
  1124   __ movptr(t, Address(method, Method::const_offset()));
  1125   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
  1127   __ shlptr(t, Interpreter::logStackElementSize);
  1128   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1129   __ subptr(rsp, t);
  1130   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1132   // get signature handler
  1133   { Label L;
  1134     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1135     __ testptr(t, t);
  1136     __ jcc(Assembler::notZero, L);
  1137     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1138     __ get_method(method);
  1139     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1140     __ bind(L);
  1143   // call signature handler
  1144   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
  1145   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1146   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
  1147   // The generated handlers do not touch RBX (the method oop).
  1148   // However, large signatures cannot be cached and are generated
  1149   // each time here.  The slow-path generator will blow RBX
  1150   // sometime, so we must reload it after the call.
  1151   __ call(t);
  1152   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
  1154   // result handler is in rax,
  1155   // set result handler
  1156   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
  1158   // pass mirror handle if static call
  1159   { Label L;
  1160     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1161     __ movl(t, Address(method, Method::access_flags_offset()));
  1162     __ testl(t, JVM_ACC_STATIC);
  1163     __ jcc(Assembler::zero, L);
  1164     // get mirror
  1165     __ movptr(t, Address(method, Method:: const_offset()));
  1166     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1167     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1168     __ movptr(t, Address(t, mirror_offset));
  1169     // copy mirror into activation frame
  1170     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
  1171     // pass handle to mirror
  1172     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1173     __ movptr(Address(rsp, wordSize), t);
  1174     __ bind(L);
  1177   // get native function entry point
  1178   { Label L;
  1179     __ movptr(rax, Address(method, Method::native_function_offset()));
  1180     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1181     __ cmpptr(rax, unsatisfied.addr());
  1182     __ jcc(Assembler::notEqual, L);
  1183     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1184     __ get_method(method);
  1185     __ movptr(rax, Address(method, Method::native_function_offset()));
  1186     __ bind(L);
  1189   // pass JNIEnv
  1190   __ get_thread(thread);
  1191   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1192   __ movptr(Address(rsp, 0), t);
  1194   // set_last_Java_frame_before_call
  1195   // It is enough that the pc()
  1196   // points into the right code segment. It does not have to be the correct return pc.
  1197   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1199   // change thread state
  1200 #ifdef ASSERT
  1201   { Label L;
  1202     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1203     __ cmpl(t, _thread_in_Java);
  1204     __ jcc(Assembler::equal, L);
  1205     __ stop("Wrong thread state in native stub");
  1206     __ bind(L);
  1208 #endif
  1210   // Change state to native
  1211   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1212   __ call(rax);
  1214   // result potentially in rdx:rax or ST0
  1216   // Verify or restore cpu control state after JNI call
  1217   __ restore_cpu_control_state_after_jni();
  1219   // save potential result in ST(0) & rdx:rax
  1220   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
  1221   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
  1222   // It is safe to do this push because state is _thread_in_native and return address will be found
  1223   // via _last_native_pc and not via _last_jave_sp
  1225   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1226   // If the order changes or anything else is added to the stack the code in
  1227   // interpreter_frame_result will have to be changed.
  1229   { Label L;
  1230     Label push_double;
  1231     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1232     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1233     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1234               float_handler.addr());
  1235     __ jcc(Assembler::equal, push_double);
  1236     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1237               double_handler.addr());
  1238     __ jcc(Assembler::notEqual, L);
  1239     __ bind(push_double);
  1240     __ push(dtos);
  1241     __ bind(L);
  1243   __ push(ltos);
  1245   // change thread state
  1246   __ get_thread(thread);
  1247   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1248   if(os::is_MP()) {
  1249     if (UseMembar) {
  1250       // Force this write out before the read below
  1251       __ membar(Assembler::Membar_mask_bits(
  1252            Assembler::LoadLoad | Assembler::LoadStore |
  1253            Assembler::StoreLoad | Assembler::StoreStore));
  1254     } else {
  1255       // Write serialization page so VM thread can do a pseudo remote membar.
  1256       // We use the current thread pointer to calculate a thread specific
  1257       // offset to write to within the page. This minimizes bus traffic
  1258       // due to cache line collision.
  1259       __ serialize_memory(thread, rcx);
  1263   if (AlwaysRestoreFPU) {
  1264     //  Make sure the control word is correct.
  1265     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1268   // check for safepoint operation in progress and/or pending suspend requests
  1269   { Label Continue;
  1271     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1272              SafepointSynchronize::_not_synchronized);
  1274     Label L;
  1275     __ jcc(Assembler::notEqual, L);
  1276     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1277     __ jcc(Assembler::equal, Continue);
  1278     __ bind(L);
  1280     // Don't use call_VM as it will see a possible pending exception and forward it
  1281     // and never return here preventing us from clearing _last_native_pc down below.
  1282     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1283     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1284     // by hand.
  1285     //
  1286     __ push(thread);
  1287     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1288                                             JavaThread::check_special_condition_for_native_trans)));
  1289     __ increment(rsp, wordSize);
  1290     __ get_thread(thread);
  1292     __ bind(Continue);
  1295   // change thread state
  1296   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1298   __ reset_last_Java_frame(thread, true, true);
  1300   // reset handle block
  1301   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1302   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1304   // If result was an oop then unbox and save it in the frame
  1305   { Label L;
  1306     Label no_oop, store_result;
  1307     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1308     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1309               handler.addr());
  1310     __ jcc(Assembler::notEqual, no_oop);
  1311     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1312     __ pop(ltos);
  1313     __ testptr(rax, rax);
  1314     __ jcc(Assembler::zero, store_result);
  1315     // unbox
  1316     __ movptr(rax, Address(rax, 0));
  1317     __ bind(store_result);
  1318     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1319     // keep stack depth as expected by pushing oop which will eventually be discarded
  1320     __ push(ltos);
  1321     __ bind(no_oop);
  1325      Label no_reguard;
  1326      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1327      __ jcc(Assembler::notEqual, no_reguard);
  1329      __ pusha();
  1330      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1331      __ popa();
  1333      __ bind(no_reguard);
  1336   // restore rsi to have legal interpreter frame,
  1337   // i.e., bci == 0 <=> rsi == code_base()
  1338   // Can't call_VM until bcp is within reasonable.
  1339   __ get_method(method);      // method is junk from thread_in_native to now.
  1340   __ movptr(rsi, Address(method,Method::const_offset()));   // get ConstMethod*
  1341   __ lea(rsi, Address(rsi,ConstMethod::codes_offset()));    // get codebase
  1343   // handle exceptions (exception handling will handle unlocking!)
  1344   { Label L;
  1345     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1346     __ jcc(Assembler::zero, L);
  1347     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1348     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1349     //       doesn't work here because the rsp is not correctly set at this point.
  1350     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1351     __ should_not_reach_here();
  1352     __ bind(L);
  1355   // do unlocking if necessary
  1356   { Label L;
  1357     __ movl(t, Address(method, Method::access_flags_offset()));
  1358     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1359     __ jcc(Assembler::zero, L);
  1360     // the code below should be shared with interpreter macro assembler implementation
  1361     { Label unlock;
  1362       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1363       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1364       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1366       __ lea(rdx, monitor);                   // address of first monitor
  1368       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1369       __ testptr(t, t);
  1370       __ jcc(Assembler::notZero, unlock);
  1372       // Entry already unlocked, need to throw exception
  1373       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1374       __ should_not_reach_here();
  1376       __ bind(unlock);
  1377       __ unlock_object(rdx);
  1379     __ bind(L);
  1382   // jvmti/dtrace support
  1383   // Note: This must happen _after_ handling/throwing any exceptions since
  1384   //       the exception handler code notifies the runtime of method exits
  1385   //       too. If this happens before, method entry/exit notifications are
  1386   //       not properly paired (was bug - gri 11/22/99).
  1387   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1389   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1390   __ pop(ltos);
  1391   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1392   __ call(t);
  1394   // remove activation
  1395   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1396   __ leave();                                // remove frame anchor
  1397   __ pop(rdi);                               // get return address
  1398   __ mov(rsp, t);                            // set sp to sender sp
  1399   __ jmp(rdi);
  1401   if (inc_counter) {
  1402     // Handle overflow of counter and compile method
  1403     __ bind(invocation_counter_overflow);
  1404     generate_counter_overflow(&continue_after_compile);
  1407   return entry_point;
  1410 //
  1411 // Generic interpreted method entry to (asm) interpreter
  1412 //
  1413 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1414   // determine code generation flags
  1415   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1417   // rbx,: Method*
  1418   // rsi: sender sp
  1419   address entry_point = __ pc();
  1421   const Address constMethod       (rbx, Method::const_offset());
  1422   const Address access_flags      (rbx, Method::access_flags_offset());
  1423   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
  1424   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
  1426   // get parameter size (always needed)
  1427   __ movptr(rdx, constMethod);
  1428   __ load_unsigned_short(rcx, size_of_parameters);
  1430   // rbx,: Method*
  1431   // rcx: size of parameters
  1433   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1435   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1436   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1438   // see if we've got enough room on the stack for locals plus overhead.
  1439   generate_stack_overflow_check();
  1441   // get return address
  1442   __ pop(rax);
  1444   // compute beginning of parameters (rdi)
  1445   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1447   // rdx - # of additional locals
  1448   // allocate space for locals
  1449   // explicitly initialize locals
  1451     Label exit, loop;
  1452     __ testl(rdx, rdx);
  1453     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1454     __ bind(loop);
  1455     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1456     __ decrement(rdx);                                // until everything initialized
  1457     __ jcc(Assembler::greater, loop);
  1458     __ bind(exit);
  1461   // initialize fixed part of activation frame
  1462   generate_fixed_frame(false);
  1464   // make sure method is not native & not abstract
  1465 #ifdef ASSERT
  1466   __ movl(rax, access_flags);
  1468     Label L;
  1469     __ testl(rax, JVM_ACC_NATIVE);
  1470     __ jcc(Assembler::zero, L);
  1471     __ stop("tried to execute native method as non-native");
  1472     __ bind(L);
  1474   { Label L;
  1475     __ testl(rax, JVM_ACC_ABSTRACT);
  1476     __ jcc(Assembler::zero, L);
  1477     __ stop("tried to execute abstract method in interpreter");
  1478     __ bind(L);
  1480 #endif
  1482   // Since at this point in the method invocation the exception handler
  1483   // would try to exit the monitor of synchronized methods which hasn't
  1484   // been entered yet, we set the thread local variable
  1485   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1486   // check this flag.
  1488   __ get_thread(rax);
  1489   const Address do_not_unlock_if_synchronized(rax,
  1490         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1491   __ movbool(do_not_unlock_if_synchronized, true);
  1493   __ profile_parameters_type(rax, rcx, rdx);
  1494   // increment invocation count & check for overflow
  1495   Label invocation_counter_overflow;
  1496   Label profile_method;
  1497   Label profile_method_continue;
  1498   if (inc_counter) {
  1499     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1500     if (ProfileInterpreter) {
  1501       __ bind(profile_method_continue);
  1504   Label continue_after_compile;
  1505   __ bind(continue_after_compile);
  1507   bang_stack_shadow_pages(false);
  1509   // reset the _do_not_unlock_if_synchronized flag
  1510   __ get_thread(rax);
  1511   __ movbool(do_not_unlock_if_synchronized, false);
  1513   // check for synchronized methods
  1514   // Must happen AFTER invocation_counter check and stack overflow check,
  1515   // so method is not locked if overflows.
  1516   //
  1517   if (synchronized) {
  1518     // Allocate monitor and lock method
  1519     lock_method();
  1520   } else {
  1521     // no synchronization necessary
  1522 #ifdef ASSERT
  1523       { Label L;
  1524         __ movl(rax, access_flags);
  1525         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1526         __ jcc(Assembler::zero, L);
  1527         __ stop("method needs synchronization");
  1528         __ bind(L);
  1530 #endif
  1533   // start execution
  1534 #ifdef ASSERT
  1535   { Label L;
  1536      const Address monitor_block_top (rbp,
  1537                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1538     __ movptr(rax, monitor_block_top);
  1539     __ cmpptr(rax, rsp);
  1540     __ jcc(Assembler::equal, L);
  1541     __ stop("broken stack frame setup in interpreter");
  1542     __ bind(L);
  1544 #endif
  1546   // jvmti support
  1547   __ notify_method_entry();
  1549   __ dispatch_next(vtos);
  1551   // invocation counter overflow
  1552   if (inc_counter) {
  1553     if (ProfileInterpreter) {
  1554       // We have decided to profile this method in the interpreter
  1555       __ bind(profile_method);
  1556       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1557       __ set_method_data_pointer_for_bcp();
  1558       __ get_method(rbx);
  1559       __ jmp(profile_method_continue);
  1561     // Handle overflow of counter and compile method
  1562     __ bind(invocation_counter_overflow);
  1563     generate_counter_overflow(&continue_after_compile);
  1566   return entry_point;
  1569 //------------------------------------------------------------------------------------------------------------------------
  1570 // Entry points
  1571 //
  1572 // Here we generate the various kind of entries into the interpreter.
  1573 // The two main entry type are generic bytecode methods and native call method.
  1574 // These both come in synchronized and non-synchronized versions but the
  1575 // frame layout they create is very similar. The other method entry
  1576 // types are really just special purpose entries that are really entry
  1577 // and interpretation all in one. These are for trivial methods like
  1578 // accessor, empty, or special math methods.
  1579 //
  1580 // When control flow reaches any of the entry types for the interpreter
  1581 // the following holds ->
  1582 //
  1583 // Arguments:
  1584 //
  1585 // rbx,: Method*
  1586 // rcx: receiver
  1587 //
  1588 //
  1589 // Stack layout immediately at entry
  1590 //
  1591 // [ return address     ] <--- rsp
  1592 // [ parameter n        ]
  1593 //   ...
  1594 // [ parameter 1        ]
  1595 // [ expression stack   ] (caller's java expression stack)
  1597 // Assuming that we don't go to one of the trivial specialized
  1598 // entries the stack will look like below when we are ready to execute
  1599 // the first bytecode (or call the native routine). The register usage
  1600 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1601 //
  1602 // local variables follow incoming parameters immediately; i.e.
  1603 // the return address is moved to the end of the locals).
  1604 //
  1605 // [ monitor entry      ] <--- rsp
  1606 //   ...
  1607 // [ monitor entry      ]
  1608 // [ expr. stack bottom ]
  1609 // [ saved rsi          ]
  1610 // [ current rdi        ]
  1611 // [ Method*            ]
  1612 // [ saved rbp,          ] <--- rbp,
  1613 // [ return address     ]
  1614 // [ local variable m   ]
  1615 //   ...
  1616 // [ local variable 1   ]
  1617 // [ parameter n        ]
  1618 //   ...
  1619 // [ parameter 1        ] <--- rdi
  1621 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1622   // determine code generation flags
  1623   bool synchronized = false;
  1624   address entry_point = NULL;
  1625   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
  1627   switch (kind) {
  1628     case Interpreter::zerolocals             :                                                       break;
  1629     case Interpreter::zerolocals_synchronized: synchronized = true;                                  break;
  1630     case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false);  break;
  1631     case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);   break;
  1632     case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();        break;
  1633     case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();     break;
  1634     case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();     break;
  1636     case Interpreter::java_lang_math_sin     : // fall thru
  1637     case Interpreter::java_lang_math_cos     : // fall thru
  1638     case Interpreter::java_lang_math_tan     : // fall thru
  1639     case Interpreter::java_lang_math_abs     : // fall thru
  1640     case Interpreter::java_lang_math_log     : // fall thru
  1641     case Interpreter::java_lang_math_log10   : // fall thru
  1642     case Interpreter::java_lang_math_sqrt    : // fall thru
  1643     case Interpreter::java_lang_math_pow     : // fall thru
  1644     case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
  1645     case Interpreter::java_lang_ref_reference_get
  1646                                              : entry_point = ig_this->generate_Reference_get_entry(); break;
  1647     case Interpreter::java_util_zip_CRC32_update
  1648                                              : entry_point = ig_this->generate_CRC32_update_entry();  break;
  1649     case Interpreter::java_util_zip_CRC32_updateBytes
  1650                                              : // fall thru
  1651     case Interpreter::java_util_zip_CRC32_updateByteBuffer
  1652                                              : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
  1653     default:
  1654       fatal(err_msg("unexpected method kind: %d", kind));
  1655       break;
  1658   if (entry_point) return entry_point;
  1660   return ig_this->generate_normal_entry(synchronized);
  1664 // These should never be compiled since the interpreter will prefer
  1665 // the compiled version to the intrinsic version.
  1666 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1667   switch (method_kind(m)) {
  1668     case Interpreter::java_lang_math_sin     : // fall thru
  1669     case Interpreter::java_lang_math_cos     : // fall thru
  1670     case Interpreter::java_lang_math_tan     : // fall thru
  1671     case Interpreter::java_lang_math_abs     : // fall thru
  1672     case Interpreter::java_lang_math_log     : // fall thru
  1673     case Interpreter::java_lang_math_log10   : // fall thru
  1674     case Interpreter::java_lang_math_sqrt    : // fall thru
  1675     case Interpreter::java_lang_math_pow     : // fall thru
  1676     case Interpreter::java_lang_math_exp     :
  1677       return false;
  1678     default:
  1679       return true;
  1683 // How much stack a method activation needs in words.
  1684 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1686   const int stub_code = 4;  // see generate_call_stub
  1687   // Save space for one monitor to get into the interpreted method in case
  1688   // the method is synchronized
  1689   int monitor_size    = method->is_synchronized() ?
  1690                                 1*frame::interpreter_frame_monitor_size() : 0;
  1692   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1693   // be sure to change this if you add/subtract anything to/from the overhead area
  1694   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1696   const int method_stack = (method->max_locals() + method->max_stack()) *
  1697                            Interpreter::stackElementWords;
  1698   return overhead_size + method_stack + stub_code;
  1701 // asm based interpreter deoptimization helpers
  1703 int AbstractInterpreter::layout_activation(Method* method,
  1704                                            int tempcount,
  1705                                            int popframe_extra_args,
  1706                                            int moncount,
  1707                                            int caller_actual_parameters,
  1708                                            int callee_param_count,
  1709                                            int callee_locals,
  1710                                            frame* caller,
  1711                                            frame* interpreter_frame,
  1712                                            bool is_top_frame,
  1713                                            bool is_bottom_frame) {
  1714   // Note: This calculation must exactly parallel the frame setup
  1715   // in AbstractInterpreterGenerator::generate_method_entry.
  1716   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1717   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  1718   // as determined by a previous call to this method.
  1719   // It is also guaranteed to be walkable even though it is in a skeletal state
  1720   // NOTE: return size is in words not bytes
  1722   // fixed size of an interpreter frame:
  1723   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1724   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1725                      Interpreter::stackElementWords;
  1727   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
  1729   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
  1730   // Since the callee parameters already account for the callee's params we only need to account for
  1731   // the extra locals.
  1734   int size = overhead +
  1735          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
  1736          (moncount*frame::interpreter_frame_monitor_size()) +
  1737          tempcount*Interpreter::stackElementWords + popframe_extra_args;
  1739   if (interpreter_frame != NULL) {
  1740 #ifdef ASSERT
  1741     if (!EnableInvokeDynamic)
  1742       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1743       // Probably, since deoptimization doesn't work yet.
  1744       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1745     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1746 #endif
  1748     interpreter_frame->interpreter_frame_set_method(method);
  1749     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
  1750     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
  1751     // and sender_sp is fp+8
  1752     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1754 #ifdef ASSERT
  1755     if (caller->is_interpreted_frame()) {
  1756       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1758 #endif
  1760     interpreter_frame->interpreter_frame_set_locals(locals);
  1761     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1762     BasicObjectLock* monbot = montop - moncount;
  1763     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1765     // Set last_sp
  1766     intptr_t*  rsp = (intptr_t*) monbot  -
  1767                      tempcount*Interpreter::stackElementWords -
  1768                      popframe_extra_args;
  1769     interpreter_frame->interpreter_frame_set_last_sp(rsp);
  1771     // All frames but the initial (oldest) interpreter frame we fill in have a
  1772     // value for sender_sp that allows walking the stack but isn't
  1773     // truly correct. Correct the value here.
  1775     if (extra_locals != 0 &&
  1776         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
  1777       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
  1779     *interpreter_frame->interpreter_frame_cache_addr() =
  1780       method->constants()->cache();
  1782   return size;
  1786 //------------------------------------------------------------------------------------------------------------------------
  1787 // Exceptions
  1789 void TemplateInterpreterGenerator::generate_throw_exception() {
  1790   // Entry point in previous activation (i.e., if the caller was interpreted)
  1791   Interpreter::_rethrow_exception_entry = __ pc();
  1792   const Register thread = rcx;
  1794   // Restore sp to interpreter_frame_last_sp even though we are going
  1795   // to empty the expression stack for the exception processing.
  1796   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1797   // rax,: exception
  1798   // rdx: return address/pc that threw exception
  1799   __ restore_bcp();                              // rsi points to call/send
  1800   __ restore_locals();
  1802   // Entry point for exceptions thrown within interpreter code
  1803   Interpreter::_throw_exception_entry = __ pc();
  1804   // expression stack is undefined here
  1805   // rax,: exception
  1806   // rsi: exception bcp
  1807   __ verify_oop(rax);
  1809   // expression stack must be empty before entering the VM in case of an exception
  1810   __ empty_expression_stack();
  1811   __ empty_FPU_stack();
  1812   // find exception handler address and preserve exception oop
  1813   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1814   // rax,: exception handler entry point
  1815   // rdx: preserved exception oop
  1816   // rsi: bcp for exception handler
  1817   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1818   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1820   // If the exception is not handled in the current frame the frame is removed and
  1821   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1822   //
  1823   // Note: At this point the bci is still the bxi for the instruction which caused
  1824   //       the exception and the expression stack is empty. Thus, for any VM calls
  1825   //       at this point, GC will find a legal oop map (with empty expression stack).
  1827   // In current activation
  1828   // tos: exception
  1829   // rsi: exception bcp
  1831   //
  1832   // JVMTI PopFrame support
  1833   //
  1835    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1836   __ empty_expression_stack();
  1837   __ empty_FPU_stack();
  1838   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1839   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1840   // popframe handling cycles.
  1841   __ get_thread(thread);
  1842   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1843   __ orl(rdx, JavaThread::popframe_processing_bit);
  1844   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1847     // Check to see whether we are returning to a deoptimized frame.
  1848     // (The PopFrame call ensures that the caller of the popped frame is
  1849     // either interpreted or compiled and deoptimizes it if compiled.)
  1850     // In this case, we can't call dispatch_next() after the frame is
  1851     // popped, but instead must save the incoming arguments and restore
  1852     // them after deoptimization has occurred.
  1853     //
  1854     // Note that we don't compare the return PC against the
  1855     // deoptimization blob's unpack entry because of the presence of
  1856     // adapter frames in C2.
  1857     Label caller_not_deoptimized;
  1858     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1859     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1860     __ testl(rax, rax);
  1861     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1863     // Compute size of arguments for saving when returning to deoptimized caller
  1864     __ get_method(rax);
  1865     __ movptr(rax, Address(rax, Method::const_offset()));
  1866     __ load_unsigned_short(rax, Address(rax, ConstMethod::size_of_parameters_offset()));
  1867     __ shlptr(rax, Interpreter::logStackElementSize);
  1868     __ restore_locals();
  1869     __ subptr(rdi, rax);
  1870     __ addptr(rdi, wordSize);
  1871     // Save these arguments
  1872     __ get_thread(thread);
  1873     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1875     __ remove_activation(vtos, rdx,
  1876                          /* throw_monitor_exception */ false,
  1877                          /* install_monitor_exception */ false,
  1878                          /* notify_jvmdi */ false);
  1880     // Inform deoptimization that it is responsible for restoring these arguments
  1881     __ get_thread(thread);
  1882     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1884     // Continue in deoptimization handler
  1885     __ jmp(rdx);
  1887     __ bind(caller_not_deoptimized);
  1890   __ remove_activation(vtos, rdx,
  1891                        /* throw_monitor_exception */ false,
  1892                        /* install_monitor_exception */ false,
  1893                        /* notify_jvmdi */ false);
  1895   // Finish with popframe handling
  1896   // A previous I2C followed by a deoptimization might have moved the
  1897   // outgoing arguments further up the stack. PopFrame expects the
  1898   // mutations to those outgoing arguments to be preserved and other
  1899   // constraints basically require this frame to look exactly as
  1900   // though it had previously invoked an interpreted activation with
  1901   // no space between the top of the expression stack (current
  1902   // last_sp) and the top of stack. Rather than force deopt to
  1903   // maintain this kind of invariant all the time we call a small
  1904   // fixup routine to move the mutated arguments onto the top of our
  1905   // expression stack if necessary.
  1906   __ mov(rax, rsp);
  1907   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1908   __ get_thread(thread);
  1909   // PC must point into interpreter here
  1910   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1911   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1912   __ get_thread(thread);
  1913   __ reset_last_Java_frame(thread, true, true);
  1914   // Restore the last_sp and null it out
  1915   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1916   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1918   __ restore_bcp();
  1919   __ restore_locals();
  1920   // The method data pointer was incremented already during
  1921   // call profiling. We have to restore the mdp for the current bcp.
  1922   if (ProfileInterpreter) {
  1923     __ set_method_data_pointer_for_bcp();
  1926   // Clear the popframe condition flag
  1927   __ get_thread(thread);
  1928   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1930 #if INCLUDE_JVMTI
  1931   if (EnableInvokeDynamic) {
  1932     Label L_done;
  1933     const Register local0 = rdi;
  1935     __ cmpb(Address(rsi, 0), Bytecodes::_invokestatic);
  1936     __ jcc(Assembler::notEqual, L_done);
  1938     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1939     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1941     __ get_method(rdx);
  1942     __ movptr(rax, Address(local0, 0));
  1943     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, rsi);
  1945     __ testptr(rax, rax);
  1946     __ jcc(Assembler::zero, L_done);
  1948     __ movptr(Address(rbx, 0), rax);
  1949     __ bind(L_done);
  1951 #endif // INCLUDE_JVMTI
  1953   __ dispatch_next(vtos);
  1954   // end of PopFrame support
  1956   Interpreter::_remove_activation_entry = __ pc();
  1958   // preserve exception over this code sequence
  1959   __ pop_ptr(rax);
  1960   __ get_thread(thread);
  1961   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1962   // remove the activation (without doing throws on illegalMonitorExceptions)
  1963   __ remove_activation(vtos, rdx, false, true, false);
  1964   // restore exception
  1965   __ get_thread(thread);
  1966   __ get_vm_result(rax, thread);
  1968   // Inbetween activations - previous activation type unknown yet
  1969   // compute continuation point - the continuation point expects
  1970   // the following registers set up:
  1971   //
  1972   // rax: exception
  1973   // rdx: return address/pc that threw exception
  1974   // rsp: expression stack of caller
  1975   // rbp: rbp, of caller
  1976   __ push(rax);                                  // save exception
  1977   __ push(rdx);                                  // save return address
  1978   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1979   __ mov(rbx, rax);                              // save exception handler
  1980   __ pop(rdx);                                   // restore return address
  1981   __ pop(rax);                                   // restore exception
  1982   // Note that an "issuing PC" is actually the next PC after the call
  1983   __ jmp(rbx);                                   // jump to exception handler of caller
  1987 //
  1988 // JVMTI ForceEarlyReturn support
  1989 //
  1990 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1991   address entry = __ pc();
  1992   const Register thread = rcx;
  1994   __ restore_bcp();
  1995   __ restore_locals();
  1996   __ empty_expression_stack();
  1997   __ empty_FPU_stack();
  1998   __ load_earlyret_value(state);
  2000   __ get_thread(thread);
  2001   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  2002   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  2004   // Clear the earlyret state
  2005   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  2007   __ remove_activation(state, rsi,
  2008                        false, /* throw_monitor_exception */
  2009                        false, /* install_monitor_exception */
  2010                        true); /* notify_jvmdi */
  2011   __ jmp(rsi);
  2012   return entry;
  2013 } // end of ForceEarlyReturn support
  2016 //------------------------------------------------------------------------------------------------------------------------
  2017 // Helper for vtos entry point generation
  2019 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  2020   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  2021   Label L;
  2022   fep = __ pc(); __ push(ftos); __ jmp(L);
  2023   dep = __ pc(); __ push(dtos); __ jmp(L);
  2024   lep = __ pc(); __ push(ltos); __ jmp(L);
  2025   aep = __ pc(); __ push(atos); __ jmp(L);
  2026   bep = cep = sep =             // fall through
  2027   iep = __ pc(); __ push(itos); // fall through
  2028   vep = __ pc(); __ bind(L);    // fall through
  2029   generate_and_dispatch(t);
  2032 //------------------------------------------------------------------------------------------------------------------------
  2033 // Generation of individual instructions
  2035 // helpers for generate_and_dispatch
  2039 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2040  : TemplateInterpreterGenerator(code) {
  2041    generate_all(); // down here so it can be "virtual"
  2044 //------------------------------------------------------------------------------------------------------------------------
  2046 // Non-product code
  2047 #ifndef PRODUCT
  2048 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  2049   address entry = __ pc();
  2051   // prepare expression stack
  2052   __ pop(rcx);          // pop return address so expression stack is 'pure'
  2053   __ push(state);       // save tosca
  2055   // pass tosca registers as arguments & call tracer
  2056   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  2057   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  2058   __ pop(state);        // restore tosca
  2060   // return
  2061   __ jmp(rcx);
  2063   return entry;
  2067 void TemplateInterpreterGenerator::count_bytecode() {
  2068   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  2072 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  2073   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  2077 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2078   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  2079   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  2080   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  2081   ExternalAddress table((address) BytecodePairHistogram::_counters);
  2082   Address index(noreg, rbx, Address::times_4);
  2083   __ incrementl(ArrayAddress(table, index));
  2087 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2088   // Call a little run-time stub to avoid blow-up for each bytecode.
  2089   // The run-time runtime saves the right registers, depending on
  2090   // the tosca in-state for the given template.
  2091   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  2092          "entry must have been generated");
  2093   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  2097 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2098   Label L;
  2099   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  2100            StopInterpreterAt);
  2101   __ jcc(Assembler::notEqual, L);
  2102   __ int3();
  2103   __ bind(L);
  2105 #endif // !PRODUCT
  2106 #endif // CC_INTERP

mercurial