src/share/vm/opto/escape.hpp

Mon, 07 Nov 2011 14:33:57 -0800

author
kvn
date
Mon, 07 Nov 2011 14:33:57 -0800
changeset 3254
59e515ee9354
parent 2556
3763ca6579b7
child 3309
8c57262447d3
permissions
-rw-r--r--

7059047: EA: can't find initializing store with several CheckCastPP
Summary: Split adjust_escape_state() method into two methods to find initializing stores.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_ESCAPE_HPP
    26 #define SHARE_VM_OPTO_ESCAPE_HPP
    28 #include "opto/addnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "utilities/growableArray.hpp"
    32 //
    33 // Adaptation for C2 of the escape analysis algorithm described in:
    34 //
    35 // [Choi99] Jong-Deok Shoi, Manish Gupta, Mauricio Seffano,
    36 //          Vugranam C. Sreedhar, Sam Midkiff,
    37 //          "Escape Analysis for Java", Procedings of ACM SIGPLAN
    38 //          OOPSLA  Conference, November 1, 1999
    39 //
    40 // The flow-insensitive analysis described in the paper has been implemented.
    41 //
    42 // The analysis requires construction of a "connection graph" (CG) for
    43 // the method being analyzed.  The nodes of the connection graph are:
    44 //
    45 //     -  Java objects (JO)
    46 //     -  Local variables (LV)
    47 //     -  Fields of an object (OF),  these also include array elements
    48 //
    49 // The CG contains 3 types of edges:
    50 //
    51 //   -  PointsTo  (-P>)    {LV, OF} to JO
    52 //   -  Deferred  (-D>)    from {LV, OF} to {LV, OF}
    53 //   -  Field     (-F>)    from JO to OF
    54 //
    55 // The following  utility functions is used by the algorithm:
    56 //
    57 //   PointsTo(n) - n is any CG node, it returns the set of JO that n could
    58 //                 point to.
    59 //
    60 // The algorithm describes how to construct the connection graph
    61 // in the following 4 cases:
    62 //
    63 //          Case                  Edges Created
    64 //
    65 // (1)   p   = new T()              LV -P> JO
    66 // (2)   p   = q                    LV -D> LV
    67 // (3)   p.f = q                    JO -F> OF,  OF -D> LV
    68 // (4)   p   = q.f                  JO -F> OF,  LV -D> OF
    69 //
    70 // In all these cases, p and q are local variables.  For static field
    71 // references, we can construct a local variable containing a reference
    72 // to the static memory.
    73 //
    74 // C2 does not have local variables.  However for the purposes of constructing
    75 // the connection graph, the following IR nodes are treated as local variables:
    76 //     Phi    (pointer values)
    77 //     LoadP, LoadN
    78 //     Proj#5 (value returned from callnodes including allocations)
    79 //     CheckCastPP, CastPP
    80 //
    81 // The LoadP, Proj and CheckCastPP behave like variables assigned to only once.
    82 // Only a Phi can have multiple assignments.  Each input to a Phi is treated
    83 // as an assignment to it.
    84 //
    85 // The following node types are JavaObject:
    86 //
    87 //     phantom_object (general globally escaped object)
    88 //     Allocate
    89 //     AllocateArray
    90 //     Parm  (for incoming arguments)
    91 //     CastX2P ("unsafe" operations)
    92 //     CreateEx
    93 //     ConP
    94 //     LoadKlass
    95 //     ThreadLocal
    96 //     CallStaticJava (which returns Object)
    97 //
    98 // AddP nodes are fields.
    99 //
   100 // After building the graph, a pass is made over the nodes, deleting deferred
   101 // nodes and copying the edges from the target of the deferred edge to the
   102 // source.  This results in a graph with no deferred edges, only:
   103 //
   104 //    LV -P> JO
   105 //    OF -P> JO (the object whose oop is stored in the field)
   106 //    JO -F> OF
   107 //
   108 // Then, for each node which is GlobalEscape, anything it could point to
   109 // is marked GlobalEscape.  Finally, for any node marked ArgEscape, anything
   110 // it could point to is marked ArgEscape.
   111 //
   113 class  Compile;
   114 class  Node;
   115 class  CallNode;
   116 class  PhiNode;
   117 class  PhaseTransform;
   118 class  Type;
   119 class  TypePtr;
   120 class  VectorSet;
   122 class PointsToNode {
   123 friend class ConnectionGraph;
   124 public:
   125   typedef enum {
   126     UnknownType = 0,
   127     JavaObject  = 1,
   128     LocalVar    = 2,
   129     Field       = 3
   130   } NodeType;
   132   typedef enum {
   133     UnknownEscape = 0,
   134     NoEscape      = 1, // An object does not escape method or thread and it is
   135                        // not passed to call. It could be replaced with scalar.
   136     ArgEscape     = 2, // An object does not escape method or thread but it is
   137                        // passed as argument to call or referenced by argument
   138                        // and it does not escape during call.
   139     GlobalEscape  = 3  // An object escapes the method or thread.
   140   } EscapeState;
   142   typedef enum {
   143     UnknownEdge   = 0,
   144     PointsToEdge  = 1,
   145     DeferredEdge  = 2,
   146     FieldEdge     = 3
   147   } EdgeType;
   149 private:
   150   enum {
   151     EdgeMask = 3,
   152     EdgeShift = 2,
   154     INITIAL_EDGE_COUNT = 4
   155   };
   157   NodeType             _type;
   158   EscapeState          _escape;
   159   GrowableArray<uint>* _edges; // outgoing edges
   160   Node* _node;                 // Ideal node corresponding to this PointsTo node.
   161   int   _offset;               // Object fields offsets.
   162   bool  _scalar_replaceable;   // Not escaped object could be replaced with scalar
   164 public:
   165   PointsToNode():
   166     _type(UnknownType),
   167     _escape(UnknownEscape),
   168     _edges(NULL),
   169     _node(NULL),
   170     _offset(-1),
   171     _scalar_replaceable(true) {}
   174   EscapeState escape_state() const { return _escape; }
   175   NodeType node_type() const { return _type;}
   176   int offset() { return _offset;}
   177   bool scalar_replaceable() { return _scalar_replaceable;}
   179   void set_offset(int offs) { _offset = offs;}
   180   void set_escape_state(EscapeState state) { _escape = state; }
   181   void set_node_type(NodeType ntype) {
   182     assert(_type == UnknownType || _type == ntype, "Can't change node type");
   183     _type = ntype;
   184   }
   185   void set_scalar_replaceable(bool v) { _scalar_replaceable = v; }
   187   // count of outgoing edges
   188   uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); }
   190   // node index of target of outgoing edge "e"
   191   uint edge_target(uint e) const {
   192     assert(_edges != NULL, "valid edge index");
   193     return (_edges->at(e) >> EdgeShift);
   194   }
   195   // type of outgoing edge "e"
   196   EdgeType edge_type(uint e) const {
   197     assert(_edges != NULL, "valid edge index");
   198     return (EdgeType) (_edges->at(e) & EdgeMask);
   199   }
   201   // add a edge of the specified type pointing to the specified target
   202   void add_edge(uint targIdx, EdgeType et);
   204   // remove an edge of the specified type pointing to the specified target
   205   void remove_edge(uint targIdx, EdgeType et);
   207 #ifndef PRODUCT
   208   void dump(bool print_state=true) const;
   209 #endif
   211 };
   213 class ConnectionGraph: public ResourceObj {
   214 private:
   215   GrowableArray<PointsToNode>  _nodes; // Connection graph nodes indexed
   216                                        // by ideal node index.
   218   Unique_Node_List  _delayed_worklist; // Nodes to be processed before
   219                                        // the call build_connection_graph().
   221   GrowableArray<MergeMemNode *>  _mergemem_worklist; // List of all MergeMem nodes
   223   VectorSet                _processed; // Records which nodes have been
   224                                        // processed.
   226   bool                    _collecting; // Indicates whether escape information
   227                                        // is still being collected. If false,
   228                                        // no new nodes will be processed.
   230   bool                    _progress;   // Indicates whether new Graph's edges
   231                                        // were created.
   233   uint                _phantom_object; // Index of globally escaping object
   234                                        // that pointer values loaded from
   235                                        // a field which has not been set
   236                                        // are assumed to point to.
   237   uint                      _oop_null; // ConP(#NULL)->_idx
   238   uint                     _noop_null; // ConN(#NULL)->_idx
   240   Compile *                  _compile; // Compile object for current compilation
   241   PhaseIterGVN *                _igvn; // Value numbering
   243   // Address of an element in _nodes.  Used when the element is to be modified
   244   PointsToNode *ptnode_adr(uint idx) const {
   245     // There should be no new ideal nodes during ConnectionGraph build,
   246     // growableArray::adr_at() will throw assert otherwise.
   247     return _nodes.adr_at(idx);
   248   }
   249   uint nodes_size() const { return _nodes.length(); }
   251   // Add node to ConnectionGraph.
   252   void add_node(Node *n, PointsToNode::NodeType nt, PointsToNode::EscapeState es, bool done);
   254   // offset of a field reference
   255   int address_offset(Node* adr, PhaseTransform *phase);
   257   // compute the escape state for arguments to a call
   258   void process_call_arguments(CallNode *call, PhaseTransform *phase);
   260   // compute the escape state for the return value of a call
   261   void process_call_result(ProjNode *resproj, PhaseTransform *phase);
   263   // Populate Connection Graph with Ideal nodes.
   264   void record_for_escape_analysis(Node *n, PhaseTransform *phase);
   266   // Build Connection Graph and set nodes escape state.
   267   void build_connection_graph(Node *n, PhaseTransform *phase);
   269   // walk the connection graph starting at the node corresponding to "n" and
   270   // add the index of everything it could point to, to "ptset".  This may cause
   271   // Phi's encountered to get (re)processed  (which requires "phase".)
   272   VectorSet* PointsTo(Node * n);
   274   // Reused structures for PointsTo().
   275   VectorSet            pt_ptset;
   276   VectorSet            pt_visited;
   277   GrowableArray<uint>  pt_worklist;
   279   //  Edge manipulation.  The "from_i" and "to_i" arguments are the
   280   //  node indices of the source and destination of the edge
   281   void add_pointsto_edge(uint from_i, uint to_i);
   282   void add_deferred_edge(uint from_i, uint to_i);
   283   void add_field_edge(uint from_i, uint to_i, int offs);
   285   // Add an edge of the specified type pointing to the specified target.
   286   // Set _progress if new edge is added.
   287   void add_edge(PointsToNode *f, uint to_i, PointsToNode::EdgeType et) {
   288     uint e_cnt = f->edge_count();
   289     f->add_edge(to_i, et);
   290     _progress |= (f->edge_count() != e_cnt);
   291   }
   293   // Add an edge to node given by "to_i" from any field of adr_i whose offset
   294   // matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   295   // a pointsto edge is added if it is a JavaObject
   296   void add_edge_from_fields(uint adr, uint to_i, int offs);
   298   // Add a deferred  edge from node given by "from_i" to any field
   299   // of adr_i whose offset matches "offset"
   300   void add_deferred_edge_to_fields(uint from_i, uint adr, int offs);
   303   // Remove outgoing deferred edges from the node referenced by "ni".
   304   // Any outgoing edges from the target of the deferred edge are copied
   305   // to "ni".
   306   void remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited);
   308   Node_Array _node_map; // used for bookeeping during type splitting
   309                         // Used for the following purposes:
   310                         // Memory Phi    - most recent unique Phi split out
   311                         //                 from this Phi
   312                         // MemNode       - new memory input for this node
   313                         // ChecCastPP    - allocation that this is a cast of
   314                         // allocation    - CheckCastPP of the allocation
   315   bool split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn);
   316   PhiNode *create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created);
   317   PhiNode *split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn);
   318   void  move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn);
   319   Node *find_inst_mem(Node *mem, int alias_idx,GrowableArray<PhiNode *>  &orig_phi_worklist,  PhaseGVN  *igvn);
   321   // Propagate unique types created for unescaped allocated objects
   322   // through the graph
   323   void split_unique_types(GrowableArray<Node *>  &alloc_worklist);
   325   // manage entries in _node_map
   326   void  set_map(int idx, Node *n)        { _node_map.map(idx, n); }
   327   Node *get_map(int idx)                 { return _node_map[idx]; }
   328   PhiNode *get_map_phi(int idx) {
   329     Node *phi = _node_map[idx];
   330     return (phi == NULL) ? NULL : phi->as_Phi();
   331   }
   333   // Notify optimizer that a node has been modified
   334   // Node:  This assumes that escape analysis is run before
   335   //        PhaseIterGVN creation
   336   void record_for_optimizer(Node *n) {
   337     _igvn->_worklist.push(n);
   338   }
   340   // Set the escape state of a node
   341   void set_escape_state(uint ni, PointsToNode::EscapeState es);
   343   // Find fields initializing values for allocations.
   344   void find_init_values(Node* n, VectorSet* visited, PhaseTransform* phase);
   346   // Adjust escape state after Connection Graph is built.
   347   void adjust_escape_state(Node* n);
   349   // Propagate escape states to referenced nodes.
   350   bool propagate_escape_state(GrowableArray<int>* cg_worklist,
   351                               GrowableArray<uint>* worklist,
   352                               PointsToNode::EscapeState esc_state);
   354   // Compute the escape information
   355   bool compute_escape();
   357 public:
   358   ConnectionGraph(Compile *C, PhaseIterGVN *igvn);
   360   // Check for non-escaping candidates
   361   static bool has_candidates(Compile *C);
   363   // Perform escape analysis
   364   static void do_analysis(Compile *C, PhaseIterGVN *igvn);
   366   // escape state of a node
   367   PointsToNode::EscapeState escape_state(Node *n);
   369 #ifndef PRODUCT
   370   void dump();
   371 #endif
   372 };
   374 #endif // SHARE_VM_OPTO_ESCAPE_HPP

mercurial