src/os/windows/vm/os_windows.cpp

Thu, 04 Jul 2013 21:10:17 -0700

author
dcubed
date
Thu, 04 Jul 2013 21:10:17 -0700
changeset 5365
59b052799158
parent 5272
1f4355cee9a2
child 5401
a74ec8831c7b
child 5424
5e3b6f79d280
permissions
-rw-r--r--

8015884: runThese crashed with SIGSEGV, hs_err has an error instead of stacktrace
Summary: Dl_info struct should only be used if dladdr() has returned non-zero (no errors) and always check the dladdr() return value; Dl_info.dli_sname and Dl_info.dli_saddr fields should only be used if non-NULL; update/improve runtime/6888954/vmerrors.sh test
Reviewed-by: dsamersoff, zgu, hseigel, coleenp

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/disassembler.hpp"
    36 #include "interpreter/interpreter.hpp"
    37 #include "jvm_windows.h"
    38 #include "memory/allocation.inline.hpp"
    39 #include "memory/filemap.hpp"
    40 #include "mutex_windows.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "os_share_windows.hpp"
    43 #include "prims/jniFastGetField.hpp"
    44 #include "prims/jvm.h"
    45 #include "prims/jvm_misc.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/extendedPC.hpp"
    48 #include "runtime/globals.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/javaCalls.hpp"
    52 #include "runtime/mutexLocker.hpp"
    53 #include "runtime/objectMonitor.hpp"
    54 #include "runtime/osThread.hpp"
    55 #include "runtime/perfMemory.hpp"
    56 #include "runtime/sharedRuntime.hpp"
    57 #include "runtime/statSampler.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/thread.inline.hpp"
    60 #include "runtime/threadCritical.hpp"
    61 #include "runtime/timer.hpp"
    62 #include "services/attachListener.hpp"
    63 #include "services/memTracker.hpp"
    64 #include "services/runtimeService.hpp"
    65 #include "utilities/decoder.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 #ifdef _DEBUG
    72 #include <crtdbg.h>
    73 #endif
    76 #include <windows.h>
    77 #include <sys/types.h>
    78 #include <sys/stat.h>
    79 #include <sys/timeb.h>
    80 #include <objidl.h>
    81 #include <shlobj.h>
    83 #include <malloc.h>
    84 #include <signal.h>
    85 #include <direct.h>
    86 #include <errno.h>
    87 #include <fcntl.h>
    88 #include <io.h>
    89 #include <process.h>              // For _beginthreadex(), _endthreadex()
    90 #include <imagehlp.h>             // For os::dll_address_to_function_name
    91 /* for enumerating dll libraries */
    92 #include <vdmdbg.h>
    94 // for timer info max values which include all bits
    95 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    97 // For DLL loading/load error detection
    98 // Values of PE COFF
    99 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   100 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   102 static HANDLE main_process;
   103 static HANDLE main_thread;
   104 static int    main_thread_id;
   106 static FILETIME process_creation_time;
   107 static FILETIME process_exit_time;
   108 static FILETIME process_user_time;
   109 static FILETIME process_kernel_time;
   111 #ifdef _M_IA64
   112 #define __CPU__ ia64
   113 #elif _M_AMD64
   114 #define __CPU__ amd64
   115 #else
   116 #define __CPU__ i486
   117 #endif
   119 // save DLL module handle, used by GetModuleFileName
   121 HINSTANCE vm_lib_handle;
   123 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   124   switch (reason) {
   125     case DLL_PROCESS_ATTACH:
   126       vm_lib_handle = hinst;
   127       if(ForceTimeHighResolution)
   128         timeBeginPeriod(1L);
   129       break;
   130     case DLL_PROCESS_DETACH:
   131       if(ForceTimeHighResolution)
   132         timeEndPeriod(1L);
   133       break;
   134     default:
   135       break;
   136   }
   137   return true;
   138 }
   140 static inline double fileTimeAsDouble(FILETIME* time) {
   141   const double high  = (double) ((unsigned int) ~0);
   142   const double split = 10000000.0;
   143   double result = (time->dwLowDateTime / split) +
   144                    time->dwHighDateTime * (high/split);
   145   return result;
   146 }
   148 // Implementation of os
   150 bool os::getenv(const char* name, char* buffer, int len) {
   151  int result = GetEnvironmentVariable(name, buffer, len);
   152  return result > 0 && result < len;
   153 }
   156 // No setuid programs under Windows.
   157 bool os::have_special_privileges() {
   158   return false;
   159 }
   162 // This method is  a periodic task to check for misbehaving JNI applications
   163 // under CheckJNI, we can add any periodic checks here.
   164 // For Windows at the moment does nothing
   165 void os::run_periodic_checks() {
   166   return;
   167 }
   169 #ifndef _WIN64
   170 // previous UnhandledExceptionFilter, if there is one
   171 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   173 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   174 #endif
   175 void os::init_system_properties_values() {
   176   /* sysclasspath, java_home, dll_dir */
   177   {
   178       char *home_path;
   179       char *dll_path;
   180       char *pslash;
   181       char *bin = "\\bin";
   182       char home_dir[MAX_PATH];
   184       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   185           os::jvm_path(home_dir, sizeof(home_dir));
   186           // Found the full path to jvm.dll.
   187           // Now cut the path to <java_home>/jre if we can.
   188           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   189           pslash = strrchr(home_dir, '\\');
   190           if (pslash != NULL) {
   191               *pslash = '\0';                 /* get rid of \{client|server} */
   192               pslash = strrchr(home_dir, '\\');
   193               if (pslash != NULL)
   194                   *pslash = '\0';             /* get rid of \bin */
   195           }
   196       }
   198       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
   199       if (home_path == NULL)
   200           return;
   201       strcpy(home_path, home_dir);
   202       Arguments::set_java_home(home_path);
   204       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
   205       if (dll_path == NULL)
   206           return;
   207       strcpy(dll_path, home_dir);
   208       strcat(dll_path, bin);
   209       Arguments::set_dll_dir(dll_path);
   211       if (!set_boot_path('\\', ';'))
   212           return;
   213   }
   215   /* library_path */
   216   #define EXT_DIR "\\lib\\ext"
   217   #define BIN_DIR "\\bin"
   218   #define PACKAGE_DIR "\\Sun\\Java"
   219   {
   220     /* Win32 library search order (See the documentation for LoadLibrary):
   221      *
   222      * 1. The directory from which application is loaded.
   223      * 2. The system wide Java Extensions directory (Java only)
   224      * 3. System directory (GetSystemDirectory)
   225      * 4. Windows directory (GetWindowsDirectory)
   226      * 5. The PATH environment variable
   227      * 6. The current directory
   228      */
   230     char *library_path;
   231     char tmp[MAX_PATH];
   232     char *path_str = ::getenv("PATH");
   234     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   235         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
   237     library_path[0] = '\0';
   239     GetModuleFileName(NULL, tmp, sizeof(tmp));
   240     *(strrchr(tmp, '\\')) = '\0';
   241     strcat(library_path, tmp);
   243     GetWindowsDirectory(tmp, sizeof(tmp));
   244     strcat(library_path, ";");
   245     strcat(library_path, tmp);
   246     strcat(library_path, PACKAGE_DIR BIN_DIR);
   248     GetSystemDirectory(tmp, sizeof(tmp));
   249     strcat(library_path, ";");
   250     strcat(library_path, tmp);
   252     GetWindowsDirectory(tmp, sizeof(tmp));
   253     strcat(library_path, ";");
   254     strcat(library_path, tmp);
   256     if (path_str) {
   257         strcat(library_path, ";");
   258         strcat(library_path, path_str);
   259     }
   261     strcat(library_path, ";.");
   263     Arguments::set_library_path(library_path);
   264     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
   265   }
   267   /* Default extensions directory */
   268   {
   269     char path[MAX_PATH];
   270     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   271     GetWindowsDirectory(path, MAX_PATH);
   272     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   273         path, PACKAGE_DIR, EXT_DIR);
   274     Arguments::set_ext_dirs(buf);
   275   }
   276   #undef EXT_DIR
   277   #undef BIN_DIR
   278   #undef PACKAGE_DIR
   280   /* Default endorsed standards directory. */
   281   {
   282     #define ENDORSED_DIR "\\lib\\endorsed"
   283     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   284     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
   285     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   286     Arguments::set_endorsed_dirs(buf);
   287     #undef ENDORSED_DIR
   288   }
   290 #ifndef _WIN64
   291   // set our UnhandledExceptionFilter and save any previous one
   292   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   293 #endif
   295   // Done
   296   return;
   297 }
   299 void os::breakpoint() {
   300   DebugBreak();
   301 }
   303 // Invoked from the BREAKPOINT Macro
   304 extern "C" void breakpoint() {
   305   os::breakpoint();
   306 }
   308 /*
   309  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
   310  * So far, this method is only used by Native Memory Tracking, which is
   311  * only supported on Windows XP or later.
   312  */
   313 address os::get_caller_pc(int n) {
   314 #ifdef _NMT_NOINLINE_
   315   n ++;
   316 #endif
   317   address pc;
   318   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
   319     return pc;
   320   }
   321   return NULL;
   322 }
   325 // os::current_stack_base()
   326 //
   327 //   Returns the base of the stack, which is the stack's
   328 //   starting address.  This function must be called
   329 //   while running on the stack of the thread being queried.
   331 address os::current_stack_base() {
   332   MEMORY_BASIC_INFORMATION minfo;
   333   address stack_bottom;
   334   size_t stack_size;
   336   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   337   stack_bottom =  (address)minfo.AllocationBase;
   338   stack_size = minfo.RegionSize;
   340   // Add up the sizes of all the regions with the same
   341   // AllocationBase.
   342   while( 1 )
   343   {
   344     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   345     if ( stack_bottom == (address)minfo.AllocationBase )
   346       stack_size += minfo.RegionSize;
   347     else
   348       break;
   349   }
   351 #ifdef _M_IA64
   352   // IA64 has memory and register stacks
   353   //
   354   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
   355   // at thread creation (1MB backing store growing upwards, 1MB memory stack
   356   // growing downwards, 2MB summed up)
   357   //
   358   // ...
   359   // ------- top of stack (high address) -----
   360   // |
   361   // |      1MB
   362   // |      Backing Store (Register Stack)
   363   // |
   364   // |         / \
   365   // |          |
   366   // |          |
   367   // |          |
   368   // ------------------------ stack base -----
   369   // |      1MB
   370   // |      Memory Stack
   371   // |
   372   // |          |
   373   // |          |
   374   // |          |
   375   // |         \ /
   376   // |
   377   // ----- bottom of stack (low address) -----
   378   // ...
   380   stack_size = stack_size / 2;
   381 #endif
   382   return stack_bottom + stack_size;
   383 }
   385 size_t os::current_stack_size() {
   386   size_t sz;
   387   MEMORY_BASIC_INFORMATION minfo;
   388   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   389   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   390   return sz;
   391 }
   393 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   394   const struct tm* time_struct_ptr = localtime(clock);
   395   if (time_struct_ptr != NULL) {
   396     *res = *time_struct_ptr;
   397     return res;
   398   }
   399   return NULL;
   400 }
   402 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   404 // Thread start routine for all new Java threads
   405 static unsigned __stdcall java_start(Thread* thread) {
   406   // Try to randomize the cache line index of hot stack frames.
   407   // This helps when threads of the same stack traces evict each other's
   408   // cache lines. The threads can be either from the same JVM instance, or
   409   // from different JVM instances. The benefit is especially true for
   410   // processors with hyperthreading technology.
   411   static int counter = 0;
   412   int pid = os::current_process_id();
   413   _alloca(((pid ^ counter++) & 7) * 128);
   415   OSThread* osthr = thread->osthread();
   416   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   418   if (UseNUMA) {
   419     int lgrp_id = os::numa_get_group_id();
   420     if (lgrp_id != -1) {
   421       thread->set_lgrp_id(lgrp_id);
   422     }
   423   }
   426   // Install a win32 structured exception handler around every thread created
   427   // by VM, so VM can genrate error dump when an exception occurred in non-
   428   // Java thread (e.g. VM thread).
   429   __try {
   430      thread->run();
   431   } __except(topLevelExceptionFilter(
   432              (_EXCEPTION_POINTERS*)_exception_info())) {
   433       // Nothing to do.
   434   }
   436   // One less thread is executing
   437   // When the VMThread gets here, the main thread may have already exited
   438   // which frees the CodeHeap containing the Atomic::add code
   439   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   440     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   441   }
   443   return 0;
   444 }
   446 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   447   // Allocate the OSThread object
   448   OSThread* osthread = new OSThread(NULL, NULL);
   449   if (osthread == NULL) return NULL;
   451   // Initialize support for Java interrupts
   452   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   453   if (interrupt_event == NULL) {
   454     delete osthread;
   455     return NULL;
   456   }
   457   osthread->set_interrupt_event(interrupt_event);
   459   // Store info on the Win32 thread into the OSThread
   460   osthread->set_thread_handle(thread_handle);
   461   osthread->set_thread_id(thread_id);
   463   if (UseNUMA) {
   464     int lgrp_id = os::numa_get_group_id();
   465     if (lgrp_id != -1) {
   466       thread->set_lgrp_id(lgrp_id);
   467     }
   468   }
   470   // Initial thread state is INITIALIZED, not SUSPENDED
   471   osthread->set_state(INITIALIZED);
   473   return osthread;
   474 }
   477 bool os::create_attached_thread(JavaThread* thread) {
   478 #ifdef ASSERT
   479   thread->verify_not_published();
   480 #endif
   481   HANDLE thread_h;
   482   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   483                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   484     fatal("DuplicateHandle failed\n");
   485   }
   486   OSThread* osthread = create_os_thread(thread, thread_h,
   487                                         (int)current_thread_id());
   488   if (osthread == NULL) {
   489      return false;
   490   }
   492   // Initial thread state is RUNNABLE
   493   osthread->set_state(RUNNABLE);
   495   thread->set_osthread(osthread);
   496   return true;
   497 }
   499 bool os::create_main_thread(JavaThread* thread) {
   500 #ifdef ASSERT
   501   thread->verify_not_published();
   502 #endif
   503   if (_starting_thread == NULL) {
   504     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   505      if (_starting_thread == NULL) {
   506         return false;
   507      }
   508   }
   510   // The primordial thread is runnable from the start)
   511   _starting_thread->set_state(RUNNABLE);
   513   thread->set_osthread(_starting_thread);
   514   return true;
   515 }
   517 // Allocate and initialize a new OSThread
   518 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   519   unsigned thread_id;
   521   // Allocate the OSThread object
   522   OSThread* osthread = new OSThread(NULL, NULL);
   523   if (osthread == NULL) {
   524     return false;
   525   }
   527   // Initialize support for Java interrupts
   528   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   529   if (interrupt_event == NULL) {
   530     delete osthread;
   531     return NULL;
   532   }
   533   osthread->set_interrupt_event(interrupt_event);
   534   osthread->set_interrupted(false);
   536   thread->set_osthread(osthread);
   538   if (stack_size == 0) {
   539     switch (thr_type) {
   540     case os::java_thread:
   541       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   542       if (JavaThread::stack_size_at_create() > 0)
   543         stack_size = JavaThread::stack_size_at_create();
   544       break;
   545     case os::compiler_thread:
   546       if (CompilerThreadStackSize > 0) {
   547         stack_size = (size_t)(CompilerThreadStackSize * K);
   548         break;
   549       } // else fall through:
   550         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   551     case os::vm_thread:
   552     case os::pgc_thread:
   553     case os::cgc_thread:
   554     case os::watcher_thread:
   555       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   556       break;
   557     }
   558   }
   560   // Create the Win32 thread
   561   //
   562   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   563   // does not specify stack size. Instead, it specifies the size of
   564   // initially committed space. The stack size is determined by
   565   // PE header in the executable. If the committed "stack_size" is larger
   566   // than default value in the PE header, the stack is rounded up to the
   567   // nearest multiple of 1MB. For example if the launcher has default
   568   // stack size of 320k, specifying any size less than 320k does not
   569   // affect the actual stack size at all, it only affects the initial
   570   // commitment. On the other hand, specifying 'stack_size' larger than
   571   // default value may cause significant increase in memory usage, because
   572   // not only the stack space will be rounded up to MB, but also the
   573   // entire space is committed upfront.
   574   //
   575   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   576   // for CreateThread() that can treat 'stack_size' as stack size. However we
   577   // are not supposed to call CreateThread() directly according to MSDN
   578   // document because JVM uses C runtime library. The good news is that the
   579   // flag appears to work with _beginthredex() as well.
   581 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   582 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   583 #endif
   585   HANDLE thread_handle =
   586     (HANDLE)_beginthreadex(NULL,
   587                            (unsigned)stack_size,
   588                            (unsigned (__stdcall *)(void*)) java_start,
   589                            thread,
   590                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   591                            &thread_id);
   592   if (thread_handle == NULL) {
   593     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   594     // without the flag.
   595     thread_handle =
   596     (HANDLE)_beginthreadex(NULL,
   597                            (unsigned)stack_size,
   598                            (unsigned (__stdcall *)(void*)) java_start,
   599                            thread,
   600                            CREATE_SUSPENDED,
   601                            &thread_id);
   602   }
   603   if (thread_handle == NULL) {
   604     // Need to clean up stuff we've allocated so far
   605     CloseHandle(osthread->interrupt_event());
   606     thread->set_osthread(NULL);
   607     delete osthread;
   608     return NULL;
   609   }
   611   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   613   // Store info on the Win32 thread into the OSThread
   614   osthread->set_thread_handle(thread_handle);
   615   osthread->set_thread_id(thread_id);
   617   // Initial thread state is INITIALIZED, not SUSPENDED
   618   osthread->set_state(INITIALIZED);
   620   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   621   return true;
   622 }
   625 // Free Win32 resources related to the OSThread
   626 void os::free_thread(OSThread* osthread) {
   627   assert(osthread != NULL, "osthread not set");
   628   CloseHandle(osthread->thread_handle());
   629   CloseHandle(osthread->interrupt_event());
   630   delete osthread;
   631 }
   634 static int    has_performance_count = 0;
   635 static jlong first_filetime;
   636 static jlong initial_performance_count;
   637 static jlong performance_frequency;
   640 jlong as_long(LARGE_INTEGER x) {
   641   jlong result = 0; // initialization to avoid warning
   642   set_high(&result, x.HighPart);
   643   set_low(&result,  x.LowPart);
   644   return result;
   645 }
   648 jlong os::elapsed_counter() {
   649   LARGE_INTEGER count;
   650   if (has_performance_count) {
   651     QueryPerformanceCounter(&count);
   652     return as_long(count) - initial_performance_count;
   653   } else {
   654     FILETIME wt;
   655     GetSystemTimeAsFileTime(&wt);
   656     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   657   }
   658 }
   661 jlong os::elapsed_frequency() {
   662   if (has_performance_count) {
   663     return performance_frequency;
   664   } else {
   665    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   666    return 10000000;
   667   }
   668 }
   671 julong os::available_memory() {
   672   return win32::available_memory();
   673 }
   675 julong os::win32::available_memory() {
   676   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   677   // value if total memory is larger than 4GB
   678   MEMORYSTATUSEX ms;
   679   ms.dwLength = sizeof(ms);
   680   GlobalMemoryStatusEx(&ms);
   682   return (julong)ms.ullAvailPhys;
   683 }
   685 julong os::physical_memory() {
   686   return win32::physical_memory();
   687 }
   689 bool os::has_allocatable_memory_limit(julong* limit) {
   690   MEMORYSTATUSEX ms;
   691   ms.dwLength = sizeof(ms);
   692   GlobalMemoryStatusEx(&ms);
   693 #ifdef _LP64
   694   *limit = (julong)ms.ullAvailVirtual;
   695   return true;
   696 #else
   697   // Limit to 1400m because of the 2gb address space wall
   698   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
   699   return true;
   700 #endif
   701 }
   703 // VC6 lacks DWORD_PTR
   704 #if _MSC_VER < 1300
   705 typedef UINT_PTR DWORD_PTR;
   706 #endif
   708 int os::active_processor_count() {
   709   DWORD_PTR lpProcessAffinityMask = 0;
   710   DWORD_PTR lpSystemAffinityMask = 0;
   711   int proc_count = processor_count();
   712   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   713       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   714     // Nof active processors is number of bits in process affinity mask
   715     int bitcount = 0;
   716     while (lpProcessAffinityMask != 0) {
   717       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   718       bitcount++;
   719     }
   720     return bitcount;
   721   } else {
   722     return proc_count;
   723   }
   724 }
   726 void os::set_native_thread_name(const char *name) {
   727   // Not yet implemented.
   728   return;
   729 }
   731 bool os::distribute_processes(uint length, uint* distribution) {
   732   // Not yet implemented.
   733   return false;
   734 }
   736 bool os::bind_to_processor(uint processor_id) {
   737   // Not yet implemented.
   738   return false;
   739 }
   741 static void initialize_performance_counter() {
   742   LARGE_INTEGER count;
   743   if (QueryPerformanceFrequency(&count)) {
   744     has_performance_count = 1;
   745     performance_frequency = as_long(count);
   746     QueryPerformanceCounter(&count);
   747     initial_performance_count = as_long(count);
   748   } else {
   749     has_performance_count = 0;
   750     FILETIME wt;
   751     GetSystemTimeAsFileTime(&wt);
   752     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   753   }
   754 }
   757 double os::elapsedTime() {
   758   return (double) elapsed_counter() / (double) elapsed_frequency();
   759 }
   762 // Windows format:
   763 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   764 // Java format:
   765 //   Java standards require the number of milliseconds since 1/1/1970
   767 // Constant offset - calculated using offset()
   768 static jlong  _offset   = 116444736000000000;
   769 // Fake time counter for reproducible results when debugging
   770 static jlong  fake_time = 0;
   772 #ifdef ASSERT
   773 // Just to be safe, recalculate the offset in debug mode
   774 static jlong _calculated_offset = 0;
   775 static int   _has_calculated_offset = 0;
   777 jlong offset() {
   778   if (_has_calculated_offset) return _calculated_offset;
   779   SYSTEMTIME java_origin;
   780   java_origin.wYear          = 1970;
   781   java_origin.wMonth         = 1;
   782   java_origin.wDayOfWeek     = 0; // ignored
   783   java_origin.wDay           = 1;
   784   java_origin.wHour          = 0;
   785   java_origin.wMinute        = 0;
   786   java_origin.wSecond        = 0;
   787   java_origin.wMilliseconds  = 0;
   788   FILETIME jot;
   789   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   790     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   791   }
   792   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   793   _has_calculated_offset = 1;
   794   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   795   return _calculated_offset;
   796 }
   797 #else
   798 jlong offset() {
   799   return _offset;
   800 }
   801 #endif
   803 jlong windows_to_java_time(FILETIME wt) {
   804   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   805   return (a - offset()) / 10000;
   806 }
   808 FILETIME java_to_windows_time(jlong l) {
   809   jlong a = (l * 10000) + offset();
   810   FILETIME result;
   811   result.dwHighDateTime = high(a);
   812   result.dwLowDateTime  = low(a);
   813   return result;
   814 }
   816 bool os::supports_vtime() { return true; }
   817 bool os::enable_vtime() { return false; }
   818 bool os::vtime_enabled() { return false; }
   820 double os::elapsedVTime() {
   821   FILETIME created;
   822   FILETIME exited;
   823   FILETIME kernel;
   824   FILETIME user;
   825   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
   826     // the resolution of windows_to_java_time() should be sufficient (ms)
   827     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
   828   } else {
   829     return elapsedTime();
   830   }
   831 }
   833 jlong os::javaTimeMillis() {
   834   if (UseFakeTimers) {
   835     return fake_time++;
   836   } else {
   837     FILETIME wt;
   838     GetSystemTimeAsFileTime(&wt);
   839     return windows_to_java_time(wt);
   840   }
   841 }
   843 jlong os::javaTimeNanos() {
   844   if (!has_performance_count) {
   845     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   846   } else {
   847     LARGE_INTEGER current_count;
   848     QueryPerformanceCounter(&current_count);
   849     double current = as_long(current_count);
   850     double freq = performance_frequency;
   851     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   852     return time;
   853   }
   854 }
   856 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   857   if (!has_performance_count) {
   858     // javaTimeMillis() doesn't have much percision,
   859     // but it is not going to wrap -- so all 64 bits
   860     info_ptr->max_value = ALL_64_BITS;
   862     // this is a wall clock timer, so may skip
   863     info_ptr->may_skip_backward = true;
   864     info_ptr->may_skip_forward = true;
   865   } else {
   866     jlong freq = performance_frequency;
   867     if (freq < NANOSECS_PER_SEC) {
   868       // the performance counter is 64 bits and we will
   869       // be multiplying it -- so no wrap in 64 bits
   870       info_ptr->max_value = ALL_64_BITS;
   871     } else if (freq > NANOSECS_PER_SEC) {
   872       // use the max value the counter can reach to
   873       // determine the max value which could be returned
   874       julong max_counter = (julong)ALL_64_BITS;
   875       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   876     } else {
   877       // the performance counter is 64 bits and we will
   878       // be using it directly -- so no wrap in 64 bits
   879       info_ptr->max_value = ALL_64_BITS;
   880     }
   882     // using a counter, so no skipping
   883     info_ptr->may_skip_backward = false;
   884     info_ptr->may_skip_forward = false;
   885   }
   886   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   887 }
   889 char* os::local_time_string(char *buf, size_t buflen) {
   890   SYSTEMTIME st;
   891   GetLocalTime(&st);
   892   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   893                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   894   return buf;
   895 }
   897 bool os::getTimesSecs(double* process_real_time,
   898                      double* process_user_time,
   899                      double* process_system_time) {
   900   HANDLE h_process = GetCurrentProcess();
   901   FILETIME create_time, exit_time, kernel_time, user_time;
   902   BOOL result = GetProcessTimes(h_process,
   903                                &create_time,
   904                                &exit_time,
   905                                &kernel_time,
   906                                &user_time);
   907   if (result != 0) {
   908     FILETIME wt;
   909     GetSystemTimeAsFileTime(&wt);
   910     jlong rtc_millis = windows_to_java_time(wt);
   911     jlong user_millis = windows_to_java_time(user_time);
   912     jlong system_millis = windows_to_java_time(kernel_time);
   913     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   914     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   915     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   916     return true;
   917   } else {
   918     return false;
   919   }
   920 }
   922 void os::shutdown() {
   924   // allow PerfMemory to attempt cleanup of any persistent resources
   925   perfMemory_exit();
   927   // flush buffered output, finish log files
   928   ostream_abort();
   930   // Check for abort hook
   931   abort_hook_t abort_hook = Arguments::abort_hook();
   932   if (abort_hook != NULL) {
   933     abort_hook();
   934   }
   935 }
   938 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   939                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   941 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   942   HINSTANCE dbghelp;
   943   EXCEPTION_POINTERS ep;
   944   MINIDUMP_EXCEPTION_INFORMATION mei;
   945   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   947   HANDLE hProcess = GetCurrentProcess();
   948   DWORD processId = GetCurrentProcessId();
   949   HANDLE dumpFile;
   950   MINIDUMP_TYPE dumpType;
   951   static const char* cwd;
   953 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
   954 #ifndef ASSERT
   955   // If running on a client version of Windows and user has not explicitly enabled dumping
   956   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   957     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   958     return;
   959     // If running on a server version of Windows and user has explictly disabled dumping
   960   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   961     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   962     return;
   963   }
   964 #else
   965   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   966     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   967     return;
   968   }
   969 #endif
   971   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
   973   if (dbghelp == NULL) {
   974     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
   975     return;
   976   }
   978   _MiniDumpWriteDump = CAST_TO_FN_PTR(
   979     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   980     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
   981     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
   983   if (_MiniDumpWriteDump == NULL) {
   984     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
   985     return;
   986   }
   988   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
   990 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
   991 // API_VERSION_NUMBER 11 or higher contains the ones we want though
   992 #if API_VERSION_NUMBER >= 11
   993   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
   994     MiniDumpWithUnloadedModules);
   995 #endif
   997   cwd = get_current_directory(NULL, 0);
   998   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
   999   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
  1001   if (dumpFile == INVALID_HANDLE_VALUE) {
  1002     VMError::report_coredump_status("Failed to create file for dumping", false);
  1003     return;
  1005   if (exceptionRecord != NULL && contextRecord != NULL) {
  1006     ep.ContextRecord = (PCONTEXT) contextRecord;
  1007     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
  1009     mei.ThreadId = GetCurrentThreadId();
  1010     mei.ExceptionPointers = &ep;
  1011     pmei = &mei;
  1012   } else {
  1013     pmei = NULL;
  1017   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
  1018   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
  1019   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
  1020       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
  1021         DWORD error = GetLastError();
  1022         LPTSTR msgbuf = NULL;
  1024         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
  1025                       FORMAT_MESSAGE_FROM_SYSTEM |
  1026                       FORMAT_MESSAGE_IGNORE_INSERTS,
  1027                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
  1029           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
  1030           LocalFree(msgbuf);
  1031         } else {
  1032           // Call to FormatMessage failed, just include the result from GetLastError
  1033           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
  1035         VMError::report_coredump_status(buffer, false);
  1036   } else {
  1037     VMError::report_coredump_status(buffer, true);
  1040   CloseHandle(dumpFile);
  1045 void os::abort(bool dump_core)
  1047   os::shutdown();
  1048   // no core dump on Windows
  1049   ::exit(1);
  1052 // Die immediately, no exit hook, no abort hook, no cleanup.
  1053 void os::die() {
  1054   _exit(-1);
  1057 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1058 //  * dirent_md.c       1.15 00/02/02
  1059 //
  1060 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1062 /* Caller must have already run dirname through JVM_NativePath, which removes
  1063    duplicate slashes and converts all instances of '/' into '\\'. */
  1065 DIR *
  1066 os::opendir(const char *dirname)
  1068     assert(dirname != NULL, "just checking");   // hotspot change
  1069     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
  1070     DWORD fattr;                                // hotspot change
  1071     char alt_dirname[4] = { 0, 0, 0, 0 };
  1073     if (dirp == 0) {
  1074         errno = ENOMEM;
  1075         return 0;
  1078     /*
  1079      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1080      * as a directory in FindFirstFile().  We detect this case here and
  1081      * prepend the current drive name.
  1082      */
  1083     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1084         alt_dirname[0] = _getdrive() + 'A' - 1;
  1085         alt_dirname[1] = ':';
  1086         alt_dirname[2] = '\\';
  1087         alt_dirname[3] = '\0';
  1088         dirname = alt_dirname;
  1091     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
  1092     if (dirp->path == 0) {
  1093         free(dirp, mtInternal);
  1094         errno = ENOMEM;
  1095         return 0;
  1097     strcpy(dirp->path, dirname);
  1099     fattr = GetFileAttributes(dirp->path);
  1100     if (fattr == 0xffffffff) {
  1101         free(dirp->path, mtInternal);
  1102         free(dirp, mtInternal);
  1103         errno = ENOENT;
  1104         return 0;
  1105     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1106         free(dirp->path, mtInternal);
  1107         free(dirp, mtInternal);
  1108         errno = ENOTDIR;
  1109         return 0;
  1112     /* Append "*.*", or possibly "\\*.*", to path */
  1113     if (dirp->path[1] == ':'
  1114         && (dirp->path[2] == '\0'
  1115             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1116         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1117         strcat(dirp->path, "*.*");
  1118     } else {
  1119         strcat(dirp->path, "\\*.*");
  1122     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1123     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1124         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1125             free(dirp->path, mtInternal);
  1126             free(dirp, mtInternal);
  1127             errno = EACCES;
  1128             return 0;
  1131     return dirp;
  1134 /* parameter dbuf unused on Windows */
  1136 struct dirent *
  1137 os::readdir(DIR *dirp, dirent *dbuf)
  1139     assert(dirp != NULL, "just checking");      // hotspot change
  1140     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1141         return 0;
  1144     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1146     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1147         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1148             errno = EBADF;
  1149             return 0;
  1151         FindClose(dirp->handle);
  1152         dirp->handle = INVALID_HANDLE_VALUE;
  1155     return &dirp->dirent;
  1158 int
  1159 os::closedir(DIR *dirp)
  1161     assert(dirp != NULL, "just checking");      // hotspot change
  1162     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1163         if (!FindClose(dirp->handle)) {
  1164             errno = EBADF;
  1165             return -1;
  1167         dirp->handle = INVALID_HANDLE_VALUE;
  1169     free(dirp->path, mtInternal);
  1170     free(dirp, mtInternal);
  1171     return 0;
  1174 // This must be hard coded because it's the system's temporary
  1175 // directory not the java application's temp directory, ala java.io.tmpdir.
  1176 const char* os::get_temp_directory() {
  1177   static char path_buf[MAX_PATH];
  1178   if (GetTempPath(MAX_PATH, path_buf)>0)
  1179     return path_buf;
  1180   else{
  1181     path_buf[0]='\0';
  1182     return path_buf;
  1186 static bool file_exists(const char* filename) {
  1187   if (filename == NULL || strlen(filename) == 0) {
  1188     return false;
  1190   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1193 bool os::dll_build_name(char *buffer, size_t buflen,
  1194                         const char* pname, const char* fname) {
  1195   bool retval = false;
  1196   const size_t pnamelen = pname ? strlen(pname) : 0;
  1197   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1199   // Return error on buffer overflow.
  1200   if (pnamelen + strlen(fname) + 10 > buflen) {
  1201     return retval;
  1204   if (pnamelen == 0) {
  1205     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1206     retval = true;
  1207   } else if (c == ':' || c == '\\') {
  1208     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1209     retval = true;
  1210   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1211     int n;
  1212     char** pelements = split_path(pname, &n);
  1213     if (pelements == NULL) {
  1214       return false;
  1216     for (int i = 0 ; i < n ; i++) {
  1217       char* path = pelements[i];
  1218       // Really shouldn't be NULL, but check can't hurt
  1219       size_t plen = (path == NULL) ? 0 : strlen(path);
  1220       if (plen == 0) {
  1221         continue; // skip the empty path values
  1223       const char lastchar = path[plen - 1];
  1224       if (lastchar == ':' || lastchar == '\\') {
  1225         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1226       } else {
  1227         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1229       if (file_exists(buffer)) {
  1230         retval = true;
  1231         break;
  1234     // release the storage
  1235     for (int i = 0 ; i < n ; i++) {
  1236       if (pelements[i] != NULL) {
  1237         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1240     if (pelements != NULL) {
  1241       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1243   } else {
  1244     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1245     retval = true;
  1247   return retval;
  1250 // Needs to be in os specific directory because windows requires another
  1251 // header file <direct.h>
  1252 const char* os::get_current_directory(char *buf, size_t buflen) {
  1253   int n = static_cast<int>(buflen);
  1254   if (buflen > INT_MAX)  n = INT_MAX;
  1255   return _getcwd(buf, n);
  1258 //-----------------------------------------------------------
  1259 // Helper functions for fatal error handler
  1260 #ifdef _WIN64
  1261 // Helper routine which returns true if address in
  1262 // within the NTDLL address space.
  1263 //
  1264 static bool _addr_in_ntdll( address addr )
  1266   HMODULE hmod;
  1267   MODULEINFO minfo;
  1269   hmod = GetModuleHandle("NTDLL.DLL");
  1270   if ( hmod == NULL ) return false;
  1271   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1272                                &minfo, sizeof(MODULEINFO)) )
  1273     return false;
  1275   if ( (addr >= minfo.lpBaseOfDll) &&
  1276        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1277     return true;
  1278   else
  1279     return false;
  1281 #endif
  1284 // Enumerate all modules for a given process ID
  1285 //
  1286 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1287 // different API for doing this. We use PSAPI.DLL on NT based
  1288 // Windows and ToolHelp on 95/98/Me.
  1290 // Callback function that is called by enumerate_modules() on
  1291 // every DLL module.
  1292 // Input parameters:
  1293 //    int       pid,
  1294 //    char*     module_file_name,
  1295 //    address   module_base_addr,
  1296 //    unsigned  module_size,
  1297 //    void*     param
  1298 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1300 // enumerate_modules for Windows NT, using PSAPI
  1301 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1303   HANDLE   hProcess ;
  1305 # define MAX_NUM_MODULES 128
  1306   HMODULE     modules[MAX_NUM_MODULES];
  1307   static char filename[ MAX_PATH ];
  1308   int         result = 0;
  1310   if (!os::PSApiDll::PSApiAvailable()) {
  1311     return 0;
  1314   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1315                          FALSE, pid ) ;
  1316   if (hProcess == NULL) return 0;
  1318   DWORD size_needed;
  1319   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1320                            sizeof(modules), &size_needed)) {
  1321       CloseHandle( hProcess );
  1322       return 0;
  1325   // number of modules that are currently loaded
  1326   int num_modules = size_needed / sizeof(HMODULE);
  1328   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1329     // Get Full pathname:
  1330     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1331                              filename, sizeof(filename))) {
  1332         filename[0] = '\0';
  1335     MODULEINFO modinfo;
  1336     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1337                                &modinfo, sizeof(modinfo))) {
  1338         modinfo.lpBaseOfDll = NULL;
  1339         modinfo.SizeOfImage = 0;
  1342     // Invoke callback function
  1343     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1344                   modinfo.SizeOfImage, param);
  1345     if (result) break;
  1348   CloseHandle( hProcess ) ;
  1349   return result;
  1353 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1354 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1356   HANDLE                hSnapShot ;
  1357   static MODULEENTRY32  modentry ;
  1358   int                   result = 0;
  1360   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1361     return 0;
  1364   // Get a handle to a Toolhelp snapshot of the system
  1365   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1366   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1367       return FALSE ;
  1370   // iterate through all modules
  1371   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1372   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1374   while( not_done ) {
  1375     // invoke the callback
  1376     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1377                 modentry.modBaseSize, param);
  1378     if (result) break;
  1380     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1381     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1384   CloseHandle(hSnapShot);
  1385   return result;
  1388 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1390   // Get current process ID if caller doesn't provide it.
  1391   if (!pid) pid = os::current_process_id();
  1393   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1394   else                    return _enumerate_modules_windows(pid, func, param);
  1397 struct _modinfo {
  1398    address addr;
  1399    char*   full_path;   // point to a char buffer
  1400    int     buflen;      // size of the buffer
  1401    address base_addr;
  1402 };
  1404 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1405                                   unsigned size, void * param) {
  1406    struct _modinfo *pmod = (struct _modinfo *)param;
  1407    if (!pmod) return -1;
  1409    if (base_addr     <= pmod->addr &&
  1410        base_addr+size > pmod->addr) {
  1411      // if a buffer is provided, copy path name to the buffer
  1412      if (pmod->full_path) {
  1413        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1415      pmod->base_addr = base_addr;
  1416      return 1;
  1418    return 0;
  1421 bool os::dll_address_to_library_name(address addr, char* buf,
  1422                                      int buflen, int* offset) {
  1423   // buf is not optional, but offset is optional
  1424   assert(buf != NULL, "sanity check");
  1426 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1427 //       return the full path to the DLL file, sometimes it returns path
  1428 //       to the corresponding PDB file (debug info); sometimes it only
  1429 //       returns partial path, which makes life painful.
  1431   struct _modinfo mi;
  1432   mi.addr      = addr;
  1433   mi.full_path = buf;
  1434   mi.buflen    = buflen;
  1435   int pid = os::current_process_id();
  1436   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1437     // buf already contains path name
  1438     if (offset) *offset = addr - mi.base_addr;
  1439     return true;
  1442   buf[0] = '\0';
  1443   if (offset) *offset = -1;
  1444   return false;
  1447 bool os::dll_address_to_function_name(address addr, char *buf,
  1448                                       int buflen, int *offset) {
  1449   // buf is not optional, but offset is optional
  1450   assert(buf != NULL, "sanity check");
  1452   if (Decoder::decode(addr, buf, buflen, offset)) {
  1453     return true;
  1455   if (offset != NULL)  *offset  = -1;
  1456   buf[0] = '\0';
  1457   return false;
  1460 // save the start and end address of jvm.dll into param[0] and param[1]
  1461 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1462                     unsigned size, void * param) {
  1463    if (!param) return -1;
  1465    if (base_addr     <= (address)_locate_jvm_dll &&
  1466        base_addr+size > (address)_locate_jvm_dll) {
  1467          ((address*)param)[0] = base_addr;
  1468          ((address*)param)[1] = base_addr + size;
  1469          return 1;
  1471    return 0;
  1474 address vm_lib_location[2];    // start and end address of jvm.dll
  1476 // check if addr is inside jvm.dll
  1477 bool os::address_is_in_vm(address addr) {
  1478   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1479     int pid = os::current_process_id();
  1480     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1481       assert(false, "Can't find jvm module.");
  1482       return false;
  1486   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1489 // print module info; param is outputStream*
  1490 static int _print_module(int pid, char* fname, address base,
  1491                          unsigned size, void* param) {
  1492    if (!param) return -1;
  1494    outputStream* st = (outputStream*)param;
  1496    address end_addr = base + size;
  1497    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1498    return 0;
  1501 // Loads .dll/.so and
  1502 // in case of error it checks if .dll/.so was built for the
  1503 // same architecture as Hotspot is running on
  1504 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1506   void * result = LoadLibrary(name);
  1507   if (result != NULL)
  1509     return result;
  1512   DWORD errcode = GetLastError();
  1513   if (errcode == ERROR_MOD_NOT_FOUND) {
  1514     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1515     ebuf[ebuflen-1]='\0';
  1516     return NULL;
  1519   // Parsing dll below
  1520   // If we can read dll-info and find that dll was built
  1521   // for an architecture other than Hotspot is running in
  1522   // - then print to buffer "DLL was built for a different architecture"
  1523   // else call os::lasterror to obtain system error message
  1525   // Read system error message into ebuf
  1526   // It may or may not be overwritten below (in the for loop and just above)
  1527   lasterror(ebuf, (size_t) ebuflen);
  1528   ebuf[ebuflen-1]='\0';
  1529   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1530   if (file_descriptor<0)
  1532     return NULL;
  1535   uint32_t signature_offset;
  1536   uint16_t lib_arch=0;
  1537   bool failed_to_get_lib_arch=
  1539     //Go to position 3c in the dll
  1540     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1541     ||
  1542     // Read loacation of signature
  1543     (sizeof(signature_offset)!=
  1544       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1545     ||
  1546     //Go to COFF File Header in dll
  1547     //that is located after"signature" (4 bytes long)
  1548     (os::seek_to_file_offset(file_descriptor,
  1549       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1550     ||
  1551     //Read field that contains code of architecture
  1552     // that dll was build for
  1553     (sizeof(lib_arch)!=
  1554       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1555   );
  1557   ::close(file_descriptor);
  1558   if (failed_to_get_lib_arch)
  1560     // file i/o error - report os::lasterror(...) msg
  1561     return NULL;
  1564   typedef struct
  1566     uint16_t arch_code;
  1567     char* arch_name;
  1568   } arch_t;
  1570   static const arch_t arch_array[]={
  1571     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1572     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1573     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1574   };
  1575   #if   (defined _M_IA64)
  1576     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1577   #elif (defined _M_AMD64)
  1578     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1579   #elif (defined _M_IX86)
  1580     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1581   #else
  1582     #error Method os::dll_load requires that one of following \
  1583            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1584   #endif
  1587   // Obtain a string for printf operation
  1588   // lib_arch_str shall contain string what platform this .dll was built for
  1589   // running_arch_str shall string contain what platform Hotspot was built for
  1590   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1591   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1593     if (lib_arch==arch_array[i].arch_code)
  1594       lib_arch_str=arch_array[i].arch_name;
  1595     if (running_arch==arch_array[i].arch_code)
  1596       running_arch_str=arch_array[i].arch_name;
  1599   assert(running_arch_str,
  1600     "Didn't find runing architecture code in arch_array");
  1602   // If the architure is right
  1603   // but some other error took place - report os::lasterror(...) msg
  1604   if (lib_arch == running_arch)
  1606     return NULL;
  1609   if (lib_arch_str!=NULL)
  1611     ::_snprintf(ebuf, ebuflen-1,
  1612       "Can't load %s-bit .dll on a %s-bit platform",
  1613       lib_arch_str,running_arch_str);
  1615   else
  1617     // don't know what architecture this dll was build for
  1618     ::_snprintf(ebuf, ebuflen-1,
  1619       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1620       lib_arch,running_arch_str);
  1623   return NULL;
  1627 void os::print_dll_info(outputStream *st) {
  1628    int pid = os::current_process_id();
  1629    st->print_cr("Dynamic libraries:");
  1630    enumerate_modules(pid, _print_module, (void *)st);
  1633 void os::print_os_info_brief(outputStream* st) {
  1634   os::print_os_info(st);
  1637 void os::print_os_info(outputStream* st) {
  1638   st->print("OS:");
  1640   os::win32::print_windows_version(st);
  1643 void os::win32::print_windows_version(outputStream* st) {
  1644   OSVERSIONINFOEX osvi;
  1645   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1646   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1648   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1649     st->print_cr("N/A");
  1650     return;
  1653   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1654   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1655     switch (os_vers) {
  1656     case 3051: st->print(" Windows NT 3.51"); break;
  1657     case 4000: st->print(" Windows NT 4.0"); break;
  1658     case 5000: st->print(" Windows 2000"); break;
  1659     case 5001: st->print(" Windows XP"); break;
  1660     case 5002:
  1661     case 6000:
  1662     case 6001:
  1663     case 6002: {
  1664       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1665       // find out whether we are running on 64 bit processor or not.
  1666       SYSTEM_INFO si;
  1667       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1668         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
  1669           GetSystemInfo(&si);
  1670       } else {
  1671         os::Kernel32Dll::GetNativeSystemInfo(&si);
  1673       if (os_vers == 5002) {
  1674         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1675             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1676           st->print(" Windows XP x64 Edition");
  1677         else
  1678             st->print(" Windows Server 2003 family");
  1679       } else if (os_vers == 6000) {
  1680         if (osvi.wProductType == VER_NT_WORKSTATION)
  1681             st->print(" Windows Vista");
  1682         else
  1683             st->print(" Windows Server 2008");
  1684         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1685             st->print(" , 64 bit");
  1686       } else if (os_vers == 6001) {
  1687         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1688             st->print(" Windows 7");
  1689         } else {
  1690             // Unrecognized windows, print out its major and minor versions
  1691             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1693         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1694             st->print(" , 64 bit");
  1695       } else if (os_vers == 6002) {
  1696         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1697             st->print(" Windows 8");
  1698         } else {
  1699             st->print(" Windows Server 2012");
  1701         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1702             st->print(" , 64 bit");
  1703       } else { // future os
  1704         // Unrecognized windows, print out its major and minor versions
  1705         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1706         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1707             st->print(" , 64 bit");
  1709       break;
  1711     default: // future windows, print out its major and minor versions
  1712       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1714   } else {
  1715     switch (os_vers) {
  1716     case 4000: st->print(" Windows 95"); break;
  1717     case 4010: st->print(" Windows 98"); break;
  1718     case 4090: st->print(" Windows Me"); break;
  1719     default: // future windows, print out its major and minor versions
  1720       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1723   st->print(" Build %d", osvi.dwBuildNumber);
  1724   st->print(" %s", osvi.szCSDVersion);           // service pack
  1725   st->cr();
  1728 void os::pd_print_cpu_info(outputStream* st) {
  1729   // Nothing to do for now.
  1732 void os::print_memory_info(outputStream* st) {
  1733   st->print("Memory:");
  1734   st->print(" %dk page", os::vm_page_size()>>10);
  1736   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1737   // value if total memory is larger than 4GB
  1738   MEMORYSTATUSEX ms;
  1739   ms.dwLength = sizeof(ms);
  1740   GlobalMemoryStatusEx(&ms);
  1742   st->print(", physical %uk", os::physical_memory() >> 10);
  1743   st->print("(%uk free)", os::available_memory() >> 10);
  1745   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1746   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1747   st->cr();
  1750 void os::print_siginfo(outputStream *st, void *siginfo) {
  1751   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1752   st->print("siginfo:");
  1753   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1755   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1756       er->NumberParameters >= 2) {
  1757       switch (er->ExceptionInformation[0]) {
  1758       case 0: st->print(", reading address"); break;
  1759       case 1: st->print(", writing address"); break;
  1760       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1761                             er->ExceptionInformation[0]);
  1763       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1764   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1765              er->NumberParameters >= 2 && UseSharedSpaces) {
  1766     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1767     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1768       st->print("\n\nError accessing class data sharing archive."       \
  1769                 " Mapped file inaccessible during execution, "          \
  1770                 " possible disk/network problem.");
  1772   } else {
  1773     int num = er->NumberParameters;
  1774     if (num > 0) {
  1775       st->print(", ExceptionInformation=");
  1776       for (int i = 0; i < num; i++) {
  1777         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1781   st->cr();
  1784 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1785   // do nothing
  1788 static char saved_jvm_path[MAX_PATH] = {0};
  1790 // Find the full path to the current module, jvm.dll
  1791 void os::jvm_path(char *buf, jint buflen) {
  1792   // Error checking.
  1793   if (buflen < MAX_PATH) {
  1794     assert(false, "must use a large-enough buffer");
  1795     buf[0] = '\0';
  1796     return;
  1798   // Lazy resolve the path to current module.
  1799   if (saved_jvm_path[0] != 0) {
  1800     strcpy(buf, saved_jvm_path);
  1801     return;
  1804   buf[0] = '\0';
  1805   if (Arguments::created_by_gamma_launcher()) {
  1806      // Support for the gamma launcher. Check for an
  1807      // JAVA_HOME environment variable
  1808      // and fix up the path so it looks like
  1809      // libjvm.so is installed there (append a fake suffix
  1810      // hotspot/libjvm.so).
  1811      char* java_home_var = ::getenv("JAVA_HOME");
  1812      if (java_home_var != NULL && java_home_var[0] != 0) {
  1814         strncpy(buf, java_home_var, buflen);
  1816         // determine if this is a legacy image or modules image
  1817         // modules image doesn't have "jre" subdirectory
  1818         size_t len = strlen(buf);
  1819         char* jrebin_p = buf + len;
  1820         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1821         if (0 != _access(buf, 0)) {
  1822           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1824         len = strlen(buf);
  1825         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1829   if(buf[0] == '\0') {
  1830   GetModuleFileName(vm_lib_handle, buf, buflen);
  1832   strcpy(saved_jvm_path, buf);
  1836 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1837 #ifndef _WIN64
  1838   st->print("_");
  1839 #endif
  1843 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1844 #ifndef _WIN64
  1845   st->print("@%d", args_size  * sizeof(int));
  1846 #endif
  1849 // This method is a copy of JDK's sysGetLastErrorString
  1850 // from src/windows/hpi/src/system_md.c
  1852 size_t os::lasterror(char* buf, size_t len) {
  1853   DWORD errval;
  1855   if ((errval = GetLastError()) != 0) {
  1856     // DOS error
  1857     size_t n = (size_t)FormatMessage(
  1858           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1859           NULL,
  1860           errval,
  1861           0,
  1862           buf,
  1863           (DWORD)len,
  1864           NULL);
  1865     if (n > 3) {
  1866       // Drop final '.', CR, LF
  1867       if (buf[n - 1] == '\n') n--;
  1868       if (buf[n - 1] == '\r') n--;
  1869       if (buf[n - 1] == '.') n--;
  1870       buf[n] = '\0';
  1872     return n;
  1875   if (errno != 0) {
  1876     // C runtime error that has no corresponding DOS error code
  1877     const char* s = strerror(errno);
  1878     size_t n = strlen(s);
  1879     if (n >= len) n = len - 1;
  1880     strncpy(buf, s, n);
  1881     buf[n] = '\0';
  1882     return n;
  1885   return 0;
  1888 int os::get_last_error() {
  1889   DWORD error = GetLastError();
  1890   if (error == 0)
  1891     error = errno;
  1892   return (int)error;
  1895 // sun.misc.Signal
  1896 // NOTE that this is a workaround for an apparent kernel bug where if
  1897 // a signal handler for SIGBREAK is installed then that signal handler
  1898 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1899 // See bug 4416763.
  1900 static void (*sigbreakHandler)(int) = NULL;
  1902 static void UserHandler(int sig, void *siginfo, void *context) {
  1903   os::signal_notify(sig);
  1904   // We need to reinstate the signal handler each time...
  1905   os::signal(sig, (void*)UserHandler);
  1908 void* os::user_handler() {
  1909   return (void*) UserHandler;
  1912 void* os::signal(int signal_number, void* handler) {
  1913   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1914     void (*oldHandler)(int) = sigbreakHandler;
  1915     sigbreakHandler = (void (*)(int)) handler;
  1916     return (void*) oldHandler;
  1917   } else {
  1918     return (void*)::signal(signal_number, (void (*)(int))handler);
  1922 void os::signal_raise(int signal_number) {
  1923   raise(signal_number);
  1926 // The Win32 C runtime library maps all console control events other than ^C
  1927 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1928 // logoff, and shutdown events.  We therefore install our own console handler
  1929 // that raises SIGTERM for the latter cases.
  1930 //
  1931 static BOOL WINAPI consoleHandler(DWORD event) {
  1932   switch(event) {
  1933     case CTRL_C_EVENT:
  1934       if (is_error_reported()) {
  1935         // Ctrl-C is pressed during error reporting, likely because the error
  1936         // handler fails to abort. Let VM die immediately.
  1937         os::die();
  1940       os::signal_raise(SIGINT);
  1941       return TRUE;
  1942       break;
  1943     case CTRL_BREAK_EVENT:
  1944       if (sigbreakHandler != NULL) {
  1945         (*sigbreakHandler)(SIGBREAK);
  1947       return TRUE;
  1948       break;
  1949     case CTRL_LOGOFF_EVENT: {
  1950       // Don't terminate JVM if it is running in a non-interactive session,
  1951       // such as a service process.
  1952       USEROBJECTFLAGS flags;
  1953       HANDLE handle = GetProcessWindowStation();
  1954       if (handle != NULL &&
  1955           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
  1956             sizeof( USEROBJECTFLAGS), NULL)) {
  1957         // If it is a non-interactive session, let next handler to deal
  1958         // with it.
  1959         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
  1960           return FALSE;
  1964     case CTRL_CLOSE_EVENT:
  1965     case CTRL_SHUTDOWN_EVENT:
  1966       os::signal_raise(SIGTERM);
  1967       return TRUE;
  1968       break;
  1969     default:
  1970       break;
  1972   return FALSE;
  1975 /*
  1976  * The following code is moved from os.cpp for making this
  1977  * code platform specific, which it is by its very nature.
  1978  */
  1980 // Return maximum OS signal used + 1 for internal use only
  1981 // Used as exit signal for signal_thread
  1982 int os::sigexitnum_pd(){
  1983   return NSIG;
  1986 // a counter for each possible signal value, including signal_thread exit signal
  1987 static volatile jint pending_signals[NSIG+1] = { 0 };
  1988 static HANDLE sig_sem = NULL;
  1990 void os::signal_init_pd() {
  1991   // Initialize signal structures
  1992   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1994   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1996   // Programs embedding the VM do not want it to attempt to receive
  1997   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1998   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1999   // the VM is run as part of a Windows NT service (i.e., a servlet
  2000   // engine in a web server), the correct behavior is for any console
  2001   // control handler to return FALSE, not TRUE, because the OS's
  2002   // "final" handler for such events allows the process to continue if
  2003   // it is a service (while terminating it if it is not a service).
  2004   // To make this behavior uniform and the mechanism simpler, we
  2005   // completely disable the VM's usage of these console events if -Xrs
  2006   // (=ReduceSignalUsage) is specified.  This means, for example, that
  2007   // the CTRL-BREAK thread dump mechanism is also disabled in this
  2008   // case.  See bugs 4323062, 4345157, and related bugs.
  2010   if (!ReduceSignalUsage) {
  2011     // Add a CTRL-C handler
  2012     SetConsoleCtrlHandler(consoleHandler, TRUE);
  2016 void os::signal_notify(int signal_number) {
  2017   BOOL ret;
  2018   if (sig_sem != NULL) {
  2019     Atomic::inc(&pending_signals[signal_number]);
  2020     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2021     assert(ret != 0, "ReleaseSemaphore() failed");
  2025 static int check_pending_signals(bool wait_for_signal) {
  2026   DWORD ret;
  2027   while (true) {
  2028     for (int i = 0; i < NSIG + 1; i++) {
  2029       jint n = pending_signals[i];
  2030       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2031         return i;
  2034     if (!wait_for_signal) {
  2035       return -1;
  2038     JavaThread *thread = JavaThread::current();
  2040     ThreadBlockInVM tbivm(thread);
  2042     bool threadIsSuspended;
  2043     do {
  2044       thread->set_suspend_equivalent();
  2045       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2046       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  2047       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  2049       // were we externally suspended while we were waiting?
  2050       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2051       if (threadIsSuspended) {
  2052         //
  2053         // The semaphore has been incremented, but while we were waiting
  2054         // another thread suspended us. We don't want to continue running
  2055         // while suspended because that would surprise the thread that
  2056         // suspended us.
  2057         //
  2058         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2059         assert(ret != 0, "ReleaseSemaphore() failed");
  2061         thread->java_suspend_self();
  2063     } while (threadIsSuspended);
  2067 int os::signal_lookup() {
  2068   return check_pending_signals(false);
  2071 int os::signal_wait() {
  2072   return check_pending_signals(true);
  2075 // Implicit OS exception handling
  2077 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  2078   JavaThread* thread = JavaThread::current();
  2079   // Save pc in thread
  2080 #ifdef _M_IA64
  2081   // Do not blow up if no thread info available.
  2082   if (thread) {
  2083     // Saving PRECISE pc (with slot information) in thread.
  2084     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2085     // Convert precise PC into "Unix" format
  2086     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
  2087     thread->set_saved_exception_pc((address)precise_pc);
  2089   // Set pc to handler
  2090   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  2091   // Clear out psr.ri (= Restart Instruction) in order to continue
  2092   // at the beginning of the target bundle.
  2093   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
  2094   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
  2095 #elif _M_AMD64
  2096   // Do not blow up if no thread info available.
  2097   if (thread) {
  2098     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
  2100   // Set pc to handler
  2101   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  2102 #else
  2103   // Do not blow up if no thread info available.
  2104   if (thread) {
  2105     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
  2107   // Set pc to handler
  2108   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
  2109 #endif
  2111   // Continue the execution
  2112   return EXCEPTION_CONTINUE_EXECUTION;
  2116 // Used for PostMortemDump
  2117 extern "C" void safepoints();
  2118 extern "C" void find(int x);
  2119 extern "C" void events();
  2121 // According to Windows API documentation, an illegal instruction sequence should generate
  2122 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2123 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2124 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2126 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2128 // From "Execution Protection in the Windows Operating System" draft 0.35
  2129 // Once a system header becomes available, the "real" define should be
  2130 // included or copied here.
  2131 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2133 // Handle NAT Bit consumption on IA64.
  2134 #ifdef _M_IA64
  2135 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
  2136 #endif
  2138 // Windows Vista/2008 heap corruption check
  2139 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
  2141 #define def_excpt(val) #val, val
  2143 struct siglabel {
  2144   char *name;
  2145   int   number;
  2146 };
  2148 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2149 // C++ compiler contain this error code. Because this is a compiler-generated
  2150 // error, the code is not listed in the Win32 API header files.
  2151 // The code is actually a cryptic mnemonic device, with the initial "E"
  2152 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2153 // ASCII values of "msc".
  2155 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2158 struct siglabel exceptlabels[] = {
  2159     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2160     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2161     def_excpt(EXCEPTION_BREAKPOINT),
  2162     def_excpt(EXCEPTION_SINGLE_STEP),
  2163     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2164     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2165     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2166     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2167     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2168     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2169     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2170     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2171     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2172     def_excpt(EXCEPTION_INT_OVERFLOW),
  2173     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2174     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2175     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2176     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2177     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2178     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2179     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2180     def_excpt(EXCEPTION_GUARD_PAGE),
  2181     def_excpt(EXCEPTION_INVALID_HANDLE),
  2182     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2183     def_excpt(EXCEPTION_HEAP_CORRUPTION),
  2184 #ifdef _M_IA64
  2185     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
  2186 #endif
  2187     NULL, 0
  2188 };
  2190 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2191   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  2192     if (exceptlabels[i].number == exception_code) {
  2193        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2194        return buf;
  2198   return NULL;
  2201 //-----------------------------------------------------------------------------
  2202 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2203   // handle exception caused by idiv; should only happen for -MinInt/-1
  2204   // (division by zero is handled explicitly)
  2205 #ifdef _M_IA64
  2206   assert(0, "Fix Handle_IDiv_Exception");
  2207 #elif _M_AMD64
  2208   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2209   address pc = (address)ctx->Rip;
  2210   assert(pc[0] == 0xF7, "not an idiv opcode");
  2211   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2212   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2213   // set correct result values and continue after idiv instruction
  2214   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2215   ctx->Rax = (DWORD)min_jint;      // result
  2216   ctx->Rdx = (DWORD)0;             // remainder
  2217   // Continue the execution
  2218 #else
  2219   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2220   address pc = (address)ctx->Eip;
  2221   assert(pc[0] == 0xF7, "not an idiv opcode");
  2222   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2223   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2224   // set correct result values and continue after idiv instruction
  2225   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2226   ctx->Eax = (DWORD)min_jint;      // result
  2227   ctx->Edx = (DWORD)0;             // remainder
  2228   // Continue the execution
  2229 #endif
  2230   return EXCEPTION_CONTINUE_EXECUTION;
  2233 #ifndef  _WIN64
  2234 //-----------------------------------------------------------------------------
  2235 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2236   // handle exception caused by native method modifying control word
  2237   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2238   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2240   switch (exception_code) {
  2241     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2242     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2243     case EXCEPTION_FLT_INEXACT_RESULT:
  2244     case EXCEPTION_FLT_INVALID_OPERATION:
  2245     case EXCEPTION_FLT_OVERFLOW:
  2246     case EXCEPTION_FLT_STACK_CHECK:
  2247     case EXCEPTION_FLT_UNDERFLOW:
  2248       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2249       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2250         // Restore FPCW and mask out FLT exceptions
  2251         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2252         // Mask out pending FLT exceptions
  2253         ctx->FloatSave.StatusWord &=  0xffffff00;
  2254         return EXCEPTION_CONTINUE_EXECUTION;
  2258   if (prev_uef_handler != NULL) {
  2259     // We didn't handle this exception so pass it to the previous
  2260     // UnhandledExceptionFilter.
  2261     return (prev_uef_handler)(exceptionInfo);
  2264   return EXCEPTION_CONTINUE_SEARCH;
  2266 #else //_WIN64
  2267 /*
  2268   On Windows, the mxcsr control bits are non-volatile across calls
  2269   See also CR 6192333
  2270   If EXCEPTION_FLT_* happened after some native method modified
  2271   mxcsr - it is not a jvm fault.
  2272   However should we decide to restore of mxcsr after a faulty
  2273   native method we can uncomment following code
  2274       jint MxCsr = INITIAL_MXCSR;
  2275         // we can't use StubRoutines::addr_mxcsr_std()
  2276         // because in Win64 mxcsr is not saved there
  2277       if (MxCsr != ctx->MxCsr) {
  2278         ctx->MxCsr = MxCsr;
  2279         return EXCEPTION_CONTINUE_EXECUTION;
  2282 */
  2283 #endif //_WIN64
  2286 // Fatal error reporting is single threaded so we can make this a
  2287 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2288 // it.
  2289 static char saved_error_file[MAX_PATH] = {0};
  2291 void os::set_error_file(const char *logfile) {
  2292   if (strlen(logfile) <= MAX_PATH) {
  2293     strncpy(saved_error_file, logfile, MAX_PATH);
  2297 static inline void report_error(Thread* t, DWORD exception_code,
  2298                                 address addr, void* siginfo, void* context) {
  2299   VMError err(t, exception_code, addr, siginfo, context);
  2300   err.report_and_die();
  2302   // If UseOsErrorReporting, this will return here and save the error file
  2303   // somewhere where we can find it in the minidump.
  2306 //-----------------------------------------------------------------------------
  2307 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2308   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2309   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2310 #ifdef _M_IA64
  2311   // On Itanium, we need the "precise pc", which has the slot number coded
  2312   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
  2313   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2314   // Convert the pc to "Unix format", which has the slot number coded
  2315   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
  2316   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
  2317   // information is saved in the Unix format.
  2318   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
  2319 #elif _M_AMD64
  2320   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2321 #else
  2322   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2323 #endif
  2324   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2326 #ifndef _WIN64
  2327   // Execution protection violation - win32 running on AMD64 only
  2328   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2329   // This is safe to do because we have a new/unique ExceptionInformation
  2330   // code for this condition.
  2331   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2332     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2333     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2334     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2336     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2337       int page_size = os::vm_page_size();
  2339       // Make sure the pc and the faulting address are sane.
  2340       //
  2341       // If an instruction spans a page boundary, and the page containing
  2342       // the beginning of the instruction is executable but the following
  2343       // page is not, the pc and the faulting address might be slightly
  2344       // different - we still want to unguard the 2nd page in this case.
  2345       //
  2346       // 15 bytes seems to be a (very) safe value for max instruction size.
  2347       bool pc_is_near_addr =
  2348         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2349       bool instr_spans_page_boundary =
  2350         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2351                          (intptr_t) page_size) > 0);
  2353       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2354         static volatile address last_addr =
  2355           (address) os::non_memory_address_word();
  2357         // In conservative mode, don't unguard unless the address is in the VM
  2358         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2359             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2361           // Set memory to RWX and retry
  2362           address page_start =
  2363             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2364           bool res = os::protect_memory((char*) page_start, page_size,
  2365                                         os::MEM_PROT_RWX);
  2367           if (PrintMiscellaneous && Verbose) {
  2368             char buf[256];
  2369             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2370                          "at " INTPTR_FORMAT
  2371                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2372                          page_start, (res ? "success" : strerror(errno)));
  2373             tty->print_raw_cr(buf);
  2376           // Set last_addr so if we fault again at the same address, we don't
  2377           // end up in an endless loop.
  2378           //
  2379           // There are two potential complications here.  Two threads trapping
  2380           // at the same address at the same time could cause one of the
  2381           // threads to think it already unguarded, and abort the VM.  Likely
  2382           // very rare.
  2383           //
  2384           // The other race involves two threads alternately trapping at
  2385           // different addresses and failing to unguard the page, resulting in
  2386           // an endless loop.  This condition is probably even more unlikely
  2387           // than the first.
  2388           //
  2389           // Although both cases could be avoided by using locks or thread
  2390           // local last_addr, these solutions are unnecessary complication:
  2391           // this handler is a best-effort safety net, not a complete solution.
  2392           // It is disabled by default and should only be used as a workaround
  2393           // in case we missed any no-execute-unsafe VM code.
  2395           last_addr = addr;
  2397           return EXCEPTION_CONTINUE_EXECUTION;
  2401       // Last unguard failed or not unguarding
  2402       tty->print_raw_cr("Execution protection violation");
  2403       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2404                    exceptionInfo->ContextRecord);
  2405       return EXCEPTION_CONTINUE_SEARCH;
  2408 #endif // _WIN64
  2410   // Check to see if we caught the safepoint code in the
  2411   // process of write protecting the memory serialization page.
  2412   // It write enables the page immediately after protecting it
  2413   // so just return.
  2414   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2415     JavaThread* thread = (JavaThread*) t;
  2416     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2417     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2418     if ( os::is_memory_serialize_page(thread, addr) ) {
  2419       // Block current thread until the memory serialize page permission restored.
  2420       os::block_on_serialize_page_trap();
  2421       return EXCEPTION_CONTINUE_EXECUTION;
  2425   if (t != NULL && t->is_Java_thread()) {
  2426     JavaThread* thread = (JavaThread*) t;
  2427     bool in_java = thread->thread_state() == _thread_in_Java;
  2429     // Handle potential stack overflows up front.
  2430     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2431       if (os::uses_stack_guard_pages()) {
  2432 #ifdef _M_IA64
  2433         // Use guard page for register stack.
  2434         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2435         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2436         // Check for a register stack overflow on Itanium
  2437         if (thread->addr_inside_register_stack_red_zone(addr)) {
  2438           // Fatal red zone violation happens if the Java program
  2439           // catches a StackOverflow error and does so much processing
  2440           // that it runs beyond the unprotected yellow guard zone. As
  2441           // a result, we are out of here.
  2442           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
  2443         } else if(thread->addr_inside_register_stack(addr)) {
  2444           // Disable the yellow zone which sets the state that
  2445           // we've got a stack overflow problem.
  2446           if (thread->stack_yellow_zone_enabled()) {
  2447             thread->disable_stack_yellow_zone();
  2449           // Give us some room to process the exception.
  2450           thread->disable_register_stack_guard();
  2451           // Tracing with +Verbose.
  2452           if (Verbose) {
  2453             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
  2454             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
  2455             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
  2456             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
  2457                           thread->register_stack_base(),
  2458                           thread->register_stack_base() + thread->stack_size());
  2461           // Reguard the permanent register stack red zone just to be sure.
  2462           // We saw Windows silently disabling this without telling us.
  2463           thread->enable_register_stack_red_zone();
  2465           return Handle_Exception(exceptionInfo,
  2466             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2468 #endif
  2469         if (thread->stack_yellow_zone_enabled()) {
  2470           // Yellow zone violation.  The o/s has unprotected the first yellow
  2471           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2472           // update the enabled status, even if the zone contains only one page.
  2473           thread->disable_stack_yellow_zone();
  2474           // If not in java code, return and hope for the best.
  2475           return in_java ? Handle_Exception(exceptionInfo,
  2476             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2477             :  EXCEPTION_CONTINUE_EXECUTION;
  2478         } else {
  2479           // Fatal red zone violation.
  2480           thread->disable_stack_red_zone();
  2481           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2482           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2483                        exceptionInfo->ContextRecord);
  2484           return EXCEPTION_CONTINUE_SEARCH;
  2486       } else if (in_java) {
  2487         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2488         // a one-time-only guard page, which it has released to us.  The next
  2489         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2490         return Handle_Exception(exceptionInfo,
  2491           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2492       } else {
  2493         // Can only return and hope for the best.  Further stack growth will
  2494         // result in an ACCESS_VIOLATION.
  2495         return EXCEPTION_CONTINUE_EXECUTION;
  2497     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2498       // Either stack overflow or null pointer exception.
  2499       if (in_java) {
  2500         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2501         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2502         address stack_end = thread->stack_base() - thread->stack_size();
  2503         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2504           // Stack overflow.
  2505           assert(!os::uses_stack_guard_pages(),
  2506             "should be caught by red zone code above.");
  2507           return Handle_Exception(exceptionInfo,
  2508             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2510         //
  2511         // Check for safepoint polling and implicit null
  2512         // We only expect null pointers in the stubs (vtable)
  2513         // the rest are checked explicitly now.
  2514         //
  2515         CodeBlob* cb = CodeCache::find_blob(pc);
  2516         if (cb != NULL) {
  2517           if (os::is_poll_address(addr)) {
  2518             address stub = SharedRuntime::get_poll_stub(pc);
  2519             return Handle_Exception(exceptionInfo, stub);
  2523 #ifdef _WIN64
  2524           //
  2525           // If it's a legal stack address map the entire region in
  2526           //
  2527           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2528           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2529           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2530                   addr = (address)((uintptr_t)addr &
  2531                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2532                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2533                                     !ExecMem);
  2534                   return EXCEPTION_CONTINUE_EXECUTION;
  2536           else
  2537 #endif
  2539             // Null pointer exception.
  2540 #ifdef _M_IA64
  2541             // Process implicit null checks in compiled code. Note: Implicit null checks
  2542             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
  2543             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
  2544               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
  2545               // Handle implicit null check in UEP method entry
  2546               if (cb && (cb->is_frame_complete_at(pc) ||
  2547                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
  2548                 if (Verbose) {
  2549                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
  2550                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
  2551                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
  2552                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
  2553                                 *(bundle_start + 1), *bundle_start);
  2555                 return Handle_Exception(exceptionInfo,
  2556                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
  2560             // Implicit null checks were processed above.  Hence, we should not reach
  2561             // here in the usual case => die!
  2562             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
  2563             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2564                          exceptionInfo->ContextRecord);
  2565             return EXCEPTION_CONTINUE_SEARCH;
  2567 #else // !IA64
  2569             // Windows 98 reports faulting addresses incorrectly
  2570             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2571                 !os::win32::is_nt()) {
  2572               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2573               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2575             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2576                          exceptionInfo->ContextRecord);
  2577             return EXCEPTION_CONTINUE_SEARCH;
  2578 #endif
  2583 #ifdef _WIN64
  2584       // Special care for fast JNI field accessors.
  2585       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2586       // in and the heap gets shrunk before the field access.
  2587       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2588         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2589         if (addr != (address)-1) {
  2590           return Handle_Exception(exceptionInfo, addr);
  2593 #endif
  2595       // Stack overflow or null pointer exception in native code.
  2596       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2597                    exceptionInfo->ContextRecord);
  2598       return EXCEPTION_CONTINUE_SEARCH;
  2599     } // /EXCEPTION_ACCESS_VIOLATION
  2600     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2601 #if defined _M_IA64
  2602     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
  2603               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
  2604       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
  2606       // Compiled method patched to be non entrant? Following conditions must apply:
  2607       // 1. must be first instruction in bundle
  2608       // 2. must be a break instruction with appropriate code
  2609       if((((uint64_t) pc & 0x0F) == 0) &&
  2610          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
  2611         return Handle_Exception(exceptionInfo,
  2612                                 (address)SharedRuntime::get_handle_wrong_method_stub());
  2614     } // /EXCEPTION_ILLEGAL_INSTRUCTION
  2615 #endif
  2618     if (in_java) {
  2619       switch (exception_code) {
  2620       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2621         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2623       case EXCEPTION_INT_OVERFLOW:
  2624         return Handle_IDiv_Exception(exceptionInfo);
  2626       } // switch
  2628 #ifndef _WIN64
  2629     if (((thread->thread_state() == _thread_in_Java) ||
  2630         (thread->thread_state() == _thread_in_native)) &&
  2631         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2633       LONG result=Handle_FLT_Exception(exceptionInfo);
  2634       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2636 #endif //_WIN64
  2639   if (exception_code != EXCEPTION_BREAKPOINT) {
  2640     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2641                  exceptionInfo->ContextRecord);
  2643   return EXCEPTION_CONTINUE_SEARCH;
  2646 #ifndef _WIN64
  2647 // Special care for fast JNI accessors.
  2648 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2649 // the heap gets shrunk before the field access.
  2650 // Need to install our own structured exception handler since native code may
  2651 // install its own.
  2652 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2653   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2654   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2655     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2656     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2657     if (addr != (address)-1) {
  2658       return Handle_Exception(exceptionInfo, addr);
  2661   return EXCEPTION_CONTINUE_SEARCH;
  2664 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2665 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2666   __try { \
  2667     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2668   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2669   } \
  2670   return 0; \
  2673 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2674 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2675 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2676 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2677 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2678 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2679 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2680 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2682 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2683   switch (type) {
  2684     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2685     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2686     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2687     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2688     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2689     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2690     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2691     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2692     default:        ShouldNotReachHere();
  2694   return (address)-1;
  2696 #endif
  2698 #ifndef PRODUCT
  2699 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
  2700   // Install a win32 structured exception handler around the test
  2701   // function call so the VM can generate an error dump if needed.
  2702   __try {
  2703     (*funcPtr)();
  2704   } __except(topLevelExceptionFilter(
  2705              (_EXCEPTION_POINTERS*)_exception_info())) {
  2706     // Nothing to do.
  2709 #endif
  2711 // Virtual Memory
  2713 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2714 int os::vm_allocation_granularity() {
  2715   return os::win32::vm_allocation_granularity();
  2718 // Windows large page support is available on Windows 2003. In order to use
  2719 // large page memory, the administrator must first assign additional privilege
  2720 // to the user:
  2721 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2722 //   + select Local Policies -> User Rights Assignment
  2723 //   + double click "Lock pages in memory", add users and/or groups
  2724 //   + reboot
  2725 // Note the above steps are needed for administrator as well, as administrators
  2726 // by default do not have the privilege to lock pages in memory.
  2727 //
  2728 // Note about Windows 2003: although the API supports committing large page
  2729 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2730 // scenario, I found through experiment it only uses large page if the entire
  2731 // memory region is reserved and committed in a single VirtualAlloc() call.
  2732 // This makes Windows large page support more or less like Solaris ISM, in
  2733 // that the entire heap must be committed upfront. This probably will change
  2734 // in the future, if so the code below needs to be revisited.
  2736 #ifndef MEM_LARGE_PAGES
  2737 #define MEM_LARGE_PAGES 0x20000000
  2738 #endif
  2740 static HANDLE    _hProcess;
  2741 static HANDLE    _hToken;
  2743 // Container for NUMA node list info
  2744 class NUMANodeListHolder {
  2745 private:
  2746   int *_numa_used_node_list;  // allocated below
  2747   int _numa_used_node_count;
  2749   void free_node_list() {
  2750     if (_numa_used_node_list != NULL) {
  2751       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
  2755 public:
  2756   NUMANodeListHolder() {
  2757     _numa_used_node_count = 0;
  2758     _numa_used_node_list = NULL;
  2759     // do rest of initialization in build routine (after function pointers are set up)
  2762   ~NUMANodeListHolder() {
  2763     free_node_list();
  2766   bool build() {
  2767     DWORD_PTR proc_aff_mask;
  2768     DWORD_PTR sys_aff_mask;
  2769     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2770     ULONG highest_node_number;
  2771     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2772     free_node_list();
  2773     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
  2774     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2775       ULONGLONG proc_mask_numa_node;
  2776       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2777       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2778         _numa_used_node_list[_numa_used_node_count++] = i;
  2781     return (_numa_used_node_count > 1);
  2784   int get_count() {return _numa_used_node_count;}
  2785   int get_node_list_entry(int n) {
  2786     // for indexes out of range, returns -1
  2787     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2790 } numa_node_list_holder;
  2794 static size_t _large_page_size = 0;
  2796 static bool resolve_functions_for_large_page_init() {
  2797   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2798     os::Advapi32Dll::AdvapiAvailable();
  2801 static bool request_lock_memory_privilege() {
  2802   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2803                                 os::current_process_id());
  2805   LUID luid;
  2806   if (_hProcess != NULL &&
  2807       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2808       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2810     TOKEN_PRIVILEGES tp;
  2811     tp.PrivilegeCount = 1;
  2812     tp.Privileges[0].Luid = luid;
  2813     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2815     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2816     // privilege. Check GetLastError() too. See MSDN document.
  2817     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2818         (GetLastError() == ERROR_SUCCESS)) {
  2819       return true;
  2823   return false;
  2826 static void cleanup_after_large_page_init() {
  2827   if (_hProcess) CloseHandle(_hProcess);
  2828   _hProcess = NULL;
  2829   if (_hToken) CloseHandle(_hToken);
  2830   _hToken = NULL;
  2833 static bool numa_interleaving_init() {
  2834   bool success = false;
  2835   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2837   // print a warning if UseNUMAInterleaving flag is specified on command line
  2838   bool warn_on_failure = use_numa_interleaving_specified;
  2839 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2841   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  2842   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2843   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  2845   if (os::Kernel32Dll::NumaCallsAvailable()) {
  2846     if (numa_node_list_holder.build()) {
  2847       if (PrintMiscellaneous && Verbose) {
  2848         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  2849         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  2850           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  2852         tty->print("\n");
  2854       success = true;
  2855     } else {
  2856       WARN("Process does not cover multiple NUMA nodes.");
  2858   } else {
  2859     WARN("NUMA Interleaving is not supported by the operating system.");
  2861   if (!success) {
  2862     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  2864   return success;
  2865 #undef WARN
  2868 // this routine is used whenever we need to reserve a contiguous VA range
  2869 // but we need to make separate VirtualAlloc calls for each piece of the range
  2870 // Reasons for doing this:
  2871 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  2872 //  * UseNUMAInterleaving requires a separate node for each piece
  2873 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  2874                                          bool should_inject_error=false) {
  2875   char * p_buf;
  2876   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  2877   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2878   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  2880   // first reserve enough address space in advance since we want to be
  2881   // able to break a single contiguous virtual address range into multiple
  2882   // large page commits but WS2003 does not allow reserving large page space
  2883   // so we just use 4K pages for reserve, this gives us a legal contiguous
  2884   // address space. then we will deallocate that reservation, and re alloc
  2885   // using large pages
  2886   const size_t size_of_reserve = bytes + chunk_size;
  2887   if (bytes > size_of_reserve) {
  2888     // Overflowed.
  2889     return NULL;
  2891   p_buf = (char *) VirtualAlloc(addr,
  2892                                 size_of_reserve,  // size of Reserve
  2893                                 MEM_RESERVE,
  2894                                 PAGE_READWRITE);
  2895   // If reservation failed, return NULL
  2896   if (p_buf == NULL) return NULL;
  2897   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, mtNone, CALLER_PC);
  2898   os::release_memory(p_buf, bytes + chunk_size);
  2900   // we still need to round up to a page boundary (in case we are using large pages)
  2901   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  2902   // instead we handle this in the bytes_to_rq computation below
  2903   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  2905   // now go through and allocate one chunk at a time until all bytes are
  2906   // allocated
  2907   size_t  bytes_remaining = bytes;
  2908   // An overflow of align_size_up() would have been caught above
  2909   // in the calculation of size_of_reserve.
  2910   char * next_alloc_addr = p_buf;
  2911   HANDLE hProc = GetCurrentProcess();
  2913 #ifdef ASSERT
  2914   // Variable for the failure injection
  2915   long ran_num = os::random();
  2916   size_t fail_after = ran_num % bytes;
  2917 #endif
  2919   int count=0;
  2920   while (bytes_remaining) {
  2921     // select bytes_to_rq to get to the next chunk_size boundary
  2923     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  2924     // Note allocate and commit
  2925     char * p_new;
  2927 #ifdef ASSERT
  2928     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  2929 #else
  2930     const bool inject_error_now = false;
  2931 #endif
  2933     if (inject_error_now) {
  2934       p_new = NULL;
  2935     } else {
  2936       if (!UseNUMAInterleaving) {
  2937         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2938                                       bytes_to_rq,
  2939                                       flags,
  2940                                       prot);
  2941       } else {
  2942         // get the next node to use from the used_node_list
  2943         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  2944         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  2945         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  2946                                                             next_alloc_addr,
  2947                                                             bytes_to_rq,
  2948                                                             flags,
  2949                                                             prot,
  2950                                                             node);
  2954     if (p_new == NULL) {
  2955       // Free any allocated pages
  2956       if (next_alloc_addr > p_buf) {
  2957         // Some memory was committed so release it.
  2958         size_t bytes_to_release = bytes - bytes_remaining;
  2959         // NMT has yet to record any individual blocks, so it
  2960         // need to create a dummy 'reserve' record to match
  2961         // the release.
  2962         MemTracker::record_virtual_memory_reserve((address)p_buf,
  2963           bytes_to_release, mtNone, CALLER_PC);
  2964         os::release_memory(p_buf, bytes_to_release);
  2966 #ifdef ASSERT
  2967       if (should_inject_error) {
  2968         if (TracePageSizes && Verbose) {
  2969           tty->print_cr("Reserving pages individually failed.");
  2972 #endif
  2973       return NULL;
  2976     bytes_remaining -= bytes_to_rq;
  2977     next_alloc_addr += bytes_to_rq;
  2978     count++;
  2980   // Although the memory is allocated individually, it is returned as one.
  2981   // NMT records it as one block.
  2982   address pc = CALLER_PC;
  2983   if ((flags & MEM_COMMIT) != 0) {
  2984     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, mtNone, pc);
  2985   } else {
  2986     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, mtNone, pc);
  2989   // made it this far, success
  2990   return p_buf;
  2995 void os::large_page_init() {
  2996   if (!UseLargePages) return;
  2998   // print a warning if any large page related flag is specified on command line
  2999   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  3000                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3001   bool success = false;
  3003 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  3004   if (resolve_functions_for_large_page_init()) {
  3005     if (request_lock_memory_privilege()) {
  3006       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  3007       if (s) {
  3008 #if defined(IA32) || defined(AMD64)
  3009         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  3010           WARN("JVM cannot use large pages bigger than 4mb.");
  3011         } else {
  3012 #endif
  3013           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  3014             _large_page_size = LargePageSizeInBytes;
  3015           } else {
  3016             _large_page_size = s;
  3018           success = true;
  3019 #if defined(IA32) || defined(AMD64)
  3021 #endif
  3022       } else {
  3023         WARN("Large page is not supported by the processor.");
  3025     } else {
  3026       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  3028   } else {
  3029     WARN("Large page is not supported by the operating system.");
  3031 #undef WARN
  3033   const size_t default_page_size = (size_t) vm_page_size();
  3034   if (success && _large_page_size > default_page_size) {
  3035     _page_sizes[0] = _large_page_size;
  3036     _page_sizes[1] = default_page_size;
  3037     _page_sizes[2] = 0;
  3040   cleanup_after_large_page_init();
  3041   UseLargePages = success;
  3044 // On win32, one cannot release just a part of reserved memory, it's an
  3045 // all or nothing deal.  When we split a reservation, we must break the
  3046 // reservation into two reservations.
  3047 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
  3048                               bool realloc) {
  3049   if (size > 0) {
  3050     release_memory(base, size);
  3051     if (realloc) {
  3052       reserve_memory(split, base);
  3054     if (size != split) {
  3055       reserve_memory(size - split, base + split);
  3060 // Multiple threads can race in this code but it's not possible to unmap small sections of
  3061 // virtual space to get requested alignment, like posix-like os's.
  3062 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
  3063 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  3064   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
  3065       "Alignment must be a multiple of allocation granularity (page size)");
  3066   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
  3068   size_t extra_size = size + alignment;
  3069   assert(extra_size >= size, "overflow, size is too large to allow alignment");
  3071   char* aligned_base = NULL;
  3073   do {
  3074     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
  3075     if (extra_base == NULL) {
  3076       return NULL;
  3078     // Do manual alignment
  3079     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
  3081     os::release_memory(extra_base, extra_size);
  3083     aligned_base = os::reserve_memory(size, aligned_base);
  3085   } while (aligned_base == NULL);
  3087   return aligned_base;
  3090 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  3091   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  3092          "reserve alignment");
  3093   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  3094   char* res;
  3095   // note that if UseLargePages is on, all the areas that require interleaving
  3096   // will go thru reserve_memory_special rather than thru here.
  3097   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  3098   if (!use_individual) {
  3099     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  3100   } else {
  3101     elapsedTimer reserveTimer;
  3102     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  3103     // in numa interleaving, we have to allocate pages individually
  3104     // (well really chunks of NUMAInterleaveGranularity size)
  3105     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  3106     if (res == NULL) {
  3107       warning("NUMA page allocation failed");
  3109     if( Verbose && PrintMiscellaneous ) {
  3110       reserveTimer.stop();
  3111       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
  3112                     reserveTimer.milliseconds(), reserveTimer.ticks());
  3115   assert(res == NULL || addr == NULL || addr == res,
  3116          "Unexpected address from reserve.");
  3118   return res;
  3121 // Reserve memory at an arbitrary address, only if that area is
  3122 // available (and not reserved for something else).
  3123 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3124   // Windows os::reserve_memory() fails of the requested address range is
  3125   // not avilable.
  3126   return reserve_memory(bytes, requested_addr);
  3129 size_t os::large_page_size() {
  3130   return _large_page_size;
  3133 bool os::can_commit_large_page_memory() {
  3134   // Windows only uses large page memory when the entire region is reserved
  3135   // and committed in a single VirtualAlloc() call. This may change in the
  3136   // future, but with Windows 2003 it's not possible to commit on demand.
  3137   return false;
  3140 bool os::can_execute_large_page_memory() {
  3141   return true;
  3144 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  3146   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  3147   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3149   // with large pages, there are two cases where we need to use Individual Allocation
  3150   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  3151   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  3152   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  3153     if (TracePageSizes && Verbose) {
  3154        tty->print_cr("Reserving large pages individually.");
  3156     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  3157     if (p_buf == NULL) {
  3158       // give an appropriate warning message
  3159       if (UseNUMAInterleaving) {
  3160         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  3162       if (UseLargePagesIndividualAllocation) {
  3163         warning("Individually allocated large pages failed, "
  3164                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3166       return NULL;
  3169     return p_buf;
  3171   } else {
  3172     // normal policy just allocate it all at once
  3173     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3174     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  3175     if (res != NULL) {
  3176       address pc = CALLER_PC;
  3177       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, mtNone, pc);
  3180     return res;
  3184 bool os::release_memory_special(char* base, size_t bytes) {
  3185   assert(base != NULL, "Sanity check");
  3186   return release_memory(base, bytes);
  3189 void os::print_statistics() {
  3192 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
  3193   int err = os::get_last_error();
  3194   char buf[256];
  3195   size_t buf_len = os::lasterror(buf, sizeof(buf));
  3196   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  3197           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
  3198           exec, buf_len != 0 ? buf : "<no_error_string>", err);
  3201 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  3202   if (bytes == 0) {
  3203     // Don't bother the OS with noops.
  3204     return true;
  3206   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3207   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3208   // Don't attempt to print anything if the OS call fails. We're
  3209   // probably low on resources, so the print itself may cause crashes.
  3211   // unless we have NUMAInterleaving enabled, the range of a commit
  3212   // is always within a reserve covered by a single VirtualAlloc
  3213   // in that case we can just do a single commit for the requested size
  3214   if (!UseNUMAInterleaving) {
  3215     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
  3216       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3217       return false;
  3219     if (exec) {
  3220       DWORD oldprot;
  3221       // Windows doc says to use VirtualProtect to get execute permissions
  3222       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
  3223         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3224         return false;
  3227     return true;
  3228   } else {
  3230     // when NUMAInterleaving is enabled, the commit might cover a range that
  3231     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3232     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3233     // returns represents the number of bytes that can be committed in one step.
  3234     size_t bytes_remaining = bytes;
  3235     char * next_alloc_addr = addr;
  3236     while (bytes_remaining > 0) {
  3237       MEMORY_BASIC_INFORMATION alloc_info;
  3238       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3239       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3240       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
  3241                        PAGE_READWRITE) == NULL) {
  3242         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3243                                             exec);)
  3244         return false;
  3246       if (exec) {
  3247         DWORD oldprot;
  3248         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
  3249                             PAGE_EXECUTE_READWRITE, &oldprot)) {
  3250           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3251                                               exec);)
  3252           return false;
  3255       bytes_remaining -= bytes_to_rq;
  3256       next_alloc_addr += bytes_to_rq;
  3259   // if we made it this far, return true
  3260   return true;
  3263 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  3264                        bool exec) {
  3265   // alignment_hint is ignored on this OS
  3266   return pd_commit_memory(addr, size, exec);
  3269 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  3270                                   const char* mesg) {
  3271   assert(mesg != NULL, "mesg must be specified");
  3272   if (!pd_commit_memory(addr, size, exec)) {
  3273     warn_fail_commit_memory(addr, size, exec);
  3274     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  3278 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  3279                                   size_t alignment_hint, bool exec,
  3280                                   const char* mesg) {
  3281   // alignment_hint is ignored on this OS
  3282   pd_commit_memory_or_exit(addr, size, exec, mesg);
  3285 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3286   if (bytes == 0) {
  3287     // Don't bother the OS with noops.
  3288     return true;
  3290   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3291   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3292   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
  3295 bool os::pd_release_memory(char* addr, size_t bytes) {
  3296   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3299 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3300   return os::commit_memory(addr, size, !ExecMem);
  3303 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3304   return os::uncommit_memory(addr, size);
  3307 // Set protections specified
  3308 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3309                         bool is_committed) {
  3310   unsigned int p = 0;
  3311   switch (prot) {
  3312   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3313   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3314   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3315   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3316   default:
  3317     ShouldNotReachHere();
  3320   DWORD old_status;
  3322   // Strange enough, but on Win32 one can change protection only for committed
  3323   // memory, not a big deal anyway, as bytes less or equal than 64K
  3324   if (!is_committed) {
  3325     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
  3326                           "cannot commit protection page");
  3328   // One cannot use os::guard_memory() here, as on Win32 guard page
  3329   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3330   //
  3331   // Pages in the region become guard pages. Any attempt to access a guard page
  3332   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3333   // the guard page status. Guard pages thus act as a one-time access alarm.
  3334   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3337 bool os::guard_memory(char* addr, size_t bytes) {
  3338   DWORD old_status;
  3339   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3342 bool os::unguard_memory(char* addr, size_t bytes) {
  3343   DWORD old_status;
  3344   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3347 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3348 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3349 void os::numa_make_global(char *addr, size_t bytes)    { }
  3350 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3351 bool os::numa_topology_changed()                       { return false; }
  3352 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3353 int os::numa_get_group_id()                            { return 0; }
  3354 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3355   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3356     // Provide an answer for UMA systems
  3357     ids[0] = 0;
  3358     return 1;
  3359   } else {
  3360     // check for size bigger than actual groups_num
  3361     size = MIN2(size, numa_get_groups_num());
  3362     for (int i = 0; i < (int)size; i++) {
  3363       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3365     return size;
  3369 bool os::get_page_info(char *start, page_info* info) {
  3370   return false;
  3373 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3374   return end;
  3377 char* os::non_memory_address_word() {
  3378   // Must never look like an address returned by reserve_memory,
  3379   // even in its subfields (as defined by the CPU immediate fields,
  3380   // if the CPU splits constants across multiple instructions).
  3381   return (char*)-1;
  3384 #define MAX_ERROR_COUNT 100
  3385 #define SYS_THREAD_ERROR 0xffffffffUL
  3387 void os::pd_start_thread(Thread* thread) {
  3388   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3389   // Returns previous suspend state:
  3390   // 0:  Thread was not suspended
  3391   // 1:  Thread is running now
  3392   // >1: Thread is still suspended.
  3393   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3396 class HighResolutionInterval : public CHeapObj<mtThread> {
  3397   // The default timer resolution seems to be 10 milliseconds.
  3398   // (Where is this written down?)
  3399   // If someone wants to sleep for only a fraction of the default,
  3400   // then we set the timer resolution down to 1 millisecond for
  3401   // the duration of their interval.
  3402   // We carefully set the resolution back, since otherwise we
  3403   // seem to incur an overhead (3%?) that we don't need.
  3404   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3405   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3406   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3407   // timeBeginPeriod() if the relative error exceeded some threshold.
  3408   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3409   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3410   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3411   // resolution timers running.
  3412 private:
  3413     jlong resolution;
  3414 public:
  3415   HighResolutionInterval(jlong ms) {
  3416     resolution = ms % 10L;
  3417     if (resolution != 0) {
  3418       MMRESULT result = timeBeginPeriod(1L);
  3421   ~HighResolutionInterval() {
  3422     if (resolution != 0) {
  3423       MMRESULT result = timeEndPeriod(1L);
  3425     resolution = 0L;
  3427 };
  3429 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3430   jlong limit = (jlong) MAXDWORD;
  3432   while(ms > limit) {
  3433     int res;
  3434     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3435       return res;
  3436     ms -= limit;
  3439   assert(thread == Thread::current(),  "thread consistency check");
  3440   OSThread* osthread = thread->osthread();
  3441   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3442   int result;
  3443   if (interruptable) {
  3444     assert(thread->is_Java_thread(), "must be java thread");
  3445     JavaThread *jt = (JavaThread *) thread;
  3446     ThreadBlockInVM tbivm(jt);
  3448     jt->set_suspend_equivalent();
  3449     // cleared by handle_special_suspend_equivalent_condition() or
  3450     // java_suspend_self() via check_and_wait_while_suspended()
  3452     HANDLE events[1];
  3453     events[0] = osthread->interrupt_event();
  3454     HighResolutionInterval *phri=NULL;
  3455     if(!ForceTimeHighResolution)
  3456       phri = new HighResolutionInterval( ms );
  3457     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3458       result = OS_TIMEOUT;
  3459     } else {
  3460       ResetEvent(osthread->interrupt_event());
  3461       osthread->set_interrupted(false);
  3462       result = OS_INTRPT;
  3464     delete phri; //if it is NULL, harmless
  3466     // were we externally suspended while we were waiting?
  3467     jt->check_and_wait_while_suspended();
  3468   } else {
  3469     assert(!thread->is_Java_thread(), "must not be java thread");
  3470     Sleep((long) ms);
  3471     result = OS_TIMEOUT;
  3473   return result;
  3476 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3477 void os::infinite_sleep() {
  3478   while (true) {    // sleep forever ...
  3479     Sleep(100000);  // ... 100 seconds at a time
  3483 typedef BOOL (WINAPI * STTSignature)(void) ;
  3485 os::YieldResult os::NakedYield() {
  3486   // Use either SwitchToThread() or Sleep(0)
  3487   // Consider passing back the return value from SwitchToThread().
  3488   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3489     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3490   } else {
  3491     Sleep(0);
  3493   return os::YIELD_UNKNOWN ;
  3496 void os::yield() {  os::NakedYield(); }
  3498 void os::yield_all(int attempts) {
  3499   // Yields to all threads, including threads with lower priorities
  3500   Sleep(1);
  3503 // Win32 only gives you access to seven real priorities at a time,
  3504 // so we compress Java's ten down to seven.  It would be better
  3505 // if we dynamically adjusted relative priorities.
  3507 int os::java_to_os_priority[CriticalPriority + 1] = {
  3508   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3509   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3510   THREAD_PRIORITY_LOWEST,                       // 2
  3511   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3512   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3513   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3514   THREAD_PRIORITY_NORMAL,                       // 6
  3515   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3516   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3517   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3518   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
  3519   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
  3520 };
  3522 int prio_policy1[CriticalPriority + 1] = {
  3523   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3524   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3525   THREAD_PRIORITY_LOWEST,                       // 2
  3526   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3527   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3528   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3529   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3530   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3531   THREAD_PRIORITY_HIGHEST,                      // 8
  3532   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3533   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
  3534   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
  3535 };
  3537 static int prio_init() {
  3538   // If ThreadPriorityPolicy is 1, switch tables
  3539   if (ThreadPriorityPolicy == 1) {
  3540     int i;
  3541     for (i = 0; i < CriticalPriority + 1; i++) {
  3542       os::java_to_os_priority[i] = prio_policy1[i];
  3545   if (UseCriticalJavaThreadPriority) {
  3546     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
  3548   return 0;
  3551 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3552   if (!UseThreadPriorities) return OS_OK;
  3553   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3554   return ret ? OS_OK : OS_ERR;
  3557 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3558   if ( !UseThreadPriorities ) {
  3559     *priority_ptr = java_to_os_priority[NormPriority];
  3560     return OS_OK;
  3562   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3563   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3564     assert(false, "GetThreadPriority failed");
  3565     return OS_ERR;
  3567   *priority_ptr = os_prio;
  3568   return OS_OK;
  3572 // Hint to the underlying OS that a task switch would not be good.
  3573 // Void return because it's a hint and can fail.
  3574 void os::hint_no_preempt() {}
  3576 void os::interrupt(Thread* thread) {
  3577   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3578          "possibility of dangling Thread pointer");
  3580   OSThread* osthread = thread->osthread();
  3581   osthread->set_interrupted(true);
  3582   // More than one thread can get here with the same value of osthread,
  3583   // resulting in multiple notifications.  We do, however, want the store
  3584   // to interrupted() to be visible to other threads before we post
  3585   // the interrupt event.
  3586   OrderAccess::release();
  3587   SetEvent(osthread->interrupt_event());
  3588   // For JSR166:  unpark after setting status
  3589   if (thread->is_Java_thread())
  3590     ((JavaThread*)thread)->parker()->unpark();
  3592   ParkEvent * ev = thread->_ParkEvent ;
  3593   if (ev != NULL) ev->unpark() ;
  3598 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3599   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3600          "possibility of dangling Thread pointer");
  3602   OSThread* osthread = thread->osthread();
  3603   bool interrupted = osthread->interrupted();
  3604   // There is no synchronization between the setting of the interrupt
  3605   // and it being cleared here. It is critical - see 6535709 - that
  3606   // we only clear the interrupt state, and reset the interrupt event,
  3607   // if we are going to report that we were indeed interrupted - else
  3608   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3609   // depending on the timing
  3610   if (interrupted && clear_interrupted) {
  3611     osthread->set_interrupted(false);
  3612     ResetEvent(osthread->interrupt_event());
  3613   } // Otherwise leave the interrupted state alone
  3615   return interrupted;
  3618 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3619 ExtendedPC os::get_thread_pc(Thread* thread) {
  3620   CONTEXT context;
  3621   context.ContextFlags = CONTEXT_CONTROL;
  3622   HANDLE handle = thread->osthread()->thread_handle();
  3623 #ifdef _M_IA64
  3624   assert(0, "Fix get_thread_pc");
  3625   return ExtendedPC(NULL);
  3626 #else
  3627   if (GetThreadContext(handle, &context)) {
  3628 #ifdef _M_AMD64
  3629     return ExtendedPC((address) context.Rip);
  3630 #else
  3631     return ExtendedPC((address) context.Eip);
  3632 #endif
  3633   } else {
  3634     return ExtendedPC(NULL);
  3636 #endif
  3639 // GetCurrentThreadId() returns DWORD
  3640 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3642 static int _initial_pid = 0;
  3644 int os::current_process_id()
  3646   return (_initial_pid ? _initial_pid : _getpid());
  3649 int    os::win32::_vm_page_size       = 0;
  3650 int    os::win32::_vm_allocation_granularity = 0;
  3651 int    os::win32::_processor_type     = 0;
  3652 // Processor level is not available on non-NT systems, use vm_version instead
  3653 int    os::win32::_processor_level    = 0;
  3654 julong os::win32::_physical_memory    = 0;
  3655 size_t os::win32::_default_stack_size = 0;
  3657          intx os::win32::_os_thread_limit    = 0;
  3658 volatile intx os::win32::_os_thread_count    = 0;
  3660 bool   os::win32::_is_nt              = false;
  3661 bool   os::win32::_is_windows_2003    = false;
  3662 bool   os::win32::_is_windows_server  = false;
  3664 void os::win32::initialize_system_info() {
  3665   SYSTEM_INFO si;
  3666   GetSystemInfo(&si);
  3667   _vm_page_size    = si.dwPageSize;
  3668   _vm_allocation_granularity = si.dwAllocationGranularity;
  3669   _processor_type  = si.dwProcessorType;
  3670   _processor_level = si.wProcessorLevel;
  3671   set_processor_count(si.dwNumberOfProcessors);
  3673   MEMORYSTATUSEX ms;
  3674   ms.dwLength = sizeof(ms);
  3676   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3677   // dwMemoryLoad (% of memory in use)
  3678   GlobalMemoryStatusEx(&ms);
  3679   _physical_memory = ms.ullTotalPhys;
  3681   OSVERSIONINFOEX oi;
  3682   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3683   GetVersionEx((OSVERSIONINFO*)&oi);
  3684   switch(oi.dwPlatformId) {
  3685     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3686     case VER_PLATFORM_WIN32_NT:
  3687       _is_nt = true;
  3689         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3690         if (os_vers == 5002) {
  3691           _is_windows_2003 = true;
  3693         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3694           oi.wProductType == VER_NT_SERVER) {
  3695             _is_windows_server = true;
  3698       break;
  3699     default: fatal("Unknown platform");
  3702   _default_stack_size = os::current_stack_size();
  3703   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3704   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3705     "stack size not a multiple of page size");
  3707   initialize_performance_counter();
  3709   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3710   // known to deadlock the system, if the VM issues to thread operations with
  3711   // a too high frequency, e.g., such as changing the priorities.
  3712   // The 6000 seems to work well - no deadlocks has been notices on the test
  3713   // programs that we have seen experience this problem.
  3714   if (!os::win32::is_nt()) {
  3715     StarvationMonitorInterval = 6000;
  3720 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3721   char path[MAX_PATH];
  3722   DWORD size;
  3723   DWORD pathLen = (DWORD)sizeof(path);
  3724   HINSTANCE result = NULL;
  3726   // only allow library name without path component
  3727   assert(strchr(name, '\\') == NULL, "path not allowed");
  3728   assert(strchr(name, ':') == NULL, "path not allowed");
  3729   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3730     jio_snprintf(ebuf, ebuflen,
  3731       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3732     return NULL;
  3735   // search system directory
  3736   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3737     strcat(path, "\\");
  3738     strcat(path, name);
  3739     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3740       return result;
  3744   // try Windows directory
  3745   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3746     strcat(path, "\\");
  3747     strcat(path, name);
  3748     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3749       return result;
  3753   jio_snprintf(ebuf, ebuflen,
  3754     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3755   return NULL;
  3758 void os::win32::setmode_streams() {
  3759   _setmode(_fileno(stdin), _O_BINARY);
  3760   _setmode(_fileno(stdout), _O_BINARY);
  3761   _setmode(_fileno(stderr), _O_BINARY);
  3765 bool os::is_debugger_attached() {
  3766   return IsDebuggerPresent() ? true : false;
  3770 void os::wait_for_keypress_at_exit(void) {
  3771   if (PauseAtExit) {
  3772     fprintf(stderr, "Press any key to continue...\n");
  3773     fgetc(stdin);
  3778 int os::message_box(const char* title, const char* message) {
  3779   int result = MessageBox(NULL, message, title,
  3780                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3781   return result == IDYES;
  3784 int os::allocate_thread_local_storage() {
  3785   return TlsAlloc();
  3789 void os::free_thread_local_storage(int index) {
  3790   TlsFree(index);
  3794 void os::thread_local_storage_at_put(int index, void* value) {
  3795   TlsSetValue(index, value);
  3796   assert(thread_local_storage_at(index) == value, "Just checking");
  3800 void* os::thread_local_storage_at(int index) {
  3801   return TlsGetValue(index);
  3805 #ifndef PRODUCT
  3806 #ifndef _WIN64
  3807 // Helpers to check whether NX protection is enabled
  3808 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3809   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3810       pex->ExceptionRecord->NumberParameters > 0 &&
  3811       pex->ExceptionRecord->ExceptionInformation[0] ==
  3812       EXCEPTION_INFO_EXEC_VIOLATION) {
  3813     return EXCEPTION_EXECUTE_HANDLER;
  3815   return EXCEPTION_CONTINUE_SEARCH;
  3818 void nx_check_protection() {
  3819   // If NX is enabled we'll get an exception calling into code on the stack
  3820   char code[] = { (char)0xC3 }; // ret
  3821   void *code_ptr = (void *)code;
  3822   __try {
  3823     __asm call code_ptr
  3824   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3825     tty->print_raw_cr("NX protection detected.");
  3828 #endif // _WIN64
  3829 #endif // PRODUCT
  3831 // this is called _before_ the global arguments have been parsed
  3832 void os::init(void) {
  3833   _initial_pid = _getpid();
  3835   init_random(1234567);
  3837   win32::initialize_system_info();
  3838   win32::setmode_streams();
  3839   init_page_sizes((size_t) win32::vm_page_size());
  3841   // For better scalability on MP systems (must be called after initialize_system_info)
  3842 #ifndef PRODUCT
  3843   if (is_MP()) {
  3844     NoYieldsInMicrolock = true;
  3846 #endif
  3847   // This may be overridden later when argument processing is done.
  3848   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3849     os::win32::is_windows_2003());
  3851   // Initialize main_process and main_thread
  3852   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3853  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3854                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3855     fatal("DuplicateHandle failed\n");
  3857   main_thread_id = (int) GetCurrentThreadId();
  3860 // To install functions for atexit processing
  3861 extern "C" {
  3862   static void perfMemory_exit_helper() {
  3863     perfMemory_exit();
  3867 static jint initSock();
  3869 // this is called _after_ the global arguments have been parsed
  3870 jint os::init_2(void) {
  3871   // Allocate a single page and mark it as readable for safepoint polling
  3872   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3873   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3875   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3876   guarantee( return_page != NULL, "Commit Failed for polling page");
  3878   os::set_polling_page( polling_page );
  3880 #ifndef PRODUCT
  3881   if( Verbose && PrintMiscellaneous )
  3882     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3883 #endif
  3885   if (!UseMembar) {
  3886     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3887     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3889     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3890     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3892     os::set_memory_serialize_page( mem_serialize_page );
  3894 #ifndef PRODUCT
  3895     if(Verbose && PrintMiscellaneous)
  3896       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3897 #endif
  3900   os::large_page_init();
  3902   // Setup Windows Exceptions
  3904   // for debugging float code generation bugs
  3905   if (ForceFloatExceptions) {
  3906 #ifndef  _WIN64
  3907     static long fp_control_word = 0;
  3908     __asm { fstcw fp_control_word }
  3909     // see Intel PPro Manual, Vol. 2, p 7-16
  3910     const long precision = 0x20;
  3911     const long underflow = 0x10;
  3912     const long overflow  = 0x08;
  3913     const long zero_div  = 0x04;
  3914     const long denorm    = 0x02;
  3915     const long invalid   = 0x01;
  3916     fp_control_word |= invalid;
  3917     __asm { fldcw fp_control_word }
  3918 #endif
  3921   // If stack_commit_size is 0, windows will reserve the default size,
  3922   // but only commit a small portion of it.
  3923   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3924   size_t default_reserve_size = os::win32::default_stack_size();
  3925   size_t actual_reserve_size = stack_commit_size;
  3926   if (stack_commit_size < default_reserve_size) {
  3927     // If stack_commit_size == 0, we want this too
  3928     actual_reserve_size = default_reserve_size;
  3931   // Check minimum allowable stack size for thread creation and to initialize
  3932   // the java system classes, including StackOverflowError - depends on page
  3933   // size.  Add a page for compiler2 recursion in main thread.
  3934   // Add in 2*BytesPerWord times page size to account for VM stack during
  3935   // class initialization depending on 32 or 64 bit VM.
  3936   size_t min_stack_allowed =
  3937             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3938             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  3939   if (actual_reserve_size < min_stack_allowed) {
  3940     tty->print_cr("\nThe stack size specified is too small, "
  3941                   "Specify at least %dk",
  3942                   min_stack_allowed / K);
  3943     return JNI_ERR;
  3946   JavaThread::set_stack_size_at_create(stack_commit_size);
  3948   // Calculate theoretical max. size of Threads to guard gainst artifical
  3949   // out-of-memory situations, where all available address-space has been
  3950   // reserved by thread stacks.
  3951   assert(actual_reserve_size != 0, "Must have a stack");
  3953   // Calculate the thread limit when we should start doing Virtual Memory
  3954   // banging. Currently when the threads will have used all but 200Mb of space.
  3955   //
  3956   // TODO: consider performing a similar calculation for commit size instead
  3957   // as reserve size, since on a 64-bit platform we'll run into that more
  3958   // often than running out of virtual memory space.  We can use the
  3959   // lower value of the two calculations as the os_thread_limit.
  3960   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3961   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3963   // at exit methods are called in the reverse order of their registration.
  3964   // there is no limit to the number of functions registered. atexit does
  3965   // not set errno.
  3967   if (PerfAllowAtExitRegistration) {
  3968     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3969     // atexit functions can be delayed until process exit time, which
  3970     // can be problematic for embedded VM situations. Embedded VMs should
  3971     // call DestroyJavaVM() to assure that VM resources are released.
  3973     // note: perfMemory_exit_helper atexit function may be removed in
  3974     // the future if the appropriate cleanup code can be added to the
  3975     // VM_Exit VMOperation's doit method.
  3976     if (atexit(perfMemory_exit_helper) != 0) {
  3977       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3981 #ifndef _WIN64
  3982   // Print something if NX is enabled (win32 on AMD64)
  3983   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3984 #endif
  3986   // initialize thread priority policy
  3987   prio_init();
  3989   if (UseNUMA && !ForceNUMA) {
  3990     UseNUMA = false; // We don't fully support this yet
  3993   if (UseNUMAInterleaving) {
  3994     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  3995     bool success = numa_interleaving_init();
  3996     if (!success) UseNUMAInterleaving = false;
  3999   if (initSock() != JNI_OK) {
  4000     return JNI_ERR;
  4003   return JNI_OK;
  4006 void os::init_3(void) {
  4007   return;
  4010 // Mark the polling page as unreadable
  4011 void os::make_polling_page_unreadable(void) {
  4012   DWORD old_status;
  4013   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  4014     fatal("Could not disable polling page");
  4015 };
  4017 // Mark the polling page as readable
  4018 void os::make_polling_page_readable(void) {
  4019   DWORD old_status;
  4020   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  4021     fatal("Could not enable polling page");
  4022 };
  4025 int os::stat(const char *path, struct stat *sbuf) {
  4026   char pathbuf[MAX_PATH];
  4027   if (strlen(path) > MAX_PATH - 1) {
  4028     errno = ENAMETOOLONG;
  4029     return -1;
  4031   os::native_path(strcpy(pathbuf, path));
  4032   int ret = ::stat(pathbuf, sbuf);
  4033   if (sbuf != NULL && UseUTCFileTimestamp) {
  4034     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  4035     // the system timezone and so can return different values for the
  4036     // same file if/when daylight savings time changes.  This adjustment
  4037     // makes sure the same timestamp is returned regardless of the TZ.
  4038     //
  4039     // See:
  4040     // http://msdn.microsoft.com/library/
  4041     //   default.asp?url=/library/en-us/sysinfo/base/
  4042     //   time_zone_information_str.asp
  4043     // and
  4044     // http://msdn.microsoft.com/library/default.asp?url=
  4045     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  4046     //
  4047     // NOTE: there is a insidious bug here:  If the timezone is changed
  4048     // after the call to stat() but before 'GetTimeZoneInformation()', then
  4049     // the adjustment we do here will be wrong and we'll return the wrong
  4050     // value (which will likely end up creating an invalid class data
  4051     // archive).  Absent a better API for this, or some time zone locking
  4052     // mechanism, we'll have to live with this risk.
  4053     TIME_ZONE_INFORMATION tz;
  4054     DWORD tzid = GetTimeZoneInformation(&tz);
  4055     int daylightBias =
  4056       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  4057     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  4059   return ret;
  4063 #define FT2INT64(ft) \
  4064   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  4067 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4068 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4069 // of a thread.
  4070 //
  4071 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4072 // the fast estimate available on the platform.
  4074 // current_thread_cpu_time() is not optimized for Windows yet
  4075 jlong os::current_thread_cpu_time() {
  4076   // return user + sys since the cost is the same
  4077   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  4080 jlong os::thread_cpu_time(Thread* thread) {
  4081   // consistent with what current_thread_cpu_time() returns.
  4082   return os::thread_cpu_time(thread, true /* user+sys */);
  4085 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4086   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4089 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  4090   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  4091   // If this function changes, os::is_thread_cpu_time_supported() should too
  4092   if (os::win32::is_nt()) {
  4093     FILETIME CreationTime;
  4094     FILETIME ExitTime;
  4095     FILETIME KernelTime;
  4096     FILETIME UserTime;
  4098     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  4099                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4100       return -1;
  4101     else
  4102       if (user_sys_cpu_time) {
  4103         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  4104       } else {
  4105         return FT2INT64(UserTime) * 100;
  4107   } else {
  4108     return (jlong) timeGetTime() * 1000000;
  4112 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4113   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4114   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4115   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4116   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4119 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4120   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4121   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4122   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4123   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4126 bool os::is_thread_cpu_time_supported() {
  4127   // see os::thread_cpu_time
  4128   if (os::win32::is_nt()) {
  4129     FILETIME CreationTime;
  4130     FILETIME ExitTime;
  4131     FILETIME KernelTime;
  4132     FILETIME UserTime;
  4134     if ( GetThreadTimes(GetCurrentThread(),
  4135                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4136       return false;
  4137     else
  4138       return true;
  4139   } else {
  4140     return false;
  4144 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  4145 // It does have primitives (PDH API) to get CPU usage and run queue length.
  4146 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  4147 // If we wanted to implement loadavg on Windows, we have a few options:
  4148 //
  4149 // a) Query CPU usage and run queue length and "fake" an answer by
  4150 //    returning the CPU usage if it's under 100%, and the run queue
  4151 //    length otherwise.  It turns out that querying is pretty slow
  4152 //    on Windows, on the order of 200 microseconds on a fast machine.
  4153 //    Note that on the Windows the CPU usage value is the % usage
  4154 //    since the last time the API was called (and the first call
  4155 //    returns 100%), so we'd have to deal with that as well.
  4156 //
  4157 // b) Sample the "fake" answer using a sampling thread and store
  4158 //    the answer in a global variable.  The call to loadavg would
  4159 //    just return the value of the global, avoiding the slow query.
  4160 //
  4161 // c) Sample a better answer using exponential decay to smooth the
  4162 //    value.  This is basically the algorithm used by UNIX kernels.
  4163 //
  4164 // Note that sampling thread starvation could affect both (b) and (c).
  4165 int os::loadavg(double loadavg[], int nelem) {
  4166   return -1;
  4170 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  4171 bool os::dont_yield() {
  4172   return DontYieldALot;
  4175 // This method is a slightly reworked copy of JDK's sysOpen
  4176 // from src/windows/hpi/src/sys_api_md.c
  4178 int os::open(const char *path, int oflag, int mode) {
  4179   char pathbuf[MAX_PATH];
  4181   if (strlen(path) > MAX_PATH - 1) {
  4182     errno = ENAMETOOLONG;
  4183           return -1;
  4185   os::native_path(strcpy(pathbuf, path));
  4186   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  4189 FILE* os::open(int fd, const char* mode) {
  4190   return ::_fdopen(fd, mode);
  4193 // Is a (classpath) directory empty?
  4194 bool os::dir_is_empty(const char* path) {
  4195   WIN32_FIND_DATA fd;
  4196   HANDLE f = FindFirstFile(path, &fd);
  4197   if (f == INVALID_HANDLE_VALUE) {
  4198     return true;
  4200   FindClose(f);
  4201   return false;
  4204 // create binary file, rewriting existing file if required
  4205 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4206   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  4207   if (!rewrite_existing) {
  4208     oflags |= _O_EXCL;
  4210   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4213 // return current position of file pointer
  4214 jlong os::current_file_offset(int fd) {
  4215   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4218 // move file pointer to the specified offset
  4219 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4220   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4224 jlong os::lseek(int fd, jlong offset, int whence) {
  4225   return (jlong) ::_lseeki64(fd, offset, whence);
  4228 // This method is a slightly reworked copy of JDK's sysNativePath
  4229 // from src/windows/hpi/src/path_md.c
  4231 /* Convert a pathname to native format.  On win32, this involves forcing all
  4232    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4233    sometimes rejects '/') and removing redundant separators.  The input path is
  4234    assumed to have been converted into the character encoding used by the local
  4235    system.  Because this might be a double-byte encoding, care is taken to
  4236    treat double-byte lead characters correctly.
  4238    This procedure modifies the given path in place, as the result is never
  4239    longer than the original.  There is no error return; this operation always
  4240    succeeds. */
  4241 char * os::native_path(char *path) {
  4242   char *src = path, *dst = path, *end = path;
  4243   char *colon = NULL;           /* If a drive specifier is found, this will
  4244                                         point to the colon following the drive
  4245                                         letter */
  4247   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4248   assert(((!::IsDBCSLeadByte('/'))
  4249     && (!::IsDBCSLeadByte('\\'))
  4250     && (!::IsDBCSLeadByte(':'))),
  4251     "Illegal lead byte");
  4253   /* Check for leading separators */
  4254 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4255   while (isfilesep(*src)) {
  4256     src++;
  4259   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4260     /* Remove leading separators if followed by drive specifier.  This
  4261       hack is necessary to support file URLs containing drive
  4262       specifiers (e.g., "file://c:/path").  As a side effect,
  4263       "/c:/path" can be used as an alternative to "c:/path". */
  4264     *dst++ = *src++;
  4265     colon = dst;
  4266     *dst++ = ':';
  4267     src++;
  4268   } else {
  4269     src = path;
  4270     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4271       /* UNC pathname: Retain first separator; leave src pointed at
  4272          second separator so that further separators will be collapsed
  4273          into the second separator.  The result will be a pathname
  4274          beginning with "\\\\" followed (most likely) by a host name. */
  4275       src = dst = path + 1;
  4276       path[0] = '\\';     /* Force first separator to '\\' */
  4280   end = dst;
  4282   /* Remove redundant separators from remainder of path, forcing all
  4283       separators to be '\\' rather than '/'. Also, single byte space
  4284       characters are removed from the end of the path because those
  4285       are not legal ending characters on this operating system.
  4286   */
  4287   while (*src != '\0') {
  4288     if (isfilesep(*src)) {
  4289       *dst++ = '\\'; src++;
  4290       while (isfilesep(*src)) src++;
  4291       if (*src == '\0') {
  4292         /* Check for trailing separator */
  4293         end = dst;
  4294         if (colon == dst - 2) break;                      /* "z:\\" */
  4295         if (dst == path + 1) break;                       /* "\\" */
  4296         if (dst == path + 2 && isfilesep(path[0])) {
  4297           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4298             beginning of a UNC pathname.  Even though it is not, by
  4299             itself, a valid UNC pathname, we leave it as is in order
  4300             to be consistent with the path canonicalizer as well
  4301             as the win32 APIs, which treat this case as an invalid
  4302             UNC pathname rather than as an alias for the root
  4303             directory of the current drive. */
  4304           break;
  4306         end = --dst;  /* Path does not denote a root directory, so
  4307                                     remove trailing separator */
  4308         break;
  4310       end = dst;
  4311     } else {
  4312       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4313         *dst++ = *src++;
  4314         if (*src) *dst++ = *src++;
  4315         end = dst;
  4316       } else {         /* Copy a single-byte character */
  4317         char c = *src++;
  4318         *dst++ = c;
  4319         /* Space is not a legal ending character */
  4320         if (c != ' ') end = dst;
  4325   *end = '\0';
  4327   /* For "z:", add "." to work around a bug in the C runtime library */
  4328   if (colon == dst - 1) {
  4329           path[2] = '.';
  4330           path[3] = '\0';
  4333   return path;
  4336 // This code is a copy of JDK's sysSetLength
  4337 // from src/windows/hpi/src/sys_api_md.c
  4339 int os::ftruncate(int fd, jlong length) {
  4340   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4341   long high = (long)(length >> 32);
  4342   DWORD ret;
  4344   if (h == (HANDLE)(-1)) {
  4345     return -1;
  4348   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4349   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4350       return -1;
  4353   if (::SetEndOfFile(h) == FALSE) {
  4354     return -1;
  4357   return 0;
  4361 // This code is a copy of JDK's sysSync
  4362 // from src/windows/hpi/src/sys_api_md.c
  4363 // except for the legacy workaround for a bug in Win 98
  4365 int os::fsync(int fd) {
  4366   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4368   if ( (!::FlushFileBuffers(handle)) &&
  4369          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4370     /* from winerror.h */
  4371     return -1;
  4373   return 0;
  4376 static int nonSeekAvailable(int, long *);
  4377 static int stdinAvailable(int, long *);
  4379 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4380 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4382 // This code is a copy of JDK's sysAvailable
  4383 // from src/windows/hpi/src/sys_api_md.c
  4385 int os::available(int fd, jlong *bytes) {
  4386   jlong cur, end;
  4387   struct _stati64 stbuf64;
  4389   if (::_fstati64(fd, &stbuf64) >= 0) {
  4390     int mode = stbuf64.st_mode;
  4391     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4392       int ret;
  4393       long lpbytes;
  4394       if (fd == 0) {
  4395         ret = stdinAvailable(fd, &lpbytes);
  4396       } else {
  4397         ret = nonSeekAvailable(fd, &lpbytes);
  4399       (*bytes) = (jlong)(lpbytes);
  4400       return ret;
  4402     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4403       return FALSE;
  4404     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4405       return FALSE;
  4406     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4407       return FALSE;
  4409     *bytes = end - cur;
  4410     return TRUE;
  4411   } else {
  4412     return FALSE;
  4416 // This code is a copy of JDK's nonSeekAvailable
  4417 // from src/windows/hpi/src/sys_api_md.c
  4419 static int nonSeekAvailable(int fd, long *pbytes) {
  4420   /* This is used for available on non-seekable devices
  4421     * (like both named and anonymous pipes, such as pipes
  4422     *  connected to an exec'd process).
  4423     * Standard Input is a special case.
  4425     */
  4426   HANDLE han;
  4428   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4429     return FALSE;
  4432   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4433         /* PeekNamedPipe fails when at EOF.  In that case we
  4434          * simply make *pbytes = 0 which is consistent with the
  4435          * behavior we get on Solaris when an fd is at EOF.
  4436          * The only alternative is to raise an Exception,
  4437          * which isn't really warranted.
  4438          */
  4439     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4440       return FALSE;
  4442     *pbytes = 0;
  4444   return TRUE;
  4447 #define MAX_INPUT_EVENTS 2000
  4449 // This code is a copy of JDK's stdinAvailable
  4450 // from src/windows/hpi/src/sys_api_md.c
  4452 static int stdinAvailable(int fd, long *pbytes) {
  4453   HANDLE han;
  4454   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4455   DWORD numEvents = 0;  /* Number of events in buffer */
  4456   DWORD i = 0;          /* Loop index */
  4457   DWORD curLength = 0;  /* Position marker */
  4458   DWORD actualLength = 0;       /* Number of bytes readable */
  4459   BOOL error = FALSE;         /* Error holder */
  4460   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4462   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4463         return FALSE;
  4466   /* Construct an array of input records in the console buffer */
  4467   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4468   if (error == 0) {
  4469     return nonSeekAvailable(fd, pbytes);
  4472   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4473   if (numEvents > MAX_INPUT_EVENTS) {
  4474     numEvents = MAX_INPUT_EVENTS;
  4477   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
  4478   if (lpBuffer == NULL) {
  4479     return FALSE;
  4482   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4483   if (error == 0) {
  4484     os::free(lpBuffer, mtInternal);
  4485     return FALSE;
  4488   /* Examine input records for the number of bytes available */
  4489   for(i=0; i<numEvents; i++) {
  4490     if (lpBuffer[i].EventType == KEY_EVENT) {
  4492       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4493                                       &(lpBuffer[i].Event);
  4494       if (keyRecord->bKeyDown == TRUE) {
  4495         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4496         curLength++;
  4497         if (*keyPressed == '\r') {
  4498           actualLength = curLength;
  4504   if(lpBuffer != NULL) {
  4505     os::free(lpBuffer, mtInternal);
  4508   *pbytes = (long) actualLength;
  4509   return TRUE;
  4512 // Map a block of memory.
  4513 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4514                      char *addr, size_t bytes, bool read_only,
  4515                      bool allow_exec) {
  4516   HANDLE hFile;
  4517   char* base;
  4519   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4520                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4521   if (hFile == NULL) {
  4522     if (PrintMiscellaneous && Verbose) {
  4523       DWORD err = GetLastError();
  4524       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
  4526     return NULL;
  4529   if (allow_exec) {
  4530     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4531     // unless it comes from a PE image (which the shared archive is not.)
  4532     // Even VirtualProtect refuses to give execute access to mapped memory
  4533     // that was not previously executable.
  4534     //
  4535     // Instead, stick the executable region in anonymous memory.  Yuck.
  4536     // Penalty is that ~4 pages will not be shareable - in the future
  4537     // we might consider DLLizing the shared archive with a proper PE
  4538     // header so that mapping executable + sharing is possible.
  4540     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4541                                 PAGE_READWRITE);
  4542     if (base == NULL) {
  4543       if (PrintMiscellaneous && Verbose) {
  4544         DWORD err = GetLastError();
  4545         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4547       CloseHandle(hFile);
  4548       return NULL;
  4551     DWORD bytes_read;
  4552     OVERLAPPED overlapped;
  4553     overlapped.Offset = (DWORD)file_offset;
  4554     overlapped.OffsetHigh = 0;
  4555     overlapped.hEvent = NULL;
  4556     // ReadFile guarantees that if the return value is true, the requested
  4557     // number of bytes were read before returning.
  4558     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4559     if (!res) {
  4560       if (PrintMiscellaneous && Verbose) {
  4561         DWORD err = GetLastError();
  4562         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4564       release_memory(base, bytes);
  4565       CloseHandle(hFile);
  4566       return NULL;
  4568   } else {
  4569     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4570                                     NULL /*file_name*/);
  4571     if (hMap == NULL) {
  4572       if (PrintMiscellaneous && Verbose) {
  4573         DWORD err = GetLastError();
  4574         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
  4576       CloseHandle(hFile);
  4577       return NULL;
  4580     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4581     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4582                                   (DWORD)bytes, addr);
  4583     if (base == NULL) {
  4584       if (PrintMiscellaneous && Verbose) {
  4585         DWORD err = GetLastError();
  4586         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4588       CloseHandle(hMap);
  4589       CloseHandle(hFile);
  4590       return NULL;
  4593     if (CloseHandle(hMap) == 0) {
  4594       if (PrintMiscellaneous && Verbose) {
  4595         DWORD err = GetLastError();
  4596         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4598       CloseHandle(hFile);
  4599       return base;
  4603   if (allow_exec) {
  4604     DWORD old_protect;
  4605     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4606     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4608     if (!res) {
  4609       if (PrintMiscellaneous && Verbose) {
  4610         DWORD err = GetLastError();
  4611         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4613       // Don't consider this a hard error, on IA32 even if the
  4614       // VirtualProtect fails, we should still be able to execute
  4615       CloseHandle(hFile);
  4616       return base;
  4620   if (CloseHandle(hFile) == 0) {
  4621     if (PrintMiscellaneous && Verbose) {
  4622       DWORD err = GetLastError();
  4623       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4625     return base;
  4628   return base;
  4632 // Remap a block of memory.
  4633 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4634                        char *addr, size_t bytes, bool read_only,
  4635                        bool allow_exec) {
  4636   // This OS does not allow existing memory maps to be remapped so we
  4637   // have to unmap the memory before we remap it.
  4638   if (!os::unmap_memory(addr, bytes)) {
  4639     return NULL;
  4642   // There is a very small theoretical window between the unmap_memory()
  4643   // call above and the map_memory() call below where a thread in native
  4644   // code may be able to access an address that is no longer mapped.
  4646   return os::map_memory(fd, file_name, file_offset, addr, bytes,
  4647            read_only, allow_exec);
  4651 // Unmap a block of memory.
  4652 // Returns true=success, otherwise false.
  4654 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4655   BOOL result = UnmapViewOfFile(addr);
  4656   if (result == 0) {
  4657     if (PrintMiscellaneous && Verbose) {
  4658       DWORD err = GetLastError();
  4659       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4661     return false;
  4663   return true;
  4666 void os::pause() {
  4667   char filename[MAX_PATH];
  4668   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4669     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4670   } else {
  4671     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4674   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4675   if (fd != -1) {
  4676     struct stat buf;
  4677     ::close(fd);
  4678     while (::stat(filename, &buf) == 0) {
  4679       Sleep(100);
  4681   } else {
  4682     jio_fprintf(stderr,
  4683       "Could not open pause file '%s', continuing immediately.\n", filename);
  4687 // An Event wraps a win32 "CreateEvent" kernel handle.
  4688 //
  4689 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4690 //
  4691 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4692 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4693 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4694 //     In addition, an unpark() operation might fetch the handle field, but the
  4695 //     event could recycle between the fetch and the SetEvent() operation.
  4696 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4697 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4698 //     on an stale but recycled handle would be harmless, but in practice this might
  4699 //     confuse other non-Sun code, so it's not a viable approach.
  4700 //
  4701 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4702 //     with the Event.  The event handle is never closed.  This could be construed
  4703 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4704 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4705 //     permit a process to have hundreds of thousands of open handles.
  4706 //
  4707 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4708 //     and release unused handles.
  4709 //
  4710 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4711 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4712 //
  4713 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4714 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4715 //
  4716 // We use (2).
  4717 //
  4718 // TODO-FIXME:
  4719 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4720 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4721 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4722 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4723 //     into a single win32 CreateEvent() handle.
  4724 //
  4725 // _Event transitions in park()
  4726 //   -1 => -1 : illegal
  4727 //    1 =>  0 : pass - return immediately
  4728 //    0 => -1 : block
  4729 //
  4730 // _Event serves as a restricted-range semaphore :
  4731 //    -1 : thread is blocked
  4732 //     0 : neutral  - thread is running or ready
  4733 //     1 : signaled - thread is running or ready
  4734 //
  4735 // Another possible encoding of _Event would be
  4736 // with explicit "PARKED" and "SIGNALED" bits.
  4738 int os::PlatformEvent::park (jlong Millis) {
  4739     guarantee (_ParkHandle != NULL , "Invariant") ;
  4740     guarantee (Millis > 0          , "Invariant") ;
  4741     int v ;
  4743     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4744     // the initial park() operation.
  4746     for (;;) {
  4747         v = _Event ;
  4748         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4750     guarantee ((v == 0) || (v == 1), "invariant") ;
  4751     if (v != 0) return OS_OK ;
  4753     // Do this the hard way by blocking ...
  4754     // TODO: consider a brief spin here, gated on the success of recent
  4755     // spin attempts by this thread.
  4756     //
  4757     // We decompose long timeouts into series of shorter timed waits.
  4758     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4759     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4760     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4761     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4762     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4763     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4764     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4765     // for the already waited time.  This policy does not admit any new outcomes.
  4766     // In the future, however, we might want to track the accumulated wait time and
  4767     // adjust Millis accordingly if we encounter a spurious wakeup.
  4769     const int MAXTIMEOUT = 0x10000000 ;
  4770     DWORD rv = WAIT_TIMEOUT ;
  4771     while (_Event < 0 && Millis > 0) {
  4772        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4773        if (Millis > MAXTIMEOUT) {
  4774           prd = MAXTIMEOUT ;
  4776        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4777        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4778        if (rv == WAIT_TIMEOUT) {
  4779            Millis -= prd ;
  4782     v = _Event ;
  4783     _Event = 0 ;
  4784     // see comment at end of os::PlatformEvent::park() below:
  4785     OrderAccess::fence() ;
  4786     // If we encounter a nearly simultanous timeout expiry and unpark()
  4787     // we return OS_OK indicating we awoke via unpark().
  4788     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4789     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4792 void os::PlatformEvent::park () {
  4793     guarantee (_ParkHandle != NULL, "Invariant") ;
  4794     // Invariant: Only the thread associated with the Event/PlatformEvent
  4795     // may call park().
  4796     int v ;
  4797     for (;;) {
  4798         v = _Event ;
  4799         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4801     guarantee ((v == 0) || (v == 1), "invariant") ;
  4802     if (v != 0) return ;
  4804     // Do this the hard way by blocking ...
  4805     // TODO: consider a brief spin here, gated on the success of recent
  4806     // spin attempts by this thread.
  4807     while (_Event < 0) {
  4808        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4809        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4812     // Usually we'll find _Event == 0 at this point, but as
  4813     // an optional optimization we clear it, just in case can
  4814     // multiple unpark() operations drove _Event up to 1.
  4815     _Event = 0 ;
  4816     OrderAccess::fence() ;
  4817     guarantee (_Event >= 0, "invariant") ;
  4820 void os::PlatformEvent::unpark() {
  4821   guarantee (_ParkHandle != NULL, "Invariant") ;
  4823   // Transitions for _Event:
  4824   //    0 :=> 1
  4825   //    1 :=> 1
  4826   //   -1 :=> either 0 or 1; must signal target thread
  4827   //          That is, we can safely transition _Event from -1 to either
  4828   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  4829   //          unpark() calls.
  4830   // See also: "Semaphores in Plan 9" by Mullender & Cox
  4831   //
  4832   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  4833   // that it will take two back-to-back park() calls for the owning
  4834   // thread to block. This has the benefit of forcing a spurious return
  4835   // from the first park() call after an unpark() call which will help
  4836   // shake out uses of park() and unpark() without condition variables.
  4838   if (Atomic::xchg(1, &_Event) >= 0) return;
  4840   ::SetEvent(_ParkHandle);
  4844 // JSR166
  4845 // -------------------------------------------------------
  4847 /*
  4848  * The Windows implementation of Park is very straightforward: Basic
  4849  * operations on Win32 Events turn out to have the right semantics to
  4850  * use them directly. We opportunistically resuse the event inherited
  4851  * from Monitor.
  4852  */
  4855 void Parker::park(bool isAbsolute, jlong time) {
  4856   guarantee (_ParkEvent != NULL, "invariant") ;
  4857   // First, demultiplex/decode time arguments
  4858   if (time < 0) { // don't wait
  4859     return;
  4861   else if (time == 0 && !isAbsolute) {
  4862     time = INFINITE;
  4864   else if  (isAbsolute) {
  4865     time -= os::javaTimeMillis(); // convert to relative time
  4866     if (time <= 0) // already elapsed
  4867       return;
  4869   else { // relative
  4870     time /= 1000000; // Must coarsen from nanos to millis
  4871     if (time == 0)   // Wait for the minimal time unit if zero
  4872       time = 1;
  4875   JavaThread* thread = (JavaThread*)(Thread::current());
  4876   assert(thread->is_Java_thread(), "Must be JavaThread");
  4877   JavaThread *jt = (JavaThread *)thread;
  4879   // Don't wait if interrupted or already triggered
  4880   if (Thread::is_interrupted(thread, false) ||
  4881     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4882     ResetEvent(_ParkEvent);
  4883     return;
  4885   else {
  4886     ThreadBlockInVM tbivm(jt);
  4887     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4888     jt->set_suspend_equivalent();
  4890     WaitForSingleObject(_ParkEvent,  time);
  4891     ResetEvent(_ParkEvent);
  4893     // If externally suspended while waiting, re-suspend
  4894     if (jt->handle_special_suspend_equivalent_condition()) {
  4895       jt->java_suspend_self();
  4900 void Parker::unpark() {
  4901   guarantee (_ParkEvent != NULL, "invariant") ;
  4902   SetEvent(_ParkEvent);
  4905 // Run the specified command in a separate process. Return its exit value,
  4906 // or -1 on failure (e.g. can't create a new process).
  4907 int os::fork_and_exec(char* cmd) {
  4908   STARTUPINFO si;
  4909   PROCESS_INFORMATION pi;
  4911   memset(&si, 0, sizeof(si));
  4912   si.cb = sizeof(si);
  4913   memset(&pi, 0, sizeof(pi));
  4914   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4915                             cmd,    // command line
  4916                             NULL,   // process security attribute
  4917                             NULL,   // thread security attribute
  4918                             TRUE,   // inherits system handles
  4919                             0,      // no creation flags
  4920                             NULL,   // use parent's environment block
  4921                             NULL,   // use parent's starting directory
  4922                             &si,    // (in) startup information
  4923                             &pi);   // (out) process information
  4925   if (rslt) {
  4926     // Wait until child process exits.
  4927     WaitForSingleObject(pi.hProcess, INFINITE);
  4929     DWORD exit_code;
  4930     GetExitCodeProcess(pi.hProcess, &exit_code);
  4932     // Close process and thread handles.
  4933     CloseHandle(pi.hProcess);
  4934     CloseHandle(pi.hThread);
  4936     return (int)exit_code;
  4937   } else {
  4938     return -1;
  4942 //--------------------------------------------------------------------------------------------------
  4943 // Non-product code
  4945 static int mallocDebugIntervalCounter = 0;
  4946 static int mallocDebugCounter = 0;
  4947 bool os::check_heap(bool force) {
  4948   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4949   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4950     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4951     // wrong; at these points, eax contains the address of the offending block (I think).
  4952     // To get to the exlicit error message(s) below, just continue twice.
  4953     HANDLE heap = GetProcessHeap();
  4954     { HeapLock(heap);
  4955       PROCESS_HEAP_ENTRY phe;
  4956       phe.lpData = NULL;
  4957       while (HeapWalk(heap, &phe) != 0) {
  4958         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4959             !HeapValidate(heap, 0, phe.lpData)) {
  4960           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4961           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4962           fatal("corrupted C heap");
  4965       DWORD err = GetLastError();
  4966       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4967         fatal(err_msg("heap walk aborted with error %d", err));
  4969       HeapUnlock(heap);
  4971     mallocDebugIntervalCounter = 0;
  4973   return true;
  4977 bool os::find(address addr, outputStream* st) {
  4978   // Nothing yet
  4979   return false;
  4982 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4983   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4985   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4986     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4987     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4988     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4990     if (os::is_memory_serialize_page(thread, addr))
  4991       return EXCEPTION_CONTINUE_EXECUTION;
  4994   return EXCEPTION_CONTINUE_SEARCH;
  4997 // We don't build a headless jre for Windows
  4998 bool os::is_headless_jre() { return false; }
  5000 static jint initSock() {
  5001   WSADATA wsadata;
  5003   if (!os::WinSock2Dll::WinSock2Available()) {
  5004     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
  5005       ::GetLastError());
  5006     return JNI_ERR;
  5009   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
  5010     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
  5011       ::GetLastError());
  5012     return JNI_ERR;
  5014   return JNI_OK;
  5017 struct hostent* os::get_host_by_name(char* name) {
  5018   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  5021 int os::socket_close(int fd) {
  5022   return ::closesocket(fd);
  5025 int os::socket_available(int fd, jint *pbytes) {
  5026   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
  5027   return (ret < 0) ? 0 : 1;
  5030 int os::socket(int domain, int type, int protocol) {
  5031   return ::socket(domain, type, protocol);
  5034 int os::listen(int fd, int count) {
  5035   return ::listen(fd, count);
  5038 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  5039   return ::connect(fd, him, len);
  5042 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  5043   return ::accept(fd, him, len);
  5046 int os::sendto(int fd, char* buf, size_t len, uint flags,
  5047                struct sockaddr* to, socklen_t tolen) {
  5049   return ::sendto(fd, buf, (int)len, flags, to, tolen);
  5052 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  5053                  sockaddr* from, socklen_t* fromlen) {
  5055   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
  5058 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  5059   return ::recv(fd, buf, (int)nBytes, flags);
  5062 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  5063   return ::send(fd, buf, (int)nBytes, flags);
  5066 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  5067   return ::send(fd, buf, (int)nBytes, flags);
  5070 int os::timeout(int fd, long timeout) {
  5071   fd_set tbl;
  5072   struct timeval t;
  5074   t.tv_sec  = timeout / 1000;
  5075   t.tv_usec = (timeout % 1000) * 1000;
  5077   tbl.fd_count    = 1;
  5078   tbl.fd_array[0] = fd;
  5080   return ::select(1, &tbl, 0, 0, &t);
  5083 int os::get_host_name(char* name, int namelen) {
  5084   return ::gethostname(name, namelen);
  5087 int os::socket_shutdown(int fd, int howto) {
  5088   return ::shutdown(fd, howto);
  5091 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  5092   return ::bind(fd, him, len);
  5095 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  5096   return ::getsockname(fd, him, len);
  5099 int os::get_sock_opt(int fd, int level, int optname,
  5100                      char* optval, socklen_t* optlen) {
  5101   return ::getsockopt(fd, level, optname, optval, optlen);
  5104 int os::set_sock_opt(int fd, int level, int optname,
  5105                      const char* optval, socklen_t optlen) {
  5106   return ::setsockopt(fd, level, optname, optval, optlen);
  5109 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
  5110 #if defined(IA32)
  5111 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
  5112 #elif defined (AMD64)
  5113 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
  5114 #endif
  5116 // returns true if thread could be suspended,
  5117 // false otherwise
  5118 static bool do_suspend(HANDLE* h) {
  5119   if (h != NULL) {
  5120     if (SuspendThread(*h) != ~0) {
  5121       return true;
  5124   return false;
  5127 // resume the thread
  5128 // calling resume on an active thread is a no-op
  5129 static void do_resume(HANDLE* h) {
  5130   if (h != NULL) {
  5131     ResumeThread(*h);
  5135 // retrieve a suspend/resume context capable handle
  5136 // from the tid. Caller validates handle return value.
  5137 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
  5138   if (h != NULL) {
  5139     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
  5143 //
  5144 // Thread sampling implementation
  5145 //
  5146 void os::SuspendedThreadTask::internal_do_task() {
  5147   CONTEXT    ctxt;
  5148   HANDLE     h = NULL;
  5150   // get context capable handle for thread
  5151   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
  5153   // sanity
  5154   if (h == NULL || h == INVALID_HANDLE_VALUE) {
  5155     return;
  5158   // suspend the thread
  5159   if (do_suspend(&h)) {
  5160     ctxt.ContextFlags = sampling_context_flags;
  5161     // get thread context
  5162     GetThreadContext(h, &ctxt);
  5163     SuspendedThreadTaskContext context(_thread, &ctxt);
  5164     // pass context to Thread Sampling impl
  5165     do_task(context);
  5166     // resume thread
  5167     do_resume(&h);
  5170   // close handle
  5171   CloseHandle(h);
  5175 // Kernel32 API
  5176 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  5177 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  5178 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  5179 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  5180 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
  5182 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  5183 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  5184 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  5185 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  5186 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
  5189 BOOL                        os::Kernel32Dll::initialized = FALSE;
  5190 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  5191   assert(initialized && _GetLargePageMinimum != NULL,
  5192     "GetLargePageMinimumAvailable() not yet called");
  5193   return _GetLargePageMinimum();
  5196 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  5197   if (!initialized) {
  5198     initialize();
  5200   return _GetLargePageMinimum != NULL;
  5203 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  5204   if (!initialized) {
  5205     initialize();
  5207   return _VirtualAllocExNuma != NULL;
  5210 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  5211   assert(initialized && _VirtualAllocExNuma != NULL,
  5212     "NUMACallsAvailable() not yet called");
  5214   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  5217 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  5218   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  5219     "NUMACallsAvailable() not yet called");
  5221   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  5224 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  5225   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  5226     "NUMACallsAvailable() not yet called");
  5228   return _GetNumaNodeProcessorMask(node, proc_mask);
  5231 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
  5232   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
  5233     if (!initialized) {
  5234       initialize();
  5237     if (_RtlCaptureStackBackTrace != NULL) {
  5238       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
  5239         BackTrace, BackTraceHash);
  5240     } else {
  5241       return 0;
  5245 void os::Kernel32Dll::initializeCommon() {
  5246   if (!initialized) {
  5247     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5248     assert(handle != NULL, "Just check");
  5249     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  5250     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  5251     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  5252     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  5253     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
  5254     initialized = TRUE;
  5260 #ifndef JDK6_OR_EARLIER
  5262 void os::Kernel32Dll::initialize() {
  5263   initializeCommon();
  5267 // Kernel32 API
  5268 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5269   return ::SwitchToThread();
  5272 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5273   return true;
  5276   // Help tools
  5277 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5278   return true;
  5281 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5282   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5285 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5286   return ::Module32First(hSnapshot, lpme);
  5289 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5290   return ::Module32Next(hSnapshot, lpme);
  5294 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5295   return true;
  5298 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5299   ::GetNativeSystemInfo(lpSystemInfo);
  5302 // PSAPI API
  5303 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5304   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5307 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5308   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5311 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5312   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5315 inline BOOL os::PSApiDll::PSApiAvailable() {
  5316   return true;
  5320 // WinSock2 API
  5321 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5322   return ::WSAStartup(wVersionRequested, lpWSAData);
  5325 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5326   return ::gethostbyname(name);
  5329 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5330   return true;
  5333 // Advapi API
  5334 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5335    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5336    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5337      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5338        BufferLength, PreviousState, ReturnLength);
  5341 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5342   PHANDLE TokenHandle) {
  5343     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5346 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5347   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5350 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5351   return true;
  5354 #else
  5355 // Kernel32 API
  5356 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5357 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5358 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5359 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5360 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5362 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5363 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5364 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5365 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5366 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5368 void os::Kernel32Dll::initialize() {
  5369   if (!initialized) {
  5370     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5371     assert(handle != NULL, "Just check");
  5373     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5374     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5375       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5376     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5377     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5378     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5379     initializeCommon();  // resolve the functions that always need resolving
  5381     initialized = TRUE;
  5385 BOOL os::Kernel32Dll::SwitchToThread() {
  5386   assert(initialized && _SwitchToThread != NULL,
  5387     "SwitchToThreadAvailable() not yet called");
  5388   return _SwitchToThread();
  5392 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5393   if (!initialized) {
  5394     initialize();
  5396   return _SwitchToThread != NULL;
  5399 // Help tools
  5400 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5401   if (!initialized) {
  5402     initialize();
  5404   return _CreateToolhelp32Snapshot != NULL &&
  5405          _Module32First != NULL &&
  5406          _Module32Next != NULL;
  5409 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5410   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5411     "HelpToolsAvailable() not yet called");
  5413   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5416 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5417   assert(initialized && _Module32First != NULL,
  5418     "HelpToolsAvailable() not yet called");
  5420   return _Module32First(hSnapshot, lpme);
  5423 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5424   assert(initialized && _Module32Next != NULL,
  5425     "HelpToolsAvailable() not yet called");
  5427   return _Module32Next(hSnapshot, lpme);
  5431 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5432   if (!initialized) {
  5433     initialize();
  5435   return _GetNativeSystemInfo != NULL;
  5438 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5439   assert(initialized && _GetNativeSystemInfo != NULL,
  5440     "GetNativeSystemInfoAvailable() not yet called");
  5442   _GetNativeSystemInfo(lpSystemInfo);
  5445 // PSAPI API
  5448 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5449 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5450 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5452 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5453 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5454 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5455 BOOL                    os::PSApiDll::initialized = FALSE;
  5457 void os::PSApiDll::initialize() {
  5458   if (!initialized) {
  5459     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5460     if (handle != NULL) {
  5461       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5462         "EnumProcessModules");
  5463       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5464         "GetModuleFileNameExA");
  5465       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5466         "GetModuleInformation");
  5468     initialized = TRUE;
  5474 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5475   assert(initialized && _EnumProcessModules != NULL,
  5476     "PSApiAvailable() not yet called");
  5477   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5480 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5481   assert(initialized && _GetModuleFileNameEx != NULL,
  5482     "PSApiAvailable() not yet called");
  5483   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5486 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5487   assert(initialized && _GetModuleInformation != NULL,
  5488     "PSApiAvailable() not yet called");
  5489   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5492 BOOL os::PSApiDll::PSApiAvailable() {
  5493   if (!initialized) {
  5494     initialize();
  5496   return _EnumProcessModules != NULL &&
  5497     _GetModuleFileNameEx != NULL &&
  5498     _GetModuleInformation != NULL;
  5502 // WinSock2 API
  5503 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5504 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5506 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5507 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5508 BOOL             os::WinSock2Dll::initialized = FALSE;
  5510 void os::WinSock2Dll::initialize() {
  5511   if (!initialized) {
  5512     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5513     if (handle != NULL) {
  5514       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5515       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5517     initialized = TRUE;
  5522 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5523   assert(initialized && _WSAStartup != NULL,
  5524     "WinSock2Available() not yet called");
  5525   return _WSAStartup(wVersionRequested, lpWSAData);
  5528 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5529   assert(initialized && _gethostbyname != NULL,
  5530     "WinSock2Available() not yet called");
  5531   return _gethostbyname(name);
  5534 BOOL os::WinSock2Dll::WinSock2Available() {
  5535   if (!initialized) {
  5536     initialize();
  5538   return _WSAStartup != NULL &&
  5539     _gethostbyname != NULL;
  5542 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5543 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5544 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5546 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5547 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5548 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5549 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5551 void os::Advapi32Dll::initialize() {
  5552   if (!initialized) {
  5553     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5554     if (handle != NULL) {
  5555       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5556         "AdjustTokenPrivileges");
  5557       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5558         "OpenProcessToken");
  5559       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5560         "LookupPrivilegeValueA");
  5562     initialized = TRUE;
  5566 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5567    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5568    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5569    assert(initialized && _AdjustTokenPrivileges != NULL,
  5570      "AdvapiAvailable() not yet called");
  5571    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5572        BufferLength, PreviousState, ReturnLength);
  5575 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5576   PHANDLE TokenHandle) {
  5577    assert(initialized && _OpenProcessToken != NULL,
  5578      "AdvapiAvailable() not yet called");
  5579     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5582 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5583    assert(initialized && _LookupPrivilegeValue != NULL,
  5584      "AdvapiAvailable() not yet called");
  5585   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5588 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5589   if (!initialized) {
  5590     initialize();
  5592   return _AdjustTokenPrivileges != NULL &&
  5593     _OpenProcessToken != NULL &&
  5594     _LookupPrivilegeValue != NULL;
  5597 #endif

mercurial