src/share/vm/memory/cardTableRS.cpp

Thu, 17 Jan 2013 19:04:48 -0800

author
jmasa
date
Thu, 17 Jan 2013 19:04:48 -0800
changeset 4457
59a58e20dc60
parent 4037
da91efe96a93
child 4542
db9981fd3124
permissions
-rw-r--r--

8006537: Assert when dumping archive with default methods
Reviewed-by: coleenp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableRS.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/generation.hpp"
    30 #include "memory/space.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/java.hpp"
    33 #include "runtime/os.hpp"
    34 #ifndef SERIALGC
    35 #include "gc_implementation/g1/concurrentMark.hpp"
    36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    37 #endif
    39 CardTableRS::CardTableRS(MemRegion whole_heap,
    40                          int max_covered_regions) :
    41   GenRemSet(),
    42   _cur_youngergen_card_val(youngergenP1_card),
    43   _regions_to_iterate(max_covered_regions - 1)
    44 {
    45 #ifndef SERIALGC
    46   if (UseG1GC) {
    47       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
    48                                                   max_covered_regions);
    49   } else {
    50     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    51   }
    52 #else
    53   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    54 #endif
    55   set_bs(_ct_bs);
    56   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
    57   if (_last_cur_val_in_gen == NULL) {
    58     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
    59   }
    60   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
    61     _last_cur_val_in_gen[i] = clean_card_val();
    62   }
    63   _ct_bs->set_CTRS(this);
    64 }
    66 void CardTableRS::resize_covered_region(MemRegion new_region) {
    67   _ct_bs->resize_covered_region(new_region);
    68 }
    70 jbyte CardTableRS::find_unused_youngergenP_card_value() {
    71   for (jbyte v = youngergenP1_card;
    72        v < cur_youngergen_and_prev_nonclean_card;
    73        v++) {
    74     bool seen = false;
    75     for (int g = 0; g < _regions_to_iterate; g++) {
    76       if (_last_cur_val_in_gen[g] == v) {
    77         seen = true;
    78         break;
    79       }
    80     }
    81     if (!seen) return v;
    82   }
    83   ShouldNotReachHere();
    84   return 0;
    85 }
    87 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
    88   // Parallel or sequential, we must always set the prev to equal the
    89   // last one written.
    90   if (parallel) {
    91     // Find a parallel value to be used next.
    92     jbyte next_val = find_unused_youngergenP_card_value();
    93     set_cur_youngergen_card_val(next_val);
    95   } else {
    96     // In an sequential traversal we will always write youngergen, so that
    97     // the inline barrier is  correct.
    98     set_cur_youngergen_card_val(youngergen_card);
    99   }
   100 }
   102 void CardTableRS::younger_refs_iterate(Generation* g,
   103                                        OopsInGenClosure* blk) {
   104   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
   105   g->younger_refs_iterate(blk);
   106 }
   108 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
   109   if (_is_par) {
   110     return clear_card_parallel(entry);
   111   } else {
   112     return clear_card_serial(entry);
   113   }
   114 }
   116 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
   117   while (true) {
   118     // In the parallel case, we may have to do this several times.
   119     jbyte entry_val = *entry;
   120     assert(entry_val != CardTableRS::clean_card_val(),
   121            "We shouldn't be looking at clean cards, and this should "
   122            "be the only place they get cleaned.");
   123     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
   124         || _ct->is_prev_youngergen_card_val(entry_val)) {
   125       jbyte res =
   126         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
   127       if (res == entry_val) {
   128         break;
   129       } else {
   130         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
   131                "The CAS above should only fail if another thread did "
   132                "a GC write barrier.");
   133       }
   134     } else if (entry_val ==
   135                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
   136       // Parallelism shouldn't matter in this case.  Only the thread
   137       // assigned to scan the card should change this value.
   138       *entry = _ct->cur_youngergen_card_val();
   139       break;
   140     } else {
   141       assert(entry_val == _ct->cur_youngergen_card_val(),
   142              "Should be the only possibility.");
   143       // In this case, the card was clean before, and become
   144       // cur_youngergen only because of processing of a promoted object.
   145       // We don't have to look at the card.
   146       return false;
   147     }
   148   }
   149   return true;
   150 }
   153 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
   154   jbyte entry_val = *entry;
   155   assert(entry_val != CardTableRS::clean_card_val(),
   156          "We shouldn't be looking at clean cards, and this should "
   157          "be the only place they get cleaned.");
   158   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
   159          "This should be possible in the sequential case.");
   160   *entry = CardTableRS::clean_card_val();
   161   return true;
   162 }
   164 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
   165   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
   166     _dirty_card_closure(dirty_card_closure), _ct(ct) {
   167     // Cannot yet substitute active_workers for n_par_threads
   168     // in the case where parallelism is being turned off by
   169     // setting n_par_threads to 0.
   170     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
   171     assert(!_is_par ||
   172            (SharedHeap::heap()->n_par_threads() ==
   173             SharedHeap::heap()->workers()->active_workers()), "Mismatch");
   174 }
   176 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
   177   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
   178 }
   180 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
   181   assert(mr.word_size() > 0, "Error");
   182   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
   183   // mr.end() may not necessarily be card aligned.
   184   jbyte* cur_entry = _ct->byte_for(mr.last());
   185   const jbyte* limit = _ct->byte_for(mr.start());
   186   HeapWord* end_of_non_clean = mr.end();
   187   HeapWord* start_of_non_clean = end_of_non_clean;
   188   while (cur_entry >= limit) {
   189     HeapWord* cur_hw = _ct->addr_for(cur_entry);
   190     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
   191       // Continue the dirty range by opening the
   192       // dirty window one card to the left.
   193       start_of_non_clean = cur_hw;
   194     } else {
   195       // We hit a "clean" card; process any non-empty
   196       // "dirty" range accumulated so far.
   197       if (start_of_non_clean < end_of_non_clean) {
   198         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   199         _dirty_card_closure->do_MemRegion(mrd);
   200       }
   202       // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
   203       if (is_word_aligned(cur_entry)) {
   204         jbyte* cur_row = cur_entry - BytesPerWord;
   205         while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row()) {
   206           cur_row -= BytesPerWord;
   207         }
   208         cur_entry = cur_row + BytesPerWord;
   209         cur_hw = _ct->addr_for(cur_entry);
   210       }
   212       // Reset the dirty window, while continuing to look
   213       // for the next dirty card that will start a
   214       // new dirty window.
   215       end_of_non_clean = cur_hw;
   216       start_of_non_clean = cur_hw;
   217     }
   218     // Note that "cur_entry" leads "start_of_non_clean" in
   219     // its leftward excursion after this point
   220     // in the loop and, when we hit the left end of "mr",
   221     // will point off of the left end of the card-table
   222     // for "mr".
   223     cur_entry--;
   224   }
   225   // If the first card of "mr" was dirty, we will have
   226   // been left with a dirty window, co-initial with "mr",
   227   // which we now process.
   228   if (start_of_non_clean < end_of_non_clean) {
   229     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   230     _dirty_card_closure->do_MemRegion(mrd);
   231   }
   232 }
   234 // clean (by dirty->clean before) ==> cur_younger_gen
   235 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
   236 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
   237 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
   238 // cur-younger-gen                ==> cur_younger_gen
   239 // cur_youngergen_and_prev_nonclean_card ==> no change.
   240 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
   241   jbyte* entry = ct_bs()->byte_for(field);
   242   do {
   243     jbyte entry_val = *entry;
   244     // We put this first because it's probably the most common case.
   245     if (entry_val == clean_card_val()) {
   246       // No threat of contention with cleaning threads.
   247       *entry = cur_youngergen_card_val();
   248       return;
   249     } else if (card_is_dirty_wrt_gen_iter(entry_val)
   250                || is_prev_youngergen_card_val(entry_val)) {
   251       // Mark it as both cur and prev youngergen; card cleaning thread will
   252       // eventually remove the previous stuff.
   253       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
   254       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
   255       // Did the CAS succeed?
   256       if (res == entry_val) return;
   257       // Otherwise, retry, to see the new value.
   258       continue;
   259     } else {
   260       assert(entry_val == cur_youngergen_and_prev_nonclean_card
   261              || entry_val == cur_youngergen_card_val(),
   262              "should be only possibilities.");
   263       return;
   264     }
   265   } while (true);
   266 }
   268 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
   269                                                 OopsInGenClosure* cl) {
   270   const MemRegion urasm = sp->used_region_at_save_marks();
   271 #ifdef ASSERT
   272   // Convert the assertion check to a warning if we are running
   273   // CMS+ParNew until related bug is fixed.
   274   MemRegion ur    = sp->used_region();
   275   assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
   276          err_msg("Did you forget to call save_marks()? "
   277                  "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   278                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   279                  urasm.start(), urasm.end(), ur.start(), ur.end()));
   280   // In the case of CMS+ParNew, issue a warning
   281   if (!ur.contains(urasm)) {
   282     assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
   283     warning("CMS+ParNew: Did you forget to call save_marks()? "
   284             "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   285             "[" PTR_FORMAT ", " PTR_FORMAT ")",
   286              urasm.start(), urasm.end(), ur.start(), ur.end());
   287     MemRegion ur2 = sp->used_region();
   288     MemRegion urasm2 = sp->used_region_at_save_marks();
   289     if (!ur.equals(ur2)) {
   290       warning("CMS+ParNew: Flickering used_region()!!");
   291     }
   292     if (!urasm.equals(urasm2)) {
   293       warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
   294     }
   295     ShouldNotReachHere();
   296   }
   297 #endif
   298   _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
   299 }
   301 void CardTableRS::clear_into_younger(Generation* gen) {
   302   GenCollectedHeap* gch = GenCollectedHeap::heap();
   303   // Generations younger than gen have been evacuated. We can clear
   304   // card table entries for gen (we know that it has no pointers
   305   // to younger gens) and for those below. The card tables for
   306   // the youngest gen need never be cleared.
   307   // There's a bit of subtlety in the clear() and invalidate()
   308   // methods that we exploit here and in invalidate_or_clear()
   309   // below to avoid missing cards at the fringes. If clear() or
   310   // invalidate() are changed in the future, this code should
   311   // be revisited. 20040107.ysr
   312   Generation* g = gen;
   313   for(Generation* prev_gen = gch->prev_gen(g);
   314       prev_gen != NULL;
   315       g = prev_gen, prev_gen = gch->prev_gen(g)) {
   316     MemRegion to_be_cleared_mr = g->prev_used_region();
   317     clear(to_be_cleared_mr);
   318   }
   319 }
   321 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger) {
   322   GenCollectedHeap* gch = GenCollectedHeap::heap();
   323   // For each generation gen (and younger)
   324   // invalidate the cards for the currently occupied part
   325   // of that generation and clear the cards for the
   326   // unoccupied part of the generation (if any, making use
   327   // of that generation's prev_used_region to determine that
   328   // region). No need to do anything for the youngest
   329   // generation. Also see note#20040107.ysr above.
   330   Generation* g = gen;
   331   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
   332       g = prev_gen, prev_gen = gch->prev_gen(g))  {
   333     MemRegion used_mr = g->used_region();
   334     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   335     if (!to_be_cleared_mr.is_empty()) {
   336       clear(to_be_cleared_mr);
   337     }
   338     invalidate(used_mr);
   339     if (!younger) break;
   340   }
   341 }
   344 class VerifyCleanCardClosure: public OopClosure {
   345 private:
   346   HeapWord* _boundary;
   347   HeapWord* _begin;
   348   HeapWord* _end;
   349 protected:
   350   template <class T> void do_oop_work(T* p) {
   351     HeapWord* jp = (HeapWord*)p;
   352     assert(jp >= _begin && jp < _end,
   353            err_msg("Error: jp " PTR_FORMAT " should be within "
   354                    "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
   355                    _begin, _end));
   356     oop obj = oopDesc::load_decode_heap_oop(p);
   357     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
   358               err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
   359                       "clean card crosses boundary" PTR_FORMAT,
   360                       (HeapWord*)obj, jp, _boundary));
   361   }
   363 public:
   364   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
   365     _boundary(b), _begin(begin), _end(end) {
   366     assert(b <= begin,
   367            err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
   368                    b, begin));
   369     assert(begin <= end,
   370            err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
   371                    begin, end));
   372   }
   374   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
   375   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
   376 };
   378 class VerifyCTSpaceClosure: public SpaceClosure {
   379 private:
   380   CardTableRS* _ct;
   381   HeapWord* _boundary;
   382 public:
   383   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
   384     _ct(ct), _boundary(boundary) {}
   385   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
   386 };
   388 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
   389   CardTableRS* _ct;
   390 public:
   391   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
   392   void do_generation(Generation* gen) {
   393     // Skip the youngest generation.
   394     if (gen->level() == 0) return;
   395     // Normally, we're interested in pointers to younger generations.
   396     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
   397     gen->space_iterate(&blk, true);
   398   }
   399 };
   401 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
   402   // We don't need to do young-gen spaces.
   403   if (s->end() <= gen_boundary) return;
   404   MemRegion used = s->used_region();
   406   jbyte* cur_entry = byte_for(used.start());
   407   jbyte* limit = byte_after(used.last());
   408   while (cur_entry < limit) {
   409     if (*cur_entry == CardTableModRefBS::clean_card) {
   410       jbyte* first_dirty = cur_entry+1;
   411       while (first_dirty < limit &&
   412              *first_dirty == CardTableModRefBS::clean_card) {
   413         first_dirty++;
   414       }
   415       // If the first object is a regular object, and it has a
   416       // young-to-old field, that would mark the previous card.
   417       HeapWord* boundary = addr_for(cur_entry);
   418       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
   419       HeapWord* boundary_block = s->block_start(boundary);
   420       HeapWord* begin = boundary;             // Until proven otherwise.
   421       HeapWord* start_block = boundary_block; // Until proven otherwise.
   422       if (boundary_block < boundary) {
   423         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
   424           oop boundary_obj = oop(boundary_block);
   425           if (!boundary_obj->is_objArray() &&
   426               !boundary_obj->is_typeArray()) {
   427             guarantee(cur_entry > byte_for(used.start()),
   428                       "else boundary would be boundary_block");
   429             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
   430               begin = boundary_block + s->block_size(boundary_block);
   431               start_block = begin;
   432             }
   433           }
   434         }
   435       }
   436       // Now traverse objects until end.
   437       if (begin < end) {
   438         MemRegion mr(begin, end);
   439         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
   440         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
   441           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
   442             oop(cur)->oop_iterate_no_header(&verify_blk, mr);
   443           }
   444         }
   445       }
   446       cur_entry = first_dirty;
   447     } else {
   448       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
   449       // is a transient value, that cannot be in the card table
   450       // except during GC, and thus assert that:
   451       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
   452       //        "Illegal CT value");
   453       // That however, need not hold, as will become clear in the
   454       // following...
   456       // We'd normally expect that if we are in the parallel case,
   457       // we can't have left a prev value (which would be different
   458       // from the current value) in the card table, and so we'd like to
   459       // assert that:
   460       // guarantee(cur_youngergen_card_val() == youngergen_card
   461       //           || !is_prev_youngergen_card_val(*cur_entry),
   462       //           "Illegal CT value");
   463       // That, however, may not hold occasionally, because of
   464       // CMS or MSC in the old gen. To wit, consider the
   465       // following two simple illustrative scenarios:
   466       // (a) CMS: Consider the case where a large object L
   467       //     spanning several cards is allocated in the old
   468       //     gen, and has a young gen reference stored in it, dirtying
   469       //     some interior cards. A young collection scans the card,
   470       //     finds a young ref and installs a youngergenP_n value.
   471       //     L then goes dead. Now a CMS collection starts,
   472       //     finds L dead and sweeps it up. Assume that L is
   473       //     abutting _unallocated_blk, so _unallocated_blk is
   474       //     adjusted down to (below) L. Assume further that
   475       //     no young collection intervenes during this CMS cycle.
   476       //     The next young gen cycle will not get to look at this
   477       //     youngergenP_n card since it lies in the unoccupied
   478       //     part of the space.
   479       //     Some young collections later the blocks on this
   480       //     card can be re-allocated either due to direct allocation
   481       //     or due to absorbing promotions. At this time, the
   482       //     before-gc verification will fail the above assert.
   483       // (b) MSC: In this case, an object L with a young reference
   484       //     is on a card that (therefore) holds a youngergen_n value.
   485       //     Suppose also that L lies towards the end of the used
   486       //     the used space before GC. An MSC collection
   487       //     occurs that compacts to such an extent that this
   488       //     card is no longer in the occupied part of the space.
   489       //     Since current code in MSC does not always clear cards
   490       //     in the unused part of old gen, this stale youngergen_n
   491       //     value is left behind and can later be covered by
   492       //     an object when promotion or direct allocation
   493       //     re-allocates that part of the heap.
   494       //
   495       // Fortunately, the presence of such stale card values is
   496       // "only" a minor annoyance in that subsequent young collections
   497       // might needlessly scan such cards, but would still never corrupt
   498       // the heap as a result. However, it's likely not to be a significant
   499       // performance inhibitor in practice. For instance,
   500       // some recent measurements with unoccupied cards eagerly cleared
   501       // out to maintain this invariant, showed next to no
   502       // change in young collection times; of course one can construct
   503       // degenerate examples where the cost can be significant.)
   504       // Note, in particular, that if the "stale" card is modified
   505       // after re-allocation, it would be dirty, not "stale". Thus,
   506       // we can never have a younger ref in such a card and it is
   507       // safe not to scan that card in any collection. [As we see
   508       // below, we do some unnecessary scanning
   509       // in some cases in the current parallel scanning algorithm.]
   510       //
   511       // The main point below is that the parallel card scanning code
   512       // deals correctly with these stale card values. There are two main
   513       // cases to consider where we have a stale "younger gen" value and a
   514       // "derivative" case to consider, where we have a stale
   515       // "cur_younger_gen_and_prev_non_clean" value, as will become
   516       // apparent in the case analysis below.
   517       // o Case 1. If the stale value corresponds to a younger_gen_n
   518       //   value other than the cur_younger_gen value then the code
   519       //   treats this as being tantamount to a prev_younger_gen
   520       //   card. This means that the card may be unnecessarily scanned.
   521       //   There are two sub-cases to consider:
   522       //   o Case 1a. Let us say that the card is in the occupied part
   523       //     of the generation at the time the collection begins. In
   524       //     that case the card will be either cleared when it is scanned
   525       //     for young pointers, or will be set to cur_younger_gen as a
   526       //     result of promotion. (We have elided the normal case where
   527       //     the scanning thread and the promoting thread interleave
   528       //     possibly resulting in a transient
   529       //     cur_younger_gen_and_prev_non_clean value before settling
   530       //     to cur_younger_gen. [End Case 1a.]
   531       //   o Case 1b. Consider now the case when the card is in the unoccupied
   532       //     part of the space which becomes occupied because of promotions
   533       //     into it during the current young GC. In this case the card
   534       //     will never be scanned for young references. The current
   535       //     code will set the card value to either
   536       //     cur_younger_gen_and_prev_non_clean or leave
   537       //     it with its stale value -- because the promotions didn't
   538       //     result in any younger refs on that card. Of these two
   539       //     cases, the latter will be covered in Case 1a during
   540       //     a subsequent scan. To deal with the former case, we need
   541       //     to further consider how we deal with a stale value of
   542       //     cur_younger_gen_and_prev_non_clean in our case analysis
   543       //     below. This we do in Case 3 below. [End Case 1b]
   544       //   [End Case 1]
   545       // o Case 2. If the stale value corresponds to cur_younger_gen being
   546       //   a value not necessarily written by a current promotion, the
   547       //   card will not be scanned by the younger refs scanning code.
   548       //   (This is OK since as we argued above such cards cannot contain
   549       //   any younger refs.) The result is that this value will be
   550       //   treated as a prev_younger_gen value in a subsequent collection,
   551       //   which is addressed in Case 1 above. [End Case 2]
   552       // o Case 3. We here consider the "derivative" case from Case 1b. above
   553       //   because of which we may find a stale
   554       //   cur_younger_gen_and_prev_non_clean card value in the table.
   555       //   Once again, as in Case 1, we consider two subcases, depending
   556       //   on whether the card lies in the occupied or unoccupied part
   557       //   of the space at the start of the young collection.
   558       //   o Case 3a. Let us say the card is in the occupied part of
   559       //     the old gen at the start of the young collection. In that
   560       //     case, the card will be scanned by the younger refs scanning
   561       //     code which will set it to cur_younger_gen. In a subsequent
   562       //     scan, the card will be considered again and get its final
   563       //     correct value. [End Case 3a]
   564       //   o Case 3b. Now consider the case where the card is in the
   565       //     unoccupied part of the old gen, and is occupied as a result
   566       //     of promotions during thus young gc. In that case,
   567       //     the card will not be scanned for younger refs. The presence
   568       //     of newly promoted objects on the card will then result in
   569       //     its keeping the value cur_younger_gen_and_prev_non_clean
   570       //     value, which we have dealt with in Case 3 here. [End Case 3b]
   571       //   [End Case 3]
   572       //
   573       // (Please refer to the code in the helper class
   574       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
   575       //
   576       // The informal arguments above can be tightened into a formal
   577       // correctness proof and it behooves us to write up such a proof,
   578       // or to use model checking to prove that there are no lingering
   579       // concerns.
   580       //
   581       // Clearly because of Case 3b one cannot bound the time for
   582       // which a card will retain what we have called a "stale" value.
   583       // However, one can obtain a Loose upper bound on the redundant
   584       // work as a result of such stale values. Note first that any
   585       // time a stale card lies in the occupied part of the space at
   586       // the start of the collection, it is scanned by younger refs
   587       // code and we can define a rank function on card values that
   588       // declines when this is so. Note also that when a card does not
   589       // lie in the occupied part of the space at the beginning of a
   590       // young collection, its rank can either decline or stay unchanged.
   591       // In this case, no extra work is done in terms of redundant
   592       // younger refs scanning of that card.
   593       // Then, the case analysis above reveals that, in the worst case,
   594       // any such stale card will be scanned unnecessarily at most twice.
   595       //
   596       // It is nonethelss advisable to try and get rid of some of this
   597       // redundant work in a subsequent (low priority) re-design of
   598       // the card-scanning code, if only to simplify the underlying
   599       // state machine analysis/proof. ysr 1/28/2002. XXX
   600       cur_entry++;
   601     }
   602   }
   603 }
   605 void CardTableRS::verify() {
   606   // At present, we only know how to verify the card table RS for
   607   // generational heaps.
   608   VerifyCTGenClosure blk(this);
   609   CollectedHeap* ch = Universe::heap();
   611   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
   612     GenCollectedHeap::heap()->generation_iterate(&blk, false);
   613     _ct_bs->verify();
   614     }
   615   }
   618 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
   619   if (!mr.is_empty()) {
   620     jbyte* cur_entry = byte_for(mr.start());
   621     jbyte* limit = byte_after(mr.last());
   622     // The region mr may not start on a card boundary so
   623     // the first card may reflect a write to the space
   624     // just prior to mr.
   625     if (!is_aligned(mr.start())) {
   626       cur_entry++;
   627     }
   628     for (;cur_entry < limit; cur_entry++) {
   629       guarantee(*cur_entry == CardTableModRefBS::clean_card,
   630                 "Unexpected dirty card found");
   631     }
   632   }
   633 }

mercurial