src/share/vm/memory/binaryTreeDictionary.cpp

Thu, 17 Jan 2013 19:04:48 -0800

author
jmasa
date
Thu, 17 Jan 2013 19:04:48 -0800
changeset 4457
59a58e20dc60
parent 4382
e51c9860cf66
child 4488
3c327c2b6782
child 4542
db9981fd3124
permissions
-rw-r--r--

8006537: Assert when dumping archive with default methods
Reviewed-by: coleenp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/allocationStats.hpp"
    27 #include "memory/binaryTreeDictionary.hpp"
    28 #include "memory/freeList.hpp"
    29 #include "memory/freeBlockDictionary.hpp"
    30 #include "memory/metablock.hpp"
    31 #include "memory/metachunk.hpp"
    32 #include "runtime/globals.hpp"
    33 #include "utilities/ostream.hpp"
    34 #ifndef SERIALGC
    35 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
    36 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    37 #include "gc_implementation/shared/spaceDecorator.hpp"
    38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    39 #endif // SERIALGC
    41 ////////////////////////////////////////////////////////////////////////////////
    42 // A binary tree based search structure for free blocks.
    43 // This is currently used in the Concurrent Mark&Sweep implementation.
    44 ////////////////////////////////////////////////////////////////////////////////
    46 template <class Chunk_t, template <class> class FreeList_t>
    47 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
    49 template <class Chunk_t, template <class> class FreeList_t>
    50 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
    51   // Do some assertion checking here.
    52   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
    53 }
    55 template <class Chunk_t, template <class> class FreeList_t>
    56 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
    57   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
    58   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    59     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    60               embedded_list()->right()  == NULL, "should be clear");
    61   }
    62   if (nextTC != NULL) {
    63     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    64     guarantee(nextTC->size() == size(), "wrong size");
    65     nextTC->verify_tree_chunk_list();
    66   }
    67 }
    69 template <class Chunk_t, template <class> class FreeList_t>
    70 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
    71   _left(NULL), _right(NULL) {}
    73 template <class Chunk_t, template <class> class FreeList_t>
    74 TreeList<Chunk_t, FreeList_t>*
    75 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
    76   // This first free chunk in the list will be the tree list.
    77   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
    78     "Chunk is too small for a TreeChunk");
    79   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
    80   tl->initialize();
    81   tc->set_list(tl);
    82   tl->set_size(tc->size());
    83   tl->link_head(tc);
    84   tl->link_tail(tc);
    85   tl->set_count(1);
    86   assert(tl->parent() == NULL, "Should be clear");
    87   return tl;
    88 }
    91 template <class Chunk_t, template <class> class FreeList_t>
    92 TreeList<Chunk_t, FreeList_t>*
    93 get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
    94   FreeBlockDictionary<Chunk_t>::verify_par_locked();
    95   Chunk_t* res = get_chunk_from_tree(size, dither);
    96   assert(res == NULL || res->is_free(),
    97          "Should be returning a free chunk");
    98   assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
    99          res->size() == size, "Not correct size");
   100   return res;
   101 }
   103 template <class Chunk_t, template <class> class FreeList_t>
   104 TreeList<Chunk_t, FreeList_t>*
   105 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
   106   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
   107   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
   108     "Chunk is too small for a TreeChunk");
   109   // The space will have been mangled initially but
   110   // is not remangled when a Chunk_t is returned to the free list
   111   // (since it is used to maintain the chunk on the free list).
   112   tc->assert_is_mangled();
   113   tc->set_size(size);
   114   tc->link_prev(NULL);
   115   tc->link_next(NULL);
   116   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   117   return tl;
   118 }
   121 #ifndef SERIALGC
   122 // Specialize for AdaptiveFreeList which tries to avoid
   123 // splitting a chunk of a size that is under populated in favor of
   124 // an over populated size.  The general get_better_list() just returns
   125 // the current list.
   126 template <>
   127 TreeList<FreeChunk, AdaptiveFreeList>*
   128 TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
   129   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
   130   // A candidate chunk has been found.  If it is already under
   131   // populated, get a chunk associated with the hint for this
   132   // chunk.
   134   TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
   135   if (surplus() <= 0) {
   136     /* Use the hint to find a size with a surplus, and reset the hint. */
   137     TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
   138     while (hintTL->hint() != 0) {
   139       assert(hintTL->hint() > hintTL->size(),
   140         "hint points in the wrong direction");
   141       hintTL = dictionary->find_list(hintTL->hint());
   142       assert(curTL != hintTL, "Infinite loop");
   143       if (hintTL == NULL ||
   144           hintTL == curTL /* Should not happen but protect against it */ ) {
   145         // No useful hint.  Set the hint to NULL and go on.
   146         curTL->set_hint(0);
   147         break;
   148       }
   149       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
   150       if (hintTL->surplus() > 0) {
   151         // The hint led to a list that has a surplus.  Use it.
   152         // Set the hint for the candidate to an overpopulated
   153         // size.
   154         curTL->set_hint(hintTL->size());
   155         // Change the candidate.
   156         curTL = hintTL;
   157         break;
   158       }
   159     }
   160   }
   161   return curTL;
   162 }
   163 #endif // SERIALGC
   165 template <class Chunk_t, template <class> class FreeList_t>
   166 TreeList<Chunk_t, FreeList_t>*
   167 TreeList<Chunk_t, FreeList_t>::get_better_list(
   168   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
   169   return this;
   170 }
   172 template <class Chunk_t, template <class> class FreeList_t>
   173 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
   175   TreeList<Chunk_t, FreeList_t>* retTL = this;
   176   Chunk_t* list = head();
   177   assert(!list || list != list->next(), "Chunk on list twice");
   178   assert(tc != NULL, "Chunk being removed is NULL");
   179   assert(parent() == NULL || this == parent()->left() ||
   180     this == parent()->right(), "list is inconsistent");
   181   assert(tc->is_free(), "Header is not marked correctly");
   182   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   183   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   185   Chunk_t* prevFC = tc->prev();
   186   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
   187   assert(list != NULL, "should have at least the target chunk");
   189   // Is this the first item on the list?
   190   if (tc == list) {
   191     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
   192     // first chunk in the list unless it is the last chunk in the list
   193     // because the first chunk is also acting as the tree node.
   194     // When coalescing happens, however, the first chunk in the a tree
   195     // list can be the start of a free range.  Free ranges are removed
   196     // from the free lists so that they are not available to be
   197     // allocated when the sweeper yields (giving up the free list lock)
   198     // to allow mutator activity.  If this chunk is the first in the
   199     // list and is not the last in the list, do the work to copy the
   200     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
   201     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
   202     if (nextTC == NULL) {
   203       assert(prevFC == NULL, "Not last chunk in the list");
   204       set_tail(NULL);
   205       set_head(NULL);
   206     } else {
   207       // copy embedded list.
   208       nextTC->set_embedded_list(tc->embedded_list());
   209       retTL = nextTC->embedded_list();
   210       // Fix the pointer to the list in each chunk in the list.
   211       // This can be slow for a long list.  Consider having
   212       // an option that does not allow the first chunk on the
   213       // list to be coalesced.
   214       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
   215           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
   216         curTC->set_list(retTL);
   217       }
   218       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
   219       if (retTL->parent() != NULL) {
   220         if (this == retTL->parent()->left()) {
   221           retTL->parent()->set_left(retTL);
   222         } else {
   223           assert(this == retTL->parent()->right(), "Parent is incorrect");
   224           retTL->parent()->set_right(retTL);
   225         }
   226       }
   227       // Fix the children's parent pointers to point to the
   228       // new list.
   229       assert(right() == retTL->right(), "Should have been copied");
   230       if (retTL->right() != NULL) {
   231         retTL->right()->set_parent(retTL);
   232       }
   233       assert(left() == retTL->left(), "Should have been copied");
   234       if (retTL->left() != NULL) {
   235         retTL->left()->set_parent(retTL);
   236       }
   237       retTL->link_head(nextTC);
   238       assert(nextTC->is_free(), "Should be a free chunk");
   239     }
   240   } else {
   241     if (nextTC == NULL) {
   242       // Removing chunk at tail of list
   243       this->link_tail(prevFC);
   244     }
   245     // Chunk is interior to the list
   246     prevFC->link_after(nextTC);
   247   }
   249   // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
   250   // tree node may have changed. Don't use "this"
   251   // TreeList<Chunk_t, FreeList_t>*.
   252   // chunk should still be a free chunk (bit set in _prev)
   253   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   254     "Wrong sized chunk in list");
   255   debug_only(
   256     tc->link_prev(NULL);
   257     tc->link_next(NULL);
   258     tc->set_list(NULL);
   259     bool prev_found = false;
   260     bool next_found = false;
   261     for (Chunk_t* curFC = retTL->head();
   262          curFC != NULL; curFC = curFC->next()) {
   263       assert(curFC != tc, "Chunk is still in list");
   264       if (curFC == prevFC) {
   265         prev_found = true;
   266       }
   267       if (curFC == nextTC) {
   268         next_found = true;
   269       }
   270     }
   271     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   272     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   273     assert(retTL->parent() == NULL ||
   274            retTL == retTL->parent()->left() ||
   275            retTL == retTL->parent()->right(),
   276            "list is inconsistent");
   277   )
   278   retTL->decrement_count();
   280   assert(tc->is_free(), "Should still be a free chunk");
   281   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   282     "list invariant");
   283   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   284     "list invariant");
   285   return retTL;
   286 }
   288 template <class Chunk_t, template <class> class FreeList_t>
   289 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   290   assert(chunk != NULL, "returning NULL chunk");
   291   assert(chunk->list() == this, "list should be set for chunk");
   292   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   293   // which means that the list can never be empty.
   294   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
   295   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   296   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   298   Chunk_t* fc = tail();
   299   fc->link_after(chunk);
   300   this->link_tail(chunk);
   302   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   303   FreeList_t<Chunk_t>::increment_count();
   304   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   305   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   306   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   307 }
   309 // Add this chunk at the head of the list.  "At the head of the list"
   310 // is defined to be after the chunk pointer to by head().  This is
   311 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
   312 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
   313 template <class Chunk_t, template <class> class FreeList_t>
   314 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   315   assert(chunk->list() == this, "list should be set for chunk");
   316   assert(head() != NULL, "The tree list is embedded in the first chunk");
   317   assert(chunk != NULL, "returning NULL chunk");
   318   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
   319   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   320   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   322   Chunk_t* fc = head()->next();
   323   if (fc != NULL) {
   324     chunk->link_after(fc);
   325   } else {
   326     assert(tail() == NULL, "List is inconsistent");
   327     this->link_tail(chunk);
   328   }
   329   head()->link_after(chunk);
   330   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   331   FreeList_t<Chunk_t>::increment_count();
   332   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   333   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   334   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   335 }
   337 template <class Chunk_t, template <class> class FreeList_t>
   338 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
   339   assert((ZapUnusedHeapArea &&
   340           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
   341           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
   342           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
   343           (size() == 0 && prev() == NULL && next() == NULL),
   344     "Space should be clear or mangled");
   345 }
   347 template <class Chunk_t, template <class> class FreeList_t>
   348 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
   349   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
   350     "Wrong type of chunk?");
   351   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
   352 }
   354 template <class Chunk_t, template <class> class FreeList_t>
   355 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
   356   assert(head() != NULL, "The head of the list cannot be NULL");
   357   Chunk_t* fc = head()->next();
   358   TreeChunk<Chunk_t, FreeList_t>* retTC;
   359   if (fc == NULL) {
   360     retTC = head_as_TreeChunk();
   361   } else {
   362     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   363   }
   364   assert(retTC->list() == this, "Wrong type of chunk.");
   365   return retTC;
   366 }
   368 // Returns the block with the largest heap address amongst
   369 // those in the list for this size; potentially slow and expensive,
   370 // use with caution!
   371 template <class Chunk_t, template <class> class FreeList_t>
   372 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
   373   assert(head() != NULL, "The head of the list cannot be NULL");
   374   Chunk_t* fc = head()->next();
   375   TreeChunk<Chunk_t, FreeList_t>* retTC;
   376   if (fc == NULL) {
   377     retTC = head_as_TreeChunk();
   378   } else {
   379     // walk down the list and return the one with the highest
   380     // heap address among chunks of this size.
   381     Chunk_t* last = fc;
   382     while (fc->next() != NULL) {
   383       if ((HeapWord*)last < (HeapWord*)fc) {
   384         last = fc;
   385       }
   386       fc = fc->next();
   387     }
   388     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
   389   }
   390   assert(retTC->list() == this, "Wrong type of chunk.");
   391   return retTC;
   392 }
   394 template <class Chunk_t, template <class> class FreeList_t>
   395 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
   396   assert((mr.byte_size() > min_size()), "minimum chunk size");
   398   reset(mr);
   399   assert(root()->left() == NULL, "reset check failed");
   400   assert(root()->right() == NULL, "reset check failed");
   401   assert(root()->head()->next() == NULL, "reset check failed");
   402   assert(root()->head()->prev() == NULL, "reset check failed");
   403   assert(total_size() == root()->size(), "reset check failed");
   404   assert(total_free_blocks() == 1, "reset check failed");
   405 }
   407 template <class Chunk_t, template <class> class FreeList_t>
   408 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
   409   _total_size = _total_size + inc;
   410 }
   412 template <class Chunk_t, template <class> class FreeList_t>
   413 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
   414   _total_size = _total_size - dec;
   415 }
   417 template <class Chunk_t, template <class> class FreeList_t>
   418 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
   419   assert((mr.byte_size() > min_size()), "minimum chunk size");
   420   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
   421   set_total_size(mr.word_size());
   422   set_total_free_blocks(1);
   423 }
   425 template <class Chunk_t, template <class> class FreeList_t>
   426 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
   427   MemRegion mr(addr, heap_word_size(byte_size));
   428   reset(mr);
   429 }
   431 template <class Chunk_t, template <class> class FreeList_t>
   432 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
   433   set_root(NULL);
   434   set_total_size(0);
   435   set_total_free_blocks(0);
   436 }
   438 // Get a free block of size at least size from tree, or NULL.
   439 template <class Chunk_t, template <class> class FreeList_t>
   440 TreeChunk<Chunk_t, FreeList_t>*
   441 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
   442                               size_t size,
   443                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
   444 {
   445   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   446   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
   448   assert((size >= min_size()), "minimum chunk size");
   449   if (FLSVerifyDictionary) {
   450     verify_tree();
   451   }
   452   // starting at the root, work downwards trying to find match.
   453   // Remember the last node of size too great or too small.
   454   for (prevTL = curTL = root(); curTL != NULL;) {
   455     if (curTL->size() == size) {        // exact match
   456       break;
   457     }
   458     prevTL = curTL;
   459     if (curTL->size() < size) {        // proceed to right sub-tree
   460       curTL = curTL->right();
   461     } else {                           // proceed to left sub-tree
   462       assert(curTL->size() > size, "size inconsistency");
   463       curTL = curTL->left();
   464     }
   465   }
   466   if (curTL == NULL) { // couldn't find exact match
   468     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
   470     // try and find the next larger size by walking back up the search path
   471     for (curTL = prevTL; curTL != NULL;) {
   472       if (curTL->size() >= size) break;
   473       else curTL = curTL->parent();
   474     }
   475     assert(curTL == NULL || curTL->count() > 0,
   476       "An empty list should not be in the tree");
   477   }
   478   if (curTL != NULL) {
   479     assert(curTL->size() >= size, "size inconsistency");
   481     curTL = curTL->get_better_list(this);
   483     retTC = curTL->first_available();
   484     assert((retTC != NULL) && (curTL->count() > 0),
   485       "A list in the binary tree should not be NULL");
   486     assert(retTC->size() >= size,
   487       "A chunk of the wrong size was found");
   488     remove_chunk_from_tree(retTC);
   489     assert(retTC->is_free(), "Header is not marked correctly");
   490   }
   492   if (FLSVerifyDictionary) {
   493     verify();
   494   }
   495   return retTC;
   496 }
   498 template <class Chunk_t, template <class> class FreeList_t>
   499 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
   500   TreeList<Chunk_t, FreeList_t>* curTL;
   501   for (curTL = root(); curTL != NULL;) {
   502     if (curTL->size() == size) {        // exact match
   503       break;
   504     }
   506     if (curTL->size() < size) {        // proceed to right sub-tree
   507       curTL = curTL->right();
   508     } else {                           // proceed to left sub-tree
   509       assert(curTL->size() > size, "size inconsistency");
   510       curTL = curTL->left();
   511     }
   512   }
   513   return curTL;
   514 }
   517 template <class Chunk_t, template <class> class FreeList_t>
   518 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
   519   size_t size = tc->size();
   520   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
   521   if (tl == NULL) {
   522     return false;
   523   } else {
   524     return tl->verify_chunk_in_free_list(tc);
   525   }
   526 }
   528 template <class Chunk_t, template <class> class FreeList_t>
   529 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
   530   TreeList<Chunk_t, FreeList_t> *curTL = root();
   531   if (curTL != NULL) {
   532     while(curTL->right() != NULL) curTL = curTL->right();
   533     return curTL->largest_address();
   534   } else {
   535     return NULL;
   536   }
   537 }
   539 // Remove the current chunk from the tree.  If it is not the last
   540 // chunk in a list on a tree node, just unlink it.
   541 // If it is the last chunk in the list (the next link is NULL),
   542 // remove the node and repair the tree.
   543 template <class Chunk_t, template <class> class FreeList_t>
   544 TreeChunk<Chunk_t, FreeList_t>*
   545 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
   546   assert(tc != NULL, "Should not call with a NULL chunk");
   547   assert(tc->is_free(), "Header is not marked correctly");
   549   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
   550   TreeChunk<Chunk_t, FreeList_t>* retTC;
   551   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
   552   debug_only(
   553     bool removing_only_chunk = false;
   554     if (tl == _root) {
   555       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   556         if (_root->count() == 1) {
   557           assert(_root->head() == tc, "Should only be this one chunk");
   558           removing_only_chunk = true;
   559         }
   560       }
   561     }
   562   )
   563   assert(tl != NULL, "List should be set");
   564   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   565          tl == tl->parent()->right(), "list is inconsistent");
   567   bool complicated_splice = false;
   569   retTC = tc;
   570   // Removing this chunk can have the side effect of changing the node
   571   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
   572   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
   573   assert(tc->is_free(), "Chunk should still be free");
   574   assert(replacementTL->parent() == NULL ||
   575          replacementTL == replacementTL->parent()->left() ||
   576          replacementTL == replacementTL->parent()->right(),
   577          "list is inconsistent");
   578   if (tl == root()) {
   579     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   580     set_root(replacementTL);
   581   }
   582 #ifdef ASSERT
   583     if (tl != replacementTL) {
   584       assert(replacementTL->head() != NULL,
   585         "If the tree list was replaced, it should not be a NULL list");
   586       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
   587       TreeList<Chunk_t, FreeList_t>* rtl =
   588         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
   589       assert(rhl == replacementTL, "Broken head");
   590       assert(rtl == replacementTL, "Broken tail");
   591       assert(replacementTL->size() == tc->size(),  "Broken size");
   592     }
   593 #endif
   595   // Does the tree need to be repaired?
   596   if (replacementTL->count() == 0) {
   597     assert(replacementTL->head() == NULL &&
   598            replacementTL->tail() == NULL, "list count is incorrect");
   599     // Find the replacement node for the (soon to be empty) node being removed.
   600     // if we have a single (or no) child, splice child in our stead
   601     if (replacementTL->left() == NULL) {
   602       // left is NULL so pick right.  right may also be NULL.
   603       newTL = replacementTL->right();
   604       debug_only(replacementTL->clear_right();)
   605     } else if (replacementTL->right() == NULL) {
   606       // right is NULL
   607       newTL = replacementTL->left();
   608       debug_only(replacementTL->clear_left();)
   609     } else {  // we have both children, so, by patriarchal convention,
   610               // my replacement is least node in right sub-tree
   611       complicated_splice = true;
   612       newTL = remove_tree_minimum(replacementTL->right());
   613       assert(newTL != NULL && newTL->left() == NULL &&
   614              newTL->right() == NULL, "sub-tree minimum exists");
   615     }
   616     // newTL is the replacement for the (soon to be empty) node.
   617     // newTL may be NULL.
   618     // should verify; we just cleanly excised our replacement
   619     if (FLSVerifyDictionary) {
   620       verify_tree();
   621     }
   622     // first make newTL my parent's child
   623     if ((parentTL = replacementTL->parent()) == NULL) {
   624       // newTL should be root
   625       assert(tl == root(), "Incorrectly replacing root");
   626       set_root(newTL);
   627       if (newTL != NULL) {
   628         newTL->clear_parent();
   629       }
   630     } else if (parentTL->right() == replacementTL) {
   631       // replacementTL is a right child
   632       parentTL->set_right(newTL);
   633     } else {                                // replacementTL is a left child
   634       assert(parentTL->left() == replacementTL, "should be left child");
   635       parentTL->set_left(newTL);
   636     }
   637     debug_only(replacementTL->clear_parent();)
   638     if (complicated_splice) {  // we need newTL to get replacementTL's
   639                               // two children
   640       assert(newTL != NULL &&
   641              newTL->left() == NULL && newTL->right() == NULL,
   642             "newTL should not have encumbrances from the past");
   643       // we'd like to assert as below:
   644       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   645       //       "else !complicated_splice");
   646       // ... however, the above assertion is too strong because we aren't
   647       // guaranteed that replacementTL->right() is still NULL.
   648       // Recall that we removed
   649       // the right sub-tree minimum from replacementTL.
   650       // That may well have been its right
   651       // child! So we'll just assert half of the above:
   652       assert(replacementTL->left() != NULL, "else !complicated_splice");
   653       newTL->set_left(replacementTL->left());
   654       newTL->set_right(replacementTL->right());
   655       debug_only(
   656         replacementTL->clear_right();
   657         replacementTL->clear_left();
   658       )
   659     }
   660     assert(replacementTL->right() == NULL &&
   661            replacementTL->left() == NULL &&
   662            replacementTL->parent() == NULL,
   663         "delete without encumbrances");
   664   }
   666   assert(total_size() >= retTC->size(), "Incorrect total size");
   667   dec_total_size(retTC->size());     // size book-keeping
   668   assert(total_free_blocks() > 0, "Incorrect total count");
   669   set_total_free_blocks(total_free_blocks() - 1);
   671   assert(retTC != NULL, "null chunk?");
   672   assert(retTC->prev() == NULL && retTC->next() == NULL,
   673          "should return without encumbrances");
   674   if (FLSVerifyDictionary) {
   675     verify_tree();
   676   }
   677   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   678   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
   679 }
   681 // Remove the leftmost node (lm) in the tree and return it.
   682 // If lm has a right child, link it to the left node of
   683 // the parent of lm.
   684 template <class Chunk_t, template <class> class FreeList_t>
   685 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
   686   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   687   // locate the subtree minimum by walking down left branches
   688   TreeList<Chunk_t, FreeList_t>* curTL = tl;
   689   for (; curTL->left() != NULL; curTL = curTL->left());
   690   // obviously curTL now has at most one child, a right child
   691   if (curTL != root()) {  // Should this test just be removed?
   692     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
   693     if (parentTL->left() == curTL) { // curTL is a left child
   694       parentTL->set_left(curTL->right());
   695     } else {
   696       // If the list tl has no left child, then curTL may be
   697       // the right child of parentTL.
   698       assert(parentTL->right() == curTL, "should be a right child");
   699       parentTL->set_right(curTL->right());
   700     }
   701   } else {
   702     // The only use of this method would not pass the root of the
   703     // tree (as indicated by the assertion above that the tree list
   704     // has a parent) but the specification does not explicitly exclude the
   705     // passing of the root so accomodate it.
   706     set_root(NULL);
   707   }
   708   debug_only(
   709     curTL->clear_parent();  // Test if this needs to be cleared
   710     curTL->clear_right();    // recall, above, left child is already null
   711   )
   712   // we just excised a (non-root) node, we should still verify all tree invariants
   713   if (FLSVerifyDictionary) {
   714     verify_tree();
   715   }
   716   return curTL;
   717 }
   719 template <class Chunk_t, template <class> class FreeList_t>
   720 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
   721   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   722   size_t size = fc->size();
   724   assert((size >= min_size()),
   725     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
   726       size, min_size()));
   727   if (FLSVerifyDictionary) {
   728     verify_tree();
   729   }
   731   fc->clear_next();
   732   fc->link_prev(NULL);
   734   // work down from the _root, looking for insertion point
   735   for (prevTL = curTL = root(); curTL != NULL;) {
   736     if (curTL->size() == size)  // exact match
   737       break;
   738     prevTL = curTL;
   739     if (curTL->size() > size) { // follow left branch
   740       curTL = curTL->left();
   741     } else {                    // follow right branch
   742       assert(curTL->size() < size, "size inconsistency");
   743       curTL = curTL->right();
   744     }
   745   }
   746   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   747   // This chunk is being returned to the binary tree.  Its embedded
   748   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
   749   tc->initialize();
   750   if (curTL != NULL) {          // exact match
   751     tc->set_list(curTL);
   752     curTL->return_chunk_at_tail(tc);
   753   } else {                     // need a new node in tree
   754     tc->clear_next();
   755     tc->link_prev(NULL);
   756     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   757     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
   758       "List was not initialized correctly");
   759     if (prevTL == NULL) {      // we are the only tree node
   760       assert(root() == NULL, "control point invariant");
   761       set_root(newTL);
   762     } else {                   // insert under prevTL ...
   763       if (prevTL->size() < size) {   // am right child
   764         assert(prevTL->right() == NULL, "control point invariant");
   765         prevTL->set_right(newTL);
   766       } else {                       // am left child
   767         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   768         prevTL->set_left(newTL);
   769       }
   770     }
   771   }
   772   assert(tc->list() != NULL, "Tree list should be set");
   774   inc_total_size(size);
   775   // Method 'total_size_in_tree' walks through the every block in the
   776   // tree, so it can cause significant performance loss if there are
   777   // many blocks in the tree
   778   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
   779   set_total_free_blocks(total_free_blocks() + 1);
   780   if (FLSVerifyDictionary) {
   781     verify_tree();
   782   }
   783 }
   785 template <class Chunk_t, template <class> class FreeList_t>
   786 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
   787   FreeBlockDictionary<Chunk_t>::verify_par_locked();
   788   TreeList<Chunk_t, FreeList_t>* tc = root();
   789   if (tc == NULL) return 0;
   790   for (; tc->right() != NULL; tc = tc->right());
   791   return tc->size();
   792 }
   794 template <class Chunk_t, template <class> class FreeList_t>
   795 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
   796   size_t res;
   797   res = tl->count();
   798 #ifdef ASSERT
   799   size_t cnt;
   800   Chunk_t* tc = tl->head();
   801   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   802   assert(res == cnt, "The count is not being maintained correctly");
   803 #endif
   804   return res;
   805 }
   807 template <class Chunk_t, template <class> class FreeList_t>
   808 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   809   if (tl == NULL)
   810     return 0;
   811   return (tl->size() * total_list_length(tl)) +
   812          total_size_in_tree(tl->left())    +
   813          total_size_in_tree(tl->right());
   814 }
   816 template <class Chunk_t, template <class> class FreeList_t>
   817 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
   818   if (tl == NULL) {
   819     return 0.0;
   820   }
   821   double size = (double)(tl->size());
   822   double curr = size * size * total_list_length(tl);
   823   curr += sum_of_squared_block_sizes(tl->left());
   824   curr += sum_of_squared_block_sizes(tl->right());
   825   return curr;
   826 }
   828 template <class Chunk_t, template <class> class FreeList_t>
   829 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   830   if (tl == NULL)
   831     return 0;
   832   return total_list_length(tl) +
   833          total_free_blocks_in_tree(tl->left()) +
   834          total_free_blocks_in_tree(tl->right());
   835 }
   837 template <class Chunk_t, template <class> class FreeList_t>
   838 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
   839   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
   840          "_total_free_blocks inconsistency");
   841   return total_free_blocks();
   842 }
   844 template <class Chunk_t, template <class> class FreeList_t>
   845 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   846   if (tl == NULL)
   847     return 0;
   848   return 1 + MAX2(tree_height_helper(tl->left()),
   849                   tree_height_helper(tl->right()));
   850 }
   852 template <class Chunk_t, template <class> class FreeList_t>
   853 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
   854   return tree_height_helper(root());
   855 }
   857 template <class Chunk_t, template <class> class FreeList_t>
   858 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   859   if (tl == NULL) {
   860     return 0;
   861   }
   862   return 1 + total_nodes_helper(tl->left()) +
   863     total_nodes_helper(tl->right());
   864 }
   866 template <class Chunk_t, template <class> class FreeList_t>
   867 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   868   return total_nodes_helper(root());
   869 }
   871 template <class Chunk_t, template <class> class FreeList_t>
   872 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
   874 #ifndef SERIALGC
   875 template <>
   876 void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::dict_census_update(size_t size, bool split, bool birth){
   877   TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
   878   if (nd) {
   879     if (split) {
   880       if (birth) {
   881         nd->increment_split_births();
   882         nd->increment_surplus();
   883       }  else {
   884         nd->increment_split_deaths();
   885         nd->decrement_surplus();
   886       }
   887     } else {
   888       if (birth) {
   889         nd->increment_coal_births();
   890         nd->increment_surplus();
   891       } else {
   892         nd->increment_coal_deaths();
   893         nd->decrement_surplus();
   894       }
   895     }
   896   }
   897   // A list for this size may not be found (nd == 0) if
   898   //   This is a death where the appropriate list is now
   899   //     empty and has been removed from the list.
   900   //   This is a birth associated with a LinAB.  The chunk
   901   //     for the LinAB is not in the dictionary.
   902 }
   903 #endif // SERIALGC
   905 template <class Chunk_t, template <class> class FreeList_t>
   906 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
   907   // For the general type of freelists, encourage coalescing by
   908   // returning true.
   909   return true;
   910 }
   912 #ifndef SERIALGC
   913 template <>
   914 bool BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::coal_dict_over_populated(size_t size) {
   915   if (FLSAlwaysCoalesceLarge) return true;
   917   TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
   918   // None of requested size implies overpopulated.
   919   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
   920          list_of_size->count() > list_of_size->coal_desired();
   921 }
   922 #endif  // SERIALGC
   924 // Closures for walking the binary tree.
   925 //   do_list() walks the free list in a node applying the closure
   926 //     to each free chunk in the list
   927 //   do_tree() walks the nodes in the binary tree applying do_list()
   928 //     to each list at each node.
   930 template <class Chunk_t, template <class> class FreeList_t>
   931 class TreeCensusClosure : public StackObj {
   932  protected:
   933   virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
   934  public:
   935   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
   936 };
   938 template <class Chunk_t, template <class> class FreeList_t>
   939 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   940  public:
   941   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   942     if (tl != NULL) {
   943       do_tree(tl->left());
   944       this->do_list(tl);
   945       do_tree(tl->right());
   946     }
   947   }
   948 };
   950 template <class Chunk_t, template <class> class FreeList_t>
   951 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   952  public:
   953   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   954     if (tl != NULL) {
   955       do_tree(tl->right());
   956       this->do_list(tl);
   957       do_tree(tl->left());
   958     }
   959   }
   960 };
   962 // For each list in the tree, calculate the desired, desired
   963 // coalesce, count before sweep, and surplus before sweep.
   964 template <class Chunk_t, template <class> class FreeList_t>
   965 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   966   double _percentage;
   967   float _inter_sweep_current;
   968   float _inter_sweep_estimate;
   969   float _intra_sweep_estimate;
   971  public:
   972   BeginSweepClosure(double p, float inter_sweep_current,
   973                               float inter_sweep_estimate,
   974                               float intra_sweep_estimate) :
   975    _percentage(p),
   976    _inter_sweep_current(inter_sweep_current),
   977    _inter_sweep_estimate(inter_sweep_estimate),
   978    _intra_sweep_estimate(intra_sweep_estimate) { }
   980   void do_list(FreeList<Chunk_t>* fl) {}
   982 #ifndef SERIALGC
   983   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
   984     double coalSurplusPercent = _percentage;
   985     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
   986     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   987     fl->set_before_sweep(fl->count());
   988     fl->set_bfr_surp(fl->surplus());
   989   }
   990 #endif // SERIALGC
   991 };
   993 // Used to search the tree until a condition is met.
   994 // Similar to TreeCensusClosure but searches the
   995 // tree and returns promptly when found.
   997 template <class Chunk_t, template <class> class FreeList_t>
   998 class TreeSearchClosure : public StackObj {
   999  protected:
  1000   virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
  1001  public:
  1002   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
  1003 };
  1005 #if 0 //  Don't need this yet but here for symmetry.
  1006 template <class Chunk_t, template <class> class FreeList_t>
  1007 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
  1008  public:
  1009   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1010     if (tl != NULL) {
  1011       if (do_tree(tl->left())) return true;
  1012       if (do_list(tl)) return true;
  1013       if (do_tree(tl->right())) return true;
  1015     return false;
  1017 };
  1018 #endif
  1020 template <class Chunk_t, template <class> class FreeList_t>
  1021 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
  1022  public:
  1023   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1024     if (tl != NULL) {
  1025       if (do_tree(tl->right())) return true;
  1026       if (this->do_list(tl)) return true;
  1027       if (do_tree(tl->left())) return true;
  1029     return false;
  1031 };
  1033 // Searches the tree for a chunk that ends at the
  1034 // specified address.
  1035 template <class Chunk_t, template <class> class FreeList_t>
  1036 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
  1037   HeapWord* _target;
  1038   Chunk_t* _found;
  1040  public:
  1041   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  1042   bool do_list(FreeList_t<Chunk_t>* fl) {
  1043     Chunk_t* item = fl->head();
  1044     while (item != NULL) {
  1045       if (item->end() == (uintptr_t*) _target) {
  1046         _found = item;
  1047         return true;
  1049       item = item->next();
  1051     return false;
  1053   Chunk_t* found() { return _found; }
  1054 };
  1056 template <class Chunk_t, template <class> class FreeList_t>
  1057 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
  1058   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
  1059   bool found_target = etsc.do_tree(root());
  1060   assert(found_target || etsc.found() == NULL, "Consistency check");
  1061   assert(!found_target || etsc.found() != NULL, "Consistency check");
  1062   return etsc.found();
  1065 template <class Chunk_t, template <class> class FreeList_t>
  1066 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
  1067   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
  1068   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
  1069                                             inter_sweep_estimate,
  1070                                             intra_sweep_estimate);
  1071   bsc.do_tree(root());
  1074 // Closures and methods for calculating total bytes returned to the
  1075 // free lists in the tree.
  1076 #ifndef PRODUCT
  1077 template <class Chunk_t, template <class> class FreeList_t>
  1078 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1079    public:
  1080   void do_list(FreeList_t<Chunk_t>* fl) {
  1081     fl->set_returned_bytes(0);
  1083 };
  1085 template <class Chunk_t, template <class> class FreeList_t>
  1086 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
  1087   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
  1088   idrb.do_tree(root());
  1091 template <class Chunk_t, template <class> class FreeList_t>
  1092 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1093   size_t _dict_returned_bytes;
  1094  public:
  1095   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
  1096   void do_list(FreeList_t<Chunk_t>* fl) {
  1097     _dict_returned_bytes += fl->returned_bytes();
  1099   size_t dict_returned_bytes() { return _dict_returned_bytes; }
  1100 };
  1102 template <class Chunk_t, template <class> class FreeList_t>
  1103 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
  1104   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
  1105   rbc.do_tree(root());
  1107   return rbc.dict_returned_bytes();
  1110 // Count the number of entries in the tree.
  1111 template <class Chunk_t, template <class> class FreeList_t>
  1112 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1113  public:
  1114   uint count;
  1115   treeCountClosure(uint c) { count = c; }
  1116   void do_list(FreeList_t<Chunk_t>* fl) {
  1117     count++;
  1119 };
  1121 template <class Chunk_t, template <class> class FreeList_t>
  1122 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
  1123   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
  1124   ctc.do_tree(root());
  1125   return ctc.count;
  1127 #endif // PRODUCT
  1129 // Calculate surpluses for the lists in the tree.
  1130 template <class Chunk_t, template <class> class FreeList_t>
  1131 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1132   double percentage;
  1133  public:
  1134   setTreeSurplusClosure(double v) { percentage = v; }
  1135   void do_list(FreeList<Chunk_t>* fl) {}
  1137 #ifndef SERIALGC
  1138   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1139     double splitSurplusPercent = percentage;
  1140     fl->set_surplus(fl->count() -
  1141                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
  1143 #endif // SERIALGC
  1144 };
  1146 template <class Chunk_t, template <class> class FreeList_t>
  1147 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
  1148   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
  1149   sts.do_tree(root());
  1152 // Set hints for the lists in the tree.
  1153 template <class Chunk_t, template <class> class FreeList_t>
  1154 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1155   size_t hint;
  1156  public:
  1157   setTreeHintsClosure(size_t v) { hint = v; }
  1158   void do_list(FreeList<Chunk_t>* fl) {}
  1160 #ifndef SERIALGC
  1161   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1162     fl->set_hint(hint);
  1163     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1164       "Current hint is inconsistent");
  1165     if (fl->surplus() > 0) {
  1166       hint = fl->size();
  1169 #endif // SERIALGC
  1170 };
  1172 template <class Chunk_t, template <class> class FreeList_t>
  1173 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
  1174   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
  1175   sth.do_tree(root());
  1178 // Save count before previous sweep and splits and coalesces.
  1179 template <class Chunk_t, template <class> class FreeList_t>
  1180 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1181   void do_list(FreeList<Chunk_t>* fl) {}
  1183 #ifndef SERIALGC
  1184   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1185     fl->set_prev_sweep(fl->count());
  1186     fl->set_coal_births(0);
  1187     fl->set_coal_deaths(0);
  1188     fl->set_split_births(0);
  1189     fl->set_split_deaths(0);
  1191 #endif  // SERIALGC
  1192 };
  1194 template <class Chunk_t, template <class> class FreeList_t>
  1195 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
  1196   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
  1197   ctc.do_tree(root());
  1200 // Do reporting and post sweep clean up.
  1201 template <class Chunk_t, template <class> class FreeList_t>
  1202 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
  1203   // Does walking the tree 3 times hurt?
  1204   set_tree_surplus(splitSurplusPercent);
  1205   set_tree_hints();
  1206   if (PrintGC && Verbose) {
  1207     report_statistics();
  1209   clear_tree_census();
  1212 // Print summary statistics
  1213 template <class Chunk_t, template <class> class FreeList_t>
  1214 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
  1215   FreeBlockDictionary<Chunk_t>::verify_par_locked();
  1216   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1217          "------------------------------------\n");
  1218   size_t total_size = total_chunk_size(debug_only(NULL));
  1219   size_t    free_blocks = num_free_blocks();
  1220   gclog_or_tty->print("Total Free Space: %d\n", total_size);
  1221   gclog_or_tty->print("Max   Chunk Size: %d\n", max_chunk_size());
  1222   gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
  1223   if (free_blocks > 0) {
  1224     gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
  1226   gclog_or_tty->print("Tree      Height: %d\n", tree_height());
  1229 // Print census information - counts, births, deaths, etc.
  1230 // for each list in the tree.  Also print some summary
  1231 // information.
  1232 template <class Chunk_t, template <class> class FreeList_t>
  1233 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1234   int _print_line;
  1235   size_t _total_free;
  1236   FreeList_t<Chunk_t> _total;
  1238  public:
  1239   PrintTreeCensusClosure() {
  1240     _print_line = 0;
  1241     _total_free = 0;
  1243   FreeList_t<Chunk_t>* total() { return &_total; }
  1244   size_t total_free() { return _total_free; }
  1245   void do_list(FreeList<Chunk_t>* fl) {
  1246     if (++_print_line >= 40) {
  1247       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1248       _print_line = 0;
  1250     fl->print_on(gclog_or_tty);
  1251     _total_free +=            fl->count()            * fl->size()        ;
  1252     total()->set_count(      total()->count()       + fl->count()      );
  1255 #ifndef SERIALGC
  1256   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1257     if (++_print_line >= 40) {
  1258       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1259       _print_line = 0;
  1261     fl->print_on(gclog_or_tty);
  1262     _total_free +=           fl->count()             * fl->size()        ;
  1263     total()->set_count(      total()->count()        + fl->count()      );
  1264     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
  1265     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
  1266     total()->set_desired(    total()->desired()      + fl->desired()    );
  1267     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
  1268     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
  1269     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
  1270     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
  1271     total()->set_split_births(total()->split_births() + fl->split_births());
  1272     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
  1274 #endif  // SERIALGC
  1275 };
  1277 template <class Chunk_t, template <class> class FreeList_t>
  1278 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
  1280   gclog_or_tty->print("\nBinaryTree\n");
  1281   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1282   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
  1283   ptc.do_tree(root());
  1285   FreeList_t<Chunk_t>* total = ptc.total();
  1286   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
  1289 #ifndef SERIALGC
  1290 template <>
  1291 void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::print_dict_census(void) const {
  1293   gclog_or_tty->print("\nBinaryTree\n");
  1294   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
  1295   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
  1296   ptc.do_tree(root());
  1298   AdaptiveFreeList<FreeChunk>* total = ptc.total();
  1299   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
  1300   total->print_on(gclog_or_tty, "TOTAL\t");
  1301   gclog_or_tty->print(
  1302               "total_free(words): " SIZE_FORMAT_W(16)
  1303               " growth: %8.5f  deficit: %8.5f\n",
  1304               ptc.total_free(),
  1305               (double)(total->split_births() + total->coal_births()
  1306                      - total->split_deaths() - total->coal_deaths())
  1307               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
  1308              (double)(total->desired() - total->count())
  1309              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1311 #endif  // SERIALGC
  1313 template <class Chunk_t, template <class> class FreeList_t>
  1314 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1315   outputStream* _st;
  1316   int _print_line;
  1318  public:
  1319   PrintFreeListsClosure(outputStream* st) {
  1320     _st = st;
  1321     _print_line = 0;
  1323   void do_list(FreeList_t<Chunk_t>* fl) {
  1324     if (++_print_line >= 40) {
  1325       FreeList_t<Chunk_t>::print_labels_on(_st, "size");
  1326       _print_line = 0;
  1328     fl->print_on(gclog_or_tty);
  1329     size_t sz = fl->size();
  1330     for (Chunk_t* fc = fl->head(); fc != NULL;
  1331          fc = fc->next()) {
  1332       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
  1333                     fc, (HeapWord*)fc + sz,
  1334                     fc->cantCoalesce() ? "\t CC" : "");
  1337 };
  1339 template <class Chunk_t, template <class> class FreeList_t>
  1340 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
  1342   FreeList_t<Chunk_t>::print_labels_on(st, "size");
  1343   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
  1344   pflc.do_tree(root());
  1347 // Verify the following tree invariants:
  1348 // . _root has no parent
  1349 // . parent and child point to each other
  1350 // . each node's key correctly related to that of its child(ren)
  1351 template <class Chunk_t, template <class> class FreeList_t>
  1352 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
  1353   guarantee(root() == NULL || total_free_blocks() == 0 ||
  1354     total_size() != 0, "_total_size should't be 0?");
  1355   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1356   verify_tree_helper(root());
  1359 template <class Chunk_t, template <class> class FreeList_t>
  1360 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
  1361   size_t ct = 0;
  1362   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1363     ct++;
  1364     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
  1365       "Chunk should be free");
  1367   return ct;
  1370 // Note: this helper is recursive rather than iterative, so use with
  1371 // caution on very deep trees; and watch out for stack overflow errors;
  1372 // In general, to be used only for debugging.
  1373 template <class Chunk_t, template <class> class FreeList_t>
  1374 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
  1375   if (tl == NULL)
  1376     return;
  1377   guarantee(tl->size() != 0, "A list must has a size");
  1378   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1379          "parent<-/->left");
  1380   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1381          "parent<-/->right");;
  1382   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1383          "parent !> left");
  1384   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1385          "parent !< left");
  1386   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
  1387   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1388     "list inconsistency");
  1389   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1390     "list count is inconsistent");
  1391   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1392     "list is incorrectly constructed");
  1393   size_t count = verify_prev_free_ptrs(tl);
  1394   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1395   if (tl->head() != NULL) {
  1396     tl->head_as_TreeChunk()->verify_tree_chunk_list();
  1398   verify_tree_helper(tl->left());
  1399   verify_tree_helper(tl->right());
  1402 template <class Chunk_t, template <class> class FreeList_t>
  1403 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
  1404   verify_tree();
  1405   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
  1408 template class TreeList<Metablock, FreeList>;
  1409 template class BinaryTreeDictionary<Metablock, FreeList>;
  1410 template class TreeChunk<Metablock, FreeList>;
  1412 template class TreeList<Metachunk, FreeList>;
  1413 template class BinaryTreeDictionary<Metachunk, FreeList>;
  1414 template class TreeChunk<Metachunk, FreeList>;
  1417 #ifndef SERIALGC
  1418 // Explicitly instantiate these types for FreeChunk.
  1419 template class TreeList<FreeChunk, AdaptiveFreeList>;
  1420 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
  1421 template class TreeChunk<FreeChunk, AdaptiveFreeList>;
  1423 #endif // SERIALGC

mercurial