src/share/vm/c1/c1_Runtime1.cpp

Wed, 13 Apr 2011 17:56:43 -0700

author
johnc
date
Wed, 13 Apr 2011 17:56:43 -0700
changeset 2786
59766fd005ff
parent 2658
c7f3d0b4570f
child 2728
13bc79b5c9c8
permissions
-rw-r--r--

7035117: G1: nsk/stress/jni/jnistress002 fails with assertion failure
Summary: Allow long type for offset in G1 code in compiler implementations of Unsafe.getObject
Reviewed-by: never, iveresov

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/codeBuffer.hpp"
    27 #include "c1/c1_CodeStubs.hpp"
    28 #include "c1/c1_Defs.hpp"
    29 #include "c1/c1_FrameMap.hpp"
    30 #include "c1/c1_LIRAssembler.hpp"
    31 #include "c1/c1_MacroAssembler.hpp"
    32 #include "c1/c1_Runtime1.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "classfile/vmSymbols.hpp"
    35 #include "code/codeBlob.hpp"
    36 #include "code/compiledIC.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/disassembler.hpp"
    41 #include "gc_interface/collectedHeap.hpp"
    42 #include "interpreter/bytecode.hpp"
    43 #include "interpreter/interpreter.hpp"
    44 #include "memory/allocation.inline.hpp"
    45 #include "memory/barrierSet.hpp"
    46 #include "memory/oopFactory.hpp"
    47 #include "memory/resourceArea.hpp"
    48 #include "oops/objArrayKlass.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "runtime/biasedLocking.hpp"
    51 #include "runtime/compilationPolicy.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/javaCalls.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/vframe.hpp"
    57 #include "runtime/vframeArray.hpp"
    58 #include "utilities/copy.hpp"
    59 #include "utilities/events.hpp"
    62 // Implementation of StubAssembler
    64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    65   _name = name;
    66   _must_gc_arguments = false;
    67   _frame_size = no_frame_size;
    68   _num_rt_args = 0;
    69   _stub_id = stub_id;
    70 }
    73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    74   _name = name;
    75   _must_gc_arguments = must_gc_arguments;
    76 }
    79 void StubAssembler::set_frame_size(int size) {
    80   if (_frame_size == no_frame_size) {
    81     _frame_size = size;
    82   }
    83   assert(_frame_size == size, "can't change the frame size");
    84 }
    87 void StubAssembler::set_num_rt_args(int args) {
    88   if (_num_rt_args == 0) {
    89     _num_rt_args = args;
    90   }
    91   assert(_num_rt_args == args, "can't change the number of args");
    92 }
    94 // Implementation of Runtime1
    96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    97 const char *Runtime1::_blob_names[] = {
    98   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    99 };
   101 #ifndef PRODUCT
   102 // statistics
   103 int Runtime1::_generic_arraycopy_cnt = 0;
   104 int Runtime1::_primitive_arraycopy_cnt = 0;
   105 int Runtime1::_oop_arraycopy_cnt = 0;
   106 int Runtime1::_arraycopy_slowcase_cnt = 0;
   107 int Runtime1::_new_type_array_slowcase_cnt = 0;
   108 int Runtime1::_new_object_array_slowcase_cnt = 0;
   109 int Runtime1::_new_instance_slowcase_cnt = 0;
   110 int Runtime1::_new_multi_array_slowcase_cnt = 0;
   111 int Runtime1::_monitorenter_slowcase_cnt = 0;
   112 int Runtime1::_monitorexit_slowcase_cnt = 0;
   113 int Runtime1::_patch_code_slowcase_cnt = 0;
   114 int Runtime1::_throw_range_check_exception_count = 0;
   115 int Runtime1::_throw_index_exception_count = 0;
   116 int Runtime1::_throw_div0_exception_count = 0;
   117 int Runtime1::_throw_null_pointer_exception_count = 0;
   118 int Runtime1::_throw_class_cast_exception_count = 0;
   119 int Runtime1::_throw_incompatible_class_change_error_count = 0;
   120 int Runtime1::_throw_array_store_exception_count = 0;
   121 int Runtime1::_throw_count = 0;
   122 #endif
   124 // Simple helper to see if the caller of a runtime stub which
   125 // entered the VM has been deoptimized
   127 static bool caller_is_deopted() {
   128   JavaThread* thread = JavaThread::current();
   129   RegisterMap reg_map(thread, false);
   130   frame runtime_frame = thread->last_frame();
   131   frame caller_frame = runtime_frame.sender(&reg_map);
   132   assert(caller_frame.is_compiled_frame(), "must be compiled");
   133   return caller_frame.is_deoptimized_frame();
   134 }
   136 // Stress deoptimization
   137 static void deopt_caller() {
   138   if ( !caller_is_deopted()) {
   139     JavaThread* thread = JavaThread::current();
   140     RegisterMap reg_map(thread, false);
   141     frame runtime_frame = thread->last_frame();
   142     frame caller_frame = runtime_frame.sender(&reg_map);
   143     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   144     assert(caller_is_deopted(), "Must be deoptimized");
   145   }
   146 }
   149 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   150   assert(0 <= id && id < number_of_ids, "illegal stub id");
   151   ResourceMark rm;
   152   // create code buffer for code storage
   153   CodeBuffer code(buffer_blob);
   155   Compilation::setup_code_buffer(&code, 0);
   157   // create assembler for code generation
   158   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   159   // generate code for runtime stub
   160   OopMapSet* oop_maps;
   161   oop_maps = generate_code_for(id, sasm);
   162   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   163          "if stub has an oop map it must have a valid frame size");
   165 #ifdef ASSERT
   166   // Make sure that stubs that need oopmaps have them
   167   switch (id) {
   168     // These stubs don't need to have an oopmap
   169     case dtrace_object_alloc_id:
   170     case g1_pre_barrier_slow_id:
   171     case g1_post_barrier_slow_id:
   172     case slow_subtype_check_id:
   173     case fpu2long_stub_id:
   174     case unwind_exception_id:
   175     case counter_overflow_id:
   176 #if defined(SPARC) || defined(PPC)
   177     case handle_exception_nofpu_id:  // Unused on sparc
   178 #endif
   179       break;
   181     // All other stubs should have oopmaps
   182     default:
   183       assert(oop_maps != NULL, "must have an oopmap");
   184   }
   185 #endif
   187   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   188   sasm->align(BytesPerWord);
   189   // make sure all code is in code buffer
   190   sasm->flush();
   191   // create blob - distinguish a few special cases
   192   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   193                                                  &code,
   194                                                  CodeOffsets::frame_never_safe,
   195                                                  sasm->frame_size(),
   196                                                  oop_maps,
   197                                                  sasm->must_gc_arguments());
   198   // install blob
   199   assert(blob != NULL, "blob must exist");
   200   _blobs[id] = blob;
   201 }
   204 void Runtime1::initialize(BufferBlob* blob) {
   205   // platform-dependent initialization
   206   initialize_pd();
   207   // generate stubs
   208   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   209   // printing
   210 #ifndef PRODUCT
   211   if (PrintSimpleStubs) {
   212     ResourceMark rm;
   213     for (int id = 0; id < number_of_ids; id++) {
   214       _blobs[id]->print();
   215       if (_blobs[id]->oop_maps() != NULL) {
   216         _blobs[id]->oop_maps()->print();
   217       }
   218     }
   219   }
   220 #endif
   221 }
   224 CodeBlob* Runtime1::blob_for(StubID id) {
   225   assert(0 <= id && id < number_of_ids, "illegal stub id");
   226   return _blobs[id];
   227 }
   230 const char* Runtime1::name_for(StubID id) {
   231   assert(0 <= id && id < number_of_ids, "illegal stub id");
   232   return _blob_names[id];
   233 }
   235 const char* Runtime1::name_for_address(address entry) {
   236   for (int id = 0; id < number_of_ids; id++) {
   237     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   238   }
   240 #define FUNCTION_CASE(a, f) \
   241   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   243   FUNCTION_CASE(entry, os::javaTimeMillis);
   244   FUNCTION_CASE(entry, os::javaTimeNanos);
   245   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   246   FUNCTION_CASE(entry, SharedRuntime::d2f);
   247   FUNCTION_CASE(entry, SharedRuntime::d2i);
   248   FUNCTION_CASE(entry, SharedRuntime::d2l);
   249   FUNCTION_CASE(entry, SharedRuntime::dcos);
   250   FUNCTION_CASE(entry, SharedRuntime::dexp);
   251   FUNCTION_CASE(entry, SharedRuntime::dlog);
   252   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   253   FUNCTION_CASE(entry, SharedRuntime::dpow);
   254   FUNCTION_CASE(entry, SharedRuntime::drem);
   255   FUNCTION_CASE(entry, SharedRuntime::dsin);
   256   FUNCTION_CASE(entry, SharedRuntime::dtan);
   257   FUNCTION_CASE(entry, SharedRuntime::f2i);
   258   FUNCTION_CASE(entry, SharedRuntime::f2l);
   259   FUNCTION_CASE(entry, SharedRuntime::frem);
   260   FUNCTION_CASE(entry, SharedRuntime::l2d);
   261   FUNCTION_CASE(entry, SharedRuntime::l2f);
   262   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   263   FUNCTION_CASE(entry, SharedRuntime::lmul);
   264   FUNCTION_CASE(entry, SharedRuntime::lrem);
   265   FUNCTION_CASE(entry, SharedRuntime::lrem);
   266   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   267   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   268   FUNCTION_CASE(entry, trace_block_entry);
   270 #undef FUNCTION_CASE
   272   // Soft float adds more runtime names.
   273   return pd_name_for_address(entry);
   274 }
   277 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   278   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   280   assert(oop(klass)->is_klass(), "not a class");
   281   instanceKlassHandle h(thread, klass);
   282   h->check_valid_for_instantiation(true, CHECK);
   283   // make sure klass is initialized
   284   h->initialize(CHECK);
   285   // allocate instance and return via TLS
   286   oop obj = h->allocate_instance(CHECK);
   287   thread->set_vm_result(obj);
   288 JRT_END
   291 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   292   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   293   // Note: no handle for klass needed since they are not used
   294   //       anymore after new_typeArray() and no GC can happen before.
   295   //       (This may have to change if this code changes!)
   296   assert(oop(klass)->is_klass(), "not a class");
   297   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   298   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   299   thread->set_vm_result(obj);
   300   // This is pretty rare but this runtime patch is stressful to deoptimization
   301   // if we deoptimize here so force a deopt to stress the path.
   302   if (DeoptimizeALot) {
   303     deopt_caller();
   304   }
   306 JRT_END
   309 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   310   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   312   // Note: no handle for klass needed since they are not used
   313   //       anymore after new_objArray() and no GC can happen before.
   314   //       (This may have to change if this code changes!)
   315   assert(oop(array_klass)->is_klass(), "not a class");
   316   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   317   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   318   thread->set_vm_result(obj);
   319   // This is pretty rare but this runtime patch is stressful to deoptimization
   320   // if we deoptimize here so force a deopt to stress the path.
   321   if (DeoptimizeALot) {
   322     deopt_caller();
   323   }
   324 JRT_END
   327 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   328   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   330   assert(oop(klass)->is_klass(), "not a class");
   331   assert(rank >= 1, "rank must be nonzero");
   332   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   333   thread->set_vm_result(obj);
   334 JRT_END
   337 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   338   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   339 JRT_END
   342 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
   343   ResourceMark rm(thread);
   344   const char* klass_name = Klass::cast(obj->klass())->external_name();
   345   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
   346 JRT_END
   349 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
   350   if (JvmtiExport::can_post_on_exceptions()) {
   351     vframeStream vfst(thread, true);
   352     address bcp = vfst.method()->bcp_from(vfst.bci());
   353     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
   354   }
   355 JRT_END
   357 // This is a helper to allow us to safepoint but allow the outer entry
   358 // to be safepoint free if we need to do an osr
   359 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
   360   nmethod* osr_nm = NULL;
   361   methodHandle method(THREAD, m);
   363   RegisterMap map(THREAD, false);
   364   frame fr =  THREAD->last_frame().sender(&map);
   365   nmethod* nm = (nmethod*) fr.cb();
   366   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
   367   methodHandle enclosing_method(THREAD, nm->method());
   369   CompLevel level = (CompLevel)nm->comp_level();
   370   int bci = InvocationEntryBci;
   371   if (branch_bci != InvocationEntryBci) {
   372     // Compute desination bci
   373     address pc = method()->code_base() + branch_bci;
   374     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
   375     int offset = 0;
   376     switch (branch) {
   377       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
   378       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
   379       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
   380       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
   381       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
   382       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
   383       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
   384         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
   385         break;
   386       case Bytecodes::_goto_w:
   387         offset = Bytes::get_Java_u4(pc + 1);
   388         break;
   389       default: ;
   390     }
   391     bci = branch_bci + offset;
   392   }
   394   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, THREAD);
   395   return osr_nm;
   396 }
   398 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
   399   nmethod* osr_nm;
   400   JRT_BLOCK
   401     osr_nm = counter_overflow_helper(thread, bci, method);
   402     if (osr_nm != NULL) {
   403       RegisterMap map(thread, false);
   404       frame fr =  thread->last_frame().sender(&map);
   405       Deoptimization::deoptimize_frame(thread, fr.id());
   406     }
   407   JRT_BLOCK_END
   408   return NULL;
   409 JRT_END
   411 extern void vm_exit(int code);
   413 // Enter this method from compiled code handler below. This is where we transition
   414 // to VM mode. This is done as a helper routine so that the method called directly
   415 // from compiled code does not have to transition to VM. This allows the entry
   416 // method to see if the nmethod that we have just looked up a handler for has
   417 // been deoptimized while we were in the vm. This simplifies the assembly code
   418 // cpu directories.
   419 //
   420 // We are entering here from exception stub (via the entry method below)
   421 // If there is a compiled exception handler in this method, we will continue there;
   422 // otherwise we will unwind the stack and continue at the caller of top frame method
   423 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   424 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   425 // check to see if the handler we are going to return is now in a nmethod that has
   426 // been deoptimized. If that is the case we return the deopt blob
   427 // unpack_with_exception entry instead. This makes life for the exception blob easier
   428 // because making that same check and diverting is painful from assembly language.
   429 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   430   // Reset method handle flag.
   431   thread->set_is_method_handle_return(false);
   433   Handle exception(thread, ex);
   434   nm = CodeCache::find_nmethod(pc);
   435   assert(nm != NULL, "this is not an nmethod");
   436   // Adjust the pc as needed/
   437   if (nm->is_deopt_pc(pc)) {
   438     RegisterMap map(thread, false);
   439     frame exception_frame = thread->last_frame().sender(&map);
   440     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   441     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   442     pc = exception_frame.pc();
   443   }
   444 #ifdef ASSERT
   445   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   446   assert(exception->is_oop(), "just checking");
   447   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   448   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   449     if (ExitVMOnVerifyError) vm_exit(-1);
   450     ShouldNotReachHere();
   451   }
   452 #endif
   454   // Check the stack guard pages and reenable them if necessary and there is
   455   // enough space on the stack to do so.  Use fast exceptions only if the guard
   456   // pages are enabled.
   457   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   458   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   460   if (JvmtiExport::can_post_on_exceptions()) {
   461     // To ensure correct notification of exception catches and throws
   462     // we have to deoptimize here.  If we attempted to notify the
   463     // catches and throws during this exception lookup it's possible
   464     // we could deoptimize on the way out of the VM and end back in
   465     // the interpreter at the throw site.  This would result in double
   466     // notifications since the interpreter would also notify about
   467     // these same catches and throws as it unwound the frame.
   469     RegisterMap reg_map(thread);
   470     frame stub_frame = thread->last_frame();
   471     frame caller_frame = stub_frame.sender(&reg_map);
   473     // We don't really want to deoptimize the nmethod itself since we
   474     // can actually continue in the exception handler ourselves but I
   475     // don't see an easy way to have the desired effect.
   476     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   477     assert(caller_is_deopted(), "Must be deoptimized");
   479     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   480   }
   482   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
   483   if (guard_pages_enabled) {
   484     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   485     if (fast_continuation != NULL) {
   486       // Set flag if return address is a method handle call site.
   487       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   488       return fast_continuation;
   489     }
   490   }
   492   // If the stack guard pages are enabled, check whether there is a handler in
   493   // the current method.  Otherwise (guard pages disabled), force an unwind and
   494   // skip the exception cache update (i.e., just leave continuation==NULL).
   495   address continuation = NULL;
   496   if (guard_pages_enabled) {
   498     // New exception handling mechanism can support inlined methods
   499     // with exception handlers since the mappings are from PC to PC
   501     // debugging support
   502     // tracing
   503     if (TraceExceptions) {
   504       ttyLocker ttyl;
   505       ResourceMark rm;
   506       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   507                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   508     }
   509     // for AbortVMOnException flag
   510     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   512     // Clear out the exception oop and pc since looking up an
   513     // exception handler can cause class loading, which might throw an
   514     // exception and those fields are expected to be clear during
   515     // normal bytecode execution.
   516     thread->set_exception_oop(NULL);
   517     thread->set_exception_pc(NULL);
   519     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   520     // If an exception was thrown during exception dispatch, the exception oop may have changed
   521     thread->set_exception_oop(exception());
   522     thread->set_exception_pc(pc);
   524     // the exception cache is used only by non-implicit exceptions
   525     if (continuation != NULL) {
   526       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   527     }
   528   }
   530   thread->set_vm_result(exception());
   531   // Set flag if return address is a method handle call site.
   532   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   534   if (TraceExceptions) {
   535     ttyLocker ttyl;
   536     ResourceMark rm;
   537     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   538                   thread, continuation, pc);
   539   }
   541   return continuation;
   542 JRT_END
   544 // Enter this method from compiled code only if there is a Java exception handler
   545 // in the method handling the exception.
   546 // We are entering here from exception stub. We don't do a normal VM transition here.
   547 // We do it in a helper. This is so we can check to see if the nmethod we have just
   548 // searched for an exception handler has been deoptimized in the meantime.
   549 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
   550   oop exception = thread->exception_oop();
   551   address pc = thread->exception_pc();
   552   // Still in Java mode
   553   DEBUG_ONLY(ResetNoHandleMark rnhm);
   554   nmethod* nm = NULL;
   555   address continuation = NULL;
   556   {
   557     // Enter VM mode by calling the helper
   558     ResetNoHandleMark rnhm;
   559     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   560   }
   561   // Back in JAVA, use no oops DON'T safepoint
   563   // Now check to see if the nmethod we were called from is now deoptimized.
   564   // If so we must return to the deopt blob and deoptimize the nmethod
   565   if (nm != NULL && caller_is_deopted()) {
   566     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   567   }
   569   assert(continuation != NULL, "no handler found");
   570   return continuation;
   571 }
   574 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   575   NOT_PRODUCT(_throw_range_check_exception_count++;)
   576   Events::log("throw_range_check");
   577   char message[jintAsStringSize];
   578   sprintf(message, "%d", index);
   579   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   580 JRT_END
   583 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   584   NOT_PRODUCT(_throw_index_exception_count++;)
   585   Events::log("throw_index");
   586   char message[16];
   587   sprintf(message, "%d", index);
   588   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   589 JRT_END
   592 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   593   NOT_PRODUCT(_throw_div0_exception_count++;)
   594   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   595 JRT_END
   598 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   599   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   600   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   601 JRT_END
   604 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   605   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   606   ResourceMark rm(thread);
   607   char* message = SharedRuntime::generate_class_cast_message(
   608     thread, Klass::cast(object->klass())->external_name());
   609   SharedRuntime::throw_and_post_jvmti_exception(
   610     thread, vmSymbols::java_lang_ClassCastException(), message);
   611 JRT_END
   614 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   615   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   616   ResourceMark rm(thread);
   617   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   618 JRT_END
   621 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   622   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   623   if (PrintBiasedLockingStatistics) {
   624     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   625   }
   626   Handle h_obj(thread, obj);
   627   assert(h_obj()->is_oop(), "must be NULL or an object");
   628   if (UseBiasedLocking) {
   629     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   630     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   631   } else {
   632     if (UseFastLocking) {
   633       // When using fast locking, the compiled code has already tried the fast case
   634       assert(obj == lock->obj(), "must match");
   635       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   636     } else {
   637       lock->set_obj(obj);
   638       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   639     }
   640   }
   641 JRT_END
   644 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   645   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   646   assert(thread == JavaThread::current(), "threads must correspond");
   647   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   648   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   649   EXCEPTION_MARK;
   651   oop obj = lock->obj();
   652   assert(obj->is_oop(), "must be NULL or an object");
   653   if (UseFastLocking) {
   654     // When using fast locking, the compiled code has already tried the fast case
   655     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   656   } else {
   657     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   658   }
   659 JRT_END
   662 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   663   Bytecode_field field_access(caller, bci);
   664   // This can be static or non-static field access
   665   Bytecodes::Code code       = field_access.code();
   667   // We must load class, initialize class and resolvethe field
   668   FieldAccessInfo result; // initialize class if needed
   669   constantPoolHandle constants(THREAD, caller->constants());
   670   LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK_NULL);
   671   return result.klass()();
   672 }
   675 //
   676 // This routine patches sites where a class wasn't loaded or
   677 // initialized at the time the code was generated.  It handles
   678 // references to classes, fields and forcing of initialization.  Most
   679 // of the cases are straightforward and involving simply forcing
   680 // resolution of a class, rewriting the instruction stream with the
   681 // needed constant and replacing the call in this function with the
   682 // patched code.  The case for static field is more complicated since
   683 // the thread which is in the process of initializing a class can
   684 // access it's static fields but other threads can't so the code
   685 // either has to deoptimize when this case is detected or execute a
   686 // check that the current thread is the initializing thread.  The
   687 // current
   688 //
   689 // Patches basically look like this:
   690 //
   691 //
   692 // patch_site: jmp patch stub     ;; will be patched
   693 // continue:   ...
   694 //             ...
   695 //             ...
   696 //             ...
   697 //
   698 // They have a stub which looks like this:
   699 //
   700 //             ;; patch body
   701 //             movl <const>, reg           (for class constants)
   702 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   703 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   704 //             <being_init offset> <bytes to copy> <bytes to skip>
   705 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   706 //             jmp patch_site
   707 //
   708 //
   709 // A normal patch is done by rewriting the patch body, usually a move,
   710 // and then copying it into place over top of the jmp instruction
   711 // being careful to flush caches and doing it in an MP-safe way.  The
   712 // constants following the patch body are used to find various pieces
   713 // of the patch relative to the call site for Runtime1::patch_code.
   714 // The case for getstatic and putstatic is more complicated because
   715 // getstatic and putstatic have special semantics when executing while
   716 // the class is being initialized.  getstatic/putstatic on a class
   717 // which is being_initialized may be executed by the initializing
   718 // thread but other threads have to block when they execute it.  This
   719 // is accomplished in compiled code by executing a test of the current
   720 // thread against the initializing thread of the class.  It's emitted
   721 // as boilerplate in their stub which allows the patched code to be
   722 // executed before it's copied back into the main body of the nmethod.
   723 //
   724 // being_init: get_thread(<tmp reg>
   725 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   726 //             jne patch_stub
   727 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   728 //             movl reg, [reg1 + <const>]  (for field offsets)
   729 //             jmp continue
   730 //             <being_init offset> <bytes to copy> <bytes to skip>
   731 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   732 //             jmp patch_site
   733 //
   734 // If the class is being initialized the patch body is rewritten and
   735 // the patch site is rewritten to jump to being_init, instead of
   736 // patch_stub.  Whenever this code is executed it checks the current
   737 // thread against the intializing thread so other threads will enter
   738 // the runtime and end up blocked waiting the class to finish
   739 // initializing inside the calls to resolve_field below.  The
   740 // initializing class will continue on it's way.  Once the class is
   741 // fully_initialized, the intializing_thread of the class becomes
   742 // NULL, so the next thread to execute this code will fail the test,
   743 // call into patch_code and complete the patching process by copying
   744 // the patch body back into the main part of the nmethod and resume
   745 // executing.
   746 //
   747 //
   749 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   750   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   752   ResourceMark rm(thread);
   753   RegisterMap reg_map(thread, false);
   754   frame runtime_frame = thread->last_frame();
   755   frame caller_frame = runtime_frame.sender(&reg_map);
   757   // last java frame on stack
   758   vframeStream vfst(thread, true);
   759   assert(!vfst.at_end(), "Java frame must exist");
   761   methodHandle caller_method(THREAD, vfst.method());
   762   // Note that caller_method->code() may not be same as caller_code because of OSR's
   763   // Note also that in the presence of inlining it is not guaranteed
   764   // that caller_method() == caller_code->method()
   767   int bci = vfst.bci();
   769   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   771   Bytecodes::Code code = caller_method()->java_code_at(bci);
   773 #ifndef PRODUCT
   774   // this is used by assertions in the access_field_patching_id
   775   BasicType patch_field_type = T_ILLEGAL;
   776 #endif // PRODUCT
   777   bool deoptimize_for_volatile = false;
   778   int patch_field_offset = -1;
   779   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   780   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   781   if (stub_id == Runtime1::access_field_patching_id) {
   783     Bytecode_field field_access(caller_method, bci);
   784     FieldAccessInfo result; // initialize class if needed
   785     Bytecodes::Code code = field_access.code();
   786     constantPoolHandle constants(THREAD, caller_method->constants());
   787     LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK);
   788     patch_field_offset = result.field_offset();
   790     // If we're patching a field which is volatile then at compile it
   791     // must not have been know to be volatile, so the generated code
   792     // isn't correct for a volatile reference.  The nmethod has to be
   793     // deoptimized so that the code can be regenerated correctly.
   794     // This check is only needed for access_field_patching since this
   795     // is the path for patching field offsets.  load_klass is only
   796     // used for patching references to oops which don't need special
   797     // handling in the volatile case.
   798     deoptimize_for_volatile = result.access_flags().is_volatile();
   800 #ifndef PRODUCT
   801     patch_field_type = result.field_type();
   802 #endif
   803   } else if (stub_id == Runtime1::load_klass_patching_id) {
   804     oop k;
   805     switch (code) {
   806       case Bytecodes::_putstatic:
   807       case Bytecodes::_getstatic:
   808         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   809           // Save a reference to the class that has to be checked for initialization
   810           init_klass = KlassHandle(THREAD, klass);
   811           k = klass->java_mirror();
   812         }
   813         break;
   814       case Bytecodes::_new:
   815         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
   816           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
   817         }
   818         break;
   819       case Bytecodes::_multianewarray:
   820         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
   821           k = caller_method->constants()->klass_at(mna.index(), CHECK);
   822         }
   823         break;
   824       case Bytecodes::_instanceof:
   825         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
   826           k = caller_method->constants()->klass_at(io.index(), CHECK);
   827         }
   828         break;
   829       case Bytecodes::_checkcast:
   830         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
   831           k = caller_method->constants()->klass_at(cc.index(), CHECK);
   832         }
   833         break;
   834       case Bytecodes::_anewarray:
   835         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
   836           klassOop ek = caller_method->constants()->klass_at(anew.index(), CHECK);
   837           k = Klass::cast(ek)->array_klass(CHECK);
   838         }
   839         break;
   840       case Bytecodes::_ldc:
   841       case Bytecodes::_ldc_w:
   842         {
   843           Bytecode_loadconstant cc(caller_method, bci);
   844           k = cc.resolve_constant(CHECK);
   845           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
   846         }
   847         break;
   848       default: Unimplemented();
   849     }
   850     // convert to handle
   851     load_klass = Handle(THREAD, k);
   852   } else {
   853     ShouldNotReachHere();
   854   }
   856   if (deoptimize_for_volatile) {
   857     // At compile time we assumed the field wasn't volatile but after
   858     // loading it turns out it was volatile so we have to throw the
   859     // compiled code out and let it be regenerated.
   860     if (TracePatching) {
   861       tty->print_cr("Deoptimizing for patching volatile field reference");
   862     }
   863     // It's possible the nmethod was invalidated in the last
   864     // safepoint, but if it's still alive then make it not_entrant.
   865     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   866     if (nm != NULL) {
   867       nm->make_not_entrant();
   868     }
   870     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   872     // Return to the now deoptimized frame.
   873   }
   875   // If we are patching in a non-perm oop, make sure the nmethod
   876   // is on the right list.
   877   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
   878     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
   879     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   880     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
   881     if (!nm->on_scavenge_root_list())
   882       CodeCache::add_scavenge_root_nmethod(nm);
   883   }
   885   // Now copy code back
   887   {
   888     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   889     //
   890     // Deoptimization may have happened while we waited for the lock.
   891     // In that case we don't bother to do any patching we just return
   892     // and let the deopt happen
   893     if (!caller_is_deopted()) {
   894       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   895       address instr_pc = jump->jump_destination();
   896       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   897       if (ni->is_jump() ) {
   898         // the jump has not been patched yet
   899         // The jump destination is slow case and therefore not part of the stubs
   900         // (stubs are only for StaticCalls)
   902         // format of buffer
   903         //    ....
   904         //    instr byte 0     <-- copy_buff
   905         //    instr byte 1
   906         //    ..
   907         //    instr byte n-1
   908         //      n
   909         //    ....             <-- call destination
   911         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   912         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   913         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   914         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   915         address copy_buff = stub_location - *byte_skip - *byte_count;
   916         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   917         if (TracePatching) {
   918           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   919                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   920           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   921           assert(caller_code != NULL, "nmethod not found");
   923           // NOTE we use pc() not original_pc() because we already know they are
   924           // identical otherwise we'd have never entered this block of code
   926           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   927           assert(map != NULL, "null check");
   928           map->print();
   929           tty->cr();
   931           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   932         }
   933         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   934         bool do_patch = true;
   935         if (stub_id == Runtime1::access_field_patching_id) {
   936           // The offset may not be correct if the class was not loaded at code generation time.
   937           // Set it now.
   938           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   939           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   940           assert(patch_field_offset >= 0, "illegal offset");
   941           n_move->add_offset_in_bytes(patch_field_offset);
   942         } else if (stub_id == Runtime1::load_klass_patching_id) {
   943           // If a getstatic or putstatic is referencing a klass which
   944           // isn't fully initialized, the patch body isn't copied into
   945           // place until initialization is complete.  In this case the
   946           // patch site is setup so that any threads besides the
   947           // initializing thread are forced to come into the VM and
   948           // block.
   949           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   950                      instanceKlass::cast(init_klass())->is_initialized();
   951           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   952           if (jump->jump_destination() == being_initialized_entry) {
   953             assert(do_patch == true, "initialization must be complete at this point");
   954           } else {
   955             // patch the instruction <move reg, klass>
   956             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   958             assert(n_copy->data() == 0 ||
   959                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
   960                    "illegal init value");
   961             assert(load_klass() != NULL, "klass not set");
   962             n_copy->set_data((intx) (load_klass()));
   964             if (TracePatching) {
   965               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   966             }
   968 #if defined(SPARC) || defined(PPC)
   969             // Update the oop location in the nmethod with the proper
   970             // oop.  When the code was generated, a NULL was stuffed
   971             // in the oop table and that table needs to be update to
   972             // have the right value.  On intel the value is kept
   973             // directly in the instruction instead of in the oop
   974             // table, so set_data above effectively updated the value.
   975             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   976             assert(nm != NULL, "invalid nmethod_pc");
   977             RelocIterator oops(nm, copy_buff, copy_buff + 1);
   978             bool found = false;
   979             while (oops.next() && !found) {
   980               if (oops.type() == relocInfo::oop_type) {
   981                 oop_Relocation* r = oops.oop_reloc();
   982                 oop* oop_adr = r->oop_addr();
   983                 *oop_adr = load_klass();
   984                 r->fix_oop_relocation();
   985                 found = true;
   986               }
   987             }
   988             assert(found, "the oop must exist!");
   989 #endif
   991           }
   992         } else {
   993           ShouldNotReachHere();
   994         }
   995         if (do_patch) {
   996           // replace instructions
   997           // first replace the tail, then the call
   998 #ifdef ARM
   999           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
  1000             copy_buff -= *byte_count;
  1001             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
  1002             n_copy2->set_data((intx) (load_klass()), instr_pc);
  1004 #endif
  1006           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
  1007             address ptr = copy_buff + i;
  1008             int a_byte = (*ptr) & 0xFF;
  1009             address dst = instr_pc + i;
  1010             *(unsigned char*)dst = (unsigned char) a_byte;
  1012           ICache::invalidate_range(instr_pc, *byte_count);
  1013           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
  1015           if (stub_id == Runtime1::load_klass_patching_id) {
  1016             // update relocInfo to oop
  1017             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1018             assert(nm != NULL, "invalid nmethod_pc");
  1020             // The old patch site is now a move instruction so update
  1021             // the reloc info so that it will get updated during
  1022             // future GCs.
  1023             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
  1024             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
  1025                                                      relocInfo::none, relocInfo::oop_type);
  1026 #ifdef SPARC
  1027             // Sparc takes two relocations for an oop so update the second one.
  1028             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
  1029             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1030             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1031                                                      relocInfo::none, relocInfo::oop_type);
  1032 #endif
  1033 #ifdef PPC
  1034           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
  1035             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1036             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
  1038 #endif
  1041         } else {
  1042           ICache::invalidate_range(copy_buff, *byte_count);
  1043           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1048 JRT_END
  1050 //
  1051 // Entry point for compiled code. We want to patch a nmethod.
  1052 // We don't do a normal VM transition here because we want to
  1053 // know after the patching is complete and any safepoint(s) are taken
  1054 // if the calling nmethod was deoptimized. We do this by calling a
  1055 // helper method which does the normal VM transition and when it
  1056 // completes we can check for deoptimization. This simplifies the
  1057 // assembly code in the cpu directories.
  1058 //
  1059 int Runtime1::move_klass_patching(JavaThread* thread) {
  1060 //
  1061 // NOTE: we are still in Java
  1062 //
  1063   Thread* THREAD = thread;
  1064   debug_only(NoHandleMark nhm;)
  1066     // Enter VM mode
  1068     ResetNoHandleMark rnhm;
  1069     patch_code(thread, load_klass_patching_id);
  1071   // Back in JAVA, use no oops DON'T safepoint
  1073   // Return true if calling code is deoptimized
  1075   return caller_is_deopted();
  1078 //
  1079 // Entry point for compiled code. We want to patch a nmethod.
  1080 // We don't do a normal VM transition here because we want to
  1081 // know after the patching is complete and any safepoint(s) are taken
  1082 // if the calling nmethod was deoptimized. We do this by calling a
  1083 // helper method which does the normal VM transition and when it
  1084 // completes we can check for deoptimization. This simplifies the
  1085 // assembly code in the cpu directories.
  1086 //
  1088 int Runtime1::access_field_patching(JavaThread* thread) {
  1089 //
  1090 // NOTE: we are still in Java
  1091 //
  1092   Thread* THREAD = thread;
  1093   debug_only(NoHandleMark nhm;)
  1095     // Enter VM mode
  1097     ResetNoHandleMark rnhm;
  1098     patch_code(thread, access_field_patching_id);
  1100   // Back in JAVA, use no oops DON'T safepoint
  1102   // Return true if calling code is deoptimized
  1104   return caller_is_deopted();
  1105 JRT_END
  1108 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1109   // for now we just print out the block id
  1110   tty->print("%d ", block_id);
  1111 JRT_END
  1114 // Array copy return codes.
  1115 enum {
  1116   ac_failed = -1, // arraycopy failed
  1117   ac_ok = 0       // arraycopy succeeded
  1118 };
  1121 // Below length is the # elements copied.
  1122 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1123                                           oopDesc* dst, T* dst_addr,
  1124                                           int length) {
  1126   // For performance reasons, we assume we are using a card marking write
  1127   // barrier. The assert will fail if this is not the case.
  1128   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1129   BarrierSet* bs = Universe::heap()->barrier_set();
  1130   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1131   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1132   if (src == dst) {
  1133     // same object, no check
  1134     bs->write_ref_array_pre(dst_addr, length);
  1135     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1136     bs->write_ref_array((HeapWord*)dst_addr, length);
  1137     return ac_ok;
  1138   } else {
  1139     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1140     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1141     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1142       // Elements are guaranteed to be subtypes, so no check necessary
  1143       bs->write_ref_array_pre(dst_addr, length);
  1144       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1145       bs->write_ref_array((HeapWord*)dst_addr, length);
  1146       return ac_ok;
  1149   return ac_failed;
  1152 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1153 // and we did not copy anything
  1154 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1155 #ifndef PRODUCT
  1156   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1157 #endif
  1159   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1160   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1161   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1162   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1164   if (length == 0) return ac_ok;
  1165   if (src->is_typeArray()) {
  1166     const klassOop klass_oop = src->klass();
  1167     if (klass_oop != dst->klass()) return ac_failed;
  1168     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1169     const int l2es = klass->log2_element_size();
  1170     const int ihs = klass->array_header_in_bytes() / wordSize;
  1171     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1172     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1173     // Potential problem: memmove is not guaranteed to be word atomic
  1174     // Revisit in Merlin
  1175     memmove(dst_addr, src_addr, length << l2es);
  1176     return ac_ok;
  1177   } else if (src->is_objArray() && dst->is_objArray()) {
  1178     if (UseCompressedOops) {
  1179       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1180       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1181       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1182     } else {
  1183       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1184       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1185       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1188   return ac_failed;
  1189 JRT_END
  1192 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1193 #ifndef PRODUCT
  1194   _primitive_arraycopy_cnt++;
  1195 #endif
  1197   if (length == 0) return;
  1198   // Not guaranteed to be word atomic, but that doesn't matter
  1199   // for anything but an oop array, which is covered by oop_arraycopy.
  1200   Copy::conjoint_jbytes(src, dst, length);
  1201 JRT_END
  1203 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1204 #ifndef PRODUCT
  1205   _oop_arraycopy_cnt++;
  1206 #endif
  1208   if (num == 0) return;
  1209   BarrierSet* bs = Universe::heap()->barrier_set();
  1210   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1211   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1212   if (UseCompressedOops) {
  1213     bs->write_ref_array_pre((narrowOop*)dst, num);
  1214     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
  1215   } else {
  1216     bs->write_ref_array_pre((oop*)dst, num);
  1217     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1219   bs->write_ref_array(dst, num);
  1220 JRT_END
  1223 #ifndef PRODUCT
  1224 void Runtime1::print_statistics() {
  1225   tty->print_cr("C1 Runtime statistics:");
  1226   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1227   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1228   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1229   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1230   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1231   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1232   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1233   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
  1234   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1236   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1237   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1238   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1239   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1240   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1241   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1242   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1244   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1245   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1246   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1247   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1248   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1249   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1250   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1251   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1253   SharedRuntime::print_ic_miss_histogram();
  1254   tty->cr();
  1256 #endif // PRODUCT

mercurial