src/share/vm/c1/c1_IR.cpp

Wed, 13 Apr 2011 17:56:43 -0700

author
johnc
date
Wed, 13 Apr 2011 17:56:43 -0700
changeset 2786
59766fd005ff
parent 2349
5ddfcf4b079e
child 3592
701a83c86f28
permissions
-rw-r--r--

7035117: G1: nsk/stress/jni/jnistress002 fails with assertion failure
Summary: Allow long type for offset in G1 code in compiler implementations of Unsafe.getObject
Reviewed-by: never, iveresov

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_GraphBuilder.hpp"
    29 #include "c1/c1_IR.hpp"
    30 #include "c1/c1_InstructionPrinter.hpp"
    31 #include "c1/c1_Optimizer.hpp"
    32 #include "utilities/bitMap.inline.hpp"
    35 // Implementation of XHandlers
    36 //
    37 // Note: This code could eventually go away if we are
    38 //       just using the ciExceptionHandlerStream.
    40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    41   ciExceptionHandlerStream s(method);
    42   while (!s.is_done()) {
    43     _list.append(new XHandler(s.handler()));
    44     s.next();
    45   }
    46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    47 }
    49 // deep copy of all XHandler contained in list
    50 XHandlers::XHandlers(XHandlers* other) :
    51   _list(other->length())
    52 {
    53   for (int i = 0; i < other->length(); i++) {
    54     _list.append(new XHandler(other->handler_at(i)));
    55   }
    56 }
    58 // Returns whether a particular exception type can be caught.  Also
    59 // returns true if klass is unloaded or any exception handler
    60 // classes are unloaded.  type_is_exact indicates whether the throw
    61 // is known to be exactly that class or it might throw a subtype.
    62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    63   // the type is unknown so be conservative
    64   if (!klass->is_loaded()) {
    65     return true;
    66   }
    68   for (int i = 0; i < length(); i++) {
    69     XHandler* handler = handler_at(i);
    70     if (handler->is_catch_all()) {
    71       // catch of ANY
    72       return true;
    73     }
    74     ciInstanceKlass* handler_klass = handler->catch_klass();
    75     // if it's unknown it might be catchable
    76     if (!handler_klass->is_loaded()) {
    77       return true;
    78     }
    79     // if the throw type is definitely a subtype of the catch type
    80     // then it can be caught.
    81     if (klass->is_subtype_of(handler_klass)) {
    82       return true;
    83     }
    84     if (!type_is_exact) {
    85       // If the type isn't exactly known then it can also be caught by
    86       // catch statements where the inexact type is a subtype of the
    87       // catch type.
    88       // given: foo extends bar extends Exception
    89       // throw bar can be caught by catch foo, catch bar, and catch
    90       // Exception, however it can't be caught by any handlers without
    91       // bar in its type hierarchy.
    92       if (handler_klass->is_subtype_of(klass)) {
    93         return true;
    94       }
    95     }
    96   }
    98   return false;
    99 }
   102 bool XHandlers::equals(XHandlers* others) const {
   103   if (others == NULL) return false;
   104   if (length() != others->length()) return false;
   106   for (int i = 0; i < length(); i++) {
   107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
   108   }
   109   return true;
   110 }
   112 bool XHandler::equals(XHandler* other) const {
   113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   115   if (entry_pco() != other->entry_pco()) return false;
   116   if (scope_count() != other->scope_count()) return false;
   117   if (_desc != other->_desc) return false;
   119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   120   return true;
   121 }
   124 // Implementation of IRScope
   125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   126   GraphBuilder gm(compilation, this);
   127   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   128   if (compilation->bailed_out()) return NULL;
   129   return gm.start();
   130 }
   133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   134 : _callees(2)
   135 , _compilation(compilation)
   136 , _requires_phi_function(method->max_locals())
   137 {
   138   _caller             = caller;
   139   _level              = caller == NULL ?  0 : caller->level() + 1;
   140   _method             = method;
   141   _xhandlers          = new XHandlers(method);
   142   _number_of_locks    = 0;
   143   _monitor_pairing_ok = method->has_balanced_monitors();
   144   _start              = NULL;
   146   if (osr_bci == -1) {
   147     _requires_phi_function.clear();
   148   } else {
   149         // selective creation of phi functions is not possibel in osr-methods
   150     _requires_phi_function.set_range(0, method->max_locals());
   151   }
   153   assert(method->holder()->is_loaded() , "method holder must be loaded");
   155   // build graph if monitor pairing is ok
   156   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   157 }
   160 int IRScope::max_stack() const {
   161   int my_max = method()->max_stack();
   162   int callee_max = 0;
   163   for (int i = 0; i < number_of_callees(); i++) {
   164     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   165   }
   166   return my_max + callee_max;
   167 }
   170 bool IRScopeDebugInfo::should_reexecute() {
   171   ciMethod* cur_method = scope()->method();
   172   int       cur_bci    = bci();
   173   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
   174     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   175     return Interpreter::bytecode_should_reexecute(code);
   176   } else
   177     return false;
   178 }
   181 // Implementation of CodeEmitInfo
   183 // Stack must be NON-null
   184 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
   185   : _scope(stack->scope())
   186   , _scope_debug_info(NULL)
   187   , _oop_map(NULL)
   188   , _stack(stack)
   189   , _exception_handlers(exception_handlers)
   190   , _is_method_handle_invoke(false) {
   191   assert(_stack != NULL, "must be non null");
   192 }
   195 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
   196   : _scope(info->_scope)
   197   , _exception_handlers(NULL)
   198   , _scope_debug_info(NULL)
   199   , _oop_map(NULL)
   200   , _stack(stack == NULL ? info->_stack : stack)
   201   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
   203   // deep copy of exception handlers
   204   if (info->_exception_handlers != NULL) {
   205     _exception_handlers = new XHandlers(info->_exception_handlers);
   206   }
   207 }
   210 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   211   // record the safepoint before recording the debug info for enclosing scopes
   212   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   213   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
   214   recorder->end_safepoint(pc_offset);
   215 }
   218 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   219   assert(_oop_map != NULL, "oop map must already exist");
   220   assert(opr->is_single_cpu(), "should not call otherwise");
   222   VMReg name = frame_map()->regname(opr);
   223   _oop_map->set_oop(name);
   224 }
   229 // Implementation of IR
   231 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   232     _locals_size(in_WordSize(-1))
   233   , _num_loops(0) {
   234   // setup IR fields
   235   _compilation = compilation;
   236   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   237   _code        = NULL;
   238 }
   241 void IR::optimize() {
   242   Optimizer opt(this);
   243   if (!compilation()->profile_branches()) {
   244     if (DoCEE) {
   245       opt.eliminate_conditional_expressions();
   246 #ifndef PRODUCT
   247       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   248       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   249 #endif
   250     }
   251     if (EliminateBlocks) {
   252       opt.eliminate_blocks();
   253 #ifndef PRODUCT
   254       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   255       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   256 #endif
   257     }
   258   }
   259   if (EliminateNullChecks) {
   260     opt.eliminate_null_checks();
   261 #ifndef PRODUCT
   262     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   263     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   264 #endif
   265   }
   266 }
   269 static int sort_pairs(BlockPair** a, BlockPair** b) {
   270   if ((*a)->from() == (*b)->from()) {
   271     return (*a)->to()->block_id() - (*b)->to()->block_id();
   272   } else {
   273     return (*a)->from()->block_id() - (*b)->from()->block_id();
   274   }
   275 }
   278 class CriticalEdgeFinder: public BlockClosure {
   279   BlockPairList blocks;
   280   IR*       _ir;
   282  public:
   283   CriticalEdgeFinder(IR* ir): _ir(ir) {}
   284   void block_do(BlockBegin* bb) {
   285     BlockEnd* be = bb->end();
   286     int nos = be->number_of_sux();
   287     if (nos >= 2) {
   288       for (int i = 0; i < nos; i++) {
   289         BlockBegin* sux = be->sux_at(i);
   290         if (sux->number_of_preds() >= 2) {
   291           blocks.append(new BlockPair(bb, sux));
   292         }
   293       }
   294     }
   295   }
   297   void split_edges() {
   298     BlockPair* last_pair = NULL;
   299     blocks.sort(sort_pairs);
   300     for (int i = 0; i < blocks.length(); i++) {
   301       BlockPair* pair = blocks.at(i);
   302       if (last_pair != NULL && pair->is_same(last_pair)) continue;
   303       BlockBegin* from = pair->from();
   304       BlockBegin* to = pair->to();
   305       BlockBegin* split = from->insert_block_between(to);
   306 #ifndef PRODUCT
   307       if ((PrintIR || PrintIR1) && Verbose) {
   308         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   309                       from->block_id(), to->block_id(), split->block_id());
   310       }
   311 #endif
   312       last_pair = pair;
   313     }
   314   }
   315 };
   317 void IR::split_critical_edges() {
   318   CriticalEdgeFinder cef(this);
   320   iterate_preorder(&cef);
   321   cef.split_edges();
   322 }
   325 class UseCountComputer: public ValueVisitor, BlockClosure {
   326  private:
   327   void visit(Value* n) {
   328     // Local instructions and Phis for expression stack values at the
   329     // start of basic blocks are not added to the instruction list
   330     if (!(*n)->is_linked() && (*n)->can_be_linked()) {
   331       assert(false, "a node was not appended to the graph");
   332       Compilation::current()->bailout("a node was not appended to the graph");
   333     }
   334     // use n's input if not visited before
   335     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   336       // note: a) if the instruction is pinned, it will be handled by compute_use_count
   337       //       b) if the instruction has uses, it was touched before
   338       //       => in both cases we don't need to update n's values
   339       uses_do(n);
   340     }
   341     // use n
   342     (*n)->_use_count++;
   343   }
   345   Values* worklist;
   346   int depth;
   347   enum {
   348     max_recurse_depth = 20
   349   };
   351   void uses_do(Value* n) {
   352     depth++;
   353     if (depth > max_recurse_depth) {
   354       // don't allow the traversal to recurse too deeply
   355       worklist->push(*n);
   356     } else {
   357       (*n)->input_values_do(this);
   358       // special handling for some instructions
   359       if ((*n)->as_BlockEnd() != NULL) {
   360         // note on BlockEnd:
   361         //   must 'use' the stack only if the method doesn't
   362         //   terminate, however, in those cases stack is empty
   363         (*n)->state_values_do(this);
   364       }
   365     }
   366     depth--;
   367   }
   369   void block_do(BlockBegin* b) {
   370     depth = 0;
   371     // process all pinned nodes as the roots of expression trees
   372     for (Instruction* n = b; n != NULL; n = n->next()) {
   373       if (n->is_pinned()) uses_do(&n);
   374     }
   375     assert(depth == 0, "should have counted back down");
   377     // now process any unpinned nodes which recursed too deeply
   378     while (worklist->length() > 0) {
   379       Value t = worklist->pop();
   380       if (!t->is_pinned()) {
   381         // compute the use count
   382         uses_do(&t);
   384         // pin the instruction so that LIRGenerator doesn't recurse
   385         // too deeply during it's evaluation.
   386         t->pin();
   387       }
   388     }
   389     assert(depth == 0, "should have counted back down");
   390   }
   392   UseCountComputer() {
   393     worklist = new Values();
   394     depth = 0;
   395   }
   397  public:
   398   static void compute(BlockList* blocks) {
   399     UseCountComputer ucc;
   400     blocks->iterate_backward(&ucc);
   401   }
   402 };
   405 // helper macro for short definition of trace-output inside code
   406 #ifndef PRODUCT
   407   #define TRACE_LINEAR_SCAN(level, code)       \
   408     if (TraceLinearScanLevel >= level) {       \
   409       code;                                    \
   410     }
   411 #else
   412   #define TRACE_LINEAR_SCAN(level, code)
   413 #endif
   415 class ComputeLinearScanOrder : public StackObj {
   416  private:
   417   int        _max_block_id;        // the highest block_id of a block
   418   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   419   int        _num_loops;           // total number of loops
   420   bool       _iterative_dominators;// method requires iterative computation of dominatiors
   422   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   424   BitMap     _visited_blocks;      // used for recursive processing of blocks
   425   BitMap     _active_blocks;       // used for recursive processing of blocks
   426   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   427   intArray   _forward_branches;    // number of incoming forward branches for each block
   428   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   429   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   430   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   432   Compilation* _compilation;
   434   // accessors for _visited_blocks and _active_blocks
   435   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   436   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   437   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   438   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   439   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   440   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   442   // accessors for _forward_branches
   443   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   444   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   446   // accessors for _loop_map
   447   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   448   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   449   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   451   // count edges between blocks
   452   void count_edges(BlockBegin* cur, BlockBegin* parent);
   454   // loop detection
   455   void mark_loops();
   456   void clear_non_natural_loops(BlockBegin* start_block);
   457   void assign_loop_depth(BlockBegin* start_block);
   459   // computation of final block order
   460   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   461   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   462   int  compute_weight(BlockBegin* cur);
   463   bool ready_for_processing(BlockBegin* cur);
   464   void sort_into_work_list(BlockBegin* b);
   465   void append_block(BlockBegin* cur);
   466   void compute_order(BlockBegin* start_block);
   468   // fixup of dominators for non-natural loops
   469   bool compute_dominators_iter();
   470   void compute_dominators();
   472   // debug functions
   473   NOT_PRODUCT(void print_blocks();)
   474   DEBUG_ONLY(void verify();)
   476   Compilation* compilation() const { return _compilation; }
   477  public:
   478   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
   480   // accessors for final result
   481   BlockList* linear_scan_order() const    { return _linear_scan_order; }
   482   int        num_loops() const            { return _num_loops; }
   483 };
   486 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
   487   _max_block_id(BlockBegin::number_of_blocks()),
   488   _num_blocks(0),
   489   _num_loops(0),
   490   _iterative_dominators(false),
   491   _visited_blocks(_max_block_id),
   492   _active_blocks(_max_block_id),
   493   _dominator_blocks(_max_block_id),
   494   _forward_branches(_max_block_id, 0),
   495   _loop_end_blocks(8),
   496   _work_list(8),
   497   _linear_scan_order(NULL), // initialized later with correct size
   498   _loop_map(0, 0),          // initialized later with correct size
   499   _compilation(c)
   500 {
   501   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
   503   init_visited();
   504   count_edges(start_block, NULL);
   506   if (compilation()->is_profiling()) {
   507     ciMethod *method = compilation()->method();
   508     if (!method->is_accessor()) {
   509       ciMethodData* md = method->method_data_or_null();
   510       assert(md != NULL, "Sanity");
   511       md->set_compilation_stats(_num_loops, _num_blocks);
   512     }
   513   }
   515   if (_num_loops > 0) {
   516     mark_loops();
   517     clear_non_natural_loops(start_block);
   518     assign_loop_depth(start_block);
   519   }
   521   compute_order(start_block);
   522   compute_dominators();
   524   NOT_PRODUCT(print_blocks());
   525   DEBUG_ONLY(verify());
   526 }
   529 // Traverse the CFG:
   530 // * count total number of blocks
   531 // * count all incoming edges and backward incoming edges
   532 // * number loop header blocks
   533 // * create a list with all loop end blocks
   534 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   535   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   536   assert(cur->dominator() == NULL, "dominator already initialized");
   538   if (is_active(cur)) {
   539     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   540     assert(is_visited(cur), "block must be visisted when block is active");
   541     assert(parent != NULL, "must have parent");
   543     cur->set(BlockBegin::linear_scan_loop_header_flag);
   544     cur->set(BlockBegin::backward_branch_target_flag);
   546     parent->set(BlockBegin::linear_scan_loop_end_flag);
   548     // When a loop header is also the start of an exception handler, then the backward branch is
   549     // an exception edge. Because such edges are usually critical edges which cannot be split, the
   550     // loop must be excluded here from processing.
   551     if (cur->is_set(BlockBegin::exception_entry_flag)) {
   552       // Make sure that dominators are correct in this weird situation
   553       _iterative_dominators = true;
   554       return;
   555     }
   556     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
   557            "loop end blocks must have one successor (critical edges are split)");
   559     _loop_end_blocks.append(parent);
   560     return;
   561   }
   563   // increment number of incoming forward branches
   564   inc_forward_branches(cur);
   566   if (is_visited(cur)) {
   567     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   568     return;
   569   }
   571   _num_blocks++;
   572   set_visited(cur);
   573   set_active(cur);
   575   // recursive call for all successors
   576   int i;
   577   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   578     count_edges(cur->sux_at(i), cur);
   579   }
   580   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   581     count_edges(cur->exception_handler_at(i), cur);
   582   }
   584   clear_active(cur);
   586   // Each loop has a unique number.
   587   // When multiple loops are nested, assign_loop_depth assumes that the
   588   // innermost loop has the lowest number. This is guaranteed by setting
   589   // the loop number after the recursive calls for the successors above
   590   // have returned.
   591   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   592     assert(cur->loop_index() == -1, "cannot set loop-index twice");
   593     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   595     cur->set_loop_index(_num_loops);
   596     _num_loops++;
   597   }
   599   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   600 }
   603 void ComputeLinearScanOrder::mark_loops() {
   604   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   606   _loop_map = BitMap2D(_num_loops, _max_block_id);
   607   _loop_map.clear();
   609   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   610     BlockBegin* loop_end   = _loop_end_blocks.at(i);
   611     BlockBegin* loop_start = loop_end->sux_at(0);
   612     int         loop_idx   = loop_start->loop_index();
   614     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   615     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   616     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   617     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   618     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   619     assert(_work_list.is_empty(), "work list must be empty before processing");
   621     // add the end-block of the loop to the working list
   622     _work_list.push(loop_end);
   623     set_block_in_loop(loop_idx, loop_end);
   624     do {
   625       BlockBegin* cur = _work_list.pop();
   627       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   628       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   630       // recursive processing of all predecessors ends when start block of loop is reached
   631       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   632         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   633           BlockBegin* pred = cur->pred_at(j);
   635           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   636             // this predecessor has not been processed yet, so add it to work list
   637             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   638             _work_list.push(pred);
   639             set_block_in_loop(loop_idx, pred);
   640           }
   641         }
   642       }
   643     } while (!_work_list.is_empty());
   644   }
   645 }
   648 // check for non-natural loops (loops where the loop header does not dominate
   649 // all other loop blocks = loops with mulitple entries).
   650 // such loops are ignored
   651 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   652   for (int i = _num_loops - 1; i >= 0; i--) {
   653     if (is_block_in_loop(i, start_block)) {
   654       // loop i contains the entry block of the method
   655       // -> this is not a natural loop, so ignore it
   656       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   658       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   659         clear_block_in_loop(i, block_id);
   660       }
   661       _iterative_dominators = true;
   662     }
   663   }
   664 }
   666 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   667   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
   668   init_visited();
   670   assert(_work_list.is_empty(), "work list must be empty before processing");
   671   _work_list.append(start_block);
   673   do {
   674     BlockBegin* cur = _work_list.pop();
   676     if (!is_visited(cur)) {
   677       set_visited(cur);
   678       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   680       // compute loop-depth and loop-index for the block
   681       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   682       int i;
   683       int loop_depth = 0;
   684       int min_loop_idx = -1;
   685       for (i = _num_loops - 1; i >= 0; i--) {
   686         if (is_block_in_loop(i, cur)) {
   687           loop_depth++;
   688           min_loop_idx = i;
   689         }
   690       }
   691       cur->set_loop_depth(loop_depth);
   692       cur->set_loop_index(min_loop_idx);
   694       // append all unvisited successors to work list
   695       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   696         _work_list.append(cur->sux_at(i));
   697       }
   698       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   699         _work_list.append(cur->exception_handler_at(i));
   700       }
   701     }
   702   } while (!_work_list.is_empty());
   703 }
   706 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   707   assert(a != NULL && b != NULL, "must have input blocks");
   709   _dominator_blocks.clear();
   710   while (a != NULL) {
   711     _dominator_blocks.set_bit(a->block_id());
   712     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   713     a = a->dominator();
   714   }
   715   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   716     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   717     b = b->dominator();
   718   }
   720   assert(b != NULL, "could not find dominator");
   721   return b;
   722 }
   724 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   725   if (cur->dominator() == NULL) {
   726     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   727     cur->set_dominator(parent);
   729   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   730     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   731     assert(cur->number_of_preds() > 1, "");
   732     cur->set_dominator(common_dominator(cur->dominator(), parent));
   733   }
   734 }
   737 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   738   BlockBegin* single_sux = NULL;
   739   if (cur->number_of_sux() == 1) {
   740     single_sux = cur->sux_at(0);
   741   }
   743   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   744   int weight = (cur->loop_depth() & 0x7FFF) << 16;
   746   // general macro for short definition of weight flags
   747   // the first instance of INC_WEIGHT_IF has the highest priority
   748   int cur_bit = 15;
   749   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   751   // this is necessery for the (very rare) case that two successing blocks have
   752   // the same loop depth, but a different loop index (can happen for endless loops
   753   // with exception handlers)
   754   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   756   // loop end blocks (blocks that end with a backward branch) are added
   757   // after all other blocks of the loop.
   758   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   760   // critical edge split blocks are prefered because than they have a bigger
   761   // proability to be completely empty
   762   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   764   // exceptions should not be thrown in normal control flow, so these blocks
   765   // are added as late as possible
   766   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   767   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   769   // exceptions handlers are added as late as possible
   770   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   772   // guarantee that weight is > 0
   773   weight |= 1;
   775   #undef INC_WEIGHT_IF
   776   assert(cur_bit >= 0, "too many flags");
   777   assert(weight > 0, "weight cannot become negative");
   779   return weight;
   780 }
   782 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   783   // Discount the edge just traveled.
   784   // When the number drops to zero, all forward branches were processed
   785   if (dec_forward_branches(cur) != 0) {
   786     return false;
   787   }
   789   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   790   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   791   return true;
   792 }
   794 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   795   assert(_work_list.index_of(cur) == -1, "block already in work list");
   797   int cur_weight = compute_weight(cur);
   799   // the linear_scan_number is used to cache the weight of a block
   800   cur->set_linear_scan_number(cur_weight);
   802 #ifndef PRODUCT
   803   if (StressLinearScan) {
   804     _work_list.insert_before(0, cur);
   805     return;
   806   }
   807 #endif
   809   _work_list.append(NULL); // provide space for new element
   811   int insert_idx = _work_list.length() - 1;
   812   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   813     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   814     insert_idx--;
   815   }
   816   _work_list.at_put(insert_idx, cur);
   818   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   819   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   821 #ifdef ASSERT
   822   for (int i = 0; i < _work_list.length(); i++) {
   823     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   824     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   825   }
   826 #endif
   827 }
   829 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   830   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   831   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   833   // currently, the linear scan order and code emit order are equal.
   834   // therefore the linear_scan_number and the weight of a block must also
   835   // be equal.
   836   cur->set_linear_scan_number(_linear_scan_order->length());
   837   _linear_scan_order->append(cur);
   838 }
   840 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   841   TRACE_LINEAR_SCAN(3, "----- computing final block order");
   843   // the start block is always the first block in the linear scan order
   844   _linear_scan_order = new BlockList(_num_blocks);
   845   append_block(start_block);
   847   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   848   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   849   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   851   BlockBegin* sux_of_osr_entry = NULL;
   852   if (osr_entry != NULL) {
   853     // special handling for osr entry:
   854     // ignore the edge between the osr entry and its successor for processing
   855     // the osr entry block is added manually below
   856     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   857     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   859     sux_of_osr_entry = osr_entry->sux_at(0);
   860     dec_forward_branches(sux_of_osr_entry);
   862     compute_dominator(osr_entry, start_block);
   863     _iterative_dominators = true;
   864   }
   865   compute_dominator(std_entry, start_block);
   867   // start processing with standard entry block
   868   assert(_work_list.is_empty(), "list must be empty before processing");
   870   if (ready_for_processing(std_entry)) {
   871     sort_into_work_list(std_entry);
   872   } else {
   873     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   874   }
   876   do {
   877     BlockBegin* cur = _work_list.pop();
   879     if (cur == sux_of_osr_entry) {
   880       // the osr entry block is ignored in normal processing, it is never added to the
   881       // work list. Instead, it is added as late as possible manually here.
   882       append_block(osr_entry);
   883       compute_dominator(cur, osr_entry);
   884     }
   885     append_block(cur);
   887     int i;
   888     int num_sux = cur->number_of_sux();
   889     // changed loop order to get "intuitive" order of if- and else-blocks
   890     for (i = 0; i < num_sux; i++) {
   891       BlockBegin* sux = cur->sux_at(i);
   892       compute_dominator(sux, cur);
   893       if (ready_for_processing(sux)) {
   894         sort_into_work_list(sux);
   895       }
   896     }
   897     num_sux = cur->number_of_exception_handlers();
   898     for (i = 0; i < num_sux; i++) {
   899       BlockBegin* sux = cur->exception_handler_at(i);
   900       compute_dominator(sux, cur);
   901       if (ready_for_processing(sux)) {
   902         sort_into_work_list(sux);
   903       }
   904     }
   905   } while (_work_list.length() > 0);
   906 }
   909 bool ComputeLinearScanOrder::compute_dominators_iter() {
   910   bool changed = false;
   911   int num_blocks = _linear_scan_order->length();
   913   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   914   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   915   for (int i = 1; i < num_blocks; i++) {
   916     BlockBegin* block = _linear_scan_order->at(i);
   918     BlockBegin* dominator = block->pred_at(0);
   919     int num_preds = block->number_of_preds();
   920     for (int i = 1; i < num_preds; i++) {
   921       dominator = common_dominator(dominator, block->pred_at(i));
   922     }
   924     if (dominator != block->dominator()) {
   925       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
   927       block->set_dominator(dominator);
   928       changed = true;
   929     }
   930   }
   931   return changed;
   932 }
   934 void ComputeLinearScanOrder::compute_dominators() {
   935   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
   937   // iterative computation of dominators is only required for methods with non-natural loops
   938   // and OSR-methods. For all other methods, the dominators computed when generating the
   939   // linear scan block order are correct.
   940   if (_iterative_dominators) {
   941     do {
   942       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
   943     } while (compute_dominators_iter());
   944   }
   946   // check that dominators are correct
   947   assert(!compute_dominators_iter(), "fix point not reached");
   948 }
   951 #ifndef PRODUCT
   952 void ComputeLinearScanOrder::print_blocks() {
   953   if (TraceLinearScanLevel >= 2) {
   954     tty->print_cr("----- loop information:");
   955     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   956       BlockBegin* cur = _linear_scan_order->at(block_idx);
   958       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
   959       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
   960         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
   961       }
   962       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
   963     }
   964   }
   966   if (TraceLinearScanLevel >= 1) {
   967     tty->print_cr("----- linear-scan block order:");
   968     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   969       BlockBegin* cur = _linear_scan_order->at(block_idx);
   970       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
   972       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
   973       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
   974       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
   975       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
   977       if (cur->dominator() != NULL) {
   978         tty->print("    dom: B%d ", cur->dominator()->block_id());
   979       } else {
   980         tty->print("    dom: NULL ");
   981       }
   983       if (cur->number_of_preds() > 0) {
   984         tty->print("    preds: ");
   985         for (int j = 0; j < cur->number_of_preds(); j++) {
   986           BlockBegin* pred = cur->pred_at(j);
   987           tty->print("B%d ", pred->block_id());
   988         }
   989       }
   990       if (cur->number_of_sux() > 0) {
   991         tty->print("    sux: ");
   992         for (int j = 0; j < cur->number_of_sux(); j++) {
   993           BlockBegin* sux = cur->sux_at(j);
   994           tty->print("B%d ", sux->block_id());
   995         }
   996       }
   997       if (cur->number_of_exception_handlers() > 0) {
   998         tty->print("    ex: ");
   999         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
  1000           BlockBegin* ex = cur->exception_handler_at(j);
  1001           tty->print("B%d ", ex->block_id());
  1004       tty->cr();
  1008 #endif
  1010 #ifdef ASSERT
  1011 void ComputeLinearScanOrder::verify() {
  1012   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1014   if (StressLinearScan) {
  1015     // blocks are scrambled when StressLinearScan is used
  1016     return;
  1019   // check that all successors of a block have a higher linear-scan-number
  1020   // and that all predecessors of a block have a lower linear-scan-number
  1021   // (only backward branches of loops are ignored)
  1022   int i;
  1023   for (i = 0; i < _linear_scan_order->length(); i++) {
  1024     BlockBegin* cur = _linear_scan_order->at(i);
  1026     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1027     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1029     int j;
  1030     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1031       BlockBegin* sux = cur->sux_at(j);
  1033       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1034       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
  1035         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1037       if (cur->loop_depth() == sux->loop_depth()) {
  1038         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1042     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1043       BlockBegin* pred = cur->pred_at(j);
  1045       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1046       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  1047         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1049       if (cur->loop_depth() == pred->loop_depth()) {
  1050         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1053       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1056     // check dominator
  1057     if (i == 0) {
  1058       assert(cur->dominator() == NULL, "first block has no dominator");
  1059     } else {
  1060       assert(cur->dominator() != NULL, "all but first block must have dominator");
  1062     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
  1065   // check that all loops are continuous
  1066   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1067     int block_idx = 0;
  1068     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1070     // skip blocks before the loop
  1071     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1072       block_idx++;
  1074     // skip blocks of loop
  1075     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1076       block_idx++;
  1078     // after the first non-loop block, there must not be another loop-block
  1079     while (block_idx < _num_blocks) {
  1080       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1081       block_idx++;
  1085 #endif
  1088 void IR::compute_code() {
  1089   assert(is_valid(), "IR must be valid");
  1091   ComputeLinearScanOrder compute_order(compilation(), start());
  1092   _num_loops = compute_order.num_loops();
  1093   _code = compute_order.linear_scan_order();
  1097 void IR::compute_use_counts() {
  1098   // make sure all values coming out of this block get evaluated.
  1099   int num_blocks = _code->length();
  1100   for (int i = 0; i < num_blocks; i++) {
  1101     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1104   // compute use counts
  1105   UseCountComputer::compute(_code);
  1109 void IR::iterate_preorder(BlockClosure* closure) {
  1110   assert(is_valid(), "IR must be valid");
  1111   start()->iterate_preorder(closure);
  1115 void IR::iterate_postorder(BlockClosure* closure) {
  1116   assert(is_valid(), "IR must be valid");
  1117   start()->iterate_postorder(closure);
  1120 void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1121   linear_scan_order()->iterate_forward(closure);
  1125 #ifndef PRODUCT
  1126 class BlockPrinter: public BlockClosure {
  1127  private:
  1128   InstructionPrinter* _ip;
  1129   bool                _cfg_only;
  1130   bool                _live_only;
  1132  public:
  1133   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1134     _ip       = ip;
  1135     _cfg_only = cfg_only;
  1136     _live_only = live_only;
  1139   virtual void block_do(BlockBegin* block) {
  1140     if (_cfg_only) {
  1141       _ip->print_instr(block); tty->cr();
  1142     } else {
  1143       block->print_block(*_ip, _live_only);
  1146 };
  1149 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1150   ttyLocker ttyl;
  1151   InstructionPrinter ip(!cfg_only);
  1152   BlockPrinter bp(&ip, cfg_only, live_only);
  1153   start->iterate_preorder(&bp);
  1154   tty->cr();
  1157 void IR::print(bool cfg_only, bool live_only) {
  1158   if (is_valid()) {
  1159     print(start(), cfg_only, live_only);
  1160   } else {
  1161     tty->print_cr("invalid IR");
  1166 define_array(BlockListArray, BlockList*)
  1167 define_stack(BlockListList, BlockListArray)
  1169 class PredecessorValidator : public BlockClosure {
  1170  private:
  1171   BlockListList* _predecessors;
  1172   BlockList*     _blocks;
  1174   static int cmp(BlockBegin** a, BlockBegin** b) {
  1175     return (*a)->block_id() - (*b)->block_id();
  1178  public:
  1179   PredecessorValidator(IR* hir) {
  1180     ResourceMark rm;
  1181     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1182     _blocks = new BlockList();
  1184     int i;
  1185     hir->start()->iterate_preorder(this);
  1186     if (hir->code() != NULL) {
  1187       assert(hir->code()->length() == _blocks->length(), "must match");
  1188       for (i = 0; i < _blocks->length(); i++) {
  1189         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1193     for (i = 0; i < _blocks->length(); i++) {
  1194       BlockBegin* block = _blocks->at(i);
  1195       BlockList* preds = _predecessors->at(block->block_id());
  1196       if (preds == NULL) {
  1197         assert(block->number_of_preds() == 0, "should be the same");
  1198         continue;
  1201       // clone the pred list so we can mutate it
  1202       BlockList* pred_copy = new BlockList();
  1203       int j;
  1204       for (j = 0; j < block->number_of_preds(); j++) {
  1205         pred_copy->append(block->pred_at(j));
  1207       // sort them in the same order
  1208       preds->sort(cmp);
  1209       pred_copy->sort(cmp);
  1210       int length = MIN2(preds->length(), block->number_of_preds());
  1211       for (j = 0; j < block->number_of_preds(); j++) {
  1212         assert(preds->at(j) == pred_copy->at(j), "must match");
  1215       assert(preds->length() == block->number_of_preds(), "should be the same");
  1219   virtual void block_do(BlockBegin* block) {
  1220     _blocks->append(block);
  1221     BlockEnd* be = block->end();
  1222     int n = be->number_of_sux();
  1223     int i;
  1224     for (i = 0; i < n; i++) {
  1225       BlockBegin* sux = be->sux_at(i);
  1226       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1228       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1229       if (preds == NULL) {
  1230         preds = new BlockList();
  1231         _predecessors->at_put(sux->block_id(), preds);
  1233       preds->append(block);
  1236     n = block->number_of_exception_handlers();
  1237     for (i = 0; i < n; i++) {
  1238       BlockBegin* sux = block->exception_handler_at(i);
  1239       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1241       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1242       if (preds == NULL) {
  1243         preds = new BlockList();
  1244         _predecessors->at_put(sux->block_id(), preds);
  1246       preds->append(block);
  1249 };
  1251 void IR::verify() {
  1252 #ifdef ASSERT
  1253   PredecessorValidator pv(this);
  1254 #endif
  1257 #endif // PRODUCT
  1259 void SubstitutionResolver::visit(Value* v) {
  1260   Value v0 = *v;
  1261   if (v0) {
  1262     Value vs = v0->subst();
  1263     if (vs != v0) {
  1264       *v = v0->subst();
  1269 #ifdef ASSERT
  1270 class SubstitutionChecker: public ValueVisitor {
  1271   void visit(Value* v) {
  1272     Value v0 = *v;
  1273     if (v0) {
  1274       Value vs = v0->subst();
  1275       assert(vs == v0, "missed substitution");
  1278 };
  1279 #endif
  1282 void SubstitutionResolver::block_do(BlockBegin* block) {
  1283   Instruction* last = NULL;
  1284   for (Instruction* n = block; n != NULL;) {
  1285     n->values_do(this);
  1286     // need to remove this instruction from the instruction stream
  1287     if (n->subst() != n) {
  1288       assert(last != NULL, "must have last");
  1289       last->set_next(n->next());
  1290     } else {
  1291       last = n;
  1293     n = last->next();
  1296 #ifdef ASSERT
  1297   SubstitutionChecker check_substitute;
  1298   if (block->state()) block->state()->values_do(&check_substitute);
  1299   block->block_values_do(&check_substitute);
  1300   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
  1301 #endif

mercurial