src/share/vm/runtime/sharedRuntime.cpp

Tue, 18 Mar 2014 19:07:22 +0100

author
pliden
date
Tue, 18 Mar 2014 19:07:22 +0100
changeset 6413
595c0f60d50d
parent 6220
7b9127b17b7a
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8029075: String deduplication in G1
Summary: Implementation of JEP 192, http://openjdk.java.net/jeps/192
Reviewed-by: brutisso, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "compiler/disassembler.hpp"
    35 #include "interpreter/interpreter.hpp"
    36 #include "interpreter/interpreterRuntime.hpp"
    37 #include "memory/gcLocker.inline.hpp"
    38 #include "memory/universe.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "prims/forte.hpp"
    41 #include "prims/jvmtiExport.hpp"
    42 #include "prims/jvmtiRedefineClassesTrace.hpp"
    43 #include "prims/methodHandles.hpp"
    44 #include "prims/nativeLookup.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/handles.inline.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/sharedRuntime.hpp"
    52 #include "runtime/stubRoutines.hpp"
    53 #include "runtime/vframe.hpp"
    54 #include "runtime/vframeArray.hpp"
    55 #include "utilities/copy.hpp"
    56 #include "utilities/dtrace.hpp"
    57 #include "utilities/events.hpp"
    58 #include "utilities/hashtable.inline.hpp"
    59 #include "utilities/macros.hpp"
    60 #include "utilities/xmlstream.hpp"
    61 #ifdef TARGET_ARCH_x86
    62 # include "nativeInst_x86.hpp"
    63 # include "vmreg_x86.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_sparc
    66 # include "nativeInst_sparc.hpp"
    67 # include "vmreg_sparc.inline.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_zero
    70 # include "nativeInst_zero.hpp"
    71 # include "vmreg_zero.inline.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_arm
    74 # include "nativeInst_arm.hpp"
    75 # include "vmreg_arm.inline.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_ppc
    78 # include "nativeInst_ppc.hpp"
    79 # include "vmreg_ppc.inline.hpp"
    80 #endif
    81 #ifdef COMPILER1
    82 #include "c1/c1_Runtime1.hpp"
    83 #endif
    85 // Shared stub locations
    86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    87 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
    88 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    89 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    90 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    91 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    94 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
    95 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    96 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    98 #ifdef COMPILER2
    99 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
   100 #endif // COMPILER2
   103 //----------------------------generate_stubs-----------------------------------
   104 void SharedRuntime::generate_stubs() {
   105   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
   106   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
   107   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
   108   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
   109   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
   110   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
   112 #ifdef COMPILER2
   113   // Vectors are generated only by C2.
   114   if (is_wide_vector(MaxVectorSize)) {
   115     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
   116   }
   117 #endif // COMPILER2
   118   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
   119   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
   121   generate_deopt_blob();
   123 #ifdef COMPILER2
   124   generate_uncommon_trap_blob();
   125 #endif // COMPILER2
   126 }
   128 #include <math.h>
   130 #ifndef USDT2
   131 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   132 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   133                       char*, int, char*, int, char*, int);
   134 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   135                       char*, int, char*, int, char*, int);
   136 #endif /* !USDT2 */
   138 // Implementation of SharedRuntime
   140 #ifndef PRODUCT
   141 // For statistics
   142 int SharedRuntime::_ic_miss_ctr = 0;
   143 int SharedRuntime::_wrong_method_ctr = 0;
   144 int SharedRuntime::_resolve_static_ctr = 0;
   145 int SharedRuntime::_resolve_virtual_ctr = 0;
   146 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   147 int SharedRuntime::_implicit_null_throws = 0;
   148 int SharedRuntime::_implicit_div0_throws = 0;
   149 int SharedRuntime::_throw_null_ctr = 0;
   151 int SharedRuntime::_nof_normal_calls = 0;
   152 int SharedRuntime::_nof_optimized_calls = 0;
   153 int SharedRuntime::_nof_inlined_calls = 0;
   154 int SharedRuntime::_nof_megamorphic_calls = 0;
   155 int SharedRuntime::_nof_static_calls = 0;
   156 int SharedRuntime::_nof_inlined_static_calls = 0;
   157 int SharedRuntime::_nof_interface_calls = 0;
   158 int SharedRuntime::_nof_optimized_interface_calls = 0;
   159 int SharedRuntime::_nof_inlined_interface_calls = 0;
   160 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   161 int SharedRuntime::_nof_removable_exceptions = 0;
   163 int SharedRuntime::_new_instance_ctr=0;
   164 int SharedRuntime::_new_array_ctr=0;
   165 int SharedRuntime::_multi1_ctr=0;
   166 int SharedRuntime::_multi2_ctr=0;
   167 int SharedRuntime::_multi3_ctr=0;
   168 int SharedRuntime::_multi4_ctr=0;
   169 int SharedRuntime::_multi5_ctr=0;
   170 int SharedRuntime::_mon_enter_stub_ctr=0;
   171 int SharedRuntime::_mon_exit_stub_ctr=0;
   172 int SharedRuntime::_mon_enter_ctr=0;
   173 int SharedRuntime::_mon_exit_ctr=0;
   174 int SharedRuntime::_partial_subtype_ctr=0;
   175 int SharedRuntime::_jbyte_array_copy_ctr=0;
   176 int SharedRuntime::_jshort_array_copy_ctr=0;
   177 int SharedRuntime::_jint_array_copy_ctr=0;
   178 int SharedRuntime::_jlong_array_copy_ctr=0;
   179 int SharedRuntime::_oop_array_copy_ctr=0;
   180 int SharedRuntime::_checkcast_array_copy_ctr=0;
   181 int SharedRuntime::_unsafe_array_copy_ctr=0;
   182 int SharedRuntime::_generic_array_copy_ctr=0;
   183 int SharedRuntime::_slow_array_copy_ctr=0;
   184 int SharedRuntime::_find_handler_ctr=0;
   185 int SharedRuntime::_rethrow_ctr=0;
   187 int     SharedRuntime::_ICmiss_index                    = 0;
   188 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   189 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   192 void SharedRuntime::trace_ic_miss(address at) {
   193   for (int i = 0; i < _ICmiss_index; i++) {
   194     if (_ICmiss_at[i] == at) {
   195       _ICmiss_count[i]++;
   196       return;
   197     }
   198   }
   199   int index = _ICmiss_index++;
   200   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   201   _ICmiss_at[index] = at;
   202   _ICmiss_count[index] = 1;
   203 }
   205 void SharedRuntime::print_ic_miss_histogram() {
   206   if (ICMissHistogram) {
   207     tty->print_cr ("IC Miss Histogram:");
   208     int tot_misses = 0;
   209     for (int i = 0; i < _ICmiss_index; i++) {
   210       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   211       tot_misses += _ICmiss_count[i];
   212     }
   213     tty->print_cr ("Total IC misses: %7d", tot_misses);
   214   }
   215 }
   216 #endif // PRODUCT
   218 #if INCLUDE_ALL_GCS
   220 // G1 write-barrier pre: executed before a pointer store.
   221 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   222   if (orig == NULL) {
   223     assert(false, "should be optimized out");
   224     return;
   225   }
   226   assert(orig->is_oop(true /* ignore mark word */), "Error");
   227   // store the original value that was in the field reference
   228   thread->satb_mark_queue().enqueue(orig);
   229 JRT_END
   231 // G1 write-barrier post: executed after a pointer store.
   232 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   233   thread->dirty_card_queue().enqueue(card_addr);
   234 JRT_END
   236 #endif // INCLUDE_ALL_GCS
   239 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   240   return x * y;
   241 JRT_END
   244 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   245   if (x == min_jlong && y == CONST64(-1)) {
   246     return x;
   247   } else {
   248     return x / y;
   249   }
   250 JRT_END
   253 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   254   if (x == min_jlong && y == CONST64(-1)) {
   255     return 0;
   256   } else {
   257     return x % y;
   258   }
   259 JRT_END
   262 const juint  float_sign_mask  = 0x7FFFFFFF;
   263 const juint  float_infinity   = 0x7F800000;
   264 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   265 const julong double_infinity  = CONST64(0x7FF0000000000000);
   267 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   268 #ifdef _WIN64
   269   // 64-bit Windows on amd64 returns the wrong values for
   270   // infinity operands.
   271   union { jfloat f; juint i; } xbits, ybits;
   272   xbits.f = x;
   273   ybits.f = y;
   274   // x Mod Infinity == x unless x is infinity
   275   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   276        ((ybits.i & float_sign_mask) == float_infinity) ) {
   277     return x;
   278   }
   279 #endif
   280   return ((jfloat)fmod((double)x,(double)y));
   281 JRT_END
   284 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   285 #ifdef _WIN64
   286   union { jdouble d; julong l; } xbits, ybits;
   287   xbits.d = x;
   288   ybits.d = y;
   289   // x Mod Infinity == x unless x is infinity
   290   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   291        ((ybits.l & double_sign_mask) == double_infinity) ) {
   292     return x;
   293   }
   294 #endif
   295   return ((jdouble)fmod((double)x,(double)y));
   296 JRT_END
   298 #ifdef __SOFTFP__
   299 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   300   return x + y;
   301 JRT_END
   303 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   304   return x - y;
   305 JRT_END
   307 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   308   return x * y;
   309 JRT_END
   311 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   312   return x / y;
   313 JRT_END
   315 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   316   return x + y;
   317 JRT_END
   319 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   320   return x - y;
   321 JRT_END
   323 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   324   return x * y;
   325 JRT_END
   327 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   328   return x / y;
   329 JRT_END
   331 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   332   return (jfloat)x;
   333 JRT_END
   335 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   336   return (jdouble)x;
   337 JRT_END
   339 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   340   return (jdouble)x;
   341 JRT_END
   343 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   344   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   345 JRT_END
   347 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   348   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   349 JRT_END
   351 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   352   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   353 JRT_END
   355 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   356   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   357 JRT_END
   359 // Functions to return the opposite of the aeabi functions for nan.
   360 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   361   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   362 JRT_END
   364 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   365   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   366 JRT_END
   368 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   369   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   370 JRT_END
   372 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   373   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   374 JRT_END
   376 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   377   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   378 JRT_END
   380 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   381   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   382 JRT_END
   384 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   385   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   386 JRT_END
   388 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   389   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   390 JRT_END
   392 // Intrinsics make gcc generate code for these.
   393 float  SharedRuntime::fneg(float f)   {
   394   return -f;
   395 }
   397 double SharedRuntime::dneg(double f)  {
   398   return -f;
   399 }
   401 #endif // __SOFTFP__
   403 #if defined(__SOFTFP__) || defined(E500V2)
   404 // Intrinsics make gcc generate code for these.
   405 double SharedRuntime::dabs(double f)  {
   406   return (f <= (double)0.0) ? (double)0.0 - f : f;
   407 }
   409 #endif
   411 #if defined(__SOFTFP__) || defined(PPC)
   412 double SharedRuntime::dsqrt(double f) {
   413   return sqrt(f);
   414 }
   415 #endif
   417 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   418   if (g_isnan(x))
   419     return 0;
   420   if (x >= (jfloat) max_jint)
   421     return max_jint;
   422   if (x <= (jfloat) min_jint)
   423     return min_jint;
   424   return (jint) x;
   425 JRT_END
   428 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   429   if (g_isnan(x))
   430     return 0;
   431   if (x >= (jfloat) max_jlong)
   432     return max_jlong;
   433   if (x <= (jfloat) min_jlong)
   434     return min_jlong;
   435   return (jlong) x;
   436 JRT_END
   439 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   440   if (g_isnan(x))
   441     return 0;
   442   if (x >= (jdouble) max_jint)
   443     return max_jint;
   444   if (x <= (jdouble) min_jint)
   445     return min_jint;
   446   return (jint) x;
   447 JRT_END
   450 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   451   if (g_isnan(x))
   452     return 0;
   453   if (x >= (jdouble) max_jlong)
   454     return max_jlong;
   455   if (x <= (jdouble) min_jlong)
   456     return min_jlong;
   457   return (jlong) x;
   458 JRT_END
   461 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   462   return (jfloat)x;
   463 JRT_END
   466 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   467   return (jfloat)x;
   468 JRT_END
   471 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   472   return (jdouble)x;
   473 JRT_END
   475 // Exception handling accross interpreter/compiler boundaries
   476 //
   477 // exception_handler_for_return_address(...) returns the continuation address.
   478 // The continuation address is the entry point of the exception handler of the
   479 // previous frame depending on the return address.
   481 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   482   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   484   // Reset method handle flag.
   485   thread->set_is_method_handle_return(false);
   487   // The fastest case first
   488   CodeBlob* blob = CodeCache::find_blob(return_address);
   489   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   490   if (nm != NULL) {
   491     // Set flag if return address is a method handle call site.
   492     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   493     // native nmethods don't have exception handlers
   494     assert(!nm->is_native_method(), "no exception handler");
   495     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   496     if (nm->is_deopt_pc(return_address)) {
   497       // If we come here because of a stack overflow, the stack may be
   498       // unguarded. Reguard the stack otherwise if we return to the
   499       // deopt blob and the stack bang causes a stack overflow we
   500       // crash.
   501       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   502       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   503       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
   504       return SharedRuntime::deopt_blob()->unpack_with_exception();
   505     } else {
   506       return nm->exception_begin();
   507     }
   508   }
   510   // Entry code
   511   if (StubRoutines::returns_to_call_stub(return_address)) {
   512     return StubRoutines::catch_exception_entry();
   513   }
   514   // Interpreted code
   515   if (Interpreter::contains(return_address)) {
   516     return Interpreter::rethrow_exception_entry();
   517   }
   519   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   520   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   522 #ifndef PRODUCT
   523   { ResourceMark rm;
   524     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   525     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   526     tty->print_cr("b) other problem");
   527   }
   528 #endif // PRODUCT
   530   ShouldNotReachHere();
   531   return NULL;
   532 }
   535 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   536   return raw_exception_handler_for_return_address(thread, return_address);
   537 JRT_END
   540 address SharedRuntime::get_poll_stub(address pc) {
   541   address stub;
   542   // Look up the code blob
   543   CodeBlob *cb = CodeCache::find_blob(pc);
   545   // Should be an nmethod
   546   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   548   // Look up the relocation information
   549   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   550     "safepoint polling: type must be poll" );
   552   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   553     "Only polling locations are used for safepoint");
   555   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   556   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
   557   if (at_poll_return) {
   558     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   559            "polling page return stub not created yet");
   560     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   561   } else if (has_wide_vectors) {
   562     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
   563            "polling page vectors safepoint stub not created yet");
   564     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
   565   } else {
   566     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   567            "polling page safepoint stub not created yet");
   568     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   569   }
   570 #ifndef PRODUCT
   571   if( TraceSafepoint ) {
   572     char buf[256];
   573     jio_snprintf(buf, sizeof(buf),
   574                  "... found polling page %s exception at pc = "
   575                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   576                  at_poll_return ? "return" : "loop",
   577                  (intptr_t)pc, (intptr_t)stub);
   578     tty->print_raw_cr(buf);
   579   }
   580 #endif // PRODUCT
   581   return stub;
   582 }
   585 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   586   assert(caller.is_interpreted_frame(), "");
   587   int args_size = ArgumentSizeComputer(sig).size() + 1;
   588   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   589   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
   590   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   591   return result;
   592 }
   595 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   596   if (JvmtiExport::can_post_on_exceptions()) {
   597     vframeStream vfst(thread, true);
   598     methodHandle method = methodHandle(thread, vfst.method());
   599     address bcp = method()->bcp_from(vfst.bci());
   600     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   601   }
   602   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   603 }
   605 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   606   Handle h_exception = Exceptions::new_exception(thread, name, message);
   607   throw_and_post_jvmti_exception(thread, h_exception);
   608 }
   610 // The interpreter code to call this tracing function is only
   611 // called/generated when TraceRedefineClasses has the right bits
   612 // set. Since obsolete methods are never compiled, we don't have
   613 // to modify the compilers to generate calls to this function.
   614 //
   615 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   616     JavaThread* thread, Method* method))
   617   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   619   if (method->is_obsolete()) {
   620     // We are calling an obsolete method, but this is not necessarily
   621     // an error. Our method could have been redefined just after we
   622     // fetched the Method* from the constant pool.
   624     // RC_TRACE macro has an embedded ResourceMark
   625     RC_TRACE_WITH_THREAD(0x00001000, thread,
   626                          ("calling obsolete method '%s'",
   627                           method->name_and_sig_as_C_string()));
   628     if (RC_TRACE_ENABLED(0x00002000)) {
   629       // this option is provided to debug calls to obsolete methods
   630       guarantee(false, "faulting at call to an obsolete method.");
   631     }
   632   }
   633   return 0;
   634 JRT_END
   636 // ret_pc points into caller; we are returning caller's exception handler
   637 // for given exception
   638 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   639                                                     bool force_unwind, bool top_frame_only) {
   640   assert(nm != NULL, "must exist");
   641   ResourceMark rm;
   643   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   644   // determine handler bci, if any
   645   EXCEPTION_MARK;
   647   int handler_bci = -1;
   648   int scope_depth = 0;
   649   if (!force_unwind) {
   650     int bci = sd->bci();
   651     bool recursive_exception = false;
   652     do {
   653       bool skip_scope_increment = false;
   654       // exception handler lookup
   655       KlassHandle ek (THREAD, exception->klass());
   656       methodHandle mh(THREAD, sd->method());
   657       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
   658       if (HAS_PENDING_EXCEPTION) {
   659         recursive_exception = true;
   660         // We threw an exception while trying to find the exception handler.
   661         // Transfer the new exception to the exception handle which will
   662         // be set into thread local storage, and do another lookup for an
   663         // exception handler for this exception, this time starting at the
   664         // BCI of the exception handler which caused the exception to be
   665         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   666         // argument to ensure that the correct exception is thrown (4870175).
   667         exception = Handle(THREAD, PENDING_EXCEPTION);
   668         CLEAR_PENDING_EXCEPTION;
   669         if (handler_bci >= 0) {
   670           bci = handler_bci;
   671           handler_bci = -1;
   672           skip_scope_increment = true;
   673         }
   674       }
   675       else {
   676         recursive_exception = false;
   677       }
   678       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   679         sd = sd->sender();
   680         if (sd != NULL) {
   681           bci = sd->bci();
   682         }
   683         ++scope_depth;
   684       }
   685     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   686   }
   688   // found handling method => lookup exception handler
   689   int catch_pco = ret_pc - nm->code_begin();
   691   ExceptionHandlerTable table(nm);
   692   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   693   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   694     // Allow abbreviated catch tables.  The idea is to allow a method
   695     // to materialize its exceptions without committing to the exact
   696     // routing of exceptions.  In particular this is needed for adding
   697     // a synthethic handler to unlock monitors when inlining
   698     // synchonized methods since the unlock path isn't represented in
   699     // the bytecodes.
   700     t = table.entry_for(catch_pco, -1, 0);
   701   }
   703 #ifdef COMPILER1
   704   if (t == NULL && nm->is_compiled_by_c1()) {
   705     assert(nm->unwind_handler_begin() != NULL, "");
   706     return nm->unwind_handler_begin();
   707   }
   708 #endif
   710   if (t == NULL) {
   711     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   712     tty->print_cr("   Exception:");
   713     exception->print();
   714     tty->cr();
   715     tty->print_cr(" Compiled exception table :");
   716     table.print();
   717     nm->print_code();
   718     guarantee(false, "missing exception handler");
   719     return NULL;
   720   }
   722   return nm->code_begin() + t->pco();
   723 }
   725 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   726   // These errors occur only at call sites
   727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   728 JRT_END
   730 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   731   // These errors occur only at call sites
   732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   733 JRT_END
   735 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   737 JRT_END
   739 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   741 JRT_END
   743 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   744   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   745   // cache sites (when the callee activation is not yet set up) so we are at a call site
   746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   747 JRT_END
   749 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   750   // We avoid using the normal exception construction in this case because
   751   // it performs an upcall to Java, and we're already out of stack space.
   752   Klass* k = SystemDictionary::StackOverflowError_klass();
   753   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   754   Handle exception (thread, exception_oop);
   755   if (StackTraceInThrowable) {
   756     java_lang_Throwable::fill_in_stack_trace(exception);
   757   }
   758   throw_and_post_jvmti_exception(thread, exception);
   759 JRT_END
   761 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   762                                                            address pc,
   763                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   764 {
   765   address target_pc = NULL;
   767   if (Interpreter::contains(pc)) {
   768 #ifdef CC_INTERP
   769     // C++ interpreter doesn't throw implicit exceptions
   770     ShouldNotReachHere();
   771 #else
   772     switch (exception_kind) {
   773       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   774       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   775       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   776       default:                      ShouldNotReachHere();
   777     }
   778 #endif // !CC_INTERP
   779   } else {
   780     switch (exception_kind) {
   781       case STACK_OVERFLOW: {
   782         // Stack overflow only occurs upon frame setup; the callee is
   783         // going to be unwound. Dispatch to a shared runtime stub
   784         // which will cause the StackOverflowError to be fabricated
   785         // and processed.
   786         // For stack overflow in deoptimization blob, cleanup thread.
   787         if (thread->deopt_mark() != NULL) {
   788           Deoptimization::cleanup_deopt_info(thread, NULL);
   789         }
   790         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   791         return StubRoutines::throw_StackOverflowError_entry();
   792       }
   794       case IMPLICIT_NULL: {
   795         if (VtableStubs::contains(pc)) {
   796           // We haven't yet entered the callee frame. Fabricate an
   797           // exception and begin dispatching it in the caller. Since
   798           // the caller was at a call site, it's safe to destroy all
   799           // caller-saved registers, as these entry points do.
   800           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   802           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   803           if (vt_stub == NULL) return NULL;
   805           if (vt_stub->is_abstract_method_error(pc)) {
   806             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   807             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   808             return StubRoutines::throw_AbstractMethodError_entry();
   809           } else {
   810             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   811             return StubRoutines::throw_NullPointerException_at_call_entry();
   812           }
   813         } else {
   814           CodeBlob* cb = CodeCache::find_blob(pc);
   816           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   817           if (cb == NULL) return NULL;
   819           // Exception happened in CodeCache. Must be either:
   820           // 1. Inline-cache check in C2I handler blob,
   821           // 2. Inline-cache check in nmethod, or
   822           // 3. Implict null exception in nmethod
   824           if (!cb->is_nmethod()) {
   825             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
   826             if (!is_in_blob) {
   827               cb->print();
   828               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
   829             }
   830             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   831             // There is no handler here, so we will simply unwind.
   832             return StubRoutines::throw_NullPointerException_at_call_entry();
   833           }
   835           // Otherwise, it's an nmethod.  Consult its exception handlers.
   836           nmethod* nm = (nmethod*)cb;
   837           if (nm->inlinecache_check_contains(pc)) {
   838             // exception happened inside inline-cache check code
   839             // => the nmethod is not yet active (i.e., the frame
   840             // is not set up yet) => use return address pushed by
   841             // caller => don't push another return address
   842             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   843             return StubRoutines::throw_NullPointerException_at_call_entry();
   844           }
   846           if (nm->method()->is_method_handle_intrinsic()) {
   847             // exception happened inside MH dispatch code, similar to a vtable stub
   848             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   849             return StubRoutines::throw_NullPointerException_at_call_entry();
   850           }
   852 #ifndef PRODUCT
   853           _implicit_null_throws++;
   854 #endif
   855           target_pc = nm->continuation_for_implicit_exception(pc);
   856           // If there's an unexpected fault, target_pc might be NULL,
   857           // in which case we want to fall through into the normal
   858           // error handling code.
   859         }
   861         break; // fall through
   862       }
   865       case IMPLICIT_DIVIDE_BY_ZERO: {
   866         nmethod* nm = CodeCache::find_nmethod(pc);
   867         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   868 #ifndef PRODUCT
   869         _implicit_div0_throws++;
   870 #endif
   871         target_pc = nm->continuation_for_implicit_exception(pc);
   872         // If there's an unexpected fault, target_pc might be NULL,
   873         // in which case we want to fall through into the normal
   874         // error handling code.
   875         break; // fall through
   876       }
   878       default: ShouldNotReachHere();
   879     }
   881     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   883     // for AbortVMOnException flag
   884     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   885     if (exception_kind == IMPLICIT_NULL) {
   886       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   887     } else {
   888       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   889     }
   890     return target_pc;
   891   }
   893   ShouldNotReachHere();
   894   return NULL;
   895 }
   898 /**
   899  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
   900  * installed in the native function entry of all native Java methods before
   901  * they get linked to their actual native methods.
   902  *
   903  * \note
   904  * This method actually never gets called!  The reason is because
   905  * the interpreter's native entries call NativeLookup::lookup() which
   906  * throws the exception when the lookup fails.  The exception is then
   907  * caught and forwarded on the return from NativeLookup::lookup() call
   908  * before the call to the native function.  This might change in the future.
   909  */
   910 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
   911 {
   912   // We return a bad value here to make sure that the exception is
   913   // forwarded before we look at the return value.
   914   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
   915 }
   916 JNI_END
   918 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   919   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   920 }
   923 #ifndef PRODUCT
   924 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   925   const frame f = thread->last_frame();
   926   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   927 #ifndef PRODUCT
   928   methodHandle mh(THREAD, f.interpreter_frame_method());
   929   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   930 #endif // !PRODUCT
   931   return preserve_this_value;
   932 JRT_END
   933 #endif // !PRODUCT
   936 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   937   os::yield_all(attempts);
   938 JRT_END
   941 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   942   assert(obj->is_oop(), "must be a valid oop");
   943   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   944   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   945 JRT_END
   948 jlong SharedRuntime::get_java_tid(Thread* thread) {
   949   if (thread != NULL) {
   950     if (thread->is_Java_thread()) {
   951       oop obj = ((JavaThread*)thread)->threadObj();
   952       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   953     }
   954   }
   955   return 0;
   956 }
   958 /**
   959  * This function ought to be a void function, but cannot be because
   960  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   961  * 6254741.  Once that is fixed we can remove the dummy return value.
   962  */
   963 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   964   return dtrace_object_alloc_base(Thread::current(), o);
   965 }
   967 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   968   assert(DTraceAllocProbes, "wrong call");
   969   Klass* klass = o->klass();
   970   int size = o->size();
   971   Symbol* name = klass->name();
   972 #ifndef USDT2
   973   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   974                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   975 #else /* USDT2 */
   976   HOTSPOT_OBJECT_ALLOC(
   977                    get_java_tid(thread),
   978                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
   979 #endif /* USDT2 */
   980   return 0;
   981 }
   983 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   984     JavaThread* thread, Method* method))
   985   assert(DTraceMethodProbes, "wrong call");
   986   Symbol* kname = method->klass_name();
   987   Symbol* name = method->name();
   988   Symbol* sig = method->signature();
   989 #ifndef USDT2
   990   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   991       kname->bytes(), kname->utf8_length(),
   992       name->bytes(), name->utf8_length(),
   993       sig->bytes(), sig->utf8_length());
   994 #else /* USDT2 */
   995   HOTSPOT_METHOD_ENTRY(
   996       get_java_tid(thread),
   997       (char *) kname->bytes(), kname->utf8_length(),
   998       (char *) name->bytes(), name->utf8_length(),
   999       (char *) sig->bytes(), sig->utf8_length());
  1000 #endif /* USDT2 */
  1001   return 0;
  1002 JRT_END
  1004 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
  1005     JavaThread* thread, Method* method))
  1006   assert(DTraceMethodProbes, "wrong call");
  1007   Symbol* kname = method->klass_name();
  1008   Symbol* name = method->name();
  1009   Symbol* sig = method->signature();
  1010 #ifndef USDT2
  1011   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
  1012       kname->bytes(), kname->utf8_length(),
  1013       name->bytes(), name->utf8_length(),
  1014       sig->bytes(), sig->utf8_length());
  1015 #else /* USDT2 */
  1016   HOTSPOT_METHOD_RETURN(
  1017       get_java_tid(thread),
  1018       (char *) kname->bytes(), kname->utf8_length(),
  1019       (char *) name->bytes(), name->utf8_length(),
  1020       (char *) sig->bytes(), sig->utf8_length());
  1021 #endif /* USDT2 */
  1022   return 0;
  1023 JRT_END
  1026 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1027 // for a call current in progress, i.e., arguments has been pushed on stack
  1028 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1029 // vtable updates, etc.  Caller frame must be compiled.
  1030 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1031   ResourceMark rm(THREAD);
  1033   // last java frame on stack (which includes native call frames)
  1034   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1036   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1040 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1041 // for a call current in progress, i.e., arguments has been pushed on stack
  1042 // but callee has not been invoked yet.  Caller frame must be compiled.
  1043 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1044                                               vframeStream& vfst,
  1045                                               Bytecodes::Code& bc,
  1046                                               CallInfo& callinfo, TRAPS) {
  1047   Handle receiver;
  1048   Handle nullHandle;  //create a handy null handle for exception returns
  1050   assert(!vfst.at_end(), "Java frame must exist");
  1052   // Find caller and bci from vframe
  1053   methodHandle caller(THREAD, vfst.method());
  1054   int          bci   = vfst.bci();
  1056   // Find bytecode
  1057   Bytecode_invoke bytecode(caller, bci);
  1058   bc = bytecode.invoke_code();
  1059   int bytecode_index = bytecode.index();
  1061   // Find receiver for non-static call
  1062   if (bc != Bytecodes::_invokestatic &&
  1063       bc != Bytecodes::_invokedynamic &&
  1064       bc != Bytecodes::_invokehandle) {
  1065     // This register map must be update since we need to find the receiver for
  1066     // compiled frames. The receiver might be in a register.
  1067     RegisterMap reg_map2(thread);
  1068     frame stubFrame   = thread->last_frame();
  1069     // Caller-frame is a compiled frame
  1070     frame callerFrame = stubFrame.sender(&reg_map2);
  1072     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1073     if (callee.is_null()) {
  1074       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1076     // Retrieve from a compiled argument list
  1077     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1079     if (receiver.is_null()) {
  1080       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1084   // Resolve method. This is parameterized by bytecode.
  1085   constantPoolHandle constants(THREAD, caller->constants());
  1086   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1087   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1089 #ifdef ASSERT
  1090   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1091   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
  1092     assert(receiver.not_null(), "should have thrown exception");
  1093     KlassHandle receiver_klass(THREAD, receiver->klass());
  1094     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1095                             // klass is already loaded
  1096     KlassHandle static_receiver_klass(THREAD, rk);
  1097     // Method handle invokes might have been optimized to a direct call
  1098     // so don't check for the receiver class.
  1099     // FIXME this weakens the assert too much
  1100     methodHandle callee = callinfo.selected_method();
  1101     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1102            callee->is_method_handle_intrinsic() ||
  1103            callee->is_compiled_lambda_form(),
  1104            "actual receiver must be subclass of static receiver klass");
  1105     if (receiver_klass->oop_is_instance()) {
  1106       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1107         tty->print_cr("ERROR: Klass not yet initialized!!");
  1108         receiver_klass()->print();
  1110       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1113 #endif
  1115   return receiver;
  1118 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1119   ResourceMark rm(THREAD);
  1120   // We need first to check if any Java activations (compiled, interpreted)
  1121   // exist on the stack since last JavaCall.  If not, we need
  1122   // to get the target method from the JavaCall wrapper.
  1123   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1124   methodHandle callee_method;
  1125   if (vfst.at_end()) {
  1126     // No Java frames were found on stack since we did the JavaCall.
  1127     // Hence the stack can only contain an entry_frame.  We need to
  1128     // find the target method from the stub frame.
  1129     RegisterMap reg_map(thread, false);
  1130     frame fr = thread->last_frame();
  1131     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1132     fr = fr.sender(&reg_map);
  1133     assert(fr.is_entry_frame(), "must be");
  1134     // fr is now pointing to the entry frame.
  1135     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1136     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1137   } else {
  1138     Bytecodes::Code bc;
  1139     CallInfo callinfo;
  1140     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1141     callee_method = callinfo.selected_method();
  1143   assert(callee_method()->is_method(), "must be");
  1144   return callee_method;
  1147 // Resolves a call.
  1148 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1149                                            bool is_virtual,
  1150                                            bool is_optimized, TRAPS) {
  1151   methodHandle callee_method;
  1152   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1153   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1154     int retry_count = 0;
  1155     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1156            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1157       // If has a pending exception then there is no need to re-try to
  1158       // resolve this method.
  1159       // If the method has been redefined, we need to try again.
  1160       // Hack: we have no way to update the vtables of arrays, so don't
  1161       // require that java.lang.Object has been updated.
  1163       // It is very unlikely that method is redefined more than 100 times
  1164       // in the middle of resolve. If it is looping here more than 100 times
  1165       // means then there could be a bug here.
  1166       guarantee((retry_count++ < 100),
  1167                 "Could not resolve to latest version of redefined method");
  1168       // method is redefined in the middle of resolve so re-try.
  1169       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1172   return callee_method;
  1175 // Resolves a call.  The compilers generate code for calls that go here
  1176 // and are patched with the real destination of the call.
  1177 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1178                                            bool is_virtual,
  1179                                            bool is_optimized, TRAPS) {
  1181   ResourceMark rm(thread);
  1182   RegisterMap cbl_map(thread, false);
  1183   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1185   CodeBlob* caller_cb = caller_frame.cb();
  1186   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1187   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1189   // make sure caller is not getting deoptimized
  1190   // and removed before we are done with it.
  1191   // CLEANUP - with lazy deopt shouldn't need this lock
  1192   nmethodLocker caller_lock(caller_nm);
  1194   // determine call info & receiver
  1195   // note: a) receiver is NULL for static calls
  1196   //       b) an exception is thrown if receiver is NULL for non-static calls
  1197   CallInfo call_info;
  1198   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1199   Handle receiver = find_callee_info(thread, invoke_code,
  1200                                      call_info, CHECK_(methodHandle()));
  1201   methodHandle callee_method = call_info.selected_method();
  1203   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1204          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1205          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1206          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1208   // We do not patch the call site if the caller nmethod has been made non-entrant.
  1209   if (!caller_nm->is_in_use()) {
  1210     return callee_method;
  1213 #ifndef PRODUCT
  1214   // tracing/debugging/statistics
  1215   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1216                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1217                                (&_resolve_static_ctr);
  1218   Atomic::inc(addr);
  1220   if (TraceCallFixup) {
  1221     ResourceMark rm(thread);
  1222     tty->print("resolving %s%s (%s) call to",
  1223       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1224       Bytecodes::name(invoke_code));
  1225     callee_method->print_short_name(tty);
  1226     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1228 #endif
  1230   // JSR 292 key invariant:
  1231   // If the resolved method is a MethodHandle invoke target the call
  1232   // site must be a MethodHandle call site, because the lambda form might tail-call
  1233   // leaving the stack in a state unknown to either caller or callee
  1234   // TODO detune for now but we might need it again
  1235 //  assert(!callee_method->is_compiled_lambda_form() ||
  1236 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1238   // Compute entry points. This might require generation of C2I converter
  1239   // frames, so we cannot be holding any locks here. Furthermore, the
  1240   // computation of the entry points is independent of patching the call.  We
  1241   // always return the entry-point, but we only patch the stub if the call has
  1242   // not been deoptimized.  Return values: For a virtual call this is an
  1243   // (cached_oop, destination address) pair. For a static call/optimized
  1244   // virtual this is just a destination address.
  1246   StaticCallInfo static_call_info;
  1247   CompiledICInfo virtual_call_info;
  1249   // Make sure the callee nmethod does not get deoptimized and removed before
  1250   // we are done patching the code.
  1251   nmethod* callee_nm = callee_method->code();
  1252   if (callee_nm != NULL && !callee_nm->is_in_use()) {
  1253     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
  1254     callee_nm = NULL;
  1256   nmethodLocker nl_callee(callee_nm);
  1257 #ifdef ASSERT
  1258   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1259 #endif
  1261   if (is_virtual) {
  1262     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
  1263     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1264     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
  1265     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1266                      is_optimized, static_bound, virtual_call_info,
  1267                      CHECK_(methodHandle()));
  1268   } else {
  1269     // static call
  1270     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1273   // grab lock, check for deoptimization and potentially patch caller
  1275     MutexLocker ml_patch(CompiledIC_lock);
  1277     // Lock blocks for safepoint during which both nmethods can change state.
  1279     // Now that we are ready to patch if the Method* was redefined then
  1280     // don't update call site and let the caller retry.
  1281     // Don't update call site if caller nmethod has been made non-entrant
  1282     // as it is a waste of time.
  1283     // Don't update call site if callee nmethod was unloaded or deoptimized.
  1284     // Don't update call site if callee nmethod was replaced by an other nmethod
  1285     // which may happen when multiply alive nmethod (tiered compilation)
  1286     // will be supported.
  1287     if (!callee_method->is_old() && caller_nm->is_in_use() &&
  1288         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
  1289 #ifdef ASSERT
  1290       // We must not try to patch to jump to an already unloaded method.
  1291       if (dest_entry_point != 0) {
  1292         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
  1293         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
  1294                "should not call unloaded nmethod");
  1296 #endif
  1297       if (is_virtual) {
  1298         nmethod* nm = callee_nm;
  1299         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1300         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1301         if (inline_cache->is_clean()) {
  1302           inline_cache->set_to_monomorphic(virtual_call_info);
  1304       } else {
  1305         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1306         if (ssc->is_clean()) ssc->set(static_call_info);
  1310   } // unlock CompiledIC_lock
  1312   return callee_method;
  1316 // Inline caches exist only in compiled code
  1317 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1318 #ifdef ASSERT
  1319   RegisterMap reg_map(thread, false);
  1320   frame stub_frame = thread->last_frame();
  1321   assert(stub_frame.is_runtime_frame(), "sanity check");
  1322   frame caller_frame = stub_frame.sender(&reg_map);
  1323   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1324 #endif /* ASSERT */
  1326   methodHandle callee_method;
  1327   JRT_BLOCK
  1328     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1329     // Return Method* through TLS
  1330     thread->set_vm_result_2(callee_method());
  1331   JRT_BLOCK_END
  1332   // return compiled code entry point after potential safepoints
  1333   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1334   return callee_method->verified_code_entry();
  1335 JRT_END
  1338 // Handle call site that has been made non-entrant
  1339 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1340   // 6243940 We might end up in here if the callee is deoptimized
  1341   // as we race to call it.  We don't want to take a safepoint if
  1342   // the caller was interpreted because the caller frame will look
  1343   // interpreted to the stack walkers and arguments are now
  1344   // "compiled" so it is much better to make this transition
  1345   // invisible to the stack walking code. The i2c path will
  1346   // place the callee method in the callee_target. It is stashed
  1347   // there because if we try and find the callee by normal means a
  1348   // safepoint is possible and have trouble gc'ing the compiled args.
  1349   RegisterMap reg_map(thread, false);
  1350   frame stub_frame = thread->last_frame();
  1351   assert(stub_frame.is_runtime_frame(), "sanity check");
  1352   frame caller_frame = stub_frame.sender(&reg_map);
  1354   if (caller_frame.is_interpreted_frame() ||
  1355       caller_frame.is_entry_frame()) {
  1356     Method* callee = thread->callee_target();
  1357     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1358     thread->set_vm_result_2(callee);
  1359     thread->set_callee_target(NULL);
  1360     return callee->get_c2i_entry();
  1363   // Must be compiled to compiled path which is safe to stackwalk
  1364   methodHandle callee_method;
  1365   JRT_BLOCK
  1366     // Force resolving of caller (if we called from compiled frame)
  1367     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1368     thread->set_vm_result_2(callee_method());
  1369   JRT_BLOCK_END
  1370   // return compiled code entry point after potential safepoints
  1371   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1372   return callee_method->verified_code_entry();
  1373 JRT_END
  1375 // Handle abstract method call
  1376 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
  1377   return StubRoutines::throw_AbstractMethodError_entry();
  1378 JRT_END
  1381 // resolve a static call and patch code
  1382 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1383   methodHandle callee_method;
  1384   JRT_BLOCK
  1385     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1386     thread->set_vm_result_2(callee_method());
  1387   JRT_BLOCK_END
  1388   // return compiled code entry point after potential safepoints
  1389   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1390   return callee_method->verified_code_entry();
  1391 JRT_END
  1394 // resolve virtual call and update inline cache to monomorphic
  1395 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1396   methodHandle callee_method;
  1397   JRT_BLOCK
  1398     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1399     thread->set_vm_result_2(callee_method());
  1400   JRT_BLOCK_END
  1401   // return compiled code entry point after potential safepoints
  1402   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1403   return callee_method->verified_code_entry();
  1404 JRT_END
  1407 // Resolve a virtual call that can be statically bound (e.g., always
  1408 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1409 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1410   methodHandle callee_method;
  1411   JRT_BLOCK
  1412     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1413     thread->set_vm_result_2(callee_method());
  1414   JRT_BLOCK_END
  1415   // return compiled code entry point after potential safepoints
  1416   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1417   return callee_method->verified_code_entry();
  1418 JRT_END
  1424 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1425   ResourceMark rm(thread);
  1426   CallInfo call_info;
  1427   Bytecodes::Code bc;
  1429   // receiver is NULL for static calls. An exception is thrown for NULL
  1430   // receivers for non-static calls
  1431   Handle receiver = find_callee_info(thread, bc, call_info,
  1432                                      CHECK_(methodHandle()));
  1433   // Compiler1 can produce virtual call sites that can actually be statically bound
  1434   // If we fell thru to below we would think that the site was going megamorphic
  1435   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1436   // we'd try and do a vtable dispatch however methods that can be statically bound
  1437   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1438   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1439   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1440   // never to miss again. I don't believe C2 will produce code like this but if it
  1441   // did this would still be the correct thing to do for it too, hence no ifdef.
  1442   //
  1443   if (call_info.resolved_method()->can_be_statically_bound()) {
  1444     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1445     if (TraceCallFixup) {
  1446       RegisterMap reg_map(thread, false);
  1447       frame caller_frame = thread->last_frame().sender(&reg_map);
  1448       ResourceMark rm(thread);
  1449       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1450       callee_method->print_short_name(tty);
  1451       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1452       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1454     return callee_method;
  1457   methodHandle callee_method = call_info.selected_method();
  1459   bool should_be_mono = false;
  1461 #ifndef PRODUCT
  1462   Atomic::inc(&_ic_miss_ctr);
  1464   // Statistics & Tracing
  1465   if (TraceCallFixup) {
  1466     ResourceMark rm(thread);
  1467     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1468     callee_method->print_short_name(tty);
  1469     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1472   if (ICMissHistogram) {
  1473     MutexLocker m(VMStatistic_lock);
  1474     RegisterMap reg_map(thread, false);
  1475     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1476     // produce statistics under the lock
  1477     trace_ic_miss(f.pc());
  1479 #endif
  1481   // install an event collector so that when a vtable stub is created the
  1482   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1483   // event can't be posted when the stub is created as locks are held
  1484   // - instead the event will be deferred until the event collector goes
  1485   // out of scope.
  1486   JvmtiDynamicCodeEventCollector event_collector;
  1488   // Update inline cache to megamorphic. Skip update if caller has been
  1489   // made non-entrant or we are called from interpreted.
  1490   { MutexLocker ml_patch (CompiledIC_lock);
  1491     RegisterMap reg_map(thread, false);
  1492     frame caller_frame = thread->last_frame().sender(&reg_map);
  1493     CodeBlob* cb = caller_frame.cb();
  1494     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1495       // Not a non-entrant nmethod, so find inline_cache
  1496       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1497       bool should_be_mono = false;
  1498       if (inline_cache->is_optimized()) {
  1499         if (TraceCallFixup) {
  1500           ResourceMark rm(thread);
  1501           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1502           callee_method->print_short_name(tty);
  1503           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1505         should_be_mono = true;
  1506       } else if (inline_cache->is_icholder_call()) {
  1507         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1508         if ( ic_oop != NULL) {
  1510           if (receiver()->klass() == ic_oop->holder_klass()) {
  1511             // This isn't a real miss. We must have seen that compiled code
  1512             // is now available and we want the call site converted to a
  1513             // monomorphic compiled call site.
  1514             // We can't assert for callee_method->code() != NULL because it
  1515             // could have been deoptimized in the meantime
  1516             if (TraceCallFixup) {
  1517               ResourceMark rm(thread);
  1518               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1519               callee_method->print_short_name(tty);
  1520               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1522             should_be_mono = true;
  1527       if (should_be_mono) {
  1529         // We have a path that was monomorphic but was going interpreted
  1530         // and now we have (or had) a compiled entry. We correct the IC
  1531         // by using a new icBuffer.
  1532         CompiledICInfo info;
  1533         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1534         inline_cache->compute_monomorphic_entry(callee_method,
  1535                                                 receiver_klass,
  1536                                                 inline_cache->is_optimized(),
  1537                                                 false,
  1538                                                 info, CHECK_(methodHandle()));
  1539         inline_cache->set_to_monomorphic(info);
  1540       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1541         // Potential change to megamorphic
  1542         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1543         if (!successful) {
  1544           inline_cache->set_to_clean();
  1546       } else {
  1547         // Either clean or megamorphic
  1550   } // Release CompiledIC_lock
  1552   return callee_method;
  1555 //
  1556 // Resets a call-site in compiled code so it will get resolved again.
  1557 // This routines handles both virtual call sites, optimized virtual call
  1558 // sites, and static call sites. Typically used to change a call sites
  1559 // destination from compiled to interpreted.
  1560 //
  1561 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1562   ResourceMark rm(thread);
  1563   RegisterMap reg_map(thread, false);
  1564   frame stub_frame = thread->last_frame();
  1565   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1566   frame caller = stub_frame.sender(&reg_map);
  1568   // Do nothing if the frame isn't a live compiled frame.
  1569   // nmethod could be deoptimized by the time we get here
  1570   // so no update to the caller is needed.
  1572   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1574     address pc = caller.pc();
  1576     // Default call_addr is the location of the "basic" call.
  1577     // Determine the address of the call we a reresolving. With
  1578     // Inline Caches we will always find a recognizable call.
  1579     // With Inline Caches disabled we may or may not find a
  1580     // recognizable call. We will always find a call for static
  1581     // calls and for optimized virtual calls. For vanilla virtual
  1582     // calls it depends on the state of the UseInlineCaches switch.
  1583     //
  1584     // With Inline Caches disabled we can get here for a virtual call
  1585     // for two reasons:
  1586     //   1 - calling an abstract method. The vtable for abstract methods
  1587     //       will run us thru handle_wrong_method and we will eventually
  1588     //       end up in the interpreter to throw the ame.
  1589     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1590     //       call and between the time we fetch the entry address and
  1591     //       we jump to it the target gets deoptimized. Similar to 1
  1592     //       we will wind up in the interprter (thru a c2i with c2).
  1593     //
  1594     address call_addr = NULL;
  1596       // Get call instruction under lock because another thread may be
  1597       // busy patching it.
  1598       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1599       // Location of call instruction
  1600       if (NativeCall::is_call_before(pc)) {
  1601         NativeCall *ncall = nativeCall_before(pc);
  1602         call_addr = ncall->instruction_address();
  1606     // Check for static or virtual call
  1607     bool is_static_call = false;
  1608     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1609     // Make sure nmethod doesn't get deoptimized and removed until
  1610     // this is done with it.
  1611     // CLEANUP - with lazy deopt shouldn't need this lock
  1612     nmethodLocker nmlock(caller_nm);
  1614     if (call_addr != NULL) {
  1615       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1616       int ret = iter.next(); // Get item
  1617       if (ret) {
  1618         assert(iter.addr() == call_addr, "must find call");
  1619         if (iter.type() == relocInfo::static_call_type) {
  1620           is_static_call = true;
  1621         } else {
  1622           assert(iter.type() == relocInfo::virtual_call_type ||
  1623                  iter.type() == relocInfo::opt_virtual_call_type
  1624                 , "unexpected relocInfo. type");
  1626       } else {
  1627         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1630       // Cleaning the inline cache will force a new resolve. This is more robust
  1631       // than directly setting it to the new destination, since resolving of calls
  1632       // is always done through the same code path. (experience shows that it
  1633       // leads to very hard to track down bugs, if an inline cache gets updated
  1634       // to a wrong method). It should not be performance critical, since the
  1635       // resolve is only done once.
  1637       MutexLocker ml(CompiledIC_lock);
  1638       //
  1639       // We do not patch the call site if the nmethod has been made non-entrant
  1640       // as it is a waste of time
  1641       //
  1642       if (caller_nm->is_in_use()) {
  1643         if (is_static_call) {
  1644           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1645           ssc->set_to_clean();
  1646         } else {
  1647           // compiled, dispatched call (which used to call an interpreted method)
  1648           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1649           inline_cache->set_to_clean();
  1656   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1659 #ifndef PRODUCT
  1660   Atomic::inc(&_wrong_method_ctr);
  1662   if (TraceCallFixup) {
  1663     ResourceMark rm(thread);
  1664     tty->print("handle_wrong_method reresolving call to");
  1665     callee_method->print_short_name(tty);
  1666     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1668 #endif
  1670   return callee_method;
  1673 #ifdef ASSERT
  1674 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
  1675                                                                 const BasicType* sig_bt,
  1676                                                                 const VMRegPair* regs) {
  1677   ResourceMark rm;
  1678   const int total_args_passed = method->size_of_parameters();
  1679   const VMRegPair*    regs_with_member_name = regs;
  1680         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
  1682   const int member_arg_pos = total_args_passed - 1;
  1683   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1684   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1686   const bool is_outgoing = method->is_method_handle_intrinsic();
  1687   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
  1689   for (int i = 0; i < member_arg_pos; i++) {
  1690     VMReg a =    regs_with_member_name[i].first();
  1691     VMReg b = regs_without_member_name[i].first();
  1692     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
  1694   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
  1696 #endif
  1698 // ---------------------------------------------------------------------------
  1699 // We are calling the interpreter via a c2i. Normally this would mean that
  1700 // we were called by a compiled method. However we could have lost a race
  1701 // where we went int -> i2c -> c2i and so the caller could in fact be
  1702 // interpreted. If the caller is compiled we attempt to patch the caller
  1703 // so he no longer calls into the interpreter.
  1704 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1705   Method* moop(method);
  1707   address entry_point = moop->from_compiled_entry();
  1709   // It's possible that deoptimization can occur at a call site which hasn't
  1710   // been resolved yet, in which case this function will be called from
  1711   // an nmethod that has been patched for deopt and we can ignore the
  1712   // request for a fixup.
  1713   // Also it is possible that we lost a race in that from_compiled_entry
  1714   // is now back to the i2c in that case we don't need to patch and if
  1715   // we did we'd leap into space because the callsite needs to use
  1716   // "to interpreter" stub in order to load up the Method*. Don't
  1717   // ask me how I know this...
  1719   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1720   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1721     return;
  1724   // The check above makes sure this is a nmethod.
  1725   nmethod* nm = cb->as_nmethod_or_null();
  1726   assert(nm, "must be");
  1728   // Get the return PC for the passed caller PC.
  1729   address return_pc = caller_pc + frame::pc_return_offset;
  1731   // There is a benign race here. We could be attempting to patch to a compiled
  1732   // entry point at the same time the callee is being deoptimized. If that is
  1733   // the case then entry_point may in fact point to a c2i and we'd patch the
  1734   // call site with the same old data. clear_code will set code() to NULL
  1735   // at the end of it. If we happen to see that NULL then we can skip trying
  1736   // to patch. If we hit the window where the callee has a c2i in the
  1737   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1738   // and patch the code with the same old data. Asi es la vida.
  1740   if (moop->code() == NULL) return;
  1742   if (nm->is_in_use()) {
  1744     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1745     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1746     if (NativeCall::is_call_before(return_pc)) {
  1747       NativeCall *call = nativeCall_before(return_pc);
  1748       //
  1749       // bug 6281185. We might get here after resolving a call site to a vanilla
  1750       // virtual call. Because the resolvee uses the verified entry it may then
  1751       // see compiled code and attempt to patch the site by calling us. This would
  1752       // then incorrectly convert the call site to optimized and its downhill from
  1753       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1754       // just made a call site that could be megamorphic into a monomorphic site
  1755       // for the rest of its life! Just another racing bug in the life of
  1756       // fixup_callers_callsite ...
  1757       //
  1758       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1759       iter.next();
  1760       assert(iter.has_current(), "must have a reloc at java call site");
  1761       relocInfo::relocType typ = iter.reloc()->type();
  1762       if ( typ != relocInfo::static_call_type &&
  1763            typ != relocInfo::opt_virtual_call_type &&
  1764            typ != relocInfo::static_stub_type) {
  1765         return;
  1767       address destination = call->destination();
  1768       if (destination != entry_point) {
  1769         CodeBlob* callee = CodeCache::find_blob(destination);
  1770         // callee == cb seems weird. It means calling interpreter thru stub.
  1771         if (callee == cb || callee->is_adapter_blob()) {
  1772           // static call or optimized virtual
  1773           if (TraceCallFixup) {
  1774             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1775             moop->print_short_name(tty);
  1776             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1778           call->set_destination_mt_safe(entry_point);
  1779         } else {
  1780           if (TraceCallFixup) {
  1781             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1782             moop->print_short_name(tty);
  1783             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1785           // assert is too strong could also be resolve destinations.
  1786           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1788       } else {
  1789           if (TraceCallFixup) {
  1790             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1791             moop->print_short_name(tty);
  1792             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1797 IRT_END
  1800 // same as JVM_Arraycopy, but called directly from compiled code
  1801 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1802                                                 oopDesc* dest, jint dest_pos,
  1803                                                 jint length,
  1804                                                 JavaThread* thread)) {
  1805 #ifndef PRODUCT
  1806   _slow_array_copy_ctr++;
  1807 #endif
  1808   // Check if we have null pointers
  1809   if (src == NULL || dest == NULL) {
  1810     THROW(vmSymbols::java_lang_NullPointerException());
  1812   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1813   // even though the copy_array API also performs dynamic checks to ensure
  1814   // that src and dest are truly arrays (and are conformable).
  1815   // The copy_array mechanism is awkward and could be removed, but
  1816   // the compilers don't call this function except as a last resort,
  1817   // so it probably doesn't matter.
  1818   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
  1819                                         (arrayOopDesc*)dest, dest_pos,
  1820                                         length, thread);
  1822 JRT_END
  1824 char* SharedRuntime::generate_class_cast_message(
  1825     JavaThread* thread, const char* objName) {
  1827   // Get target class name from the checkcast instruction
  1828   vframeStream vfst(thread, true);
  1829   assert(!vfst.at_end(), "Java frame must exist");
  1830   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1831   Klass* targetKlass = vfst.method()->constants()->klass_at(
  1832     cc.index(), thread);
  1833   return generate_class_cast_message(objName, targetKlass->external_name());
  1836 char* SharedRuntime::generate_class_cast_message(
  1837     const char* objName, const char* targetKlassName, const char* desc) {
  1838   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1840   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1841   if (NULL == message) {
  1842     // Shouldn't happen, but don't cause even more problems if it does
  1843     message = const_cast<char*>(objName);
  1844   } else {
  1845     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1847   return message;
  1850 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1851   (void) JavaThread::current()->reguard_stack();
  1852 JRT_END
  1855 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1856 #ifndef PRODUCT
  1857 int SharedRuntime::_monitor_enter_ctr=0;
  1858 #endif
  1859 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1860   oop obj(_obj);
  1861 #ifndef PRODUCT
  1862   _monitor_enter_ctr++;             // monitor enter slow
  1863 #endif
  1864   if (PrintBiasedLockingStatistics) {
  1865     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1867   Handle h_obj(THREAD, obj);
  1868   if (UseBiasedLocking) {
  1869     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1870     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1871   } else {
  1872     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1874   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1875 JRT_END
  1877 #ifndef PRODUCT
  1878 int SharedRuntime::_monitor_exit_ctr=0;
  1879 #endif
  1880 // Handles the uncommon cases of monitor unlocking in compiled code
  1881 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1882    oop obj(_obj);
  1883 #ifndef PRODUCT
  1884   _monitor_exit_ctr++;              // monitor exit slow
  1885 #endif
  1886   Thread* THREAD = JavaThread::current();
  1887   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1888   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1889   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1890 #undef MIGHT_HAVE_PENDING
  1891 #ifdef MIGHT_HAVE_PENDING
  1892   // Save and restore any pending_exception around the exception mark.
  1893   // While the slow_exit must not throw an exception, we could come into
  1894   // this routine with one set.
  1895   oop pending_excep = NULL;
  1896   const char* pending_file;
  1897   int pending_line;
  1898   if (HAS_PENDING_EXCEPTION) {
  1899     pending_excep = PENDING_EXCEPTION;
  1900     pending_file  = THREAD->exception_file();
  1901     pending_line  = THREAD->exception_line();
  1902     CLEAR_PENDING_EXCEPTION;
  1904 #endif /* MIGHT_HAVE_PENDING */
  1907     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1908     EXCEPTION_MARK;
  1909     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1912 #ifdef MIGHT_HAVE_PENDING
  1913   if (pending_excep != NULL) {
  1914     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1916 #endif /* MIGHT_HAVE_PENDING */
  1917 JRT_END
  1919 #ifndef PRODUCT
  1921 void SharedRuntime::print_statistics() {
  1922   ttyLocker ttyl;
  1923   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1925   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1926   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1927   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1929   SharedRuntime::print_ic_miss_histogram();
  1931   if (CountRemovableExceptions) {
  1932     if (_nof_removable_exceptions > 0) {
  1933       Unimplemented(); // this counter is not yet incremented
  1934       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1938   // Dump the JRT_ENTRY counters
  1939   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1940   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1941   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1942   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1943   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1944   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1945   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1947   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1948   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1949   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1950   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1951   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1953   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1954   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1955   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1956   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1957   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1958   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1959   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1960   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1961   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1962   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1963   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1964   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1965   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1966   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1967   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1968   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1970   AdapterHandlerLibrary::print_statistics();
  1972   if (xtty != NULL)  xtty->tail("statistics");
  1975 inline double percent(int x, int y) {
  1976   return 100.0 * x / MAX2(y, 1);
  1979 class MethodArityHistogram {
  1980  public:
  1981   enum { MAX_ARITY = 256 };
  1982  private:
  1983   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1984   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1985   static int _max_arity;                      // max. arity seen
  1986   static int _max_size;                       // max. arg size seen
  1988   static void add_method_to_histogram(nmethod* nm) {
  1989     Method* m = nm->method();
  1990     ArgumentCount args(m->signature());
  1991     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1992     int argsize = m->size_of_parameters();
  1993     arity   = MIN2(arity, MAX_ARITY-1);
  1994     argsize = MIN2(argsize, MAX_ARITY-1);
  1995     int count = nm->method()->compiled_invocation_count();
  1996     _arity_histogram[arity]  += count;
  1997     _size_histogram[argsize] += count;
  1998     _max_arity = MAX2(_max_arity, arity);
  1999     _max_size  = MAX2(_max_size, argsize);
  2002   void print_histogram_helper(int n, int* histo, const char* name) {
  2003     const int N = MIN2(5, n);
  2004     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2005     double sum = 0;
  2006     double weighted_sum = 0;
  2007     int i;
  2008     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  2009     double rest = sum;
  2010     double percent = sum / 100;
  2011     for (i = 0; i <= N; i++) {
  2012       rest -= histo[i];
  2013       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  2015     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  2016     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  2019   void print_histogram() {
  2020     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2021     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  2022     tty->print_cr("\nSame for parameter size (in words):");
  2023     print_histogram_helper(_max_size, _size_histogram, "size");
  2024     tty->cr();
  2027  public:
  2028   MethodArityHistogram() {
  2029     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  2030     _max_arity = _max_size = 0;
  2031     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  2032     CodeCache::nmethods_do(add_method_to_histogram);
  2033     print_histogram();
  2035 };
  2037 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2038 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2039 int MethodArityHistogram::_max_arity;
  2040 int MethodArityHistogram::_max_size;
  2042 void SharedRuntime::print_call_statistics(int comp_total) {
  2043   tty->print_cr("Calls from compiled code:");
  2044   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2045   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2046   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2047   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2048   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2049   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2050   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2051   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2052   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2053   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2054   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2055   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2056   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2057   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2058   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2059   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2060   tty->cr();
  2061   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2062   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2063   tty->print_cr("        %% in nested categories are relative to their category");
  2064   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2065   tty->cr();
  2067   MethodArityHistogram h;
  2069 #endif
  2072 // A simple wrapper class around the calling convention information
  2073 // that allows sharing of adapters for the same calling convention.
  2074 class AdapterFingerPrint : public CHeapObj<mtCode> {
  2075  private:
  2076   enum {
  2077     _basic_type_bits = 4,
  2078     _basic_type_mask = right_n_bits(_basic_type_bits),
  2079     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2080     _compact_int_count = 3
  2081   };
  2082   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2083   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2085   union {
  2086     int  _compact[_compact_int_count];
  2087     int* _fingerprint;
  2088   } _value;
  2089   int _length; // A negative length indicates the fingerprint is in the compact form,
  2090                // Otherwise _value._fingerprint is the array.
  2092   // Remap BasicTypes that are handled equivalently by the adapters.
  2093   // These are correct for the current system but someday it might be
  2094   // necessary to make this mapping platform dependent.
  2095   static int adapter_encoding(BasicType in) {
  2096     switch(in) {
  2097       case T_BOOLEAN:
  2098       case T_BYTE:
  2099       case T_SHORT:
  2100       case T_CHAR:
  2101         // There are all promoted to T_INT in the calling convention
  2102         return T_INT;
  2104       case T_OBJECT:
  2105       case T_ARRAY:
  2106         // In other words, we assume that any register good enough for
  2107         // an int or long is good enough for a managed pointer.
  2108 #ifdef _LP64
  2109         return T_LONG;
  2110 #else
  2111         return T_INT;
  2112 #endif
  2114       case T_INT:
  2115       case T_LONG:
  2116       case T_FLOAT:
  2117       case T_DOUBLE:
  2118       case T_VOID:
  2119         return in;
  2121       default:
  2122         ShouldNotReachHere();
  2123         return T_CONFLICT;
  2127  public:
  2128   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2129     // The fingerprint is based on the BasicType signature encoded
  2130     // into an array of ints with eight entries per int.
  2131     int* ptr;
  2132     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2133     if (len <= _compact_int_count) {
  2134       assert(_compact_int_count == 3, "else change next line");
  2135       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2136       // Storing the signature encoded as signed chars hits about 98%
  2137       // of the time.
  2138       _length = -len;
  2139       ptr = _value._compact;
  2140     } else {
  2141       _length = len;
  2142       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2143       ptr = _value._fingerprint;
  2146     // Now pack the BasicTypes with 8 per int
  2147     int sig_index = 0;
  2148     for (int index = 0; index < len; index++) {
  2149       int value = 0;
  2150       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2151         int bt = ((sig_index < total_args_passed)
  2152                   ? adapter_encoding(sig_bt[sig_index++])
  2153                   : 0);
  2154         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2155         value = (value << _basic_type_bits) | bt;
  2157       ptr[index] = value;
  2161   ~AdapterFingerPrint() {
  2162     if (_length > 0) {
  2163       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2167   int value(int index) {
  2168     if (_length < 0) {
  2169       return _value._compact[index];
  2171     return _value._fingerprint[index];
  2173   int length() {
  2174     if (_length < 0) return -_length;
  2175     return _length;
  2178   bool is_compact() {
  2179     return _length <= 0;
  2182   unsigned int compute_hash() {
  2183     int hash = 0;
  2184     for (int i = 0; i < length(); i++) {
  2185       int v = value(i);
  2186       hash = (hash << 8) ^ v ^ (hash >> 5);
  2188     return (unsigned int)hash;
  2191   const char* as_string() {
  2192     stringStream st;
  2193     st.print("0x");
  2194     for (int i = 0; i < length(); i++) {
  2195       st.print("%08x", value(i));
  2197     return st.as_string();
  2200   bool equals(AdapterFingerPrint* other) {
  2201     if (other->_length != _length) {
  2202       return false;
  2204     if (_length < 0) {
  2205       assert(_compact_int_count == 3, "else change next line");
  2206       return _value._compact[0] == other->_value._compact[0] &&
  2207              _value._compact[1] == other->_value._compact[1] &&
  2208              _value._compact[2] == other->_value._compact[2];
  2209     } else {
  2210       for (int i = 0; i < _length; i++) {
  2211         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2212           return false;
  2216     return true;
  2218 };
  2221 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2222 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2223   friend class AdapterHandlerTableIterator;
  2225  private:
  2227 #ifndef PRODUCT
  2228   static int _lookups; // number of calls to lookup
  2229   static int _buckets; // number of buckets checked
  2230   static int _equals;  // number of buckets checked with matching hash
  2231   static int _hits;    // number of successful lookups
  2232   static int _compact; // number of equals calls with compact signature
  2233 #endif
  2235   AdapterHandlerEntry* bucket(int i) {
  2236     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2239  public:
  2240   AdapterHandlerTable()
  2241     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2243   // Create a new entry suitable for insertion in the table
  2244   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2245     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2246     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2247     return entry;
  2250   // Insert an entry into the table
  2251   void add(AdapterHandlerEntry* entry) {
  2252     int index = hash_to_index(entry->hash());
  2253     add_entry(index, entry);
  2256   void free_entry(AdapterHandlerEntry* entry) {
  2257     entry->deallocate();
  2258     BasicHashtable<mtCode>::free_entry(entry);
  2261   // Find a entry with the same fingerprint if it exists
  2262   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2263     NOT_PRODUCT(_lookups++);
  2264     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2265     unsigned int hash = fp.compute_hash();
  2266     int index = hash_to_index(hash);
  2267     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2268       NOT_PRODUCT(_buckets++);
  2269       if (e->hash() == hash) {
  2270         NOT_PRODUCT(_equals++);
  2271         if (fp.equals(e->fingerprint())) {
  2272 #ifndef PRODUCT
  2273           if (fp.is_compact()) _compact++;
  2274           _hits++;
  2275 #endif
  2276           return e;
  2280     return NULL;
  2283 #ifndef PRODUCT
  2284   void print_statistics() {
  2285     ResourceMark rm;
  2286     int longest = 0;
  2287     int empty = 0;
  2288     int total = 0;
  2289     int nonempty = 0;
  2290     for (int index = 0; index < table_size(); index++) {
  2291       int count = 0;
  2292       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2293         count++;
  2295       if (count != 0) nonempty++;
  2296       if (count == 0) empty++;
  2297       if (count > longest) longest = count;
  2298       total += count;
  2300     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2301                   empty, longest, total, total / (double)nonempty);
  2302     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2303                   _lookups, _buckets, _equals, _hits, _compact);
  2305 #endif
  2306 };
  2309 #ifndef PRODUCT
  2311 int AdapterHandlerTable::_lookups;
  2312 int AdapterHandlerTable::_buckets;
  2313 int AdapterHandlerTable::_equals;
  2314 int AdapterHandlerTable::_hits;
  2315 int AdapterHandlerTable::_compact;
  2317 #endif
  2319 class AdapterHandlerTableIterator : public StackObj {
  2320  private:
  2321   AdapterHandlerTable* _table;
  2322   int _index;
  2323   AdapterHandlerEntry* _current;
  2325   void scan() {
  2326     while (_index < _table->table_size()) {
  2327       AdapterHandlerEntry* a = _table->bucket(_index);
  2328       _index++;
  2329       if (a != NULL) {
  2330         _current = a;
  2331         return;
  2336  public:
  2337   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2338     scan();
  2340   bool has_next() {
  2341     return _current != NULL;
  2343   AdapterHandlerEntry* next() {
  2344     if (_current != NULL) {
  2345       AdapterHandlerEntry* result = _current;
  2346       _current = _current->next();
  2347       if (_current == NULL) scan();
  2348       return result;
  2349     } else {
  2350       return NULL;
  2353 };
  2356 // ---------------------------------------------------------------------------
  2357 // Implementation of AdapterHandlerLibrary
  2358 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2359 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2360 const int AdapterHandlerLibrary_size = 16*K;
  2361 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2363 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2364   // Should be called only when AdapterHandlerLibrary_lock is active.
  2365   if (_buffer == NULL) // Initialize lazily
  2366       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2367   return _buffer;
  2370 void AdapterHandlerLibrary::initialize() {
  2371   if (_adapters != NULL) return;
  2372   _adapters = new AdapterHandlerTable();
  2374   // Create a special handler for abstract methods.  Abstract methods
  2375   // are never compiled so an i2c entry is somewhat meaningless, but
  2376   // throw AbstractMethodError just in case.
  2377   // Pass wrong_method_abstract for the c2i transitions to return
  2378   // AbstractMethodError for invalid invocations.
  2379   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
  2380   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2381                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2382                                                               wrong_method_abstract, wrong_method_abstract);
  2385 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2386                                                       address i2c_entry,
  2387                                                       address c2i_entry,
  2388                                                       address c2i_unverified_entry) {
  2389   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2392 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2393   // Use customized signature handler.  Need to lock around updates to
  2394   // the AdapterHandlerTable (it is not safe for concurrent readers
  2395   // and a single writer: this could be fixed if it becomes a
  2396   // problem).
  2398   // Get the address of the ic_miss handlers before we grab the
  2399   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2400   // was caused by the initialization of the stubs happening
  2401   // while we held the lock and then notifying jvmti while
  2402   // holding it. This just forces the initialization to be a little
  2403   // earlier.
  2404   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2405   assert(ic_miss != NULL, "must have handler");
  2407   ResourceMark rm;
  2409   NOT_PRODUCT(int insts_size);
  2410   AdapterBlob* new_adapter = NULL;
  2411   AdapterHandlerEntry* entry = NULL;
  2412   AdapterFingerPrint* fingerprint = NULL;
  2414     MutexLocker mu(AdapterHandlerLibrary_lock);
  2415     // make sure data structure is initialized
  2416     initialize();
  2418     if (method->is_abstract()) {
  2419       return _abstract_method_handler;
  2422     // Fill in the signature array, for the calling-convention call.
  2423     int total_args_passed = method->size_of_parameters(); // All args on stack
  2425     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2426     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2427     int i = 0;
  2428     if (!method->is_static())  // Pass in receiver first
  2429       sig_bt[i++] = T_OBJECT;
  2430     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2431       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2432       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2433         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2435     assert(i == total_args_passed, "");
  2437     // Lookup method signature's fingerprint
  2438     entry = _adapters->lookup(total_args_passed, sig_bt);
  2440 #ifdef ASSERT
  2441     AdapterHandlerEntry* shared_entry = NULL;
  2442     // Start adapter sharing verification only after the VM is booted.
  2443     if (VerifyAdapterSharing && (entry != NULL)) {
  2444       shared_entry = entry;
  2445       entry = NULL;
  2447 #endif
  2449     if (entry != NULL) {
  2450       return entry;
  2453     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2454     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2456     // Make a C heap allocated version of the fingerprint to store in the adapter
  2457     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2459     // StubRoutines::code2() is initialized after this function can be called. As a result,
  2460     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
  2461     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
  2462     // stub that ensure that an I2C stub is called from an interpreter frame.
  2463     bool contains_all_checks = StubRoutines::code2() != NULL;
  2465     // Create I2C & C2I handlers
  2466     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2467     if (buf != NULL) {
  2468       CodeBuffer buffer(buf);
  2469       short buffer_locs[20];
  2470       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2471                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2473       MacroAssembler _masm(&buffer);
  2474       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2475                                                      total_args_passed,
  2476                                                      comp_args_on_stack,
  2477                                                      sig_bt,
  2478                                                      regs,
  2479                                                      fingerprint);
  2480 #ifdef ASSERT
  2481       if (VerifyAdapterSharing) {
  2482         if (shared_entry != NULL) {
  2483           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
  2484           // Release the one just created and return the original
  2485           _adapters->free_entry(entry);
  2486           return shared_entry;
  2487         } else  {
  2488           entry->save_code(buf->code_begin(), buffer.insts_size());
  2491 #endif
  2493       new_adapter = AdapterBlob::create(&buffer);
  2494       NOT_PRODUCT(insts_size = buffer.insts_size());
  2496     if (new_adapter == NULL) {
  2497       // CodeCache is full, disable compilation
  2498       // Ought to log this but compile log is only per compile thread
  2499       // and we're some non descript Java thread.
  2500       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2501       CompileBroker::handle_full_code_cache();
  2502       return NULL; // Out of CodeCache space
  2504     entry->relocate(new_adapter->content_begin());
  2505 #ifndef PRODUCT
  2506     // debugging suppport
  2507     if (PrintAdapterHandlers || PrintStubCode) {
  2508       ttyLocker ttyl;
  2509       entry->print_adapter_on(tty);
  2510       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2511                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2512                     method->signature()->as_C_string(), insts_size);
  2513       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2514       if (Verbose || PrintStubCode) {
  2515         address first_pc = entry->base_address();
  2516         if (first_pc != NULL) {
  2517           Disassembler::decode(first_pc, first_pc + insts_size);
  2518           tty->cr();
  2522 #endif
  2523     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
  2524     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
  2525     if (contains_all_checks || !VerifyAdapterCalls) {
  2526       _adapters->add(entry);
  2529   // Outside of the lock
  2530   if (new_adapter != NULL) {
  2531     char blob_id[256];
  2532     jio_snprintf(blob_id,
  2533                  sizeof(blob_id),
  2534                  "%s(%s)@" PTR_FORMAT,
  2535                  new_adapter->name(),
  2536                  fingerprint->as_string(),
  2537                  new_adapter->content_begin());
  2538     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
  2540     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2541       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
  2544   return entry;
  2547 address AdapterHandlerEntry::base_address() {
  2548   address base = _i2c_entry;
  2549   if (base == NULL)  base = _c2i_entry;
  2550   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2551   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2552   return base;
  2555 void AdapterHandlerEntry::relocate(address new_base) {
  2556   address old_base = base_address();
  2557   assert(old_base != NULL, "");
  2558   ptrdiff_t delta = new_base - old_base;
  2559   if (_i2c_entry != NULL)
  2560     _i2c_entry += delta;
  2561   if (_c2i_entry != NULL)
  2562     _c2i_entry += delta;
  2563   if (_c2i_unverified_entry != NULL)
  2564     _c2i_unverified_entry += delta;
  2565   assert(base_address() == new_base, "");
  2569 void AdapterHandlerEntry::deallocate() {
  2570   delete _fingerprint;
  2571 #ifdef ASSERT
  2572   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2573 #endif
  2577 #ifdef ASSERT
  2578 // Capture the code before relocation so that it can be compared
  2579 // against other versions.  If the code is captured after relocation
  2580 // then relative instructions won't be equivalent.
  2581 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
  2582   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2583   _saved_code_length = length;
  2584   memcpy(_saved_code, buffer, length);
  2588 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
  2589   if (length != _saved_code_length) {
  2590     return false;
  2593   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
  2595 #endif
  2598 /**
  2599  * Create a native wrapper for this native method.  The wrapper converts the
  2600  * Java-compiled calling convention to the native convention, handles
  2601  * arguments, and transitions to native.  On return from the native we transition
  2602  * back to java blocking if a safepoint is in progress.
  2603  */
  2604 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  2605   ResourceMark rm;
  2606   nmethod* nm = NULL;
  2608   assert(method->is_native(), "must be native");
  2609   assert(method->is_method_handle_intrinsic() ||
  2610          method->has_native_function(), "must have something valid to call!");
  2613     // Perform the work while holding the lock, but perform any printing outside the lock
  2614     MutexLocker mu(AdapterHandlerLibrary_lock);
  2615     // See if somebody beat us to it
  2616     nm = method->code();
  2617     if (nm != NULL) {
  2618       return;
  2621     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
  2622     assert(compile_id > 0, "Must generate native wrapper");
  2625     ResourceMark rm;
  2626     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2627     if (buf != NULL) {
  2628       CodeBuffer buffer(buf);
  2629       double locs_buf[20];
  2630       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2631       MacroAssembler _masm(&buffer);
  2633       // Fill in the signature array, for the calling-convention call.
  2634       const int total_args_passed = method->size_of_parameters();
  2636       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2637       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2638       int i=0;
  2639       if( !method->is_static() )  // Pass in receiver first
  2640         sig_bt[i++] = T_OBJECT;
  2641       SignatureStream ss(method->signature());
  2642       for( ; !ss.at_return_type(); ss.next()) {
  2643         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2644         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2645           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2647       assert(i == total_args_passed, "");
  2648       BasicType ret_type = ss.type();
  2650       // Now get the compiled-Java layout as input (or output) arguments.
  2651       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2652       // are just trampolines so the argument registers must be outgoing ones.
  2653       const bool is_outgoing = method->is_method_handle_intrinsic();
  2654       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2656       // Generate the compiled-to-native wrapper code
  2657       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
  2659       if (nm != NULL) {
  2660         method->set_code(method, nm);
  2663   } // Unlock AdapterHandlerLibrary_lock
  2666   // Install the generated code.
  2667   if (nm != NULL) {
  2668     if (PrintCompilation) {
  2669       ttyLocker ttyl;
  2670       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2672     nm->post_compiled_method_load_event();
  2673   } else {
  2674     // CodeCache is full, disable compilation
  2675     CompileBroker::handle_full_code_cache();
  2679 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2680   assert(thread == JavaThread::current(), "must be");
  2681   // The code is about to enter a JNI lazy critical native method and
  2682   // _needs_gc is true, so if this thread is already in a critical
  2683   // section then just return, otherwise this thread should block
  2684   // until needs_gc has been cleared.
  2685   if (thread->in_critical()) {
  2686     return;
  2688   // Lock and unlock a critical section to give the system a chance to block
  2689   GC_locker::lock_critical(thread);
  2690   GC_locker::unlock_critical(thread);
  2691 JRT_END
  2693 #ifdef HAVE_DTRACE_H
  2694 // Create a dtrace nmethod for this method.  The wrapper converts the
  2695 // java compiled calling convention to the native convention, makes a dummy call
  2696 // (actually nops for the size of the call instruction, which become a trap if
  2697 // probe is enabled). The returns to the caller. Since this all looks like a
  2698 // leaf no thread transition is needed.
  2700 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2701   ResourceMark rm;
  2702   nmethod* nm = NULL;
  2704   if (PrintCompilation) {
  2705     ttyLocker ttyl;
  2706     tty->print("---   n%s  ");
  2707     method->print_short_name(tty);
  2708     if (method->is_static()) {
  2709       tty->print(" (static)");
  2711     tty->cr();
  2715     // perform the work while holding the lock, but perform any printing
  2716     // outside the lock
  2717     MutexLocker mu(AdapterHandlerLibrary_lock);
  2718     // See if somebody beat us to it
  2719     nm = method->code();
  2720     if (nm) {
  2721       return nm;
  2724     ResourceMark rm;
  2726     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2727     if (buf != NULL) {
  2728       CodeBuffer buffer(buf);
  2729       // Need a few relocation entries
  2730       double locs_buf[20];
  2731       buffer.insts()->initialize_shared_locs(
  2732         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2733       MacroAssembler _masm(&buffer);
  2735       // Generate the compiled-to-native wrapper code
  2736       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2739   return nm;
  2742 // the dtrace method needs to convert java lang string to utf8 string.
  2743 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2744   typeArrayOop jlsValue  = java_lang_String::value(src);
  2745   int          jlsOffset = java_lang_String::offset(src);
  2746   int          jlsLen    = java_lang_String::length(src);
  2747   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2748                                            jlsValue->char_at_addr(jlsOffset);
  2749   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2750   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2752 #endif // ndef HAVE_DTRACE_H
  2754 // -------------------------------------------------------------------------
  2755 // Java-Java calling convention
  2756 // (what you use when Java calls Java)
  2758 //------------------------------name_for_receiver----------------------------------
  2759 // For a given signature, return the VMReg for parameter 0.
  2760 VMReg SharedRuntime::name_for_receiver() {
  2761   VMRegPair regs;
  2762   BasicType sig_bt = T_OBJECT;
  2763   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2764   // Return argument 0 register.  In the LP64 build pointers
  2765   // take 2 registers, but the VM wants only the 'main' name.
  2766   return regs.first();
  2769 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
  2770   // This method is returning a data structure allocating as a
  2771   // ResourceObject, so do not put any ResourceMarks in here.
  2772   char *s = sig->as_C_string();
  2773   int len = (int)strlen(s);
  2774   s++; len--;                   // Skip opening paren
  2775   char *t = s+len;
  2776   while( *(--t) != ')' ) ;      // Find close paren
  2778   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2779   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2780   int cnt = 0;
  2781   if (has_receiver) {
  2782     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2785   while( s < t ) {
  2786     switch( *s++ ) {            // Switch on signature character
  2787     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2788     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2789     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2790     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2791     case 'I': sig_bt[cnt++] = T_INT;     break;
  2792     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2793     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2794     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2795     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2796     case 'L':                   // Oop
  2797       while( *s++ != ';'  ) ;   // Skip signature
  2798       sig_bt[cnt++] = T_OBJECT;
  2799       break;
  2800     case '[': {                 // Array
  2801       do {                      // Skip optional size
  2802         while( *s >= '0' && *s <= '9' ) s++;
  2803       } while( *s++ == '[' );   // Nested arrays?
  2804       // Skip element type
  2805       if( s[-1] == 'L' )
  2806         while( *s++ != ';'  ) ; // Skip signature
  2807       sig_bt[cnt++] = T_ARRAY;
  2808       break;
  2810     default : ShouldNotReachHere();
  2814   if (has_appendix) {
  2815     sig_bt[cnt++] = T_OBJECT;
  2818   assert( cnt < 256, "grow table size" );
  2820   int comp_args_on_stack;
  2821   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2823   // the calling convention doesn't count out_preserve_stack_slots so
  2824   // we must add that in to get "true" stack offsets.
  2826   if (comp_args_on_stack) {
  2827     for (int i = 0; i < cnt; i++) {
  2828       VMReg reg1 = regs[i].first();
  2829       if( reg1->is_stack()) {
  2830         // Yuck
  2831         reg1 = reg1->bias(out_preserve_stack_slots());
  2833       VMReg reg2 = regs[i].second();
  2834       if( reg2->is_stack()) {
  2835         // Yuck
  2836         reg2 = reg2->bias(out_preserve_stack_slots());
  2838       regs[i].set_pair(reg2, reg1);
  2842   // results
  2843   *arg_size = cnt;
  2844   return regs;
  2847 // OSR Migration Code
  2848 //
  2849 // This code is used convert interpreter frames into compiled frames.  It is
  2850 // called from very start of a compiled OSR nmethod.  A temp array is
  2851 // allocated to hold the interesting bits of the interpreter frame.  All
  2852 // active locks are inflated to allow them to move.  The displaced headers and
  2853 // active interpeter locals are copied into the temp buffer.  Then we return
  2854 // back to the compiled code.  The compiled code then pops the current
  2855 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2856 // copies the interpreter locals and displaced headers where it wants.
  2857 // Finally it calls back to free the temp buffer.
  2858 //
  2859 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2861 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2863   //
  2864   // This code is dependent on the memory layout of the interpreter local
  2865   // array and the monitors. On all of our platforms the layout is identical
  2866   // so this code is shared. If some platform lays the their arrays out
  2867   // differently then this code could move to platform specific code or
  2868   // the code here could be modified to copy items one at a time using
  2869   // frame accessor methods and be platform independent.
  2871   frame fr = thread->last_frame();
  2872   assert( fr.is_interpreted_frame(), "" );
  2873   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2875   // Figure out how many monitors are active.
  2876   int active_monitor_count = 0;
  2877   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2878        kptr < fr.interpreter_frame_monitor_begin();
  2879        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2880     if( kptr->obj() != NULL ) active_monitor_count++;
  2883   // QQQ we could place number of active monitors in the array so that compiled code
  2884   // could double check it.
  2886   Method* moop = fr.interpreter_frame_method();
  2887   int max_locals = moop->max_locals();
  2888   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2889   int buf_size_words = max_locals + active_monitor_count*2;
  2890   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2892   // Copy the locals.  Order is preserved so that loading of longs works.
  2893   // Since there's no GC I can copy the oops blindly.
  2894   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2895   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2896                        (HeapWord*)&buf[0],
  2897                        max_locals);
  2899   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2900   int i = max_locals;
  2901   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2902        kptr2 < fr.interpreter_frame_monitor_begin();
  2903        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2904     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2905       BasicLock *lock = kptr2->lock();
  2906       // Inflate so the displaced header becomes position-independent
  2907       if (lock->displaced_header()->is_unlocked())
  2908         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2909       // Now the displaced header is free to move
  2910       buf[i++] = (intptr_t)lock->displaced_header();
  2911       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
  2914   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2916   return buf;
  2917 JRT_END
  2919 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2920   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  2921 JRT_END
  2923 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2924   AdapterHandlerTableIterator iter(_adapters);
  2925   while (iter.has_next()) {
  2926     AdapterHandlerEntry* a = iter.next();
  2927     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2929   return false;
  2932 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2933   AdapterHandlerTableIterator iter(_adapters);
  2934   while (iter.has_next()) {
  2935     AdapterHandlerEntry* a = iter.next();
  2936     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  2937       st->print("Adapter for signature: ");
  2938       a->print_adapter_on(tty);
  2939       return;
  2942   assert(false, "Should have found handler");
  2945 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  2946   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2947                (intptr_t) this, fingerprint()->as_string(),
  2948                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  2952 #ifndef PRODUCT
  2954 void AdapterHandlerLibrary::print_statistics() {
  2955   _adapters->print_statistics();
  2958 #endif /* PRODUCT */

mercurial