src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 18 Mar 2014 19:07:22 +0100

author
pliden
date
Tue, 18 Mar 2014 19:07:22 +0100
changeset 6413
595c0f60d50d
parent 6408
bc22cbb8b45a
child 6423
2775f322649a
permissions
-rw-r--r--

8029075: String deduplication in G1
Summary: Implementation of JEP 192, http://openjdk.java.net/jeps/192
Reviewed-by: brutisso, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/codeCache.hpp"
    27 #include "code/icBuffer.hpp"
    28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    36 #include "gc_implementation/g1/g1EvacFailure.hpp"
    37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    38 #include "gc_implementation/g1/g1Log.hpp"
    39 #include "gc_implementation/g1/g1MarkSweep.hpp"
    40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    42 #include "gc_implementation/g1/g1StringDedup.hpp"
    43 #include "gc_implementation/g1/g1YCTypes.hpp"
    44 #include "gc_implementation/g1/heapRegion.inline.hpp"
    45 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    46 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    47 #include "gc_implementation/g1/vm_operations_g1.hpp"
    48 #include "gc_implementation/shared/gcHeapSummary.hpp"
    49 #include "gc_implementation/shared/gcTimer.hpp"
    50 #include "gc_implementation/shared/gcTrace.hpp"
    51 #include "gc_implementation/shared/gcTraceTime.hpp"
    52 #include "gc_implementation/shared/isGCActiveMark.hpp"
    53 #include "memory/gcLocker.inline.hpp"
    54 #include "memory/generationSpec.hpp"
    55 #include "memory/iterator.hpp"
    56 #include "memory/referenceProcessor.hpp"
    57 #include "oops/oop.inline.hpp"
    58 #include "oops/oop.pcgc.inline.hpp"
    59 #include "runtime/vmThread.hpp"
    60 #include "utilities/ticks.hpp"
    62 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    64 // turn it on so that the contents of the young list (scan-only /
    65 // to-be-collected) are printed at "strategic" points before / during
    66 // / after the collection --- this is useful for debugging
    67 #define YOUNG_LIST_VERBOSE 0
    68 // CURRENT STATUS
    69 // This file is under construction.  Search for "FIXME".
    71 // INVARIANTS/NOTES
    72 //
    73 // All allocation activity covered by the G1CollectedHeap interface is
    74 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    75 // and allocate_new_tlab, which are the "entry" points to the
    76 // allocation code from the rest of the JVM.  (Note that this does not
    77 // apply to TLAB allocation, which is not part of this interface: it
    78 // is done by clients of this interface.)
    80 // Notes on implementation of parallelism in different tasks.
    81 //
    82 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    83 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    84 // It does use run_task() which sets _n_workers in the task.
    85 // G1ParTask executes g1_process_strong_roots() ->
    86 // SharedHeap::process_strong_roots() which calls eventually to
    87 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    88 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    89 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    90 //
    92 // Local to this file.
    94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    95   SuspendibleThreadSet* _sts;
    96   G1RemSet* _g1rs;
    97   ConcurrentG1Refine* _cg1r;
    98   bool _concurrent;
    99 public:
   100   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
   101                               G1RemSet* g1rs,
   102                               ConcurrentG1Refine* cg1r) :
   103     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
   104   {}
   105   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   106     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
   107     // This path is executed by the concurrent refine or mutator threads,
   108     // concurrently, and so we do not care if card_ptr contains references
   109     // that point into the collection set.
   110     assert(!oops_into_cset, "should be");
   112     if (_concurrent && _sts->should_yield()) {
   113       // Caller will actually yield.
   114       return false;
   115     }
   116     // Otherwise, we finished successfully; return true.
   117     return true;
   118   }
   119   void set_concurrent(bool b) { _concurrent = b; }
   120 };
   123 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   124   int _calls;
   125   G1CollectedHeap* _g1h;
   126   CardTableModRefBS* _ctbs;
   127   int _histo[256];
   128 public:
   129   ClearLoggedCardTableEntryClosure() :
   130     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
   131   {
   132     for (int i = 0; i < 256; i++) _histo[i] = 0;
   133   }
   134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   136       _calls++;
   137       unsigned char* ujb = (unsigned char*)card_ptr;
   138       int ind = (int)(*ujb);
   139       _histo[ind]++;
   140       *card_ptr = -1;
   141     }
   142     return true;
   143   }
   144   int calls() { return _calls; }
   145   void print_histo() {
   146     gclog_or_tty->print_cr("Card table value histogram:");
   147     for (int i = 0; i < 256; i++) {
   148       if (_histo[i] != 0) {
   149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   150       }
   151     }
   152   }
   153 };
   155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   156   int _calls;
   157   G1CollectedHeap* _g1h;
   158   CardTableModRefBS* _ctbs;
   159 public:
   160   RedirtyLoggedCardTableEntryClosure() :
   161     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
   163   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   164     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   165       _calls++;
   166       *card_ptr = 0;
   167     }
   168     return true;
   169   }
   170   int calls() { return _calls; }
   171 };
   173 YoungList::YoungList(G1CollectedHeap* g1h) :
   174     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   175     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   176   guarantee(check_list_empty(false), "just making sure...");
   177 }
   179 void YoungList::push_region(HeapRegion *hr) {
   180   assert(!hr->is_young(), "should not already be young");
   181   assert(hr->get_next_young_region() == NULL, "cause it should!");
   183   hr->set_next_young_region(_head);
   184   _head = hr;
   186   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   187   ++_length;
   188 }
   190 void YoungList::add_survivor_region(HeapRegion* hr) {
   191   assert(hr->is_survivor(), "should be flagged as survivor region");
   192   assert(hr->get_next_young_region() == NULL, "cause it should!");
   194   hr->set_next_young_region(_survivor_head);
   195   if (_survivor_head == NULL) {
   196     _survivor_tail = hr;
   197   }
   198   _survivor_head = hr;
   199   ++_survivor_length;
   200 }
   202 void YoungList::empty_list(HeapRegion* list) {
   203   while (list != NULL) {
   204     HeapRegion* next = list->get_next_young_region();
   205     list->set_next_young_region(NULL);
   206     list->uninstall_surv_rate_group();
   207     list->set_not_young();
   208     list = next;
   209   }
   210 }
   212 void YoungList::empty_list() {
   213   assert(check_list_well_formed(), "young list should be well formed");
   215   empty_list(_head);
   216   _head = NULL;
   217   _length = 0;
   219   empty_list(_survivor_head);
   220   _survivor_head = NULL;
   221   _survivor_tail = NULL;
   222   _survivor_length = 0;
   224   _last_sampled_rs_lengths = 0;
   226   assert(check_list_empty(false), "just making sure...");
   227 }
   229 bool YoungList::check_list_well_formed() {
   230   bool ret = true;
   232   uint length = 0;
   233   HeapRegion* curr = _head;
   234   HeapRegion* last = NULL;
   235   while (curr != NULL) {
   236     if (!curr->is_young()) {
   237       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   238                              "incorrectly tagged (y: %d, surv: %d)",
   239                              curr->bottom(), curr->end(),
   240                              curr->is_young(), curr->is_survivor());
   241       ret = false;
   242     }
   243     ++length;
   244     last = curr;
   245     curr = curr->get_next_young_region();
   246   }
   247   ret = ret && (length == _length);
   249   if (!ret) {
   250     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   251     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   252                            length, _length);
   253   }
   255   return ret;
   256 }
   258 bool YoungList::check_list_empty(bool check_sample) {
   259   bool ret = true;
   261   if (_length != 0) {
   262     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   263                   _length);
   264     ret = false;
   265   }
   266   if (check_sample && _last_sampled_rs_lengths != 0) {
   267     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   268     ret = false;
   269   }
   270   if (_head != NULL) {
   271     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   272     ret = false;
   273   }
   274   if (!ret) {
   275     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   276   }
   278   return ret;
   279 }
   281 void
   282 YoungList::rs_length_sampling_init() {
   283   _sampled_rs_lengths = 0;
   284   _curr               = _head;
   285 }
   287 bool
   288 YoungList::rs_length_sampling_more() {
   289   return _curr != NULL;
   290 }
   292 void
   293 YoungList::rs_length_sampling_next() {
   294   assert( _curr != NULL, "invariant" );
   295   size_t rs_length = _curr->rem_set()->occupied();
   297   _sampled_rs_lengths += rs_length;
   299   // The current region may not yet have been added to the
   300   // incremental collection set (it gets added when it is
   301   // retired as the current allocation region).
   302   if (_curr->in_collection_set()) {
   303     // Update the collection set policy information for this region
   304     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   305   }
   307   _curr = _curr->get_next_young_region();
   308   if (_curr == NULL) {
   309     _last_sampled_rs_lengths = _sampled_rs_lengths;
   310     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   311   }
   312 }
   314 void
   315 YoungList::reset_auxilary_lists() {
   316   guarantee( is_empty(), "young list should be empty" );
   317   assert(check_list_well_formed(), "young list should be well formed");
   319   // Add survivor regions to SurvRateGroup.
   320   _g1h->g1_policy()->note_start_adding_survivor_regions();
   321   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   323   int young_index_in_cset = 0;
   324   for (HeapRegion* curr = _survivor_head;
   325        curr != NULL;
   326        curr = curr->get_next_young_region()) {
   327     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   329     // The region is a non-empty survivor so let's add it to
   330     // the incremental collection set for the next evacuation
   331     // pause.
   332     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   333     young_index_in_cset += 1;
   334   }
   335   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   336   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   338   _head   = _survivor_head;
   339   _length = _survivor_length;
   340   if (_survivor_head != NULL) {
   341     assert(_survivor_tail != NULL, "cause it shouldn't be");
   342     assert(_survivor_length > 0, "invariant");
   343     _survivor_tail->set_next_young_region(NULL);
   344   }
   346   // Don't clear the survivor list handles until the start of
   347   // the next evacuation pause - we need it in order to re-tag
   348   // the survivor regions from this evacuation pause as 'young'
   349   // at the start of the next.
   351   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   353   assert(check_list_well_formed(), "young list should be well formed");
   354 }
   356 void YoungList::print() {
   357   HeapRegion* lists[] = {_head,   _survivor_head};
   358   const char* names[] = {"YOUNG", "SURVIVOR"};
   360   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   361     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   362     HeapRegion *curr = lists[list];
   363     if (curr == NULL)
   364       gclog_or_tty->print_cr("  empty");
   365     while (curr != NULL) {
   366       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   367                              HR_FORMAT_PARAMS(curr),
   368                              curr->prev_top_at_mark_start(),
   369                              curr->next_top_at_mark_start(),
   370                              curr->age_in_surv_rate_group_cond());
   371       curr = curr->get_next_young_region();
   372     }
   373   }
   375   gclog_or_tty->print_cr("");
   376 }
   378 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   379 {
   380   // Claim the right to put the region on the dirty cards region list
   381   // by installing a self pointer.
   382   HeapRegion* next = hr->get_next_dirty_cards_region();
   383   if (next == NULL) {
   384     HeapRegion* res = (HeapRegion*)
   385       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   386                           NULL);
   387     if (res == NULL) {
   388       HeapRegion* head;
   389       do {
   390         // Put the region to the dirty cards region list.
   391         head = _dirty_cards_region_list;
   392         next = (HeapRegion*)
   393           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   394         if (next == head) {
   395           assert(hr->get_next_dirty_cards_region() == hr,
   396                  "hr->get_next_dirty_cards_region() != hr");
   397           if (next == NULL) {
   398             // The last region in the list points to itself.
   399             hr->set_next_dirty_cards_region(hr);
   400           } else {
   401             hr->set_next_dirty_cards_region(next);
   402           }
   403         }
   404       } while (next != head);
   405     }
   406   }
   407 }
   409 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   410 {
   411   HeapRegion* head;
   412   HeapRegion* hr;
   413   do {
   414     head = _dirty_cards_region_list;
   415     if (head == NULL) {
   416       return NULL;
   417     }
   418     HeapRegion* new_head = head->get_next_dirty_cards_region();
   419     if (head == new_head) {
   420       // The last region.
   421       new_head = NULL;
   422     }
   423     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   424                                           head);
   425   } while (hr != head);
   426   assert(hr != NULL, "invariant");
   427   hr->set_next_dirty_cards_region(NULL);
   428   return hr;
   429 }
   431 void G1CollectedHeap::stop_conc_gc_threads() {
   432   _cg1r->stop();
   433   _cmThread->stop();
   434 }
   436 #ifdef ASSERT
   437 // A region is added to the collection set as it is retired
   438 // so an address p can point to a region which will be in the
   439 // collection set but has not yet been retired.  This method
   440 // therefore is only accurate during a GC pause after all
   441 // regions have been retired.  It is used for debugging
   442 // to check if an nmethod has references to objects that can
   443 // be move during a partial collection.  Though it can be
   444 // inaccurate, it is sufficient for G1 because the conservative
   445 // implementation of is_scavengable() for G1 will indicate that
   446 // all nmethods must be scanned during a partial collection.
   447 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   448   HeapRegion* hr = heap_region_containing(p);
   449   return hr != NULL && hr->in_collection_set();
   450 }
   451 #endif
   453 // Returns true if the reference points to an object that
   454 // can move in an incremental collection.
   455 bool G1CollectedHeap::is_scavengable(const void* p) {
   456   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   457   G1CollectorPolicy* g1p = g1h->g1_policy();
   458   HeapRegion* hr = heap_region_containing(p);
   459   if (hr == NULL) {
   460      // null
   461      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
   462      return false;
   463   } else {
   464     return !hr->isHumongous();
   465   }
   466 }
   468 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   469   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   470   CardTableModRefBS* ct_bs = g1_barrier_set();
   472   // Count the dirty cards at the start.
   473   CountNonCleanMemRegionClosure count1(this);
   474   ct_bs->mod_card_iterate(&count1);
   475   int orig_count = count1.n();
   477   // First clear the logged cards.
   478   ClearLoggedCardTableEntryClosure clear;
   479   dcqs.set_closure(&clear);
   480   dcqs.apply_closure_to_all_completed_buffers();
   481   dcqs.iterate_closure_all_threads(false);
   482   clear.print_histo();
   484   // Now ensure that there's no dirty cards.
   485   CountNonCleanMemRegionClosure count2(this);
   486   ct_bs->mod_card_iterate(&count2);
   487   if (count2.n() != 0) {
   488     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   489                            count2.n(), orig_count);
   490   }
   491   guarantee(count2.n() == 0, "Card table should be clean.");
   493   RedirtyLoggedCardTableEntryClosure redirty;
   494   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   495   dcqs.apply_closure_to_all_completed_buffers();
   496   dcqs.iterate_closure_all_threads(false);
   497   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   498                          clear.calls(), orig_count);
   499   guarantee(redirty.calls() == clear.calls(),
   500             "Or else mechanism is broken.");
   502   CountNonCleanMemRegionClosure count3(this);
   503   ct_bs->mod_card_iterate(&count3);
   504   if (count3.n() != orig_count) {
   505     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   506                            orig_count, count3.n());
   507     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   508   }
   510   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   511 }
   513 // Private class members.
   515 G1CollectedHeap* G1CollectedHeap::_g1h;
   517 // Private methods.
   519 HeapRegion*
   520 G1CollectedHeap::new_region_try_secondary_free_list() {
   521   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   522   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   523     if (!_secondary_free_list.is_empty()) {
   524       if (G1ConcRegionFreeingVerbose) {
   525         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   526                                "secondary_free_list has %u entries",
   527                                _secondary_free_list.length());
   528       }
   529       // It looks as if there are free regions available on the
   530       // secondary_free_list. Let's move them to the free_list and try
   531       // again to allocate from it.
   532       append_secondary_free_list();
   534       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   535              "empty we should have moved at least one entry to the free_list");
   536       HeapRegion* res = _free_list.remove_head();
   537       if (G1ConcRegionFreeingVerbose) {
   538         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   539                                "allocated "HR_FORMAT" from secondary_free_list",
   540                                HR_FORMAT_PARAMS(res));
   541       }
   542       return res;
   543     }
   545     // Wait here until we get notified either when (a) there are no
   546     // more free regions coming or (b) some regions have been moved on
   547     // the secondary_free_list.
   548     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   549   }
   551   if (G1ConcRegionFreeingVerbose) {
   552     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   553                            "could not allocate from secondary_free_list");
   554   }
   555   return NULL;
   556 }
   558 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   559   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   560          "the only time we use this to allocate a humongous region is "
   561          "when we are allocating a single humongous region");
   563   HeapRegion* res;
   564   if (G1StressConcRegionFreeing) {
   565     if (!_secondary_free_list.is_empty()) {
   566       if (G1ConcRegionFreeingVerbose) {
   567         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   568                                "forced to look at the secondary_free_list");
   569       }
   570       res = new_region_try_secondary_free_list();
   571       if (res != NULL) {
   572         return res;
   573       }
   574     }
   575   }
   576   res = _free_list.remove_head_or_null();
   577   if (res == NULL) {
   578     if (G1ConcRegionFreeingVerbose) {
   579       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   580                              "res == NULL, trying the secondary_free_list");
   581     }
   582     res = new_region_try_secondary_free_list();
   583   }
   584   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   585     // Currently, only attempts to allocate GC alloc regions set
   586     // do_expand to true. So, we should only reach here during a
   587     // safepoint. If this assumption changes we might have to
   588     // reconsider the use of _expand_heap_after_alloc_failure.
   589     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   591     ergo_verbose1(ErgoHeapSizing,
   592                   "attempt heap expansion",
   593                   ergo_format_reason("region allocation request failed")
   594                   ergo_format_byte("allocation request"),
   595                   word_size * HeapWordSize);
   596     if (expand(word_size * HeapWordSize)) {
   597       // Given that expand() succeeded in expanding the heap, and we
   598       // always expand the heap by an amount aligned to the heap
   599       // region size, the free list should in theory not be empty. So
   600       // it would probably be OK to use remove_head(). But the extra
   601       // check for NULL is unlikely to be a performance issue here (we
   602       // just expanded the heap!) so let's just be conservative and
   603       // use remove_head_or_null().
   604       res = _free_list.remove_head_or_null();
   605     } else {
   606       _expand_heap_after_alloc_failure = false;
   607     }
   608   }
   609   return res;
   610 }
   612 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   613                                                         size_t word_size) {
   614   assert(isHumongous(word_size), "word_size should be humongous");
   615   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   617   uint first = G1_NULL_HRS_INDEX;
   618   if (num_regions == 1) {
   619     // Only one region to allocate, no need to go through the slower
   620     // path. The caller will attempt the expansion if this fails, so
   621     // let's not try to expand here too.
   622     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   623     if (hr != NULL) {
   624       first = hr->hrs_index();
   625     } else {
   626       first = G1_NULL_HRS_INDEX;
   627     }
   628   } else {
   629     // We can't allocate humongous regions while cleanupComplete() is
   630     // running, since some of the regions we find to be empty might not
   631     // yet be added to the free list and it is not straightforward to
   632     // know which list they are on so that we can remove them. Note
   633     // that we only need to do this if we need to allocate more than
   634     // one region to satisfy the current humongous allocation
   635     // request. If we are only allocating one region we use the common
   636     // region allocation code (see above).
   637     wait_while_free_regions_coming();
   638     append_secondary_free_list_if_not_empty_with_lock();
   640     if (free_regions() >= num_regions) {
   641       first = _hrs.find_contiguous(num_regions);
   642       if (first != G1_NULL_HRS_INDEX) {
   643         for (uint i = first; i < first + num_regions; ++i) {
   644           HeapRegion* hr = region_at(i);
   645           assert(hr->is_empty(), "sanity");
   646           assert(is_on_master_free_list(hr), "sanity");
   647           hr->set_pending_removal(true);
   648         }
   649         _free_list.remove_all_pending(num_regions);
   650       }
   651     }
   652   }
   653   return first;
   654 }
   656 HeapWord*
   657 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   658                                                            uint num_regions,
   659                                                            size_t word_size) {
   660   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   661   assert(isHumongous(word_size), "word_size should be humongous");
   662   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   664   // Index of last region in the series + 1.
   665   uint last = first + num_regions;
   667   // We need to initialize the region(s) we just discovered. This is
   668   // a bit tricky given that it can happen concurrently with
   669   // refinement threads refining cards on these regions and
   670   // potentially wanting to refine the BOT as they are scanning
   671   // those cards (this can happen shortly after a cleanup; see CR
   672   // 6991377). So we have to set up the region(s) carefully and in
   673   // a specific order.
   675   // The word size sum of all the regions we will allocate.
   676   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   677   assert(word_size <= word_size_sum, "sanity");
   679   // This will be the "starts humongous" region.
   680   HeapRegion* first_hr = region_at(first);
   681   // The header of the new object will be placed at the bottom of
   682   // the first region.
   683   HeapWord* new_obj = first_hr->bottom();
   684   // This will be the new end of the first region in the series that
   685   // should also match the end of the last region in the series.
   686   HeapWord* new_end = new_obj + word_size_sum;
   687   // This will be the new top of the first region that will reflect
   688   // this allocation.
   689   HeapWord* new_top = new_obj + word_size;
   691   // First, we need to zero the header of the space that we will be
   692   // allocating. When we update top further down, some refinement
   693   // threads might try to scan the region. By zeroing the header we
   694   // ensure that any thread that will try to scan the region will
   695   // come across the zero klass word and bail out.
   696   //
   697   // NOTE: It would not have been correct to have used
   698   // CollectedHeap::fill_with_object() and make the space look like
   699   // an int array. The thread that is doing the allocation will
   700   // later update the object header to a potentially different array
   701   // type and, for a very short period of time, the klass and length
   702   // fields will be inconsistent. This could cause a refinement
   703   // thread to calculate the object size incorrectly.
   704   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   706   // We will set up the first region as "starts humongous". This
   707   // will also update the BOT covering all the regions to reflect
   708   // that there is a single object that starts at the bottom of the
   709   // first region.
   710   first_hr->set_startsHumongous(new_top, new_end);
   712   // Then, if there are any, we will set up the "continues
   713   // humongous" regions.
   714   HeapRegion* hr = NULL;
   715   for (uint i = first + 1; i < last; ++i) {
   716     hr = region_at(i);
   717     hr->set_continuesHumongous(first_hr);
   718   }
   719   // If we have "continues humongous" regions (hr != NULL), then the
   720   // end of the last one should match new_end.
   721   assert(hr == NULL || hr->end() == new_end, "sanity");
   723   // Up to this point no concurrent thread would have been able to
   724   // do any scanning on any region in this series. All the top
   725   // fields still point to bottom, so the intersection between
   726   // [bottom,top] and [card_start,card_end] will be empty. Before we
   727   // update the top fields, we'll do a storestore to make sure that
   728   // no thread sees the update to top before the zeroing of the
   729   // object header and the BOT initialization.
   730   OrderAccess::storestore();
   732   // Now that the BOT and the object header have been initialized,
   733   // we can update top of the "starts humongous" region.
   734   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   735          "new_top should be in this region");
   736   first_hr->set_top(new_top);
   737   if (_hr_printer.is_active()) {
   738     HeapWord* bottom = first_hr->bottom();
   739     HeapWord* end = first_hr->orig_end();
   740     if ((first + 1) == last) {
   741       // the series has a single humongous region
   742       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   743     } else {
   744       // the series has more than one humongous regions
   745       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   746     }
   747   }
   749   // Now, we will update the top fields of the "continues humongous"
   750   // regions. The reason we need to do this is that, otherwise,
   751   // these regions would look empty and this will confuse parts of
   752   // G1. For example, the code that looks for a consecutive number
   753   // of empty regions will consider them empty and try to
   754   // re-allocate them. We can extend is_empty() to also include
   755   // !continuesHumongous(), but it is easier to just update the top
   756   // fields here. The way we set top for all regions (i.e., top ==
   757   // end for all regions but the last one, top == new_top for the
   758   // last one) is actually used when we will free up the humongous
   759   // region in free_humongous_region().
   760   hr = NULL;
   761   for (uint i = first + 1; i < last; ++i) {
   762     hr = region_at(i);
   763     if ((i + 1) == last) {
   764       // last continues humongous region
   765       assert(hr->bottom() < new_top && new_top <= hr->end(),
   766              "new_top should fall on this region");
   767       hr->set_top(new_top);
   768       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   769     } else {
   770       // not last one
   771       assert(new_top > hr->end(), "new_top should be above this region");
   772       hr->set_top(hr->end());
   773       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   774     }
   775   }
   776   // If we have continues humongous regions (hr != NULL), then the
   777   // end of the last one should match new_end and its top should
   778   // match new_top.
   779   assert(hr == NULL ||
   780          (hr->end() == new_end && hr->top() == new_top), "sanity");
   782   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   783   _summary_bytes_used += first_hr->used();
   784   _humongous_set.add(first_hr);
   786   return new_obj;
   787 }
   789 // If could fit into free regions w/o expansion, try.
   790 // Otherwise, if can expand, do so.
   791 // Otherwise, if using ex regions might help, try with ex given back.
   792 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   793   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   795   verify_region_sets_optional();
   797   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   798   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   799   uint x_num = expansion_regions();
   800   uint fs = _hrs.free_suffix();
   801   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   802   if (first == G1_NULL_HRS_INDEX) {
   803     // The only thing we can do now is attempt expansion.
   804     if (fs + x_num >= num_regions) {
   805       // If the number of regions we're trying to allocate for this
   806       // object is at most the number of regions in the free suffix,
   807       // then the call to humongous_obj_allocate_find_first() above
   808       // should have succeeded and we wouldn't be here.
   809       //
   810       // We should only be trying to expand when the free suffix is
   811       // not sufficient for the object _and_ we have some expansion
   812       // room available.
   813       assert(num_regions > fs, "earlier allocation should have succeeded");
   815       ergo_verbose1(ErgoHeapSizing,
   816                     "attempt heap expansion",
   817                     ergo_format_reason("humongous allocation request failed")
   818                     ergo_format_byte("allocation request"),
   819                     word_size * HeapWordSize);
   820       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   821         // Even though the heap was expanded, it might not have
   822         // reached the desired size. So, we cannot assume that the
   823         // allocation will succeed.
   824         first = humongous_obj_allocate_find_first(num_regions, word_size);
   825       }
   826     }
   827   }
   829   HeapWord* result = NULL;
   830   if (first != G1_NULL_HRS_INDEX) {
   831     result =
   832       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   833     assert(result != NULL, "it should always return a valid result");
   835     // A successful humongous object allocation changes the used space
   836     // information of the old generation so we need to recalculate the
   837     // sizes and update the jstat counters here.
   838     g1mm()->update_sizes();
   839   }
   841   verify_region_sets_optional();
   843   return result;
   844 }
   846 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   847   assert_heap_not_locked_and_not_at_safepoint();
   848   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   850   unsigned int dummy_gc_count_before;
   851   int dummy_gclocker_retry_count = 0;
   852   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   853 }
   855 HeapWord*
   856 G1CollectedHeap::mem_allocate(size_t word_size,
   857                               bool*  gc_overhead_limit_was_exceeded) {
   858   assert_heap_not_locked_and_not_at_safepoint();
   860   // Loop until the allocation is satisfied, or unsatisfied after GC.
   861   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   862     unsigned int gc_count_before;
   864     HeapWord* result = NULL;
   865     if (!isHumongous(word_size)) {
   866       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   867     } else {
   868       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   869     }
   870     if (result != NULL) {
   871       return result;
   872     }
   874     // Create the garbage collection operation...
   875     VM_G1CollectForAllocation op(gc_count_before, word_size);
   876     // ...and get the VM thread to execute it.
   877     VMThread::execute(&op);
   879     if (op.prologue_succeeded() && op.pause_succeeded()) {
   880       // If the operation was successful we'll return the result even
   881       // if it is NULL. If the allocation attempt failed immediately
   882       // after a Full GC, it's unlikely we'll be able to allocate now.
   883       HeapWord* result = op.result();
   884       if (result != NULL && !isHumongous(word_size)) {
   885         // Allocations that take place on VM operations do not do any
   886         // card dirtying and we have to do it here. We only have to do
   887         // this for non-humongous allocations, though.
   888         dirty_young_block(result, word_size);
   889       }
   890       return result;
   891     } else {
   892       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   893         return NULL;
   894       }
   895       assert(op.result() == NULL,
   896              "the result should be NULL if the VM op did not succeed");
   897     }
   899     // Give a warning if we seem to be looping forever.
   900     if ((QueuedAllocationWarningCount > 0) &&
   901         (try_count % QueuedAllocationWarningCount == 0)) {
   902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   903     }
   904   }
   906   ShouldNotReachHere();
   907   return NULL;
   908 }
   910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   911                                            unsigned int *gc_count_before_ret,
   912                                            int* gclocker_retry_count_ret) {
   913   // Make sure you read the note in attempt_allocation_humongous().
   915   assert_heap_not_locked_and_not_at_safepoint();
   916   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   917          "be called for humongous allocation requests");
   919   // We should only get here after the first-level allocation attempt
   920   // (attempt_allocation()) failed to allocate.
   922   // We will loop until a) we manage to successfully perform the
   923   // allocation or b) we successfully schedule a collection which
   924   // fails to perform the allocation. b) is the only case when we'll
   925   // return NULL.
   926   HeapWord* result = NULL;
   927   for (int try_count = 1; /* we'll return */; try_count += 1) {
   928     bool should_try_gc;
   929     unsigned int gc_count_before;
   931     {
   932       MutexLockerEx x(Heap_lock);
   934       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   935                                                       false /* bot_updates */);
   936       if (result != NULL) {
   937         return result;
   938       }
   940       // If we reach here, attempt_allocation_locked() above failed to
   941       // allocate a new region. So the mutator alloc region should be NULL.
   942       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   944       if (GC_locker::is_active_and_needs_gc()) {
   945         if (g1_policy()->can_expand_young_list()) {
   946           // No need for an ergo verbose message here,
   947           // can_expand_young_list() does this when it returns true.
   948           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   949                                                       false /* bot_updates */);
   950           if (result != NULL) {
   951             return result;
   952           }
   953         }
   954         should_try_gc = false;
   955       } else {
   956         // The GCLocker may not be active but the GCLocker initiated
   957         // GC may not yet have been performed (GCLocker::needs_gc()
   958         // returns true). In this case we do not try this GC and
   959         // wait until the GCLocker initiated GC is performed, and
   960         // then retry the allocation.
   961         if (GC_locker::needs_gc()) {
   962           should_try_gc = false;
   963         } else {
   964           // Read the GC count while still holding the Heap_lock.
   965           gc_count_before = total_collections();
   966           should_try_gc = true;
   967         }
   968       }
   969     }
   971     if (should_try_gc) {
   972       bool succeeded;
   973       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   974           GCCause::_g1_inc_collection_pause);
   975       if (result != NULL) {
   976         assert(succeeded, "only way to get back a non-NULL result");
   977         return result;
   978       }
   980       if (succeeded) {
   981         // If we get here we successfully scheduled a collection which
   982         // failed to allocate. No point in trying to allocate
   983         // further. We'll just return NULL.
   984         MutexLockerEx x(Heap_lock);
   985         *gc_count_before_ret = total_collections();
   986         return NULL;
   987       }
   988     } else {
   989       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   990         MutexLockerEx x(Heap_lock);
   991         *gc_count_before_ret = total_collections();
   992         return NULL;
   993       }
   994       // The GCLocker is either active or the GCLocker initiated
   995       // GC has not yet been performed. Stall until it is and
   996       // then retry the allocation.
   997       GC_locker::stall_until_clear();
   998       (*gclocker_retry_count_ret) += 1;
   999     }
  1001     // We can reach here if we were unsuccessful in scheduling a
  1002     // collection (because another thread beat us to it) or if we were
  1003     // stalled due to the GC locker. In either can we should retry the
  1004     // allocation attempt in case another thread successfully
  1005     // performed a collection and reclaimed enough space. We do the
  1006     // first attempt (without holding the Heap_lock) here and the
  1007     // follow-on attempt will be at the start of the next loop
  1008     // iteration (after taking the Heap_lock).
  1009     result = _mutator_alloc_region.attempt_allocation(word_size,
  1010                                                       false /* bot_updates */);
  1011     if (result != NULL) {
  1012       return result;
  1015     // Give a warning if we seem to be looping forever.
  1016     if ((QueuedAllocationWarningCount > 0) &&
  1017         (try_count % QueuedAllocationWarningCount == 0)) {
  1018       warning("G1CollectedHeap::attempt_allocation_slow() "
  1019               "retries %d times", try_count);
  1023   ShouldNotReachHere();
  1024   return NULL;
  1027 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1028                                           unsigned int * gc_count_before_ret,
  1029                                           int* gclocker_retry_count_ret) {
  1030   // The structure of this method has a lot of similarities to
  1031   // attempt_allocation_slow(). The reason these two were not merged
  1032   // into a single one is that such a method would require several "if
  1033   // allocation is not humongous do this, otherwise do that"
  1034   // conditional paths which would obscure its flow. In fact, an early
  1035   // version of this code did use a unified method which was harder to
  1036   // follow and, as a result, it had subtle bugs that were hard to
  1037   // track down. So keeping these two methods separate allows each to
  1038   // be more readable. It will be good to keep these two in sync as
  1039   // much as possible.
  1041   assert_heap_not_locked_and_not_at_safepoint();
  1042   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1043          "should only be called for humongous allocations");
  1045   // Humongous objects can exhaust the heap quickly, so we should check if we
  1046   // need to start a marking cycle at each humongous object allocation. We do
  1047   // the check before we do the actual allocation. The reason for doing it
  1048   // before the allocation is that we avoid having to keep track of the newly
  1049   // allocated memory while we do a GC.
  1050   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1051                                            word_size)) {
  1052     collect(GCCause::_g1_humongous_allocation);
  1055   // We will loop until a) we manage to successfully perform the
  1056   // allocation or b) we successfully schedule a collection which
  1057   // fails to perform the allocation. b) is the only case when we'll
  1058   // return NULL.
  1059   HeapWord* result = NULL;
  1060   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1061     bool should_try_gc;
  1062     unsigned int gc_count_before;
  1065       MutexLockerEx x(Heap_lock);
  1067       // Given that humongous objects are not allocated in young
  1068       // regions, we'll first try to do the allocation without doing a
  1069       // collection hoping that there's enough space in the heap.
  1070       result = humongous_obj_allocate(word_size);
  1071       if (result != NULL) {
  1072         return result;
  1075       if (GC_locker::is_active_and_needs_gc()) {
  1076         should_try_gc = false;
  1077       } else {
  1078          // The GCLocker may not be active but the GCLocker initiated
  1079         // GC may not yet have been performed (GCLocker::needs_gc()
  1080         // returns true). In this case we do not try this GC and
  1081         // wait until the GCLocker initiated GC is performed, and
  1082         // then retry the allocation.
  1083         if (GC_locker::needs_gc()) {
  1084           should_try_gc = false;
  1085         } else {
  1086           // Read the GC count while still holding the Heap_lock.
  1087           gc_count_before = total_collections();
  1088           should_try_gc = true;
  1093     if (should_try_gc) {
  1094       // If we failed to allocate the humongous object, we should try to
  1095       // do a collection pause (if we're allowed) in case it reclaims
  1096       // enough space for the allocation to succeed after the pause.
  1098       bool succeeded;
  1099       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1100           GCCause::_g1_humongous_allocation);
  1101       if (result != NULL) {
  1102         assert(succeeded, "only way to get back a non-NULL result");
  1103         return result;
  1106       if (succeeded) {
  1107         // If we get here we successfully scheduled a collection which
  1108         // failed to allocate. No point in trying to allocate
  1109         // further. We'll just return NULL.
  1110         MutexLockerEx x(Heap_lock);
  1111         *gc_count_before_ret = total_collections();
  1112         return NULL;
  1114     } else {
  1115       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1116         MutexLockerEx x(Heap_lock);
  1117         *gc_count_before_ret = total_collections();
  1118         return NULL;
  1120       // The GCLocker is either active or the GCLocker initiated
  1121       // GC has not yet been performed. Stall until it is and
  1122       // then retry the allocation.
  1123       GC_locker::stall_until_clear();
  1124       (*gclocker_retry_count_ret) += 1;
  1127     // We can reach here if we were unsuccessful in scheduling a
  1128     // collection (because another thread beat us to it) or if we were
  1129     // stalled due to the GC locker. In either can we should retry the
  1130     // allocation attempt in case another thread successfully
  1131     // performed a collection and reclaimed enough space.  Give a
  1132     // warning if we seem to be looping forever.
  1134     if ((QueuedAllocationWarningCount > 0) &&
  1135         (try_count % QueuedAllocationWarningCount == 0)) {
  1136       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1137               "retries %d times", try_count);
  1141   ShouldNotReachHere();
  1142   return NULL;
  1145 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1146                                        bool expect_null_mutator_alloc_region) {
  1147   assert_at_safepoint(true /* should_be_vm_thread */);
  1148   assert(_mutator_alloc_region.get() == NULL ||
  1149                                              !expect_null_mutator_alloc_region,
  1150          "the current alloc region was unexpectedly found to be non-NULL");
  1152   if (!isHumongous(word_size)) {
  1153     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1154                                                       false /* bot_updates */);
  1155   } else {
  1156     HeapWord* result = humongous_obj_allocate(word_size);
  1157     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1158       g1_policy()->set_initiate_conc_mark_if_possible();
  1160     return result;
  1163   ShouldNotReachHere();
  1166 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1167   G1CollectedHeap* _g1h;
  1168   ModRefBarrierSet* _mr_bs;
  1169 public:
  1170   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1171     _g1h(g1h), _mr_bs(mr_bs) {}
  1173   bool doHeapRegion(HeapRegion* r) {
  1174     HeapRegionRemSet* hrrs = r->rem_set();
  1176     if (r->continuesHumongous()) {
  1177       // We'll assert that the strong code root list and RSet is empty
  1178       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1179       assert(hrrs->occupied() == 0, "RSet should be empty");
  1180       return false;
  1183     _g1h->reset_gc_time_stamps(r);
  1184     hrrs->clear();
  1185     // You might think here that we could clear just the cards
  1186     // corresponding to the used region.  But no: if we leave a dirty card
  1187     // in a region we might allocate into, then it would prevent that card
  1188     // from being enqueued, and cause it to be missed.
  1189     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1190     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1192     return false;
  1194 };
  1196 void G1CollectedHeap::clear_rsets_post_compaction() {
  1197   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1198   heap_region_iterate(&rs_clear);
  1201 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1202   G1CollectedHeap*   _g1h;
  1203   UpdateRSOopClosure _cl;
  1204   int                _worker_i;
  1205 public:
  1206   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1207     _cl(g1->g1_rem_set(), worker_i),
  1208     _worker_i(worker_i),
  1209     _g1h(g1)
  1210   { }
  1212   bool doHeapRegion(HeapRegion* r) {
  1213     if (!r->continuesHumongous()) {
  1214       _cl.set_from(r);
  1215       r->oop_iterate(&_cl);
  1217     return false;
  1219 };
  1221 class ParRebuildRSTask: public AbstractGangTask {
  1222   G1CollectedHeap* _g1;
  1223 public:
  1224   ParRebuildRSTask(G1CollectedHeap* g1)
  1225     : AbstractGangTask("ParRebuildRSTask"),
  1226       _g1(g1)
  1227   { }
  1229   void work(uint worker_id) {
  1230     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1231     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1232                                           _g1->workers()->active_workers(),
  1233                                          HeapRegion::RebuildRSClaimValue);
  1235 };
  1237 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1238 private:
  1239   G1HRPrinter* _hr_printer;
  1240 public:
  1241   bool doHeapRegion(HeapRegion* hr) {
  1242     assert(!hr->is_young(), "not expecting to find young regions");
  1243     // We only generate output for non-empty regions.
  1244     if (!hr->is_empty()) {
  1245       if (!hr->isHumongous()) {
  1246         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1247       } else if (hr->startsHumongous()) {
  1248         if (hr->region_num() == 1) {
  1249           // single humongous region
  1250           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1251         } else {
  1252           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1254       } else {
  1255         assert(hr->continuesHumongous(), "only way to get here");
  1256         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1259     return false;
  1262   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1263     : _hr_printer(hr_printer) { }
  1264 };
  1266 void G1CollectedHeap::print_hrs_post_compaction() {
  1267   PostCompactionPrinterClosure cl(hr_printer());
  1268   heap_region_iterate(&cl);
  1271 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1272                                     bool clear_all_soft_refs,
  1273                                     size_t word_size) {
  1274   assert_at_safepoint(true /* should_be_vm_thread */);
  1276   if (GC_locker::check_active_before_gc()) {
  1277     return false;
  1280   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1281   gc_timer->register_gc_start();
  1283   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1284   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1286   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1287   ResourceMark rm;
  1289   print_heap_before_gc();
  1290   trace_heap_before_gc(gc_tracer);
  1292   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
  1294   verify_region_sets_optional();
  1296   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1297                            collector_policy()->should_clear_all_soft_refs();
  1299   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1302     IsGCActiveMark x;
  1304     // Timing
  1305     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1306     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1307     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1310       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
  1311       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1312       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1314       double start = os::elapsedTime();
  1315       g1_policy()->record_full_collection_start();
  1317       // Note: When we have a more flexible GC logging framework that
  1318       // allows us to add optional attributes to a GC log record we
  1319       // could consider timing and reporting how long we wait in the
  1320       // following two methods.
  1321       wait_while_free_regions_coming();
  1322       // If we start the compaction before the CM threads finish
  1323       // scanning the root regions we might trip them over as we'll
  1324       // be moving objects / updating references. So let's wait until
  1325       // they are done. By telling them to abort, they should complete
  1326       // early.
  1327       _cm->root_regions()->abort();
  1328       _cm->root_regions()->wait_until_scan_finished();
  1329       append_secondary_free_list_if_not_empty_with_lock();
  1331       gc_prologue(true);
  1332       increment_total_collections(true /* full gc */);
  1333       increment_old_marking_cycles_started();
  1335       assert(used() == recalculate_used(), "Should be equal");
  1337       verify_before_gc();
  1339       pre_full_gc_dump(gc_timer);
  1341       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1343       // Disable discovery and empty the discovered lists
  1344       // for the CM ref processor.
  1345       ref_processor_cm()->disable_discovery();
  1346       ref_processor_cm()->abandon_partial_discovery();
  1347       ref_processor_cm()->verify_no_references_recorded();
  1349       // Abandon current iterations of concurrent marking and concurrent
  1350       // refinement, if any are in progress. We have to do this before
  1351       // wait_until_scan_finished() below.
  1352       concurrent_mark()->abort();
  1354       // Make sure we'll choose a new allocation region afterwards.
  1355       release_mutator_alloc_region();
  1356       abandon_gc_alloc_regions();
  1357       g1_rem_set()->cleanupHRRS();
  1359       // We should call this after we retire any currently active alloc
  1360       // regions so that all the ALLOC / RETIRE events are generated
  1361       // before the start GC event.
  1362       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1364       // We may have added regions to the current incremental collection
  1365       // set between the last GC or pause and now. We need to clear the
  1366       // incremental collection set and then start rebuilding it afresh
  1367       // after this full GC.
  1368       abandon_collection_set(g1_policy()->inc_cset_head());
  1369       g1_policy()->clear_incremental_cset();
  1370       g1_policy()->stop_incremental_cset_building();
  1372       tear_down_region_sets(false /* free_list_only */);
  1373       g1_policy()->set_gcs_are_young(true);
  1375       // See the comments in g1CollectedHeap.hpp and
  1376       // G1CollectedHeap::ref_processing_init() about
  1377       // how reference processing currently works in G1.
  1379       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1380       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1382       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1383       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1385       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1386       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1388       // Do collection work
  1390         HandleMark hm;  // Discard invalid handles created during gc
  1391         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1394       assert(free_regions() == 0, "we should not have added any free regions");
  1395       rebuild_region_sets(false /* free_list_only */);
  1397       // Enqueue any discovered reference objects that have
  1398       // not been removed from the discovered lists.
  1399       ref_processor_stw()->enqueue_discovered_references();
  1401       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1403       MemoryService::track_memory_usage();
  1405       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1406       ref_processor_stw()->verify_no_references_recorded();
  1408       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1409       ClassLoaderDataGraph::purge();
  1410       MetaspaceAux::verify_metrics();
  1412       // Note: since we've just done a full GC, concurrent
  1413       // marking is no longer active. Therefore we need not
  1414       // re-enable reference discovery for the CM ref processor.
  1415       // That will be done at the start of the next marking cycle.
  1416       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1417       ref_processor_cm()->verify_no_references_recorded();
  1419       reset_gc_time_stamp();
  1420       // Since everything potentially moved, we will clear all remembered
  1421       // sets, and clear all cards.  Later we will rebuild remembered
  1422       // sets. We will also reset the GC time stamps of the regions.
  1423       clear_rsets_post_compaction();
  1424       check_gc_time_stamps();
  1426       // Resize the heap if necessary.
  1427       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1429       if (_hr_printer.is_active()) {
  1430         // We should do this after we potentially resize the heap so
  1431         // that all the COMMIT / UNCOMMIT events are generated before
  1432         // the end GC event.
  1434         print_hrs_post_compaction();
  1435         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1438       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1439       if (hot_card_cache->use_cache()) {
  1440         hot_card_cache->reset_card_counts();
  1441         hot_card_cache->reset_hot_cache();
  1444       // Rebuild remembered sets of all regions.
  1445       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1446         uint n_workers =
  1447           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1448                                                   workers()->active_workers(),
  1449                                                   Threads::number_of_non_daemon_threads());
  1450         assert(UseDynamicNumberOfGCThreads ||
  1451                n_workers == workers()->total_workers(),
  1452                "If not dynamic should be using all the  workers");
  1453         workers()->set_active_workers(n_workers);
  1454         // Set parallel threads in the heap (_n_par_threads) only
  1455         // before a parallel phase and always reset it to 0 after
  1456         // the phase so that the number of parallel threads does
  1457         // no get carried forward to a serial phase where there
  1458         // may be code that is "possibly_parallel".
  1459         set_par_threads(n_workers);
  1461         ParRebuildRSTask rebuild_rs_task(this);
  1462         assert(check_heap_region_claim_values(
  1463                HeapRegion::InitialClaimValue), "sanity check");
  1464         assert(UseDynamicNumberOfGCThreads ||
  1465                workers()->active_workers() == workers()->total_workers(),
  1466                "Unless dynamic should use total workers");
  1467         // Use the most recent number of  active workers
  1468         assert(workers()->active_workers() > 0,
  1469                "Active workers not properly set");
  1470         set_par_threads(workers()->active_workers());
  1471         workers()->run_task(&rebuild_rs_task);
  1472         set_par_threads(0);
  1473         assert(check_heap_region_claim_values(
  1474                HeapRegion::RebuildRSClaimValue), "sanity check");
  1475         reset_heap_region_claim_values();
  1476       } else {
  1477         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1478         heap_region_iterate(&rebuild_rs);
  1481       // Rebuild the strong code root lists for each region
  1482       rebuild_strong_code_roots();
  1484       if (true) { // FIXME
  1485         MetaspaceGC::compute_new_size();
  1488 #ifdef TRACESPINNING
  1489       ParallelTaskTerminator::print_termination_counts();
  1490 #endif
  1492       // Discard all rset updates
  1493       JavaThread::dirty_card_queue_set().abandon_logs();
  1494       assert(!G1DeferredRSUpdate
  1495              || (G1DeferredRSUpdate &&
  1496                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1498       _young_list->reset_sampled_info();
  1499       // At this point there should be no regions in the
  1500       // entire heap tagged as young.
  1501       assert(check_young_list_empty(true /* check_heap */),
  1502              "young list should be empty at this point");
  1504       // Update the number of full collections that have been completed.
  1505       increment_old_marking_cycles_completed(false /* concurrent */);
  1507       _hrs.verify_optional();
  1508       verify_region_sets_optional();
  1510       verify_after_gc();
  1512       // Start a new incremental collection set for the next pause
  1513       assert(g1_policy()->collection_set() == NULL, "must be");
  1514       g1_policy()->start_incremental_cset_building();
  1516       // Clear the _cset_fast_test bitmap in anticipation of adding
  1517       // regions to the incremental collection set for the next
  1518       // evacuation pause.
  1519       clear_cset_fast_test();
  1521       init_mutator_alloc_region();
  1523       double end = os::elapsedTime();
  1524       g1_policy()->record_full_collection_end();
  1526       if (G1Log::fine()) {
  1527         g1_policy()->print_heap_transition();
  1530       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1531       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1532       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1533       // before any GC notifications are raised.
  1534       g1mm()->update_sizes();
  1536       gc_epilogue(true);
  1539     if (G1Log::finer()) {
  1540       g1_policy()->print_detailed_heap_transition(true /* full */);
  1543     print_heap_after_gc();
  1544     trace_heap_after_gc(gc_tracer);
  1546     post_full_gc_dump(gc_timer);
  1548     gc_timer->register_gc_end();
  1549     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1552   return true;
  1555 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1556   // do_collection() will return whether it succeeded in performing
  1557   // the GC. Currently, there is no facility on the
  1558   // do_full_collection() API to notify the caller than the collection
  1559   // did not succeed (e.g., because it was locked out by the GC
  1560   // locker). So, right now, we'll ignore the return value.
  1561   bool dummy = do_collection(true,                /* explicit_gc */
  1562                              clear_all_soft_refs,
  1563                              0                    /* word_size */);
  1566 // This code is mostly copied from TenuredGeneration.
  1567 void
  1568 G1CollectedHeap::
  1569 resize_if_necessary_after_full_collection(size_t word_size) {
  1570   // Include the current allocation, if any, and bytes that will be
  1571   // pre-allocated to support collections, as "used".
  1572   const size_t used_after_gc = used();
  1573   const size_t capacity_after_gc = capacity();
  1574   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1576   // This is enforced in arguments.cpp.
  1577   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1578          "otherwise the code below doesn't make sense");
  1580   // We don't have floating point command-line arguments
  1581   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1582   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1583   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1584   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1586   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1587   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1589   // We have to be careful here as these two calculations can overflow
  1590   // 32-bit size_t's.
  1591   double used_after_gc_d = (double) used_after_gc;
  1592   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1593   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1595   // Let's make sure that they are both under the max heap size, which
  1596   // by default will make them fit into a size_t.
  1597   double desired_capacity_upper_bound = (double) max_heap_size;
  1598   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1599                                     desired_capacity_upper_bound);
  1600   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1601                                     desired_capacity_upper_bound);
  1603   // We can now safely turn them into size_t's.
  1604   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1605   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1607   // This assert only makes sense here, before we adjust them
  1608   // with respect to the min and max heap size.
  1609   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1610          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1611                  "maximum_desired_capacity = "SIZE_FORMAT,
  1612                  minimum_desired_capacity, maximum_desired_capacity));
  1614   // Should not be greater than the heap max size. No need to adjust
  1615   // it with respect to the heap min size as it's a lower bound (i.e.,
  1616   // we'll try to make the capacity larger than it, not smaller).
  1617   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1618   // Should not be less than the heap min size. No need to adjust it
  1619   // with respect to the heap max size as it's an upper bound (i.e.,
  1620   // we'll try to make the capacity smaller than it, not greater).
  1621   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1623   if (capacity_after_gc < minimum_desired_capacity) {
  1624     // Don't expand unless it's significant
  1625     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1626     ergo_verbose4(ErgoHeapSizing,
  1627                   "attempt heap expansion",
  1628                   ergo_format_reason("capacity lower than "
  1629                                      "min desired capacity after Full GC")
  1630                   ergo_format_byte("capacity")
  1631                   ergo_format_byte("occupancy")
  1632                   ergo_format_byte_perc("min desired capacity"),
  1633                   capacity_after_gc, used_after_gc,
  1634                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1635     expand(expand_bytes);
  1637     // No expansion, now see if we want to shrink
  1638   } else if (capacity_after_gc > maximum_desired_capacity) {
  1639     // Capacity too large, compute shrinking size
  1640     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1641     ergo_verbose4(ErgoHeapSizing,
  1642                   "attempt heap shrinking",
  1643                   ergo_format_reason("capacity higher than "
  1644                                      "max desired capacity after Full GC")
  1645                   ergo_format_byte("capacity")
  1646                   ergo_format_byte("occupancy")
  1647                   ergo_format_byte_perc("max desired capacity"),
  1648                   capacity_after_gc, used_after_gc,
  1649                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1650     shrink(shrink_bytes);
  1655 HeapWord*
  1656 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1657                                            bool* succeeded) {
  1658   assert_at_safepoint(true /* should_be_vm_thread */);
  1660   *succeeded = true;
  1661   // Let's attempt the allocation first.
  1662   HeapWord* result =
  1663     attempt_allocation_at_safepoint(word_size,
  1664                                  false /* expect_null_mutator_alloc_region */);
  1665   if (result != NULL) {
  1666     assert(*succeeded, "sanity");
  1667     return result;
  1670   // In a G1 heap, we're supposed to keep allocation from failing by
  1671   // incremental pauses.  Therefore, at least for now, we'll favor
  1672   // expansion over collection.  (This might change in the future if we can
  1673   // do something smarter than full collection to satisfy a failed alloc.)
  1674   result = expand_and_allocate(word_size);
  1675   if (result != NULL) {
  1676     assert(*succeeded, "sanity");
  1677     return result;
  1680   // Expansion didn't work, we'll try to do a Full GC.
  1681   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1682                                     false, /* clear_all_soft_refs */
  1683                                     word_size);
  1684   if (!gc_succeeded) {
  1685     *succeeded = false;
  1686     return NULL;
  1689   // Retry the allocation
  1690   result = attempt_allocation_at_safepoint(word_size,
  1691                                   true /* expect_null_mutator_alloc_region */);
  1692   if (result != NULL) {
  1693     assert(*succeeded, "sanity");
  1694     return result;
  1697   // Then, try a Full GC that will collect all soft references.
  1698   gc_succeeded = do_collection(false, /* explicit_gc */
  1699                                true,  /* clear_all_soft_refs */
  1700                                word_size);
  1701   if (!gc_succeeded) {
  1702     *succeeded = false;
  1703     return NULL;
  1706   // Retry the allocation once more
  1707   result = attempt_allocation_at_safepoint(word_size,
  1708                                   true /* expect_null_mutator_alloc_region */);
  1709   if (result != NULL) {
  1710     assert(*succeeded, "sanity");
  1711     return result;
  1714   assert(!collector_policy()->should_clear_all_soft_refs(),
  1715          "Flag should have been handled and cleared prior to this point");
  1717   // What else?  We might try synchronous finalization later.  If the total
  1718   // space available is large enough for the allocation, then a more
  1719   // complete compaction phase than we've tried so far might be
  1720   // appropriate.
  1721   assert(*succeeded, "sanity");
  1722   return NULL;
  1725 // Attempting to expand the heap sufficiently
  1726 // to support an allocation of the given "word_size".  If
  1727 // successful, perform the allocation and return the address of the
  1728 // allocated block, or else "NULL".
  1730 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1731   assert_at_safepoint(true /* should_be_vm_thread */);
  1733   verify_region_sets_optional();
  1735   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1736   ergo_verbose1(ErgoHeapSizing,
  1737                 "attempt heap expansion",
  1738                 ergo_format_reason("allocation request failed")
  1739                 ergo_format_byte("allocation request"),
  1740                 word_size * HeapWordSize);
  1741   if (expand(expand_bytes)) {
  1742     _hrs.verify_optional();
  1743     verify_region_sets_optional();
  1744     return attempt_allocation_at_safepoint(word_size,
  1745                                  false /* expect_null_mutator_alloc_region */);
  1747   return NULL;
  1750 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1751                                              HeapWord* new_end) {
  1752   assert(old_end != new_end, "don't call this otherwise");
  1753   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1755   // Update the committed mem region.
  1756   _g1_committed.set_end(new_end);
  1757   // Tell the card table about the update.
  1758   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1759   // Tell the BOT about the update.
  1760   _bot_shared->resize(_g1_committed.word_size());
  1761   // Tell the hot card cache about the update
  1762   _cg1r->hot_card_cache()->resize_card_counts(capacity());
  1765 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1766   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1767   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1768                                        HeapRegion::GrainBytes);
  1769   ergo_verbose2(ErgoHeapSizing,
  1770                 "expand the heap",
  1771                 ergo_format_byte("requested expansion amount")
  1772                 ergo_format_byte("attempted expansion amount"),
  1773                 expand_bytes, aligned_expand_bytes);
  1775   if (_g1_storage.uncommitted_size() == 0) {
  1776     ergo_verbose0(ErgoHeapSizing,
  1777                       "did not expand the heap",
  1778                       ergo_format_reason("heap already fully expanded"));
  1779     return false;
  1782   // First commit the memory.
  1783   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1784   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1785   if (successful) {
  1786     // Then propagate this update to the necessary data structures.
  1787     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1788     update_committed_space(old_end, new_end);
  1790     FreeRegionList expansion_list("Local Expansion List");
  1791     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1792     assert(mr.start() == old_end, "post-condition");
  1793     // mr might be a smaller region than what was requested if
  1794     // expand_by() was unable to allocate the HeapRegion instances
  1795     assert(mr.end() <= new_end, "post-condition");
  1797     size_t actual_expand_bytes = mr.byte_size();
  1798     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1799     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1800            "post-condition");
  1801     if (actual_expand_bytes < aligned_expand_bytes) {
  1802       // We could not expand _hrs to the desired size. In this case we
  1803       // need to shrink the committed space accordingly.
  1804       assert(mr.end() < new_end, "invariant");
  1806       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1807       // First uncommit the memory.
  1808       _g1_storage.shrink_by(diff_bytes);
  1809       // Then propagate this update to the necessary data structures.
  1810       update_committed_space(new_end, mr.end());
  1812     _free_list.add_as_tail(&expansion_list);
  1814     if (_hr_printer.is_active()) {
  1815       HeapWord* curr = mr.start();
  1816       while (curr < mr.end()) {
  1817         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1818         _hr_printer.commit(curr, curr_end);
  1819         curr = curr_end;
  1821       assert(curr == mr.end(), "post-condition");
  1823     g1_policy()->record_new_heap_size(n_regions());
  1824   } else {
  1825     ergo_verbose0(ErgoHeapSizing,
  1826                   "did not expand the heap",
  1827                   ergo_format_reason("heap expansion operation failed"));
  1828     // The expansion of the virtual storage space was unsuccessful.
  1829     // Let's see if it was because we ran out of swap.
  1830     if (G1ExitOnExpansionFailure &&
  1831         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1832       // We had head room...
  1833       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1836   return successful;
  1839 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1840   size_t aligned_shrink_bytes =
  1841     ReservedSpace::page_align_size_down(shrink_bytes);
  1842   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1843                                          HeapRegion::GrainBytes);
  1844   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1846   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
  1847   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1848   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1850   ergo_verbose3(ErgoHeapSizing,
  1851                 "shrink the heap",
  1852                 ergo_format_byte("requested shrinking amount")
  1853                 ergo_format_byte("aligned shrinking amount")
  1854                 ergo_format_byte("attempted shrinking amount"),
  1855                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1856   if (num_regions_removed > 0) {
  1857     _g1_storage.shrink_by(shrunk_bytes);
  1858     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1860     if (_hr_printer.is_active()) {
  1861       HeapWord* curr = old_end;
  1862       while (curr > new_end) {
  1863         HeapWord* curr_end = curr;
  1864         curr -= HeapRegion::GrainWords;
  1865         _hr_printer.uncommit(curr, curr_end);
  1869     _expansion_regions += num_regions_removed;
  1870     update_committed_space(old_end, new_end);
  1871     HeapRegionRemSet::shrink_heap(n_regions());
  1872     g1_policy()->record_new_heap_size(n_regions());
  1873   } else {
  1874     ergo_verbose0(ErgoHeapSizing,
  1875                   "did not shrink the heap",
  1876                   ergo_format_reason("heap shrinking operation failed"));
  1880 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1881   verify_region_sets_optional();
  1883   // We should only reach here at the end of a Full GC which means we
  1884   // should not not be holding to any GC alloc regions. The method
  1885   // below will make sure of that and do any remaining clean up.
  1886   abandon_gc_alloc_regions();
  1888   // Instead of tearing down / rebuilding the free lists here, we
  1889   // could instead use the remove_all_pending() method on free_list to
  1890   // remove only the ones that we need to remove.
  1891   tear_down_region_sets(true /* free_list_only */);
  1892   shrink_helper(shrink_bytes);
  1893   rebuild_region_sets(true /* free_list_only */);
  1895   _hrs.verify_optional();
  1896   verify_region_sets_optional();
  1899 // Public methods.
  1901 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1902 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1903 #endif // _MSC_VER
  1906 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1907   SharedHeap(policy_),
  1908   _g1_policy(policy_),
  1909   _dirty_card_queue_set(false),
  1910   _into_cset_dirty_card_queue_set(false),
  1911   _is_alive_closure_cm(this),
  1912   _is_alive_closure_stw(this),
  1913   _ref_processor_cm(NULL),
  1914   _ref_processor_stw(NULL),
  1915   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1916   _bot_shared(NULL),
  1917   _evac_failure_scan_stack(NULL),
  1918   _mark_in_progress(false),
  1919   _cg1r(NULL), _summary_bytes_used(0),
  1920   _g1mm(NULL),
  1921   _refine_cte_cl(NULL),
  1922   _full_collection(false),
  1923   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
  1924   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1925   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1926   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1927   _free_regions_coming(false),
  1928   _young_list(new YoungList(this)),
  1929   _gc_time_stamp(0),
  1930   _retained_old_gc_alloc_region(NULL),
  1931   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1932   _old_plab_stats(OldPLABSize, PLABWeight),
  1933   _expand_heap_after_alloc_failure(true),
  1934   _surviving_young_words(NULL),
  1935   _old_marking_cycles_started(0),
  1936   _old_marking_cycles_completed(0),
  1937   _concurrent_cycle_started(false),
  1938   _in_cset_fast_test(NULL),
  1939   _in_cset_fast_test_base(NULL),
  1940   _dirty_cards_region_list(NULL),
  1941   _worker_cset_start_region(NULL),
  1942   _worker_cset_start_region_time_stamp(NULL),
  1943   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1944   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1945   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1946   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1948   _g1h = this;
  1949   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1950     vm_exit_during_initialization("Failed necessary allocation.");
  1953   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1955   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1956   _task_queues = new RefToScanQueueSet(n_queues);
  1958   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1959   assert(n_rem_sets > 0, "Invariant.");
  1961   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1962   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1963   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1965   for (int i = 0; i < n_queues; i++) {
  1966     RefToScanQueue* q = new RefToScanQueue();
  1967     q->initialize();
  1968     _task_queues->register_queue(i, q);
  1969     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1971   clear_cset_start_regions();
  1973   // Initialize the G1EvacuationFailureALot counters and flags.
  1974   NOT_PRODUCT(reset_evacuation_should_fail();)
  1976   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1979 jint G1CollectedHeap::initialize() {
  1980   CollectedHeap::pre_initialize();
  1981   os::enable_vtime();
  1983   G1Log::init();
  1985   // Necessary to satisfy locking discipline assertions.
  1987   MutexLocker x(Heap_lock);
  1989   // We have to initialize the printer before committing the heap, as
  1990   // it will be used then.
  1991   _hr_printer.set_active(G1PrintHeapRegions);
  1993   // While there are no constraints in the GC code that HeapWordSize
  1994   // be any particular value, there are multiple other areas in the
  1995   // system which believe this to be true (e.g. oop->object_size in some
  1996   // cases incorrectly returns the size in wordSize units rather than
  1997   // HeapWordSize).
  1998   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  2000   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  2001   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  2002   size_t heap_alignment = collector_policy()->heap_alignment();
  2004   // Ensure that the sizes are properly aligned.
  2005   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2006   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2007   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  2009   _cg1r = new ConcurrentG1Refine(this);
  2011   // Reserve the maximum.
  2013   // When compressed oops are enabled, the preferred heap base
  2014   // is calculated by subtracting the requested size from the
  2015   // 32Gb boundary and using the result as the base address for
  2016   // heap reservation. If the requested size is not aligned to
  2017   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  2018   // into the ReservedHeapSpace constructor) then the actual
  2019   // base of the reserved heap may end up differing from the
  2020   // address that was requested (i.e. the preferred heap base).
  2021   // If this happens then we could end up using a non-optimal
  2022   // compressed oops mode.
  2024   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  2025                                                  heap_alignment);
  2027   // It is important to do this in a way such that concurrent readers can't
  2028   // temporarily think something is in the heap.  (I've actually seen this
  2029   // happen in asserts: DLD.)
  2030   _reserved.set_word_size(0);
  2031   _reserved.set_start((HeapWord*)heap_rs.base());
  2032   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2034   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2036   // Create the gen rem set (and barrier set) for the entire reserved region.
  2037   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2038   set_barrier_set(rem_set()->bs());
  2039   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  2040     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  2041     return JNI_ENOMEM;
  2044   // Also create a G1 rem set.
  2045   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  2047   // Carve out the G1 part of the heap.
  2049   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2050   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2051                            g1_rs.size()/HeapWordSize);
  2053   _g1_storage.initialize(g1_rs, 0);
  2054   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2055   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2056                   (HeapWord*) _g1_reserved.end());
  2057   assert(_hrs.max_length() == _expansion_regions,
  2058          err_msg("max length: %u expansion regions: %u",
  2059                  _hrs.max_length(), _expansion_regions));
  2061   // Do later initialization work for concurrent refinement.
  2062   _cg1r->init();
  2064   // 6843694 - ensure that the maximum region index can fit
  2065   // in the remembered set structures.
  2066   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2067   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2069   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2070   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2071   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2072             "too many cards per region");
  2074   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2076   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2077                                              heap_word_size(init_byte_size));
  2079   _g1h = this;
  2081   _in_cset_fast_test_length = max_regions();
  2082   _in_cset_fast_test_base =
  2083                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
  2085   // We're biasing _in_cset_fast_test to avoid subtracting the
  2086   // beginning of the heap every time we want to index; basically
  2087   // it's the same with what we do with the card table.
  2088   _in_cset_fast_test = _in_cset_fast_test_base -
  2089                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2091   // Clear the _cset_fast_test bitmap in anticipation of adding
  2092   // regions to the incremental collection set for the first
  2093   // evacuation pause.
  2094   clear_cset_fast_test();
  2096   // Create the ConcurrentMark data structure and thread.
  2097   // (Must do this late, so that "max_regions" is defined.)
  2098   _cm = new ConcurrentMark(this, heap_rs);
  2099   if (_cm == NULL || !_cm->completed_initialization()) {
  2100     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2101     return JNI_ENOMEM;
  2103   _cmThread = _cm->cmThread();
  2105   // Initialize the from_card cache structure of HeapRegionRemSet.
  2106   HeapRegionRemSet::init_heap(max_regions());
  2108   // Now expand into the initial heap size.
  2109   if (!expand(init_byte_size)) {
  2110     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2111     return JNI_ENOMEM;
  2114   // Perform any initialization actions delegated to the policy.
  2115   g1_policy()->init();
  2117   _refine_cte_cl =
  2118     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2119                                     g1_rem_set(),
  2120                                     concurrent_g1_refine());
  2121   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2123   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2124                                                SATB_Q_FL_lock,
  2125                                                G1SATBProcessCompletedThreshold,
  2126                                                Shared_SATB_Q_lock);
  2128   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2129                                                 DirtyCardQ_FL_lock,
  2130                                                 concurrent_g1_refine()->yellow_zone(),
  2131                                                 concurrent_g1_refine()->red_zone(),
  2132                                                 Shared_DirtyCardQ_lock);
  2134   if (G1DeferredRSUpdate) {
  2135     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2136                                       DirtyCardQ_FL_lock,
  2137                                       -1, // never trigger processing
  2138                                       -1, // no limit on length
  2139                                       Shared_DirtyCardQ_lock,
  2140                                       &JavaThread::dirty_card_queue_set());
  2143   // Initialize the card queue set used to hold cards containing
  2144   // references into the collection set.
  2145   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2146                                              DirtyCardQ_FL_lock,
  2147                                              -1, // never trigger processing
  2148                                              -1, // no limit on length
  2149                                              Shared_DirtyCardQ_lock,
  2150                                              &JavaThread::dirty_card_queue_set());
  2152   // In case we're keeping closure specialization stats, initialize those
  2153   // counts and that mechanism.
  2154   SpecializationStats::clear();
  2156   // Here we allocate the dummy full region that is required by the
  2157   // G1AllocRegion class. If we don't pass an address in the reserved
  2158   // space here, lots of asserts fire.
  2160   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2161                                              _g1_reserved.start());
  2162   // We'll re-use the same region whether the alloc region will
  2163   // require BOT updates or not and, if it doesn't, then a non-young
  2164   // region will complain that it cannot support allocations without
  2165   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2166   dummy_region->set_young();
  2167   // Make sure it's full.
  2168   dummy_region->set_top(dummy_region->end());
  2169   G1AllocRegion::setup(this, dummy_region);
  2171   init_mutator_alloc_region();
  2173   // Do create of the monitoring and management support so that
  2174   // values in the heap have been properly initialized.
  2175   _g1mm = new G1MonitoringSupport(this);
  2177   G1StringDedup::initialize();
  2179   return JNI_OK;
  2182 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2183   return HeapRegion::max_region_size();
  2186 void G1CollectedHeap::ref_processing_init() {
  2187   // Reference processing in G1 currently works as follows:
  2188   //
  2189   // * There are two reference processor instances. One is
  2190   //   used to record and process discovered references
  2191   //   during concurrent marking; the other is used to
  2192   //   record and process references during STW pauses
  2193   //   (both full and incremental).
  2194   // * Both ref processors need to 'span' the entire heap as
  2195   //   the regions in the collection set may be dotted around.
  2196   //
  2197   // * For the concurrent marking ref processor:
  2198   //   * Reference discovery is enabled at initial marking.
  2199   //   * Reference discovery is disabled and the discovered
  2200   //     references processed etc during remarking.
  2201   //   * Reference discovery is MT (see below).
  2202   //   * Reference discovery requires a barrier (see below).
  2203   //   * Reference processing may or may not be MT
  2204   //     (depending on the value of ParallelRefProcEnabled
  2205   //     and ParallelGCThreads).
  2206   //   * A full GC disables reference discovery by the CM
  2207   //     ref processor and abandons any entries on it's
  2208   //     discovered lists.
  2209   //
  2210   // * For the STW processor:
  2211   //   * Non MT discovery is enabled at the start of a full GC.
  2212   //   * Processing and enqueueing during a full GC is non-MT.
  2213   //   * During a full GC, references are processed after marking.
  2214   //
  2215   //   * Discovery (may or may not be MT) is enabled at the start
  2216   //     of an incremental evacuation pause.
  2217   //   * References are processed near the end of a STW evacuation pause.
  2218   //   * For both types of GC:
  2219   //     * Discovery is atomic - i.e. not concurrent.
  2220   //     * Reference discovery will not need a barrier.
  2222   SharedHeap::ref_processing_init();
  2223   MemRegion mr = reserved_region();
  2225   // Concurrent Mark ref processor
  2226   _ref_processor_cm =
  2227     new ReferenceProcessor(mr,    // span
  2228                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2229                                 // mt processing
  2230                            (int) ParallelGCThreads,
  2231                                 // degree of mt processing
  2232                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2233                                 // mt discovery
  2234                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2235                                 // degree of mt discovery
  2236                            false,
  2237                                 // Reference discovery is not atomic
  2238                            &_is_alive_closure_cm,
  2239                                 // is alive closure
  2240                                 // (for efficiency/performance)
  2241                            true);
  2242                                 // Setting next fields of discovered
  2243                                 // lists requires a barrier.
  2245   // STW ref processor
  2246   _ref_processor_stw =
  2247     new ReferenceProcessor(mr,    // span
  2248                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2249                                 // mt processing
  2250                            MAX2((int)ParallelGCThreads, 1),
  2251                                 // degree of mt processing
  2252                            (ParallelGCThreads > 1),
  2253                                 // mt discovery
  2254                            MAX2((int)ParallelGCThreads, 1),
  2255                                 // degree of mt discovery
  2256                            true,
  2257                                 // Reference discovery is atomic
  2258                            &_is_alive_closure_stw,
  2259                                 // is alive closure
  2260                                 // (for efficiency/performance)
  2261                            false);
  2262                                 // Setting next fields of discovered
  2263                                 // lists does not require a barrier.
  2266 size_t G1CollectedHeap::capacity() const {
  2267   return _g1_committed.byte_size();
  2270 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2271   assert(!hr->continuesHumongous(), "pre-condition");
  2272   hr->reset_gc_time_stamp();
  2273   if (hr->startsHumongous()) {
  2274     uint first_index = hr->hrs_index() + 1;
  2275     uint last_index = hr->last_hc_index();
  2276     for (uint i = first_index; i < last_index; i += 1) {
  2277       HeapRegion* chr = region_at(i);
  2278       assert(chr->continuesHumongous(), "sanity");
  2279       chr->reset_gc_time_stamp();
  2284 #ifndef PRODUCT
  2285 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2286 private:
  2287   unsigned _gc_time_stamp;
  2288   bool _failures;
  2290 public:
  2291   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2292     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2294   virtual bool doHeapRegion(HeapRegion* hr) {
  2295     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2296     if (_gc_time_stamp != region_gc_time_stamp) {
  2297       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2298                              "expected %d", HR_FORMAT_PARAMS(hr),
  2299                              region_gc_time_stamp, _gc_time_stamp);
  2300       _failures = true;
  2302     return false;
  2305   bool failures() { return _failures; }
  2306 };
  2308 void G1CollectedHeap::check_gc_time_stamps() {
  2309   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2310   heap_region_iterate(&cl);
  2311   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2313 #endif // PRODUCT
  2315 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2316                                                  DirtyCardQueue* into_cset_dcq,
  2317                                                  bool concurrent,
  2318                                                  int worker_i) {
  2319   // Clean cards in the hot card cache
  2320   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2321   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2323   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2324   int n_completed_buffers = 0;
  2325   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2326     n_completed_buffers++;
  2328   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2329   dcqs.clear_n_completed_buffers();
  2330   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2334 // Computes the sum of the storage used by the various regions.
  2336 size_t G1CollectedHeap::used() const {
  2337   assert(Heap_lock->owner() != NULL,
  2338          "Should be owned on this thread's behalf.");
  2339   size_t result = _summary_bytes_used;
  2340   // Read only once in case it is set to NULL concurrently
  2341   HeapRegion* hr = _mutator_alloc_region.get();
  2342   if (hr != NULL)
  2343     result += hr->used();
  2344   return result;
  2347 size_t G1CollectedHeap::used_unlocked() const {
  2348   size_t result = _summary_bytes_used;
  2349   return result;
  2352 class SumUsedClosure: public HeapRegionClosure {
  2353   size_t _used;
  2354 public:
  2355   SumUsedClosure() : _used(0) {}
  2356   bool doHeapRegion(HeapRegion* r) {
  2357     if (!r->continuesHumongous()) {
  2358       _used += r->used();
  2360     return false;
  2362   size_t result() { return _used; }
  2363 };
  2365 size_t G1CollectedHeap::recalculate_used() const {
  2366   double recalculate_used_start = os::elapsedTime();
  2368   SumUsedClosure blk;
  2369   heap_region_iterate(&blk);
  2371   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2372   return blk.result();
  2375 size_t G1CollectedHeap::unsafe_max_alloc() {
  2376   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2377   // otherwise, is there space in the current allocation region?
  2379   // We need to store the current allocation region in a local variable
  2380   // here. The problem is that this method doesn't take any locks and
  2381   // there may be other threads which overwrite the current allocation
  2382   // region field. attempt_allocation(), for example, sets it to NULL
  2383   // and this can happen *after* the NULL check here but before the call
  2384   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2385   // to be a problem in the optimized build, since the two loads of the
  2386   // current allocation region field are optimized away.
  2387   HeapRegion* hr = _mutator_alloc_region.get();
  2388   if (hr == NULL) {
  2389     return 0;
  2391   return hr->free();
  2394 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2395   switch (cause) {
  2396     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2397     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2398     case GCCause::_g1_humongous_allocation: return true;
  2399     default:                                return false;
  2403 #ifndef PRODUCT
  2404 void G1CollectedHeap::allocate_dummy_regions() {
  2405   // Let's fill up most of the region
  2406   size_t word_size = HeapRegion::GrainWords - 1024;
  2407   // And as a result the region we'll allocate will be humongous.
  2408   guarantee(isHumongous(word_size), "sanity");
  2410   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2411     // Let's use the existing mechanism for the allocation
  2412     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2413     if (dummy_obj != NULL) {
  2414       MemRegion mr(dummy_obj, word_size);
  2415       CollectedHeap::fill_with_object(mr);
  2416     } else {
  2417       // If we can't allocate once, we probably cannot allocate
  2418       // again. Let's get out of the loop.
  2419       break;
  2423 #endif // !PRODUCT
  2425 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2426   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2427     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2428     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2429     _old_marking_cycles_started, _old_marking_cycles_completed));
  2431   _old_marking_cycles_started++;
  2434 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2435   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2437   // We assume that if concurrent == true, then the caller is a
  2438   // concurrent thread that was joined the Suspendible Thread
  2439   // Set. If there's ever a cheap way to check this, we should add an
  2440   // assert here.
  2442   // Given that this method is called at the end of a Full GC or of a
  2443   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2444   // interrupt a concurrent cycle), the number of full collections
  2445   // completed should be either one (in the case where there was no
  2446   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2447   // behind the number of full collections started.
  2449   // This is the case for the inner caller, i.e. a Full GC.
  2450   assert(concurrent ||
  2451          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2452          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2453          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2454                  "is inconsistent with _old_marking_cycles_completed = %u",
  2455                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2457   // This is the case for the outer caller, i.e. the concurrent cycle.
  2458   assert(!concurrent ||
  2459          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2460          err_msg("for outer caller (concurrent cycle): "
  2461                  "_old_marking_cycles_started = %u "
  2462                  "is inconsistent with _old_marking_cycles_completed = %u",
  2463                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2465   _old_marking_cycles_completed += 1;
  2467   // We need to clear the "in_progress" flag in the CM thread before
  2468   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2469   // is set) so that if a waiter requests another System.gc() it doesn't
  2470   // incorrectly see that a marking cycle is still in progress.
  2471   if (concurrent) {
  2472     _cmThread->clear_in_progress();
  2475   // This notify_all() will ensure that a thread that called
  2476   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2477   // and it's waiting for a full GC to finish will be woken up. It is
  2478   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2479   FullGCCount_lock->notify_all();
  2482 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2483   _concurrent_cycle_started = true;
  2484   _gc_timer_cm->register_gc_start(start_time);
  2486   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2487   trace_heap_before_gc(_gc_tracer_cm);
  2490 void G1CollectedHeap::register_concurrent_cycle_end() {
  2491   if (_concurrent_cycle_started) {
  2492     if (_cm->has_aborted()) {
  2493       _gc_tracer_cm->report_concurrent_mode_failure();
  2496     _gc_timer_cm->register_gc_end();
  2497     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2499     _concurrent_cycle_started = false;
  2503 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2504   if (_concurrent_cycle_started) {
  2505     trace_heap_after_gc(_gc_tracer_cm);
  2509 G1YCType G1CollectedHeap::yc_type() {
  2510   bool is_young = g1_policy()->gcs_are_young();
  2511   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2512   bool is_during_mark = mark_in_progress();
  2514   if (is_initial_mark) {
  2515     return InitialMark;
  2516   } else if (is_during_mark) {
  2517     return DuringMark;
  2518   } else if (is_young) {
  2519     return Normal;
  2520   } else {
  2521     return Mixed;
  2525 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2526   assert_heap_not_locked();
  2528   unsigned int gc_count_before;
  2529   unsigned int old_marking_count_before;
  2530   bool retry_gc;
  2532   do {
  2533     retry_gc = false;
  2536       MutexLocker ml(Heap_lock);
  2538       // Read the GC count while holding the Heap_lock
  2539       gc_count_before = total_collections();
  2540       old_marking_count_before = _old_marking_cycles_started;
  2543     if (should_do_concurrent_full_gc(cause)) {
  2544       // Schedule an initial-mark evacuation pause that will start a
  2545       // concurrent cycle. We're setting word_size to 0 which means that
  2546       // we are not requesting a post-GC allocation.
  2547       VM_G1IncCollectionPause op(gc_count_before,
  2548                                  0,     /* word_size */
  2549                                  true,  /* should_initiate_conc_mark */
  2550                                  g1_policy()->max_pause_time_ms(),
  2551                                  cause);
  2553       VMThread::execute(&op);
  2554       if (!op.pause_succeeded()) {
  2555         if (old_marking_count_before == _old_marking_cycles_started) {
  2556           retry_gc = op.should_retry_gc();
  2557         } else {
  2558           // A Full GC happened while we were trying to schedule the
  2559           // initial-mark GC. No point in starting a new cycle given
  2560           // that the whole heap was collected anyway.
  2563         if (retry_gc) {
  2564           if (GC_locker::is_active_and_needs_gc()) {
  2565             GC_locker::stall_until_clear();
  2569     } else {
  2570       if (cause == GCCause::_gc_locker
  2571           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2573         // Schedule a standard evacuation pause. We're setting word_size
  2574         // to 0 which means that we are not requesting a post-GC allocation.
  2575         VM_G1IncCollectionPause op(gc_count_before,
  2576                                    0,     /* word_size */
  2577                                    false, /* should_initiate_conc_mark */
  2578                                    g1_policy()->max_pause_time_ms(),
  2579                                    cause);
  2580         VMThread::execute(&op);
  2581       } else {
  2582         // Schedule a Full GC.
  2583         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2584         VMThread::execute(&op);
  2587   } while (retry_gc);
  2590 bool G1CollectedHeap::is_in(const void* p) const {
  2591   if (_g1_committed.contains(p)) {
  2592     // Given that we know that p is in the committed space,
  2593     // heap_region_containing_raw() should successfully
  2594     // return the containing region.
  2595     HeapRegion* hr = heap_region_containing_raw(p);
  2596     return hr->is_in(p);
  2597   } else {
  2598     return false;
  2602 // Iteration functions.
  2604 // Iterates an OopClosure over all ref-containing fields of objects
  2605 // within a HeapRegion.
  2607 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2608   MemRegion _mr;
  2609   ExtendedOopClosure* _cl;
  2610 public:
  2611   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
  2612     : _mr(mr), _cl(cl) {}
  2613   bool doHeapRegion(HeapRegion* r) {
  2614     if (!r->continuesHumongous()) {
  2615       r->oop_iterate(_cl);
  2617     return false;
  2619 };
  2621 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2622   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2623   heap_region_iterate(&blk);
  2626 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  2627   IterateOopClosureRegionClosure blk(mr, cl);
  2628   heap_region_iterate(&blk);
  2631 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2633 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2634   ObjectClosure* _cl;
  2635 public:
  2636   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2637   bool doHeapRegion(HeapRegion* r) {
  2638     if (! r->continuesHumongous()) {
  2639       r->object_iterate(_cl);
  2641     return false;
  2643 };
  2645 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2646   IterateObjectClosureRegionClosure blk(cl);
  2647   heap_region_iterate(&blk);
  2650 // Calls a SpaceClosure on a HeapRegion.
  2652 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2653   SpaceClosure* _cl;
  2654 public:
  2655   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2656   bool doHeapRegion(HeapRegion* r) {
  2657     _cl->do_space(r);
  2658     return false;
  2660 };
  2662 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2663   SpaceClosureRegionClosure blk(cl);
  2664   heap_region_iterate(&blk);
  2667 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2668   _hrs.iterate(cl);
  2671 void
  2672 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2673                                                  uint worker_id,
  2674                                                  uint no_of_par_workers,
  2675                                                  jint claim_value) {
  2676   const uint regions = n_regions();
  2677   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2678                              no_of_par_workers :
  2679                              1);
  2680   assert(UseDynamicNumberOfGCThreads ||
  2681          no_of_par_workers == workers()->total_workers(),
  2682          "Non dynamic should use fixed number of workers");
  2683   // try to spread out the starting points of the workers
  2684   const HeapRegion* start_hr =
  2685                         start_region_for_worker(worker_id, no_of_par_workers);
  2686   const uint start_index = start_hr->hrs_index();
  2688   // each worker will actually look at all regions
  2689   for (uint count = 0; count < regions; ++count) {
  2690     const uint index = (start_index + count) % regions;
  2691     assert(0 <= index && index < regions, "sanity");
  2692     HeapRegion* r = region_at(index);
  2693     // we'll ignore "continues humongous" regions (we'll process them
  2694     // when we come across their corresponding "start humongous"
  2695     // region) and regions already claimed
  2696     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2697       continue;
  2699     // OK, try to claim it
  2700     if (r->claimHeapRegion(claim_value)) {
  2701       // success!
  2702       assert(!r->continuesHumongous(), "sanity");
  2703       if (r->startsHumongous()) {
  2704         // If the region is "starts humongous" we'll iterate over its
  2705         // "continues humongous" first; in fact we'll do them
  2706         // first. The order is important. In on case, calling the
  2707         // closure on the "starts humongous" region might de-allocate
  2708         // and clear all its "continues humongous" regions and, as a
  2709         // result, we might end up processing them twice. So, we'll do
  2710         // them first (notice: most closures will ignore them anyway) and
  2711         // then we'll do the "starts humongous" region.
  2712         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2713           HeapRegion* chr = region_at(ch_index);
  2715           // if the region has already been claimed or it's not
  2716           // "continues humongous" we're done
  2717           if (chr->claim_value() == claim_value ||
  2718               !chr->continuesHumongous()) {
  2719             break;
  2722           // No one should have claimed it directly. We can given
  2723           // that we claimed its "starts humongous" region.
  2724           assert(chr->claim_value() != claim_value, "sanity");
  2725           assert(chr->humongous_start_region() == r, "sanity");
  2727           if (chr->claimHeapRegion(claim_value)) {
  2728             // we should always be able to claim it; no one else should
  2729             // be trying to claim this region
  2731             bool res2 = cl->doHeapRegion(chr);
  2732             assert(!res2, "Should not abort");
  2734             // Right now, this holds (i.e., no closure that actually
  2735             // does something with "continues humongous" regions
  2736             // clears them). We might have to weaken it in the future,
  2737             // but let's leave these two asserts here for extra safety.
  2738             assert(chr->continuesHumongous(), "should still be the case");
  2739             assert(chr->humongous_start_region() == r, "sanity");
  2740           } else {
  2741             guarantee(false, "we should not reach here");
  2746       assert(!r->continuesHumongous(), "sanity");
  2747       bool res = cl->doHeapRegion(r);
  2748       assert(!res, "Should not abort");
  2753 class ResetClaimValuesClosure: public HeapRegionClosure {
  2754 public:
  2755   bool doHeapRegion(HeapRegion* r) {
  2756     r->set_claim_value(HeapRegion::InitialClaimValue);
  2757     return false;
  2759 };
  2761 void G1CollectedHeap::reset_heap_region_claim_values() {
  2762   ResetClaimValuesClosure blk;
  2763   heap_region_iterate(&blk);
  2766 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2767   ResetClaimValuesClosure blk;
  2768   collection_set_iterate(&blk);
  2771 #ifdef ASSERT
  2772 // This checks whether all regions in the heap have the correct claim
  2773 // value. I also piggy-backed on this a check to ensure that the
  2774 // humongous_start_region() information on "continues humongous"
  2775 // regions is correct.
  2777 class CheckClaimValuesClosure : public HeapRegionClosure {
  2778 private:
  2779   jint _claim_value;
  2780   uint _failures;
  2781   HeapRegion* _sh_region;
  2783 public:
  2784   CheckClaimValuesClosure(jint claim_value) :
  2785     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2786   bool doHeapRegion(HeapRegion* r) {
  2787     if (r->claim_value() != _claim_value) {
  2788       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2789                              "claim value = %d, should be %d",
  2790                              HR_FORMAT_PARAMS(r),
  2791                              r->claim_value(), _claim_value);
  2792       ++_failures;
  2794     if (!r->isHumongous()) {
  2795       _sh_region = NULL;
  2796     } else if (r->startsHumongous()) {
  2797       _sh_region = r;
  2798     } else if (r->continuesHumongous()) {
  2799       if (r->humongous_start_region() != _sh_region) {
  2800         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2801                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2802                                HR_FORMAT_PARAMS(r),
  2803                                r->humongous_start_region(),
  2804                                _sh_region);
  2805         ++_failures;
  2808     return false;
  2810   uint failures() { return _failures; }
  2811 };
  2813 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2814   CheckClaimValuesClosure cl(claim_value);
  2815   heap_region_iterate(&cl);
  2816   return cl.failures() == 0;
  2819 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2820 private:
  2821   jint _claim_value;
  2822   uint _failures;
  2824 public:
  2825   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2826     _claim_value(claim_value), _failures(0) { }
  2828   uint failures() { return _failures; }
  2830   bool doHeapRegion(HeapRegion* hr) {
  2831     assert(hr->in_collection_set(), "how?");
  2832     assert(!hr->isHumongous(), "H-region in CSet");
  2833     if (hr->claim_value() != _claim_value) {
  2834       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2835                              "claim value = %d, should be %d",
  2836                              HR_FORMAT_PARAMS(hr),
  2837                              hr->claim_value(), _claim_value);
  2838       _failures += 1;
  2840     return false;
  2842 };
  2844 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2845   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2846   collection_set_iterate(&cl);
  2847   return cl.failures() == 0;
  2849 #endif // ASSERT
  2851 // Clear the cached CSet starting regions and (more importantly)
  2852 // the time stamps. Called when we reset the GC time stamp.
  2853 void G1CollectedHeap::clear_cset_start_regions() {
  2854   assert(_worker_cset_start_region != NULL, "sanity");
  2855   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2857   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2858   for (int i = 0; i < n_queues; i++) {
  2859     _worker_cset_start_region[i] = NULL;
  2860     _worker_cset_start_region_time_stamp[i] = 0;
  2864 // Given the id of a worker, obtain or calculate a suitable
  2865 // starting region for iterating over the current collection set.
  2866 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2867   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2869   HeapRegion* result = NULL;
  2870   unsigned gc_time_stamp = get_gc_time_stamp();
  2872   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2873     // Cached starting region for current worker was set
  2874     // during the current pause - so it's valid.
  2875     // Note: the cached starting heap region may be NULL
  2876     // (when the collection set is empty).
  2877     result = _worker_cset_start_region[worker_i];
  2878     assert(result == NULL || result->in_collection_set(), "sanity");
  2879     return result;
  2882   // The cached entry was not valid so let's calculate
  2883   // a suitable starting heap region for this worker.
  2885   // We want the parallel threads to start their collection
  2886   // set iteration at different collection set regions to
  2887   // avoid contention.
  2888   // If we have:
  2889   //          n collection set regions
  2890   //          p threads
  2891   // Then thread t will start at region floor ((t * n) / p)
  2893   result = g1_policy()->collection_set();
  2894   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2895     uint cs_size = g1_policy()->cset_region_length();
  2896     uint active_workers = workers()->active_workers();
  2897     assert(UseDynamicNumberOfGCThreads ||
  2898              active_workers == workers()->total_workers(),
  2899              "Unless dynamic should use total workers");
  2901     uint end_ind   = (cs_size * worker_i) / active_workers;
  2902     uint start_ind = 0;
  2904     if (worker_i > 0 &&
  2905         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2906       // Previous workers starting region is valid
  2907       // so let's iterate from there
  2908       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2909       result = _worker_cset_start_region[worker_i - 1];
  2912     for (uint i = start_ind; i < end_ind; i++) {
  2913       result = result->next_in_collection_set();
  2917   // Note: the calculated starting heap region may be NULL
  2918   // (when the collection set is empty).
  2919   assert(result == NULL || result->in_collection_set(), "sanity");
  2920   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2921          "should be updated only once per pause");
  2922   _worker_cset_start_region[worker_i] = result;
  2923   OrderAccess::storestore();
  2924   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2925   return result;
  2928 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2929                                                      uint no_of_par_workers) {
  2930   uint worker_num =
  2931            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2932   assert(UseDynamicNumberOfGCThreads ||
  2933          no_of_par_workers == workers()->total_workers(),
  2934          "Non dynamic should use fixed number of workers");
  2935   const uint start_index = n_regions() * worker_i / worker_num;
  2936   return region_at(start_index);
  2939 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2940   HeapRegion* r = g1_policy()->collection_set();
  2941   while (r != NULL) {
  2942     HeapRegion* next = r->next_in_collection_set();
  2943     if (cl->doHeapRegion(r)) {
  2944       cl->incomplete();
  2945       return;
  2947     r = next;
  2951 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2952                                                   HeapRegionClosure *cl) {
  2953   if (r == NULL) {
  2954     // The CSet is empty so there's nothing to do.
  2955     return;
  2958   assert(r->in_collection_set(),
  2959          "Start region must be a member of the collection set.");
  2960   HeapRegion* cur = r;
  2961   while (cur != NULL) {
  2962     HeapRegion* next = cur->next_in_collection_set();
  2963     if (cl->doHeapRegion(cur) && false) {
  2964       cl->incomplete();
  2965       return;
  2967     cur = next;
  2969   cur = g1_policy()->collection_set();
  2970   while (cur != r) {
  2971     HeapRegion* next = cur->next_in_collection_set();
  2972     if (cl->doHeapRegion(cur) && false) {
  2973       cl->incomplete();
  2974       return;
  2976     cur = next;
  2980 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2981   return n_regions() > 0 ? region_at(0) : NULL;
  2985 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2986   Space* res = heap_region_containing(addr);
  2987   return res;
  2990 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2991   Space* sp = space_containing(addr);
  2992   if (sp != NULL) {
  2993     return sp->block_start(addr);
  2995   return NULL;
  2998 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2999   Space* sp = space_containing(addr);
  3000   assert(sp != NULL, "block_size of address outside of heap");
  3001   return sp->block_size(addr);
  3004 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  3005   Space* sp = space_containing(addr);
  3006   return sp->block_is_obj(addr);
  3009 bool G1CollectedHeap::supports_tlab_allocation() const {
  3010   return true;
  3013 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  3014   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  3017 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  3018   return young_list()->eden_used_bytes();
  3021 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  3022 // must be smaller than the humongous object limit.
  3023 size_t G1CollectedHeap::max_tlab_size() const {
  3024   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  3027 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  3028   // Return the remaining space in the cur alloc region, but not less than
  3029   // the min TLAB size.
  3031   // Also, this value can be at most the humongous object threshold,
  3032   // since we can't allow tlabs to grow big enough to accommodate
  3033   // humongous objects.
  3035   HeapRegion* hr = _mutator_alloc_region.get();
  3036   size_t max_tlab = max_tlab_size() * wordSize;
  3037   if (hr == NULL) {
  3038     return max_tlab;
  3039   } else {
  3040     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  3044 size_t G1CollectedHeap::max_capacity() const {
  3045   return _g1_reserved.byte_size();
  3048 jlong G1CollectedHeap::millis_since_last_gc() {
  3049   // assert(false, "NYI");
  3050   return 0;
  3053 void G1CollectedHeap::prepare_for_verify() {
  3054   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3055     ensure_parsability(false);
  3057   g1_rem_set()->prepare_for_verify();
  3060 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3061                                               VerifyOption vo) {
  3062   switch (vo) {
  3063   case VerifyOption_G1UsePrevMarking:
  3064     return hr->obj_allocated_since_prev_marking(obj);
  3065   case VerifyOption_G1UseNextMarking:
  3066     return hr->obj_allocated_since_next_marking(obj);
  3067   case VerifyOption_G1UseMarkWord:
  3068     return false;
  3069   default:
  3070     ShouldNotReachHere();
  3072   return false; // keep some compilers happy
  3075 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3076   switch (vo) {
  3077   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3078   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3079   case VerifyOption_G1UseMarkWord:    return NULL;
  3080   default:                            ShouldNotReachHere();
  3082   return NULL; // keep some compilers happy
  3085 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3086   switch (vo) {
  3087   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3088   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3089   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3090   default:                            ShouldNotReachHere();
  3092   return false; // keep some compilers happy
  3095 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3096   switch (vo) {
  3097   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3098   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3099   case VerifyOption_G1UseMarkWord:    return "NONE";
  3100   default:                            ShouldNotReachHere();
  3102   return NULL; // keep some compilers happy
  3105 class VerifyRootsClosure: public OopClosure {
  3106 private:
  3107   G1CollectedHeap* _g1h;
  3108   VerifyOption     _vo;
  3109   bool             _failures;
  3110 public:
  3111   // _vo == UsePrevMarking -> use "prev" marking information,
  3112   // _vo == UseNextMarking -> use "next" marking information,
  3113   // _vo == UseMarkWord    -> use mark word from object header.
  3114   VerifyRootsClosure(VerifyOption vo) :
  3115     _g1h(G1CollectedHeap::heap()),
  3116     _vo(vo),
  3117     _failures(false) { }
  3119   bool failures() { return _failures; }
  3121   template <class T> void do_oop_nv(T* p) {
  3122     T heap_oop = oopDesc::load_heap_oop(p);
  3123     if (!oopDesc::is_null(heap_oop)) {
  3124       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3125       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3126         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3127                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3128         if (_vo == VerifyOption_G1UseMarkWord) {
  3129           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3131         obj->print_on(gclog_or_tty);
  3132         _failures = true;
  3137   void do_oop(oop* p)       { do_oop_nv(p); }
  3138   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3139 };
  3141 class G1VerifyCodeRootOopClosure: public OopClosure {
  3142   G1CollectedHeap* _g1h;
  3143   OopClosure* _root_cl;
  3144   nmethod* _nm;
  3145   VerifyOption _vo;
  3146   bool _failures;
  3148   template <class T> void do_oop_work(T* p) {
  3149     // First verify that this root is live
  3150     _root_cl->do_oop(p);
  3152     if (!G1VerifyHeapRegionCodeRoots) {
  3153       // We're not verifying the code roots attached to heap region.
  3154       return;
  3157     // Don't check the code roots during marking verification in a full GC
  3158     if (_vo == VerifyOption_G1UseMarkWord) {
  3159       return;
  3162     // Now verify that the current nmethod (which contains p) is
  3163     // in the code root list of the heap region containing the
  3164     // object referenced by p.
  3166     T heap_oop = oopDesc::load_heap_oop(p);
  3167     if (!oopDesc::is_null(heap_oop)) {
  3168       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3170       // Now fetch the region containing the object
  3171       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3172       HeapRegionRemSet* hrrs = hr->rem_set();
  3173       // Verify that the strong code root list for this region
  3174       // contains the nmethod
  3175       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3176         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3177                               "from nmethod "PTR_FORMAT" not in strong "
  3178                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3179                               p, _nm, hr->bottom(), hr->end());
  3180         _failures = true;
  3185 public:
  3186   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3187     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3189   void do_oop(oop* p) { do_oop_work(p); }
  3190   void do_oop(narrowOop* p) { do_oop_work(p); }
  3192   void set_nmethod(nmethod* nm) { _nm = nm; }
  3193   bool failures() { return _failures; }
  3194 };
  3196 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3197   G1VerifyCodeRootOopClosure* _oop_cl;
  3199 public:
  3200   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3201     _oop_cl(oop_cl) {}
  3203   void do_code_blob(CodeBlob* cb) {
  3204     nmethod* nm = cb->as_nmethod_or_null();
  3205     if (nm != NULL) {
  3206       _oop_cl->set_nmethod(nm);
  3207       nm->oops_do(_oop_cl);
  3210 };
  3212 class YoungRefCounterClosure : public OopClosure {
  3213   G1CollectedHeap* _g1h;
  3214   int              _count;
  3215  public:
  3216   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3217   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3218   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3220   int count() { return _count; }
  3221   void reset_count() { _count = 0; };
  3222 };
  3224 class VerifyKlassClosure: public KlassClosure {
  3225   YoungRefCounterClosure _young_ref_counter_closure;
  3226   OopClosure *_oop_closure;
  3227  public:
  3228   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3229   void do_klass(Klass* k) {
  3230     k->oops_do(_oop_closure);
  3232     _young_ref_counter_closure.reset_count();
  3233     k->oops_do(&_young_ref_counter_closure);
  3234     if (_young_ref_counter_closure.count() > 0) {
  3235       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3238 };
  3240 class VerifyLivenessOopClosure: public OopClosure {
  3241   G1CollectedHeap* _g1h;
  3242   VerifyOption _vo;
  3243 public:
  3244   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3245     _g1h(g1h), _vo(vo)
  3246   { }
  3247   void do_oop(narrowOop *p) { do_oop_work(p); }
  3248   void do_oop(      oop *p) { do_oop_work(p); }
  3250   template <class T> void do_oop_work(T *p) {
  3251     oop obj = oopDesc::load_decode_heap_oop(p);
  3252     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3253               "Dead object referenced by a not dead object");
  3255 };
  3257 class VerifyObjsInRegionClosure: public ObjectClosure {
  3258 private:
  3259   G1CollectedHeap* _g1h;
  3260   size_t _live_bytes;
  3261   HeapRegion *_hr;
  3262   VerifyOption _vo;
  3263 public:
  3264   // _vo == UsePrevMarking -> use "prev" marking information,
  3265   // _vo == UseNextMarking -> use "next" marking information,
  3266   // _vo == UseMarkWord    -> use mark word from object header.
  3267   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3268     : _live_bytes(0), _hr(hr), _vo(vo) {
  3269     _g1h = G1CollectedHeap::heap();
  3271   void do_object(oop o) {
  3272     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3273     assert(o != NULL, "Huh?");
  3274     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3275       // If the object is alive according to the mark word,
  3276       // then verify that the marking information agrees.
  3277       // Note we can't verify the contra-positive of the
  3278       // above: if the object is dead (according to the mark
  3279       // word), it may not be marked, or may have been marked
  3280       // but has since became dead, or may have been allocated
  3281       // since the last marking.
  3282       if (_vo == VerifyOption_G1UseMarkWord) {
  3283         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3286       o->oop_iterate_no_header(&isLive);
  3287       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3288         size_t obj_size = o->size();    // Make sure we don't overflow
  3289         _live_bytes += (obj_size * HeapWordSize);
  3293   size_t live_bytes() { return _live_bytes; }
  3294 };
  3296 class PrintObjsInRegionClosure : public ObjectClosure {
  3297   HeapRegion *_hr;
  3298   G1CollectedHeap *_g1;
  3299 public:
  3300   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3301     _g1 = G1CollectedHeap::heap();
  3302   };
  3304   void do_object(oop o) {
  3305     if (o != NULL) {
  3306       HeapWord *start = (HeapWord *) o;
  3307       size_t word_sz = o->size();
  3308       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3309                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3310                           (void*) o, word_sz,
  3311                           _g1->isMarkedPrev(o),
  3312                           _g1->isMarkedNext(o),
  3313                           _hr->obj_allocated_since_prev_marking(o));
  3314       HeapWord *end = start + word_sz;
  3315       HeapWord *cur;
  3316       int *val;
  3317       for (cur = start; cur < end; cur++) {
  3318         val = (int *) cur;
  3319         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3323 };
  3325 class VerifyRegionClosure: public HeapRegionClosure {
  3326 private:
  3327   bool             _par;
  3328   VerifyOption     _vo;
  3329   bool             _failures;
  3330 public:
  3331   // _vo == UsePrevMarking -> use "prev" marking information,
  3332   // _vo == UseNextMarking -> use "next" marking information,
  3333   // _vo == UseMarkWord    -> use mark word from object header.
  3334   VerifyRegionClosure(bool par, VerifyOption vo)
  3335     : _par(par),
  3336       _vo(vo),
  3337       _failures(false) {}
  3339   bool failures() {
  3340     return _failures;
  3343   bool doHeapRegion(HeapRegion* r) {
  3344     if (!r->continuesHumongous()) {
  3345       bool failures = false;
  3346       r->verify(_vo, &failures);
  3347       if (failures) {
  3348         _failures = true;
  3349       } else {
  3350         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3351         r->object_iterate(&not_dead_yet_cl);
  3352         if (_vo != VerifyOption_G1UseNextMarking) {
  3353           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3354             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3355                                    "max_live_bytes "SIZE_FORMAT" "
  3356                                    "< calculated "SIZE_FORMAT,
  3357                                    r->bottom(), r->end(),
  3358                                    r->max_live_bytes(),
  3359                                  not_dead_yet_cl.live_bytes());
  3360             _failures = true;
  3362         } else {
  3363           // When vo == UseNextMarking we cannot currently do a sanity
  3364           // check on the live bytes as the calculation has not been
  3365           // finalized yet.
  3369     return false; // stop the region iteration if we hit a failure
  3371 };
  3373 // This is the task used for parallel verification of the heap regions
  3375 class G1ParVerifyTask: public AbstractGangTask {
  3376 private:
  3377   G1CollectedHeap* _g1h;
  3378   VerifyOption     _vo;
  3379   bool             _failures;
  3381 public:
  3382   // _vo == UsePrevMarking -> use "prev" marking information,
  3383   // _vo == UseNextMarking -> use "next" marking information,
  3384   // _vo == UseMarkWord    -> use mark word from object header.
  3385   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3386     AbstractGangTask("Parallel verify task"),
  3387     _g1h(g1h),
  3388     _vo(vo),
  3389     _failures(false) { }
  3391   bool failures() {
  3392     return _failures;
  3395   void work(uint worker_id) {
  3396     HandleMark hm;
  3397     VerifyRegionClosure blk(true, _vo);
  3398     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3399                                           _g1h->workers()->active_workers(),
  3400                                           HeapRegion::ParVerifyClaimValue);
  3401     if (blk.failures()) {
  3402       _failures = true;
  3405 };
  3407 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3408   if (SafepointSynchronize::is_at_safepoint()) {
  3409     assert(Thread::current()->is_VM_thread(),
  3410            "Expected to be executed serially by the VM thread at this point");
  3412     if (!silent) { gclog_or_tty->print("Roots "); }
  3413     VerifyRootsClosure rootsCl(vo);
  3414     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3415     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3416     VerifyKlassClosure klassCl(this, &rootsCl);
  3418     // We apply the relevant closures to all the oops in the
  3419     // system dictionary, the string table and the code cache.
  3420     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3422     // Need cleared claim bits for the strong roots processing
  3423     ClassLoaderDataGraph::clear_claimed_marks();
  3425     process_strong_roots(true,      // activate StrongRootsScope
  3426                          false,     // we set "is scavenging" to false,
  3427                                     // so we don't reset the dirty cards.
  3428                          ScanningOption(so),  // roots scanning options
  3429                          &rootsCl,
  3430                          &blobsCl,
  3431                          &klassCl
  3432                          );
  3434     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3436     if (vo != VerifyOption_G1UseMarkWord) {
  3437       // If we're verifying during a full GC then the region sets
  3438       // will have been torn down at the start of the GC. Therefore
  3439       // verifying the region sets will fail. So we only verify
  3440       // the region sets when not in a full GC.
  3441       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3442       verify_region_sets();
  3445     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3446     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3447       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3448              "sanity check");
  3450       G1ParVerifyTask task(this, vo);
  3451       assert(UseDynamicNumberOfGCThreads ||
  3452         workers()->active_workers() == workers()->total_workers(),
  3453         "If not dynamic should be using all the workers");
  3454       int n_workers = workers()->active_workers();
  3455       set_par_threads(n_workers);
  3456       workers()->run_task(&task);
  3457       set_par_threads(0);
  3458       if (task.failures()) {
  3459         failures = true;
  3462       // Checks that the expected amount of parallel work was done.
  3463       // The implication is that n_workers is > 0.
  3464       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3465              "sanity check");
  3467       reset_heap_region_claim_values();
  3469       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3470              "sanity check");
  3471     } else {
  3472       VerifyRegionClosure blk(false, vo);
  3473       heap_region_iterate(&blk);
  3474       if (blk.failures()) {
  3475         failures = true;
  3478     if (!silent) gclog_or_tty->print("RemSet ");
  3479     rem_set()->verify();
  3481     if (G1StringDedup::is_enabled()) {
  3482       if (!silent) gclog_or_tty->print("StrDedup ");
  3483       G1StringDedup::verify();
  3486     if (failures) {
  3487       gclog_or_tty->print_cr("Heap:");
  3488       // It helps to have the per-region information in the output to
  3489       // help us track down what went wrong. This is why we call
  3490       // print_extended_on() instead of print_on().
  3491       print_extended_on(gclog_or_tty);
  3492       gclog_or_tty->print_cr("");
  3493 #ifndef PRODUCT
  3494       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3495         concurrent_mark()->print_reachable("at-verification-failure",
  3496                                            vo, false /* all */);
  3498 #endif
  3499       gclog_or_tty->flush();
  3501     guarantee(!failures, "there should not have been any failures");
  3502   } else {
  3503     if (!silent) {
  3504       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3505       if (G1StringDedup::is_enabled()) {
  3506         gclog_or_tty->print(", StrDedup");
  3508       gclog_or_tty->print(") ");
  3513 void G1CollectedHeap::verify(bool silent) {
  3514   verify(silent, VerifyOption_G1UsePrevMarking);
  3517 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3518   double verify_time_ms = 0.0;
  3520   if (guard && total_collections() >= VerifyGCStartAt) {
  3521     double verify_start = os::elapsedTime();
  3522     HandleMark hm;  // Discard invalid handles created during verification
  3523     prepare_for_verify();
  3524     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3525     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3528   return verify_time_ms;
  3531 void G1CollectedHeap::verify_before_gc() {
  3532   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3533   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3536 void G1CollectedHeap::verify_after_gc() {
  3537   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3538   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3541 class PrintRegionClosure: public HeapRegionClosure {
  3542   outputStream* _st;
  3543 public:
  3544   PrintRegionClosure(outputStream* st) : _st(st) {}
  3545   bool doHeapRegion(HeapRegion* r) {
  3546     r->print_on(_st);
  3547     return false;
  3549 };
  3551 void G1CollectedHeap::print_on(outputStream* st) const {
  3552   st->print(" %-20s", "garbage-first heap");
  3553   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3554             capacity()/K, used_unlocked()/K);
  3555   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3556             _g1_storage.low_boundary(),
  3557             _g1_storage.high(),
  3558             _g1_storage.high_boundary());
  3559   st->cr();
  3560   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3561   uint young_regions = _young_list->length();
  3562   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3563             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3564   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3565   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3566             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3567   st->cr();
  3568   MetaspaceAux::print_on(st);
  3571 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3572   print_on(st);
  3574   // Print the per-region information.
  3575   st->cr();
  3576   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3577                "HS=humongous(starts), HC=humongous(continues), "
  3578                "CS=collection set, F=free, TS=gc time stamp, "
  3579                "PTAMS=previous top-at-mark-start, "
  3580                "NTAMS=next top-at-mark-start)");
  3581   PrintRegionClosure blk(st);
  3582   heap_region_iterate(&blk);
  3585 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3586   this->CollectedHeap::print_on_error(st);
  3588   if (_cm != NULL) {
  3589     st->cr();
  3590     _cm->print_on_error(st);
  3594 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3595   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3596     workers()->print_worker_threads_on(st);
  3598   _cmThread->print_on(st);
  3599   st->cr();
  3600   _cm->print_worker_threads_on(st);
  3601   _cg1r->print_worker_threads_on(st);
  3602   if (G1StringDedup::is_enabled()) {
  3603     G1StringDedup::print_worker_threads_on(st);
  3607 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3608   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3609     workers()->threads_do(tc);
  3611   tc->do_thread(_cmThread);
  3612   _cg1r->threads_do(tc);
  3613   if (G1StringDedup::is_enabled()) {
  3614     G1StringDedup::threads_do(tc);
  3618 void G1CollectedHeap::print_tracing_info() const {
  3619   // We'll overload this to mean "trace GC pause statistics."
  3620   if (TraceGen0Time || TraceGen1Time) {
  3621     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3622     // to that.
  3623     g1_policy()->print_tracing_info();
  3625   if (G1SummarizeRSetStats) {
  3626     g1_rem_set()->print_summary_info();
  3628   if (G1SummarizeConcMark) {
  3629     concurrent_mark()->print_summary_info();
  3631   g1_policy()->print_yg_surv_rate_info();
  3632   SpecializationStats::print();
  3635 #ifndef PRODUCT
  3636 // Helpful for debugging RSet issues.
  3638 class PrintRSetsClosure : public HeapRegionClosure {
  3639 private:
  3640   const char* _msg;
  3641   size_t _occupied_sum;
  3643 public:
  3644   bool doHeapRegion(HeapRegion* r) {
  3645     HeapRegionRemSet* hrrs = r->rem_set();
  3646     size_t occupied = hrrs->occupied();
  3647     _occupied_sum += occupied;
  3649     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3650                            HR_FORMAT_PARAMS(r));
  3651     if (occupied == 0) {
  3652       gclog_or_tty->print_cr("  RSet is empty");
  3653     } else {
  3654       hrrs->print();
  3656     gclog_or_tty->print_cr("----------");
  3657     return false;
  3660   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3661     gclog_or_tty->cr();
  3662     gclog_or_tty->print_cr("========================================");
  3663     gclog_or_tty->print_cr(msg);
  3664     gclog_or_tty->cr();
  3667   ~PrintRSetsClosure() {
  3668     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3669     gclog_or_tty->print_cr("========================================");
  3670     gclog_or_tty->cr();
  3672 };
  3674 void G1CollectedHeap::print_cset_rsets() {
  3675   PrintRSetsClosure cl("Printing CSet RSets");
  3676   collection_set_iterate(&cl);
  3679 void G1CollectedHeap::print_all_rsets() {
  3680   PrintRSetsClosure cl("Printing All RSets");;
  3681   heap_region_iterate(&cl);
  3683 #endif // PRODUCT
  3685 G1CollectedHeap* G1CollectedHeap::heap() {
  3686   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3687          "not a garbage-first heap");
  3688   return _g1h;
  3691 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3692   // always_do_update_barrier = false;
  3693   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3694   // Fill TLAB's and such
  3695   accumulate_statistics_all_tlabs();
  3696   ensure_parsability(true);
  3698   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3699       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3700     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3704 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3706   if (G1SummarizeRSetStats &&
  3707       (G1SummarizeRSetStatsPeriod > 0) &&
  3708       // we are at the end of the GC. Total collections has already been increased.
  3709       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3710     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3713   // FIXME: what is this about?
  3714   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3715   // is set.
  3716   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3717                         "derived pointer present"));
  3718   // always_do_update_barrier = true;
  3720   resize_all_tlabs();
  3722   // We have just completed a GC. Update the soft reference
  3723   // policy with the new heap occupancy
  3724   Universe::update_heap_info_at_gc();
  3727 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3728                                                unsigned int gc_count_before,
  3729                                                bool* succeeded,
  3730                                                GCCause::Cause gc_cause) {
  3731   assert_heap_not_locked_and_not_at_safepoint();
  3732   g1_policy()->record_stop_world_start();
  3733   VM_G1IncCollectionPause op(gc_count_before,
  3734                              word_size,
  3735                              false, /* should_initiate_conc_mark */
  3736                              g1_policy()->max_pause_time_ms(),
  3737                              gc_cause);
  3738   VMThread::execute(&op);
  3740   HeapWord* result = op.result();
  3741   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3742   assert(result == NULL || ret_succeeded,
  3743          "the result should be NULL if the VM did not succeed");
  3744   *succeeded = ret_succeeded;
  3746   assert_heap_not_locked();
  3747   return result;
  3750 void
  3751 G1CollectedHeap::doConcurrentMark() {
  3752   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3753   if (!_cmThread->in_progress()) {
  3754     _cmThread->set_started();
  3755     CGC_lock->notify();
  3759 size_t G1CollectedHeap::pending_card_num() {
  3760   size_t extra_cards = 0;
  3761   JavaThread *curr = Threads::first();
  3762   while (curr != NULL) {
  3763     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3764     extra_cards += dcq.size();
  3765     curr = curr->next();
  3767   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3768   size_t buffer_size = dcqs.buffer_size();
  3769   size_t buffer_num = dcqs.completed_buffers_num();
  3771   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3772   // in bytes - not the number of 'entries'. We need to convert
  3773   // into a number of cards.
  3774   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3777 size_t G1CollectedHeap::cards_scanned() {
  3778   return g1_rem_set()->cardsScanned();
  3781 void
  3782 G1CollectedHeap::setup_surviving_young_words() {
  3783   assert(_surviving_young_words == NULL, "pre-condition");
  3784   uint array_length = g1_policy()->young_cset_region_length();
  3785   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3786   if (_surviving_young_words == NULL) {
  3787     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3788                           "Not enough space for young surv words summary.");
  3790   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3791 #ifdef ASSERT
  3792   for (uint i = 0;  i < array_length; ++i) {
  3793     assert( _surviving_young_words[i] == 0, "memset above" );
  3795 #endif // !ASSERT
  3798 void
  3799 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3800   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3801   uint array_length = g1_policy()->young_cset_region_length();
  3802   for (uint i = 0; i < array_length; ++i) {
  3803     _surviving_young_words[i] += surv_young_words[i];
  3807 void
  3808 G1CollectedHeap::cleanup_surviving_young_words() {
  3809   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3810   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3811   _surviving_young_words = NULL;
  3814 #ifdef ASSERT
  3815 class VerifyCSetClosure: public HeapRegionClosure {
  3816 public:
  3817   bool doHeapRegion(HeapRegion* hr) {
  3818     // Here we check that the CSet region's RSet is ready for parallel
  3819     // iteration. The fields that we'll verify are only manipulated
  3820     // when the region is part of a CSet and is collected. Afterwards,
  3821     // we reset these fields when we clear the region's RSet (when the
  3822     // region is freed) so they are ready when the region is
  3823     // re-allocated. The only exception to this is if there's an
  3824     // evacuation failure and instead of freeing the region we leave
  3825     // it in the heap. In that case, we reset these fields during
  3826     // evacuation failure handling.
  3827     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3829     // Here's a good place to add any other checks we'd like to
  3830     // perform on CSet regions.
  3831     return false;
  3833 };
  3834 #endif // ASSERT
  3836 #if TASKQUEUE_STATS
  3837 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3838   st->print_raw_cr("GC Task Stats");
  3839   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3840   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3843 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3844   print_taskqueue_stats_hdr(st);
  3846   TaskQueueStats totals;
  3847   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3848   for (int i = 0; i < n; ++i) {
  3849     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3850     totals += task_queue(i)->stats;
  3852   st->print_raw("tot "); totals.print(st); st->cr();
  3854   DEBUG_ONLY(totals.verify());
  3857 void G1CollectedHeap::reset_taskqueue_stats() {
  3858   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3859   for (int i = 0; i < n; ++i) {
  3860     task_queue(i)->stats.reset();
  3863 #endif // TASKQUEUE_STATS
  3865 void G1CollectedHeap::log_gc_header() {
  3866   if (!G1Log::fine()) {
  3867     return;
  3870   gclog_or_tty->date_stamp(PrintGCDateStamps);
  3871   gclog_or_tty->stamp(PrintGCTimeStamps);
  3873   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3874     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3875     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3877   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3880 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3881   if (!G1Log::fine()) {
  3882     return;
  3885   if (G1Log::finer()) {
  3886     if (evacuation_failed()) {
  3887       gclog_or_tty->print(" (to-space exhausted)");
  3889     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3890     g1_policy()->phase_times()->note_gc_end();
  3891     g1_policy()->phase_times()->print(pause_time_sec);
  3892     g1_policy()->print_detailed_heap_transition();
  3893   } else {
  3894     if (evacuation_failed()) {
  3895       gclog_or_tty->print("--");
  3897     g1_policy()->print_heap_transition();
  3898     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3900   gclog_or_tty->flush();
  3903 bool
  3904 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3905   assert_at_safepoint(true /* should_be_vm_thread */);
  3906   guarantee(!is_gc_active(), "collection is not reentrant");
  3908   if (GC_locker::check_active_before_gc()) {
  3909     return false;
  3912   _gc_timer_stw->register_gc_start();
  3914   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3916   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3917   ResourceMark rm;
  3919   print_heap_before_gc();
  3920   trace_heap_before_gc(_gc_tracer_stw);
  3922   verify_region_sets_optional();
  3923   verify_dirty_young_regions();
  3925   // This call will decide whether this pause is an initial-mark
  3926   // pause. If it is, during_initial_mark_pause() will return true
  3927   // for the duration of this pause.
  3928   g1_policy()->decide_on_conc_mark_initiation();
  3930   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3931   assert(!g1_policy()->during_initial_mark_pause() ||
  3932           g1_policy()->gcs_are_young(), "sanity");
  3934   // We also do not allow mixed GCs during marking.
  3935   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3937   // Record whether this pause is an initial mark. When the current
  3938   // thread has completed its logging output and it's safe to signal
  3939   // the CM thread, the flag's value in the policy has been reset.
  3940   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3942   // Inner scope for scope based logging, timers, and stats collection
  3944     EvacuationInfo evacuation_info;
  3946     if (g1_policy()->during_initial_mark_pause()) {
  3947       // We are about to start a marking cycle, so we increment the
  3948       // full collection counter.
  3949       increment_old_marking_cycles_started();
  3950       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3953     _gc_tracer_stw->report_yc_type(yc_type());
  3955     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3957     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3958                                 workers()->active_workers() : 1);
  3959     double pause_start_sec = os::elapsedTime();
  3960     g1_policy()->phase_times()->note_gc_start(active_workers);
  3961     log_gc_header();
  3963     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3964     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3966     // If the secondary_free_list is not empty, append it to the
  3967     // free_list. No need to wait for the cleanup operation to finish;
  3968     // the region allocation code will check the secondary_free_list
  3969     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3970     // set, skip this step so that the region allocation code has to
  3971     // get entries from the secondary_free_list.
  3972     if (!G1StressConcRegionFreeing) {
  3973       append_secondary_free_list_if_not_empty_with_lock();
  3976     assert(check_young_list_well_formed(), "young list should be well formed");
  3977     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3978            "sanity check");
  3980     // Don't dynamically change the number of GC threads this early.  A value of
  3981     // 0 is used to indicate serial work.  When parallel work is done,
  3982     // it will be set.
  3984     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3985       IsGCActiveMark x;
  3987       gc_prologue(false);
  3988       increment_total_collections(false /* full gc */);
  3989       increment_gc_time_stamp();
  3991       verify_before_gc();
  3993       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3995       // Please see comment in g1CollectedHeap.hpp and
  3996       // G1CollectedHeap::ref_processing_init() to see how
  3997       // reference processing currently works in G1.
  3999       // Enable discovery in the STW reference processor
  4000       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  4001                                             true /*verify_no_refs*/);
  4004         // We want to temporarily turn off discovery by the
  4005         // CM ref processor, if necessary, and turn it back on
  4006         // on again later if we do. Using a scoped
  4007         // NoRefDiscovery object will do this.
  4008         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  4010         // Forget the current alloc region (we might even choose it to be part
  4011         // of the collection set!).
  4012         release_mutator_alloc_region();
  4014         // We should call this after we retire the mutator alloc
  4015         // region(s) so that all the ALLOC / RETIRE events are generated
  4016         // before the start GC event.
  4017         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  4019         // This timing is only used by the ergonomics to handle our pause target.
  4020         // It is unclear why this should not include the full pause. We will
  4021         // investigate this in CR 7178365.
  4022         //
  4023         // Preserving the old comment here if that helps the investigation:
  4024         //
  4025         // The elapsed time induced by the start time below deliberately elides
  4026         // the possible verification above.
  4027         double sample_start_time_sec = os::elapsedTime();
  4029 #if YOUNG_LIST_VERBOSE
  4030         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  4031         _young_list->print();
  4032         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4033 #endif // YOUNG_LIST_VERBOSE
  4035         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  4037         double scan_wait_start = os::elapsedTime();
  4038         // We have to wait until the CM threads finish scanning the
  4039         // root regions as it's the only way to ensure that all the
  4040         // objects on them have been correctly scanned before we start
  4041         // moving them during the GC.
  4042         bool waited = _cm->root_regions()->wait_until_scan_finished();
  4043         double wait_time_ms = 0.0;
  4044         if (waited) {
  4045           double scan_wait_end = os::elapsedTime();
  4046           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  4048         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  4050 #if YOUNG_LIST_VERBOSE
  4051         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  4052         _young_list->print();
  4053 #endif // YOUNG_LIST_VERBOSE
  4055         if (g1_policy()->during_initial_mark_pause()) {
  4056           concurrent_mark()->checkpointRootsInitialPre();
  4059 #if YOUNG_LIST_VERBOSE
  4060         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4061         _young_list->print();
  4062         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4063 #endif // YOUNG_LIST_VERBOSE
  4065         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4067         _cm->note_start_of_gc();
  4068         // We should not verify the per-thread SATB buffers given that
  4069         // we have not filtered them yet (we'll do so during the
  4070         // GC). We also call this after finalize_cset() to
  4071         // ensure that the CSet has been finalized.
  4072         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4073                                  true  /* verify_enqueued_buffers */,
  4074                                  false /* verify_thread_buffers */,
  4075                                  true  /* verify_fingers */);
  4077         if (_hr_printer.is_active()) {
  4078           HeapRegion* hr = g1_policy()->collection_set();
  4079           while (hr != NULL) {
  4080             G1HRPrinter::RegionType type;
  4081             if (!hr->is_young()) {
  4082               type = G1HRPrinter::Old;
  4083             } else if (hr->is_survivor()) {
  4084               type = G1HRPrinter::Survivor;
  4085             } else {
  4086               type = G1HRPrinter::Eden;
  4088             _hr_printer.cset(hr);
  4089             hr = hr->next_in_collection_set();
  4093 #ifdef ASSERT
  4094         VerifyCSetClosure cl;
  4095         collection_set_iterate(&cl);
  4096 #endif // ASSERT
  4098         setup_surviving_young_words();
  4100         // Initialize the GC alloc regions.
  4101         init_gc_alloc_regions(evacuation_info);
  4103         // Actually do the work...
  4104         evacuate_collection_set(evacuation_info);
  4106         // We do this to mainly verify the per-thread SATB buffers
  4107         // (which have been filtered by now) since we didn't verify
  4108         // them earlier. No point in re-checking the stacks / enqueued
  4109         // buffers given that the CSet has not changed since last time
  4110         // we checked.
  4111         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4112                                  false /* verify_enqueued_buffers */,
  4113                                  true  /* verify_thread_buffers */,
  4114                                  true  /* verify_fingers */);
  4116         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4117         g1_policy()->clear_collection_set();
  4119         cleanup_surviving_young_words();
  4121         // Start a new incremental collection set for the next pause.
  4122         g1_policy()->start_incremental_cset_building();
  4124         // Clear the _cset_fast_test bitmap in anticipation of adding
  4125         // regions to the incremental collection set for the next
  4126         // evacuation pause.
  4127         clear_cset_fast_test();
  4129         _young_list->reset_sampled_info();
  4131         // Don't check the whole heap at this point as the
  4132         // GC alloc regions from this pause have been tagged
  4133         // as survivors and moved on to the survivor list.
  4134         // Survivor regions will fail the !is_young() check.
  4135         assert(check_young_list_empty(false /* check_heap */),
  4136           "young list should be empty");
  4138 #if YOUNG_LIST_VERBOSE
  4139         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4140         _young_list->print();
  4141 #endif // YOUNG_LIST_VERBOSE
  4143         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4144                                              _young_list->first_survivor_region(),
  4145                                              _young_list->last_survivor_region());
  4147         _young_list->reset_auxilary_lists();
  4149         if (evacuation_failed()) {
  4150           _summary_bytes_used = recalculate_used();
  4151           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4152           for (uint i = 0; i < n_queues; i++) {
  4153             if (_evacuation_failed_info_array[i].has_failed()) {
  4154               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4157         } else {
  4158           // The "used" of the the collection set have already been subtracted
  4159           // when they were freed.  Add in the bytes evacuated.
  4160           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  4163         if (g1_policy()->during_initial_mark_pause()) {
  4164           // We have to do this before we notify the CM threads that
  4165           // they can start working to make sure that all the
  4166           // appropriate initialization is done on the CM object.
  4167           concurrent_mark()->checkpointRootsInitialPost();
  4168           set_marking_started();
  4169           // Note that we don't actually trigger the CM thread at
  4170           // this point. We do that later when we're sure that
  4171           // the current thread has completed its logging output.
  4174         allocate_dummy_regions();
  4176 #if YOUNG_LIST_VERBOSE
  4177         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4178         _young_list->print();
  4179         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4180 #endif // YOUNG_LIST_VERBOSE
  4182         init_mutator_alloc_region();
  4185           size_t expand_bytes = g1_policy()->expansion_amount();
  4186           if (expand_bytes > 0) {
  4187             size_t bytes_before = capacity();
  4188             // No need for an ergo verbose message here,
  4189             // expansion_amount() does this when it returns a value > 0.
  4190             if (!expand(expand_bytes)) {
  4191               // We failed to expand the heap so let's verify that
  4192               // committed/uncommitted amount match the backing store
  4193               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  4194               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  4199         // We redo the verification but now wrt to the new CSet which
  4200         // has just got initialized after the previous CSet was freed.
  4201         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4202                                  true  /* verify_enqueued_buffers */,
  4203                                  true  /* verify_thread_buffers */,
  4204                                  true  /* verify_fingers */);
  4205         _cm->note_end_of_gc();
  4207         // This timing is only used by the ergonomics to handle our pause target.
  4208         // It is unclear why this should not include the full pause. We will
  4209         // investigate this in CR 7178365.
  4210         double sample_end_time_sec = os::elapsedTime();
  4211         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4212         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4214         MemoryService::track_memory_usage();
  4216         // In prepare_for_verify() below we'll need to scan the deferred
  4217         // update buffers to bring the RSets up-to-date if
  4218         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4219         // the update buffers we'll probably need to scan cards on the
  4220         // regions we just allocated to (i.e., the GC alloc
  4221         // regions). However, during the last GC we called
  4222         // set_saved_mark() on all the GC alloc regions, so card
  4223         // scanning might skip the [saved_mark_word()...top()] area of
  4224         // those regions (i.e., the area we allocated objects into
  4225         // during the last GC). But it shouldn't. Given that
  4226         // saved_mark_word() is conditional on whether the GC time stamp
  4227         // on the region is current or not, by incrementing the GC time
  4228         // stamp here we invalidate all the GC time stamps on all the
  4229         // regions and saved_mark_word() will simply return top() for
  4230         // all the regions. This is a nicer way of ensuring this rather
  4231         // than iterating over the regions and fixing them. In fact, the
  4232         // GC time stamp increment here also ensures that
  4233         // saved_mark_word() will return top() between pauses, i.e.,
  4234         // during concurrent refinement. So we don't need the
  4235         // is_gc_active() check to decided which top to use when
  4236         // scanning cards (see CR 7039627).
  4237         increment_gc_time_stamp();
  4239         verify_after_gc();
  4241         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4242         ref_processor_stw()->verify_no_references_recorded();
  4244         // CM reference discovery will be re-enabled if necessary.
  4247       // We should do this after we potentially expand the heap so
  4248       // that all the COMMIT events are generated before the end GC
  4249       // event, and after we retire the GC alloc regions so that all
  4250       // RETIRE events are generated before the end GC event.
  4251       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4253       if (mark_in_progress()) {
  4254         concurrent_mark()->update_g1_committed();
  4257 #ifdef TRACESPINNING
  4258       ParallelTaskTerminator::print_termination_counts();
  4259 #endif
  4261       gc_epilogue(false);
  4264     // Print the remainder of the GC log output.
  4265     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4267     // It is not yet to safe to tell the concurrent mark to
  4268     // start as we have some optional output below. We don't want the
  4269     // output from the concurrent mark thread interfering with this
  4270     // logging output either.
  4272     _hrs.verify_optional();
  4273     verify_region_sets_optional();
  4275     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4276     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4278     print_heap_after_gc();
  4279     trace_heap_after_gc(_gc_tracer_stw);
  4281     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4282     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4283     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4284     // before any GC notifications are raised.
  4285     g1mm()->update_sizes();
  4287     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4288     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4289     _gc_timer_stw->register_gc_end();
  4290     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4292   // It should now be safe to tell the concurrent mark thread to start
  4293   // without its logging output interfering with the logging output
  4294   // that came from the pause.
  4296   if (should_start_conc_mark) {
  4297     // CAUTION: after the doConcurrentMark() call below,
  4298     // the concurrent marking thread(s) could be running
  4299     // concurrently with us. Make sure that anything after
  4300     // this point does not assume that we are the only GC thread
  4301     // running. Note: of course, the actual marking work will
  4302     // not start until the safepoint itself is released in
  4303     // ConcurrentGCThread::safepoint_desynchronize().
  4304     doConcurrentMark();
  4307   return true;
  4310 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4312   size_t gclab_word_size;
  4313   switch (purpose) {
  4314     case GCAllocForSurvived:
  4315       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4316       break;
  4317     case GCAllocForTenured:
  4318       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4319       break;
  4320     default:
  4321       assert(false, "unknown GCAllocPurpose");
  4322       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4323       break;
  4326   // Prevent humongous PLAB sizes for two reasons:
  4327   // * PLABs are allocated using a similar paths as oops, but should
  4328   //   never be in a humongous region
  4329   // * Allowing humongous PLABs needlessly churns the region free lists
  4330   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4333 void G1CollectedHeap::init_mutator_alloc_region() {
  4334   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4335   _mutator_alloc_region.init();
  4338 void G1CollectedHeap::release_mutator_alloc_region() {
  4339   _mutator_alloc_region.release();
  4340   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4343 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  4344   assert_at_safepoint(true /* should_be_vm_thread */);
  4346   _survivor_gc_alloc_region.init();
  4347   _old_gc_alloc_region.init();
  4348   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4349   _retained_old_gc_alloc_region = NULL;
  4351   // We will discard the current GC alloc region if:
  4352   // a) it's in the collection set (it can happen!),
  4353   // b) it's already full (no point in using it),
  4354   // c) it's empty (this means that it was emptied during
  4355   // a cleanup and it should be on the free list now), or
  4356   // d) it's humongous (this means that it was emptied
  4357   // during a cleanup and was added to the free list, but
  4358   // has been subsequently used to allocate a humongous
  4359   // object that may be less than the region size).
  4360   if (retained_region != NULL &&
  4361       !retained_region->in_collection_set() &&
  4362       !(retained_region->top() == retained_region->end()) &&
  4363       !retained_region->is_empty() &&
  4364       !retained_region->isHumongous()) {
  4365     retained_region->set_saved_mark();
  4366     // The retained region was added to the old region set when it was
  4367     // retired. We have to remove it now, since we don't allow regions
  4368     // we allocate to in the region sets. We'll re-add it later, when
  4369     // it's retired again.
  4370     _old_set.remove(retained_region);
  4371     bool during_im = g1_policy()->during_initial_mark_pause();
  4372     retained_region->note_start_of_copying(during_im);
  4373     _old_gc_alloc_region.set(retained_region);
  4374     _hr_printer.reuse(retained_region);
  4375     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  4379 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  4380   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
  4381                                          _old_gc_alloc_region.count());
  4382   _survivor_gc_alloc_region.release();
  4383   // If we have an old GC alloc region to release, we'll save it in
  4384   // _retained_old_gc_alloc_region. If we don't
  4385   // _retained_old_gc_alloc_region will become NULL. This is what we
  4386   // want either way so no reason to check explicitly for either
  4387   // condition.
  4388   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4390   if (ResizePLAB) {
  4391     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4392     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4396 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4397   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4398   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4399   _retained_old_gc_alloc_region = NULL;
  4402 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4403   _drain_in_progress = false;
  4404   set_evac_failure_closure(cl);
  4405   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4408 void G1CollectedHeap::finalize_for_evac_failure() {
  4409   assert(_evac_failure_scan_stack != NULL &&
  4410          _evac_failure_scan_stack->length() == 0,
  4411          "Postcondition");
  4412   assert(!_drain_in_progress, "Postcondition");
  4413   delete _evac_failure_scan_stack;
  4414   _evac_failure_scan_stack = NULL;
  4417 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4418   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4420   double remove_self_forwards_start = os::elapsedTime();
  4422   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4424   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4425     set_par_threads();
  4426     workers()->run_task(&rsfp_task);
  4427     set_par_threads(0);
  4428   } else {
  4429     rsfp_task.work(0);
  4432   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4434   // Reset the claim values in the regions in the collection set.
  4435   reset_cset_heap_region_claim_values();
  4437   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4439   // Now restore saved marks, if any.
  4440   assert(_objs_with_preserved_marks.size() ==
  4441             _preserved_marks_of_objs.size(), "Both or none.");
  4442   while (!_objs_with_preserved_marks.is_empty()) {
  4443     oop obj = _objs_with_preserved_marks.pop();
  4444     markOop m = _preserved_marks_of_objs.pop();
  4445     obj->set_mark(m);
  4447   _objs_with_preserved_marks.clear(true);
  4448   _preserved_marks_of_objs.clear(true);
  4450   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4453 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4454   _evac_failure_scan_stack->push(obj);
  4457 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4458   assert(_evac_failure_scan_stack != NULL, "precondition");
  4460   while (_evac_failure_scan_stack->length() > 0) {
  4461      oop obj = _evac_failure_scan_stack->pop();
  4462      _evac_failure_closure->set_region(heap_region_containing(obj));
  4463      obj->oop_iterate_backwards(_evac_failure_closure);
  4467 oop
  4468 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4469                                                oop old) {
  4470   assert(obj_in_cs(old),
  4471          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4472                  (HeapWord*) old));
  4473   markOop m = old->mark();
  4474   oop forward_ptr = old->forward_to_atomic(old);
  4475   if (forward_ptr == NULL) {
  4476     // Forward-to-self succeeded.
  4477     assert(_par_scan_state != NULL, "par scan state");
  4478     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4479     uint queue_num = _par_scan_state->queue_num();
  4481     _evacuation_failed = true;
  4482     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4483     if (_evac_failure_closure != cl) {
  4484       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4485       assert(!_drain_in_progress,
  4486              "Should only be true while someone holds the lock.");
  4487       // Set the global evac-failure closure to the current thread's.
  4488       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4489       set_evac_failure_closure(cl);
  4490       // Now do the common part.
  4491       handle_evacuation_failure_common(old, m);
  4492       // Reset to NULL.
  4493       set_evac_failure_closure(NULL);
  4494     } else {
  4495       // The lock is already held, and this is recursive.
  4496       assert(_drain_in_progress, "This should only be the recursive case.");
  4497       handle_evacuation_failure_common(old, m);
  4499     return old;
  4500   } else {
  4501     // Forward-to-self failed. Either someone else managed to allocate
  4502     // space for this object (old != forward_ptr) or they beat us in
  4503     // self-forwarding it (old == forward_ptr).
  4504     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4505            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4506                    "should not be in the CSet",
  4507                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4508     return forward_ptr;
  4512 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4513   preserve_mark_if_necessary(old, m);
  4515   HeapRegion* r = heap_region_containing(old);
  4516   if (!r->evacuation_failed()) {
  4517     r->set_evacuation_failed(true);
  4518     _hr_printer.evac_failure(r);
  4521   push_on_evac_failure_scan_stack(old);
  4523   if (!_drain_in_progress) {
  4524     // prevent recursion in copy_to_survivor_space()
  4525     _drain_in_progress = true;
  4526     drain_evac_failure_scan_stack();
  4527     _drain_in_progress = false;
  4531 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4532   assert(evacuation_failed(), "Oversaving!");
  4533   // We want to call the "for_promotion_failure" version only in the
  4534   // case of a promotion failure.
  4535   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4536     _objs_with_preserved_marks.push(obj);
  4537     _preserved_marks_of_objs.push(m);
  4541 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4542                                                   size_t word_size) {
  4543   if (purpose == GCAllocForSurvived) {
  4544     HeapWord* result = survivor_attempt_allocation(word_size);
  4545     if (result != NULL) {
  4546       return result;
  4547     } else {
  4548       // Let's try to allocate in the old gen in case we can fit the
  4549       // object there.
  4550       return old_attempt_allocation(word_size);
  4552   } else {
  4553     assert(purpose ==  GCAllocForTenured, "sanity");
  4554     HeapWord* result = old_attempt_allocation(word_size);
  4555     if (result != NULL) {
  4556       return result;
  4557     } else {
  4558       // Let's try to allocate in the survivors in case we can fit the
  4559       // object there.
  4560       return survivor_attempt_allocation(word_size);
  4564   ShouldNotReachHere();
  4565   // Trying to keep some compilers happy.
  4566   return NULL;
  4569 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4570   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4572 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
  4573   : _g1h(g1h),
  4574     _refs(g1h->task_queue(queue_num)),
  4575     _dcq(&g1h->dirty_card_queue_set()),
  4576     _ct_bs(g1h->g1_barrier_set()),
  4577     _g1_rem(g1h->g1_rem_set()),
  4578     _hash_seed(17), _queue_num(queue_num),
  4579     _term_attempts(0),
  4580     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4581     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4582     _age_table(false), _scanner(g1h, this, rp),
  4583     _strong_roots_time(0), _term_time(0),
  4584     _alloc_buffer_waste(0), _undo_waste(0) {
  4585   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4586   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4587   // non-young regions (where the age is -1)
  4588   // We also add a few elements at the beginning and at the end in
  4589   // an attempt to eliminate cache contention
  4590   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4591   uint array_length = PADDING_ELEM_NUM +
  4592                       real_length +
  4593                       PADDING_ELEM_NUM;
  4594   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  4595   if (_surviving_young_words_base == NULL)
  4596     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  4597                           "Not enough space for young surv histo.");
  4598   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4599   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4601   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4602   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4604   _start = os::elapsedTime();
  4607 void
  4608 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4610   st->print_raw_cr("GC Termination Stats");
  4611   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4612                    " ------waste (KiB)------");
  4613   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4614                    "  total   alloc    undo");
  4615   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4616                    " ------- ------- -------");
  4619 void
  4620 G1ParScanThreadState::print_termination_stats(int i,
  4621                                               outputStream* const st) const
  4623   const double elapsed_ms = elapsed_time() * 1000.0;
  4624   const double s_roots_ms = strong_roots_time() * 1000.0;
  4625   const double term_ms    = term_time() * 1000.0;
  4626   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4627                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4628                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4629                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4630                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4631                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4632                alloc_buffer_waste() * HeapWordSize / K,
  4633                undo_waste() * HeapWordSize / K);
  4636 #ifdef ASSERT
  4637 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4638   assert(ref != NULL, "invariant");
  4639   assert(UseCompressedOops, "sanity");
  4640   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4641   oop p = oopDesc::load_decode_heap_oop(ref);
  4642   assert(_g1h->is_in_g1_reserved(p),
  4643          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
  4644   return true;
  4647 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4648   assert(ref != NULL, "invariant");
  4649   if (has_partial_array_mask(ref)) {
  4650     // Must be in the collection set--it's already been copied.
  4651     oop p = clear_partial_array_mask(ref);
  4652     assert(_g1h->obj_in_cs(p),
  4653            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
  4654   } else {
  4655     oop p = oopDesc::load_decode_heap_oop(ref);
  4656     assert(_g1h->is_in_g1_reserved(p),
  4657            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
  4659   return true;
  4662 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4663   if (ref.is_narrow()) {
  4664     return verify_ref((narrowOop*) ref);
  4665   } else {
  4666     return verify_ref((oop*) ref);
  4669 #endif // ASSERT
  4671 void G1ParScanThreadState::trim_queue() {
  4672   assert(_evac_failure_cl != NULL, "not set");
  4674   StarTask ref;
  4675   do {
  4676     // Drain the overflow stack first, so other threads can steal.
  4677     while (refs()->pop_overflow(ref)) {
  4678       deal_with_reference(ref);
  4681     while (refs()->pop_local(ref)) {
  4682       deal_with_reference(ref);
  4684   } while (!refs()->is_empty());
  4687 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4688                                      G1ParScanThreadState* par_scan_state) :
  4689   _g1(g1), _par_scan_state(par_scan_state),
  4690   _worker_id(par_scan_state->queue_num()) { }
  4692 void G1ParCopyHelper::mark_object(oop obj) {
  4693 #ifdef ASSERT
  4694   HeapRegion* hr = _g1->heap_region_containing(obj);
  4695   assert(hr != NULL, "sanity");
  4696   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4697 #endif // ASSERT
  4699   // We know that the object is not moving so it's safe to read its size.
  4700   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4703 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4704 #ifdef ASSERT
  4705   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4706   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4707   assert(from_obj != to_obj, "should not be self-forwarded");
  4709   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4710   assert(from_hr != NULL, "sanity");
  4711   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4713   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4714   assert(to_hr != NULL, "sanity");
  4715   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4716 #endif // ASSERT
  4718   // The object might be in the process of being copied by another
  4719   // worker so we cannot trust that its to-space image is
  4720   // well-formed. So we have to read its size from its from-space
  4721   // image which we know should not be changing.
  4722   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4725 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
  4726   size_t word_sz = old->size();
  4727   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
  4728   // +1 to make the -1 indexes valid...
  4729   int       young_index = from_region->young_index_in_cset()+1;
  4730   assert( (from_region->is_young() && young_index >  0) ||
  4731          (!from_region->is_young() && young_index == 0), "invariant" );
  4732   G1CollectorPolicy* g1p = _g1h->g1_policy();
  4733   markOop m = old->mark();
  4734   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4735                                            : m->age();
  4736   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4737                                                              word_sz);
  4738   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
  4739 #ifndef PRODUCT
  4740   // Should this evacuation fail?
  4741   if (_g1h->evacuation_should_fail()) {
  4742     if (obj_ptr != NULL) {
  4743       undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4744       obj_ptr = NULL;
  4747 #endif // !PRODUCT
  4749   if (obj_ptr == NULL) {
  4750     // This will either forward-to-self, or detect that someone else has
  4751     // installed a forwarding pointer.
  4752     return _g1h->handle_evacuation_failure_par(this, old);
  4755   oop obj = oop(obj_ptr);
  4757   // We're going to allocate linearly, so might as well prefetch ahead.
  4758   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4760   oop forward_ptr = old->forward_to_atomic(obj);
  4761   if (forward_ptr == NULL) {
  4762     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4764     // alloc_purpose is just a hint to allocate() above, recheck the type of region
  4765     // we actually allocated from and update alloc_purpose accordingly
  4766     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
  4767     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
  4769     if (g1p->track_object_age(alloc_purpose)) {
  4770       // We could simply do obj->incr_age(). However, this causes a
  4771       // performance issue. obj->incr_age() will first check whether
  4772       // the object has a displaced mark by checking its mark word;
  4773       // getting the mark word from the new location of the object
  4774       // stalls. So, given that we already have the mark word and we
  4775       // are about to install it anyway, it's better to increase the
  4776       // age on the mark word, when the object does not have a
  4777       // displaced mark word. We're not expecting many objects to have
  4778       // a displaced marked word, so that case is not optimized
  4779       // further (it could be...) and we simply call obj->incr_age().
  4781       if (m->has_displaced_mark_helper()) {
  4782         // in this case, we have to install the mark word first,
  4783         // otherwise obj looks to be forwarded (the old mark word,
  4784         // which contains the forward pointer, was copied)
  4785         obj->set_mark(m);
  4786         obj->incr_age();
  4787       } else {
  4788         m = m->incr_age();
  4789         obj->set_mark(m);
  4791       age_table()->add(obj, word_sz);
  4792     } else {
  4793       obj->set_mark(m);
  4796     if (G1StringDedup::is_enabled()) {
  4797       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
  4798                                              to_region->is_young(),
  4799                                              queue_num(),
  4800                                              obj);
  4803     size_t* surv_young_words = surviving_young_words();
  4804     surv_young_words[young_index] += word_sz;
  4806     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4807       // We keep track of the next start index in the length field of
  4808       // the to-space object. The actual length can be found in the
  4809       // length field of the from-space object.
  4810       arrayOop(obj)->set_length(0);
  4811       oop* old_p = set_partial_array_mask(old);
  4812       push_on_queue(old_p);
  4813     } else {
  4814       // No point in using the slower heap_region_containing() method,
  4815       // given that we know obj is in the heap.
  4816       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
  4817       obj->oop_iterate_backwards(&_scanner);
  4819   } else {
  4820     undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4821     obj = forward_ptr;
  4823   return obj;
  4826 template <class T>
  4827 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4828   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4829     _scanned_klass->record_modified_oops();
  4833 template <G1Barrier barrier, bool do_mark_object>
  4834 template <class T>
  4835 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4836   T heap_oop = oopDesc::load_heap_oop(p);
  4838   if (oopDesc::is_null(heap_oop)) {
  4839     return;
  4842   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4844   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4846   if (_g1->in_cset_fast_test(obj)) {
  4847     oop forwardee;
  4848     if (obj->is_forwarded()) {
  4849       forwardee = obj->forwardee();
  4850     } else {
  4851       forwardee = _par_scan_state->copy_to_survivor_space(obj);
  4853     assert(forwardee != NULL, "forwardee should not be NULL");
  4854     oopDesc::encode_store_heap_oop(p, forwardee);
  4855     if (do_mark_object && forwardee != obj) {
  4856       // If the object is self-forwarded we don't need to explicitly
  4857       // mark it, the evacuation failure protocol will do so.
  4858       mark_forwarded_object(obj, forwardee);
  4861     if (barrier == G1BarrierKlass) {
  4862       do_klass_barrier(p, forwardee);
  4864   } else {
  4865     // The object is not in collection set. If we're a root scanning
  4866     // closure during an initial mark pause (i.e. do_mark_object will
  4867     // be true) then attempt to mark the object.
  4868     if (do_mark_object) {
  4869       mark_object(obj);
  4873   if (barrier == G1BarrierEvac) {
  4874     _par_scan_state->update_rs(_from, p, _worker_id);
  4878 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
  4879 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4881 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4882 protected:
  4883   G1CollectedHeap*              _g1h;
  4884   G1ParScanThreadState*         _par_scan_state;
  4885   RefToScanQueueSet*            _queues;
  4886   ParallelTaskTerminator*       _terminator;
  4888   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4889   RefToScanQueueSet*      queues()         { return _queues; }
  4890   ParallelTaskTerminator* terminator()     { return _terminator; }
  4892 public:
  4893   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4894                                 G1ParScanThreadState* par_scan_state,
  4895                                 RefToScanQueueSet* queues,
  4896                                 ParallelTaskTerminator* terminator)
  4897     : _g1h(g1h), _par_scan_state(par_scan_state),
  4898       _queues(queues), _terminator(terminator) {}
  4900   void do_void();
  4902 private:
  4903   inline bool offer_termination();
  4904 };
  4906 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4907   G1ParScanThreadState* const pss = par_scan_state();
  4908   pss->start_term_time();
  4909   const bool res = terminator()->offer_termination();
  4910   pss->end_term_time();
  4911   return res;
  4914 void G1ParEvacuateFollowersClosure::do_void() {
  4915   StarTask stolen_task;
  4916   G1ParScanThreadState* const pss = par_scan_state();
  4917   pss->trim_queue();
  4919   do {
  4920     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4921       assert(pss->verify_task(stolen_task), "sanity");
  4922       if (stolen_task.is_narrow()) {
  4923         pss->deal_with_reference((narrowOop*) stolen_task);
  4924       } else {
  4925         pss->deal_with_reference((oop*) stolen_task);
  4928       // We've just processed a reference and we might have made
  4929       // available new entries on the queues. So we have to make sure
  4930       // we drain the queues as necessary.
  4931       pss->trim_queue();
  4933   } while (!offer_termination());
  4935   pss->retire_alloc_buffers();
  4938 class G1KlassScanClosure : public KlassClosure {
  4939  G1ParCopyHelper* _closure;
  4940  bool             _process_only_dirty;
  4941  int              _count;
  4942  public:
  4943   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4944       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4945   void do_klass(Klass* klass) {
  4946     // If the klass has not been dirtied we know that there's
  4947     // no references into  the young gen and we can skip it.
  4948    if (!_process_only_dirty || klass->has_modified_oops()) {
  4949       // Clean the klass since we're going to scavenge all the metadata.
  4950       klass->clear_modified_oops();
  4952       // Tell the closure that this klass is the Klass to scavenge
  4953       // and is the one to dirty if oops are left pointing into the young gen.
  4954       _closure->set_scanned_klass(klass);
  4956       klass->oops_do(_closure);
  4958       _closure->set_scanned_klass(NULL);
  4960     _count++;
  4962 };
  4964 class G1ParTask : public AbstractGangTask {
  4965 protected:
  4966   G1CollectedHeap*       _g1h;
  4967   RefToScanQueueSet      *_queues;
  4968   ParallelTaskTerminator _terminator;
  4969   uint _n_workers;
  4971   Mutex _stats_lock;
  4972   Mutex* stats_lock() { return &_stats_lock; }
  4974   size_t getNCards() {
  4975     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4976       / G1BlockOffsetSharedArray::N_bytes;
  4979 public:
  4980   G1ParTask(G1CollectedHeap* g1h,
  4981             RefToScanQueueSet *task_queues)
  4982     : AbstractGangTask("G1 collection"),
  4983       _g1h(g1h),
  4984       _queues(task_queues),
  4985       _terminator(0, _queues),
  4986       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4987   {}
  4989   RefToScanQueueSet* queues() { return _queues; }
  4991   RefToScanQueue *work_queue(int i) {
  4992     return queues()->queue(i);
  4995   ParallelTaskTerminator* terminator() { return &_terminator; }
  4997   virtual void set_for_termination(int active_workers) {
  4998     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4999     // in the young space (_par_seq_tasks) in the G1 heap
  5000     // for SequentialSubTasksDone.
  5001     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  5002     // both of which need setting by set_n_termination().
  5003     _g1h->SharedHeap::set_n_termination(active_workers);
  5004     _g1h->set_n_termination(active_workers);
  5005     terminator()->reset_for_reuse(active_workers);
  5006     _n_workers = active_workers;
  5009   void work(uint worker_id) {
  5010     if (worker_id >= _n_workers) return;  // no work needed this round
  5012     double start_time_ms = os::elapsedTime() * 1000.0;
  5013     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  5016       ResourceMark rm;
  5017       HandleMark   hm;
  5019       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  5021       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  5022       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  5024       pss.set_evac_failure_closure(&evac_failure_cl);
  5026       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  5027       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
  5029       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  5030       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
  5032       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
  5033       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
  5034       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
  5036       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  5037       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
  5039       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5040         // We also need to mark copied objects.
  5041         scan_root_cl = &scan_mark_root_cl;
  5042         scan_klasses_cl = &scan_mark_klasses_cl_s;
  5045       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  5047       // Don't scan the scavengable methods in the code cache as part
  5048       // of strong root scanning. The code roots that point into a
  5049       // region in the collection set are scanned when we scan the
  5050       // region's RSet.
  5051       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
  5053       pss.start_strong_roots();
  5054       _g1h->g1_process_strong_roots(/* is scavenging */ true,
  5055                                     SharedHeap::ScanningOption(so),
  5056                                     scan_root_cl,
  5057                                     &push_heap_rs_cl,
  5058                                     scan_klasses_cl,
  5059                                     worker_id);
  5060       pss.end_strong_roots();
  5063         double start = os::elapsedTime();
  5064         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  5065         evac.do_void();
  5066         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  5067         double term_ms = pss.term_time()*1000.0;
  5068         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  5069         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  5071       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  5072       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  5074       if (ParallelGCVerbose) {
  5075         MutexLocker x(stats_lock());
  5076         pss.print_termination_stats(worker_id);
  5079       assert(pss.refs()->is_empty(), "should be empty");
  5081       // Close the inner scope so that the ResourceMark and HandleMark
  5082       // destructors are executed here and are included as part of the
  5083       // "GC Worker Time".
  5086     double end_time_ms = os::elapsedTime() * 1000.0;
  5087     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  5089 };
  5091 // *** Common G1 Evacuation Stuff
  5093 // This method is run in a GC worker.
  5095 void
  5096 G1CollectedHeap::
  5097 g1_process_strong_roots(bool is_scavenging,
  5098                         ScanningOption so,
  5099                         OopClosure* scan_non_heap_roots,
  5100                         OopsInHeapRegionClosure* scan_rs,
  5101                         G1KlassScanClosure* scan_klasses,
  5102                         int worker_i) {
  5104   // First scan the strong roots
  5105   double ext_roots_start = os::elapsedTime();
  5106   double closure_app_time_sec = 0.0;
  5108   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  5110   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
  5111   // Walk the code cache/strong code roots w/o buffering, because StarTask
  5112   // cannot handle unaligned oop locations.
  5113   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
  5115   process_strong_roots(false, // no scoping; this is parallel code
  5116                        is_scavenging, so,
  5117                        &buf_scan_non_heap_roots,
  5118                        &eager_scan_code_roots,
  5119                        scan_klasses
  5120                        );
  5122   // Now the CM ref_processor roots.
  5123   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  5124     // We need to treat the discovered reference lists of the
  5125     // concurrent mark ref processor as roots and keep entries
  5126     // (which are added by the marking threads) on them live
  5127     // until they can be processed at the end of marking.
  5128     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  5131   // Finish up any enqueued closure apps (attributed as object copy time).
  5132   buf_scan_non_heap_roots.done();
  5134   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
  5136   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  5138   double ext_root_time_ms =
  5139     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  5141   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  5143   // During conc marking we have to filter the per-thread SATB buffers
  5144   // to make sure we remove any oops into the CSet (which will show up
  5145   // as implicitly live).
  5146   double satb_filtering_ms = 0.0;
  5147   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  5148     if (mark_in_progress()) {
  5149       double satb_filter_start = os::elapsedTime();
  5151       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  5153       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  5156   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  5158   // If this is an initial mark pause, and we're not scanning
  5159   // the entire code cache, we need to mark the oops in the
  5160   // strong code root lists for the regions that are not in
  5161   // the collection set.
  5162   // Note all threads participate in this set of root tasks.
  5163   double mark_strong_code_roots_ms = 0.0;
  5164   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
  5165     double mark_strong_roots_start = os::elapsedTime();
  5166     mark_strong_code_roots(worker_i);
  5167     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
  5169   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
  5171   // Now scan the complement of the collection set.
  5172   if (scan_rs != NULL) {
  5173     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
  5175   _process_strong_tasks->all_tasks_completed();
  5178 void
  5179 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
  5180   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  5181   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
  5184 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  5185 private:
  5186   BoolObjectClosure* _is_alive;
  5187   int _initial_string_table_size;
  5188   int _initial_symbol_table_size;
  5190   bool  _process_strings;
  5191   int _strings_processed;
  5192   int _strings_removed;
  5194   bool  _process_symbols;
  5195   int _symbols_processed;
  5196   int _symbols_removed;
  5198   bool _do_in_parallel;
  5199 public:
  5200   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  5201     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
  5202     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  5203     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  5204     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  5206     _initial_string_table_size = StringTable::the_table()->table_size();
  5207     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  5208     if (process_strings) {
  5209       StringTable::clear_parallel_claimed_index();
  5211     if (process_symbols) {
  5212       SymbolTable::clear_parallel_claimed_index();
  5216   ~G1StringSymbolTableUnlinkTask() {
  5217     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  5218               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  5219                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  5220     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  5221               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  5222                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  5225   void work(uint worker_id) {
  5226     if (_do_in_parallel) {
  5227       int strings_processed = 0;
  5228       int strings_removed = 0;
  5229       int symbols_processed = 0;
  5230       int symbols_removed = 0;
  5231       if (_process_strings) {
  5232         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  5233         Atomic::add(strings_processed, &_strings_processed);
  5234         Atomic::add(strings_removed, &_strings_removed);
  5236       if (_process_symbols) {
  5237         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  5238         Atomic::add(symbols_processed, &_symbols_processed);
  5239         Atomic::add(symbols_removed, &_symbols_removed);
  5241     } else {
  5242       if (_process_strings) {
  5243         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  5245       if (_process_symbols) {
  5246         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  5251   size_t strings_processed() const { return (size_t)_strings_processed; }
  5252   size_t strings_removed()   const { return (size_t)_strings_removed; }
  5254   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  5255   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  5256 };
  5258 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5259                                                      bool process_strings, bool process_symbols) {
  5260   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5261                    _g1h->workers()->active_workers() : 1);
  5263   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5264   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5265     set_par_threads(n_workers);
  5266     workers()->run_task(&g1_unlink_task);
  5267     set_par_threads(0);
  5268   } else {
  5269     g1_unlink_task.work(0);
  5271   if (G1TraceStringSymbolTableScrubbing) {
  5272     gclog_or_tty->print_cr("Cleaned string and symbol table, "
  5273                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  5274                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  5275                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
  5276                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
  5279   if (G1StringDedup::is_enabled()) {
  5280     G1StringDedup::unlink(is_alive);
  5284 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
  5285 public:
  5286   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  5287     *card_ptr = CardTableModRefBS::dirty_card_val();
  5288     return true;
  5290 };
  5292 void G1CollectedHeap::redirty_logged_cards() {
  5293   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  5294   double redirty_logged_cards_start = os::elapsedTime();
  5296   RedirtyLoggedCardTableEntryFastClosure redirty;
  5297   dirty_card_queue_set().set_closure(&redirty);
  5298   dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5300   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5301   dcq.merge_bufferlists(&dirty_card_queue_set());
  5302   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5304   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5307 // Weak Reference Processing support
  5309 // An always "is_alive" closure that is used to preserve referents.
  5310 // If the object is non-null then it's alive.  Used in the preservation
  5311 // of referent objects that are pointed to by reference objects
  5312 // discovered by the CM ref processor.
  5313 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5314   G1CollectedHeap* _g1;
  5315 public:
  5316   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5317   bool do_object_b(oop p) {
  5318     if (p != NULL) {
  5319       return true;
  5321     return false;
  5323 };
  5325 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5326   // An object is reachable if it is outside the collection set,
  5327   // or is inside and copied.
  5328   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5331 // Non Copying Keep Alive closure
  5332 class G1KeepAliveClosure: public OopClosure {
  5333   G1CollectedHeap* _g1;
  5334 public:
  5335   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5336   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5337   void do_oop(      oop* p) {
  5338     oop obj = *p;
  5340     if (_g1->obj_in_cs(obj)) {
  5341       assert( obj->is_forwarded(), "invariant" );
  5342       *p = obj->forwardee();
  5345 };
  5347 // Copying Keep Alive closure - can be called from both
  5348 // serial and parallel code as long as different worker
  5349 // threads utilize different G1ParScanThreadState instances
  5350 // and different queues.
  5352 class G1CopyingKeepAliveClosure: public OopClosure {
  5353   G1CollectedHeap*         _g1h;
  5354   OopClosure*              _copy_non_heap_obj_cl;
  5355   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
  5356   G1ParScanThreadState*    _par_scan_state;
  5358 public:
  5359   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5360                             OopClosure* non_heap_obj_cl,
  5361                             OopsInHeapRegionClosure* metadata_obj_cl,
  5362                             G1ParScanThreadState* pss):
  5363     _g1h(g1h),
  5364     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5365     _copy_metadata_obj_cl(metadata_obj_cl),
  5366     _par_scan_state(pss)
  5367   {}
  5369   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5370   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5372   template <class T> void do_oop_work(T* p) {
  5373     oop obj = oopDesc::load_decode_heap_oop(p);
  5375     if (_g1h->obj_in_cs(obj)) {
  5376       // If the referent object has been forwarded (either copied
  5377       // to a new location or to itself in the event of an
  5378       // evacuation failure) then we need to update the reference
  5379       // field and, if both reference and referent are in the G1
  5380       // heap, update the RSet for the referent.
  5381       //
  5382       // If the referent has not been forwarded then we have to keep
  5383       // it alive by policy. Therefore we have copy the referent.
  5384       //
  5385       // If the reference field is in the G1 heap then we can push
  5386       // on the PSS queue. When the queue is drained (after each
  5387       // phase of reference processing) the object and it's followers
  5388       // will be copied, the reference field set to point to the
  5389       // new location, and the RSet updated. Otherwise we need to
  5390       // use the the non-heap or metadata closures directly to copy
  5391       // the referent object and update the pointer, while avoiding
  5392       // updating the RSet.
  5394       if (_g1h->is_in_g1_reserved(p)) {
  5395         _par_scan_state->push_on_queue(p);
  5396       } else {
  5397         assert(!ClassLoaderDataGraph::contains((address)p),
  5398                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
  5399                               PTR_FORMAT, p));
  5400           _copy_non_heap_obj_cl->do_oop(p);
  5404 };
  5406 // Serial drain queue closure. Called as the 'complete_gc'
  5407 // closure for each discovered list in some of the
  5408 // reference processing phases.
  5410 class G1STWDrainQueueClosure: public VoidClosure {
  5411 protected:
  5412   G1CollectedHeap* _g1h;
  5413   G1ParScanThreadState* _par_scan_state;
  5415   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5417 public:
  5418   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5419     _g1h(g1h),
  5420     _par_scan_state(pss)
  5421   { }
  5423   void do_void() {
  5424     G1ParScanThreadState* const pss = par_scan_state();
  5425     pss->trim_queue();
  5427 };
  5429 // Parallel Reference Processing closures
  5431 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5432 // processing during G1 evacuation pauses.
  5434 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5435 private:
  5436   G1CollectedHeap*   _g1h;
  5437   RefToScanQueueSet* _queues;
  5438   FlexibleWorkGang*  _workers;
  5439   int                _active_workers;
  5441 public:
  5442   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5443                         FlexibleWorkGang* workers,
  5444                         RefToScanQueueSet *task_queues,
  5445                         int n_workers) :
  5446     _g1h(g1h),
  5447     _queues(task_queues),
  5448     _workers(workers),
  5449     _active_workers(n_workers)
  5451     assert(n_workers > 0, "shouldn't call this otherwise");
  5454   // Executes the given task using concurrent marking worker threads.
  5455   virtual void execute(ProcessTask& task);
  5456   virtual void execute(EnqueueTask& task);
  5457 };
  5459 // Gang task for possibly parallel reference processing
  5461 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5462   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5463   ProcessTask&     _proc_task;
  5464   G1CollectedHeap* _g1h;
  5465   RefToScanQueueSet *_task_queues;
  5466   ParallelTaskTerminator* _terminator;
  5468 public:
  5469   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5470                      G1CollectedHeap* g1h,
  5471                      RefToScanQueueSet *task_queues,
  5472                      ParallelTaskTerminator* terminator) :
  5473     AbstractGangTask("Process reference objects in parallel"),
  5474     _proc_task(proc_task),
  5475     _g1h(g1h),
  5476     _task_queues(task_queues),
  5477     _terminator(terminator)
  5478   {}
  5480   virtual void work(uint worker_id) {
  5481     // The reference processing task executed by a single worker.
  5482     ResourceMark rm;
  5483     HandleMark   hm;
  5485     G1STWIsAliveClosure is_alive(_g1h);
  5487     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5488     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5490     pss.set_evac_failure_closure(&evac_failure_cl);
  5492     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5493     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5495     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5496     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5498     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5499     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5501     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5502       // We also need to mark copied objects.
  5503       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5504       copy_metadata_cl = &copy_mark_metadata_cl;
  5507     // Keep alive closure.
  5508     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5510     // Complete GC closure
  5511     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5513     // Call the reference processing task's work routine.
  5514     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5516     // Note we cannot assert that the refs array is empty here as not all
  5517     // of the processing tasks (specifically phase2 - pp2_work) execute
  5518     // the complete_gc closure (which ordinarily would drain the queue) so
  5519     // the queue may not be empty.
  5521 };
  5523 // Driver routine for parallel reference processing.
  5524 // Creates an instance of the ref processing gang
  5525 // task and has the worker threads execute it.
  5526 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5527   assert(_workers != NULL, "Need parallel worker threads.");
  5529   ParallelTaskTerminator terminator(_active_workers, _queues);
  5530   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5532   _g1h->set_par_threads(_active_workers);
  5533   _workers->run_task(&proc_task_proxy);
  5534   _g1h->set_par_threads(0);
  5537 // Gang task for parallel reference enqueueing.
  5539 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5540   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5541   EnqueueTask& _enq_task;
  5543 public:
  5544   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5545     AbstractGangTask("Enqueue reference objects in parallel"),
  5546     _enq_task(enq_task)
  5547   { }
  5549   virtual void work(uint worker_id) {
  5550     _enq_task.work(worker_id);
  5552 };
  5554 // Driver routine for parallel reference enqueueing.
  5555 // Creates an instance of the ref enqueueing gang
  5556 // task and has the worker threads execute it.
  5558 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5559   assert(_workers != NULL, "Need parallel worker threads.");
  5561   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5563   _g1h->set_par_threads(_active_workers);
  5564   _workers->run_task(&enq_task_proxy);
  5565   _g1h->set_par_threads(0);
  5568 // End of weak reference support closures
  5570 // Abstract task used to preserve (i.e. copy) any referent objects
  5571 // that are in the collection set and are pointed to by reference
  5572 // objects discovered by the CM ref processor.
  5574 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5575 protected:
  5576   G1CollectedHeap* _g1h;
  5577   RefToScanQueueSet      *_queues;
  5578   ParallelTaskTerminator _terminator;
  5579   uint _n_workers;
  5581 public:
  5582   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5583     AbstractGangTask("ParPreserveCMReferents"),
  5584     _g1h(g1h),
  5585     _queues(task_queues),
  5586     _terminator(workers, _queues),
  5587     _n_workers(workers)
  5588   { }
  5590   void work(uint worker_id) {
  5591     ResourceMark rm;
  5592     HandleMark   hm;
  5594     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5595     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5597     pss.set_evac_failure_closure(&evac_failure_cl);
  5599     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5602     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5603     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5605     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5606     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5608     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5609     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5611     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5612       // We also need to mark copied objects.
  5613       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5614       copy_metadata_cl = &copy_mark_metadata_cl;
  5617     // Is alive closure
  5618     G1AlwaysAliveClosure always_alive(_g1h);
  5620     // Copying keep alive closure. Applied to referent objects that need
  5621     // to be copied.
  5622     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5624     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5626     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5627     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5629     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5630     // So this must be true - but assert just in case someone decides to
  5631     // change the worker ids.
  5632     assert(0 <= worker_id && worker_id < limit, "sanity");
  5633     assert(!rp->discovery_is_atomic(), "check this code");
  5635     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5636     for (uint idx = worker_id; idx < limit; idx += stride) {
  5637       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5639       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5640       while (iter.has_next()) {
  5641         // Since discovery is not atomic for the CM ref processor, we
  5642         // can see some null referent objects.
  5643         iter.load_ptrs(DEBUG_ONLY(true));
  5644         oop ref = iter.obj();
  5646         // This will filter nulls.
  5647         if (iter.is_referent_alive()) {
  5648           iter.make_referent_alive();
  5650         iter.move_to_next();
  5654     // Drain the queue - which may cause stealing
  5655     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5656     drain_queue.do_void();
  5657     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5658     assert(pss.refs()->is_empty(), "should be");
  5660 };
  5662 // Weak Reference processing during an evacuation pause (part 1).
  5663 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5664   double ref_proc_start = os::elapsedTime();
  5666   ReferenceProcessor* rp = _ref_processor_stw;
  5667   assert(rp->discovery_enabled(), "should have been enabled");
  5669   // Any reference objects, in the collection set, that were 'discovered'
  5670   // by the CM ref processor should have already been copied (either by
  5671   // applying the external root copy closure to the discovered lists, or
  5672   // by following an RSet entry).
  5673   //
  5674   // But some of the referents, that are in the collection set, that these
  5675   // reference objects point to may not have been copied: the STW ref
  5676   // processor would have seen that the reference object had already
  5677   // been 'discovered' and would have skipped discovering the reference,
  5678   // but would not have treated the reference object as a regular oop.
  5679   // As a result the copy closure would not have been applied to the
  5680   // referent object.
  5681   //
  5682   // We need to explicitly copy these referent objects - the references
  5683   // will be processed at the end of remarking.
  5684   //
  5685   // We also need to do this copying before we process the reference
  5686   // objects discovered by the STW ref processor in case one of these
  5687   // referents points to another object which is also referenced by an
  5688   // object discovered by the STW ref processor.
  5690   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5691            no_of_gc_workers == workers()->active_workers(),
  5692            "Need to reset active GC workers");
  5694   set_par_threads(no_of_gc_workers);
  5695   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5696                                                  no_of_gc_workers,
  5697                                                  _task_queues);
  5699   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5700     workers()->run_task(&keep_cm_referents);
  5701   } else {
  5702     keep_cm_referents.work(0);
  5705   set_par_threads(0);
  5707   // Closure to test whether a referent is alive.
  5708   G1STWIsAliveClosure is_alive(this);
  5710   // Even when parallel reference processing is enabled, the processing
  5711   // of JNI refs is serial and performed serially by the current thread
  5712   // rather than by a worker. The following PSS will be used for processing
  5713   // JNI refs.
  5715   // Use only a single queue for this PSS.
  5716   G1ParScanThreadState            pss(this, 0, NULL);
  5718   // We do not embed a reference processor in the copying/scanning
  5719   // closures while we're actually processing the discovered
  5720   // reference objects.
  5721   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5723   pss.set_evac_failure_closure(&evac_failure_cl);
  5725   assert(pss.refs()->is_empty(), "pre-condition");
  5727   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5728   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
  5730   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5731   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
  5733   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5734   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5736   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5737     // We also need to mark copied objects.
  5738     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5739     copy_metadata_cl = &copy_mark_metadata_cl;
  5742   // Keep alive closure.
  5743   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
  5745   // Serial Complete GC closure
  5746   G1STWDrainQueueClosure drain_queue(this, &pss);
  5748   // Setup the soft refs policy...
  5749   rp->setup_policy(false);
  5751   ReferenceProcessorStats stats;
  5752   if (!rp->processing_is_mt()) {
  5753     // Serial reference processing...
  5754     stats = rp->process_discovered_references(&is_alive,
  5755                                               &keep_alive,
  5756                                               &drain_queue,
  5757                                               NULL,
  5758                                               _gc_timer_stw);
  5759   } else {
  5760     // Parallel reference processing
  5761     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5762     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5764     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5765     stats = rp->process_discovered_references(&is_alive,
  5766                                               &keep_alive,
  5767                                               &drain_queue,
  5768                                               &par_task_executor,
  5769                                               _gc_timer_stw);
  5772   _gc_tracer_stw->report_gc_reference_stats(stats);
  5773   // We have completed copying any necessary live referent objects
  5774   // (that were not copied during the actual pause) so we can
  5775   // retire any active alloc buffers
  5776   pss.retire_alloc_buffers();
  5777   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5779   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5780   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5783 // Weak Reference processing during an evacuation pause (part 2).
  5784 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5785   double ref_enq_start = os::elapsedTime();
  5787   ReferenceProcessor* rp = _ref_processor_stw;
  5788   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5790   // Now enqueue any remaining on the discovered lists on to
  5791   // the pending list.
  5792   if (!rp->processing_is_mt()) {
  5793     // Serial reference processing...
  5794     rp->enqueue_discovered_references();
  5795   } else {
  5796     // Parallel reference enqueueing
  5798     assert(no_of_gc_workers == workers()->active_workers(),
  5799            "Need to reset active workers");
  5800     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5801     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5803     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5804     rp->enqueue_discovered_references(&par_task_executor);
  5807   rp->verify_no_references_recorded();
  5808   assert(!rp->discovery_enabled(), "should have been disabled");
  5810   // FIXME
  5811   // CM's reference processing also cleans up the string and symbol tables.
  5812   // Should we do that here also? We could, but it is a serial operation
  5813   // and could significantly increase the pause time.
  5815   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5816   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5819 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5820   _expand_heap_after_alloc_failure = true;
  5821   _evacuation_failed = false;
  5823   // Should G1EvacuationFailureALot be in effect for this GC?
  5824   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5826   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5828   // Disable the hot card cache.
  5829   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5830   hot_card_cache->reset_hot_cache_claimed_index();
  5831   hot_card_cache->set_use_cache(false);
  5833   uint n_workers;
  5834   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5835     n_workers =
  5836       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5837                                      workers()->active_workers(),
  5838                                      Threads::number_of_non_daemon_threads());
  5839     assert(UseDynamicNumberOfGCThreads ||
  5840            n_workers == workers()->total_workers(),
  5841            "If not dynamic should be using all the  workers");
  5842     workers()->set_active_workers(n_workers);
  5843     set_par_threads(n_workers);
  5844   } else {
  5845     assert(n_par_threads() == 0,
  5846            "Should be the original non-parallel value");
  5847     n_workers = 1;
  5850   G1ParTask g1_par_task(this, _task_queues);
  5852   init_for_evac_failure(NULL);
  5854   rem_set()->prepare_for_younger_refs_iterate(true);
  5856   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5857   double start_par_time_sec = os::elapsedTime();
  5858   double end_par_time_sec;
  5861     StrongRootsScope srs(this);
  5863     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5864       // The individual threads will set their evac-failure closures.
  5865       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5866       // These tasks use ShareHeap::_process_strong_tasks
  5867       assert(UseDynamicNumberOfGCThreads ||
  5868              workers()->active_workers() == workers()->total_workers(),
  5869              "If not dynamic should be using all the  workers");
  5870       workers()->run_task(&g1_par_task);
  5871     } else {
  5872       g1_par_task.set_for_termination(n_workers);
  5873       g1_par_task.work(0);
  5875     end_par_time_sec = os::elapsedTime();
  5877     // Closing the inner scope will execute the destructor
  5878     // for the StrongRootsScope object. We record the current
  5879     // elapsed time before closing the scope so that time
  5880     // taken for the SRS destructor is NOT included in the
  5881     // reported parallel time.
  5884   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5885   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5887   double code_root_fixup_time_ms =
  5888         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5889   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5891   set_par_threads(0);
  5893   // Process any discovered reference objects - we have
  5894   // to do this _before_ we retire the GC alloc regions
  5895   // as we may have to copy some 'reachable' referent
  5896   // objects (and their reachable sub-graphs) that were
  5897   // not copied during the pause.
  5898   process_discovered_references(n_workers);
  5900   // Weak root processing.
  5902     G1STWIsAliveClosure is_alive(this);
  5903     G1KeepAliveClosure keep_alive(this);
  5904     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5905     if (G1StringDedup::is_enabled()) {
  5906       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  5910   release_gc_alloc_regions(n_workers, evacuation_info);
  5911   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5913   // Reset and re-enable the hot card cache.
  5914   // Note the counts for the cards in the regions in the
  5915   // collection set are reset when the collection set is freed.
  5916   hot_card_cache->reset_hot_cache();
  5917   hot_card_cache->set_use_cache(true);
  5919   // Migrate the strong code roots attached to each region in
  5920   // the collection set. Ideally we would like to do this
  5921   // after we have finished the scanning/evacuation of the
  5922   // strong code roots for a particular heap region.
  5923   migrate_strong_code_roots();
  5925   purge_code_root_memory();
  5927   if (g1_policy()->during_initial_mark_pause()) {
  5928     // Reset the claim values set during marking the strong code roots
  5929     reset_heap_region_claim_values();
  5932   finalize_for_evac_failure();
  5934   if (evacuation_failed()) {
  5935     remove_self_forwarding_pointers();
  5937     // Reset the G1EvacuationFailureALot counters and flags
  5938     // Note: the values are reset only when an actual
  5939     // evacuation failure occurs.
  5940     NOT_PRODUCT(reset_evacuation_should_fail();)
  5943   // Enqueue any remaining references remaining on the STW
  5944   // reference processor's discovered lists. We need to do
  5945   // this after the card table is cleaned (and verified) as
  5946   // the act of enqueueing entries on to the pending list
  5947   // will log these updates (and dirty their associated
  5948   // cards). We need these updates logged to update any
  5949   // RSets.
  5950   enqueue_discovered_references(n_workers);
  5952   if (G1DeferredRSUpdate) {
  5953     redirty_logged_cards();
  5955   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5958 void G1CollectedHeap::free_region(HeapRegion* hr,
  5959                                   FreeRegionList* free_list,
  5960                                   bool par,
  5961                                   bool locked) {
  5962   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5963   assert(!hr->is_empty(), "the region should not be empty");
  5964   assert(free_list != NULL, "pre-condition");
  5966   // Clear the card counts for this region.
  5967   // Note: we only need to do this if the region is not young
  5968   // (since we don't refine cards in young regions).
  5969   if (!hr->is_young()) {
  5970     _cg1r->hot_card_cache()->reset_card_counts(hr);
  5972   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  5973   free_list->add_as_head(hr);
  5976 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5977                                      FreeRegionList* free_list,
  5978                                      bool par) {
  5979   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5980   assert(free_list != NULL, "pre-condition");
  5982   size_t hr_capacity = hr->capacity();
  5983   // We need to read this before we make the region non-humongous,
  5984   // otherwise the information will be gone.
  5985   uint last_index = hr->last_hc_index();
  5986   hr->set_notHumongous();
  5987   free_region(hr, free_list, par);
  5989   uint i = hr->hrs_index() + 1;
  5990   while (i < last_index) {
  5991     HeapRegion* curr_hr = region_at(i);
  5992     assert(curr_hr->continuesHumongous(), "invariant");
  5993     curr_hr->set_notHumongous();
  5994     free_region(curr_hr, free_list, par);
  5995     i += 1;
  5999 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  6000                                        const HeapRegionSetCount& humongous_regions_removed) {
  6001   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  6002     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  6003     _old_set.bulk_remove(old_regions_removed);
  6004     _humongous_set.bulk_remove(humongous_regions_removed);
  6009 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  6010   assert(list != NULL, "list can't be null");
  6011   if (!list->is_empty()) {
  6012     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  6013     _free_list.add_as_head(list);
  6017 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  6018   assert(_summary_bytes_used >= bytes,
  6019          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
  6020                   _summary_bytes_used, bytes));
  6021   _summary_bytes_used -= bytes;
  6024 class G1ParCleanupCTTask : public AbstractGangTask {
  6025   G1SATBCardTableModRefBS* _ct_bs;
  6026   G1CollectedHeap* _g1h;
  6027   HeapRegion* volatile _su_head;
  6028 public:
  6029   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  6030                      G1CollectedHeap* g1h) :
  6031     AbstractGangTask("G1 Par Cleanup CT Task"),
  6032     _ct_bs(ct_bs), _g1h(g1h) { }
  6034   void work(uint worker_id) {
  6035     HeapRegion* r;
  6036     while (r = _g1h->pop_dirty_cards_region()) {
  6037       clear_cards(r);
  6041   void clear_cards(HeapRegion* r) {
  6042     // Cards of the survivors should have already been dirtied.
  6043     if (!r->is_survivor()) {
  6044       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6047 };
  6049 #ifndef PRODUCT
  6050 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6051   G1CollectedHeap* _g1h;
  6052   G1SATBCardTableModRefBS* _ct_bs;
  6053 public:
  6054   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6055     : _g1h(g1h), _ct_bs(ct_bs) { }
  6056   virtual bool doHeapRegion(HeapRegion* r) {
  6057     if (r->is_survivor()) {
  6058       _g1h->verify_dirty_region(r);
  6059     } else {
  6060       _g1h->verify_not_dirty_region(r);
  6062     return false;
  6064 };
  6066 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6067   // All of the region should be clean.
  6068   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6069   MemRegion mr(hr->bottom(), hr->end());
  6070   ct_bs->verify_not_dirty_region(mr);
  6073 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6074   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6075   // dirty allocated blocks as they allocate them. The thread that
  6076   // retires each region and replaces it with a new one will do a
  6077   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6078   // not dirty that area (one less thing to have to do while holding
  6079   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6080   // is dirty.
  6081   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6082   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6083   if (hr->is_young()) {
  6084     ct_bs->verify_g1_young_region(mr);
  6085   } else {
  6086     ct_bs->verify_dirty_region(mr);
  6090 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6091   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6092   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6093     verify_dirty_region(hr);
  6097 void G1CollectedHeap::verify_dirty_young_regions() {
  6098   verify_dirty_young_list(_young_list->first_region());
  6100 #endif
  6102 void G1CollectedHeap::cleanUpCardTable() {
  6103   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6104   double start = os::elapsedTime();
  6107     // Iterate over the dirty cards region list.
  6108     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6110     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6111       set_par_threads();
  6112       workers()->run_task(&cleanup_task);
  6113       set_par_threads(0);
  6114     } else {
  6115       while (_dirty_cards_region_list) {
  6116         HeapRegion* r = _dirty_cards_region_list;
  6117         cleanup_task.clear_cards(r);
  6118         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6119         if (_dirty_cards_region_list == r) {
  6120           // The last region.
  6121           _dirty_cards_region_list = NULL;
  6123         r->set_next_dirty_cards_region(NULL);
  6126 #ifndef PRODUCT
  6127     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6128       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6129       heap_region_iterate(&cleanup_verifier);
  6131 #endif
  6134   double elapsed = os::elapsedTime() - start;
  6135   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6138 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6139   size_t pre_used = 0;
  6140   FreeRegionList local_free_list("Local List for CSet Freeing");
  6142   double young_time_ms     = 0.0;
  6143   double non_young_time_ms = 0.0;
  6145   // Since the collection set is a superset of the the young list,
  6146   // all we need to do to clear the young list is clear its
  6147   // head and length, and unlink any young regions in the code below
  6148   _young_list->clear();
  6150   G1CollectorPolicy* policy = g1_policy();
  6152   double start_sec = os::elapsedTime();
  6153   bool non_young = true;
  6155   HeapRegion* cur = cs_head;
  6156   int age_bound = -1;
  6157   size_t rs_lengths = 0;
  6159   while (cur != NULL) {
  6160     assert(!is_on_master_free_list(cur), "sanity");
  6161     if (non_young) {
  6162       if (cur->is_young()) {
  6163         double end_sec = os::elapsedTime();
  6164         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6165         non_young_time_ms += elapsed_ms;
  6167         start_sec = os::elapsedTime();
  6168         non_young = false;
  6170     } else {
  6171       if (!cur->is_young()) {
  6172         double end_sec = os::elapsedTime();
  6173         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6174         young_time_ms += elapsed_ms;
  6176         start_sec = os::elapsedTime();
  6177         non_young = true;
  6181     rs_lengths += cur->rem_set()->occupied_locked();
  6183     HeapRegion* next = cur->next_in_collection_set();
  6184     assert(cur->in_collection_set(), "bad CS");
  6185     cur->set_next_in_collection_set(NULL);
  6186     cur->set_in_collection_set(false);
  6188     if (cur->is_young()) {
  6189       int index = cur->young_index_in_cset();
  6190       assert(index != -1, "invariant");
  6191       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6192       size_t words_survived = _surviving_young_words[index];
  6193       cur->record_surv_words_in_group(words_survived);
  6195       // At this point the we have 'popped' cur from the collection set
  6196       // (linked via next_in_collection_set()) but it is still in the
  6197       // young list (linked via next_young_region()). Clear the
  6198       // _next_young_region field.
  6199       cur->set_next_young_region(NULL);
  6200     } else {
  6201       int index = cur->young_index_in_cset();
  6202       assert(index == -1, "invariant");
  6205     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6206             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6207             "invariant" );
  6209     if (!cur->evacuation_failed()) {
  6210       MemRegion used_mr = cur->used_region();
  6212       // And the region is empty.
  6213       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6214       pre_used += cur->used();
  6215       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6216     } else {
  6217       cur->uninstall_surv_rate_group();
  6218       if (cur->is_young()) {
  6219         cur->set_young_index_in_cset(-1);
  6221       cur->set_not_young();
  6222       cur->set_evacuation_failed(false);
  6223       // The region is now considered to be old.
  6224       _old_set.add(cur);
  6225       evacuation_info.increment_collectionset_used_after(cur->used());
  6227     cur = next;
  6230   evacuation_info.set_regions_freed(local_free_list.length());
  6231   policy->record_max_rs_lengths(rs_lengths);
  6232   policy->cset_regions_freed();
  6234   double end_sec = os::elapsedTime();
  6235   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6237   if (non_young) {
  6238     non_young_time_ms += elapsed_ms;
  6239   } else {
  6240     young_time_ms += elapsed_ms;
  6243   prepend_to_freelist(&local_free_list);
  6244   decrement_summary_bytes(pre_used);
  6245   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6246   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6249 // This routine is similar to the above but does not record
  6250 // any policy statistics or update free lists; we are abandoning
  6251 // the current incremental collection set in preparation of a
  6252 // full collection. After the full GC we will start to build up
  6253 // the incremental collection set again.
  6254 // This is only called when we're doing a full collection
  6255 // and is immediately followed by the tearing down of the young list.
  6257 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6258   HeapRegion* cur = cs_head;
  6260   while (cur != NULL) {
  6261     HeapRegion* next = cur->next_in_collection_set();
  6262     assert(cur->in_collection_set(), "bad CS");
  6263     cur->set_next_in_collection_set(NULL);
  6264     cur->set_in_collection_set(false);
  6265     cur->set_young_index_in_cset(-1);
  6266     cur = next;
  6270 void G1CollectedHeap::set_free_regions_coming() {
  6271   if (G1ConcRegionFreeingVerbose) {
  6272     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6273                            "setting free regions coming");
  6276   assert(!free_regions_coming(), "pre-condition");
  6277   _free_regions_coming = true;
  6280 void G1CollectedHeap::reset_free_regions_coming() {
  6281   assert(free_regions_coming(), "pre-condition");
  6284     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6285     _free_regions_coming = false;
  6286     SecondaryFreeList_lock->notify_all();
  6289   if (G1ConcRegionFreeingVerbose) {
  6290     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6291                            "reset free regions coming");
  6295 void G1CollectedHeap::wait_while_free_regions_coming() {
  6296   // Most of the time we won't have to wait, so let's do a quick test
  6297   // first before we take the lock.
  6298   if (!free_regions_coming()) {
  6299     return;
  6302   if (G1ConcRegionFreeingVerbose) {
  6303     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6304                            "waiting for free regions");
  6308     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6309     while (free_regions_coming()) {
  6310       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6314   if (G1ConcRegionFreeingVerbose) {
  6315     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6316                            "done waiting for free regions");
  6320 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6321   assert(heap_lock_held_for_gc(),
  6322               "the heap lock should already be held by or for this thread");
  6323   _young_list->push_region(hr);
  6326 class NoYoungRegionsClosure: public HeapRegionClosure {
  6327 private:
  6328   bool _success;
  6329 public:
  6330   NoYoungRegionsClosure() : _success(true) { }
  6331   bool doHeapRegion(HeapRegion* r) {
  6332     if (r->is_young()) {
  6333       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6334                              r->bottom(), r->end());
  6335       _success = false;
  6337     return false;
  6339   bool success() { return _success; }
  6340 };
  6342 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6343   bool ret = _young_list->check_list_empty(check_sample);
  6345   if (check_heap) {
  6346     NoYoungRegionsClosure closure;
  6347     heap_region_iterate(&closure);
  6348     ret = ret && closure.success();
  6351   return ret;
  6354 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6355 private:
  6356   HeapRegionSet *_old_set;
  6358 public:
  6359   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6361   bool doHeapRegion(HeapRegion* r) {
  6362     if (r->is_empty()) {
  6363       // We ignore empty regions, we'll empty the free list afterwards
  6364     } else if (r->is_young()) {
  6365       // We ignore young regions, we'll empty the young list afterwards
  6366     } else if (r->isHumongous()) {
  6367       // We ignore humongous regions, we're not tearing down the
  6368       // humongous region set
  6369     } else {
  6370       // The rest should be old
  6371       _old_set->remove(r);
  6373     return false;
  6376   ~TearDownRegionSetsClosure() {
  6377     assert(_old_set->is_empty(), "post-condition");
  6379 };
  6381 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6382   assert_at_safepoint(true /* should_be_vm_thread */);
  6384   if (!free_list_only) {
  6385     TearDownRegionSetsClosure cl(&_old_set);
  6386     heap_region_iterate(&cl);
  6388     // Note that emptying the _young_list is postponed and instead done as
  6389     // the first step when rebuilding the regions sets again. The reason for
  6390     // this is that during a full GC string deduplication needs to know if
  6391     // a collected region was young or old when the full GC was initiated.
  6393   _free_list.remove_all();
  6396 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6397 private:
  6398   bool            _free_list_only;
  6399   HeapRegionSet*   _old_set;
  6400   FreeRegionList* _free_list;
  6401   size_t          _total_used;
  6403 public:
  6404   RebuildRegionSetsClosure(bool free_list_only,
  6405                            HeapRegionSet* old_set, FreeRegionList* free_list) :
  6406     _free_list_only(free_list_only),
  6407     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6408     assert(_free_list->is_empty(), "pre-condition");
  6409     if (!free_list_only) {
  6410       assert(_old_set->is_empty(), "pre-condition");
  6414   bool doHeapRegion(HeapRegion* r) {
  6415     if (r->continuesHumongous()) {
  6416       return false;
  6419     if (r->is_empty()) {
  6420       // Add free regions to the free list
  6421       _free_list->add_as_tail(r);
  6422     } else if (!_free_list_only) {
  6423       assert(!r->is_young(), "we should not come across young regions");
  6425       if (r->isHumongous()) {
  6426         // We ignore humongous regions, we left the humongous set unchanged
  6427       } else {
  6428         // The rest should be old, add them to the old set
  6429         _old_set->add(r);
  6431       _total_used += r->used();
  6434     return false;
  6437   size_t total_used() {
  6438     return _total_used;
  6440 };
  6442 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6443   assert_at_safepoint(true /* should_be_vm_thread */);
  6445   if (!free_list_only) {
  6446     _young_list->empty_list();
  6449   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6450   heap_region_iterate(&cl);
  6452   if (!free_list_only) {
  6453     _summary_bytes_used = cl.total_used();
  6455   assert(_summary_bytes_used == recalculate_used(),
  6456          err_msg("inconsistent _summary_bytes_used, "
  6457                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6458                  _summary_bytes_used, recalculate_used()));
  6461 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6462   _refine_cte_cl->set_concurrent(concurrent);
  6465 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6466   HeapRegion* hr = heap_region_containing(p);
  6467   if (hr == NULL) {
  6468     return false;
  6469   } else {
  6470     return hr->is_in(p);
  6474 // Methods for the mutator alloc region
  6476 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6477                                                       bool force) {
  6478   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6479   assert(!force || g1_policy()->can_expand_young_list(),
  6480          "if force is true we should be able to expand the young list");
  6481   bool young_list_full = g1_policy()->is_young_list_full();
  6482   if (force || !young_list_full) {
  6483     HeapRegion* new_alloc_region = new_region(word_size,
  6484                                               false /* do_expand */);
  6485     if (new_alloc_region != NULL) {
  6486       set_region_short_lived_locked(new_alloc_region);
  6487       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6488       return new_alloc_region;
  6491   return NULL;
  6494 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6495                                                   size_t allocated_bytes) {
  6496   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6497   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6499   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6500   _summary_bytes_used += allocated_bytes;
  6501   _hr_printer.retire(alloc_region);
  6502   // We update the eden sizes here, when the region is retired,
  6503   // instead of when it's allocated, since this is the point that its
  6504   // used space has been recored in _summary_bytes_used.
  6505   g1mm()->update_eden_size();
  6508 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6509                                                     bool force) {
  6510   return _g1h->new_mutator_alloc_region(word_size, force);
  6513 void G1CollectedHeap::set_par_threads() {
  6514   // Don't change the number of workers.  Use the value previously set
  6515   // in the workgroup.
  6516   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6517   uint n_workers = workers()->active_workers();
  6518   assert(UseDynamicNumberOfGCThreads ||
  6519            n_workers == workers()->total_workers(),
  6520       "Otherwise should be using the total number of workers");
  6521   if (n_workers == 0) {
  6522     assert(false, "Should have been set in prior evacuation pause.");
  6523     n_workers = ParallelGCThreads;
  6524     workers()->set_active_workers(n_workers);
  6526   set_par_threads(n_workers);
  6529 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6530                                        size_t allocated_bytes) {
  6531   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6534 // Methods for the GC alloc regions
  6536 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6537                                                  uint count,
  6538                                                  GCAllocPurpose ap) {
  6539   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6541   if (count < g1_policy()->max_regions(ap)) {
  6542     HeapRegion* new_alloc_region = new_region(word_size,
  6543                                               true /* do_expand */);
  6544     if (new_alloc_region != NULL) {
  6545       // We really only need to do this for old regions given that we
  6546       // should never scan survivors. But it doesn't hurt to do it
  6547       // for survivors too.
  6548       new_alloc_region->set_saved_mark();
  6549       if (ap == GCAllocForSurvived) {
  6550         new_alloc_region->set_survivor();
  6551         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6552       } else {
  6553         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6555       bool during_im = g1_policy()->during_initial_mark_pause();
  6556       new_alloc_region->note_start_of_copying(during_im);
  6557       return new_alloc_region;
  6558     } else {
  6559       g1_policy()->note_alloc_region_limit_reached(ap);
  6562   return NULL;
  6565 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6566                                              size_t allocated_bytes,
  6567                                              GCAllocPurpose ap) {
  6568   bool during_im = g1_policy()->during_initial_mark_pause();
  6569   alloc_region->note_end_of_copying(during_im);
  6570   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6571   if (ap == GCAllocForSurvived) {
  6572     young_list()->add_survivor_region(alloc_region);
  6573   } else {
  6574     _old_set.add(alloc_region);
  6576   _hr_printer.retire(alloc_region);
  6579 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6580                                                        bool force) {
  6581   assert(!force, "not supported for GC alloc regions");
  6582   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6585 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6586                                           size_t allocated_bytes) {
  6587   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6588                                GCAllocForSurvived);
  6591 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6592                                                   bool force) {
  6593   assert(!force, "not supported for GC alloc regions");
  6594   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6597 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6598                                      size_t allocated_bytes) {
  6599   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6600                                GCAllocForTenured);
  6602 // Heap region set verification
  6604 class VerifyRegionListsClosure : public HeapRegionClosure {
  6605 private:
  6606   HeapRegionSet*   _old_set;
  6607   HeapRegionSet*   _humongous_set;
  6608   FreeRegionList*  _free_list;
  6610 public:
  6611   HeapRegionSetCount _old_count;
  6612   HeapRegionSetCount _humongous_count;
  6613   HeapRegionSetCount _free_count;
  6615   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6616                            HeapRegionSet* humongous_set,
  6617                            FreeRegionList* free_list) :
  6618     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
  6619     _old_count(), _humongous_count(), _free_count(){ }
  6621   bool doHeapRegion(HeapRegion* hr) {
  6622     if (hr->continuesHumongous()) {
  6623       return false;
  6626     if (hr->is_young()) {
  6627       // TODO
  6628     } else if (hr->startsHumongous()) {
  6629       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
  6630       _humongous_count.increment(1u, hr->capacity());
  6631     } else if (hr->is_empty()) {
  6632       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
  6633       _free_count.increment(1u, hr->capacity());
  6634     } else {
  6635       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
  6636       _old_count.increment(1u, hr->capacity());
  6638     return false;
  6641   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
  6642     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6643     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6644         old_set->total_capacity_bytes(), _old_count.capacity()));
  6646     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6647     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6648         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6650     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
  6651     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6652         free_list->total_capacity_bytes(), _free_count.capacity()));
  6654 };
  6656 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6657                                              HeapWord* bottom) {
  6658   HeapWord* end = bottom + HeapRegion::GrainWords;
  6659   MemRegion mr(bottom, end);
  6660   assert(_g1_reserved.contains(mr), "invariant");
  6661   // This might return NULL if the allocation fails
  6662   return new HeapRegion(hrs_index, _bot_shared, mr);
  6665 void G1CollectedHeap::verify_region_sets() {
  6666   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6668   // First, check the explicit lists.
  6669   _free_list.verify_list();
  6671     // Given that a concurrent operation might be adding regions to
  6672     // the secondary free list we have to take the lock before
  6673     // verifying it.
  6674     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6675     _secondary_free_list.verify_list();
  6678   // If a concurrent region freeing operation is in progress it will
  6679   // be difficult to correctly attributed any free regions we come
  6680   // across to the correct free list given that they might belong to
  6681   // one of several (free_list, secondary_free_list, any local lists,
  6682   // etc.). So, if that's the case we will skip the rest of the
  6683   // verification operation. Alternatively, waiting for the concurrent
  6684   // operation to complete will have a non-trivial effect on the GC's
  6685   // operation (no concurrent operation will last longer than the
  6686   // interval between two calls to verification) and it might hide
  6687   // any issues that we would like to catch during testing.
  6688   if (free_regions_coming()) {
  6689     return;
  6692   // Make sure we append the secondary_free_list on the free_list so
  6693   // that all free regions we will come across can be safely
  6694   // attributed to the free_list.
  6695   append_secondary_free_list_if_not_empty_with_lock();
  6697   // Finally, make sure that the region accounting in the lists is
  6698   // consistent with what we see in the heap.
  6700   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6701   heap_region_iterate(&cl);
  6702   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
  6705 // Optimized nmethod scanning
  6707 class RegisterNMethodOopClosure: public OopClosure {
  6708   G1CollectedHeap* _g1h;
  6709   nmethod* _nm;
  6711   template <class T> void do_oop_work(T* p) {
  6712     T heap_oop = oopDesc::load_heap_oop(p);
  6713     if (!oopDesc::is_null(heap_oop)) {
  6714       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6715       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6716       assert(!hr->continuesHumongous(),
  6717              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6718                      " starting at "HR_FORMAT,
  6719                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6721       // HeapRegion::add_strong_code_root() avoids adding duplicate
  6722       // entries but having duplicates is  OK since we "mark" nmethods
  6723       // as visited when we scan the strong code root lists during the GC.
  6724       hr->add_strong_code_root(_nm);
  6725       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
  6726              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
  6727                      _nm, HR_FORMAT_PARAMS(hr)));
  6731 public:
  6732   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6733     _g1h(g1h), _nm(nm) {}
  6735   void do_oop(oop* p)       { do_oop_work(p); }
  6736   void do_oop(narrowOop* p) { do_oop_work(p); }
  6737 };
  6739 class UnregisterNMethodOopClosure: public OopClosure {
  6740   G1CollectedHeap* _g1h;
  6741   nmethod* _nm;
  6743   template <class T> void do_oop_work(T* p) {
  6744     T heap_oop = oopDesc::load_heap_oop(p);
  6745     if (!oopDesc::is_null(heap_oop)) {
  6746       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6747       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6748       assert(!hr->continuesHumongous(),
  6749              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6750                      " starting at "HR_FORMAT,
  6751                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6753       hr->remove_strong_code_root(_nm);
  6754       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
  6755              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
  6756                      _nm, HR_FORMAT_PARAMS(hr)));
  6760 public:
  6761   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6762     _g1h(g1h), _nm(nm) {}
  6764   void do_oop(oop* p)       { do_oop_work(p); }
  6765   void do_oop(narrowOop* p) { do_oop_work(p); }
  6766 };
  6768 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6769   CollectedHeap::register_nmethod(nm);
  6771   guarantee(nm != NULL, "sanity");
  6772   RegisterNMethodOopClosure reg_cl(this, nm);
  6773   nm->oops_do(&reg_cl);
  6776 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  6777   CollectedHeap::unregister_nmethod(nm);
  6779   guarantee(nm != NULL, "sanity");
  6780   UnregisterNMethodOopClosure reg_cl(this, nm);
  6781   nm->oops_do(&reg_cl, true);
  6784 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
  6785 public:
  6786   bool doHeapRegion(HeapRegion *hr) {
  6787     assert(!hr->isHumongous(),
  6788            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
  6789                    HR_FORMAT_PARAMS(hr)));
  6790     hr->migrate_strong_code_roots();
  6791     return false;
  6793 };
  6795 void G1CollectedHeap::migrate_strong_code_roots() {
  6796   MigrateCodeRootsHeapRegionClosure cl;
  6797   double migrate_start = os::elapsedTime();
  6798   collection_set_iterate(&cl);
  6799   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  6800   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
  6803 void G1CollectedHeap::purge_code_root_memory() {
  6804   double purge_start = os::elapsedTime();
  6805   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  6806   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  6807   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  6810 // Mark all the code roots that point into regions *not* in the
  6811 // collection set.
  6812 //
  6813 // Note we do not want to use a "marking" CodeBlobToOopClosure while
  6814 // walking the the code roots lists of regions not in the collection
  6815 // set. Suppose we have an nmethod (M) that points to objects in two
  6816 // separate regions - one in the collection set (R1) and one not (R2).
  6817 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
  6818 // nmethod M when walking the code roots for R1. When we come to scan
  6819 // the code roots for R2, we would see that M is already marked and it
  6820 // would be skipped and the objects in R2 that are referenced from M
  6821 // would not be evacuated.
  6823 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
  6825   class MarkStrongCodeRootOopClosure: public OopClosure {
  6826     ConcurrentMark* _cm;
  6827     HeapRegion* _hr;
  6828     uint _worker_id;
  6830     template <class T> void do_oop_work(T* p) {
  6831       T heap_oop = oopDesc::load_heap_oop(p);
  6832       if (!oopDesc::is_null(heap_oop)) {
  6833         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6834         // Only mark objects in the region (which is assumed
  6835         // to be not in the collection set).
  6836         if (_hr->is_in(obj)) {
  6837           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  6842   public:
  6843     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
  6844       _cm(cm), _hr(hr), _worker_id(worker_id) {
  6845       assert(!_hr->in_collection_set(), "sanity");
  6848     void do_oop(narrowOop* p) { do_oop_work(p); }
  6849     void do_oop(oop* p)       { do_oop_work(p); }
  6850   };
  6852   MarkStrongCodeRootOopClosure _oop_cl;
  6854 public:
  6855   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
  6856     _oop_cl(cm, hr, worker_id) {}
  6858   void do_code_blob(CodeBlob* cb) {
  6859     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
  6860     if (nm != NULL) {
  6861       nm->oops_do(&_oop_cl);
  6864 };
  6866 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
  6867   G1CollectedHeap* _g1h;
  6868   uint _worker_id;
  6870 public:
  6871   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
  6872     _g1h(g1h), _worker_id(worker_id) {}
  6874   bool doHeapRegion(HeapRegion *hr) {
  6875     HeapRegionRemSet* hrrs = hr->rem_set();
  6876     if (hr->continuesHumongous()) {
  6877       // Code roots should never be attached to a continuation of a humongous region
  6878       assert(hrrs->strong_code_roots_list_length() == 0,
  6879              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
  6880                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
  6881                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
  6882                      hrrs->strong_code_roots_list_length()));
  6883       return false;
  6886     if (hr->in_collection_set()) {
  6887       // Don't mark code roots into regions in the collection set here.
  6888       // They will be marked when we scan them.
  6889       return false;
  6892     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
  6893     hr->strong_code_roots_do(&cb_cl);
  6894     return false;
  6896 };
  6898 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
  6899   MarkStrongCodeRootsHRClosure cl(this, worker_id);
  6900   if (G1CollectedHeap::use_parallel_gc_threads()) {
  6901     heap_region_par_iterate_chunked(&cl,
  6902                                     worker_id,
  6903                                     workers()->active_workers(),
  6904                                     HeapRegion::ParMarkRootClaimValue);
  6905   } else {
  6906     heap_region_iterate(&cl);
  6910 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  6911   G1CollectedHeap* _g1h;
  6913 public:
  6914   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  6915     _g1h(g1h) {}
  6917   void do_code_blob(CodeBlob* cb) {
  6918     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  6919     if (nm == NULL) {
  6920       return;
  6923     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
  6924       _g1h->register_nmethod(nm);
  6927 };
  6929 void G1CollectedHeap::rebuild_strong_code_roots() {
  6930   RebuildStrongCodeRootClosure blob_cl(this);
  6931   CodeCache::blobs_do(&blob_cl);

mercurial