src/share/vm/gc_implementation/g1/g1BlockOffsetTable.cpp

Tue, 18 Mar 2014 19:07:22 +0100

author
pliden
date
Tue, 18 Mar 2014 19:07:22 +0100
changeset 6413
595c0f60d50d
parent 6198
55fb97c4c58d
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8029075: String deduplication in G1
Summary: Implementation of JEP 192, http://openjdk.java.net/jeps/192
Reviewed-by: brutisso, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    27 #include "memory/space.hpp"
    28 #include "oops/oop.inline.hpp"
    29 #include "runtime/java.hpp"
    30 #include "services/memTracker.hpp"
    32 //////////////////////////////////////////////////////////////////////
    33 // G1BlockOffsetSharedArray
    34 //////////////////////////////////////////////////////////////////////
    36 G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion reserved,
    37                                                    size_t init_word_size) :
    38   _reserved(reserved), _end(NULL)
    39 {
    40   size_t size = compute_size(reserved.word_size());
    41   ReservedSpace rs(ReservedSpace::allocation_align_size_up(size));
    42   if (!rs.is_reserved()) {
    43     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    44   }
    45   if (!_vs.initialize(rs, 0)) {
    46     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    47   }
    49   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
    51   _offset_array = (u_char*)_vs.low_boundary();
    52   resize(init_word_size);
    53   if (TraceBlockOffsetTable) {
    54     gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
    55     gclog_or_tty->print_cr("  "
    56                   "  rs.base(): " INTPTR_FORMAT
    57                   "  rs.size(): " INTPTR_FORMAT
    58                   "  rs end(): " INTPTR_FORMAT,
    59                   rs.base(), rs.size(), rs.base() + rs.size());
    60     gclog_or_tty->print_cr("  "
    61                   "  _vs.low_boundary(): " INTPTR_FORMAT
    62                   "  _vs.high_boundary(): " INTPTR_FORMAT,
    63                   _vs.low_boundary(),
    64                   _vs.high_boundary());
    65   }
    66 }
    68 void G1BlockOffsetSharedArray::resize(size_t new_word_size) {
    69   assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
    70   size_t new_size = compute_size(new_word_size);
    71   size_t old_size = _vs.committed_size();
    72   size_t delta;
    73   char* high = _vs.high();
    74   _end = _reserved.start() + new_word_size;
    75   if (new_size > old_size) {
    76     delta = ReservedSpace::page_align_size_up(new_size - old_size);
    77     assert(delta > 0, "just checking");
    78     if (!_vs.expand_by(delta)) {
    79       // Do better than this for Merlin
    80       vm_exit_out_of_memory(delta, OOM_MMAP_ERROR, "offset table expansion");
    81     }
    82     assert(_vs.high() == high + delta, "invalid expansion");
    83     // Initialization of the contents is left to the
    84     // G1BlockOffsetArray that uses it.
    85   } else {
    86     delta = ReservedSpace::page_align_size_down(old_size - new_size);
    87     if (delta == 0) return;
    88     _vs.shrink_by(delta);
    89     assert(_vs.high() == high - delta, "invalid expansion");
    90   }
    91 }
    93 bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
    94   assert(p >= _reserved.start(), "just checking");
    95   size_t delta = pointer_delta(p, _reserved.start());
    96   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
    97 }
   100 //////////////////////////////////////////////////////////////////////
   101 // G1BlockOffsetArray
   102 //////////////////////////////////////////////////////////////////////
   104 G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
   105                                        MemRegion mr, bool init_to_zero) :
   106   G1BlockOffsetTable(mr.start(), mr.end()),
   107   _unallocated_block(_bottom),
   108   _array(array), _csp(NULL),
   109   _init_to_zero(init_to_zero) {
   110   assert(_bottom <= _end, "arguments out of order");
   111   if (!_init_to_zero) {
   112     // initialize cards to point back to mr.start()
   113     set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
   114     _array->set_offset_array(0, 0);  // set first card to 0
   115   }
   116 }
   118 void G1BlockOffsetArray::set_space(Space* sp) {
   119   _sp = sp;
   120   _csp = sp->toContiguousSpace();
   121 }
   123 // The arguments follow the normal convention of denoting
   124 // a right-open interval: [start, end)
   125 void
   126 G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
   128   if (start >= end) {
   129     // The start address is equal to the end address (or to
   130     // the right of the end address) so there are not cards
   131     // that need to be updated..
   132     return;
   133   }
   135   // Write the backskip value for each region.
   136   //
   137   //    offset
   138   //    card             2nd                       3rd
   139   //     | +- 1st        |                         |
   140   //     v v             v                         v
   141   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   142   //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
   143   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   144   //    11              19                        75
   145   //      12
   146   //
   147   //    offset card is the card that points to the start of an object
   148   //      x - offset value of offset card
   149   //    1st - start of first logarithmic region
   150   //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
   151   //    2nd - start of second logarithmic region
   152   //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
   153   //    3rd - start of third logarithmic region
   154   //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
   155   //
   156   //    integer below the block offset entry is an example of
   157   //    the index of the entry
   158   //
   159   //    Given an address,
   160   //      Find the index for the address
   161   //      Find the block offset table entry
   162   //      Convert the entry to a back slide
   163   //        (e.g., with today's, offset = 0x81 =>
   164   //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
   165   //      Move back N (e.g., 8) entries and repeat with the
   166   //        value of the new entry
   167   //
   168   size_t start_card = _array->index_for(start);
   169   size_t end_card = _array->index_for(end-1);
   170   assert(start ==_array->address_for_index(start_card), "Precondition");
   171   assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
   172   set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
   173 }
   175 // Unlike the normal convention in this code, the argument here denotes
   176 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
   177 // above.
   178 void
   179 G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
   180   if (start_card > end_card) {
   181     return;
   182   }
   183   assert(start_card > _array->index_for(_bottom), "Cannot be first card");
   184   assert(_array->offset_array(start_card-1) <= N_words,
   185          "Offset card has an unexpected value");
   186   size_t start_card_for_region = start_card;
   187   u_char offset = max_jubyte;
   188   for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
   189     // -1 so that the the card with the actual offset is counted.  Another -1
   190     // so that the reach ends in this region and not at the start
   191     // of the next.
   192     size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
   193     offset = N_words + i;
   194     if (reach >= end_card) {
   195       _array->set_offset_array(start_card_for_region, end_card, offset);
   196       start_card_for_region = reach + 1;
   197       break;
   198     }
   199     _array->set_offset_array(start_card_for_region, reach, offset);
   200     start_card_for_region = reach + 1;
   201   }
   202   assert(start_card_for_region > end_card, "Sanity check");
   203   DEBUG_ONLY(check_all_cards(start_card, end_card);)
   204 }
   206 // The block [blk_start, blk_end) has been allocated;
   207 // adjust the block offset table to represent this information;
   208 // right-open interval: [blk_start, blk_end)
   209 void
   210 G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   211   mark_block(blk_start, blk_end);
   212   allocated(blk_start, blk_end);
   213 }
   215 // Adjust BOT to show that a previously whole block has been split
   216 // into two.
   217 void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
   218                                      size_t left_blk_size) {
   219   // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   220   verify_single_block(blk, blk_size);
   221   // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
   222   // is one single block.
   223   mark_block(blk + left_blk_size, blk + blk_size);
   224 }
   227 // Action_mark - update the BOT for the block [blk_start, blk_end).
   228 //               Current typical use is for splitting a block.
   229 // Action_single - update the BOT for an allocation.
   230 // Action_verify - BOT verification.
   231 void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
   232                                            HeapWord* blk_end,
   233                                            Action action) {
   234   assert(Universe::heap()->is_in_reserved(blk_start),
   235          "reference must be into the heap");
   236   assert(Universe::heap()->is_in_reserved(blk_end-1),
   237          "limit must be within the heap");
   238   // This is optimized to make the test fast, assuming we only rarely
   239   // cross boundaries.
   240   uintptr_t end_ui = (uintptr_t)(blk_end - 1);
   241   uintptr_t start_ui = (uintptr_t)blk_start;
   242   // Calculate the last card boundary preceding end of blk
   243   intptr_t boundary_before_end = (intptr_t)end_ui;
   244   clear_bits(boundary_before_end, right_n_bits(LogN));
   245   if (start_ui <= (uintptr_t)boundary_before_end) {
   246     // blk starts at or crosses a boundary
   247     // Calculate index of card on which blk begins
   248     size_t    start_index = _array->index_for(blk_start);
   249     // Index of card on which blk ends
   250     size_t    end_index   = _array->index_for(blk_end - 1);
   251     // Start address of card on which blk begins
   252     HeapWord* boundary    = _array->address_for_index(start_index);
   253     assert(boundary <= blk_start, "blk should start at or after boundary");
   254     if (blk_start != boundary) {
   255       // blk starts strictly after boundary
   256       // adjust card boundary and start_index forward to next card
   257       boundary += N_words;
   258       start_index++;
   259     }
   260     assert(start_index <= end_index, "monotonicity of index_for()");
   261     assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
   262     switch (action) {
   263       case Action_mark: {
   264         if (init_to_zero()) {
   265           _array->set_offset_array(start_index, boundary, blk_start);
   266           break;
   267         } // Else fall through to the next case
   268       }
   269       case Action_single: {
   270         _array->set_offset_array(start_index, boundary, blk_start);
   271         // We have finished marking the "offset card". We need to now
   272         // mark the subsequent cards that this blk spans.
   273         if (start_index < end_index) {
   274           HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
   275           HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
   276           set_remainder_to_point_to_start(rem_st, rem_end);
   277         }
   278         break;
   279       }
   280       case Action_check: {
   281         _array->check_offset_array(start_index, boundary, blk_start);
   282         // We have finished checking the "offset card". We need to now
   283         // check the subsequent cards that this blk spans.
   284         check_all_cards(start_index + 1, end_index);
   285         break;
   286       }
   287       default:
   288         ShouldNotReachHere();
   289     }
   290   }
   291 }
   293 // The card-interval [start_card, end_card] is a closed interval; this
   294 // is an expensive check -- use with care and only under protection of
   295 // suitable flag.
   296 void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
   298   if (end_card < start_card) {
   299     return;
   300   }
   301   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
   302   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
   303     u_char entry = _array->offset_array(c);
   304     if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
   305       guarantee(entry > N_words,
   306                 err_msg("Should be in logarithmic region - "
   307                         "entry: " UINT32_FORMAT ", "
   308                         "_array->offset_array(c): " UINT32_FORMAT ", "
   309                         "N_words: " UINT32_FORMAT,
   310                         entry, _array->offset_array(c), N_words));
   311     }
   312     size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
   313     size_t landing_card = c - backskip;
   314     guarantee(landing_card >= (start_card - 1), "Inv");
   315     if (landing_card >= start_card) {
   316       guarantee(_array->offset_array(landing_card) <= entry,
   317                 err_msg("Monotonicity - landing_card offset: " UINT32_FORMAT ", "
   318                         "entry: " UINT32_FORMAT,
   319                         _array->offset_array(landing_card), entry));
   320     } else {
   321       guarantee(landing_card == start_card - 1, "Tautology");
   322       // Note that N_words is the maximum offset value
   323       guarantee(_array->offset_array(landing_card) <= N_words,
   324                 err_msg("landing card offset: " UINT32_FORMAT ", "
   325                         "N_words: " UINT32_FORMAT,
   326                         _array->offset_array(landing_card), N_words));
   327     }
   328   }
   329 }
   331 // The range [blk_start, blk_end) represents a single contiguous block
   332 // of storage; modify the block offset table to represent this
   333 // information; Right-open interval: [blk_start, blk_end)
   334 // NOTE: this method does _not_ adjust _unallocated_block.
   335 void
   336 G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) {
   337   do_block_internal(blk_start, blk_end, Action_single);
   338 }
   340 // Mark the BOT such that if [blk_start, blk_end) straddles a card
   341 // boundary, the card following the first such boundary is marked
   342 // with the appropriate offset.
   343 // NOTE: this method does _not_ adjust _unallocated_block or
   344 // any cards subsequent to the first one.
   345 void
   346 G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
   347   do_block_internal(blk_start, blk_end, Action_mark);
   348 }
   350 HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
   351   assert(_bottom <= addr && addr < _end,
   352          "addr must be covered by this Array");
   353   // Must read this exactly once because it can be modified by parallel
   354   // allocation.
   355   HeapWord* ub = _unallocated_block;
   356   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   357     assert(ub < _end, "tautology (see above)");
   358     return ub;
   359   }
   360   // Otherwise, find the block start using the table.
   361   HeapWord* q = block_at_or_preceding(addr, false, 0);
   362   return forward_to_block_containing_addr(q, addr);
   363 }
   365 // This duplicates a little code from the above: unavoidable.
   366 HeapWord*
   367 G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
   368   assert(_bottom <= addr && addr < _end,
   369          "addr must be covered by this Array");
   370   // Must read this exactly once because it can be modified by parallel
   371   // allocation.
   372   HeapWord* ub = _unallocated_block;
   373   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   374     assert(ub < _end, "tautology (see above)");
   375     return ub;
   376   }
   377   // Otherwise, find the block start using the table.
   378   HeapWord* q = block_at_or_preceding(addr, false, 0);
   379   HeapWord* n = q + _sp->block_size(q);
   380   return forward_to_block_containing_addr_const(q, n, addr);
   381 }
   384 HeapWord*
   385 G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
   386                                                           HeapWord* n,
   387                                                           const void* addr) {
   388   // We're not in the normal case.  We need to handle an important subcase
   389   // here: LAB allocation.  An allocation previously recorded in the
   390   // offset table was actually a lab allocation, and was divided into
   391   // several objects subsequently.  Fix this situation as we answer the
   392   // query, by updating entries as we cross them.
   394   // If the fist object's end q is at the card boundary. Start refining
   395   // with the corresponding card (the value of the entry will be basically
   396   // set to 0). If the object crosses the boundary -- start from the next card.
   397   size_t n_index = _array->index_for(n);
   398   size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
   399   // Calculate a consistent next boundary.  If "n" is not at the boundary
   400   // already, step to the boundary.
   401   HeapWord* next_boundary = _array->address_for_index(n_index) +
   402                             (n_index == next_index ? 0 : N_words);
   403   assert(next_boundary <= _array->_end,
   404          err_msg("next_boundary is beyond the end of the covered region "
   405                  " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT,
   406                  next_boundary, _array->_end));
   407   if (csp() != NULL) {
   408     if (addr >= csp()->top()) return csp()->top();
   409     while (next_boundary < addr) {
   410       while (n <= next_boundary) {
   411         q = n;
   412         oop obj = oop(q);
   413         if (obj->klass_or_null() == NULL) return q;
   414         n += obj->size();
   415       }
   416       assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
   417       // [q, n) is the block that crosses the boundary.
   418       alloc_block_work2(&next_boundary, &next_index, q, n);
   419     }
   420   } else {
   421     while (next_boundary < addr) {
   422       while (n <= next_boundary) {
   423         q = n;
   424         oop obj = oop(q);
   425         if (obj->klass_or_null() == NULL) return q;
   426         n += _sp->block_size(q);
   427       }
   428       assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
   429       // [q, n) is the block that crosses the boundary.
   430       alloc_block_work2(&next_boundary, &next_index, q, n);
   431     }
   432   }
   433   return forward_to_block_containing_addr_const(q, n, addr);
   434 }
   436 HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const {
   437   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   439   assert(_bottom <= addr && addr < _end,
   440          "addr must be covered by this Array");
   441   // Must read this exactly once because it can be modified by parallel
   442   // allocation.
   443   HeapWord* ub = _unallocated_block;
   444   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   445     assert(ub < _end, "tautology (see above)");
   446     return ub;
   447   }
   449   // Otherwise, find the block start using the table, but taking
   450   // care (cf block_start_unsafe() above) not to parse any objects/blocks
   451   // on the cards themsleves.
   452   size_t index = _array->index_for(addr);
   453   assert(_array->address_for_index(index) == addr,
   454          "arg should be start of card");
   456   HeapWord* q = (HeapWord*)addr;
   457   uint offset;
   458   do {
   459     offset = _array->offset_array(index--);
   460     q -= offset;
   461   } while (offset == N_words);
   462   assert(q <= addr, "block start should be to left of arg");
   463   return q;
   464 }
   466 // Note that the committed size of the covered space may have changed,
   467 // so the table size might also wish to change.
   468 void G1BlockOffsetArray::resize(size_t new_word_size) {
   469   HeapWord* new_end = _bottom + new_word_size;
   470   if (_end < new_end && !init_to_zero()) {
   471     // verify that the old and new boundaries are also card boundaries
   472     assert(_array->is_card_boundary(_end),
   473            "_end not a card boundary");
   474     assert(_array->is_card_boundary(new_end),
   475            "new _end would not be a card boundary");
   476     // set all the newly added cards
   477     _array->set_offset_array(_end, new_end, N_words);
   478   }
   479   _end = new_end;  // update _end
   480 }
   482 void G1BlockOffsetArray::set_region(MemRegion mr) {
   483   _bottom = mr.start();
   484   _end = mr.end();
   485 }
   487 //
   488 //              threshold_
   489 //              |   _index_
   490 //              v   v
   491 //      +-------+-------+-------+-------+-------+
   492 //      | i-1   |   i   | i+1   | i+2   | i+3   |
   493 //      +-------+-------+-------+-------+-------+
   494 //       ( ^    ]
   495 //         block-start
   496 //
   497 void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
   498                                            HeapWord* blk_start, HeapWord* blk_end) {
   499   // For efficiency, do copy-in/copy-out.
   500   HeapWord* threshold = *threshold_;
   501   size_t    index = *index_;
   503   assert(blk_start != NULL && blk_end > blk_start,
   504          "phantom block");
   505   assert(blk_end > threshold, "should be past threshold");
   506   assert(blk_start <= threshold, "blk_start should be at or before threshold");
   507   assert(pointer_delta(threshold, blk_start) <= N_words,
   508          "offset should be <= BlockOffsetSharedArray::N");
   509   assert(Universe::heap()->is_in_reserved(blk_start),
   510          "reference must be into the heap");
   511   assert(Universe::heap()->is_in_reserved(blk_end-1),
   512          "limit must be within the heap");
   513   assert(threshold == _array->_reserved.start() + index*N_words,
   514          "index must agree with threshold");
   516   DEBUG_ONLY(size_t orig_index = index;)
   518   // Mark the card that holds the offset into the block.  Note
   519   // that _next_offset_index and _next_offset_threshold are not
   520   // updated until the end of this method.
   521   _array->set_offset_array(index, threshold, blk_start);
   523   // We need to now mark the subsequent cards that this blk spans.
   525   // Index of card on which blk ends.
   526   size_t end_index   = _array->index_for(blk_end - 1);
   528   // Are there more cards left to be updated?
   529   if (index + 1 <= end_index) {
   530     HeapWord* rem_st  = _array->address_for_index(index + 1);
   531     // Calculate rem_end this way because end_index
   532     // may be the last valid index in the covered region.
   533     HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
   534     set_remainder_to_point_to_start(rem_st, rem_end);
   535   }
   537   index = end_index + 1;
   538   // Calculate threshold_ this way because end_index
   539   // may be the last valid index in the covered region.
   540   threshold = _array->address_for_index(end_index) + N_words;
   541   assert(threshold >= blk_end, "Incorrect offset threshold");
   543   // index_ and threshold_ updated here.
   544   *threshold_ = threshold;
   545   *index_ = index;
   547 #ifdef ASSERT
   548   // The offset can be 0 if the block starts on a boundary.  That
   549   // is checked by an assertion above.
   550   size_t start_index = _array->index_for(blk_start);
   551   HeapWord* boundary = _array->address_for_index(start_index);
   552   assert((_array->offset_array(orig_index) == 0 &&
   553           blk_start == boundary) ||
   554           (_array->offset_array(orig_index) > 0 &&
   555          _array->offset_array(orig_index) <= N_words),
   556          err_msg("offset array should have been set - "
   557                   "orig_index offset: " UINT32_FORMAT ", "
   558                   "blk_start: " PTR_FORMAT ", "
   559                   "boundary: " PTR_FORMAT,
   560                   _array->offset_array(orig_index),
   561                   blk_start, boundary));
   562   for (size_t j = orig_index + 1; j <= end_index; j++) {
   563     assert(_array->offset_array(j) > 0 &&
   564            _array->offset_array(j) <=
   565              (u_char) (N_words+BlockOffsetArray::N_powers-1),
   566            err_msg("offset array should have been set - "
   567                    UINT32_FORMAT " not > 0 OR "
   568                    UINT32_FORMAT " not <= " UINT32_FORMAT,
   569                    _array->offset_array(j),
   570                    _array->offset_array(j),
   571                    (u_char) (N_words+BlockOffsetArray::N_powers-1)));
   572   }
   573 #endif
   574 }
   576 bool
   577 G1BlockOffsetArray::verify_for_object(HeapWord* obj_start,
   578                                       size_t word_size) const {
   579   size_t first_card = _array->index_for(obj_start);
   580   size_t last_card = _array->index_for(obj_start + word_size - 1);
   581   if (!_array->is_card_boundary(obj_start)) {
   582     // If the object is not on a card boundary the BOT entry of the
   583     // first card should point to another object so we should not
   584     // check that one.
   585     first_card += 1;
   586   }
   587   for (size_t card = first_card; card <= last_card; card += 1) {
   588     HeapWord* card_addr = _array->address_for_index(card);
   589     HeapWord* block_start = block_start_const(card_addr);
   590     if (block_start != obj_start) {
   591       gclog_or_tty->print_cr("block start: "PTR_FORMAT" is incorrect - "
   592                              "card index: "SIZE_FORMAT" "
   593                              "card addr: "PTR_FORMAT" BOT entry: %u "
   594                              "obj: "PTR_FORMAT" word size: "SIZE_FORMAT" "
   595                              "cards: ["SIZE_FORMAT","SIZE_FORMAT"]",
   596                              block_start, card, card_addr,
   597                              _array->offset_array(card),
   598                              obj_start, word_size, first_card, last_card);
   599       return false;
   600     }
   601   }
   602   return true;
   603 }
   605 #ifndef PRODUCT
   606 void
   607 G1BlockOffsetArray::print_on(outputStream* out) {
   608   size_t from_index = _array->index_for(_bottom);
   609   size_t to_index = _array->index_for(_end);
   610   out->print_cr(">> BOT for area ["PTR_FORMAT","PTR_FORMAT") "
   611                 "cards ["SIZE_FORMAT","SIZE_FORMAT")",
   612                 _bottom, _end, from_index, to_index);
   613   for (size_t i = from_index; i < to_index; ++i) {
   614     out->print_cr("  entry "SIZE_FORMAT_W(8)" | "PTR_FORMAT" : %3u",
   615                   i, _array->address_for_index(i),
   616                   (uint) _array->offset_array(i));
   617   }
   618 }
   619 #endif // !PRODUCT
   621 //////////////////////////////////////////////////////////////////////
   622 // G1BlockOffsetArrayContigSpace
   623 //////////////////////////////////////////////////////////////////////
   625 HeapWord*
   626 G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
   627   assert(_bottom <= addr && addr < _end,
   628          "addr must be covered by this Array");
   629   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
   630   return forward_to_block_containing_addr(q, addr);
   631 }
   633 HeapWord*
   634 G1BlockOffsetArrayContigSpace::
   635 block_start_unsafe_const(const void* addr) const {
   636   assert(_bottom <= addr && addr < _end,
   637          "addr must be covered by this Array");
   638   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
   639   HeapWord* n = q + _sp->block_size(q);
   640   return forward_to_block_containing_addr_const(q, n, addr);
   641 }
   643 G1BlockOffsetArrayContigSpace::
   644 G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
   645                               MemRegion mr) :
   646   G1BlockOffsetArray(array, mr, true)
   647 {
   648   _next_offset_threshold = NULL;
   649   _next_offset_index = 0;
   650 }
   652 HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
   653   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   654          "just checking");
   655   _next_offset_index = _array->index_for(_bottom);
   656   _next_offset_index++;
   657   _next_offset_threshold =
   658     _array->address_for_index(_next_offset_index);
   659   return _next_offset_threshold;
   660 }
   662 void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
   663   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   664          "just checking");
   665   size_t bottom_index = _array->index_for(_bottom);
   666   assert(_array->address_for_index(bottom_index) == _bottom,
   667          "Precondition of call");
   668   _array->set_offset_array(bottom_index, 0);
   669 }
   671 void
   672 G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* new_top) {
   673   assert(new_top <= _end, "_end should have already been updated");
   675   // The first BOT entry should have offset 0.
   676   zero_bottom_entry();
   677   initialize_threshold();
   678   alloc_block(_bottom, new_top);
   679  }
   681 #ifndef PRODUCT
   682 void
   683 G1BlockOffsetArrayContigSpace::print_on(outputStream* out) {
   684   G1BlockOffsetArray::print_on(out);
   685   out->print_cr("  next offset threshold: "PTR_FORMAT, _next_offset_threshold);
   686   out->print_cr("  next offset index:     "SIZE_FORMAT, _next_offset_index);
   687 }
   688 #endif // !PRODUCT

mercurial