src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 15 Aug 2013 10:52:18 +0200

author
johnc
date
Thu, 15 Aug 2013 10:52:18 +0200
changeset 5548
5888334c9c24
parent 5237
f2110083203d
child 6385
58fc1b1523dc
permissions
-rw-r--r--

7145569: G1: optimize nmethods scanning
Summary: Add a list of nmethods to the RSet for a region that contain references into the region. Skip scanning the code cache during root scanning and scan the nmethod lists during RSet scanning instead.
Reviewed-by: tschatzl, brutisso, mgerdin, twisti, kvn

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    47   bool do_object_b(oop obj);
    48 };
    50 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    51 // class, with one bit per (1<<_shifter) HeapWords.
    53 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    54  protected:
    55   HeapWord* _bmStartWord;      // base address of range covered by map
    56   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    57   const int _shifter;          // map to char or bit
    58   VirtualSpace _virtual_space; // underlying the bit map
    59   BitMap    _bm;               // the bit map itself
    61  public:
    62   // constructor
    63   CMBitMapRO(int shifter);
    65   enum { do_yield = true };
    67   // inquiries
    68   HeapWord* startWord()   const { return _bmStartWord; }
    69   size_t    sizeInWords() const { return _bmWordSize;  }
    70   // the following is one past the last word in space
    71   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    73   // read marks
    75   bool isMarked(HeapWord* addr) const {
    76     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    77            "outside underlying space?");
    78     return _bm.at(heapWordToOffset(addr));
    79   }
    81   // iteration
    82   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    83   inline bool iterate(BitMapClosure* cl);
    85   // Return the address corresponding to the next marked bit at or after
    86   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    87   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    88   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    89                                      HeapWord* limit = NULL) const;
    90   // Return the address corresponding to the next unmarked bit at or after
    91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    93   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    94                                        HeapWord* limit = NULL) const;
    96   // conversion utilities
    97   HeapWord* offsetToHeapWord(size_t offset) const {
    98     return _bmStartWord + (offset << _shifter);
    99   }
   100   size_t heapWordToOffset(HeapWord* addr) const {
   101     return pointer_delta(addr, _bmStartWord) >> _shifter;
   102   }
   103   int heapWordDiffToOffsetDiff(size_t diff) const;
   105   // The argument addr should be the start address of a valid object
   106   HeapWord* nextObject(HeapWord* addr) {
   107     oop obj = (oop) addr;
   108     HeapWord* res =  addr + obj->size();
   109     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
   110     return res;
   111   }
   113   void print_on_error(outputStream* st, const char* prefix) const;
   115   // debugging
   116   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   117 };
   119 class CMBitMap : public CMBitMapRO {
   121  public:
   122   // constructor
   123   CMBitMap(int shifter) :
   124     CMBitMapRO(shifter) {}
   126   // Allocates the back store for the marking bitmap
   127   bool allocate(ReservedSpace heap_rs);
   129   // write marks
   130   void mark(HeapWord* addr) {
   131     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   132            "outside underlying space?");
   133     _bm.set_bit(heapWordToOffset(addr));
   134   }
   135   void clear(HeapWord* addr) {
   136     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   137            "outside underlying space?");
   138     _bm.clear_bit(heapWordToOffset(addr));
   139   }
   140   bool parMark(HeapWord* addr) {
   141     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   142            "outside underlying space?");
   143     return _bm.par_set_bit(heapWordToOffset(addr));
   144   }
   145   bool parClear(HeapWord* addr) {
   146     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   147            "outside underlying space?");
   148     return _bm.par_clear_bit(heapWordToOffset(addr));
   149   }
   150   void markRange(MemRegion mr);
   151   void clearAll();
   152   void clearRange(MemRegion mr);
   154   // Starting at the bit corresponding to "addr" (inclusive), find the next
   155   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   156   // the end of this run (stopping at "end_addr").  Return the MemRegion
   157   // covering from the start of the region corresponding to the first bit
   158   // of the run to the end of the region corresponding to the last bit of
   159   // the run.  If there is no "1" bit at or after "addr", return an empty
   160   // MemRegion.
   161   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   162 };
   164 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
   165 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   166   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
   167   ConcurrentMark* _cm;
   168   oop* _base;        // bottom of stack
   169   jint _index;       // one more than last occupied index
   170   jint _capacity;    // max #elements
   171   jint _saved_index; // value of _index saved at start of GC
   172   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
   174   bool  _overflow;
   175   bool  _should_expand;
   176   DEBUG_ONLY(bool _drain_in_progress;)
   177   DEBUG_ONLY(bool _drain_in_progress_yields;)
   179  public:
   180   CMMarkStack(ConcurrentMark* cm);
   181   ~CMMarkStack();
   183 #ifndef PRODUCT
   184   jint max_depth() const {
   185     return _max_depth;
   186   }
   187 #endif
   189   bool allocate(size_t capacity);
   191   oop pop() {
   192     if (!isEmpty()) {
   193       return _base[--_index] ;
   194     }
   195     return NULL;
   196   }
   198   // If overflow happens, don't do the push, and record the overflow.
   199   // *Requires* that "ptr" is already marked.
   200   void push(oop ptr) {
   201     if (isFull()) {
   202       // Record overflow.
   203       _overflow = true;
   204       return;
   205     } else {
   206       _base[_index++] = ptr;
   207       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   208     }
   209   }
   210   // Non-block impl.  Note: concurrency is allowed only with other
   211   // "par_push" operations, not with "pop" or "drain".  We would need
   212   // parallel versions of them if such concurrency was desired.
   213   void par_push(oop ptr);
   215   // Pushes the first "n" elements of "ptr_arr" on the stack.
   216   // Non-block impl.  Note: concurrency is allowed only with other
   217   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   218   void par_adjoin_arr(oop* ptr_arr, int n);
   220   // Pushes the first "n" elements of "ptr_arr" on the stack.
   221   // Locking impl: concurrency is allowed only with
   222   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   223   // locking strategy.
   224   void par_push_arr(oop* ptr_arr, int n);
   226   // If returns false, the array was empty.  Otherwise, removes up to "max"
   227   // elements from the stack, and transfers them to "ptr_arr" in an
   228   // unspecified order.  The actual number transferred is given in "n" ("n
   229   // == 0" is deliberately redundant with the return value.)  Locking impl:
   230   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   231   // operations, which use the same locking strategy.
   232   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   234   // Drain the mark stack, applying the given closure to all fields of
   235   // objects on the stack.  (That is, continue until the stack is empty,
   236   // even if closure applications add entries to the stack.)  The "bm"
   237   // argument, if non-null, may be used to verify that only marked objects
   238   // are on the mark stack.  If "yield_after" is "true", then the
   239   // concurrent marker performing the drain offers to yield after
   240   // processing each object.  If a yield occurs, stops the drain operation
   241   // and returns false.  Otherwise, returns true.
   242   template<class OopClosureClass>
   243   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   245   bool isEmpty()    { return _index == 0; }
   246   bool isFull()     { return _index == _capacity; }
   247   int  maxElems()   { return _capacity; }
   249   bool overflow() { return _overflow; }
   250   void clear_overflow() { _overflow = false; }
   252   bool should_expand() const { return _should_expand; }
   253   void set_should_expand();
   255   // Expand the stack, typically in response to an overflow condition
   256   void expand();
   258   int  size() { return _index; }
   260   void setEmpty()   { _index = 0; clear_overflow(); }
   262   // Record the current index.
   263   void note_start_of_gc();
   265   // Make sure that we have not added any entries to the stack during GC.
   266   void note_end_of_gc();
   268   // iterate over the oops in the mark stack, up to the bound recorded via
   269   // the call above.
   270   void oops_do(OopClosure* f);
   271 };
   273 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   274 private:
   275 #ifndef PRODUCT
   276   uintx _num_remaining;
   277   bool _force;
   278 #endif // !defined(PRODUCT)
   280 public:
   281   void init() PRODUCT_RETURN;
   282   void update() PRODUCT_RETURN;
   283   bool should_force() PRODUCT_RETURN_( return false; );
   284 };
   286 // this will enable a variety of different statistics per GC task
   287 #define _MARKING_STATS_       0
   288 // this will enable the higher verbose levels
   289 #define _MARKING_VERBOSE_     0
   291 #if _MARKING_STATS_
   292 #define statsOnly(statement)  \
   293 do {                          \
   294   statement ;                 \
   295 } while (0)
   296 #else // _MARKING_STATS_
   297 #define statsOnly(statement)  \
   298 do {                          \
   299 } while (0)
   300 #endif // _MARKING_STATS_
   302 typedef enum {
   303   no_verbose  = 0,   // verbose turned off
   304   stats_verbose,     // only prints stats at the end of marking
   305   low_verbose,       // low verbose, mostly per region and per major event
   306   medium_verbose,    // a bit more detailed than low
   307   high_verbose       // per object verbose
   308 } CMVerboseLevel;
   310 class YoungList;
   312 // Root Regions are regions that are not empty at the beginning of a
   313 // marking cycle and which we might collect during an evacuation pause
   314 // while the cycle is active. Given that, during evacuation pauses, we
   315 // do not copy objects that are explicitly marked, what we have to do
   316 // for the root regions is to scan them and mark all objects reachable
   317 // from them. According to the SATB assumptions, we only need to visit
   318 // each object once during marking. So, as long as we finish this scan
   319 // before the next evacuation pause, we can copy the objects from the
   320 // root regions without having to mark them or do anything else to them.
   321 //
   322 // Currently, we only support root region scanning once (at the start
   323 // of the marking cycle) and the root regions are all the survivor
   324 // regions populated during the initial-mark pause.
   325 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   326 private:
   327   YoungList*           _young_list;
   328   ConcurrentMark*      _cm;
   330   volatile bool        _scan_in_progress;
   331   volatile bool        _should_abort;
   332   HeapRegion* volatile _next_survivor;
   334 public:
   335   CMRootRegions();
   336   // We actually do most of the initialization in this method.
   337   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   339   // Reset the claiming / scanning of the root regions.
   340   void prepare_for_scan();
   342   // Forces get_next() to return NULL so that the iteration aborts early.
   343   void abort() { _should_abort = true; }
   345   // Return true if the CM thread are actively scanning root regions,
   346   // false otherwise.
   347   bool scan_in_progress() { return _scan_in_progress; }
   349   // Claim the next root region to scan atomically, or return NULL if
   350   // all have been claimed.
   351   HeapRegion* claim_next();
   353   // Flag that we're done with root region scanning and notify anyone
   354   // who's waiting on it. If aborted is false, assume that all regions
   355   // have been claimed.
   356   void scan_finished();
   358   // If CM threads are still scanning root regions, wait until they
   359   // are done. Return true if we had to wait, false otherwise.
   360   bool wait_until_scan_finished();
   361 };
   363 class ConcurrentMarkThread;
   365 class ConcurrentMark: public CHeapObj<mtGC> {
   366   friend class CMMarkStack;
   367   friend class ConcurrentMarkThread;
   368   friend class CMTask;
   369   friend class CMBitMapClosure;
   370   friend class CMGlobalObjectClosure;
   371   friend class CMRemarkTask;
   372   friend class CMConcurrentMarkingTask;
   373   friend class G1ParNoteEndTask;
   374   friend class CalcLiveObjectsClosure;
   375   friend class G1CMRefProcTaskProxy;
   376   friend class G1CMRefProcTaskExecutor;
   377   friend class G1CMKeepAliveAndDrainClosure;
   378   friend class G1CMDrainMarkingStackClosure;
   380 protected:
   381   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   382   G1CollectedHeap*      _g1h;        // the heap.
   383   uint                  _parallel_marking_threads; // the number of marking
   384                                                    // threads we're use
   385   uint                  _max_parallel_marking_threads; // max number of marking
   386                                                    // threads we'll ever use
   387   double                _sleep_factor; // how much we have to sleep, with
   388                                        // respect to the work we just did, to
   389                                        // meet the marking overhead goal
   390   double                _marking_task_overhead; // marking target overhead for
   391                                                 // a single task
   393   // same as the two above, but for the cleanup task
   394   double                _cleanup_sleep_factor;
   395   double                _cleanup_task_overhead;
   397   FreeRegionList        _cleanup_list;
   399   // Concurrent marking support structures
   400   CMBitMap                _markBitMap1;
   401   CMBitMap                _markBitMap2;
   402   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   403   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   405   BitMap                  _region_bm;
   406   BitMap                  _card_bm;
   408   // Heap bounds
   409   HeapWord*               _heap_start;
   410   HeapWord*               _heap_end;
   412   // Root region tracking and claiming.
   413   CMRootRegions           _root_regions;
   415   // For gray objects
   416   CMMarkStack             _markStack; // Grey objects behind global finger.
   417   HeapWord* volatile      _finger;  // the global finger, region aligned,
   418                                     // always points to the end of the
   419                                     // last claimed region
   421   // marking tasks
   422   uint                    _max_worker_id;// maximum worker id
   423   uint                    _active_tasks; // task num currently active
   424   CMTask**                _tasks;        // task queue array (max_worker_id len)
   425   CMTaskQueueSet*         _task_queues;  // task queue set
   426   ParallelTaskTerminator  _terminator;   // for termination
   428   // Two sync barriers that are used to synchronise tasks when an
   429   // overflow occurs. The algorithm is the following. All tasks enter
   430   // the first one to ensure that they have all stopped manipulating
   431   // the global data structures. After they exit it, they re-initialise
   432   // their data structures and task 0 re-initialises the global data
   433   // structures. Then, they enter the second sync barrier. This
   434   // ensure, that no task starts doing work before all data
   435   // structures (local and global) have been re-initialised. When they
   436   // exit it, they are free to start working again.
   437   WorkGangBarrierSync     _first_overflow_barrier_sync;
   438   WorkGangBarrierSync     _second_overflow_barrier_sync;
   440   // this is set by any task, when an overflow on the global data
   441   // structures is detected.
   442   volatile bool           _has_overflown;
   443   // true: marking is concurrent, false: we're in remark
   444   volatile bool           _concurrent;
   445   // set at the end of a Full GC so that marking aborts
   446   volatile bool           _has_aborted;
   448   // used when remark aborts due to an overflow to indicate that
   449   // another concurrent marking phase should start
   450   volatile bool           _restart_for_overflow;
   452   // This is true from the very start of concurrent marking until the
   453   // point when all the tasks complete their work. It is really used
   454   // to determine the points between the end of concurrent marking and
   455   // time of remark.
   456   volatile bool           _concurrent_marking_in_progress;
   458   // verbose level
   459   CMVerboseLevel          _verbose_level;
   461   // All of these times are in ms.
   462   NumberSeq _init_times;
   463   NumberSeq _remark_times;
   464   NumberSeq   _remark_mark_times;
   465   NumberSeq   _remark_weak_ref_times;
   466   NumberSeq _cleanup_times;
   467   double    _total_counting_time;
   468   double    _total_rs_scrub_time;
   470   double*   _accum_task_vtime;   // accumulated task vtime
   472   FlexibleWorkGang* _parallel_workers;
   474   ForceOverflowSettings _force_overflow_conc;
   475   ForceOverflowSettings _force_overflow_stw;
   477   void weakRefsWork(bool clear_all_soft_refs);
   479   void swapMarkBitMaps();
   481   // It resets the global marking data structures, as well as the
   482   // task local ones; should be called during initial mark.
   483   void reset();
   485   // Resets all the marking data structures. Called when we have to restart
   486   // marking or when marking completes (via set_non_marking_state below).
   487   void reset_marking_state(bool clear_overflow = true);
   489   // We do this after we're done with marking so that the marking data
   490   // structures are initialised to a sensible and predictable state.
   491   void set_non_marking_state();
   493   // Called to indicate how many threads are currently active.
   494   void set_concurrency(uint active_tasks);
   496   // It should be called to indicate which phase we're in (concurrent
   497   // mark or remark) and how many threads are currently active.
   498   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
   500   // prints all gathered CM-related statistics
   501   void print_stats();
   503   bool cleanup_list_is_empty() {
   504     return _cleanup_list.is_empty();
   505   }
   507   // accessor methods
   508   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
   509   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
   510   double sleep_factor()                     { return _sleep_factor; }
   511   double marking_task_overhead()            { return _marking_task_overhead;}
   512   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
   513   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
   515   bool use_parallel_marking_threads() const {
   516     assert(parallel_marking_threads() <=
   517            max_parallel_marking_threads(), "sanity");
   518     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
   519            parallel_marking_threads() > 0,
   520            "parallel workers not set up correctly");
   521     return _parallel_workers != NULL;
   522   }
   524   HeapWord*               finger()          { return _finger;   }
   525   bool                    concurrent()      { return _concurrent; }
   526   uint                    active_tasks()    { return _active_tasks; }
   527   ParallelTaskTerminator* terminator()      { return &_terminator; }
   529   // It claims the next available region to be scanned by a marking
   530   // task/thread. It might return NULL if the next region is empty or
   531   // we have run out of regions. In the latter case, out_of_regions()
   532   // determines whether we've really run out of regions or the task
   533   // should call claim_region() again. This might seem a bit
   534   // awkward. Originally, the code was written so that claim_region()
   535   // either successfully returned with a non-empty region or there
   536   // were no more regions to be claimed. The problem with this was
   537   // that, in certain circumstances, it iterated over large chunks of
   538   // the heap finding only empty regions and, while it was working, it
   539   // was preventing the calling task to call its regular clock
   540   // method. So, this way, each task will spend very little time in
   541   // claim_region() and is allowed to call the regular clock method
   542   // frequently.
   543   HeapRegion* claim_region(uint worker_id);
   545   // It determines whether we've run out of regions to scan.
   546   bool        out_of_regions() { return _finger == _heap_end; }
   548   // Returns the task with the given id
   549   CMTask* task(int id) {
   550     assert(0 <= id && id < (int) _active_tasks,
   551            "task id not within active bounds");
   552     return _tasks[id];
   553   }
   555   // Returns the task queue with the given id
   556   CMTaskQueue* task_queue(int id) {
   557     assert(0 <= id && id < (int) _active_tasks,
   558            "task queue id not within active bounds");
   559     return (CMTaskQueue*) _task_queues->queue(id);
   560   }
   562   // Returns the task queue set
   563   CMTaskQueueSet* task_queues()  { return _task_queues; }
   565   // Access / manipulation of the overflow flag which is set to
   566   // indicate that the global stack has overflown
   567   bool has_overflown()           { return _has_overflown; }
   568   void set_has_overflown()       { _has_overflown = true; }
   569   void clear_has_overflown()     { _has_overflown = false; }
   570   bool restart_for_overflow()    { return _restart_for_overflow; }
   572   // Methods to enter the two overflow sync barriers
   573   void enter_first_sync_barrier(uint worker_id);
   574   void enter_second_sync_barrier(uint worker_id);
   576   ForceOverflowSettings* force_overflow_conc() {
   577     return &_force_overflow_conc;
   578   }
   580   ForceOverflowSettings* force_overflow_stw() {
   581     return &_force_overflow_stw;
   582   }
   584   ForceOverflowSettings* force_overflow() {
   585     if (concurrent()) {
   586       return force_overflow_conc();
   587     } else {
   588       return force_overflow_stw();
   589     }
   590   }
   592   // Live Data Counting data structures...
   593   // These data structures are initialized at the start of
   594   // marking. They are written to while marking is active.
   595   // They are aggregated during remark; the aggregated values
   596   // are then used to populate the _region_bm, _card_bm, and
   597   // the total live bytes, which are then subsequently updated
   598   // during cleanup.
   600   // An array of bitmaps (one bit map per task). Each bitmap
   601   // is used to record the cards spanned by the live objects
   602   // marked by that task/worker.
   603   BitMap*  _count_card_bitmaps;
   605   // Used to record the number of marked live bytes
   606   // (for each region, by worker thread).
   607   size_t** _count_marked_bytes;
   609   // Card index of the bottom of the G1 heap. Used for biasing indices into
   610   // the card bitmaps.
   611   intptr_t _heap_bottom_card_num;
   613   // Set to true when initialization is complete
   614   bool _completed_initialization;
   616 public:
   617   // Manipulation of the global mark stack.
   618   // Notice that the first mark_stack_push is CAS-based, whereas the
   619   // two below are Mutex-based. This is OK since the first one is only
   620   // called during evacuation pauses and doesn't compete with the
   621   // other two (which are called by the marking tasks during
   622   // concurrent marking or remark).
   623   bool mark_stack_push(oop p) {
   624     _markStack.par_push(p);
   625     if (_markStack.overflow()) {
   626       set_has_overflown();
   627       return false;
   628     }
   629     return true;
   630   }
   631   bool mark_stack_push(oop* arr, int n) {
   632     _markStack.par_push_arr(arr, n);
   633     if (_markStack.overflow()) {
   634       set_has_overflown();
   635       return false;
   636     }
   637     return true;
   638   }
   639   void mark_stack_pop(oop* arr, int max, int* n) {
   640     _markStack.par_pop_arr(arr, max, n);
   641   }
   642   size_t mark_stack_size()                { return _markStack.size(); }
   643   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   644   bool mark_stack_overflow()              { return _markStack.overflow(); }
   645   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   647   CMRootRegions* root_regions() { return &_root_regions; }
   649   bool concurrent_marking_in_progress() {
   650     return _concurrent_marking_in_progress;
   651   }
   652   void set_concurrent_marking_in_progress() {
   653     _concurrent_marking_in_progress = true;
   654   }
   655   void clear_concurrent_marking_in_progress() {
   656     _concurrent_marking_in_progress = false;
   657   }
   659   void update_accum_task_vtime(int i, double vtime) {
   660     _accum_task_vtime[i] += vtime;
   661   }
   663   double all_task_accum_vtime() {
   664     double ret = 0.0;
   665     for (uint i = 0; i < _max_worker_id; ++i)
   666       ret += _accum_task_vtime[i];
   667     return ret;
   668   }
   670   // Attempts to steal an object from the task queues of other tasks
   671   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
   672     return _task_queues->steal(worker_id, hash_seed, obj);
   673   }
   675   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
   676   ~ConcurrentMark();
   678   ConcurrentMarkThread* cmThread() { return _cmThread; }
   680   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   681   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   683   // Returns the number of GC threads to be used in a concurrent
   684   // phase based on the number of GC threads being used in a STW
   685   // phase.
   686   uint scale_parallel_threads(uint n_par_threads);
   688   // Calculates the number of GC threads to be used in a concurrent phase.
   689   uint calc_parallel_marking_threads();
   691   // The following three are interaction between CM and
   692   // G1CollectedHeap
   694   // This notifies CM that a root during initial-mark needs to be
   695   // grayed. It is MT-safe. word_size is the size of the object in
   696   // words. It is passed explicitly as sometimes we cannot calculate
   697   // it from the given object because it might be in an inconsistent
   698   // state (e.g., in to-space and being copied). So the caller is
   699   // responsible for dealing with this issue (e.g., get the size from
   700   // the from-space image when the to-space image might be
   701   // inconsistent) and always passing the size. hr is the region that
   702   // contains the object and it's passed optionally from callers who
   703   // might already have it (no point in recalculating it).
   704   inline void grayRoot(oop obj, size_t word_size,
   705                        uint worker_id, HeapRegion* hr = NULL);
   707   // It iterates over the heap and for each object it comes across it
   708   // will dump the contents of its reference fields, as well as
   709   // liveness information for the object and its referents. The dump
   710   // will be written to a file with the following name:
   711   // G1PrintReachableBaseFile + "." + str.
   712   // vo decides whether the prev (vo == UsePrevMarking), the next
   713   // (vo == UseNextMarking) marking information, or the mark word
   714   // (vo == UseMarkWord) will be used to determine the liveness of
   715   // each object / referent.
   716   // If all is true, all objects in the heap will be dumped, otherwise
   717   // only the live ones. In the dump the following symbols / breviations
   718   // are used:
   719   //   M : an explicitly live object (its bitmap bit is set)
   720   //   > : an implicitly live object (over tams)
   721   //   O : an object outside the G1 heap (typically: in the perm gen)
   722   //   NOT : a reference field whose referent is not live
   723   //   AND MARKED : indicates that an object is both explicitly and
   724   //   implicitly live (it should be one or the other, not both)
   725   void print_reachable(const char* str,
   726                        VerifyOption vo, bool all) PRODUCT_RETURN;
   728   // Clear the next marking bitmap (will be called concurrently).
   729   void clearNextBitmap();
   731   // These two do the work that needs to be done before and after the
   732   // initial root checkpoint. Since this checkpoint can be done at two
   733   // different points (i.e. an explicit pause or piggy-backed on a
   734   // young collection), then it's nice to be able to easily share the
   735   // pre/post code. It might be the case that we can put everything in
   736   // the post method. TP
   737   void checkpointRootsInitialPre();
   738   void checkpointRootsInitialPost();
   740   // Scan all the root regions and mark everything reachable from
   741   // them.
   742   void scanRootRegions();
   744   // Scan a single root region and mark everything reachable from it.
   745   void scanRootRegion(HeapRegion* hr, uint worker_id);
   747   // Do concurrent phase of marking, to a tentative transitive closure.
   748   void markFromRoots();
   750   void checkpointRootsFinal(bool clear_all_soft_refs);
   751   void checkpointRootsFinalWork();
   752   void cleanup();
   753   void completeCleanup();
   755   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   756   // this carefully!
   757   inline void markPrev(oop p);
   759   // Clears marks for all objects in the given range, for the prev,
   760   // next, or both bitmaps.  NB: the previous bitmap is usually
   761   // read-only, so use this carefully!
   762   void clearRangePrevBitmap(MemRegion mr);
   763   void clearRangeNextBitmap(MemRegion mr);
   764   void clearRangeBothBitmaps(MemRegion mr);
   766   // Notify data structures that a GC has started.
   767   void note_start_of_gc() {
   768     _markStack.note_start_of_gc();
   769   }
   771   // Notify data structures that a GC is finished.
   772   void note_end_of_gc() {
   773     _markStack.note_end_of_gc();
   774   }
   776   // Verify that there are no CSet oops on the stacks (taskqueues /
   777   // global mark stack), enqueued SATB buffers, per-thread SATB
   778   // buffers, and fingers (global / per-task). The boolean parameters
   779   // decide which of the above data structures to verify. If marking
   780   // is not in progress, it's a no-op.
   781   void verify_no_cset_oops(bool verify_stacks,
   782                            bool verify_enqueued_buffers,
   783                            bool verify_thread_buffers,
   784                            bool verify_fingers) PRODUCT_RETURN;
   786   // It is called at the end of an evacuation pause during marking so
   787   // that CM is notified of where the new end of the heap is. It
   788   // doesn't do anything if concurrent_marking_in_progress() is false,
   789   // unless the force parameter is true.
   790   void update_g1_committed(bool force = false);
   792   bool isMarked(oop p) const {
   793     assert(p != NULL && p->is_oop(), "expected an oop");
   794     HeapWord* addr = (HeapWord*)p;
   795     assert(addr >= _nextMarkBitMap->startWord() ||
   796            addr < _nextMarkBitMap->endWord(), "in a region");
   798     return _nextMarkBitMap->isMarked(addr);
   799   }
   801   inline bool not_yet_marked(oop p) const;
   803   // XXX Debug code
   804   bool containing_card_is_marked(void* p);
   805   bool containing_cards_are_marked(void* start, void* last);
   807   bool isPrevMarked(oop p) const {
   808     assert(p != NULL && p->is_oop(), "expected an oop");
   809     HeapWord* addr = (HeapWord*)p;
   810     assert(addr >= _prevMarkBitMap->startWord() ||
   811            addr < _prevMarkBitMap->endWord(), "in a region");
   813     return _prevMarkBitMap->isMarked(addr);
   814   }
   816   inline bool do_yield_check(uint worker_i = 0);
   817   inline bool should_yield();
   819   // Called to abort the marking cycle after a Full GC takes palce.
   820   void abort();
   822   bool has_aborted()      { return _has_aborted; }
   824   // This prints the global/local fingers. It is used for debugging.
   825   NOT_PRODUCT(void print_finger();)
   827   void print_summary_info();
   829   void print_worker_threads_on(outputStream* st) const;
   831   void print_on_error(outputStream* st) const;
   833   // The following indicate whether a given verbose level has been
   834   // set. Notice that anything above stats is conditional to
   835   // _MARKING_VERBOSE_ having been set to 1
   836   bool verbose_stats() {
   837     return _verbose_level >= stats_verbose;
   838   }
   839   bool verbose_low() {
   840     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   841   }
   842   bool verbose_medium() {
   843     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   844   }
   845   bool verbose_high() {
   846     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   847   }
   849   // Liveness counting
   851   // Utility routine to set an exclusive range of cards on the given
   852   // card liveness bitmap
   853   inline void set_card_bitmap_range(BitMap* card_bm,
   854                                     BitMap::idx_t start_idx,
   855                                     BitMap::idx_t end_idx,
   856                                     bool is_par);
   858   // Returns the card number of the bottom of the G1 heap.
   859   // Used in biasing indices into accounting card bitmaps.
   860   intptr_t heap_bottom_card_num() const {
   861     return _heap_bottom_card_num;
   862   }
   864   // Returns the card bitmap for a given task or worker id.
   865   BitMap* count_card_bitmap_for(uint worker_id) {
   866     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   867     assert(_count_card_bitmaps != NULL, "uninitialized");
   868     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   869     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   870     return task_card_bm;
   871   }
   873   // Returns the array containing the marked bytes for each region,
   874   // for the given worker or task id.
   875   size_t* count_marked_bytes_array_for(uint worker_id) {
   876     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   877     assert(_count_marked_bytes != NULL, "uninitialized");
   878     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   879     assert(marked_bytes_array != NULL, "uninitialized");
   880     return marked_bytes_array;
   881   }
   883   // Returns the index in the liveness accounting card table bitmap
   884   // for the given address
   885   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   887   // Counts the size of the given memory region in the the given
   888   // marked_bytes array slot for the given HeapRegion.
   889   // Sets the bits in the given card bitmap that are associated with the
   890   // cards that are spanned by the memory region.
   891   inline void count_region(MemRegion mr, HeapRegion* hr,
   892                            size_t* marked_bytes_array,
   893                            BitMap* task_card_bm);
   895   // Counts the given memory region in the task/worker counting
   896   // data structures for the given worker id.
   897   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   899   // Counts the given memory region in the task/worker counting
   900   // data structures for the given worker id.
   901   inline void count_region(MemRegion mr, uint worker_id);
   903   // Counts the given object in the given task/worker counting
   904   // data structures.
   905   inline void count_object(oop obj, HeapRegion* hr,
   906                            size_t* marked_bytes_array,
   907                            BitMap* task_card_bm);
   909   // Counts the given object in the task/worker counting data
   910   // structures for the given worker id.
   911   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   913   // Attempts to mark the given object and, if successful, counts
   914   // the object in the given task/worker counting structures.
   915   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   916                                  size_t* marked_bytes_array,
   917                                  BitMap* task_card_bm);
   919   // Attempts to mark the given object and, if successful, counts
   920   // the object in the task/worker counting structures for the
   921   // given worker id.
   922   inline bool par_mark_and_count(oop obj, size_t word_size,
   923                                  HeapRegion* hr, uint worker_id);
   925   // Attempts to mark the given object and, if successful, counts
   926   // the object in the task/worker counting structures for the
   927   // given worker id.
   928   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   930   // Similar to the above routine but we don't know the heap region that
   931   // contains the object to be marked/counted, which this routine looks up.
   932   inline bool par_mark_and_count(oop obj, uint worker_id);
   934   // Similar to the above routine but there are times when we cannot
   935   // safely calculate the size of obj due to races and we, therefore,
   936   // pass the size in as a parameter. It is the caller's reponsibility
   937   // to ensure that the size passed in for obj is valid.
   938   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   940   // Unconditionally mark the given object, and unconditinally count
   941   // the object in the counting structures for worker id 0.
   942   // Should *not* be called from parallel code.
   943   inline bool mark_and_count(oop obj, HeapRegion* hr);
   945   // Similar to the above routine but we don't know the heap region that
   946   // contains the object to be marked/counted, which this routine looks up.
   947   // Should *not* be called from parallel code.
   948   inline bool mark_and_count(oop obj);
   950   // Returns true if initialization was successfully completed.
   951   bool completed_initialization() const {
   952     return _completed_initialization;
   953   }
   955 protected:
   956   // Clear all the per-task bitmaps and arrays used to store the
   957   // counting data.
   958   void clear_all_count_data();
   960   // Aggregates the counting data for each worker/task
   961   // that was constructed while marking. Also sets
   962   // the amount of marked bytes for each region and
   963   // the top at concurrent mark count.
   964   void aggregate_count_data();
   966   // Verification routine
   967   void verify_count_data();
   968 };
   970 // A class representing a marking task.
   971 class CMTask : public TerminatorTerminator {
   972 private:
   973   enum PrivateConstants {
   974     // the regular clock call is called once the scanned words reaches
   975     // this limit
   976     words_scanned_period          = 12*1024,
   977     // the regular clock call is called once the number of visited
   978     // references reaches this limit
   979     refs_reached_period           = 384,
   980     // initial value for the hash seed, used in the work stealing code
   981     init_hash_seed                = 17,
   982     // how many entries will be transferred between global stack and
   983     // local queues
   984     global_stack_transfer_size    = 16
   985   };
   987   uint                        _worker_id;
   988   G1CollectedHeap*            _g1h;
   989   ConcurrentMark*             _cm;
   990   CMBitMap*                   _nextMarkBitMap;
   991   // the task queue of this task
   992   CMTaskQueue*                _task_queue;
   993 private:
   994   // the task queue set---needed for stealing
   995   CMTaskQueueSet*             _task_queues;
   996   // indicates whether the task has been claimed---this is only  for
   997   // debugging purposes
   998   bool                        _claimed;
  1000   // number of calls to this task
  1001   int                         _calls;
  1003   // when the virtual timer reaches this time, the marking step should
  1004   // exit
  1005   double                      _time_target_ms;
  1006   // the start time of the current marking step
  1007   double                      _start_time_ms;
  1009   // the oop closure used for iterations over oops
  1010   G1CMOopClosure*             _cm_oop_closure;
  1012   // the region this task is scanning, NULL if we're not scanning any
  1013   HeapRegion*                 _curr_region;
  1014   // the local finger of this task, NULL if we're not scanning a region
  1015   HeapWord*                   _finger;
  1016   // limit of the region this task is scanning, NULL if we're not scanning one
  1017   HeapWord*                   _region_limit;
  1019   // the number of words this task has scanned
  1020   size_t                      _words_scanned;
  1021   // When _words_scanned reaches this limit, the regular clock is
  1022   // called. Notice that this might be decreased under certain
  1023   // circumstances (i.e. when we believe that we did an expensive
  1024   // operation).
  1025   size_t                      _words_scanned_limit;
  1026   // the initial value of _words_scanned_limit (i.e. what it was
  1027   // before it was decreased).
  1028   size_t                      _real_words_scanned_limit;
  1030   // the number of references this task has visited
  1031   size_t                      _refs_reached;
  1032   // When _refs_reached reaches this limit, the regular clock is
  1033   // called. Notice this this might be decreased under certain
  1034   // circumstances (i.e. when we believe that we did an expensive
  1035   // operation).
  1036   size_t                      _refs_reached_limit;
  1037   // the initial value of _refs_reached_limit (i.e. what it was before
  1038   // it was decreased).
  1039   size_t                      _real_refs_reached_limit;
  1041   // used by the work stealing stuff
  1042   int                         _hash_seed;
  1043   // if this is true, then the task has aborted for some reason
  1044   bool                        _has_aborted;
  1045   // set when the task aborts because it has met its time quota
  1046   bool                        _has_timed_out;
  1047   // true when we're draining SATB buffers; this avoids the task
  1048   // aborting due to SATB buffers being available (as we're already
  1049   // dealing with them)
  1050   bool                        _draining_satb_buffers;
  1052   // number sequence of past step times
  1053   NumberSeq                   _step_times_ms;
  1054   // elapsed time of this task
  1055   double                      _elapsed_time_ms;
  1056   // termination time of this task
  1057   double                      _termination_time_ms;
  1058   // when this task got into the termination protocol
  1059   double                      _termination_start_time_ms;
  1061   // true when the task is during a concurrent phase, false when it is
  1062   // in the remark phase (so, in the latter case, we do not have to
  1063   // check all the things that we have to check during the concurrent
  1064   // phase, i.e. SATB buffer availability...)
  1065   bool                        _concurrent;
  1067   TruncatedSeq                _marking_step_diffs_ms;
  1069   // Counting data structures. Embedding the task's marked_bytes_array
  1070   // and card bitmap into the actual task saves having to go through
  1071   // the ConcurrentMark object.
  1072   size_t*                     _marked_bytes_array;
  1073   BitMap*                     _card_bm;
  1075   // LOTS of statistics related with this task
  1076 #if _MARKING_STATS_
  1077   NumberSeq                   _all_clock_intervals_ms;
  1078   double                      _interval_start_time_ms;
  1080   int                         _aborted;
  1081   int                         _aborted_overflow;
  1082   int                         _aborted_cm_aborted;
  1083   int                         _aborted_yield;
  1084   int                         _aborted_timed_out;
  1085   int                         _aborted_satb;
  1086   int                         _aborted_termination;
  1088   int                         _steal_attempts;
  1089   int                         _steals;
  1091   int                         _clock_due_to_marking;
  1092   int                         _clock_due_to_scanning;
  1094   int                         _local_pushes;
  1095   int                         _local_pops;
  1096   int                         _local_max_size;
  1097   int                         _objs_scanned;
  1099   int                         _global_pushes;
  1100   int                         _global_pops;
  1101   int                         _global_max_size;
  1103   int                         _global_transfers_to;
  1104   int                         _global_transfers_from;
  1106   int                         _regions_claimed;
  1107   int                         _objs_found_on_bitmap;
  1109   int                         _satb_buffers_processed;
  1110 #endif // _MARKING_STATS_
  1112   // it updates the local fields after this task has claimed
  1113   // a new region to scan
  1114   void setup_for_region(HeapRegion* hr);
  1115   // it brings up-to-date the limit of the region
  1116   void update_region_limit();
  1118   // called when either the words scanned or the refs visited limit
  1119   // has been reached
  1120   void reached_limit();
  1121   // recalculates the words scanned and refs visited limits
  1122   void recalculate_limits();
  1123   // decreases the words scanned and refs visited limits when we reach
  1124   // an expensive operation
  1125   void decrease_limits();
  1126   // it checks whether the words scanned or refs visited reached their
  1127   // respective limit and calls reached_limit() if they have
  1128   void check_limits() {
  1129     if (_words_scanned >= _words_scanned_limit ||
  1130         _refs_reached >= _refs_reached_limit) {
  1131       reached_limit();
  1134   // this is supposed to be called regularly during a marking step as
  1135   // it checks a bunch of conditions that might cause the marking step
  1136   // to abort
  1137   void regular_clock_call();
  1138   bool concurrent() { return _concurrent; }
  1140 public:
  1141   // It resets the task; it should be called right at the beginning of
  1142   // a marking phase.
  1143   void reset(CMBitMap* _nextMarkBitMap);
  1144   // it clears all the fields that correspond to a claimed region.
  1145   void clear_region_fields();
  1147   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1149   // The main method of this class which performs a marking step
  1150   // trying not to exceed the given duration. However, it might exit
  1151   // prematurely, according to some conditions (i.e. SATB buffers are
  1152   // available for processing).
  1153   void do_marking_step(double target_ms,
  1154                        bool do_termination,
  1155                        bool is_serial);
  1157   // These two calls start and stop the timer
  1158   void record_start_time() {
  1159     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1161   void record_end_time() {
  1162     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1165   // returns the worker ID associated with this task.
  1166   uint worker_id() { return _worker_id; }
  1168   // From TerminatorTerminator. It determines whether this task should
  1169   // exit the termination protocol after it's entered it.
  1170   virtual bool should_exit_termination();
  1172   // Resets the local region fields after a task has finished scanning a
  1173   // region; or when they have become stale as a result of the region
  1174   // being evacuated.
  1175   void giveup_current_region();
  1177   HeapWord* finger()            { return _finger; }
  1179   bool has_aborted()            { return _has_aborted; }
  1180   void set_has_aborted()        { _has_aborted = true; }
  1181   void clear_has_aborted()      { _has_aborted = false; }
  1182   bool has_timed_out()          { return _has_timed_out; }
  1183   bool claimed()                { return _claimed; }
  1185   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1187   // It grays the object by marking it and, if necessary, pushing it
  1188   // on the local queue
  1189   inline void deal_with_reference(oop obj);
  1191   // It scans an object and visits its children.
  1192   void scan_object(oop obj);
  1194   // It pushes an object on the local queue.
  1195   inline void push(oop obj);
  1197   // These two move entries to/from the global stack.
  1198   void move_entries_to_global_stack();
  1199   void get_entries_from_global_stack();
  1201   // It pops and scans objects from the local queue. If partially is
  1202   // true, then it stops when the queue size is of a given limit. If
  1203   // partially is false, then it stops when the queue is empty.
  1204   void drain_local_queue(bool partially);
  1205   // It moves entries from the global stack to the local queue and
  1206   // drains the local queue. If partially is true, then it stops when
  1207   // both the global stack and the local queue reach a given size. If
  1208   // partially if false, it tries to empty them totally.
  1209   void drain_global_stack(bool partially);
  1210   // It keeps picking SATB buffers and processing them until no SATB
  1211   // buffers are available.
  1212   void drain_satb_buffers();
  1214   // moves the local finger to a new location
  1215   inline void move_finger_to(HeapWord* new_finger) {
  1216     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1217     _finger = new_finger;
  1220   CMTask(uint worker_id, ConcurrentMark *cm,
  1221          size_t* marked_bytes, BitMap* card_bm,
  1222          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1224   // it prints statistics associated with this task
  1225   void print_stats();
  1227 #if _MARKING_STATS_
  1228   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1229 #endif // _MARKING_STATS_
  1230 };
  1232 // Class that's used to to print out per-region liveness
  1233 // information. It's currently used at the end of marking and also
  1234 // after we sort the old regions at the end of the cleanup operation.
  1235 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1236 private:
  1237   outputStream* _out;
  1239   // Accumulators for these values.
  1240   size_t _total_used_bytes;
  1241   size_t _total_capacity_bytes;
  1242   size_t _total_prev_live_bytes;
  1243   size_t _total_next_live_bytes;
  1245   // These are set up when we come across a "stars humongous" region
  1246   // (as this is where most of this information is stored, not in the
  1247   // subsequent "continues humongous" regions). After that, for every
  1248   // region in a given humongous region series we deduce the right
  1249   // values for it by simply subtracting the appropriate amount from
  1250   // these fields. All these values should reach 0 after we've visited
  1251   // the last region in the series.
  1252   size_t _hum_used_bytes;
  1253   size_t _hum_capacity_bytes;
  1254   size_t _hum_prev_live_bytes;
  1255   size_t _hum_next_live_bytes;
  1257   // Accumulator for the remembered set size
  1258   size_t _total_remset_bytes;
  1260   // Accumulator for strong code roots memory size
  1261   size_t _total_strong_code_roots_bytes;
  1263   static double perc(size_t val, size_t total) {
  1264     if (total == 0) {
  1265       return 0.0;
  1266     } else {
  1267       return 100.0 * ((double) val / (double) total);
  1271   static double bytes_to_mb(size_t val) {
  1272     return (double) val / (double) M;
  1275   // See the .cpp file.
  1276   size_t get_hum_bytes(size_t* hum_bytes);
  1277   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1278                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1280 public:
  1281   // The header and footer are printed in the constructor and
  1282   // destructor respectively.
  1283   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1284   virtual bool doHeapRegion(HeapRegion* r);
  1285   ~G1PrintRegionLivenessInfoClosure();
  1286 };
  1288 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial