src/share/vm/interpreter/bytecodeInterpreter.cpp

Wed, 03 Jul 2013 11:50:29 -0700

author
kvn
date
Wed, 03 Jul 2013 11:50:29 -0700
changeset 6446
583211d4b16b
parent 6445
48d3d0eb193b
parent 5319
6a0ead6dc6db
child 6448
641d55c11d6b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/vmSymbols.hpp"
    27 #include "gc_interface/collectedHeap.hpp"
    28 #include "interpreter/bytecodeHistogram.hpp"
    29 #include "interpreter/bytecodeInterpreter.hpp"
    30 #include "interpreter/bytecodeInterpreter.inline.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "interpreter/interpreterRuntime.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/methodCounters.hpp"
    36 #include "oops/objArrayKlass.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "prims/jvmtiExport.hpp"
    39 #include "runtime/biasedLocking.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/handles.inline.hpp"
    42 #include "runtime/interfaceSupport.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    44 #include "runtime/threadCritical.hpp"
    45 #include "utilities/exceptions.hpp"
    46 #ifdef TARGET_OS_ARCH_linux_x86
    47 # include "orderAccess_linux_x86.inline.hpp"
    48 #endif
    49 #ifdef TARGET_OS_ARCH_linux_sparc
    50 # include "orderAccess_linux_sparc.inline.hpp"
    51 #endif
    52 #ifdef TARGET_OS_ARCH_linux_zero
    53 # include "orderAccess_linux_zero.inline.hpp"
    54 #endif
    55 #ifdef TARGET_OS_ARCH_solaris_x86
    56 # include "orderAccess_solaris_x86.inline.hpp"
    57 #endif
    58 #ifdef TARGET_OS_ARCH_solaris_sparc
    59 # include "orderAccess_solaris_sparc.inline.hpp"
    60 #endif
    61 #ifdef TARGET_OS_ARCH_windows_x86
    62 # include "orderAccess_windows_x86.inline.hpp"
    63 #endif
    64 #ifdef TARGET_OS_ARCH_linux_arm
    65 # include "orderAccess_linux_arm.inline.hpp"
    66 #endif
    67 #ifdef TARGET_OS_ARCH_linux_ppc
    68 # include "orderAccess_linux_ppc.inline.hpp"
    69 #endif
    70 #ifdef TARGET_OS_ARCH_bsd_x86
    71 # include "orderAccess_bsd_x86.inline.hpp"
    72 #endif
    73 #ifdef TARGET_OS_ARCH_bsd_zero
    74 # include "orderAccess_bsd_zero.inline.hpp"
    75 #endif
    78 // no precompiled headers
    79 #ifdef CC_INTERP
    81 /*
    82  * USELABELS - If using GCC, then use labels for the opcode dispatching
    83  * rather -then a switch statement. This improves performance because it
    84  * gives us the oportunity to have the instructions that calculate the
    85  * next opcode to jump to be intermixed with the rest of the instructions
    86  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
    87  */
    88 #undef USELABELS
    89 #ifdef __GNUC__
    90 /*
    91    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
    92    don't use the computed goto approach.
    93 */
    94 #ifndef ASSERT
    95 #define USELABELS
    96 #endif
    97 #endif
    99 #undef CASE
   100 #ifdef USELABELS
   101 #define CASE(opcode) opc ## opcode
   102 #define DEFAULT opc_default
   103 #else
   104 #define CASE(opcode) case Bytecodes:: opcode
   105 #define DEFAULT default
   106 #endif
   108 /*
   109  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
   110  * opcode before going back to the top of the while loop, rather then having
   111  * the top of the while loop handle it. This provides a better opportunity
   112  * for instruction scheduling. Some compilers just do this prefetch
   113  * automatically. Some actually end up with worse performance if you
   114  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
   115  */
   116 #undef PREFETCH_OPCCODE
   117 #define PREFETCH_OPCCODE
   119 /*
   120   Interpreter safepoint: it is expected that the interpreter will have no live
   121   handles of its own creation live at an interpreter safepoint. Therefore we
   122   run a HandleMarkCleaner and trash all handles allocated in the call chain
   123   since the JavaCalls::call_helper invocation that initiated the chain.
   124   There really shouldn't be any handles remaining to trash but this is cheap
   125   in relation to a safepoint.
   126 */
   127 #define SAFEPOINT                                                                 \
   128     if ( SafepointSynchronize::is_synchronizing()) {                              \
   129         {                                                                         \
   130           /* zap freed handles rather than GC'ing them */                         \
   131           HandleMarkCleaner __hmc(THREAD);                                        \
   132         }                                                                         \
   133         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
   134     }
   136 /*
   137  * VM_JAVA_ERROR - Macro for throwing a java exception from
   138  * the interpreter loop. Should really be a CALL_VM but there
   139  * is no entry point to do the transition to vm so we just
   140  * do it by hand here.
   141  */
   142 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
   143     DECACHE_STATE();                                                              \
   144     SET_LAST_JAVA_FRAME();                                                        \
   145     {                                                                             \
   146        ThreadInVMfromJava trans(THREAD);                                          \
   147        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
   148     }                                                                             \
   149     RESET_LAST_JAVA_FRAME();                                                      \
   150     CACHE_STATE();
   152 // Normal throw of a java error
   153 #define VM_JAVA_ERROR(name, msg)                                                  \
   154     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
   155     goto handle_exception;
   157 #ifdef PRODUCT
   158 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
   159 #else
   160 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
   161 {                                                                                                    \
   162     BytecodeCounter::_counter_value++;                                                               \
   163     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
   164     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
   165     if (TraceBytecodes) {                                                                            \
   166       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
   167                                    topOfStack[Interpreter::expr_index_at(1)],   \
   168                                    topOfStack[Interpreter::expr_index_at(2)]),  \
   169                                    handle_exception);                      \
   170     }                                                                      \
   171 }
   172 #endif
   174 #undef DEBUGGER_SINGLE_STEP_NOTIFY
   175 #ifdef VM_JVMTI
   176 /* NOTE: (kbr) This macro must be called AFTER the PC has been
   177    incremented. JvmtiExport::at_single_stepping_point() may cause a
   178    breakpoint opcode to get inserted at the current PC to allow the
   179    debugger to coalesce single-step events.
   181    As a result if we call at_single_stepping_point() we refetch opcode
   182    to get the current opcode. This will override any other prefetching
   183    that might have occurred.
   184 */
   185 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
   186 {                                                                                \
   187       if (_jvmti_interp_events) {                                                \
   188         if (JvmtiExport::should_post_single_step()) {                            \
   189           DECACHE_STATE();                                                       \
   190           SET_LAST_JAVA_FRAME();                                                 \
   191           ThreadInVMfromJava trans(THREAD);                                      \
   192           JvmtiExport::at_single_stepping_point(THREAD,                          \
   193                                           istate->method(),                      \
   194                                           pc);                                   \
   195           RESET_LAST_JAVA_FRAME();                                               \
   196           CACHE_STATE();                                                         \
   197           if (THREAD->pop_frame_pending() &&                                     \
   198               !THREAD->pop_frame_in_process()) {                                 \
   199             goto handle_Pop_Frame;                                               \
   200           }                                                                      \
   201           opcode = *pc;                                                          \
   202         }                                                                        \
   203       }                                                                          \
   204 }
   205 #else
   206 #define DEBUGGER_SINGLE_STEP_NOTIFY()
   207 #endif
   209 /*
   210  * CONTINUE - Macro for executing the next opcode.
   211  */
   212 #undef CONTINUE
   213 #ifdef USELABELS
   214 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
   215 // initialization (which is is the initialization of the table pointer...)
   216 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
   217 #define CONTINUE {                              \
   218         opcode = *pc;                           \
   219         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   220         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   221         DISPATCH(opcode);                       \
   222     }
   223 #else
   224 #ifdef PREFETCH_OPCCODE
   225 #define CONTINUE {                              \
   226         opcode = *pc;                           \
   227         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   228         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   229         continue;                               \
   230     }
   231 #else
   232 #define CONTINUE {                              \
   233         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   234         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   235         continue;                               \
   236     }
   237 #endif
   238 #endif
   241 #define UPDATE_PC(opsize) {pc += opsize; }
   242 /*
   243  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
   244  */
   245 #undef UPDATE_PC_AND_TOS
   246 #define UPDATE_PC_AND_TOS(opsize, stack) \
   247     {pc += opsize; MORE_STACK(stack); }
   249 /*
   250  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
   251  * and executing the next opcode. It's somewhat similar to the combination
   252  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
   253  */
   254 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
   255 #ifdef USELABELS
   256 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   257         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   258         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   259         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   260         DISPATCH(opcode);                                       \
   261     }
   263 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   264         pc += opsize; opcode = *pc;                             \
   265         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   266         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   267         DISPATCH(opcode);                                       \
   268     }
   269 #else
   270 #ifdef PREFETCH_OPCCODE
   271 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   272         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   273         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   274         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   275         goto do_continue;                                       \
   276     }
   278 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   279         pc += opsize; opcode = *pc;                             \
   280         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   281         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   282         goto do_continue;                                       \
   283     }
   284 #else
   285 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
   286         pc += opsize; MORE_STACK(stack);                \
   287         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   288         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   289         goto do_continue;                               \
   290     }
   292 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
   293         pc += opsize;                                   \
   294         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   295         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   296         goto do_continue;                               \
   297     }
   298 #endif /* PREFETCH_OPCCODE */
   299 #endif /* USELABELS */
   301 // About to call a new method, update the save the adjusted pc and return to frame manager
   302 #define UPDATE_PC_AND_RETURN(opsize)  \
   303    DECACHE_TOS();                     \
   304    istate->set_bcp(pc+opsize);        \
   305    return;
   308 #define METHOD istate->method()
   309 #define GET_METHOD_COUNTERS(res)    \
   310   res = METHOD->method_counters();  \
   311   if (res == NULL) {                \
   312     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
   313   }
   315 #define OSR_REQUEST(res, branch_pc) \
   316             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
   317 /*
   318  * For those opcodes that need to have a GC point on a backwards branch
   319  */
   321 // Backedge counting is kind of strange. The asm interpreter will increment
   322 // the backedge counter as a separate counter but it does it's comparisons
   323 // to the sum (scaled) of invocation counter and backedge count to make
   324 // a decision. Seems kind of odd to sum them together like that
   326 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
   329 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
   330     if ((skip) <= 0) {                                                                              \
   331       MethodCounters* mcs;                                                                          \
   332       GET_METHOD_COUNTERS(mcs);                                                                     \
   333       if (UseLoopCounter) {                                                                         \
   334         bool do_OSR = UseOnStackReplacement;                                                        \
   335         mcs->backedge_counter()->increment();                                                       \
   336         if (do_OSR) do_OSR = mcs->backedge_counter()->reached_InvocationLimit();                    \
   337         if (do_OSR) {                                                                               \
   338           nmethod*  osr_nmethod;                                                                    \
   339           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
   340           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
   341             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
   342             istate->set_msg(do_osr);                                                                \
   343             istate->set_osr_buf((address)buf);                                                      \
   344             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
   345             return;                                                                                 \
   346           }                                                                                         \
   347         }                                                                                           \
   348       }  /* UseCompiler ... */                                                                      \
   349       mcs->invocation_counter()->increment();                                                       \
   350       SAFEPOINT;                                                                                    \
   351     }
   353 /*
   354  * For those opcodes that need to have a GC point on a backwards branch
   355  */
   357 /*
   358  * Macros for caching and flushing the interpreter state. Some local
   359  * variables need to be flushed out to the frame before we do certain
   360  * things (like pushing frames or becomming gc safe) and some need to
   361  * be recached later (like after popping a frame). We could use one
   362  * macro to cache or decache everything, but this would be less then
   363  * optimal because we don't always need to cache or decache everything
   364  * because some things we know are already cached or decached.
   365  */
   366 #undef DECACHE_TOS
   367 #undef CACHE_TOS
   368 #undef CACHE_PREV_TOS
   369 #define DECACHE_TOS()    istate->set_stack(topOfStack);
   371 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
   373 #undef DECACHE_PC
   374 #undef CACHE_PC
   375 #define DECACHE_PC()    istate->set_bcp(pc);
   376 #define CACHE_PC()      pc = istate->bcp();
   377 #define CACHE_CP()      cp = istate->constants();
   378 #define CACHE_LOCALS()  locals = istate->locals();
   379 #undef CACHE_FRAME
   380 #define CACHE_FRAME()
   382 /*
   383  * CHECK_NULL - Macro for throwing a NullPointerException if the object
   384  * passed is a null ref.
   385  * On some architectures/platforms it should be possible to do this implicitly
   386  */
   387 #undef CHECK_NULL
   388 #define CHECK_NULL(obj_)                                                 \
   389     if ((obj_) == NULL) {                                                \
   390         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
   391     }                                                                    \
   392     VERIFY_OOP(obj_)
   394 #define VMdoubleConstZero() 0.0
   395 #define VMdoubleConstOne() 1.0
   396 #define VMlongConstZero() (max_jlong-max_jlong)
   397 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
   399 /*
   400  * Alignment
   401  */
   402 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
   404 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
   405 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
   407 // Reload interpreter state after calling the VM or a possible GC
   408 #define CACHE_STATE()   \
   409         CACHE_TOS();    \
   410         CACHE_PC();     \
   411         CACHE_CP();     \
   412         CACHE_LOCALS();
   414 // Call the VM don't check for pending exceptions
   415 #define CALL_VM_NOCHECK(func)                                     \
   416           DECACHE_STATE();                                        \
   417           SET_LAST_JAVA_FRAME();                                  \
   418           func;                                                   \
   419           RESET_LAST_JAVA_FRAME();                                \
   420           CACHE_STATE();                                          \
   421           if (THREAD->pop_frame_pending() &&                      \
   422               !THREAD->pop_frame_in_process()) {                  \
   423             goto handle_Pop_Frame;                                \
   424           }
   426 // Call the VM and check for pending exceptions
   427 #define CALL_VM(func, label) {                                    \
   428           CALL_VM_NOCHECK(func);                                  \
   429           if (THREAD->has_pending_exception()) goto label;        \
   430         }
   432 /*
   433  * BytecodeInterpreter::run(interpreterState istate)
   434  * BytecodeInterpreter::runWithChecks(interpreterState istate)
   435  *
   436  * The real deal. This is where byte codes actually get interpreted.
   437  * Basically it's a big while loop that iterates until we return from
   438  * the method passed in.
   439  *
   440  * The runWithChecks is used if JVMTI is enabled.
   441  *
   442  */
   443 #if defined(VM_JVMTI)
   444 void
   445 BytecodeInterpreter::runWithChecks(interpreterState istate) {
   446 #else
   447 void
   448 BytecodeInterpreter::run(interpreterState istate) {
   449 #endif
   451   // In order to simplify some tests based on switches set at runtime
   452   // we invoke the interpreter a single time after switches are enabled
   453   // and set simpler to to test variables rather than method calls or complex
   454   // boolean expressions.
   456   static int initialized = 0;
   457   static int checkit = 0;
   458   static intptr_t* c_addr = NULL;
   459   static intptr_t  c_value;
   461   if (checkit && *c_addr != c_value) {
   462     os::breakpoint();
   463   }
   464 #ifdef VM_JVMTI
   465   static bool _jvmti_interp_events = 0;
   466 #endif
   468   static int _compiling;  // (UseCompiler || CountCompiledCalls)
   470 #ifdef ASSERT
   471   if (istate->_msg != initialize) {
   472     // We have a problem here if we are running with a pre-hsx24 JDK (for example during bootstrap)
   473     // because in that case, EnableInvokeDynamic is true by default but will be later switched off
   474     // if java_lang_invoke_MethodHandle::compute_offsets() detects that the JDK only has the classes
   475     // for the old JSR292 implementation.
   476     // This leads to a situation where 'istate->_stack_limit' always accounts for
   477     // methodOopDesc::extra_stack_entries() because it is computed in
   478     // CppInterpreterGenerator::generate_compute_interpreter_state() which was generated while
   479     // EnableInvokeDynamic was still true. On the other hand, istate->_method->max_stack() doesn't
   480     // account for extra_stack_entries() anymore because at the time when it is called
   481     // EnableInvokeDynamic was already set to false.
   482     // So we have a second version of the assertion which handles the case where EnableInvokeDynamic was
   483     // switched off because of the wrong classes.
   484     if (EnableInvokeDynamic || FLAG_IS_CMDLINE(EnableInvokeDynamic)) {
   485       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
   486     } else {
   487       const int extra_stack_entries = Method::extra_stack_entries_for_jsr292;
   488       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + extra_stack_entries
   489                                                                                                + 1), "bad stack limit");
   490     }
   491 #ifndef SHARK
   492     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
   493 #endif // !SHARK
   494   }
   495   // Verify linkages.
   496   interpreterState l = istate;
   497   do {
   498     assert(l == l->_self_link, "bad link");
   499     l = l->_prev_link;
   500   } while (l != NULL);
   501   // Screwups with stack management usually cause us to overwrite istate
   502   // save a copy so we can verify it.
   503   interpreterState orig = istate;
   504 #endif
   506   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
   508   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
   509   register address          pc = istate->bcp();
   510   register jubyte opcode;
   511   register intptr_t*        locals = istate->locals();
   512   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
   513 #ifdef LOTS_OF_REGS
   514   register JavaThread*      THREAD = istate->thread();
   515   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
   516 #else
   517 #undef THREAD
   518 #define THREAD istate->thread()
   519 #undef BYTE_MAP_BASE
   520 #define BYTE_MAP_BASE _byte_map_base
   521 #endif
   523 #ifdef USELABELS
   524   const static void* const opclabels_data[256] = {
   525 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
   526 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
   527 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
   528 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
   530 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
   531 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
   532 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
   533 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
   535 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
   536 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
   537 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
   538 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
   540 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
   541 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
   542 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
   543 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
   545 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
   546 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
   547 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
   548 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
   550 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
   551 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
   552 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
   553 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
   555 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
   556 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
   557 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
   558 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
   560 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
   561 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
   562 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
   563 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
   565 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
   566 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
   567 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
   568 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
   570 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
   571 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
   572 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
   573 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
   575 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
   576 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
   577 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
   578 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
   580 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
   581 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
   582 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
   583 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
   585 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
   586 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
   587 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
   588 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   590 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   591 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   592 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   593 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   595 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   596 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
   597 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
   598 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   600 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   601 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   602 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   603 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
   604   };
   605   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
   606 #endif /* USELABELS */
   608 #ifdef ASSERT
   609   // this will trigger a VERIFY_OOP on entry
   610   if (istate->msg() != initialize && ! METHOD->is_static()) {
   611     oop rcvr = LOCALS_OBJECT(0);
   612     VERIFY_OOP(rcvr);
   613   }
   614 #endif
   615 // #define HACK
   616 #ifdef HACK
   617   bool interesting = false;
   618 #endif // HACK
   620   /* QQQ this should be a stack method so we don't know actual direction */
   621   guarantee(istate->msg() == initialize ||
   622          topOfStack >= istate->stack_limit() &&
   623          topOfStack < istate->stack_base(),
   624          "Stack top out of range");
   626   switch (istate->msg()) {
   627     case initialize: {
   628       if (initialized++) ShouldNotReachHere(); // Only one initialize call
   629       _compiling = (UseCompiler || CountCompiledCalls);
   630 #ifdef VM_JVMTI
   631       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
   632 #endif
   633       BarrierSet* bs = Universe::heap()->barrier_set();
   634       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   635       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
   636       return;
   637     }
   638     break;
   639     case method_entry: {
   640       THREAD->set_do_not_unlock();
   641       // count invocations
   642       assert(initialized, "Interpreter not initialized");
   643       if (_compiling) {
   644         MethodCounters* mcs;
   645         GET_METHOD_COUNTERS(mcs);
   646         if (ProfileInterpreter) {
   647           METHOD->increment_interpreter_invocation_count(THREAD);
   648         }
   649         mcs->invocation_counter()->increment();
   650         if (mcs->invocation_counter()->reached_InvocationLimit()) {
   651             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
   653             // We no longer retry on a counter overflow
   655             // istate->set_msg(retry_method);
   656             // THREAD->clr_do_not_unlock();
   657             // return;
   658         }
   659         SAFEPOINT;
   660       }
   662       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   663         // initialize
   664         os::breakpoint();
   665       }
   667 #ifdef HACK
   668       {
   669         ResourceMark rm;
   670         char *method_name = istate->method()->name_and_sig_as_C_string();
   671         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   672           tty->print_cr("entering: depth %d bci: %d",
   673                          (istate->_stack_base - istate->_stack),
   674                          istate->_bcp - istate->_method->code_base());
   675           interesting = true;
   676         }
   677       }
   678 #endif // HACK
   681       // lock method if synchronized
   682       if (METHOD->is_synchronized()) {
   683         // oop rcvr = locals[0].j.r;
   684         oop rcvr;
   685         if (METHOD->is_static()) {
   686           rcvr = METHOD->constants()->pool_holder()->java_mirror();
   687         } else {
   688           rcvr = LOCALS_OBJECT(0);
   689           VERIFY_OOP(rcvr);
   690         }
   691         // The initial monitor is ours for the taking
   692         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
   693         BasicObjectLock* mon = &istate->monitor_base()[-1];
   694         mon->set_obj(rcvr);
   695         bool success = false;
   696         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
   697         markOop mark = rcvr->mark();
   698         intptr_t hash = (intptr_t) markOopDesc::no_hash;
   699         // Implies UseBiasedLocking.
   700         if (mark->has_bias_pattern()) {
   701           uintptr_t thread_ident;
   702           uintptr_t anticipated_bias_locking_value;
   703           thread_ident = (uintptr_t)istate->thread();
   704           anticipated_bias_locking_value =
   705             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
   706             ~((uintptr_t) markOopDesc::age_mask_in_place);
   708           if (anticipated_bias_locking_value == 0) {
   709             // Already biased towards this thread, nothing to do.
   710             if (PrintBiasedLockingStatistics) {
   711               (* BiasedLocking::biased_lock_entry_count_addr())++;
   712             }
   713             success = true;
   714           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
   715             // Try to revoke bias.
   716             markOop header = rcvr->klass()->prototype_header();
   717             if (hash != markOopDesc::no_hash) {
   718               header = header->copy_set_hash(hash);
   719             }
   720             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
   721               if (PrintBiasedLockingStatistics)
   722                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
   723             }
   724           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
   725             // Try to rebias.
   726             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
   727             if (hash != markOopDesc::no_hash) {
   728               new_header = new_header->copy_set_hash(hash);
   729             }
   730             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
   731               if (PrintBiasedLockingStatistics) {
   732                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
   733               }
   734             } else {
   735               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   736             }
   737             success = true;
   738           } else {
   739             // Try to bias towards thread in case object is anonymously biased.
   740             markOop header = (markOop) ((uintptr_t) mark &
   741                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
   742                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
   743             if (hash != markOopDesc::no_hash) {
   744               header = header->copy_set_hash(hash);
   745             }
   746             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
   747             // Debugging hint.
   748             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
   749             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
   750               if (PrintBiasedLockingStatistics) {
   751                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
   752               }
   753             } else {
   754               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   755             }
   756             success = true;
   757           }
   758         }
   760         // Traditional lightweight locking.
   761         if (!success) {
   762           markOop displaced = rcvr->mark()->set_unlocked();
   763           mon->lock()->set_displaced_header(displaced);
   764           bool call_vm = UseHeavyMonitors;
   765           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
   766             // Is it simple recursive case?
   767             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   768               mon->lock()->set_displaced_header(NULL);
   769             } else {
   770               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   771             }
   772           }
   773         }
   774       }
   775       THREAD->clr_do_not_unlock();
   777       // Notify jvmti
   778 #ifdef VM_JVMTI
   779       if (_jvmti_interp_events) {
   780         // Whenever JVMTI puts a thread in interp_only_mode, method
   781         // entry/exit events are sent for that thread to track stack depth.
   782         if (THREAD->is_interp_only_mode()) {
   783           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
   784                   handle_exception);
   785         }
   786       }
   787 #endif /* VM_JVMTI */
   789       goto run;
   790     }
   792     case popping_frame: {
   793       // returned from a java call to pop the frame, restart the call
   794       // clear the message so we don't confuse ourselves later
   795       ShouldNotReachHere();  // we don't return this.
   796       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
   797       istate->set_msg(no_request);
   798       THREAD->clr_pop_frame_in_process();
   799       goto run;
   800     }
   802     case method_resume: {
   803       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   804         // resume
   805         os::breakpoint();
   806       }
   807 #ifdef HACK
   808       {
   809         ResourceMark rm;
   810         char *method_name = istate->method()->name_and_sig_as_C_string();
   811         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   812           tty->print_cr("resume: depth %d bci: %d",
   813                          (istate->_stack_base - istate->_stack) ,
   814                          istate->_bcp - istate->_method->code_base());
   815           interesting = true;
   816         }
   817       }
   818 #endif // HACK
   819       // returned from a java call, continue executing.
   820       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
   821         goto handle_Pop_Frame;
   822       }
   824       if (THREAD->has_pending_exception()) goto handle_exception;
   825       // Update the pc by the saved amount of the invoke bytecode size
   826       UPDATE_PC(istate->bcp_advance());
   827       goto run;
   828     }
   830     case deopt_resume2: {
   831       // Returned from an opcode that will reexecute. Deopt was
   832       // a result of a PopFrame request.
   833       //
   834       goto run;
   835     }
   837     case deopt_resume: {
   838       // Returned from an opcode that has completed. The stack has
   839       // the result all we need to do is skip across the bytecode
   840       // and continue (assuming there is no exception pending)
   841       //
   842       // compute continuation length
   843       //
   844       // Note: it is possible to deopt at a return_register_finalizer opcode
   845       // because this requires entering the vm to do the registering. While the
   846       // opcode is complete we can't advance because there are no more opcodes
   847       // much like trying to deopt at a poll return. In that has we simply
   848       // get out of here
   849       //
   850       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
   851         // this will do the right thing even if an exception is pending.
   852         goto handle_return;
   853       }
   854       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
   855       if (THREAD->has_pending_exception()) goto handle_exception;
   856       goto run;
   857     }
   858     case got_monitors: {
   859       // continue locking now that we have a monitor to use
   860       // we expect to find newly allocated monitor at the "top" of the monitor stack.
   861       oop lockee = STACK_OBJECT(-1);
   862       VERIFY_OOP(lockee);
   863       // derefing's lockee ought to provoke implicit null check
   864       // find a free monitor
   865       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
   866       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
   867       entry->set_obj(lockee);
   868       bool success = false;
   869       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
   871       markOop mark = lockee->mark();
   872       intptr_t hash = (intptr_t) markOopDesc::no_hash;
   873       // implies UseBiasedLocking
   874       if (mark->has_bias_pattern()) {
   875         uintptr_t thread_ident;
   876         uintptr_t anticipated_bias_locking_value;
   877         thread_ident = (uintptr_t)istate->thread();
   878         anticipated_bias_locking_value =
   879           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
   880           ~((uintptr_t) markOopDesc::age_mask_in_place);
   882         if  (anticipated_bias_locking_value == 0) {
   883           // already biased towards this thread, nothing to do
   884           if (PrintBiasedLockingStatistics) {
   885             (* BiasedLocking::biased_lock_entry_count_addr())++;
   886           }
   887           success = true;
   888         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
   889           // try revoke bias
   890           markOop header = lockee->klass()->prototype_header();
   891           if (hash != markOopDesc::no_hash) {
   892             header = header->copy_set_hash(hash);
   893           }
   894           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
   895             if (PrintBiasedLockingStatistics) {
   896               (*BiasedLocking::revoked_lock_entry_count_addr())++;
   897             }
   898           }
   899         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
   900           // try rebias
   901           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
   902           if (hash != markOopDesc::no_hash) {
   903                 new_header = new_header->copy_set_hash(hash);
   904           }
   905           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
   906             if (PrintBiasedLockingStatistics) {
   907               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
   908             }
   909           } else {
   910             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   911           }
   912           success = true;
   913         } else {
   914           // try to bias towards thread in case object is anonymously biased
   915           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
   916                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
   917           if (hash != markOopDesc::no_hash) {
   918             header = header->copy_set_hash(hash);
   919           }
   920           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
   921           // debugging hint
   922           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
   923           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
   924             if (PrintBiasedLockingStatistics) {
   925               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
   926             }
   927           } else {
   928             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   929           }
   930           success = true;
   931         }
   932       }
   934       // traditional lightweight locking
   935       if (!success) {
   936         markOop displaced = lockee->mark()->set_unlocked();
   937         entry->lock()->set_displaced_header(displaced);
   938         bool call_vm = UseHeavyMonitors;
   939         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
   940           // Is it simple recursive case?
   941           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   942             entry->lock()->set_displaced_header(NULL);
   943           } else {
   944             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   945           }
   946         }
   947       }
   948       UPDATE_PC_AND_TOS(1, -1);
   949       goto run;
   950     }
   951     default: {
   952       fatal("Unexpected message from frame manager");
   953     }
   954   }
   956 run:
   958   DO_UPDATE_INSTRUCTION_COUNT(*pc)
   959   DEBUGGER_SINGLE_STEP_NOTIFY();
   960 #ifdef PREFETCH_OPCCODE
   961   opcode = *pc;  /* prefetch first opcode */
   962 #endif
   964 #ifndef USELABELS
   965   while (1)
   966 #endif
   967   {
   968 #ifndef PREFETCH_OPCCODE
   969       opcode = *pc;
   970 #endif
   971       // Seems like this happens twice per opcode. At worst this is only
   972       // need at entry to the loop.
   973       // DEBUGGER_SINGLE_STEP_NOTIFY();
   974       /* Using this labels avoids double breakpoints when quickening and
   975        * when returing from transition frames.
   976        */
   977   opcode_switch:
   978       assert(istate == orig, "Corrupted istate");
   979       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
   980       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
   981       assert(topOfStack < istate->stack_base(), "Stack underrun");
   983 #ifdef USELABELS
   984       DISPATCH(opcode);
   985 #else
   986       switch (opcode)
   987 #endif
   988       {
   989       CASE(_nop):
   990           UPDATE_PC_AND_CONTINUE(1);
   992           /* Push miscellaneous constants onto the stack. */
   994       CASE(_aconst_null):
   995           SET_STACK_OBJECT(NULL, 0);
   996           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   998 #undef  OPC_CONST_n
   999 #define OPC_CONST_n(opcode, const_type, value)                          \
  1000       CASE(opcode):                                                     \
  1001           SET_STACK_ ## const_type(value, 0);                           \
  1002           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1004           OPC_CONST_n(_iconst_m1,   INT,       -1);
  1005           OPC_CONST_n(_iconst_0,    INT,        0);
  1006           OPC_CONST_n(_iconst_1,    INT,        1);
  1007           OPC_CONST_n(_iconst_2,    INT,        2);
  1008           OPC_CONST_n(_iconst_3,    INT,        3);
  1009           OPC_CONST_n(_iconst_4,    INT,        4);
  1010           OPC_CONST_n(_iconst_5,    INT,        5);
  1011           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
  1012           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
  1013           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
  1015 #undef  OPC_CONST2_n
  1016 #define OPC_CONST2_n(opcname, value, key, kind)                         \
  1017       CASE(_##opcname):                                                 \
  1018       {                                                                 \
  1019           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
  1020           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
  1022          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
  1023          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
  1024          OPC_CONST2_n(lconst_0, Zero, long, LONG);
  1025          OPC_CONST2_n(lconst_1, One,  long, LONG);
  1027          /* Load constant from constant pool: */
  1029           /* Push a 1-byte signed integer value onto the stack. */
  1030       CASE(_bipush):
  1031           SET_STACK_INT((jbyte)(pc[1]), 0);
  1032           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
  1034           /* Push a 2-byte signed integer constant onto the stack. */
  1035       CASE(_sipush):
  1036           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
  1037           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1039           /* load from local variable */
  1041       CASE(_aload):
  1042           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
  1043           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
  1044           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
  1046       CASE(_iload):
  1047       CASE(_fload):
  1048           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
  1049           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
  1051       CASE(_lload):
  1052           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
  1053           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
  1055       CASE(_dload):
  1056           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
  1057           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
  1059 #undef  OPC_LOAD_n
  1060 #define OPC_LOAD_n(num)                                                 \
  1061       CASE(_aload_##num):                                               \
  1062           VERIFY_OOP(LOCALS_OBJECT(num));                               \
  1063           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
  1064           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
  1066       CASE(_iload_##num):                                               \
  1067       CASE(_fload_##num):                                               \
  1068           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
  1069           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
  1071       CASE(_lload_##num):                                               \
  1072           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
  1073           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
  1074       CASE(_dload_##num):                                               \
  1075           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
  1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1078           OPC_LOAD_n(0);
  1079           OPC_LOAD_n(1);
  1080           OPC_LOAD_n(2);
  1081           OPC_LOAD_n(3);
  1083           /* store to a local variable */
  1085       CASE(_astore):
  1086           astore(topOfStack, -1, locals, pc[1]);
  1087           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1089       CASE(_istore):
  1090       CASE(_fstore):
  1091           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
  1092           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1094       CASE(_lstore):
  1095           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
  1096           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1098       CASE(_dstore):
  1099           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
  1100           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1102       CASE(_wide): {
  1103           uint16_t reg = Bytes::get_Java_u2(pc + 2);
  1105           opcode = pc[1];
  1106           switch(opcode) {
  1107               case Bytecodes::_aload:
  1108                   VERIFY_OOP(LOCALS_OBJECT(reg));
  1109                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
  1110                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1112               case Bytecodes::_iload:
  1113               case Bytecodes::_fload:
  1114                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
  1115                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1117               case Bytecodes::_lload:
  1118                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1119                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1121               case Bytecodes::_dload:
  1122                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1123                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1125               case Bytecodes::_astore:
  1126                   astore(topOfStack, -1, locals, reg);
  1127                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1129               case Bytecodes::_istore:
  1130               case Bytecodes::_fstore:
  1131                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
  1132                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1134               case Bytecodes::_lstore:
  1135                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
  1136                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1138               case Bytecodes::_dstore:
  1139                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
  1140                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1142               case Bytecodes::_iinc: {
  1143                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
  1144                   // Be nice to see what this generates.... QQQ
  1145                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
  1146                   UPDATE_PC_AND_CONTINUE(6);
  1148               case Bytecodes::_ret:
  1149                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
  1150                   UPDATE_PC_AND_CONTINUE(0);
  1151               default:
  1152                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
  1157 #undef  OPC_STORE_n
  1158 #define OPC_STORE_n(num)                                                \
  1159       CASE(_astore_##num):                                              \
  1160           astore(topOfStack, -1, locals, num);                          \
  1161           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1162       CASE(_istore_##num):                                              \
  1163       CASE(_fstore_##num):                                              \
  1164           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
  1165           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1167           OPC_STORE_n(0);
  1168           OPC_STORE_n(1);
  1169           OPC_STORE_n(2);
  1170           OPC_STORE_n(3);
  1172 #undef  OPC_DSTORE_n
  1173 #define OPC_DSTORE_n(num)                                               \
  1174       CASE(_dstore_##num):                                              \
  1175           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
  1176           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1177       CASE(_lstore_##num):                                              \
  1178           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
  1179           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1181           OPC_DSTORE_n(0);
  1182           OPC_DSTORE_n(1);
  1183           OPC_DSTORE_n(2);
  1184           OPC_DSTORE_n(3);
  1186           /* stack pop, dup, and insert opcodes */
  1189       CASE(_pop):                /* Discard the top item on the stack */
  1190           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1193       CASE(_pop2):               /* Discard the top 2 items on the stack */
  1194           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1197       CASE(_dup):               /* Duplicate the top item on the stack */
  1198           dup(topOfStack);
  1199           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1201       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
  1202           dup2(topOfStack);
  1203           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1205       CASE(_dup_x1):    /* insert top word two down */
  1206           dup_x1(topOfStack);
  1207           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1209       CASE(_dup_x2):    /* insert top word three down  */
  1210           dup_x2(topOfStack);
  1211           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1213       CASE(_dup2_x1):   /* insert top 2 slots three down */
  1214           dup2_x1(topOfStack);
  1215           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1217       CASE(_dup2_x2):   /* insert top 2 slots four down */
  1218           dup2_x2(topOfStack);
  1219           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1221       CASE(_swap): {        /* swap top two elements on the stack */
  1222           swap(topOfStack);
  1223           UPDATE_PC_AND_CONTINUE(1);
  1226           /* Perform various binary integer operations */
  1228 #undef  OPC_INT_BINARY
  1229 #define OPC_INT_BINARY(opcname, opname, test)                           \
  1230       CASE(_i##opcname):                                                \
  1231           if (test && (STACK_INT(-1) == 0)) {                           \
  1232               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1233                             "/ by zero");                               \
  1234           }                                                             \
  1235           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
  1236                                       STACK_INT(-1)),                   \
  1237                                       -2);                              \
  1238           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1239       CASE(_l##opcname):                                                \
  1240       {                                                                 \
  1241           if (test) {                                                   \
  1242             jlong l1 = STACK_LONG(-1);                                  \
  1243             if (VMlongEqz(l1)) {                                        \
  1244               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1245                             "/ by long zero");                          \
  1246             }                                                           \
  1247           }                                                             \
  1248           /* First long at (-1,-2) next long at (-3,-4) */              \
  1249           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
  1250                                         STACK_LONG(-1)),                \
  1251                                         -3);                            \
  1252           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1255       OPC_INT_BINARY(add, Add, 0);
  1256       OPC_INT_BINARY(sub, Sub, 0);
  1257       OPC_INT_BINARY(mul, Mul, 0);
  1258       OPC_INT_BINARY(and, And, 0);
  1259       OPC_INT_BINARY(or,  Or,  0);
  1260       OPC_INT_BINARY(xor, Xor, 0);
  1261       OPC_INT_BINARY(div, Div, 1);
  1262       OPC_INT_BINARY(rem, Rem, 1);
  1265       /* Perform various binary floating number operations */
  1266       /* On some machine/platforms/compilers div zero check can be implicit */
  1268 #undef  OPC_FLOAT_BINARY
  1269 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
  1270       CASE(_d##opcname): {                                                 \
  1271           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
  1272                                             STACK_DOUBLE(-1)),             \
  1273                                             -3);                           \
  1274           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
  1275       }                                                                    \
  1276       CASE(_f##opcname):                                                   \
  1277           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
  1278                                           STACK_FLOAT(-1)),                \
  1279                                           -2);                             \
  1280           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1283      OPC_FLOAT_BINARY(add, Add);
  1284      OPC_FLOAT_BINARY(sub, Sub);
  1285      OPC_FLOAT_BINARY(mul, Mul);
  1286      OPC_FLOAT_BINARY(div, Div);
  1287      OPC_FLOAT_BINARY(rem, Rem);
  1289       /* Shift operations
  1290        * Shift left int and long: ishl, lshl
  1291        * Logical shift right int and long w/zero extension: iushr, lushr
  1292        * Arithmetic shift right int and long w/sign extension: ishr, lshr
  1293        */
  1295 #undef  OPC_SHIFT_BINARY
  1296 #define OPC_SHIFT_BINARY(opcname, opname)                               \
  1297       CASE(_i##opcname):                                                \
  1298          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
  1299                                      STACK_INT(-1)),                    \
  1300                                      -2);                               \
  1301          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1302       CASE(_l##opcname):                                                \
  1303       {                                                                 \
  1304          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
  1305                                        STACK_INT(-1)),                  \
  1306                                        -2);                             \
  1307          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1310       OPC_SHIFT_BINARY(shl, Shl);
  1311       OPC_SHIFT_BINARY(shr, Shr);
  1312       OPC_SHIFT_BINARY(ushr, Ushr);
  1314      /* Increment local variable by constant */
  1315       CASE(_iinc):
  1317           // locals[pc[1]].j.i += (jbyte)(pc[2]);
  1318           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
  1319           UPDATE_PC_AND_CONTINUE(3);
  1322      /* negate the value on the top of the stack */
  1324       CASE(_ineg):
  1325          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
  1326          UPDATE_PC_AND_CONTINUE(1);
  1328       CASE(_fneg):
  1329          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
  1330          UPDATE_PC_AND_CONTINUE(1);
  1332       CASE(_lneg):
  1334          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
  1335          UPDATE_PC_AND_CONTINUE(1);
  1338       CASE(_dneg):
  1340          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
  1341          UPDATE_PC_AND_CONTINUE(1);
  1344       /* Conversion operations */
  1346       CASE(_i2f):       /* convert top of stack int to float */
  1347          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
  1348          UPDATE_PC_AND_CONTINUE(1);
  1350       CASE(_i2l):       /* convert top of stack int to long */
  1352           // this is ugly QQQ
  1353           jlong r = VMint2Long(STACK_INT(-1));
  1354           MORE_STACK(-1); // Pop
  1355           SET_STACK_LONG(r, 1);
  1357           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1360       CASE(_i2d):       /* convert top of stack int to double */
  1362           // this is ugly QQQ (why cast to jlong?? )
  1363           jdouble r = (jlong)STACK_INT(-1);
  1364           MORE_STACK(-1); // Pop
  1365           SET_STACK_DOUBLE(r, 1);
  1367           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1370       CASE(_l2i):       /* convert top of stack long to int */
  1372           jint r = VMlong2Int(STACK_LONG(-1));
  1373           MORE_STACK(-2); // Pop
  1374           SET_STACK_INT(r, 0);
  1375           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1378       CASE(_l2f):   /* convert top of stack long to float */
  1380           jlong r = STACK_LONG(-1);
  1381           MORE_STACK(-2); // Pop
  1382           SET_STACK_FLOAT(VMlong2Float(r), 0);
  1383           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1386       CASE(_l2d):       /* convert top of stack long to double */
  1388           jlong r = STACK_LONG(-1);
  1389           MORE_STACK(-2); // Pop
  1390           SET_STACK_DOUBLE(VMlong2Double(r), 1);
  1391           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1394       CASE(_f2i):  /* Convert top of stack float to int */
  1395           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
  1396           UPDATE_PC_AND_CONTINUE(1);
  1398       CASE(_f2l):  /* convert top of stack float to long */
  1400           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
  1401           MORE_STACK(-1); // POP
  1402           SET_STACK_LONG(r, 1);
  1403           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1406       CASE(_f2d):  /* convert top of stack float to double */
  1408           jfloat f;
  1409           jdouble r;
  1410           f = STACK_FLOAT(-1);
  1411           r = (jdouble) f;
  1412           MORE_STACK(-1); // POP
  1413           SET_STACK_DOUBLE(r, 1);
  1414           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1417       CASE(_d2i): /* convert top of stack double to int */
  1419           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
  1420           MORE_STACK(-2);
  1421           SET_STACK_INT(r1, 0);
  1422           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1425       CASE(_d2f): /* convert top of stack double to float */
  1427           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
  1428           MORE_STACK(-2);
  1429           SET_STACK_FLOAT(r1, 0);
  1430           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1433       CASE(_d2l): /* convert top of stack double to long */
  1435           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
  1436           MORE_STACK(-2);
  1437           SET_STACK_LONG(r1, 1);
  1438           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1441       CASE(_i2b):
  1442           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
  1443           UPDATE_PC_AND_CONTINUE(1);
  1445       CASE(_i2c):
  1446           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
  1447           UPDATE_PC_AND_CONTINUE(1);
  1449       CASE(_i2s):
  1450           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
  1451           UPDATE_PC_AND_CONTINUE(1);
  1453       /* comparison operators */
  1456 #define COMPARISON_OP(name, comparison)                                      \
  1457       CASE(_if_icmp##name): {                                                \
  1458           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
  1459                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1460           address branch_pc = pc;                                            \
  1461           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1462           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1463           CONTINUE;                                                          \
  1464       }                                                                      \
  1465       CASE(_if##name): {                                                     \
  1466           int skip = (STACK_INT(-1) comparison 0)                            \
  1467                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1468           address branch_pc = pc;                                            \
  1469           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1470           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1471           CONTINUE;                                                          \
  1474 #define COMPARISON_OP2(name, comparison)                                     \
  1475       COMPARISON_OP(name, comparison)                                        \
  1476       CASE(_if_acmp##name): {                                                \
  1477           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
  1478                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
  1479           address branch_pc = pc;                                            \
  1480           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1481           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1482           CONTINUE;                                                          \
  1485 #define NULL_COMPARISON_NOT_OP(name)                                         \
  1486       CASE(_if##name): {                                                     \
  1487           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
  1488                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1489           address branch_pc = pc;                                            \
  1490           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1491           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1492           CONTINUE;                                                          \
  1495 #define NULL_COMPARISON_OP(name)                                             \
  1496       CASE(_if##name): {                                                     \
  1497           int skip = ((STACK_OBJECT(-1) == NULL))                            \
  1498                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1499           address branch_pc = pc;                                            \
  1500           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1501           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1502           CONTINUE;                                                          \
  1504       COMPARISON_OP(lt, <);
  1505       COMPARISON_OP(gt, >);
  1506       COMPARISON_OP(le, <=);
  1507       COMPARISON_OP(ge, >=);
  1508       COMPARISON_OP2(eq, ==);  /* include ref comparison */
  1509       COMPARISON_OP2(ne, !=);  /* include ref comparison */
  1510       NULL_COMPARISON_OP(null);
  1511       NULL_COMPARISON_NOT_OP(nonnull);
  1513       /* Goto pc at specified offset in switch table. */
  1515       CASE(_tableswitch): {
  1516           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1517           int32_t  key  = STACK_INT(-1);
  1518           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
  1519           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
  1520           int32_t  skip;
  1521           key -= low;
  1522           skip = ((uint32_t) key > (uint32_t)(high - low))
  1523                       ? Bytes::get_Java_u4((address)&lpc[0])
  1524                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
  1525           // Does this really need a full backedge check (osr?)
  1526           address branch_pc = pc;
  1527           UPDATE_PC_AND_TOS(skip, -1);
  1528           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1529           CONTINUE;
  1532       /* Goto pc whose table entry matches specified key */
  1534       CASE(_lookupswitch): {
  1535           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1536           int32_t  key  = STACK_INT(-1);
  1537           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
  1538           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
  1539           while (--npairs >= 0) {
  1540               lpc += 2;
  1541               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
  1542                   skip = Bytes::get_Java_u4((address)&lpc[1]);
  1543                   break;
  1546           address branch_pc = pc;
  1547           UPDATE_PC_AND_TOS(skip, -1);
  1548           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1549           CONTINUE;
  1552       CASE(_fcmpl):
  1553       CASE(_fcmpg):
  1555           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
  1556                                         STACK_FLOAT(-1),
  1557                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
  1558                         -2);
  1559           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1562       CASE(_dcmpl):
  1563       CASE(_dcmpg):
  1565           int r = VMdoubleCompare(STACK_DOUBLE(-3),
  1566                                   STACK_DOUBLE(-1),
  1567                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
  1568           MORE_STACK(-4); // Pop
  1569           SET_STACK_INT(r, 0);
  1570           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1573       CASE(_lcmp):
  1575           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
  1576           MORE_STACK(-4);
  1577           SET_STACK_INT(r, 0);
  1578           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1582       /* Return from a method */
  1584       CASE(_areturn):
  1585       CASE(_ireturn):
  1586       CASE(_freturn):
  1588           // Allow a safepoint before returning to frame manager.
  1589           SAFEPOINT;
  1591           goto handle_return;
  1594       CASE(_lreturn):
  1595       CASE(_dreturn):
  1597           // Allow a safepoint before returning to frame manager.
  1598           SAFEPOINT;
  1599           goto handle_return;
  1602       CASE(_return_register_finalizer): {
  1604           oop rcvr = LOCALS_OBJECT(0);
  1605           VERIFY_OOP(rcvr);
  1606           if (rcvr->klass()->has_finalizer()) {
  1607             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
  1609           goto handle_return;
  1611       CASE(_return): {
  1613           // Allow a safepoint before returning to frame manager.
  1614           SAFEPOINT;
  1615           goto handle_return;
  1618       /* Array access byte-codes */
  1620       /* Every array access byte-code starts out like this */
  1621 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
  1622 #define ARRAY_INTRO(arrayOff)                                                  \
  1623       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
  1624       jint     index  = STACK_INT(arrayOff + 1);                               \
  1625       char message[jintAsStringSize];                                          \
  1626       CHECK_NULL(arrObj);                                                      \
  1627       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
  1628           sprintf(message, "%d", index);                                       \
  1629           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
  1630                         message);                                              \
  1633       /* 32-bit loads. These handle conversion from < 32-bit types */
  1634 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
  1635       {                                                                               \
  1636           ARRAY_INTRO(-2);                                                            \
  1637           extra;                                                                      \
  1638           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
  1639                            -2);                                                       \
  1640           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
  1643       /* 64-bit loads */
  1644 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
  1645       {                                                                                    \
  1646           ARRAY_INTRO(-2);                                                                 \
  1647           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
  1648           extra;                                                                           \
  1649           UPDATE_PC_AND_CONTINUE(1);                                            \
  1652       CASE(_iaload):
  1653           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
  1654       CASE(_faload):
  1655           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1656       CASE(_aaload):
  1657           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
  1658       CASE(_baload):
  1659           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1660       CASE(_caload):
  1661           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
  1662       CASE(_saload):
  1663           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1664       CASE(_laload):
  1665           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
  1666       CASE(_daload):
  1667           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1669       /* 32-bit stores. These handle conversion to < 32-bit types */
  1670 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
  1671       {                                                                              \
  1672           ARRAY_INTRO(-3);                                                           \
  1673           extra;                                                                     \
  1674           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1675           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
  1678       /* 64-bit stores */
  1679 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
  1680       {                                                                              \
  1681           ARRAY_INTRO(-4);                                                           \
  1682           extra;                                                                     \
  1683           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1684           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
  1687       CASE(_iastore):
  1688           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
  1689       CASE(_fastore):
  1690           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1691       /*
  1692        * This one looks different because of the assignability check
  1693        */
  1694       CASE(_aastore): {
  1695           oop rhsObject = STACK_OBJECT(-1);
  1696           VERIFY_OOP(rhsObject);
  1697           ARRAY_INTRO( -3);
  1698           // arrObj, index are set
  1699           if (rhsObject != NULL) {
  1700             /* Check assignability of rhsObject into arrObj */
  1701             Klass* rhsKlassOop = rhsObject->klass(); // EBX (subclass)
  1702             Klass* elemKlassOop = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
  1703             //
  1704             // Check for compatibilty. This check must not GC!!
  1705             // Seems way more expensive now that we must dispatch
  1706             //
  1707             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->is_subtype_of(elemKlassOop)) { // ebx->is...
  1708               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
  1711           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
  1712           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
  1713           *elem_loc = rhsObject;
  1714           // Mark the card
  1715           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
  1716           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
  1718       CASE(_bastore):
  1719           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1720       CASE(_castore):
  1721           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
  1722       CASE(_sastore):
  1723           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1724       CASE(_lastore):
  1725           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
  1726       CASE(_dastore):
  1727           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1729       CASE(_arraylength):
  1731           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
  1732           CHECK_NULL(ary);
  1733           SET_STACK_INT(ary->length(), -1);
  1734           UPDATE_PC_AND_CONTINUE(1);
  1737       /* monitorenter and monitorexit for locking/unlocking an object */
  1739       CASE(_monitorenter): {
  1740         oop lockee = STACK_OBJECT(-1);
  1741         // derefing's lockee ought to provoke implicit null check
  1742         CHECK_NULL(lockee);
  1743         // find a free monitor or one already allocated for this object
  1744         // if we find a matching object then we need a new monitor
  1745         // since this is recursive enter
  1746         BasicObjectLock* limit = istate->monitor_base();
  1747         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1748         BasicObjectLock* entry = NULL;
  1749         while (most_recent != limit ) {
  1750           if (most_recent->obj() == NULL) entry = most_recent;
  1751           else if (most_recent->obj() == lockee) break;
  1752           most_recent++;
  1754         if (entry != NULL) {
  1755           entry->set_obj(lockee);
  1756           int success = false;
  1757           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
  1759           markOop mark = lockee->mark();
  1760           intptr_t hash = (intptr_t) markOopDesc::no_hash;
  1761           // implies UseBiasedLocking
  1762           if (mark->has_bias_pattern()) {
  1763             uintptr_t thread_ident;
  1764             uintptr_t anticipated_bias_locking_value;
  1765             thread_ident = (uintptr_t)istate->thread();
  1766             anticipated_bias_locking_value =
  1767               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
  1768               ~((uintptr_t) markOopDesc::age_mask_in_place);
  1770             if  (anticipated_bias_locking_value == 0) {
  1771               // already biased towards this thread, nothing to do
  1772               if (PrintBiasedLockingStatistics) {
  1773                 (* BiasedLocking::biased_lock_entry_count_addr())++;
  1775               success = true;
  1777             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
  1778               // try revoke bias
  1779               markOop header = lockee->klass()->prototype_header();
  1780               if (hash != markOopDesc::no_hash) {
  1781                 header = header->copy_set_hash(hash);
  1783               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
  1784                 if (PrintBiasedLockingStatistics)
  1785                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
  1788             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
  1789               // try rebias
  1790               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
  1791               if (hash != markOopDesc::no_hash) {
  1792                 new_header = new_header->copy_set_hash(hash);
  1794               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
  1795                 if (PrintBiasedLockingStatistics)
  1796                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
  1798               else {
  1799                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1801               success = true;
  1803             else {
  1804               // try to bias towards thread in case object is anonymously biased
  1805               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
  1806                                                               (uintptr_t)markOopDesc::age_mask_in_place |
  1807                                                               epoch_mask_in_place));
  1808               if (hash != markOopDesc::no_hash) {
  1809                 header = header->copy_set_hash(hash);
  1811               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
  1812               // debugging hint
  1813               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
  1814               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
  1815                 if (PrintBiasedLockingStatistics)
  1816                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
  1818               else {
  1819                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1821               success = true;
  1825           // traditional lightweight locking
  1826           if (!success) {
  1827             markOop displaced = lockee->mark()->set_unlocked();
  1828             entry->lock()->set_displaced_header(displaced);
  1829             bool call_vm = UseHeavyMonitors;
  1830             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
  1831               // Is it simple recursive case?
  1832               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
  1833                 entry->lock()->set_displaced_header(NULL);
  1834               } else {
  1835                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1839           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1840         } else {
  1841           istate->set_msg(more_monitors);
  1842           UPDATE_PC_AND_RETURN(0); // Re-execute
  1846       CASE(_monitorexit): {
  1847         oop lockee = STACK_OBJECT(-1);
  1848         CHECK_NULL(lockee);
  1849         // derefing's lockee ought to provoke implicit null check
  1850         // find our monitor slot
  1851         BasicObjectLock* limit = istate->monitor_base();
  1852         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1853         while (most_recent != limit ) {
  1854           if ((most_recent)->obj() == lockee) {
  1855             BasicLock* lock = most_recent->lock();
  1856             markOop header = lock->displaced_header();
  1857             most_recent->set_obj(NULL);
  1858             if (!lockee->mark()->has_bias_pattern()) {
  1859               bool call_vm = UseHeavyMonitors;
  1860               // If it isn't recursive we either must swap old header or call the runtime
  1861               if (header != NULL || call_vm) {
  1862                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  1863                   // restore object for the slow case
  1864                   most_recent->set_obj(lockee);
  1865                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
  1869             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1871           most_recent++;
  1873         // Need to throw illegal monitor state exception
  1874         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
  1875         ShouldNotReachHere();
  1878       /* All of the non-quick opcodes. */
  1880       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
  1881        *  constant pool index in the instruction.
  1882        */
  1883       CASE(_getfield):
  1884       CASE(_getstatic):
  1886           u2 index;
  1887           ConstantPoolCacheEntry* cache;
  1888           index = Bytes::get_native_u2(pc+1);
  1890           // QQQ Need to make this as inlined as possible. Probably need to
  1891           // split all the bytecode cases out so c++ compiler has a chance
  1892           // for constant prop to fold everything possible away.
  1894           cache = cp->entry_at(index);
  1895           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1896             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1897                     handle_exception);
  1898             cache = cp->entry_at(index);
  1901 #ifdef VM_JVMTI
  1902           if (_jvmti_interp_events) {
  1903             int *count_addr;
  1904             oop obj;
  1905             // Check to see if a field modification watch has been set
  1906             // before we take the time to call into the VM.
  1907             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
  1908             if ( *count_addr > 0 ) {
  1909               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1910                 obj = (oop)NULL;
  1911               } else {
  1912                 obj = (oop) STACK_OBJECT(-1);
  1913                 VERIFY_OOP(obj);
  1915               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
  1916                                           obj,
  1917                                           cache),
  1918                                           handle_exception);
  1921 #endif /* VM_JVMTI */
  1923           oop obj;
  1924           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1925             Klass* k = cache->f1_as_klass();
  1926             obj = k->java_mirror();
  1927             MORE_STACK(1);  // Assume single slot push
  1928           } else {
  1929             obj = (oop) STACK_OBJECT(-1);
  1930             CHECK_NULL(obj);
  1933           //
  1934           // Now store the result on the stack
  1935           //
  1936           TosState tos_type = cache->flag_state();
  1937           int field_offset = cache->f2_as_index();
  1938           if (cache->is_volatile()) {
  1939             if (tos_type == atos) {
  1940               VERIFY_OOP(obj->obj_field_acquire(field_offset));
  1941               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
  1942             } else if (tos_type == itos) {
  1943               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
  1944             } else if (tos_type == ltos) {
  1945               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
  1946               MORE_STACK(1);
  1947             } else if (tos_type == btos) {
  1948               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
  1949             } else if (tos_type == ctos) {
  1950               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
  1951             } else if (tos_type == stos) {
  1952               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
  1953             } else if (tos_type == ftos) {
  1954               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
  1955             } else {
  1956               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
  1957               MORE_STACK(1);
  1959           } else {
  1960             if (tos_type == atos) {
  1961               VERIFY_OOP(obj->obj_field(field_offset));
  1962               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
  1963             } else if (tos_type == itos) {
  1964               SET_STACK_INT(obj->int_field(field_offset), -1);
  1965             } else if (tos_type == ltos) {
  1966               SET_STACK_LONG(obj->long_field(field_offset), 0);
  1967               MORE_STACK(1);
  1968             } else if (tos_type == btos) {
  1969               SET_STACK_INT(obj->byte_field(field_offset), -1);
  1970             } else if (tos_type == ctos) {
  1971               SET_STACK_INT(obj->char_field(field_offset), -1);
  1972             } else if (tos_type == stos) {
  1973               SET_STACK_INT(obj->short_field(field_offset), -1);
  1974             } else if (tos_type == ftos) {
  1975               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
  1976             } else {
  1977               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
  1978               MORE_STACK(1);
  1982           UPDATE_PC_AND_CONTINUE(3);
  1985       CASE(_putfield):
  1986       CASE(_putstatic):
  1988           u2 index = Bytes::get_native_u2(pc+1);
  1989           ConstantPoolCacheEntry* cache = cp->entry_at(index);
  1990           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1991             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1992                     handle_exception);
  1993             cache = cp->entry_at(index);
  1996 #ifdef VM_JVMTI
  1997           if (_jvmti_interp_events) {
  1998             int *count_addr;
  1999             oop obj;
  2000             // Check to see if a field modification watch has been set
  2001             // before we take the time to call into the VM.
  2002             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
  2003             if ( *count_addr > 0 ) {
  2004               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  2005                 obj = (oop)NULL;
  2007               else {
  2008                 if (cache->is_long() || cache->is_double()) {
  2009                   obj = (oop) STACK_OBJECT(-3);
  2010                 } else {
  2011                   obj = (oop) STACK_OBJECT(-2);
  2013                 VERIFY_OOP(obj);
  2016               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
  2017                                           obj,
  2018                                           cache,
  2019                                           (jvalue *)STACK_SLOT(-1)),
  2020                                           handle_exception);
  2023 #endif /* VM_JVMTI */
  2025           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2026           // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2028           oop obj;
  2029           int count;
  2030           TosState tos_type = cache->flag_state();
  2032           count = -1;
  2033           if (tos_type == ltos || tos_type == dtos) {
  2034             --count;
  2036           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  2037             Klass* k = cache->f1_as_klass();
  2038             obj = k->java_mirror();
  2039           } else {
  2040             --count;
  2041             obj = (oop) STACK_OBJECT(count);
  2042             CHECK_NULL(obj);
  2045           //
  2046           // Now store the result
  2047           //
  2048           int field_offset = cache->f2_as_index();
  2049           if (cache->is_volatile()) {
  2050             if (tos_type == itos) {
  2051               obj->release_int_field_put(field_offset, STACK_INT(-1));
  2052             } else if (tos_type == atos) {
  2053               VERIFY_OOP(STACK_OBJECT(-1));
  2054               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
  2055               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  2056             } else if (tos_type == btos) {
  2057               obj->release_byte_field_put(field_offset, STACK_INT(-1));
  2058             } else if (tos_type == ltos) {
  2059               obj->release_long_field_put(field_offset, STACK_LONG(-1));
  2060             } else if (tos_type == ctos) {
  2061               obj->release_char_field_put(field_offset, STACK_INT(-1));
  2062             } else if (tos_type == stos) {
  2063               obj->release_short_field_put(field_offset, STACK_INT(-1));
  2064             } else if (tos_type == ftos) {
  2065               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
  2066             } else {
  2067               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
  2069             OrderAccess::storeload();
  2070           } else {
  2071             if (tos_type == itos) {
  2072               obj->int_field_put(field_offset, STACK_INT(-1));
  2073             } else if (tos_type == atos) {
  2074               VERIFY_OOP(STACK_OBJECT(-1));
  2075               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
  2076               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  2077             } else if (tos_type == btos) {
  2078               obj->byte_field_put(field_offset, STACK_INT(-1));
  2079             } else if (tos_type == ltos) {
  2080               obj->long_field_put(field_offset, STACK_LONG(-1));
  2081             } else if (tos_type == ctos) {
  2082               obj->char_field_put(field_offset, STACK_INT(-1));
  2083             } else if (tos_type == stos) {
  2084               obj->short_field_put(field_offset, STACK_INT(-1));
  2085             } else if (tos_type == ftos) {
  2086               obj->float_field_put(field_offset, STACK_FLOAT(-1));
  2087             } else {
  2088               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
  2092           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
  2095       CASE(_new): {
  2096         u2 index = Bytes::get_Java_u2(pc+1);
  2097         ConstantPool* constants = istate->method()->constants();
  2098         if (!constants->tag_at(index).is_unresolved_klass()) {
  2099           // Make sure klass is initialized and doesn't have a finalizer
  2100           Klass* entry = constants->slot_at(index).get_klass();
  2101           assert(entry->is_klass(), "Should be resolved klass");
  2102           Klass* k_entry = (Klass*) entry;
  2103           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
  2104           InstanceKlass* ik = (InstanceKlass*) k_entry;
  2105           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
  2106             size_t obj_size = ik->size_helper();
  2107             oop result = NULL;
  2108             // If the TLAB isn't pre-zeroed then we'll have to do it
  2109             bool need_zero = !ZeroTLAB;
  2110             if (UseTLAB) {
  2111               result = (oop) THREAD->tlab().allocate(obj_size);
  2113             if (result == NULL) {
  2114               need_zero = true;
  2115               // Try allocate in shared eden
  2116         retry:
  2117               HeapWord* compare_to = *Universe::heap()->top_addr();
  2118               HeapWord* new_top = compare_to + obj_size;
  2119               if (new_top <= *Universe::heap()->end_addr()) {
  2120                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
  2121                   goto retry;
  2123                 result = (oop) compare_to;
  2126             if (result != NULL) {
  2127               // Initialize object (if nonzero size and need) and then the header
  2128               if (need_zero ) {
  2129                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
  2130                 obj_size -= sizeof(oopDesc) / oopSize;
  2131                 if (obj_size > 0 ) {
  2132                   memset(to_zero, 0, obj_size * HeapWordSize);
  2135               if (UseBiasedLocking) {
  2136                 result->set_mark(ik->prototype_header());
  2137               } else {
  2138                 result->set_mark(markOopDesc::prototype());
  2140               result->set_klass_gap(0);
  2141               result->set_klass(k_entry);
  2142               SET_STACK_OBJECT(result, 0);
  2143               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  2147         // Slow case allocation
  2148         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
  2149                 handle_exception);
  2150         SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2151         THREAD->set_vm_result(NULL);
  2152         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  2154       CASE(_anewarray): {
  2155         u2 index = Bytes::get_Java_u2(pc+1);
  2156         jint size = STACK_INT(-1);
  2157         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
  2158                 handle_exception);
  2159         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2160         THREAD->set_vm_result(NULL);
  2161         UPDATE_PC_AND_CONTINUE(3);
  2163       CASE(_multianewarray): {
  2164         jint dims = *(pc+3);
  2165         jint size = STACK_INT(-1);
  2166         // stack grows down, dimensions are up!
  2167         jint *dimarray =
  2168                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
  2169                                       Interpreter::stackElementWords-1];
  2170         //adjust pointer to start of stack element
  2171         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
  2172                 handle_exception);
  2173         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
  2174         THREAD->set_vm_result(NULL);
  2175         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
  2177       CASE(_checkcast):
  2178           if (STACK_OBJECT(-1) != NULL) {
  2179             VERIFY_OOP(STACK_OBJECT(-1));
  2180             u2 index = Bytes::get_Java_u2(pc+1);
  2181             if (ProfileInterpreter) {
  2182               // needs Profile_checkcast QQQ
  2183               ShouldNotReachHere();
  2185             // Constant pool may have actual klass or unresolved klass. If it is
  2186             // unresolved we must resolve it
  2187             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2188               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2190             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
  2191             Klass* objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
  2192             //
  2193             // Check for compatibilty. This check must not GC!!
  2194             // Seems way more expensive now that we must dispatch
  2195             //
  2196             if (objKlassOop != klassOf &&
  2197                 !objKlassOop->is_subtype_of(klassOf)) {
  2198               ResourceMark rm(THREAD);
  2199               const char* objName = objKlassOop->external_name();
  2200               const char* klassName = klassOf->external_name();
  2201               char* message = SharedRuntime::generate_class_cast_message(
  2202                 objName, klassName);
  2203               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
  2205           } else {
  2206             if (UncommonNullCast) {
  2207 //              istate->method()->set_null_cast_seen();
  2208 // [RGV] Not sure what to do here!
  2212           UPDATE_PC_AND_CONTINUE(3);
  2214       CASE(_instanceof):
  2215           if (STACK_OBJECT(-1) == NULL) {
  2216             SET_STACK_INT(0, -1);
  2217           } else {
  2218             VERIFY_OOP(STACK_OBJECT(-1));
  2219             u2 index = Bytes::get_Java_u2(pc+1);
  2220             // Constant pool may have actual klass or unresolved klass. If it is
  2221             // unresolved we must resolve it
  2222             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2223               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2225             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
  2226             Klass* objKlassOop = STACK_OBJECT(-1)->klass();
  2227             //
  2228             // Check for compatibilty. This check must not GC!!
  2229             // Seems way more expensive now that we must dispatch
  2230             //
  2231             if ( objKlassOop == klassOf || objKlassOop->is_subtype_of(klassOf)) {
  2232               SET_STACK_INT(1, -1);
  2233             } else {
  2234               SET_STACK_INT(0, -1);
  2237           UPDATE_PC_AND_CONTINUE(3);
  2239       CASE(_ldc_w):
  2240       CASE(_ldc):
  2242           u2 index;
  2243           bool wide = false;
  2244           int incr = 2; // frequent case
  2245           if (opcode == Bytecodes::_ldc) {
  2246             index = pc[1];
  2247           } else {
  2248             index = Bytes::get_Java_u2(pc+1);
  2249             incr = 3;
  2250             wide = true;
  2253           ConstantPool* constants = METHOD->constants();
  2254           switch (constants->tag_at(index).value()) {
  2255           case JVM_CONSTANT_Integer:
  2256             SET_STACK_INT(constants->int_at(index), 0);
  2257             break;
  2259           case JVM_CONSTANT_Float:
  2260             SET_STACK_FLOAT(constants->float_at(index), 0);
  2261             break;
  2263           case JVM_CONSTANT_String:
  2265               oop result = constants->resolved_references()->obj_at(index);
  2266               if (result == NULL) {
  2267                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
  2268                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2269                 THREAD->set_vm_result(NULL);
  2270               } else {
  2271                 VERIFY_OOP(result);
  2272                 SET_STACK_OBJECT(result, 0);
  2274             break;
  2277           case JVM_CONSTANT_Class:
  2278             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
  2279             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
  2280             break;
  2282           case JVM_CONSTANT_UnresolvedClass:
  2283           case JVM_CONSTANT_UnresolvedClassInError:
  2284             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
  2285             SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2286             THREAD->set_vm_result(NULL);
  2287             break;
  2289           default:  ShouldNotReachHere();
  2291           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2294       CASE(_ldc2_w):
  2296           u2 index = Bytes::get_Java_u2(pc+1);
  2298           ConstantPool* constants = METHOD->constants();
  2299           switch (constants->tag_at(index).value()) {
  2301           case JVM_CONSTANT_Long:
  2302              SET_STACK_LONG(constants->long_at(index), 1);
  2303             break;
  2305           case JVM_CONSTANT_Double:
  2306              SET_STACK_DOUBLE(constants->double_at(index), 1);
  2307             break;
  2308           default:  ShouldNotReachHere();
  2310           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
  2313       CASE(_fast_aldc_w):
  2314       CASE(_fast_aldc): {
  2315         u2 index;
  2316         int incr;
  2317         if (opcode == Bytecodes::_fast_aldc) {
  2318           index = pc[1];
  2319           incr = 2;
  2320         } else {
  2321           index = Bytes::get_native_u2(pc+1);
  2322           incr = 3;
  2325         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2326         // This kind of CP cache entry does not need to match the flags byte, because
  2327         // there is a 1-1 relation between bytecode type and CP entry type.
  2328         ConstantPool* constants = METHOD->constants();
  2329         oop result = constants->resolved_references()->obj_at(index);
  2330         if (result == NULL) {
  2331           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
  2332                   handle_exception);
  2333           result = THREAD->vm_result();
  2336         VERIFY_OOP(result);
  2337         SET_STACK_OBJECT(result, 0);
  2338         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2341       CASE(_invokedynamic): {
  2343         if (!EnableInvokeDynamic) {
  2344           // We should not encounter this bytecode if !EnableInvokeDynamic.
  2345           // The verifier will stop it.  However, if we get past the verifier,
  2346           // this will stop the thread in a reasonable way, without crashing the JVM.
  2347           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
  2348                   handle_exception);
  2349           ShouldNotReachHere();
  2352         u4 index = Bytes::get_native_u4(pc+1);
  2353         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
  2355         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
  2356         // This kind of CP cache entry does not need to match the flags byte, because
  2357         // there is a 1-1 relation between bytecode type and CP entry type.
  2358         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
  2359           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
  2360                   handle_exception);
  2361           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
  2364         Method* method = cache->f1_as_method();
  2365         if (VerifyOops) method->verify();
  2367         if (cache->has_appendix()) {
  2368           ConstantPool* constants = METHOD->constants();
  2369           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
  2370           MORE_STACK(1);
  2373         istate->set_msg(call_method);
  2374         istate->set_callee(method);
  2375         istate->set_callee_entry_point(method->from_interpreted_entry());
  2376         istate->set_bcp_advance(5);
  2378         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2381       CASE(_invokehandle): {
  2383         if (!EnableInvokeDynamic) {
  2384           ShouldNotReachHere();
  2387         u2 index = Bytes::get_native_u2(pc+1);
  2388         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2390         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
  2391           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
  2392                   handle_exception);
  2393           cache = cp->entry_at(index);
  2396         Method* method = cache->f1_as_method();
  2397         if (VerifyOops) method->verify();
  2399         if (cache->has_appendix()) {
  2400           ConstantPool* constants = METHOD->constants();
  2401           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
  2402           MORE_STACK(1);
  2405         istate->set_msg(call_method);
  2406         istate->set_callee(method);
  2407         istate->set_callee_entry_point(method->from_interpreted_entry());
  2408         istate->set_bcp_advance(3);
  2410         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2413       CASE(_invokeinterface): {
  2414         u2 index = Bytes::get_native_u2(pc+1);
  2416         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2417         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2419         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2420         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2421           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2422                   handle_exception);
  2423           cache = cp->entry_at(index);
  2426         istate->set_msg(call_method);
  2428         // Special case of invokeinterface called for virtual method of
  2429         // java.lang.Object.  See cpCacheOop.cpp for details.
  2430         // This code isn't produced by javac, but could be produced by
  2431         // another compliant java compiler.
  2432         if (cache->is_forced_virtual()) {
  2433           Method* callee;
  2434           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2435           if (cache->is_vfinal()) {
  2436             callee = cache->f2_as_vfinal_method();
  2437           } else {
  2438             // get receiver
  2439             int parms = cache->parameter_size();
  2440             // Same comments as invokevirtual apply here
  2441             VERIFY_OOP(STACK_OBJECT(-parms));
  2442             InstanceKlass* rcvrKlass = (InstanceKlass*)
  2443                                  STACK_OBJECT(-parms)->klass();
  2444             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
  2446           istate->set_callee(callee);
  2447           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2448 #ifdef VM_JVMTI
  2449           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2450             istate->set_callee_entry_point(callee->interpreter_entry());
  2452 #endif /* VM_JVMTI */
  2453           istate->set_bcp_advance(5);
  2454           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2457         // this could definitely be cleaned up QQQ
  2458         Method* callee;
  2459         Klass* iclass = cache->f1_as_klass();
  2460         // InstanceKlass* interface = (InstanceKlass*) iclass;
  2461         // get receiver
  2462         int parms = cache->parameter_size();
  2463         oop rcvr = STACK_OBJECT(-parms);
  2464         CHECK_NULL(rcvr);
  2465         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
  2466         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
  2467         int i;
  2468         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
  2469           if (ki->interface_klass() == iclass) break;
  2471         // If the interface isn't found, this class doesn't implement this
  2472         // interface.  The link resolver checks this but only for the first
  2473         // time this interface is called.
  2474         if (i == int2->itable_length()) {
  2475           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
  2477         int mindex = cache->f2_as_index();
  2478         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
  2479         callee = im[mindex].method();
  2480         if (callee == NULL) {
  2481           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
  2484         istate->set_callee(callee);
  2485         istate->set_callee_entry_point(callee->from_interpreted_entry());
  2486 #ifdef VM_JVMTI
  2487         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2488           istate->set_callee_entry_point(callee->interpreter_entry());
  2490 #endif /* VM_JVMTI */
  2491         istate->set_bcp_advance(5);
  2492         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2495       CASE(_invokevirtual):
  2496       CASE(_invokespecial):
  2497       CASE(_invokestatic): {
  2498         u2 index = Bytes::get_native_u2(pc+1);
  2500         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2501         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2502         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2504         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2505           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2506                   handle_exception);
  2507           cache = cp->entry_at(index);
  2510         istate->set_msg(call_method);
  2512           Method* callee;
  2513           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
  2514             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2515             if (cache->is_vfinal()) callee = cache->f2_as_vfinal_method();
  2516             else {
  2517               // get receiver
  2518               int parms = cache->parameter_size();
  2519               // this works but needs a resourcemark and seems to create a vtable on every call:
  2520               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
  2521               //
  2522               // this fails with an assert
  2523               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
  2524               // but this works
  2525               VERIFY_OOP(STACK_OBJECT(-parms));
  2526               InstanceKlass* rcvrKlass = (InstanceKlass*) STACK_OBJECT(-parms)->klass();
  2527               /*
  2528                 Executing this code in java.lang.String:
  2529                     public String(char value[]) {
  2530                           this.count = value.length;
  2531                           this.value = (char[])value.clone();
  2534                  a find on rcvr->klass() reports:
  2535                  {type array char}{type array class}
  2536                   - klass: {other class}
  2538                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
  2539                   because rcvr->klass()->oop_is_instance() == 0
  2540                   However it seems to have a vtable in the right location. Huh?
  2542               */
  2543               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
  2545           } else {
  2546             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
  2547               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2549             callee = cache->f1_as_method();
  2552           istate->set_callee(callee);
  2553           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2554 #ifdef VM_JVMTI
  2555           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2556             istate->set_callee_entry_point(callee->interpreter_entry());
  2558 #endif /* VM_JVMTI */
  2559           istate->set_bcp_advance(3);
  2560           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2564       /* Allocate memory for a new java object. */
  2566       CASE(_newarray): {
  2567         BasicType atype = (BasicType) *(pc+1);
  2568         jint size = STACK_INT(-1);
  2569         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
  2570                 handle_exception);
  2571         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2572         THREAD->set_vm_result(NULL);
  2574         UPDATE_PC_AND_CONTINUE(2);
  2577       /* Throw an exception. */
  2579       CASE(_athrow): {
  2580           oop except_oop = STACK_OBJECT(-1);
  2581           CHECK_NULL(except_oop);
  2582           // set pending_exception so we use common code
  2583           THREAD->set_pending_exception(except_oop, NULL, 0);
  2584           goto handle_exception;
  2587       /* goto and jsr. They are exactly the same except jsr pushes
  2588        * the address of the next instruction first.
  2589        */
  2591       CASE(_jsr): {
  2592           /* push bytecode index on stack */
  2593           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
  2594           MORE_STACK(1);
  2595           /* FALL THROUGH */
  2598       CASE(_goto):
  2600           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
  2601           address branch_pc = pc;
  2602           UPDATE_PC(offset);
  2603           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2604           CONTINUE;
  2607       CASE(_jsr_w): {
  2608           /* push return address on the stack */
  2609           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
  2610           MORE_STACK(1);
  2611           /* FALL THROUGH */
  2614       CASE(_goto_w):
  2616           int32_t offset = Bytes::get_Java_u4(pc + 1);
  2617           address branch_pc = pc;
  2618           UPDATE_PC(offset);
  2619           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2620           CONTINUE;
  2623       /* return from a jsr or jsr_w */
  2625       CASE(_ret): {
  2626           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
  2627           UPDATE_PC_AND_CONTINUE(0);
  2630       /* debugger breakpoint */
  2632       CASE(_breakpoint): {
  2633           Bytecodes::Code original_bytecode;
  2634           DECACHE_STATE();
  2635           SET_LAST_JAVA_FRAME();
  2636           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
  2637                               METHOD, pc);
  2638           RESET_LAST_JAVA_FRAME();
  2639           CACHE_STATE();
  2640           if (THREAD->has_pending_exception()) goto handle_exception;
  2641             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
  2642                                                     handle_exception);
  2644           opcode = (jubyte)original_bytecode;
  2645           goto opcode_switch;
  2648       DEFAULT:
  2649           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
  2650                         Bytecodes::name((Bytecodes::Code)opcode)));
  2651           goto finish;
  2653       } /* switch(opc) */
  2656 #ifdef USELABELS
  2657     check_for_exception:
  2658 #endif
  2660       if (!THREAD->has_pending_exception()) {
  2661         CONTINUE;
  2663       /* We will be gcsafe soon, so flush our state. */
  2664       DECACHE_PC();
  2665       goto handle_exception;
  2667   do_continue: ;
  2669   } /* while (1) interpreter loop */
  2672   // An exception exists in the thread state see whether this activation can handle it
  2673   handle_exception: {
  2675     HandleMarkCleaner __hmc(THREAD);
  2676     Handle except_oop(THREAD, THREAD->pending_exception());
  2677     // Prevent any subsequent HandleMarkCleaner in the VM
  2678     // from freeing the except_oop handle.
  2679     HandleMark __hm(THREAD);
  2681     THREAD->clear_pending_exception();
  2682     assert(except_oop(), "No exception to process");
  2683     intptr_t continuation_bci;
  2684     // expression stack is emptied
  2685     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
  2686     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
  2687             handle_exception);
  2689     except_oop = THREAD->vm_result();
  2690     THREAD->set_vm_result(NULL);
  2691     if (continuation_bci >= 0) {
  2692       // Place exception on top of stack
  2693       SET_STACK_OBJECT(except_oop(), 0);
  2694       MORE_STACK(1);
  2695       pc = METHOD->code_base() + continuation_bci;
  2696       if (TraceExceptions) {
  2697         ttyLocker ttyl;
  2698         ResourceMark rm;
  2699         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2700         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2701         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
  2702                       pc - (intptr_t)METHOD->code_base(),
  2703                       continuation_bci, THREAD);
  2705       // for AbortVMOnException flag
  2706       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2707       goto run;
  2709     if (TraceExceptions) {
  2710       ttyLocker ttyl;
  2711       ResourceMark rm;
  2712       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2713       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2714       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
  2715                     pc  - (intptr_t) METHOD->code_base(),
  2716                     THREAD);
  2718     // for AbortVMOnException flag
  2719     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2720     // No handler in this activation, unwind and try again
  2721     THREAD->set_pending_exception(except_oop(), NULL, 0);
  2722     goto handle_return;
  2723   }  /* handle_exception: */
  2727   // Return from an interpreter invocation with the result of the interpretation
  2728   // on the top of the Java Stack (or a pending exception)
  2730 handle_Pop_Frame:
  2732   // We don't really do anything special here except we must be aware
  2733   // that we can get here without ever locking the method (if sync).
  2734   // Also we skip the notification of the exit.
  2736   istate->set_msg(popping_frame);
  2737   // Clear pending so while the pop is in process
  2738   // we don't start another one if a call_vm is done.
  2739   THREAD->clr_pop_frame_pending();
  2740   // Let interpreter (only) see the we're in the process of popping a frame
  2741   THREAD->set_pop_frame_in_process();
  2743 handle_return:
  2745     DECACHE_STATE();
  2747     bool suppress_error = istate->msg() == popping_frame;
  2748     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
  2749     Handle original_exception(THREAD, THREAD->pending_exception());
  2750     Handle illegal_state_oop(THREAD, NULL);
  2752     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
  2753     // in any following VM entries from freeing our live handles, but illegal_state_oop
  2754     // isn't really allocated yet and so doesn't become live until later and
  2755     // in unpredicatable places. Instead we must protect the places where we enter the
  2756     // VM. It would be much simpler (and safer) if we could allocate a real handle with
  2757     // a NULL oop in it and then overwrite the oop later as needed. This isn't
  2758     // unfortunately isn't possible.
  2760     THREAD->clear_pending_exception();
  2762     //
  2763     // As far as we are concerned we have returned. If we have a pending exception
  2764     // that will be returned as this invocation's result. However if we get any
  2765     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
  2766     // will be our final result (i.e. monitor exception trumps a pending exception).
  2767     //
  2769     // If we never locked the method (or really passed the point where we would have),
  2770     // there is no need to unlock it (or look for other monitors), since that
  2771     // could not have happened.
  2773     if (THREAD->do_not_unlock()) {
  2775       // Never locked, reset the flag now because obviously any caller must
  2776       // have passed their point of locking for us to have gotten here.
  2778       THREAD->clr_do_not_unlock();
  2779     } else {
  2780       // At this point we consider that we have returned. We now check that the
  2781       // locks were properly block structured. If we find that they were not
  2782       // used properly we will return with an illegal monitor exception.
  2783       // The exception is checked by the caller not the callee since this
  2784       // checking is considered to be part of the invocation and therefore
  2785       // in the callers scope (JVM spec 8.13).
  2786       //
  2787       // Another weird thing to watch for is if the method was locked
  2788       // recursively and then not exited properly. This means we must
  2789       // examine all the entries in reverse time(and stack) order and
  2790       // unlock as we find them. If we find the method monitor before
  2791       // we are at the initial entry then we should throw an exception.
  2792       // It is not clear the template based interpreter does this
  2793       // correctly
  2795       BasicObjectLock* base = istate->monitor_base();
  2796       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
  2797       bool method_unlock_needed = METHOD->is_synchronized();
  2798       // We know the initial monitor was used for the method don't check that
  2799       // slot in the loop
  2800       if (method_unlock_needed) base--;
  2802       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
  2803       while (end < base) {
  2804         oop lockee = end->obj();
  2805         if (lockee != NULL) {
  2806           BasicLock* lock = end->lock();
  2807           markOop header = lock->displaced_header();
  2808           end->set_obj(NULL);
  2810           if (!lockee->mark()->has_bias_pattern()) {
  2811             // If it isn't recursive we either must swap old header or call the runtime
  2812             if (header != NULL) {
  2813               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  2814                 // restore object for the slow case
  2815                 end->set_obj(lockee);
  2817                   // Prevent any HandleMarkCleaner from freeing our live handles
  2818                   HandleMark __hm(THREAD);
  2819                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
  2824           // One error is plenty
  2825           if (illegal_state_oop() == NULL && !suppress_error) {
  2827               // Prevent any HandleMarkCleaner from freeing our live handles
  2828               HandleMark __hm(THREAD);
  2829               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2831             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2832             illegal_state_oop = THREAD->pending_exception();
  2833             THREAD->clear_pending_exception();
  2836         end++;
  2838       // Unlock the method if needed
  2839       if (method_unlock_needed) {
  2840         if (base->obj() == NULL) {
  2841           // The method is already unlocked this is not good.
  2842           if (illegal_state_oop() == NULL && !suppress_error) {
  2844               // Prevent any HandleMarkCleaner from freeing our live handles
  2845               HandleMark __hm(THREAD);
  2846               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2848             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2849             illegal_state_oop = THREAD->pending_exception();
  2850             THREAD->clear_pending_exception();
  2852         } else {
  2853           //
  2854           // The initial monitor is always used for the method
  2855           // However if that slot is no longer the oop for the method it was unlocked
  2856           // and reused by something that wasn't unlocked!
  2857           //
  2858           // deopt can come in with rcvr dead because c2 knows
  2859           // its value is preserved in the monitor. So we can't use locals[0] at all
  2860           // and must use first monitor slot.
  2861           //
  2862           oop rcvr = base->obj();
  2863           if (rcvr == NULL) {
  2864             if (!suppress_error) {
  2865               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
  2866               illegal_state_oop = THREAD->pending_exception();
  2867               THREAD->clear_pending_exception();
  2869           } else if (UseHeavyMonitors) {
  2871               // Prevent any HandleMarkCleaner from freeing our live handles.
  2872               HandleMark __hm(THREAD);
  2873               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
  2875             if (THREAD->has_pending_exception()) {
  2876               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
  2877               THREAD->clear_pending_exception();
  2879           } else {
  2880             BasicLock* lock = base->lock();
  2881             markOop header = lock->displaced_header();
  2882             base->set_obj(NULL);
  2884             if (!rcvr->mark()->has_bias_pattern()) {
  2885               base->set_obj(NULL);
  2886               // If it isn't recursive we either must swap old header or call the runtime
  2887               if (header != NULL) {
  2888                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
  2889                   // restore object for the slow case
  2890                   base->set_obj(rcvr);
  2892                     // Prevent any HandleMarkCleaner from freeing our live handles
  2893                     HandleMark __hm(THREAD);
  2894                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
  2896                   if (THREAD->has_pending_exception()) {
  2897                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
  2898                     THREAD->clear_pending_exception();
  2907     // Clear the do_not_unlock flag now.
  2908     THREAD->clr_do_not_unlock();
  2910     //
  2911     // Notify jvmti/jvmdi
  2912     //
  2913     // NOTE: we do not notify a method_exit if we have a pending exception,
  2914     // including an exception we generate for unlocking checks.  In the former
  2915     // case, JVMDI has already been notified by our call for the exception handler
  2916     // and in both cases as far as JVMDI is concerned we have already returned.
  2917     // If we notify it again JVMDI will be all confused about how many frames
  2918     // are still on the stack (4340444).
  2919     //
  2920     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
  2921     // method_exit events whenever we leave an activation unless it was done
  2922     // for popframe. This is nothing like jvmdi. However we are passing the
  2923     // tests at the moment (apparently because they are jvmdi based) so rather
  2924     // than change this code and possibly fail tests we will leave it alone
  2925     // (with this note) in anticipation of changing the vm and the tests
  2926     // simultaneously.
  2929     //
  2930     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
  2934 #ifdef VM_JVMTI
  2935       if (_jvmti_interp_events) {
  2936         // Whenever JVMTI puts a thread in interp_only_mode, method
  2937         // entry/exit events are sent for that thread to track stack depth.
  2938         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
  2940             // Prevent any HandleMarkCleaner from freeing our live handles
  2941             HandleMark __hm(THREAD);
  2942             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
  2946 #endif /* VM_JVMTI */
  2948     //
  2949     // See if we are returning any exception
  2950     // A pending exception that was pending prior to a possible popping frame
  2951     // overrides the popping frame.
  2952     //
  2953     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
  2954     if (illegal_state_oop() != NULL || original_exception() != NULL) {
  2955       // inform the frame manager we have no result
  2956       istate->set_msg(throwing_exception);
  2957       if (illegal_state_oop() != NULL)
  2958         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
  2959       else
  2960         THREAD->set_pending_exception(original_exception(), NULL, 0);
  2961       istate->set_return_kind((Bytecodes::Code)opcode);
  2962       UPDATE_PC_AND_RETURN(0);
  2965     if (istate->msg() == popping_frame) {
  2966       // Make it simpler on the assembly code and set the message for the frame pop.
  2967       // returns
  2968       if (istate->prev() == NULL) {
  2969         // We must be returning to a deoptimized frame (because popframe only happens between
  2970         // two interpreted frames). We need to save the current arguments in C heap so that
  2971         // the deoptimized frame when it restarts can copy the arguments to its expression
  2972         // stack and re-execute the call. We also have to notify deoptimization that this
  2973         // has occurred and to pick the preserved args copy them to the deoptimized frame's
  2974         // java expression stack. Yuck.
  2975         //
  2976         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
  2977                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
  2978         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
  2980       THREAD->clr_pop_frame_in_process();
  2983     // Normal return
  2984     // Advance the pc and return to frame manager
  2985     istate->set_msg(return_from_method);
  2986     istate->set_return_kind((Bytecodes::Code)opcode);
  2987     UPDATE_PC_AND_RETURN(1);
  2988   } /* handle_return: */
  2990 // This is really a fatal error return
  2992 finish:
  2993   DECACHE_TOS();
  2994   DECACHE_PC();
  2996   return;
  2999 /*
  3000  * All the code following this point is only produced once and is not present
  3001  * in the JVMTI version of the interpreter
  3002 */
  3004 #ifndef VM_JVMTI
  3006 // This constructor should only be used to contruct the object to signal
  3007 // interpreter initialization. All other instances should be created by
  3008 // the frame manager.
  3009 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
  3010   if (msg != initialize) ShouldNotReachHere();
  3011   _msg = msg;
  3012   _self_link = this;
  3013   _prev_link = NULL;
  3016 // Inline static functions for Java Stack and Local manipulation
  3018 // The implementations are platform dependent. We have to worry about alignment
  3019 // issues on some machines which can change on the same platform depending on
  3020 // whether it is an LP64 machine also.
  3021 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
  3022   return (address) tos[Interpreter::expr_index_at(-offset)];
  3025 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
  3026   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
  3029 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
  3030   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
  3033 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
  3034   return (oop)tos [Interpreter::expr_index_at(-offset)];
  3037 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
  3038   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
  3041 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
  3042   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
  3045 // only used for value types
  3046 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
  3047                                                         int offset) {
  3048   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  3051 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
  3052                                                        int offset) {
  3053   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  3056 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
  3057                                                          int offset) {
  3058   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  3061 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
  3062                                                           int offset) {
  3063   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  3066 // needs to be platform dep for the 32 bit platforms.
  3067 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
  3068                                                           int offset) {
  3069   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
  3072 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
  3073                                               address addr, int offset) {
  3074   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
  3075                         ((VMJavaVal64*)addr)->d);
  3078 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
  3079                                                         int offset) {
  3080   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  3081   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
  3084 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
  3085                                             address addr, int offset) {
  3086   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  3087   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
  3088                         ((VMJavaVal64*)addr)->l;
  3091 // Locals
  3093 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
  3094   return (address)locals[Interpreter::local_index_at(-offset)];
  3096 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
  3097   return (jint)locals[Interpreter::local_index_at(-offset)];
  3099 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
  3100   return (jfloat)locals[Interpreter::local_index_at(-offset)];
  3102 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
  3103   return (oop)locals[Interpreter::local_index_at(-offset)];
  3105 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
  3106   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
  3108 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
  3109   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
  3112 // Returns the address of locals value.
  3113 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
  3114   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  3116 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
  3117   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  3120 // Used for local value or returnAddress
  3121 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
  3122                                    address value, int offset) {
  3123   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
  3125 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
  3126                                    jint value, int offset) {
  3127   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
  3129 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
  3130                                    jfloat value, int offset) {
  3131   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
  3133 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
  3134                                    oop value, int offset) {
  3135   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
  3137 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
  3138                                    jdouble value, int offset) {
  3139   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
  3141 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
  3142                                    jlong value, int offset) {
  3143   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
  3145 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
  3146                                    address addr, int offset) {
  3147   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
  3149 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
  3150                                    address addr, int offset) {
  3151   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
  3154 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
  3155                           intptr_t* locals, int locals_offset) {
  3156   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
  3157   locals[Interpreter::local_index_at(-locals_offset)] = value;
  3161 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
  3162                                    int to_offset) {
  3163   tos[Interpreter::expr_index_at(-to_offset)] =
  3164                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
  3167 void BytecodeInterpreter::dup(intptr_t *tos) {
  3168   copy_stack_slot(tos, -1, 0);
  3170 void BytecodeInterpreter::dup2(intptr_t *tos) {
  3171   copy_stack_slot(tos, -2, 0);
  3172   copy_stack_slot(tos, -1, 1);
  3175 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
  3176   /* insert top word two down */
  3177   copy_stack_slot(tos, -1, 0);
  3178   copy_stack_slot(tos, -2, -1);
  3179   copy_stack_slot(tos, 0, -2);
  3182 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
  3183   /* insert top word three down  */
  3184   copy_stack_slot(tos, -1, 0);
  3185   copy_stack_slot(tos, -2, -1);
  3186   copy_stack_slot(tos, -3, -2);
  3187   copy_stack_slot(tos, 0, -3);
  3189 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
  3190   /* insert top 2 slots three down */
  3191   copy_stack_slot(tos, -1, 1);
  3192   copy_stack_slot(tos, -2, 0);
  3193   copy_stack_slot(tos, -3, -1);
  3194   copy_stack_slot(tos, 1, -2);
  3195   copy_stack_slot(tos, 0, -3);
  3197 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
  3198   /* insert top 2 slots four down */
  3199   copy_stack_slot(tos, -1, 1);
  3200   copy_stack_slot(tos, -2, 0);
  3201   copy_stack_slot(tos, -3, -1);
  3202   copy_stack_slot(tos, -4, -2);
  3203   copy_stack_slot(tos, 1, -3);
  3204   copy_stack_slot(tos, 0, -4);
  3208 void BytecodeInterpreter::swap(intptr_t *tos) {
  3209   // swap top two elements
  3210   intptr_t val = tos[Interpreter::expr_index_at(1)];
  3211   // Copy -2 entry to -1
  3212   copy_stack_slot(tos, -2, -1);
  3213   // Store saved -1 entry into -2
  3214   tos[Interpreter::expr_index_at(2)] = val;
  3216 // --------------------------------------------------------------------------------
  3217 // Non-product code
  3218 #ifndef PRODUCT
  3220 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
  3221   switch (msg) {
  3222      case BytecodeInterpreter::no_request:  return("no_request");
  3223      case BytecodeInterpreter::initialize:  return("initialize");
  3224      // status message to C++ interpreter
  3225      case BytecodeInterpreter::method_entry:  return("method_entry");
  3226      case BytecodeInterpreter::method_resume:  return("method_resume");
  3227      case BytecodeInterpreter::got_monitors:  return("got_monitors");
  3228      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
  3229      // requests to frame manager from C++ interpreter
  3230      case BytecodeInterpreter::call_method:  return("call_method");
  3231      case BytecodeInterpreter::return_from_method:  return("return_from_method");
  3232      case BytecodeInterpreter::more_monitors:  return("more_monitors");
  3233      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
  3234      case BytecodeInterpreter::popping_frame:  return("popping_frame");
  3235      case BytecodeInterpreter::do_osr:  return("do_osr");
  3236      // deopt
  3237      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
  3238      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
  3239      default: return("BAD MSG");
  3242 void
  3243 BytecodeInterpreter::print() {
  3244   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
  3245   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
  3246   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
  3247   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
  3249     ResourceMark rm;
  3250     char *method_name = _method->name_and_sig_as_C_string();
  3251     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
  3253   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
  3254   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
  3255   tty->print_cr("msg: %s", C_msg(this->_msg));
  3256   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
  3257   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
  3258   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
  3259   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
  3260   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
  3261   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
  3262   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
  3263   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
  3264   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
  3265   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
  3266   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
  3267 #ifdef SPARC
  3268   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
  3269   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
  3270   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
  3271   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
  3272 #endif
  3273 #if !defined(ZERO)
  3274   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
  3275 #endif // !ZERO
  3276   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
  3279 extern "C" {
  3280   void PI(uintptr_t arg) {
  3281     ((BytecodeInterpreter*)arg)->print();
  3284 #endif // PRODUCT
  3286 #endif // JVMTI
  3287 #endif // CC_INTERP

mercurial