src/share/vm/runtime/thread.cpp

Fri, 11 Apr 2014 12:29:24 +0200

author
pliden
date
Fri, 11 Apr 2014 12:29:24 +0200
changeset 6906
581e70386ec9
parent 6735
a45a4f5a9609
child 6876
710a3c8b516e
child 6911
ce8f6bb717c9
permissions
-rw-r--r--

8039147: Cleanup SuspendibleThreadSet
Reviewed-by: brutisso, tschatzl, mgerdin

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/metaspaceShared.hpp"
    38 #include "memory/oopFactory.hpp"
    39 #include "memory/universe.inline.hpp"
    40 #include "oops/instanceKlass.hpp"
    41 #include "oops/objArrayOop.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/symbol.hpp"
    44 #include "prims/jvm_misc.hpp"
    45 #include "prims/jvmtiExport.hpp"
    46 #include "prims/jvmtiThreadState.hpp"
    47 #include "prims/privilegedStack.hpp"
    48 #include "runtime/arguments.hpp"
    49 #include "runtime/biasedLocking.hpp"
    50 #include "runtime/deoptimization.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/frame.inline.hpp"
    53 #include "runtime/init.hpp"
    54 #include "runtime/interfaceSupport.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/jniPeriodicChecker.hpp"
    58 #include "runtime/memprofiler.hpp"
    59 #include "runtime/mutexLocker.hpp"
    60 #include "runtime/objectMonitor.hpp"
    61 #include "runtime/osThread.hpp"
    62 #include "runtime/safepoint.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/statSampler.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/task.hpp"
    67 #include "runtime/thread.inline.hpp"
    68 #include "runtime/threadCritical.hpp"
    69 #include "runtime/threadLocalStorage.hpp"
    70 #include "runtime/vframe.hpp"
    71 #include "runtime/vframeArray.hpp"
    72 #include "runtime/vframe_hp.hpp"
    73 #include "runtime/vmThread.hpp"
    74 #include "runtime/vm_operations.hpp"
    75 #include "services/attachListener.hpp"
    76 #include "services/management.hpp"
    77 #include "services/memTracker.hpp"
    78 #include "services/threadService.hpp"
    79 #include "trace/tracing.hpp"
    80 #include "trace/traceMacros.hpp"
    81 #include "utilities/defaultStream.hpp"
    82 #include "utilities/dtrace.hpp"
    83 #include "utilities/events.hpp"
    84 #include "utilities/preserveException.hpp"
    85 #include "utilities/macros.hpp"
    86 #ifdef TARGET_OS_FAMILY_linux
    87 # include "os_linux.inline.hpp"
    88 #endif
    89 #ifdef TARGET_OS_FAMILY_solaris
    90 # include "os_solaris.inline.hpp"
    91 #endif
    92 #ifdef TARGET_OS_FAMILY_windows
    93 # include "os_windows.inline.hpp"
    94 #endif
    95 #ifdef TARGET_OS_FAMILY_bsd
    96 # include "os_bsd.inline.hpp"
    97 #endif
    98 #if INCLUDE_ALL_GCS
    99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   102 #endif // INCLUDE_ALL_GCS
   103 #ifdef COMPILER1
   104 #include "c1/c1_Compiler.hpp"
   105 #endif
   106 #ifdef COMPILER2
   107 #include "opto/c2compiler.hpp"
   108 #include "opto/idealGraphPrinter.hpp"
   109 #endif
   110 #if INCLUDE_RTM_OPT
   111 #include "runtime/rtmLocking.hpp"
   112 #endif
   114 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   116 #ifdef DTRACE_ENABLED
   118 // Only bother with this argument setup if dtrace is available
   120 #ifndef USDT2
   121 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   123 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   124   intptr_t, intptr_t, bool);
   125 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   126   intptr_t, intptr_t, bool);
   128 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   129   {                                                                        \
   130     ResourceMark rm(this);                                                 \
   131     int len = 0;                                                           \
   132     const char* name = (javathread)->get_thread_name();                    \
   133     len = strlen(name);                                                    \
   134     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   135       name, len,                                                           \
   136       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   137       (javathread)->osthread()->thread_id(),                               \
   138       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   139   }
   141 #else /* USDT2 */
   143 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   144 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   146 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   147   {                                                                        \
   148     ResourceMark rm(this);                                                 \
   149     int len = 0;                                                           \
   150     const char* name = (javathread)->get_thread_name();                    \
   151     len = strlen(name);                                                    \
   152     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   153       (char *) name, len,                                                           \
   154       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   155       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   156       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   157   }
   159 #endif /* USDT2 */
   161 #else //  ndef DTRACE_ENABLED
   163 #define DTRACE_THREAD_PROBE(probe, javathread)
   165 #endif // ndef DTRACE_ENABLED
   168 // Class hierarchy
   169 // - Thread
   170 //   - VMThread
   171 //   - WatcherThread
   172 //   - ConcurrentMarkSweepThread
   173 //   - JavaThread
   174 //     - CompilerThread
   176 // ======= Thread ========
   177 // Support for forcing alignment of thread objects for biased locking
   178 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   179   if (UseBiasedLocking) {
   180     const int alignment = markOopDesc::biased_lock_alignment;
   181     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   182     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   183                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
   184                                               AllocFailStrategy::RETURN_NULL);
   185     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   186     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   187            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   188            "JavaThread alignment code overflowed allocated storage");
   189     if (TraceBiasedLocking) {
   190       if (aligned_addr != real_malloc_addr)
   191         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   192                       real_malloc_addr, aligned_addr);
   193     }
   194     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   195     return aligned_addr;
   196   } else {
   197     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   198                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
   199   }
   200 }
   202 void Thread::operator delete(void* p) {
   203   if (UseBiasedLocking) {
   204     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   205     FreeHeap(real_malloc_addr, mtThread);
   206   } else {
   207     FreeHeap(p, mtThread);
   208   }
   209 }
   212 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   213 // JavaThread
   216 Thread::Thread() {
   217   // stack and get_thread
   218   set_stack_base(NULL);
   219   set_stack_size(0);
   220   set_self_raw_id(0);
   221   set_lgrp_id(-1);
   223   // allocated data structures
   224   set_osthread(NULL);
   225   set_resource_area(new (mtThread)ResourceArea());
   226   DEBUG_ONLY(_current_resource_mark = NULL;)
   227   set_handle_area(new (mtThread) HandleArea(NULL));
   228   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
   229   set_active_handles(NULL);
   230   set_free_handle_block(NULL);
   231   set_last_handle_mark(NULL);
   233   // This initial value ==> never claimed.
   234   _oops_do_parity = 0;
   236   // the handle mark links itself to last_handle_mark
   237   new HandleMark(this);
   239   // plain initialization
   240   debug_only(_owned_locks = NULL;)
   241   debug_only(_allow_allocation_count = 0;)
   242   NOT_PRODUCT(_allow_safepoint_count = 0;)
   243   NOT_PRODUCT(_skip_gcalot = false;)
   244   _jvmti_env_iteration_count = 0;
   245   set_allocated_bytes(0);
   246   _vm_operation_started_count = 0;
   247   _vm_operation_completed_count = 0;
   248   _current_pending_monitor = NULL;
   249   _current_pending_monitor_is_from_java = true;
   250   _current_waiting_monitor = NULL;
   251   _num_nested_signal = 0;
   252   omFreeList = NULL ;
   253   omFreeCount = 0 ;
   254   omFreeProvision = 32 ;
   255   omInUseList = NULL ;
   256   omInUseCount = 0 ;
   258 #ifdef ASSERT
   259   _visited_for_critical_count = false;
   260 #endif
   262   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   263   _suspend_flags = 0;
   265   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   266   _hashStateX = os::random() ;
   267   _hashStateY = 842502087 ;
   268   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   269   _hashStateW = 273326509 ;
   271   _OnTrap   = 0 ;
   272   _schedctl = NULL ;
   273   _Stalled  = 0 ;
   274   _TypeTag  = 0x2BAD ;
   276   // Many of the following fields are effectively final - immutable
   277   // Note that nascent threads can't use the Native Monitor-Mutex
   278   // construct until the _MutexEvent is initialized ...
   279   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   280   // we might instead use a stack of ParkEvents that we could provision on-demand.
   281   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   282   // and ::Release()
   283   _ParkEvent   = ParkEvent::Allocate (this) ;
   284   _SleepEvent  = ParkEvent::Allocate (this) ;
   285   _MutexEvent  = ParkEvent::Allocate (this) ;
   286   _MuxEvent    = ParkEvent::Allocate (this) ;
   288 #ifdef CHECK_UNHANDLED_OOPS
   289   if (CheckUnhandledOops) {
   290     _unhandled_oops = new UnhandledOops(this);
   291   }
   292 #endif // CHECK_UNHANDLED_OOPS
   293 #ifdef ASSERT
   294   if (UseBiasedLocking) {
   295     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   296     assert(this == _real_malloc_address ||
   297            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   298            "bug in forced alignment of thread objects");
   299   }
   300 #endif /* ASSERT */
   301 }
   303 void Thread::initialize_thread_local_storage() {
   304   // Note: Make sure this method only calls
   305   // non-blocking operations. Otherwise, it might not work
   306   // with the thread-startup/safepoint interaction.
   308   // During Java thread startup, safepoint code should allow this
   309   // method to complete because it may need to allocate memory to
   310   // store information for the new thread.
   312   // initialize structure dependent on thread local storage
   313   ThreadLocalStorage::set_thread(this);
   314 }
   316 void Thread::record_stack_base_and_size() {
   317   set_stack_base(os::current_stack_base());
   318   set_stack_size(os::current_stack_size());
   319   if (is_Java_thread()) {
   320     ((JavaThread*) this)->set_stack_overflow_limit();
   321   }
   322   // CR 7190089: on Solaris, primordial thread's stack is adjusted
   323   // in initialize_thread(). Without the adjustment, stack size is
   324   // incorrect if stack is set to unlimited (ulimit -s unlimited).
   325   // So far, only Solaris has real implementation of initialize_thread().
   326   //
   327   // set up any platform-specific state.
   328   os::initialize_thread(this);
   330 #if INCLUDE_NMT
   331   // record thread's native stack, stack grows downward
   332   address stack_low_addr = stack_base() - stack_size();
   333   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
   334       CURRENT_PC);
   335 #endif // INCLUDE_NMT
   336 }
   339 Thread::~Thread() {
   340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   341   ObjectSynchronizer::omFlush (this) ;
   343   EVENT_THREAD_DESTRUCT(this);
   345   // stack_base can be NULL if the thread is never started or exited before
   346   // record_stack_base_and_size called. Although, we would like to ensure
   347   // that all started threads do call record_stack_base_and_size(), there is
   348   // not proper way to enforce that.
   349 #if INCLUDE_NMT
   350   if (_stack_base != NULL) {
   351     address low_stack_addr = stack_base() - stack_size();
   352     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
   353 #ifdef ASSERT
   354     set_stack_base(NULL);
   355 #endif
   356   }
   357 #endif // INCLUDE_NMT
   359   // deallocate data structures
   360   delete resource_area();
   361   // since the handle marks are using the handle area, we have to deallocated the root
   362   // handle mark before deallocating the thread's handle area,
   363   assert(last_handle_mark() != NULL, "check we have an element");
   364   delete last_handle_mark();
   365   assert(last_handle_mark() == NULL, "check we have reached the end");
   367   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   368   // We NULL out the fields for good hygiene.
   369   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   370   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   371   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   372   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   374   delete handle_area();
   375   delete metadata_handles();
   377   // osthread() can be NULL, if creation of thread failed.
   378   if (osthread() != NULL) os::free_thread(osthread());
   380   delete _SR_lock;
   382   // clear thread local storage if the Thread is deleting itself
   383   if (this == Thread::current()) {
   384     ThreadLocalStorage::set_thread(NULL);
   385   } else {
   386     // In the case where we're not the current thread, invalidate all the
   387     // caches in case some code tries to get the current thread or the
   388     // thread that was destroyed, and gets stale information.
   389     ThreadLocalStorage::invalidate_all();
   390   }
   391   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   392 }
   394 // NOTE: dummy function for assertion purpose.
   395 void Thread::run() {
   396   ShouldNotReachHere();
   397 }
   399 #ifdef ASSERT
   400 // Private method to check for dangling thread pointer
   401 void check_for_dangling_thread_pointer(Thread *thread) {
   402  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   403          "possibility of dangling Thread pointer");
   404 }
   405 #endif
   408 #ifndef PRODUCT
   409 // Tracing method for basic thread operations
   410 void Thread::trace(const char* msg, const Thread* const thread) {
   411   if (!TraceThreadEvents) return;
   412   ResourceMark rm;
   413   ThreadCritical tc;
   414   const char *name = "non-Java thread";
   415   int prio = -1;
   416   if (thread->is_Java_thread()
   417       && !thread->is_Compiler_thread()) {
   418     // The Threads_lock must be held to get information about
   419     // this thread but may not be in some situations when
   420     // tracing  thread events.
   421     bool release_Threads_lock = false;
   422     if (!Threads_lock->owned_by_self()) {
   423       Threads_lock->lock();
   424       release_Threads_lock = true;
   425     }
   426     JavaThread* jt = (JavaThread *)thread;
   427     name = (char *)jt->get_thread_name();
   428     oop thread_oop = jt->threadObj();
   429     if (thread_oop != NULL) {
   430       prio = java_lang_Thread::priority(thread_oop);
   431     }
   432     if (release_Threads_lock) {
   433       Threads_lock->unlock();
   434     }
   435   }
   436   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   437 }
   438 #endif
   441 ThreadPriority Thread::get_priority(const Thread* const thread) {
   442   trace("get priority", thread);
   443   ThreadPriority priority;
   444   // Can return an error!
   445   (void)os::get_priority(thread, priority);
   446   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   447   return priority;
   448 }
   450 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   451   trace("set priority", thread);
   452   debug_only(check_for_dangling_thread_pointer(thread);)
   453   // Can return an error!
   454   (void)os::set_priority(thread, priority);
   455 }
   458 void Thread::start(Thread* thread) {
   459   trace("start", thread);
   460   // Start is different from resume in that its safety is guaranteed by context or
   461   // being called from a Java method synchronized on the Thread object.
   462   if (!DisableStartThread) {
   463     if (thread->is_Java_thread()) {
   464       // Initialize the thread state to RUNNABLE before starting this thread.
   465       // Can not set it after the thread started because we do not know the
   466       // exact thread state at that time. It could be in MONITOR_WAIT or
   467       // in SLEEPING or some other state.
   468       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   469                                           java_lang_Thread::RUNNABLE);
   470     }
   471     os::start_thread(thread);
   472   }
   473 }
   475 // Enqueue a VM_Operation to do the job for us - sometime later
   476 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   477   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   478   VMThread::execute(vm_stop);
   479 }
   482 //
   483 // Check if an external suspend request has completed (or has been
   484 // cancelled). Returns true if the thread is externally suspended and
   485 // false otherwise.
   486 //
   487 // The bits parameter returns information about the code path through
   488 // the routine. Useful for debugging:
   489 //
   490 // set in is_ext_suspend_completed():
   491 // 0x00000001 - routine was entered
   492 // 0x00000010 - routine return false at end
   493 // 0x00000100 - thread exited (return false)
   494 // 0x00000200 - suspend request cancelled (return false)
   495 // 0x00000400 - thread suspended (return true)
   496 // 0x00001000 - thread is in a suspend equivalent state (return true)
   497 // 0x00002000 - thread is native and walkable (return true)
   498 // 0x00004000 - thread is native_trans and walkable (needed retry)
   499 //
   500 // set in wait_for_ext_suspend_completion():
   501 // 0x00010000 - routine was entered
   502 // 0x00020000 - suspend request cancelled before loop (return false)
   503 // 0x00040000 - thread suspended before loop (return true)
   504 // 0x00080000 - suspend request cancelled in loop (return false)
   505 // 0x00100000 - thread suspended in loop (return true)
   506 // 0x00200000 - suspend not completed during retry loop (return false)
   507 //
   509 // Helper class for tracing suspend wait debug bits.
   510 //
   511 // 0x00000100 indicates that the target thread exited before it could
   512 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   513 // 0x00080000 each indicate a cancelled suspend request so they don't
   514 // count as wait failures either.
   515 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   517 class TraceSuspendDebugBits : public StackObj {
   518  private:
   519   JavaThread * jt;
   520   bool         is_wait;
   521   bool         called_by_wait;  // meaningful when !is_wait
   522   uint32_t *   bits;
   524  public:
   525   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   526                         uint32_t *_bits) {
   527     jt             = _jt;
   528     is_wait        = _is_wait;
   529     called_by_wait = _called_by_wait;
   530     bits           = _bits;
   531   }
   533   ~TraceSuspendDebugBits() {
   534     if (!is_wait) {
   535 #if 1
   536       // By default, don't trace bits for is_ext_suspend_completed() calls.
   537       // That trace is very chatty.
   538       return;
   539 #else
   540       if (!called_by_wait) {
   541         // If tracing for is_ext_suspend_completed() is enabled, then only
   542         // trace calls to it from wait_for_ext_suspend_completion()
   543         return;
   544       }
   545 #endif
   546     }
   548     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   549       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   550         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   551         ResourceMark rm;
   553         tty->print_cr(
   554             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   555             jt->get_thread_name(), *bits);
   557         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   558       }
   559     }
   560   }
   561 };
   562 #undef DEBUG_FALSE_BITS
   565 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   566   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   568   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   569   bool do_trans_retry;           // flag to force the retry
   571   *bits |= 0x00000001;
   573   do {
   574     do_trans_retry = false;
   576     if (is_exiting()) {
   577       // Thread is in the process of exiting. This is always checked
   578       // first to reduce the risk of dereferencing a freed JavaThread.
   579       *bits |= 0x00000100;
   580       return false;
   581     }
   583     if (!is_external_suspend()) {
   584       // Suspend request is cancelled. This is always checked before
   585       // is_ext_suspended() to reduce the risk of a rogue resume
   586       // confusing the thread that made the suspend request.
   587       *bits |= 0x00000200;
   588       return false;
   589     }
   591     if (is_ext_suspended()) {
   592       // thread is suspended
   593       *bits |= 0x00000400;
   594       return true;
   595     }
   597     // Now that we no longer do hard suspends of threads running
   598     // native code, the target thread can be changing thread state
   599     // while we are in this routine:
   600     //
   601     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   602     //
   603     // We save a copy of the thread state as observed at this moment
   604     // and make our decision about suspend completeness based on the
   605     // copy. This closes the race where the thread state is seen as
   606     // _thread_in_native_trans in the if-thread_blocked check, but is
   607     // seen as _thread_blocked in if-thread_in_native_trans check.
   608     JavaThreadState save_state = thread_state();
   610     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   611       // If the thread's state is _thread_blocked and this blocking
   612       // condition is known to be equivalent to a suspend, then we can
   613       // consider the thread to be externally suspended. This means that
   614       // the code that sets _thread_blocked has been modified to do
   615       // self-suspension if the blocking condition releases. We also
   616       // used to check for CONDVAR_WAIT here, but that is now covered by
   617       // the _thread_blocked with self-suspension check.
   618       //
   619       // Return true since we wouldn't be here unless there was still an
   620       // external suspend request.
   621       *bits |= 0x00001000;
   622       return true;
   623     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   624       // Threads running native code will self-suspend on native==>VM/Java
   625       // transitions. If its stack is walkable (should always be the case
   626       // unless this function is called before the actual java_suspend()
   627       // call), then the wait is done.
   628       *bits |= 0x00002000;
   629       return true;
   630     } else if (!called_by_wait && !did_trans_retry &&
   631                save_state == _thread_in_native_trans &&
   632                frame_anchor()->walkable()) {
   633       // The thread is transitioning from thread_in_native to another
   634       // thread state. check_safepoint_and_suspend_for_native_trans()
   635       // will force the thread to self-suspend. If it hasn't gotten
   636       // there yet we may have caught the thread in-between the native
   637       // code check above and the self-suspend. Lucky us. If we were
   638       // called by wait_for_ext_suspend_completion(), then it
   639       // will be doing the retries so we don't have to.
   640       //
   641       // Since we use the saved thread state in the if-statement above,
   642       // there is a chance that the thread has already transitioned to
   643       // _thread_blocked by the time we get here. In that case, we will
   644       // make a single unnecessary pass through the logic below. This
   645       // doesn't hurt anything since we still do the trans retry.
   647       *bits |= 0x00004000;
   649       // Once the thread leaves thread_in_native_trans for another
   650       // thread state, we break out of this retry loop. We shouldn't
   651       // need this flag to prevent us from getting back here, but
   652       // sometimes paranoia is good.
   653       did_trans_retry = true;
   655       // We wait for the thread to transition to a more usable state.
   656       for (int i = 1; i <= SuspendRetryCount; i++) {
   657         // We used to do an "os::yield_all(i)" call here with the intention
   658         // that yielding would increase on each retry. However, the parameter
   659         // is ignored on Linux which means the yield didn't scale up. Waiting
   660         // on the SR_lock below provides a much more predictable scale up for
   661         // the delay. It also provides a simple/direct point to check for any
   662         // safepoint requests from the VMThread
   664         // temporarily drops SR_lock while doing wait with safepoint check
   665         // (if we're a JavaThread - the WatcherThread can also call this)
   666         // and increase delay with each retry
   667         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   669         // check the actual thread state instead of what we saved above
   670         if (thread_state() != _thread_in_native_trans) {
   671           // the thread has transitioned to another thread state so
   672           // try all the checks (except this one) one more time.
   673           do_trans_retry = true;
   674           break;
   675         }
   676       } // end retry loop
   679     }
   680   } while (do_trans_retry);
   682   *bits |= 0x00000010;
   683   return false;
   684 }
   686 //
   687 // Wait for an external suspend request to complete (or be cancelled).
   688 // Returns true if the thread is externally suspended and false otherwise.
   689 //
   690 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   691        uint32_t *bits) {
   692   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   693                              false /* !called_by_wait */, bits);
   695   // local flag copies to minimize SR_lock hold time
   696   bool is_suspended;
   697   bool pending;
   698   uint32_t reset_bits;
   700   // set a marker so is_ext_suspend_completed() knows we are the caller
   701   *bits |= 0x00010000;
   703   // We use reset_bits to reinitialize the bits value at the top of
   704   // each retry loop. This allows the caller to make use of any
   705   // unused bits for their own marking purposes.
   706   reset_bits = *bits;
   708   {
   709     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   710     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   711                                             delay, bits);
   712     pending = is_external_suspend();
   713   }
   714   // must release SR_lock to allow suspension to complete
   716   if (!pending) {
   717     // A cancelled suspend request is the only false return from
   718     // is_ext_suspend_completed() that keeps us from entering the
   719     // retry loop.
   720     *bits |= 0x00020000;
   721     return false;
   722   }
   724   if (is_suspended) {
   725     *bits |= 0x00040000;
   726     return true;
   727   }
   729   for (int i = 1; i <= retries; i++) {
   730     *bits = reset_bits;  // reinit to only track last retry
   732     // We used to do an "os::yield_all(i)" call here with the intention
   733     // that yielding would increase on each retry. However, the parameter
   734     // is ignored on Linux which means the yield didn't scale up. Waiting
   735     // on the SR_lock below provides a much more predictable scale up for
   736     // the delay. It also provides a simple/direct point to check for any
   737     // safepoint requests from the VMThread
   739     {
   740       MutexLocker ml(SR_lock());
   741       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   742       // can also call this)  and increase delay with each retry
   743       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   745       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   746                                               delay, bits);
   748       // It is possible for the external suspend request to be cancelled
   749       // (by a resume) before the actual suspend operation is completed.
   750       // Refresh our local copy to see if we still need to wait.
   751       pending = is_external_suspend();
   752     }
   754     if (!pending) {
   755       // A cancelled suspend request is the only false return from
   756       // is_ext_suspend_completed() that keeps us from staying in the
   757       // retry loop.
   758       *bits |= 0x00080000;
   759       return false;
   760     }
   762     if (is_suspended) {
   763       *bits |= 0x00100000;
   764       return true;
   765     }
   766   } // end retry loop
   768   // thread did not suspend after all our retries
   769   *bits |= 0x00200000;
   770   return false;
   771 }
   773 #ifndef PRODUCT
   774 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   776   // This should not need to be atomic as the only way for simultaneous
   777   // updates is via interrupts. Even then this should be rare or non-existant
   778   // and we don't care that much anyway.
   780   int index = _jmp_ring_index;
   781   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   782   _jmp_ring[index]._target = (intptr_t) target;
   783   _jmp_ring[index]._instruction = (intptr_t) instr;
   784   _jmp_ring[index]._file = file;
   785   _jmp_ring[index]._line = line;
   786 }
   787 #endif /* PRODUCT */
   789 // Called by flat profiler
   790 // Callers have already called wait_for_ext_suspend_completion
   791 // The assertion for that is currently too complex to put here:
   792 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   793   bool gotframe = false;
   794   // self suspension saves needed state.
   795   if (has_last_Java_frame() && _anchor.walkable()) {
   796      *_fr = pd_last_frame();
   797      gotframe = true;
   798   }
   799   return gotframe;
   800 }
   802 void Thread::interrupt(Thread* thread) {
   803   trace("interrupt", thread);
   804   debug_only(check_for_dangling_thread_pointer(thread);)
   805   os::interrupt(thread);
   806 }
   808 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   809   trace("is_interrupted", thread);
   810   debug_only(check_for_dangling_thread_pointer(thread);)
   811   // Note:  If clear_interrupted==false, this simply fetches and
   812   // returns the value of the field osthread()->interrupted().
   813   return os::is_interrupted(thread, clear_interrupted);
   814 }
   817 // GC Support
   818 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   819   jint thread_parity = _oops_do_parity;
   820   if (thread_parity != strong_roots_parity) {
   821     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   822     if (res == thread_parity) {
   823       return true;
   824     } else {
   825       guarantee(res == strong_roots_parity, "Or else what?");
   826       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   827          "Should only fail when parallel.");
   828       return false;
   829     }
   830   }
   831   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   832          "Should only fail when parallel.");
   833   return false;
   834 }
   836 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
   837   active_handles()->oops_do(f);
   838   // Do oop for ThreadShadow
   839   f->do_oop((oop*)&_pending_exception);
   840   handle_area()->oops_do(f);
   841 }
   843 void Thread::nmethods_do(CodeBlobClosure* cf) {
   844   // no nmethods in a generic thread...
   845 }
   847 void Thread::metadata_do(void f(Metadata*)) {
   848   if (metadata_handles() != NULL) {
   849     for (int i = 0; i< metadata_handles()->length(); i++) {
   850       f(metadata_handles()->at(i));
   851     }
   852   }
   853 }
   855 void Thread::print_on(outputStream* st) const {
   856   // get_priority assumes osthread initialized
   857   if (osthread() != NULL) {
   858     int os_prio;
   859     if (os::get_native_priority(this, &os_prio) == OS_OK) {
   860       st->print("os_prio=%d ", os_prio);
   861     }
   862     st->print("tid=" INTPTR_FORMAT " ", this);
   863     osthread()->print_on(st);
   864   }
   865   debug_only(if (WizardMode) print_owned_locks_on(st);)
   866 }
   868 // Thread::print_on_error() is called by fatal error handler. Don't use
   869 // any lock or allocate memory.
   870 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   871   if      (is_VM_thread())                  st->print("VMThread");
   872   else if (is_Compiler_thread())            st->print("CompilerThread");
   873   else if (is_Java_thread())                st->print("JavaThread");
   874   else if (is_GC_task_thread())             st->print("GCTaskThread");
   875   else if (is_Watcher_thread())             st->print("WatcherThread");
   876   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   877   else st->print("Thread");
   879   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   880             _stack_base - _stack_size, _stack_base);
   882   if (osthread()) {
   883     st->print(" [id=%d]", osthread()->thread_id());
   884   }
   885 }
   887 #ifdef ASSERT
   888 void Thread::print_owned_locks_on(outputStream* st) const {
   889   Monitor *cur = _owned_locks;
   890   if (cur == NULL) {
   891     st->print(" (no locks) ");
   892   } else {
   893     st->print_cr(" Locks owned:");
   894     while(cur) {
   895       cur->print_on(st);
   896       cur = cur->next();
   897     }
   898   }
   899 }
   901 static int ref_use_count  = 0;
   903 bool Thread::owns_locks_but_compiled_lock() const {
   904   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   905     if (cur != Compile_lock) return true;
   906   }
   907   return false;
   908 }
   911 #endif
   913 #ifndef PRODUCT
   915 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   916 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   917 // no threads which allow_vm_block's are held
   918 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   919     // Check if current thread is allowed to block at a safepoint
   920     if (!(_allow_safepoint_count == 0))
   921       fatal("Possible safepoint reached by thread that does not allow it");
   922     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   923       fatal("LEAF method calling lock?");
   924     }
   926 #ifdef ASSERT
   927     if (potential_vm_operation && is_Java_thread()
   928         && !Universe::is_bootstrapping()) {
   929       // Make sure we do not hold any locks that the VM thread also uses.
   930       // This could potentially lead to deadlocks
   931       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   932         // Threads_lock is special, since the safepoint synchronization will not start before this is
   933         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   934         // since it is used to transfer control between JavaThreads and the VMThread
   935         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   936         if ( (cur->allow_vm_block() &&
   937               cur != Threads_lock &&
   938               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   939               cur != VMOperationRequest_lock &&
   940               cur != VMOperationQueue_lock) ||
   941               cur->rank() == Mutex::special) {
   942           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   943         }
   944       }
   945     }
   947     if (GCALotAtAllSafepoints) {
   948       // We could enter a safepoint here and thus have a gc
   949       InterfaceSupport::check_gc_alot();
   950     }
   951 #endif
   952 }
   953 #endif
   955 bool Thread::is_in_stack(address adr) const {
   956   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   957   address end = os::current_stack_pointer();
   958   // Allow non Java threads to call this without stack_base
   959   if (_stack_base == NULL) return true;
   960   if (stack_base() >= adr && adr >= end) return true;
   962   return false;
   963 }
   966 bool Thread::is_in_usable_stack(address adr) const {
   967   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
   968   size_t usable_stack_size = _stack_size - stack_guard_size;
   970   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
   971 }
   974 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   975 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   976 // used for compilation in the future. If that change is made, the need for these methods
   977 // should be revisited, and they should be removed if possible.
   979 bool Thread::is_lock_owned(address adr) const {
   980   return on_local_stack(adr);
   981 }
   983 bool Thread::set_as_starting_thread() {
   984  // NOTE: this must be called inside the main thread.
   985   return os::create_main_thread((JavaThread*)this);
   986 }
   988 static void initialize_class(Symbol* class_name, TRAPS) {
   989   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   990   InstanceKlass::cast(klass)->initialize(CHECK);
   991 }
   994 // Creates the initial ThreadGroup
   995 static Handle create_initial_thread_group(TRAPS) {
   996   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   997   instanceKlassHandle klass (THREAD, k);
   999   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
  1001     JavaValue result(T_VOID);
  1002     JavaCalls::call_special(&result,
  1003                             system_instance,
  1004                             klass,
  1005                             vmSymbols::object_initializer_name(),
  1006                             vmSymbols::void_method_signature(),
  1007                             CHECK_NH);
  1009   Universe::set_system_thread_group(system_instance());
  1011   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
  1013     JavaValue result(T_VOID);
  1014     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
  1015     JavaCalls::call_special(&result,
  1016                             main_instance,
  1017                             klass,
  1018                             vmSymbols::object_initializer_name(),
  1019                             vmSymbols::threadgroup_string_void_signature(),
  1020                             system_instance,
  1021                             string,
  1022                             CHECK_NH);
  1024   return main_instance;
  1027 // Creates the initial Thread
  1028 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  1029   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  1030   instanceKlassHandle klass (THREAD, k);
  1031   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1033   java_lang_Thread::set_thread(thread_oop(), thread);
  1034   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1035   thread->set_threadObj(thread_oop());
  1037   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1039   JavaValue result(T_VOID);
  1040   JavaCalls::call_special(&result, thread_oop,
  1041                                    klass,
  1042                                    vmSymbols::object_initializer_name(),
  1043                                    vmSymbols::threadgroup_string_void_signature(),
  1044                                    thread_group,
  1045                                    string,
  1046                                    CHECK_NULL);
  1047   return thread_oop();
  1050 static void call_initializeSystemClass(TRAPS) {
  1051   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1052   instanceKlassHandle klass (THREAD, k);
  1054   JavaValue result(T_VOID);
  1055   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1056                                          vmSymbols::void_method_signature(), CHECK);
  1059 char java_runtime_name[128] = "";
  1060 char java_runtime_version[128] = "";
  1062 // extract the JRE name from sun.misc.Version.java_runtime_name
  1063 static const char* get_java_runtime_name(TRAPS) {
  1064   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1065                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1066   fieldDescriptor fd;
  1067   bool found = k != NULL &&
  1068                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1069                                                         vmSymbols::string_signature(), &fd);
  1070   if (found) {
  1071     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1072     if (name_oop == NULL)
  1073       return NULL;
  1074     const char* name = java_lang_String::as_utf8_string(name_oop,
  1075                                                         java_runtime_name,
  1076                                                         sizeof(java_runtime_name));
  1077     return name;
  1078   } else {
  1079     return NULL;
  1083 // extract the JRE version from sun.misc.Version.java_runtime_version
  1084 static const char* get_java_runtime_version(TRAPS) {
  1085   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1086                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1087   fieldDescriptor fd;
  1088   bool found = k != NULL &&
  1089                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
  1090                                                         vmSymbols::string_signature(), &fd);
  1091   if (found) {
  1092     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1093     if (name_oop == NULL)
  1094       return NULL;
  1095     const char* name = java_lang_String::as_utf8_string(name_oop,
  1096                                                         java_runtime_version,
  1097                                                         sizeof(java_runtime_version));
  1098     return name;
  1099   } else {
  1100     return NULL;
  1104 // General purpose hook into Java code, run once when the VM is initialized.
  1105 // The Java library method itself may be changed independently from the VM.
  1106 static void call_postVMInitHook(TRAPS) {
  1107   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
  1108   instanceKlassHandle klass (THREAD, k);
  1109   if (klass.not_null()) {
  1110     JavaValue result(T_VOID);
  1111     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1112                                            vmSymbols::void_method_signature(),
  1113                                            CHECK);
  1117 static void reset_vm_info_property(TRAPS) {
  1118   // the vm info string
  1119   ResourceMark rm(THREAD);
  1120   const char *vm_info = VM_Version::vm_info_string();
  1122   // java.lang.System class
  1123   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1124   instanceKlassHandle klass (THREAD, k);
  1126   // setProperty arguments
  1127   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1128   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1130   // return value
  1131   JavaValue r(T_OBJECT);
  1133   // public static String setProperty(String key, String value);
  1134   JavaCalls::call_static(&r,
  1135                          klass,
  1136                          vmSymbols::setProperty_name(),
  1137                          vmSymbols::string_string_string_signature(),
  1138                          key_str,
  1139                          value_str,
  1140                          CHECK);
  1144 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1145   assert(thread_group.not_null(), "thread group should be specified");
  1146   assert(threadObj() == NULL, "should only create Java thread object once");
  1148   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1149   instanceKlassHandle klass (THREAD, k);
  1150   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1152   java_lang_Thread::set_thread(thread_oop(), this);
  1153   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1154   set_threadObj(thread_oop());
  1156   JavaValue result(T_VOID);
  1157   if (thread_name != NULL) {
  1158     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1159     // Thread gets assigned specified name and null target
  1160     JavaCalls::call_special(&result,
  1161                             thread_oop,
  1162                             klass,
  1163                             vmSymbols::object_initializer_name(),
  1164                             vmSymbols::threadgroup_string_void_signature(),
  1165                             thread_group, // Argument 1
  1166                             name,         // Argument 2
  1167                             THREAD);
  1168   } else {
  1169     // Thread gets assigned name "Thread-nnn" and null target
  1170     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1171     JavaCalls::call_special(&result,
  1172                             thread_oop,
  1173                             klass,
  1174                             vmSymbols::object_initializer_name(),
  1175                             vmSymbols::threadgroup_runnable_void_signature(),
  1176                             thread_group, // Argument 1
  1177                             Handle(),     // Argument 2
  1178                             THREAD);
  1182   if (daemon) {
  1183       java_lang_Thread::set_daemon(thread_oop());
  1186   if (HAS_PENDING_EXCEPTION) {
  1187     return;
  1190   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1191   Handle threadObj(this, this->threadObj());
  1193   JavaCalls::call_special(&result,
  1194                          thread_group,
  1195                          group,
  1196                          vmSymbols::add_method_name(),
  1197                          vmSymbols::thread_void_signature(),
  1198                          threadObj,          // Arg 1
  1199                          THREAD);
  1204 // NamedThread --  non-JavaThread subclasses with multiple
  1205 // uniquely named instances should derive from this.
  1206 NamedThread::NamedThread() : Thread() {
  1207   _name = NULL;
  1208   _processed_thread = NULL;
  1211 NamedThread::~NamedThread() {
  1212   if (_name != NULL) {
  1213     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1214     _name = NULL;
  1218 void NamedThread::set_name(const char* format, ...) {
  1219   guarantee(_name == NULL, "Only get to set name once.");
  1220   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1221   guarantee(_name != NULL, "alloc failure");
  1222   va_list ap;
  1223   va_start(ap, format);
  1224   jio_vsnprintf(_name, max_name_len, format, ap);
  1225   va_end(ap);
  1228 // ======= WatcherThread ========
  1230 // The watcher thread exists to simulate timer interrupts.  It should
  1231 // be replaced by an abstraction over whatever native support for
  1232 // timer interrupts exists on the platform.
  1234 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1235 bool WatcherThread::_startable = false;
  1236 volatile bool  WatcherThread::_should_terminate = false;
  1238 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
  1239   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1240   if (os::create_thread(this, os::watcher_thread)) {
  1241     _watcher_thread = this;
  1243     // Set the watcher thread to the highest OS priority which should not be
  1244     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1245     // is created. The only normal thread using this priority is the reference
  1246     // handler thread, which runs for very short intervals only.
  1247     // If the VMThread's priority is not lower than the WatcherThread profiling
  1248     // will be inaccurate.
  1249     os::set_priority(this, MaxPriority);
  1250     if (!DisableStartThread) {
  1251       os::start_thread(this);
  1256 int WatcherThread::sleep() const {
  1257   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1259   // remaining will be zero if there are no tasks,
  1260   // causing the WatcherThread to sleep until a task is
  1261   // enrolled
  1262   int remaining = PeriodicTask::time_to_wait();
  1263   int time_slept = 0;
  1265   // we expect this to timeout - we only ever get unparked when
  1266   // we should terminate or when a new task has been enrolled
  1267   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1269   jlong time_before_loop = os::javaTimeNanos();
  1271   for (;;) {
  1272     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
  1273     jlong now = os::javaTimeNanos();
  1275     if (remaining == 0) {
  1276         // if we didn't have any tasks we could have waited for a long time
  1277         // consider the time_slept zero and reset time_before_loop
  1278         time_slept = 0;
  1279         time_before_loop = now;
  1280     } else {
  1281         // need to recalulate since we might have new tasks in _tasks
  1282         time_slept = (int) ((now - time_before_loop) / 1000000);
  1285     // Change to task list or spurious wakeup of some kind
  1286     if (timedout || _should_terminate) {
  1287         break;
  1290     remaining = PeriodicTask::time_to_wait();
  1291     if (remaining == 0) {
  1292         // Last task was just disenrolled so loop around and wait until
  1293         // another task gets enrolled
  1294         continue;
  1297     remaining -= time_slept;
  1298     if (remaining <= 0)
  1299       break;
  1302   return time_slept;
  1305 void WatcherThread::run() {
  1306   assert(this == watcher_thread(), "just checking");
  1308   this->record_stack_base_and_size();
  1309   this->initialize_thread_local_storage();
  1310   this->set_active_handles(JNIHandleBlock::allocate_block());
  1311   while(!_should_terminate) {
  1312     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1313     assert(watcher_thread() == this,  "thread consistency check");
  1315     // Calculate how long it'll be until the next PeriodicTask work
  1316     // should be done, and sleep that amount of time.
  1317     int time_waited = sleep();
  1319     if (is_error_reported()) {
  1320       // A fatal error has happened, the error handler(VMError::report_and_die)
  1321       // should abort JVM after creating an error log file. However in some
  1322       // rare cases, the error handler itself might deadlock. Here we try to
  1323       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1324       //
  1325       // This code is in WatcherThread because WatcherThread wakes up
  1326       // periodically so the fatal error handler doesn't need to do anything;
  1327       // also because the WatcherThread is less likely to crash than other
  1328       // threads.
  1330       for (;;) {
  1331         if (!ShowMessageBoxOnError
  1332          && (OnError == NULL || OnError[0] == '\0')
  1333          && Arguments::abort_hook() == NULL) {
  1334              os::sleep(this, 2 * 60 * 1000, false);
  1335              fdStream err(defaultStream::output_fd());
  1336              err.print_raw_cr("# [ timer expired, abort... ]");
  1337              // skip atexit/vm_exit/vm_abort hooks
  1338              os::die();
  1341         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1342         // ShowMessageBoxOnError when it is ready to abort.
  1343         os::sleep(this, 5 * 1000, false);
  1347     PeriodicTask::real_time_tick(time_waited);
  1350   // Signal that it is terminated
  1352     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1353     _watcher_thread = NULL;
  1354     Terminator_lock->notify();
  1357   // Thread destructor usually does this..
  1358   ThreadLocalStorage::set_thread(NULL);
  1361 void WatcherThread::start() {
  1362   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1364   if (watcher_thread() == NULL && _startable) {
  1365     _should_terminate = false;
  1366     // Create the single instance of WatcherThread
  1367     new WatcherThread();
  1371 void WatcherThread::make_startable() {
  1372   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1373   _startable = true;
  1376 void WatcherThread::stop() {
  1378     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1379     _should_terminate = true;
  1380     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1382     WatcherThread* watcher = watcher_thread();
  1383     if (watcher != NULL)
  1384       watcher->unpark();
  1387   // it is ok to take late safepoints here, if needed
  1388   MutexLocker mu(Terminator_lock);
  1390   while(watcher_thread() != NULL) {
  1391     // This wait should make safepoint checks, wait without a timeout,
  1392     // and wait as a suspend-equivalent condition.
  1393     //
  1394     // Note: If the FlatProfiler is running, then this thread is waiting
  1395     // for the WatcherThread to terminate and the WatcherThread, via the
  1396     // FlatProfiler task, is waiting for the external suspend request on
  1397     // this thread to complete. wait_for_ext_suspend_completion() will
  1398     // eventually timeout, but that takes time. Making this wait a
  1399     // suspend-equivalent condition solves that timeout problem.
  1400     //
  1401     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1402                           Mutex::_as_suspend_equivalent_flag);
  1406 void WatcherThread::unpark() {
  1407   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1408   PeriodicTask_lock->notify();
  1411 void WatcherThread::print_on(outputStream* st) const {
  1412   st->print("\"%s\" ", name());
  1413   Thread::print_on(st);
  1414   st->cr();
  1417 // ======= JavaThread ========
  1419 // A JavaThread is a normal Java thread
  1421 void JavaThread::initialize() {
  1422   // Initialize fields
  1424   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
  1425   set_claimed_par_id(UINT_MAX);
  1427   set_saved_exception_pc(NULL);
  1428   set_threadObj(NULL);
  1429   _anchor.clear();
  1430   set_entry_point(NULL);
  1431   set_jni_functions(jni_functions());
  1432   set_callee_target(NULL);
  1433   set_vm_result(NULL);
  1434   set_vm_result_2(NULL);
  1435   set_vframe_array_head(NULL);
  1436   set_vframe_array_last(NULL);
  1437   set_deferred_locals(NULL);
  1438   set_deopt_mark(NULL);
  1439   set_deopt_nmethod(NULL);
  1440   clear_must_deopt_id();
  1441   set_monitor_chunks(NULL);
  1442   set_next(NULL);
  1443   set_thread_state(_thread_new);
  1444 #if INCLUDE_NMT
  1445   set_recorder(NULL);
  1446 #endif
  1447   _terminated = _not_terminated;
  1448   _privileged_stack_top = NULL;
  1449   _array_for_gc = NULL;
  1450   _suspend_equivalent = false;
  1451   _in_deopt_handler = 0;
  1452   _doing_unsafe_access = false;
  1453   _stack_guard_state = stack_guard_unused;
  1454   (void)const_cast<oop&>(_exception_oop = NULL);
  1455   _exception_pc  = 0;
  1456   _exception_handler_pc = 0;
  1457   _is_method_handle_return = 0;
  1458   _jvmti_thread_state= NULL;
  1459   _should_post_on_exceptions_flag = JNI_FALSE;
  1460   _jvmti_get_loaded_classes_closure = NULL;
  1461   _interp_only_mode    = 0;
  1462   _special_runtime_exit_condition = _no_async_condition;
  1463   _pending_async_exception = NULL;
  1464   _thread_stat = NULL;
  1465   _thread_stat = new ThreadStatistics();
  1466   _blocked_on_compilation = false;
  1467   _jni_active_critical = 0;
  1468   _do_not_unlock_if_synchronized = false;
  1469   _cached_monitor_info = NULL;
  1470   _parker = Parker::Allocate(this) ;
  1472 #ifndef PRODUCT
  1473   _jmp_ring_index = 0;
  1474   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1475     record_jump(NULL, NULL, NULL, 0);
  1477 #endif /* PRODUCT */
  1479   set_thread_profiler(NULL);
  1480   if (FlatProfiler::is_active()) {
  1481     // This is where we would decide to either give each thread it's own profiler
  1482     // or use one global one from FlatProfiler,
  1483     // or up to some count of the number of profiled threads, etc.
  1484     ThreadProfiler* pp = new ThreadProfiler();
  1485     pp->engage();
  1486     set_thread_profiler(pp);
  1489   // Setup safepoint state info for this thread
  1490   ThreadSafepointState::create(this);
  1492   debug_only(_java_call_counter = 0);
  1494   // JVMTI PopFrame support
  1495   _popframe_condition = popframe_inactive;
  1496   _popframe_preserved_args = NULL;
  1497   _popframe_preserved_args_size = 0;
  1499   pd_initialize();
  1502 #if INCLUDE_ALL_GCS
  1503 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1504 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1505 #endif // INCLUDE_ALL_GCS
  1507 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1508   Thread()
  1509 #if INCLUDE_ALL_GCS
  1510   , _satb_mark_queue(&_satb_mark_queue_set),
  1511   _dirty_card_queue(&_dirty_card_queue_set)
  1512 #endif // INCLUDE_ALL_GCS
  1514   initialize();
  1515   if (is_attaching_via_jni) {
  1516     _jni_attach_state = _attaching_via_jni;
  1517   } else {
  1518     _jni_attach_state = _not_attaching_via_jni;
  1520   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
  1521   _safepoint_visible = false;
  1524 bool JavaThread::reguard_stack(address cur_sp) {
  1525   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1526     return true; // Stack already guarded or guard pages not needed.
  1529   if (register_stack_overflow()) {
  1530     // For those architectures which have separate register and
  1531     // memory stacks, we must check the register stack to see if
  1532     // it has overflowed.
  1533     return false;
  1536   // Java code never executes within the yellow zone: the latter is only
  1537   // there to provoke an exception during stack banging.  If java code
  1538   // is executing there, either StackShadowPages should be larger, or
  1539   // some exception code in c1, c2 or the interpreter isn't unwinding
  1540   // when it should.
  1541   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1543   enable_stack_yellow_zone();
  1544   return true;
  1547 bool JavaThread::reguard_stack(void) {
  1548   return reguard_stack(os::current_stack_pointer());
  1552 void JavaThread::block_if_vm_exited() {
  1553   if (_terminated == _vm_exited) {
  1554     // _vm_exited is set at safepoint, and Threads_lock is never released
  1555     // we will block here forever
  1556     Threads_lock->lock_without_safepoint_check();
  1557     ShouldNotReachHere();
  1562 // Remove this ifdef when C1 is ported to the compiler interface.
  1563 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1565 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1566   Thread()
  1567 #if INCLUDE_ALL_GCS
  1568   , _satb_mark_queue(&_satb_mark_queue_set),
  1569   _dirty_card_queue(&_dirty_card_queue_set)
  1570 #endif // INCLUDE_ALL_GCS
  1572   if (TraceThreadEvents) {
  1573     tty->print_cr("creating thread %p", this);
  1575   initialize();
  1576   _jni_attach_state = _not_attaching_via_jni;
  1577   set_entry_point(entry_point);
  1578   // Create the native thread itself.
  1579   // %note runtime_23
  1580   os::ThreadType thr_type = os::java_thread;
  1581   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1582                                                      os::java_thread;
  1583   os::create_thread(this, thr_type, stack_sz);
  1584   _safepoint_visible = false;
  1585   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1586   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1587   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1588   // the exception consists of creating the exception object & initializing it, initialization
  1589   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1590   //
  1591   // The thread is still suspended when we reach here. Thread must be explicit started
  1592   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1593   // by calling Threads:add. The reason why this is not done here, is because the thread
  1594   // object must be fully initialized (take a look at JVM_Start)
  1597 JavaThread::~JavaThread() {
  1598   if (TraceThreadEvents) {
  1599       tty->print_cr("terminate thread %p", this);
  1602   // By now, this thread should already be invisible to safepoint,
  1603   // and its per-thread recorder also collected.
  1604   assert(!is_safepoint_visible(), "wrong state");
  1605 #if INCLUDE_NMT
  1606   assert(get_recorder() == NULL, "Already collected");
  1607 #endif // INCLUDE_NMT
  1609   // JSR166 -- return the parker to the free list
  1610   Parker::Release(_parker);
  1611   _parker = NULL ;
  1613   // Free any remaining  previous UnrollBlock
  1614   vframeArray* old_array = vframe_array_last();
  1616   if (old_array != NULL) {
  1617     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1618     old_array->set_unroll_block(NULL);
  1619     delete old_info;
  1620     delete old_array;
  1623   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1624   if (deferred != NULL) {
  1625     // This can only happen if thread is destroyed before deoptimization occurs.
  1626     assert(deferred->length() != 0, "empty array!");
  1627     do {
  1628       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1629       deferred->remove_at(0);
  1630       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1631       delete dlv;
  1632     } while (deferred->length() != 0);
  1633     delete deferred;
  1636   // All Java related clean up happens in exit
  1637   ThreadSafepointState::destroy(this);
  1638   if (_thread_profiler != NULL) delete _thread_profiler;
  1639   if (_thread_stat != NULL) delete _thread_stat;
  1643 // The first routine called by a new Java thread
  1644 void JavaThread::run() {
  1645   // initialize thread-local alloc buffer related fields
  1646   this->initialize_tlab();
  1648   // used to test validitity of stack trace backs
  1649   this->record_base_of_stack_pointer();
  1651   // Record real stack base and size.
  1652   this->record_stack_base_and_size();
  1654   // Initialize thread local storage; set before calling MutexLocker
  1655   this->initialize_thread_local_storage();
  1657   this->create_stack_guard_pages();
  1659   this->cache_global_variables();
  1661   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1662   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1663   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1665   assert(JavaThread::current() == this, "sanity check");
  1666   assert(!Thread::current()->owns_locks(), "sanity check");
  1668   DTRACE_THREAD_PROBE(start, this);
  1670   // This operation might block. We call that after all safepoint checks for a new thread has
  1671   // been completed.
  1672   this->set_active_handles(JNIHandleBlock::allocate_block());
  1674   if (JvmtiExport::should_post_thread_life()) {
  1675     JvmtiExport::post_thread_start(this);
  1678   EventThreadStart event;
  1679   if (event.should_commit()) {
  1680      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1681      event.commit();
  1684   // We call another function to do the rest so we are sure that the stack addresses used
  1685   // from there will be lower than the stack base just computed
  1686   thread_main_inner();
  1688   // Note, thread is no longer valid at this point!
  1692 void JavaThread::thread_main_inner() {
  1693   assert(JavaThread::current() == this, "sanity check");
  1694   assert(this->threadObj() != NULL, "just checking");
  1696   // Execute thread entry point unless this thread has a pending exception
  1697   // or has been stopped before starting.
  1698   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1699   if (!this->has_pending_exception() &&
  1700       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1702       ResourceMark rm(this);
  1703       this->set_native_thread_name(this->get_thread_name());
  1705     HandleMark hm(this);
  1706     this->entry_point()(this, this);
  1709   DTRACE_THREAD_PROBE(stop, this);
  1711   this->exit(false);
  1712   delete this;
  1716 static void ensure_join(JavaThread* thread) {
  1717   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1718   Handle threadObj(thread, thread->threadObj());
  1719   assert(threadObj.not_null(), "java thread object must exist");
  1720   ObjectLocker lock(threadObj, thread);
  1721   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1722   thread->clear_pending_exception();
  1723   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1724   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1725   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1726   // to complete once we've done the notify_all below
  1727   java_lang_Thread::set_thread(threadObj(), NULL);
  1728   lock.notify_all(thread);
  1729   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1730   thread->clear_pending_exception();
  1734 // For any new cleanup additions, please check to see if they need to be applied to
  1735 // cleanup_failed_attach_current_thread as well.
  1736 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1737   assert(this == JavaThread::current(),  "thread consistency check");
  1739   HandleMark hm(this);
  1740   Handle uncaught_exception(this, this->pending_exception());
  1741   this->clear_pending_exception();
  1742   Handle threadObj(this, this->threadObj());
  1743   assert(threadObj.not_null(), "Java thread object should be created");
  1745   if (get_thread_profiler() != NULL) {
  1746     get_thread_profiler()->disengage();
  1747     ResourceMark rm;
  1748     get_thread_profiler()->print(get_thread_name());
  1752   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1754     EXCEPTION_MARK;
  1756     CLEAR_PENDING_EXCEPTION;
  1758   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1759   // has to be fixed by a runtime query method
  1760   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1761     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1762     // java.lang.Thread.dispatchUncaughtException
  1763     if (uncaught_exception.not_null()) {
  1764       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1766         EXCEPTION_MARK;
  1767         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1768         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1769         // so call ThreadGroup.uncaughtException()
  1770         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1771         CallInfo callinfo;
  1772         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1773         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1774                                            vmSymbols::dispatchUncaughtException_name(),
  1775                                            vmSymbols::throwable_void_signature(),
  1776                                            KlassHandle(), false, false, THREAD);
  1777         CLEAR_PENDING_EXCEPTION;
  1778         methodHandle method = callinfo.selected_method();
  1779         if (method.not_null()) {
  1780           JavaValue result(T_VOID);
  1781           JavaCalls::call_virtual(&result,
  1782                                   threadObj, thread_klass,
  1783                                   vmSymbols::dispatchUncaughtException_name(),
  1784                                   vmSymbols::throwable_void_signature(),
  1785                                   uncaught_exception,
  1786                                   THREAD);
  1787         } else {
  1788           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1789           JavaValue result(T_VOID);
  1790           JavaCalls::call_virtual(&result,
  1791                                   group, thread_group,
  1792                                   vmSymbols::uncaughtException_name(),
  1793                                   vmSymbols::thread_throwable_void_signature(),
  1794                                   threadObj,           // Arg 1
  1795                                   uncaught_exception,  // Arg 2
  1796                                   THREAD);
  1798         if (HAS_PENDING_EXCEPTION) {
  1799           ResourceMark rm(this);
  1800           jio_fprintf(defaultStream::error_stream(),
  1801                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1802                 " in thread \"%s\"\n",
  1803                 pending_exception()->klass()->external_name(),
  1804                 get_thread_name());
  1805           CLEAR_PENDING_EXCEPTION;
  1810     // Called before the java thread exit since we want to read info
  1811     // from java_lang_Thread object
  1812     EventThreadEnd event;
  1813     if (event.should_commit()) {
  1814         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1815         event.commit();
  1818     // Call after last event on thread
  1819     EVENT_THREAD_EXIT(this);
  1821     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1822     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1823     // is deprecated anyhow.
  1824     if (!is_Compiler_thread()) {
  1825       int count = 3;
  1826       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1827         EXCEPTION_MARK;
  1828         JavaValue result(T_VOID);
  1829         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1830         JavaCalls::call_virtual(&result,
  1831                               threadObj, thread_klass,
  1832                               vmSymbols::exit_method_name(),
  1833                               vmSymbols::void_method_signature(),
  1834                               THREAD);
  1835         CLEAR_PENDING_EXCEPTION;
  1838     // notify JVMTI
  1839     if (JvmtiExport::should_post_thread_life()) {
  1840       JvmtiExport::post_thread_end(this);
  1843     // We have notified the agents that we are exiting, before we go on,
  1844     // we must check for a pending external suspend request and honor it
  1845     // in order to not surprise the thread that made the suspend request.
  1846     while (true) {
  1848         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1849         if (!is_external_suspend()) {
  1850           set_terminated(_thread_exiting);
  1851           ThreadService::current_thread_exiting(this);
  1852           break;
  1854         // Implied else:
  1855         // Things get a little tricky here. We have a pending external
  1856         // suspend request, but we are holding the SR_lock so we
  1857         // can't just self-suspend. So we temporarily drop the lock
  1858         // and then self-suspend.
  1861       ThreadBlockInVM tbivm(this);
  1862       java_suspend_self();
  1864       // We're done with this suspend request, but we have to loop around
  1865       // and check again. Eventually we will get SR_lock without a pending
  1866       // external suspend request and will be able to mark ourselves as
  1867       // exiting.
  1869     // no more external suspends are allowed at this point
  1870   } else {
  1871     // before_exit() has already posted JVMTI THREAD_END events
  1874   // Notify waiters on thread object. This has to be done after exit() is called
  1875   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1876   // group should have the destroyed bit set before waiters are notified).
  1877   ensure_join(this);
  1878   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1880   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1881   // held by this thread must be released.  A detach operation must only
  1882   // get here if there are no Java frames on the stack.  Therefore, any
  1883   // owned monitors at this point MUST be JNI-acquired monitors which are
  1884   // pre-inflated and in the monitor cache.
  1885   //
  1886   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1887   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1888     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1889     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1890     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1893   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1894   // is in a consistent state, in case GC happens
  1895   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1897   if (active_handles() != NULL) {
  1898     JNIHandleBlock* block = active_handles();
  1899     set_active_handles(NULL);
  1900     JNIHandleBlock::release_block(block);
  1903   if (free_handle_block() != NULL) {
  1904     JNIHandleBlock* block = free_handle_block();
  1905     set_free_handle_block(NULL);
  1906     JNIHandleBlock::release_block(block);
  1909   // These have to be removed while this is still a valid thread.
  1910   remove_stack_guard_pages();
  1912   if (UseTLAB) {
  1913     tlab().make_parsable(true);  // retire TLAB
  1916   if (JvmtiEnv::environments_might_exist()) {
  1917     JvmtiExport::cleanup_thread(this);
  1920   // We must flush any deferred card marks before removing a thread from
  1921   // the list of active threads.
  1922   Universe::heap()->flush_deferred_store_barrier(this);
  1923   assert(deferred_card_mark().is_empty(), "Should have been flushed");
  1925 #if INCLUDE_ALL_GCS
  1926   // We must flush the G1-related buffers before removing a thread
  1927   // from the list of active threads. We must do this after any deferred
  1928   // card marks have been flushed (above) so that any entries that are
  1929   // added to the thread's dirty card queue as a result are not lost.
  1930   if (UseG1GC) {
  1931     flush_barrier_queues();
  1933 #endif // INCLUDE_ALL_GCS
  1935   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1936   Threads::remove(this);
  1939 #if INCLUDE_ALL_GCS
  1940 // Flush G1-related queues.
  1941 void JavaThread::flush_barrier_queues() {
  1942   satb_mark_queue().flush();
  1943   dirty_card_queue().flush();
  1946 void JavaThread::initialize_queues() {
  1947   assert(!SafepointSynchronize::is_at_safepoint(),
  1948          "we should not be at a safepoint");
  1950   ObjPtrQueue& satb_queue = satb_mark_queue();
  1951   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1952   // The SATB queue should have been constructed with its active
  1953   // field set to false.
  1954   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1955   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1956   // If we are creating the thread during a marking cycle, we should
  1957   // set the active field of the SATB queue to true.
  1958   if (satb_queue_set.is_active()) {
  1959     satb_queue.set_active(true);
  1962   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1963   // The dirty card queue should have been constructed with its
  1964   // active field set to true.
  1965   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1967 #endif // INCLUDE_ALL_GCS
  1969 void JavaThread::cleanup_failed_attach_current_thread() {
  1970   if (get_thread_profiler() != NULL) {
  1971     get_thread_profiler()->disengage();
  1972     ResourceMark rm;
  1973     get_thread_profiler()->print(get_thread_name());
  1976   if (active_handles() != NULL) {
  1977     JNIHandleBlock* block = active_handles();
  1978     set_active_handles(NULL);
  1979     JNIHandleBlock::release_block(block);
  1982   if (free_handle_block() != NULL) {
  1983     JNIHandleBlock* block = free_handle_block();
  1984     set_free_handle_block(NULL);
  1985     JNIHandleBlock::release_block(block);
  1988   // These have to be removed while this is still a valid thread.
  1989   remove_stack_guard_pages();
  1991   if (UseTLAB) {
  1992     tlab().make_parsable(true);  // retire TLAB, if any
  1995 #if INCLUDE_ALL_GCS
  1996   if (UseG1GC) {
  1997     flush_barrier_queues();
  1999 #endif // INCLUDE_ALL_GCS
  2001   Threads::remove(this);
  2002   delete this;
  2008 JavaThread* JavaThread::active() {
  2009   Thread* thread = ThreadLocalStorage::thread();
  2010   assert(thread != NULL, "just checking");
  2011   if (thread->is_Java_thread()) {
  2012     return (JavaThread*) thread;
  2013   } else {
  2014     assert(thread->is_VM_thread(), "this must be a vm thread");
  2015     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  2016     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  2017     assert(ret->is_Java_thread(), "must be a Java thread");
  2018     return ret;
  2022 bool JavaThread::is_lock_owned(address adr) const {
  2023   if (Thread::is_lock_owned(adr)) return true;
  2025   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2026     if (chunk->contains(adr)) return true;
  2029   return false;
  2033 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  2034   chunk->set_next(monitor_chunks());
  2035   set_monitor_chunks(chunk);
  2038 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  2039   guarantee(monitor_chunks() != NULL, "must be non empty");
  2040   if (monitor_chunks() == chunk) {
  2041     set_monitor_chunks(chunk->next());
  2042   } else {
  2043     MonitorChunk* prev = monitor_chunks();
  2044     while (prev->next() != chunk) prev = prev->next();
  2045     prev->set_next(chunk->next());
  2049 // JVM support.
  2051 // Note: this function shouldn't block if it's called in
  2052 // _thread_in_native_trans state (such as from
  2053 // check_special_condition_for_native_trans()).
  2054 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  2056   if (has_last_Java_frame() && has_async_condition()) {
  2057     // If we are at a polling page safepoint (not a poll return)
  2058     // then we must defer async exception because live registers
  2059     // will be clobbered by the exception path. Poll return is
  2060     // ok because the call we a returning from already collides
  2061     // with exception handling registers and so there is no issue.
  2062     // (The exception handling path kills call result registers but
  2063     //  this is ok since the exception kills the result anyway).
  2065     if (is_at_poll_safepoint()) {
  2066       // if the code we are returning to has deoptimized we must defer
  2067       // the exception otherwise live registers get clobbered on the
  2068       // exception path before deoptimization is able to retrieve them.
  2069       //
  2070       RegisterMap map(this, false);
  2071       frame caller_fr = last_frame().sender(&map);
  2072       assert(caller_fr.is_compiled_frame(), "what?");
  2073       if (caller_fr.is_deoptimized_frame()) {
  2074         if (TraceExceptions) {
  2075           ResourceMark rm;
  2076           tty->print_cr("deferred async exception at compiled safepoint");
  2078         return;
  2083   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  2084   if (condition == _no_async_condition) {
  2085     // Conditions have changed since has_special_runtime_exit_condition()
  2086     // was called:
  2087     // - if we were here only because of an external suspend request,
  2088     //   then that was taken care of above (or cancelled) so we are done
  2089     // - if we were here because of another async request, then it has
  2090     //   been cleared between the has_special_runtime_exit_condition()
  2091     //   and now so again we are done
  2092     return;
  2095   // Check for pending async. exception
  2096   if (_pending_async_exception != NULL) {
  2097     // Only overwrite an already pending exception, if it is not a threadDeath.
  2098     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  2100       // We cannot call Exceptions::_throw(...) here because we cannot block
  2101       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  2103       if (TraceExceptions) {
  2104         ResourceMark rm;
  2105         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  2106         if (has_last_Java_frame() ) {
  2107           frame f = last_frame();
  2108           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2110         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2112       _pending_async_exception = NULL;
  2113       clear_has_async_exception();
  2117   if (check_unsafe_error &&
  2118       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2119     condition = _no_async_condition;  // done
  2120     switch (thread_state()) {
  2121     case _thread_in_vm:
  2123         JavaThread* THREAD = this;
  2124         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2126     case _thread_in_native:
  2128         ThreadInVMfromNative tiv(this);
  2129         JavaThread* THREAD = this;
  2130         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2132     case _thread_in_Java:
  2134         ThreadInVMfromJava tiv(this);
  2135         JavaThread* THREAD = this;
  2136         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2138     default:
  2139       ShouldNotReachHere();
  2143   assert(condition == _no_async_condition || has_pending_exception() ||
  2144          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2145          "must have handled the async condition, if no exception");
  2148 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2149   //
  2150   // Check for pending external suspend. Internal suspend requests do
  2151   // not use handle_special_runtime_exit_condition().
  2152   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2153   // thread is not the current thread. In older versions of jdbx, jdbx
  2154   // threads could call into the VM with another thread's JNIEnv so we
  2155   // can be here operating on behalf of a suspended thread (4432884).
  2156   bool do_self_suspend = is_external_suspend_with_lock();
  2157   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2158     //
  2159     // Because thread is external suspended the safepoint code will count
  2160     // thread as at a safepoint. This can be odd because we can be here
  2161     // as _thread_in_Java which would normally transition to _thread_blocked
  2162     // at a safepoint. We would like to mark the thread as _thread_blocked
  2163     // before calling java_suspend_self like all other callers of it but
  2164     // we must then observe proper safepoint protocol. (We can't leave
  2165     // _thread_blocked with a safepoint in progress). However we can be
  2166     // here as _thread_in_native_trans so we can't use a normal transition
  2167     // constructor/destructor pair because they assert on that type of
  2168     // transition. We could do something like:
  2169     //
  2170     // JavaThreadState state = thread_state();
  2171     // set_thread_state(_thread_in_vm);
  2172     // {
  2173     //   ThreadBlockInVM tbivm(this);
  2174     //   java_suspend_self()
  2175     // }
  2176     // set_thread_state(_thread_in_vm_trans);
  2177     // if (safepoint) block;
  2178     // set_thread_state(state);
  2179     //
  2180     // but that is pretty messy. Instead we just go with the way the
  2181     // code has worked before and note that this is the only path to
  2182     // java_suspend_self that doesn't put the thread in _thread_blocked
  2183     // mode.
  2185     frame_anchor()->make_walkable(this);
  2186     java_suspend_self();
  2188     // We might be here for reasons in addition to the self-suspend request
  2189     // so check for other async requests.
  2192   if (check_asyncs) {
  2193     check_and_handle_async_exceptions();
  2197 void JavaThread::send_thread_stop(oop java_throwable)  {
  2198   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2199   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2200   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2202   // Do not throw asynchronous exceptions against the compiler thread
  2203   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2204   if (is_Compiler_thread()) return;
  2207     // Actually throw the Throwable against the target Thread - however
  2208     // only if there is no thread death exception installed already.
  2209     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2210       // If the topmost frame is a runtime stub, then we are calling into
  2211       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2212       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2213       // may not be valid
  2214       if (has_last_Java_frame()) {
  2215         frame f = last_frame();
  2216         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2217           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2218           RegisterMap reg_map(this, UseBiasedLocking);
  2219           frame compiled_frame = f.sender(&reg_map);
  2220           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
  2221             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2226       // Set async. pending exception in thread.
  2227       set_pending_async_exception(java_throwable);
  2229       if (TraceExceptions) {
  2230        ResourceMark rm;
  2231        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2233       // for AbortVMOnException flag
  2234       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2239   // Interrupt thread so it will wake up from a potential wait()
  2240   Thread::interrupt(this);
  2243 // External suspension mechanism.
  2244 //
  2245 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2246 // to any VM_locks and it is at a transition
  2247 // Self-suspension will happen on the transition out of the vm.
  2248 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2249 //
  2250 // Guarantees on return:
  2251 //   + Target thread will not execute any new bytecode (that's why we need to
  2252 //     force a safepoint)
  2253 //   + Target thread will not enter any new monitors
  2254 //
  2255 void JavaThread::java_suspend() {
  2256   { MutexLocker mu(Threads_lock);
  2257     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2258        return;
  2262   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2263     if (!is_external_suspend()) {
  2264       // a racing resume has cancelled us; bail out now
  2265       return;
  2268     // suspend is done
  2269     uint32_t debug_bits = 0;
  2270     // Warning: is_ext_suspend_completed() may temporarily drop the
  2271     // SR_lock to allow the thread to reach a stable thread state if
  2272     // it is currently in a transient thread state.
  2273     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2274                                  SuspendRetryDelay, &debug_bits) ) {
  2275       return;
  2279   VM_ForceSafepoint vm_suspend;
  2280   VMThread::execute(&vm_suspend);
  2283 // Part II of external suspension.
  2284 // A JavaThread self suspends when it detects a pending external suspend
  2285 // request. This is usually on transitions. It is also done in places
  2286 // where continuing to the next transition would surprise the caller,
  2287 // e.g., monitor entry.
  2288 //
  2289 // Returns the number of times that the thread self-suspended.
  2290 //
  2291 // Note: DO NOT call java_suspend_self() when you just want to block current
  2292 //       thread. java_suspend_self() is the second stage of cooperative
  2293 //       suspension for external suspend requests and should only be used
  2294 //       to complete an external suspend request.
  2295 //
  2296 int JavaThread::java_suspend_self() {
  2297   int ret = 0;
  2299   // we are in the process of exiting so don't suspend
  2300   if (is_exiting()) {
  2301      clear_external_suspend();
  2302      return ret;
  2305   assert(_anchor.walkable() ||
  2306     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2307     "must have walkable stack");
  2309   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2311   assert(!this->is_ext_suspended(),
  2312     "a thread trying to self-suspend should not already be suspended");
  2314   if (this->is_suspend_equivalent()) {
  2315     // If we are self-suspending as a result of the lifting of a
  2316     // suspend equivalent condition, then the suspend_equivalent
  2317     // flag is not cleared until we set the ext_suspended flag so
  2318     // that wait_for_ext_suspend_completion() returns consistent
  2319     // results.
  2320     this->clear_suspend_equivalent();
  2323   // A racing resume may have cancelled us before we grabbed SR_lock
  2324   // above. Or another external suspend request could be waiting for us
  2325   // by the time we return from SR_lock()->wait(). The thread
  2326   // that requested the suspension may already be trying to walk our
  2327   // stack and if we return now, we can change the stack out from under
  2328   // it. This would be a "bad thing (TM)" and cause the stack walker
  2329   // to crash. We stay self-suspended until there are no more pending
  2330   // external suspend requests.
  2331   while (is_external_suspend()) {
  2332     ret++;
  2333     this->set_ext_suspended();
  2335     // _ext_suspended flag is cleared by java_resume()
  2336     while (is_ext_suspended()) {
  2337       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2341   return ret;
  2344 #ifdef ASSERT
  2345 // verify the JavaThread has not yet been published in the Threads::list, and
  2346 // hence doesn't need protection from concurrent access at this stage
  2347 void JavaThread::verify_not_published() {
  2348   if (!Threads_lock->owned_by_self()) {
  2349    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2350    assert( !Threads::includes(this),
  2351            "java thread shouldn't have been published yet!");
  2353   else {
  2354    assert( !Threads::includes(this),
  2355            "java thread shouldn't have been published yet!");
  2358 #endif
  2360 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2361 // progress or when _suspend_flags is non-zero.
  2362 // Current thread needs to self-suspend if there is a suspend request and/or
  2363 // block if a safepoint is in progress.
  2364 // Async exception ISN'T checked.
  2365 // Note only the ThreadInVMfromNative transition can call this function
  2366 // directly and when thread state is _thread_in_native_trans
  2367 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2368   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2370   JavaThread *curJT = JavaThread::current();
  2371   bool do_self_suspend = thread->is_external_suspend();
  2373   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2375   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2376   // thread is not the current thread. In older versions of jdbx, jdbx
  2377   // threads could call into the VM with another thread's JNIEnv so we
  2378   // can be here operating on behalf of a suspended thread (4432884).
  2379   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2380     JavaThreadState state = thread->thread_state();
  2382     // We mark this thread_blocked state as a suspend-equivalent so
  2383     // that a caller to is_ext_suspend_completed() won't be confused.
  2384     // The suspend-equivalent state is cleared by java_suspend_self().
  2385     thread->set_suspend_equivalent();
  2387     // If the safepoint code sees the _thread_in_native_trans state, it will
  2388     // wait until the thread changes to other thread state. There is no
  2389     // guarantee on how soon we can obtain the SR_lock and complete the
  2390     // self-suspend request. It would be a bad idea to let safepoint wait for
  2391     // too long. Temporarily change the state to _thread_blocked to
  2392     // let the VM thread know that this thread is ready for GC. The problem
  2393     // of changing thread state is that safepoint could happen just after
  2394     // java_suspend_self() returns after being resumed, and VM thread will
  2395     // see the _thread_blocked state. We must check for safepoint
  2396     // after restoring the state and make sure we won't leave while a safepoint
  2397     // is in progress.
  2398     thread->set_thread_state(_thread_blocked);
  2399     thread->java_suspend_self();
  2400     thread->set_thread_state(state);
  2401     // Make sure new state is seen by VM thread
  2402     if (os::is_MP()) {
  2403       if (UseMembar) {
  2404         // Force a fence between the write above and read below
  2405         OrderAccess::fence();
  2406       } else {
  2407         // Must use this rather than serialization page in particular on Windows
  2408         InterfaceSupport::serialize_memory(thread);
  2413   if (SafepointSynchronize::do_call_back()) {
  2414     // If we are safepointing, then block the caller which may not be
  2415     // the same as the target thread (see above).
  2416     SafepointSynchronize::block(curJT);
  2419   if (thread->is_deopt_suspend()) {
  2420     thread->clear_deopt_suspend();
  2421     RegisterMap map(thread, false);
  2422     frame f = thread->last_frame();
  2423     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2424       f = f.sender(&map);
  2426     if (f.id() == thread->must_deopt_id()) {
  2427       thread->clear_must_deopt_id();
  2428       f.deoptimize(thread);
  2429     } else {
  2430       fatal("missed deoptimization!");
  2435 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2436 // progress or when _suspend_flags is non-zero.
  2437 // Current thread needs to self-suspend if there is a suspend request and/or
  2438 // block if a safepoint is in progress.
  2439 // Also check for pending async exception (not including unsafe access error).
  2440 // Note only the native==>VM/Java barriers can call this function and when
  2441 // thread state is _thread_in_native_trans.
  2442 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2443   check_safepoint_and_suspend_for_native_trans(thread);
  2445   if (thread->has_async_exception()) {
  2446     // We are in _thread_in_native_trans state, don't handle unsafe
  2447     // access error since that may block.
  2448     thread->check_and_handle_async_exceptions(false);
  2452 // This is a variant of the normal
  2453 // check_special_condition_for_native_trans with slightly different
  2454 // semantics for use by critical native wrappers.  It does all the
  2455 // normal checks but also performs the transition back into
  2456 // thread_in_Java state.  This is required so that critical natives
  2457 // can potentially block and perform a GC if they are the last thread
  2458 // exiting the GC_locker.
  2459 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2460   check_special_condition_for_native_trans(thread);
  2462   // Finish the transition
  2463   thread->set_thread_state(_thread_in_Java);
  2465   if (thread->do_critical_native_unlock()) {
  2466     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2467     GC_locker::unlock_critical(thread);
  2468     thread->clear_critical_native_unlock();
  2472 // We need to guarantee the Threads_lock here, since resumes are not
  2473 // allowed during safepoint synchronization
  2474 // Can only resume from an external suspension
  2475 void JavaThread::java_resume() {
  2476   assert_locked_or_safepoint(Threads_lock);
  2478   // Sanity check: thread is gone, has started exiting or the thread
  2479   // was not externally suspended.
  2480   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2481     return;
  2484   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2486   clear_external_suspend();
  2488   if (is_ext_suspended()) {
  2489     clear_ext_suspended();
  2490     SR_lock()->notify_all();
  2494 void JavaThread::create_stack_guard_pages() {
  2495   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2496   address low_addr = stack_base() - stack_size();
  2497   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2499   int allocate = os::allocate_stack_guard_pages();
  2500   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2502   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2503     warning("Attempt to allocate stack guard pages failed.");
  2504     return;
  2507   if (os::guard_memory((char *) low_addr, len)) {
  2508     _stack_guard_state = stack_guard_enabled;
  2509   } else {
  2510     warning("Attempt to protect stack guard pages failed.");
  2511     if (os::uncommit_memory((char *) low_addr, len)) {
  2512       warning("Attempt to deallocate stack guard pages failed.");
  2517 void JavaThread::remove_stack_guard_pages() {
  2518   assert(Thread::current() == this, "from different thread");
  2519   if (_stack_guard_state == stack_guard_unused) return;
  2520   address low_addr = stack_base() - stack_size();
  2521   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2523   if (os::allocate_stack_guard_pages()) {
  2524     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2525       _stack_guard_state = stack_guard_unused;
  2526     } else {
  2527       warning("Attempt to deallocate stack guard pages failed.");
  2529   } else {
  2530     if (_stack_guard_state == stack_guard_unused) return;
  2531     if (os::unguard_memory((char *) low_addr, len)) {
  2532       _stack_guard_state = stack_guard_unused;
  2533     } else {
  2534         warning("Attempt to unprotect stack guard pages failed.");
  2539 void JavaThread::enable_stack_yellow_zone() {
  2540   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2541   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2543   // The base notation is from the stacks point of view, growing downward.
  2544   // We need to adjust it to work correctly with guard_memory()
  2545   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2547   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2548   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2550   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2551     _stack_guard_state = stack_guard_enabled;
  2552   } else {
  2553     warning("Attempt to guard stack yellow zone failed.");
  2555   enable_register_stack_guard();
  2558 void JavaThread::disable_stack_yellow_zone() {
  2559   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2560   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2562   // Simply return if called for a thread that does not use guard pages.
  2563   if (_stack_guard_state == stack_guard_unused) return;
  2565   // The base notation is from the stacks point of view, growing downward.
  2566   // We need to adjust it to work correctly with guard_memory()
  2567   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2569   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2570     _stack_guard_state = stack_guard_yellow_disabled;
  2571   } else {
  2572     warning("Attempt to unguard stack yellow zone failed.");
  2574   disable_register_stack_guard();
  2577 void JavaThread::enable_stack_red_zone() {
  2578   // The base notation is from the stacks point of view, growing downward.
  2579   // We need to adjust it to work correctly with guard_memory()
  2580   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2581   address base = stack_red_zone_base() - stack_red_zone_size();
  2583   guarantee(base < stack_base(),"Error calculating stack red zone");
  2584   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2586   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2587     warning("Attempt to guard stack red zone failed.");
  2591 void JavaThread::disable_stack_red_zone() {
  2592   // The base notation is from the stacks point of view, growing downward.
  2593   // We need to adjust it to work correctly with guard_memory()
  2594   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2595   address base = stack_red_zone_base() - stack_red_zone_size();
  2596   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2597     warning("Attempt to unguard stack red zone failed.");
  2601 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2602   // ignore is there is no stack
  2603   if (!has_last_Java_frame()) return;
  2604   // traverse the stack frames. Starts from top frame.
  2605   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2606     frame* fr = fst.current();
  2607     f(fr, fst.register_map());
  2612 #ifndef PRODUCT
  2613 // Deoptimization
  2614 // Function for testing deoptimization
  2615 void JavaThread::deoptimize() {
  2616   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2617   StackFrameStream fst(this, UseBiasedLocking);
  2618   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2619   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2620   // Iterate over all frames in the thread and deoptimize
  2621   for(; !fst.is_done(); fst.next()) {
  2622     if(fst.current()->can_be_deoptimized()) {
  2624       if (only_at) {
  2625         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2626         // consists of comma or carriage return separated numbers so
  2627         // search for the current bci in that string.
  2628         address pc = fst.current()->pc();
  2629         nmethod* nm =  (nmethod*) fst.current()->cb();
  2630         ScopeDesc* sd = nm->scope_desc_at( pc);
  2631         char buffer[8];
  2632         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2633         size_t len = strlen(buffer);
  2634         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2635         while (found != NULL) {
  2636           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2637               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2638             // Check that the bci found is bracketed by terminators.
  2639             break;
  2641           found = strstr(found + 1, buffer);
  2643         if (!found) {
  2644           continue;
  2648       if (DebugDeoptimization && !deopt) {
  2649         deopt = true; // One-time only print before deopt
  2650         tty->print_cr("[BEFORE Deoptimization]");
  2651         trace_frames();
  2652         trace_stack();
  2654       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2658   if (DebugDeoptimization && deopt) {
  2659     tty->print_cr("[AFTER Deoptimization]");
  2660     trace_frames();
  2665 // Make zombies
  2666 void JavaThread::make_zombies() {
  2667   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2668     if (fst.current()->can_be_deoptimized()) {
  2669       // it is a Java nmethod
  2670       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2671       nm->make_not_entrant();
  2675 #endif // PRODUCT
  2678 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2679   if (!has_last_Java_frame()) return;
  2680   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2681   StackFrameStream fst(this, UseBiasedLocking);
  2682   for(; !fst.is_done(); fst.next()) {
  2683     if (fst.current()->should_be_deoptimized()) {
  2684       if (LogCompilation && xtty != NULL) {
  2685         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
  2686         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
  2687                    this->name(), nm != NULL ? nm->compile_id() : -1);
  2690       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2696 // GC support
  2697 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2699 void JavaThread::gc_epilogue() {
  2700   frames_do(frame_gc_epilogue);
  2704 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2706 void JavaThread::gc_prologue() {
  2707   frames_do(frame_gc_prologue);
  2710 // If the caller is a NamedThread, then remember, in the current scope,
  2711 // the given JavaThread in its _processed_thread field.
  2712 class RememberProcessedThread: public StackObj {
  2713   NamedThread* _cur_thr;
  2714 public:
  2715   RememberProcessedThread(JavaThread* jthr) {
  2716     Thread* thread = Thread::current();
  2717     if (thread->is_Named_thread()) {
  2718       _cur_thr = (NamedThread *)thread;
  2719       _cur_thr->set_processed_thread(jthr);
  2720     } else {
  2721       _cur_thr = NULL;
  2725   ~RememberProcessedThread() {
  2726     if (_cur_thr) {
  2727       _cur_thr->set_processed_thread(NULL);
  2730 };
  2732 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  2733   // Verify that the deferred card marks have been flushed.
  2734   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2736   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2737   // since there may be more than one thread using each ThreadProfiler.
  2739   // Traverse the GCHandles
  2740   Thread::oops_do(f, cld_f, cf);
  2742   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2743           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2745   if (has_last_Java_frame()) {
  2746     // Record JavaThread to GC thread
  2747     RememberProcessedThread rpt(this);
  2749     // Traverse the privileged stack
  2750     if (_privileged_stack_top != NULL) {
  2751       _privileged_stack_top->oops_do(f);
  2754     // traverse the registered growable array
  2755     if (_array_for_gc != NULL) {
  2756       for (int index = 0; index < _array_for_gc->length(); index++) {
  2757         f->do_oop(_array_for_gc->adr_at(index));
  2761     // Traverse the monitor chunks
  2762     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2763       chunk->oops_do(f);
  2766     // Traverse the execution stack
  2767     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2768       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
  2772   // callee_target is never live across a gc point so NULL it here should
  2773   // it still contain a methdOop.
  2775   set_callee_target(NULL);
  2777   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2778   // If we have deferred set_locals there might be oops waiting to be
  2779   // written
  2780   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2781   if (list != NULL) {
  2782     for (int i = 0; i < list->length(); i++) {
  2783       list->at(i)->oops_do(f);
  2787   // Traverse instance variables at the end since the GC may be moving things
  2788   // around using this function
  2789   f->do_oop((oop*) &_threadObj);
  2790   f->do_oop((oop*) &_vm_result);
  2791   f->do_oop((oop*) &_exception_oop);
  2792   f->do_oop((oop*) &_pending_async_exception);
  2794   if (jvmti_thread_state() != NULL) {
  2795     jvmti_thread_state()->oops_do(f);
  2799 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2800   Thread::nmethods_do(cf);  // (super method is a no-op)
  2802   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2803           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2805   if (has_last_Java_frame()) {
  2806     // Traverse the execution stack
  2807     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2808       fst.current()->nmethods_do(cf);
  2813 void JavaThread::metadata_do(void f(Metadata*)) {
  2814   Thread::metadata_do(f);
  2815   if (has_last_Java_frame()) {
  2816     // Traverse the execution stack to call f() on the methods in the stack
  2817     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2818       fst.current()->metadata_do(f);
  2820   } else if (is_Compiler_thread()) {
  2821     // need to walk ciMetadata in current compile tasks to keep alive.
  2822     CompilerThread* ct = (CompilerThread*)this;
  2823     if (ct->env() != NULL) {
  2824       ct->env()->metadata_do(f);
  2829 // Printing
  2830 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2831   switch (_thread_state) {
  2832   case _thread_uninitialized:     return "_thread_uninitialized";
  2833   case _thread_new:               return "_thread_new";
  2834   case _thread_new_trans:         return "_thread_new_trans";
  2835   case _thread_in_native:         return "_thread_in_native";
  2836   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2837   case _thread_in_vm:             return "_thread_in_vm";
  2838   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2839   case _thread_in_Java:           return "_thread_in_Java";
  2840   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2841   case _thread_blocked:           return "_thread_blocked";
  2842   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2843   default:                        return "unknown thread state";
  2847 #ifndef PRODUCT
  2848 void JavaThread::print_thread_state_on(outputStream *st) const {
  2849   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2850 };
  2851 void JavaThread::print_thread_state() const {
  2852   print_thread_state_on(tty);
  2853 };
  2854 #endif // PRODUCT
  2856 // Called by Threads::print() for VM_PrintThreads operation
  2857 void JavaThread::print_on(outputStream *st) const {
  2858   st->print("\"%s\" ", get_thread_name());
  2859   oop thread_oop = threadObj();
  2860   if (thread_oop != NULL) {
  2861     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
  2862     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2863     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  2865   Thread::print_on(st);
  2866   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2867   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2868   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2869     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2871 #ifndef PRODUCT
  2872   print_thread_state_on(st);
  2873   _safepoint_state->print_on(st);
  2874 #endif // PRODUCT
  2877 // Called by fatal error handler. The difference between this and
  2878 // JavaThread::print() is that we can't grab lock or allocate memory.
  2879 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2880   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2881   oop thread_obj = threadObj();
  2882   if (thread_obj != NULL) {
  2883      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2885   st->print(" [");
  2886   st->print("%s", _get_thread_state_name(_thread_state));
  2887   if (osthread()) {
  2888     st->print(", id=%d", osthread()->thread_id());
  2890   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2891             _stack_base - _stack_size, _stack_base);
  2892   st->print("]");
  2893   return;
  2896 // Verification
  2898 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2900 void JavaThread::verify() {
  2901   // Verify oops in the thread.
  2902   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
  2904   // Verify the stack frames.
  2905   frames_do(frame_verify);
  2908 // CR 6300358 (sub-CR 2137150)
  2909 // Most callers of this method assume that it can't return NULL but a
  2910 // thread may not have a name whilst it is in the process of attaching to
  2911 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2912 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2913 // if vm exit occurs during initialization). These cases can all be accounted
  2914 // for such that this method never returns NULL.
  2915 const char* JavaThread::get_thread_name() const {
  2916 #ifdef ASSERT
  2917   // early safepoints can hit while current thread does not yet have TLS
  2918   if (!SafepointSynchronize::is_at_safepoint()) {
  2919     Thread *cur = Thread::current();
  2920     if (!(cur->is_Java_thread() && cur == this)) {
  2921       // Current JavaThreads are allowed to get their own name without
  2922       // the Threads_lock.
  2923       assert_locked_or_safepoint(Threads_lock);
  2926 #endif // ASSERT
  2927     return get_thread_name_string();
  2930 // Returns a non-NULL representation of this thread's name, or a suitable
  2931 // descriptive string if there is no set name
  2932 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2933   const char* name_str;
  2934   oop thread_obj = threadObj();
  2935   if (thread_obj != NULL) {
  2936     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2937     if (name != NULL) {
  2938       if (buf == NULL) {
  2939         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2941       else {
  2942         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2945     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2946       name_str = "<no-name - thread is attaching>";
  2948     else {
  2949       name_str = Thread::name();
  2952   else {
  2953     name_str = Thread::name();
  2955   assert(name_str != NULL, "unexpected NULL thread name");
  2956   return name_str;
  2960 const char* JavaThread::get_threadgroup_name() const {
  2961   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2962   oop thread_obj = threadObj();
  2963   if (thread_obj != NULL) {
  2964     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2965     if (thread_group != NULL) {
  2966       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2967       // ThreadGroup.name can be null
  2968       if (name != NULL) {
  2969         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2970         return str;
  2974   return NULL;
  2977 const char* JavaThread::get_parent_name() const {
  2978   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2979   oop thread_obj = threadObj();
  2980   if (thread_obj != NULL) {
  2981     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2982     if (thread_group != NULL) {
  2983       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2984       if (parent != NULL) {
  2985         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2986         // ThreadGroup.name can be null
  2987         if (name != NULL) {
  2988           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2989           return str;
  2994   return NULL;
  2997 ThreadPriority JavaThread::java_priority() const {
  2998   oop thr_oop = threadObj();
  2999   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  3000   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  3001   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  3002   return priority;
  3005 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  3007   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  3008   // Link Java Thread object <-> C++ Thread
  3010   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  3011   // and put it into a new Handle.  The Handle "thread_oop" can then
  3012   // be used to pass the C++ thread object to other methods.
  3014   // Set the Java level thread object (jthread) field of the
  3015   // new thread (a JavaThread *) to C++ thread object using the
  3016   // "thread_oop" handle.
  3018   // Set the thread field (a JavaThread *) of the
  3019   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  3021   Handle thread_oop(Thread::current(),
  3022                     JNIHandles::resolve_non_null(jni_thread));
  3023   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  3024     "must be initialized");
  3025   set_threadObj(thread_oop());
  3026   java_lang_Thread::set_thread(thread_oop(), this);
  3028   if (prio == NoPriority) {
  3029     prio = java_lang_Thread::priority(thread_oop());
  3030     assert(prio != NoPriority, "A valid priority should be present");
  3033   // Push the Java priority down to the native thread; needs Threads_lock
  3034   Thread::set_priority(this, prio);
  3036   // Add the new thread to the Threads list and set it in motion.
  3037   // We must have threads lock in order to call Threads::add.
  3038   // It is crucial that we do not block before the thread is
  3039   // added to the Threads list for if a GC happens, then the java_thread oop
  3040   // will not be visited by GC.
  3041   Threads::add(this);
  3044 oop JavaThread::current_park_blocker() {
  3045   // Support for JSR-166 locks
  3046   oop thread_oop = threadObj();
  3047   if (thread_oop != NULL &&
  3048       JDK_Version::current().supports_thread_park_blocker()) {
  3049     return java_lang_Thread::park_blocker(thread_oop);
  3051   return NULL;
  3055 void JavaThread::print_stack_on(outputStream* st) {
  3056   if (!has_last_Java_frame()) return;
  3057   ResourceMark rm;
  3058   HandleMark   hm;
  3060   RegisterMap reg_map(this);
  3061   vframe* start_vf = last_java_vframe(&reg_map);
  3062   int count = 0;
  3063   for (vframe* f = start_vf; f; f = f->sender() ) {
  3064     if (f->is_java_frame()) {
  3065       javaVFrame* jvf = javaVFrame::cast(f);
  3066       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  3068       // Print out lock information
  3069       if (JavaMonitorsInStackTrace) {
  3070         jvf->print_lock_info_on(st, count);
  3072     } else {
  3073       // Ignore non-Java frames
  3076     // Bail-out case for too deep stacks
  3077     count++;
  3078     if (MaxJavaStackTraceDepth == count) return;
  3083 // JVMTI PopFrame support
  3084 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  3085   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  3086   if (in_bytes(size_in_bytes) != 0) {
  3087     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  3088     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  3089     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  3093 void* JavaThread::popframe_preserved_args() {
  3094   return _popframe_preserved_args;
  3097 ByteSize JavaThread::popframe_preserved_args_size() {
  3098   return in_ByteSize(_popframe_preserved_args_size);
  3101 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  3102   int sz = in_bytes(popframe_preserved_args_size());
  3103   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  3104   return in_WordSize(sz / wordSize);
  3107 void JavaThread::popframe_free_preserved_args() {
  3108   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  3109   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  3110   _popframe_preserved_args = NULL;
  3111   _popframe_preserved_args_size = 0;
  3114 #ifndef PRODUCT
  3116 void JavaThread::trace_frames() {
  3117   tty->print_cr("[Describe stack]");
  3118   int frame_no = 1;
  3119   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3120     tty->print("  %d. ", frame_no++);
  3121     fst.current()->print_value_on(tty,this);
  3122     tty->cr();
  3126 class PrintAndVerifyOopClosure: public OopClosure {
  3127  protected:
  3128   template <class T> inline void do_oop_work(T* p) {
  3129     oop obj = oopDesc::load_decode_heap_oop(p);
  3130     if (obj == NULL) return;
  3131     tty->print(INTPTR_FORMAT ": ", p);
  3132     if (obj->is_oop_or_null()) {
  3133       if (obj->is_objArray()) {
  3134         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3135       } else {
  3136         obj->print();
  3138     } else {
  3139       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3141     tty->cr();
  3143  public:
  3144   virtual void do_oop(oop* p) { do_oop_work(p); }
  3145   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3146 };
  3149 static void oops_print(frame* f, const RegisterMap *map) {
  3150   PrintAndVerifyOopClosure print;
  3151   f->print_value();
  3152   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
  3155 // Print our all the locations that contain oops and whether they are
  3156 // valid or not.  This useful when trying to find the oldest frame
  3157 // where an oop has gone bad since the frame walk is from youngest to
  3158 // oldest.
  3159 void JavaThread::trace_oops() {
  3160   tty->print_cr("[Trace oops]");
  3161   frames_do(oops_print);
  3165 #ifdef ASSERT
  3166 // Print or validate the layout of stack frames
  3167 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3168   ResourceMark rm;
  3169   PRESERVE_EXCEPTION_MARK;
  3170   FrameValues values;
  3171   int frame_no = 0;
  3172   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3173     fst.current()->describe(values, ++frame_no);
  3174     if (depth == frame_no) break;
  3176   if (validate_only) {
  3177     values.validate();
  3178   } else {
  3179     tty->print_cr("[Describe stack layout]");
  3180     values.print(this);
  3183 #endif
  3185 void JavaThread::trace_stack_from(vframe* start_vf) {
  3186   ResourceMark rm;
  3187   int vframe_no = 1;
  3188   for (vframe* f = start_vf; f; f = f->sender() ) {
  3189     if (f->is_java_frame()) {
  3190       javaVFrame::cast(f)->print_activation(vframe_no++);
  3191     } else {
  3192       f->print();
  3194     if (vframe_no > StackPrintLimit) {
  3195       tty->print_cr("...<more frames>...");
  3196       return;
  3202 void JavaThread::trace_stack() {
  3203   if (!has_last_Java_frame()) return;
  3204   ResourceMark rm;
  3205   HandleMark   hm;
  3206   RegisterMap reg_map(this);
  3207   trace_stack_from(last_java_vframe(&reg_map));
  3211 #endif // PRODUCT
  3214 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3215   assert(reg_map != NULL, "a map must be given");
  3216   frame f = last_frame();
  3217   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3218     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3220   return NULL;
  3224 Klass* JavaThread::security_get_caller_class(int depth) {
  3225   vframeStream vfst(this);
  3226   vfst.security_get_caller_frame(depth);
  3227   if (!vfst.at_end()) {
  3228     return vfst.method()->method_holder();
  3230   return NULL;
  3233 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3234   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3235   CompileBroker::compiler_thread_loop();
  3238 // Create a CompilerThread
  3239 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3240 : JavaThread(&compiler_thread_entry) {
  3241   _env   = NULL;
  3242   _log   = NULL;
  3243   _task  = NULL;
  3244   _queue = queue;
  3245   _counters = counters;
  3246   _buffer_blob = NULL;
  3247   _scanned_nmethod = NULL;
  3248   _compiler = NULL;
  3250 #ifndef PRODUCT
  3251   _ideal_graph_printer = NULL;
  3252 #endif
  3255 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  3256   JavaThread::oops_do(f, cld_f, cf);
  3257   if (_scanned_nmethod != NULL && cf != NULL) {
  3258     // Safepoints can occur when the sweeper is scanning an nmethod so
  3259     // process it here to make sure it isn't unloaded in the middle of
  3260     // a scan.
  3261     cf->do_code_blob(_scanned_nmethod);
  3266 // ======= Threads ========
  3268 // The Threads class links together all active threads, and provides
  3269 // operations over all threads.  It is protected by its own Mutex
  3270 // lock, which is also used in other contexts to protect thread
  3271 // operations from having the thread being operated on from exiting
  3272 // and going away unexpectedly (e.g., safepoint synchronization)
  3274 JavaThread* Threads::_thread_list = NULL;
  3275 int         Threads::_number_of_threads = 0;
  3276 int         Threads::_number_of_non_daemon_threads = 0;
  3277 int         Threads::_return_code = 0;
  3278 size_t      JavaThread::_stack_size_at_create = 0;
  3279 #ifdef ASSERT
  3280 bool        Threads::_vm_complete = false;
  3281 #endif
  3283 // All JavaThreads
  3284 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3286 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3287 void Threads::threads_do(ThreadClosure* tc) {
  3288   assert_locked_or_safepoint(Threads_lock);
  3289   // ALL_JAVA_THREADS iterates through all JavaThreads
  3290   ALL_JAVA_THREADS(p) {
  3291     tc->do_thread(p);
  3293   // Someday we could have a table or list of all non-JavaThreads.
  3294   // For now, just manually iterate through them.
  3295   tc->do_thread(VMThread::vm_thread());
  3296   Universe::heap()->gc_threads_do(tc);
  3297   WatcherThread *wt = WatcherThread::watcher_thread();
  3298   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3299   // the data for WatcherThread is still valid upon being examined. However,
  3300   // considering that WatchThread terminates when the VM is on the way to
  3301   // exit at safepoint, the chance of the above is extremely small. The right
  3302   // way to prevent termination of WatcherThread would be to acquire
  3303   // Terminator_lock, but we can't do that without violating the lock rank
  3304   // checking in some cases.
  3305   if (wt != NULL)
  3306     tc->do_thread(wt);
  3308   // If CompilerThreads ever become non-JavaThreads, add them here
  3311 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3313   extern void JDK_Version_init();
  3315   // Check version
  3316   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3318   // Initialize the output stream module
  3319   ostream_init();
  3321   // Process java launcher properties.
  3322   Arguments::process_sun_java_launcher_properties(args);
  3324   // Initialize the os module before using TLS
  3325   os::init();
  3327   // Initialize system properties.
  3328   Arguments::init_system_properties();
  3330   // So that JDK version can be used as a discrimintor when parsing arguments
  3331   JDK_Version_init();
  3333   // Update/Initialize System properties after JDK version number is known
  3334   Arguments::init_version_specific_system_properties();
  3336   // Parse arguments
  3337   jint parse_result = Arguments::parse(args);
  3338   if (parse_result != JNI_OK) return parse_result;
  3340   os::init_before_ergo();
  3342   jint ergo_result = Arguments::apply_ergo();
  3343   if (ergo_result != JNI_OK) return ergo_result;
  3345   if (PauseAtStartup) {
  3346     os::pause();
  3349 #ifndef USDT2
  3350   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3351 #else /* USDT2 */
  3352   HOTSPOT_VM_INIT_BEGIN();
  3353 #endif /* USDT2 */
  3355   // Record VM creation timing statistics
  3356   TraceVmCreationTime create_vm_timer;
  3357   create_vm_timer.start();
  3359   // Timing (must come after argument parsing)
  3360   TraceTime timer("Create VM", TraceStartupTime);
  3362   // Initialize the os module after parsing the args
  3363   jint os_init_2_result = os::init_2();
  3364   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3366   jint adjust_after_os_result = Arguments::adjust_after_os();
  3367   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
  3369   // intialize TLS
  3370   ThreadLocalStorage::init();
  3372   // Bootstrap native memory tracking, so it can start recording memory
  3373   // activities before worker thread is started. This is the first phase
  3374   // of bootstrapping, VM is currently running in single-thread mode.
  3375   MemTracker::bootstrap_single_thread();
  3377   // Initialize output stream logging
  3378   ostream_init_log();
  3380   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3381   // Must be before create_vm_init_agents()
  3382   if (Arguments::init_libraries_at_startup()) {
  3383     convert_vm_init_libraries_to_agents();
  3386   // Launch -agentlib/-agentpath and converted -Xrun agents
  3387   if (Arguments::init_agents_at_startup()) {
  3388     create_vm_init_agents();
  3391   // Initialize Threads state
  3392   _thread_list = NULL;
  3393   _number_of_threads = 0;
  3394   _number_of_non_daemon_threads = 0;
  3396   // Initialize global data structures and create system classes in heap
  3397   vm_init_globals();
  3399   // Attach the main thread to this os thread
  3400   JavaThread* main_thread = new JavaThread();
  3401   main_thread->set_thread_state(_thread_in_vm);
  3402   // must do this before set_active_handles and initialize_thread_local_storage
  3403   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3404   // change the stack size recorded here to one based on the java thread
  3405   // stacksize. This adjusted size is what is used to figure the placement
  3406   // of the guard pages.
  3407   main_thread->record_stack_base_and_size();
  3408   main_thread->initialize_thread_local_storage();
  3410   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3412   if (!main_thread->set_as_starting_thread()) {
  3413     vm_shutdown_during_initialization(
  3414       "Failed necessary internal allocation. Out of swap space");
  3415     delete main_thread;
  3416     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3417     return JNI_ENOMEM;
  3420   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3421   // crash Linux VM, see notes in os_linux.cpp.
  3422   main_thread->create_stack_guard_pages();
  3424   // Initialize Java-Level synchronization subsystem
  3425   ObjectMonitor::Initialize() ;
  3427   // Second phase of bootstrapping, VM is about entering multi-thread mode
  3428   MemTracker::bootstrap_multi_thread();
  3430   // Initialize global modules
  3431   jint status = init_globals();
  3432   if (status != JNI_OK) {
  3433     delete main_thread;
  3434     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3435     return status;
  3438   // Should be done after the heap is fully created
  3439   main_thread->cache_global_variables();
  3441   HandleMark hm;
  3443   { MutexLocker mu(Threads_lock);
  3444     Threads::add(main_thread);
  3447   // Any JVMTI raw monitors entered in onload will transition into
  3448   // real raw monitor. VM is setup enough here for raw monitor enter.
  3449   JvmtiExport::transition_pending_onload_raw_monitors();
  3451   // Fully start NMT
  3452   MemTracker::start();
  3454   // Create the VMThread
  3455   { TraceTime timer("Start VMThread", TraceStartupTime);
  3456     VMThread::create();
  3457     Thread* vmthread = VMThread::vm_thread();
  3459     if (!os::create_thread(vmthread, os::vm_thread))
  3460       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3462     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3463     // Monitors can have spurious returns, must always check another state flag
  3465       MutexLocker ml(Notify_lock);
  3466       os::start_thread(vmthread);
  3467       while (vmthread->active_handles() == NULL) {
  3468         Notify_lock->wait();
  3473   assert (Universe::is_fully_initialized(), "not initialized");
  3474   if (VerifyDuringStartup) {
  3475     // Make sure we're starting with a clean slate.
  3476     VM_Verify verify_op;
  3477     VMThread::execute(&verify_op);
  3480   EXCEPTION_MARK;
  3482   // At this point, the Universe is initialized, but we have not executed
  3483   // any byte code.  Now is a good time (the only time) to dump out the
  3484   // internal state of the JVM for sharing.
  3485   if (DumpSharedSpaces) {
  3486     MetaspaceShared::preload_and_dump(CHECK_0);
  3487     ShouldNotReachHere();
  3490   // Always call even when there are not JVMTI environments yet, since environments
  3491   // may be attached late and JVMTI must track phases of VM execution
  3492   JvmtiExport::enter_start_phase();
  3494   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3495   JvmtiExport::post_vm_start();
  3498     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3500     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3501       create_vm_init_libraries();
  3504     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3506     // Initialize java_lang.System (needed before creating the thread)
  3507     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3508     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3509     Handle thread_group = create_initial_thread_group(CHECK_0);
  3510     Universe::set_main_thread_group(thread_group());
  3511     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3512     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3513     main_thread->set_threadObj(thread_object);
  3514     // Set thread status to running since main thread has
  3515     // been started and running.
  3516     java_lang_Thread::set_thread_status(thread_object,
  3517                                         java_lang_Thread::RUNNABLE);
  3519     // The VM creates & returns objects of this class. Make sure it's initialized.
  3520     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3522     // The VM preresolves methods to these classes. Make sure that they get initialized
  3523     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3524     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3525     call_initializeSystemClass(CHECK_0);
  3527     // get the Java runtime name after java.lang.System is initialized
  3528     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3529     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
  3531     // an instance of OutOfMemory exception has been allocated earlier
  3532     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3533     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3534     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3535     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3536     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3537     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3538     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3539     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3542   // See        : bugid 4211085.
  3543   // Background : the static initializer of java.lang.Compiler tries to read
  3544   //              property"java.compiler" and read & write property "java.vm.info".
  3545   //              When a security manager is installed through the command line
  3546   //              option "-Djava.security.manager", the above properties are not
  3547   //              readable and the static initializer for java.lang.Compiler fails
  3548   //              resulting in a NoClassDefFoundError.  This can happen in any
  3549   //              user code which calls methods in java.lang.Compiler.
  3550   // Hack :       the hack is to pre-load and initialize this class, so that only
  3551   //              system domains are on the stack when the properties are read.
  3552   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3553   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3554   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3555   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3556   //              Once that is done, we should remove this hack.
  3557   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3559   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3560   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3561   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3562   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3563   // This should also be taken out as soon as 4211383 gets fixed.
  3564   reset_vm_info_property(CHECK_0);
  3566   quicken_jni_functions();
  3568   // Must be run after init_ft which initializes ft_enabled
  3569   if (TRACE_INITIALIZE() != JNI_OK) {
  3570     vm_exit_during_initialization("Failed to initialize tracing backend");
  3573   // Set flag that basic initialization has completed. Used by exceptions and various
  3574   // debug stuff, that does not work until all basic classes have been initialized.
  3575   set_init_completed();
  3577   Metaspace::post_initialize();
  3579 #ifndef USDT2
  3580   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3581 #else /* USDT2 */
  3582   HOTSPOT_VM_INIT_END();
  3583 #endif /* USDT2 */
  3585   // record VM initialization completion time
  3586 #if INCLUDE_MANAGEMENT
  3587   Management::record_vm_init_completed();
  3588 #endif // INCLUDE_MANAGEMENT
  3590   // Compute system loader. Note that this has to occur after set_init_completed, since
  3591   // valid exceptions may be thrown in the process.
  3592   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3593   // set_init_completed has just been called, causing exceptions not to be shortcut
  3594   // anymore. We call vm_exit_during_initialization directly instead.
  3595   SystemDictionary::compute_java_system_loader(THREAD);
  3596   if (HAS_PENDING_EXCEPTION) {
  3597     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3600 #if INCLUDE_ALL_GCS
  3601   // Support for ConcurrentMarkSweep. This should be cleaned up
  3602   // and better encapsulated. The ugly nested if test would go away
  3603   // once things are properly refactored. XXX YSR
  3604   if (UseConcMarkSweepGC || UseG1GC) {
  3605     if (UseConcMarkSweepGC) {
  3606       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3607     } else {
  3608       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3610     if (HAS_PENDING_EXCEPTION) {
  3611       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3614 #endif // INCLUDE_ALL_GCS
  3616   // Always call even when there are not JVMTI environments yet, since environments
  3617   // may be attached late and JVMTI must track phases of VM execution
  3618   JvmtiExport::enter_live_phase();
  3620   // Signal Dispatcher needs to be started before VMInit event is posted
  3621   os::signal_init();
  3623   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3624   if (!DisableAttachMechanism) {
  3625     AttachListener::vm_start();
  3626     if (StartAttachListener || AttachListener::init_at_startup()) {
  3627       AttachListener::init();
  3631   // Launch -Xrun agents
  3632   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3633   // back-end can launch with -Xdebug -Xrunjdwp.
  3634   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3635     create_vm_init_libraries();
  3638   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3639   JvmtiExport::post_vm_initialized();
  3641   if (TRACE_START() != JNI_OK) {
  3642     vm_exit_during_initialization("Failed to start tracing backend.");
  3645   if (CleanChunkPoolAsync) {
  3646     Chunk::start_chunk_pool_cleaner_task();
  3649   // initialize compiler(s)
  3650 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
  3651   CompileBroker::compilation_init();
  3652 #endif
  3654   if (EnableInvokeDynamic) {
  3655     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
  3656     // It is done after compilers are initialized, because otherwise compilations of
  3657     // signature polymorphic MH intrinsics can be missed
  3658     // (see SystemDictionary::find_method_handle_intrinsic).
  3659     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
  3660     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
  3661     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
  3664 #if INCLUDE_MANAGEMENT
  3665   Management::initialize(THREAD);
  3666 #endif // INCLUDE_MANAGEMENT
  3668   if (HAS_PENDING_EXCEPTION) {
  3669     // management agent fails to start possibly due to
  3670     // configuration problem and is responsible for printing
  3671     // stack trace if appropriate. Simply exit VM.
  3672     vm_exit(1);
  3675   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3676   if (MemProfiling)                   MemProfiler::engage();
  3677   StatSampler::engage();
  3678   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3680   BiasedLocking::init();
  3682 #if INCLUDE_RTM_OPT
  3683   RTMLockingCounters::init();
  3684 #endif
  3686   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3687     call_postVMInitHook(THREAD);
  3688     // The Java side of PostVMInitHook.run must deal with all
  3689     // exceptions and provide means of diagnosis.
  3690     if (HAS_PENDING_EXCEPTION) {
  3691       CLEAR_PENDING_EXCEPTION;
  3696       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  3697       // Make sure the watcher thread can be started by WatcherThread::start()
  3698       // or by dynamic enrollment.
  3699       WatcherThread::make_startable();
  3700       // Start up the WatcherThread if there are any periodic tasks
  3701       // NOTE:  All PeriodicTasks should be registered by now. If they
  3702       //   aren't, late joiners might appear to start slowly (we might
  3703       //   take a while to process their first tick).
  3704       if (PeriodicTask::num_tasks() > 0) {
  3705           WatcherThread::start();
  3709   // Give os specific code one last chance to start
  3710   os::init_3();
  3712   create_vm_timer.end();
  3713 #ifdef ASSERT
  3714   _vm_complete = true;
  3715 #endif
  3716   return JNI_OK;
  3719 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3720 extern "C" {
  3721   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3723 // Find a command line agent library and return its entry point for
  3724 //         -agentlib:  -agentpath:   -Xrun
  3725 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3726 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3727   OnLoadEntry_t on_load_entry = NULL;
  3728   void *library = NULL;
  3730   if (!agent->valid()) {
  3731     char buffer[JVM_MAXPATHLEN];
  3732     char ebuf[1024];
  3733     const char *name = agent->name();
  3734     const char *msg = "Could not find agent library ";
  3736     // First check to see if agent is statically linked into executable
  3737     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
  3738       library = agent->os_lib();
  3739     } else if (agent->is_absolute_path()) {
  3740       library = os::dll_load(name, ebuf, sizeof ebuf);
  3741       if (library == NULL) {
  3742         const char *sub_msg = " in absolute path, with error: ";
  3743         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3744         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3745         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3746         // If we can't find the agent, exit.
  3747         vm_exit_during_initialization(buf, NULL);
  3748         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3750     } else {
  3751       // Try to load the agent from the standard dll directory
  3752       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
  3753                              name)) {
  3754         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3756       if (library == NULL) { // Try the local directory
  3757         char ns[1] = {0};
  3758         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
  3759           library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3761         if (library == NULL) {
  3762           const char *sub_msg = " on the library path, with error: ";
  3763           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3764           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3765           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3766           // If we can't find the agent, exit.
  3767           vm_exit_during_initialization(buf, NULL);
  3768           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3772     agent->set_os_lib(library);
  3773     agent->set_valid();
  3776   // Find the OnLoad function.
  3777   on_load_entry =
  3778     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
  3779                                                           false,
  3780                                                           on_load_symbols,
  3781                                                           num_symbol_entries));
  3782   return on_load_entry;
  3785 // Find the JVM_OnLoad entry point
  3786 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3787   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3788   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3791 // Find the Agent_OnLoad entry point
  3792 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3793   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3794   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3797 // For backwards compatibility with -Xrun
  3798 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3799 // treated like -agentpath:
  3800 // Must be called before agent libraries are created
  3801 void Threads::convert_vm_init_libraries_to_agents() {
  3802   AgentLibrary* agent;
  3803   AgentLibrary* next;
  3805   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3806     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3807     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3809     // If there is an JVM_OnLoad function it will get called later,
  3810     // otherwise see if there is an Agent_OnLoad
  3811     if (on_load_entry == NULL) {
  3812       on_load_entry = lookup_agent_on_load(agent);
  3813       if (on_load_entry != NULL) {
  3814         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3815         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3816         Arguments::convert_library_to_agent(agent);
  3817       } else {
  3818         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3824 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3825 // Invokes Agent_OnLoad
  3826 // Called very early -- before JavaThreads exist
  3827 void Threads::create_vm_init_agents() {
  3828   extern struct JavaVM_ main_vm;
  3829   AgentLibrary* agent;
  3831   JvmtiExport::enter_onload_phase();
  3833   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3834     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3836     if (on_load_entry != NULL) {
  3837       // Invoke the Agent_OnLoad function
  3838       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3839       if (err != JNI_OK) {
  3840         vm_exit_during_initialization("agent library failed to init", agent->name());
  3842     } else {
  3843       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3846   JvmtiExport::enter_primordial_phase();
  3849 extern "C" {
  3850   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3853 void Threads::shutdown_vm_agents() {
  3854   // Send any Agent_OnUnload notifications
  3855   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3856   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
  3857   extern struct JavaVM_ main_vm;
  3858   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3860     // Find the Agent_OnUnload function.
  3861     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3862       os::find_agent_function(agent,
  3863       false,
  3864       on_unload_symbols,
  3865       num_symbol_entries));
  3867     // Invoke the Agent_OnUnload function
  3868     if (unload_entry != NULL) {
  3869       JavaThread* thread = JavaThread::current();
  3870       ThreadToNativeFromVM ttn(thread);
  3871       HandleMark hm(thread);
  3872       (*unload_entry)(&main_vm);
  3877 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3878 // Invokes JVM_OnLoad
  3879 void Threads::create_vm_init_libraries() {
  3880   extern struct JavaVM_ main_vm;
  3881   AgentLibrary* agent;
  3883   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3884     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3886     if (on_load_entry != NULL) {
  3887       // Invoke the JVM_OnLoad function
  3888       JavaThread* thread = JavaThread::current();
  3889       ThreadToNativeFromVM ttn(thread);
  3890       HandleMark hm(thread);
  3891       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3892       if (err != JNI_OK) {
  3893         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3895     } else {
  3896       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3901 // Last thread running calls java.lang.Shutdown.shutdown()
  3902 void JavaThread::invoke_shutdown_hooks() {
  3903   HandleMark hm(this);
  3905   // We could get here with a pending exception, if so clear it now.
  3906   if (this->has_pending_exception()) {
  3907     this->clear_pending_exception();
  3910   EXCEPTION_MARK;
  3911   Klass* k =
  3912     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3913                                       THREAD);
  3914   if (k != NULL) {
  3915     // SystemDictionary::resolve_or_null will return null if there was
  3916     // an exception.  If we cannot load the Shutdown class, just don't
  3917     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3918     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3919     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3920     // was called, the Shutdown class would have already been loaded
  3921     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3922     instanceKlassHandle shutdown_klass (THREAD, k);
  3923     JavaValue result(T_VOID);
  3924     JavaCalls::call_static(&result,
  3925                            shutdown_klass,
  3926                            vmSymbols::shutdown_method_name(),
  3927                            vmSymbols::void_method_signature(),
  3928                            THREAD);
  3930   CLEAR_PENDING_EXCEPTION;
  3933 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3934 // the program falls off the end of main(). Another VM exit path is through
  3935 // vm_exit() when the program calls System.exit() to return a value or when
  3936 // there is a serious error in VM. The two shutdown paths are not exactly
  3937 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3938 // and VM_Exit op at VM level.
  3939 //
  3940 // Shutdown sequence:
  3941 //   + Shutdown native memory tracking if it is on
  3942 //   + Wait until we are the last non-daemon thread to execute
  3943 //     <-- every thing is still working at this moment -->
  3944 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3945 //        shutdown hooks, run finalizers if finalization-on-exit
  3946 //   + Call before_exit(), prepare for VM exit
  3947 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3948 //        currently the only user of this mechanism is File.deleteOnExit())
  3949 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3950 //        post thread end and vm death events to JVMTI,
  3951 //        stop signal thread
  3952 //   + Call JavaThread::exit(), it will:
  3953 //      > release JNI handle blocks, remove stack guard pages
  3954 //      > remove this thread from Threads list
  3955 //     <-- no more Java code from this thread after this point -->
  3956 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3957 //     the compiler threads at safepoint
  3958 //     <-- do not use anything that could get blocked by Safepoint -->
  3959 //   + Disable tracing at JNI/JVM barriers
  3960 //   + Set _vm_exited flag for threads that are still running native code
  3961 //   + Delete this thread
  3962 //   + Call exit_globals()
  3963 //      > deletes tty
  3964 //      > deletes PerfMemory resources
  3965 //   + Return to caller
  3967 bool Threads::destroy_vm() {
  3968   JavaThread* thread = JavaThread::current();
  3970 #ifdef ASSERT
  3971   _vm_complete = false;
  3972 #endif
  3973   // Wait until we are the last non-daemon thread to execute
  3974   { MutexLocker nu(Threads_lock);
  3975     while (Threads::number_of_non_daemon_threads() > 1 )
  3976       // This wait should make safepoint checks, wait without a timeout,
  3977       // and wait as a suspend-equivalent condition.
  3978       //
  3979       // Note: If the FlatProfiler is running and this thread is waiting
  3980       // for another non-daemon thread to finish, then the FlatProfiler
  3981       // is waiting for the external suspend request on this thread to
  3982       // complete. wait_for_ext_suspend_completion() will eventually
  3983       // timeout, but that takes time. Making this wait a suspend-
  3984       // equivalent condition solves that timeout problem.
  3985       //
  3986       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3987                          Mutex::_as_suspend_equivalent_flag);
  3990   // Hang forever on exit if we are reporting an error.
  3991   if (ShowMessageBoxOnError && is_error_reported()) {
  3992     os::infinite_sleep();
  3994   os::wait_for_keypress_at_exit();
  3996   if (JDK_Version::is_jdk12x_version()) {
  3997     // We are the last thread running, so check if finalizers should be run.
  3998     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3999     HandleMark rm(thread);
  4000     Universe::run_finalizers_on_exit();
  4001   } else {
  4002     // run Java level shutdown hooks
  4003     thread->invoke_shutdown_hooks();
  4006   before_exit(thread);
  4008   thread->exit(true);
  4010   // Stop VM thread.
  4012     // 4945125 The vm thread comes to a safepoint during exit.
  4013     // GC vm_operations can get caught at the safepoint, and the
  4014     // heap is unparseable if they are caught. Grab the Heap_lock
  4015     // to prevent this. The GC vm_operations will not be able to
  4016     // queue until after the vm thread is dead. After this point,
  4017     // we'll never emerge out of the safepoint before the VM exits.
  4019     MutexLocker ml(Heap_lock);
  4021     VMThread::wait_for_vm_thread_exit();
  4022     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  4023     VMThread::destroy();
  4026   // clean up ideal graph printers
  4027 #if defined(COMPILER2) && !defined(PRODUCT)
  4028   IdealGraphPrinter::clean_up();
  4029 #endif
  4031   // Now, all Java threads are gone except daemon threads. Daemon threads
  4032   // running Java code or in VM are stopped by the Safepoint. However,
  4033   // daemon threads executing native code are still running.  But they
  4034   // will be stopped at native=>Java/VM barriers. Note that we can't
  4035   // simply kill or suspend them, as it is inherently deadlock-prone.
  4037 #ifndef PRODUCT
  4038   // disable function tracing at JNI/JVM barriers
  4039   TraceJNICalls = false;
  4040   TraceJVMCalls = false;
  4041   TraceRuntimeCalls = false;
  4042 #endif
  4044   VM_Exit::set_vm_exited();
  4046   notify_vm_shutdown();
  4048   delete thread;
  4050   // exit_globals() will delete tty
  4051   exit_globals();
  4053   return true;
  4057 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  4058   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  4059   return is_supported_jni_version(version);
  4063 jboolean Threads::is_supported_jni_version(jint version) {
  4064   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  4065   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  4066   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  4067   if (version == JNI_VERSION_1_8) return JNI_TRUE;
  4068   return JNI_FALSE;
  4072 void Threads::add(JavaThread* p, bool force_daemon) {
  4073   // The threads lock must be owned at this point
  4074   assert_locked_or_safepoint(Threads_lock);
  4076   // See the comment for this method in thread.hpp for its purpose and
  4077   // why it is called here.
  4078   p->initialize_queues();
  4079   p->set_next(_thread_list);
  4080   _thread_list = p;
  4081   _number_of_threads++;
  4082   oop threadObj = p->threadObj();
  4083   bool daemon = true;
  4084   // Bootstrapping problem: threadObj can be null for initial
  4085   // JavaThread (or for threads attached via JNI)
  4086   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4087     _number_of_non_daemon_threads++;
  4088     daemon = false;
  4091   p->set_safepoint_visible(true);
  4093   ThreadService::add_thread(p, daemon);
  4095   // Possible GC point.
  4096   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4099 void Threads::remove(JavaThread* p) {
  4100   // Extra scope needed for Thread_lock, so we can check
  4101   // that we do not remove thread without safepoint code notice
  4102   { MutexLocker ml(Threads_lock);
  4104     assert(includes(p), "p must be present");
  4106     JavaThread* current = _thread_list;
  4107     JavaThread* prev    = NULL;
  4109     while (current != p) {
  4110       prev    = current;
  4111       current = current->next();
  4114     if (prev) {
  4115       prev->set_next(current->next());
  4116     } else {
  4117       _thread_list = p->next();
  4119     _number_of_threads--;
  4120     oop threadObj = p->threadObj();
  4121     bool daemon = true;
  4122     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4123       _number_of_non_daemon_threads--;
  4124       daemon = false;
  4126       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4127       // on destroy_vm will wake up.
  4128       if (number_of_non_daemon_threads() == 1)
  4129         Threads_lock->notify_all();
  4131     ThreadService::remove_thread(p, daemon);
  4133     // Make sure that safepoint code disregard this thread. This is needed since
  4134     // the thread might mess around with locks after this point. This can cause it
  4135     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4136     // of this thread since it is removed from the queue.
  4137     p->set_terminated_value();
  4139     // Now, this thread is not visible to safepoint
  4140     p->set_safepoint_visible(false);
  4141     // once the thread becomes safepoint invisible, we can not use its per-thread
  4142     // recorder. And Threads::do_threads() no longer walks this thread, so we have
  4143     // to release its per-thread recorder here.
  4144     MemTracker::thread_exiting(p);
  4145   } // unlock Threads_lock
  4147   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4148   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4151 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4152 bool Threads::includes(JavaThread* p) {
  4153   assert(Threads_lock->is_locked(), "sanity check");
  4154   ALL_JAVA_THREADS(q) {
  4155     if (q == p ) {
  4156       return true;
  4159   return false;
  4162 // Operations on the Threads list for GC.  These are not explicitly locked,
  4163 // but the garbage collector must provide a safe context for them to run.
  4164 // In particular, these things should never be called when the Threads_lock
  4165 // is held by some other thread. (Note: the Safepoint abstraction also
  4166 // uses the Threads_lock to gurantee this property. It also makes sure that
  4167 // all threads gets blocked when exiting or starting).
  4169 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  4170   ALL_JAVA_THREADS(p) {
  4171     p->oops_do(f, cld_f, cf);
  4173   VMThread::vm_thread()->oops_do(f, cld_f, cf);
  4176 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  4177   // Introduce a mechanism allowing parallel threads to claim threads as
  4178   // root groups.  Overhead should be small enough to use all the time,
  4179   // even in sequential code.
  4180   SharedHeap* sh = SharedHeap::heap();
  4181   // Cannot yet substitute active_workers for n_par_threads
  4182   // because of G1CollectedHeap::verify() use of
  4183   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  4184   // turn off parallelism in process_strong_roots while active_workers
  4185   // is being used for parallelism elsewhere.
  4186   bool is_par = sh->n_par_threads() > 0;
  4187   assert(!is_par ||
  4188          (SharedHeap::heap()->n_par_threads() ==
  4189           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4190   int cp = SharedHeap::heap()->strong_roots_parity();
  4191   ALL_JAVA_THREADS(p) {
  4192     if (p->claim_oops_do(is_par, cp)) {
  4193       p->oops_do(f, cld_f, cf);
  4196   VMThread* vmt = VMThread::vm_thread();
  4197   if (vmt->claim_oops_do(is_par, cp)) {
  4198     vmt->oops_do(f, cld_f, cf);
  4202 #if INCLUDE_ALL_GCS
  4203 // Used by ParallelScavenge
  4204 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4205   ALL_JAVA_THREADS(p) {
  4206     q->enqueue(new ThreadRootsTask(p));
  4208   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4211 // Used by Parallel Old
  4212 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4213   ALL_JAVA_THREADS(p) {
  4214     q->enqueue(new ThreadRootsMarkingTask(p));
  4216   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4218 #endif // INCLUDE_ALL_GCS
  4220 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4221   ALL_JAVA_THREADS(p) {
  4222     p->nmethods_do(cf);
  4224   VMThread::vm_thread()->nmethods_do(cf);
  4227 void Threads::metadata_do(void f(Metadata*)) {
  4228   ALL_JAVA_THREADS(p) {
  4229     p->metadata_do(f);
  4233 void Threads::gc_epilogue() {
  4234   ALL_JAVA_THREADS(p) {
  4235     p->gc_epilogue();
  4239 void Threads::gc_prologue() {
  4240   ALL_JAVA_THREADS(p) {
  4241     p->gc_prologue();
  4245 void Threads::deoptimized_wrt_marked_nmethods() {
  4246   ALL_JAVA_THREADS(p) {
  4247     p->deoptimized_wrt_marked_nmethods();
  4252 // Get count Java threads that are waiting to enter the specified monitor.
  4253 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4254   address monitor, bool doLock) {
  4255   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4256     "must grab Threads_lock or be at safepoint");
  4257   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4259   int i = 0;
  4261     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4262     ALL_JAVA_THREADS(p) {
  4263       if (p->is_Compiler_thread()) continue;
  4265       address pending = (address)p->current_pending_monitor();
  4266       if (pending == monitor) {             // found a match
  4267         if (i < count) result->append(p);   // save the first count matches
  4268         i++;
  4272   return result;
  4276 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4277   assert(doLock ||
  4278          Threads_lock->owned_by_self() ||
  4279          SafepointSynchronize::is_at_safepoint(),
  4280          "must grab Threads_lock or be at safepoint");
  4282   // NULL owner means not locked so we can skip the search
  4283   if (owner == NULL) return NULL;
  4286     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4287     ALL_JAVA_THREADS(p) {
  4288       // first, see if owner is the address of a Java thread
  4289       if (owner == (address)p) return p;
  4292   // Cannot assert on lack of success here since this function may be
  4293   // used by code that is trying to report useful problem information
  4294   // like deadlock detection.
  4295   if (UseHeavyMonitors) return NULL;
  4297   //
  4298   // If we didn't find a matching Java thread and we didn't force use of
  4299   // heavyweight monitors, then the owner is the stack address of the
  4300   // Lock Word in the owning Java thread's stack.
  4301   //
  4302   JavaThread* the_owner = NULL;
  4304     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4305     ALL_JAVA_THREADS(q) {
  4306       if (q->is_lock_owned(owner)) {
  4307         the_owner = q;
  4308         break;
  4312   // cannot assert on lack of success here; see above comment
  4313   return the_owner;
  4316 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4317 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4318   char buf[32];
  4319   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
  4321   st->print_cr("Full thread dump %s (%s %s):",
  4322                 Abstract_VM_Version::vm_name(),
  4323                 Abstract_VM_Version::vm_release(),
  4324                 Abstract_VM_Version::vm_info_string()
  4325                );
  4326   st->cr();
  4328 #if INCLUDE_ALL_GCS
  4329   // Dump concurrent locks
  4330   ConcurrentLocksDump concurrent_locks;
  4331   if (print_concurrent_locks) {
  4332     concurrent_locks.dump_at_safepoint();
  4334 #endif // INCLUDE_ALL_GCS
  4336   ALL_JAVA_THREADS(p) {
  4337     ResourceMark rm;
  4338     p->print_on(st);
  4339     if (print_stacks) {
  4340       if (internal_format) {
  4341         p->trace_stack();
  4342       } else {
  4343         p->print_stack_on(st);
  4346     st->cr();
  4347 #if INCLUDE_ALL_GCS
  4348     if (print_concurrent_locks) {
  4349       concurrent_locks.print_locks_on(p, st);
  4351 #endif // INCLUDE_ALL_GCS
  4354   VMThread::vm_thread()->print_on(st);
  4355   st->cr();
  4356   Universe::heap()->print_gc_threads_on(st);
  4357   WatcherThread* wt = WatcherThread::watcher_thread();
  4358   if (wt != NULL) {
  4359     wt->print_on(st);
  4360     st->cr();
  4362   CompileBroker::print_compiler_threads_on(st);
  4363   st->flush();
  4366 // Threads::print_on_error() is called by fatal error handler. It's possible
  4367 // that VM is not at safepoint and/or current thread is inside signal handler.
  4368 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4369 // memory (even in resource area), it might deadlock the error handler.
  4370 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4371   bool found_current = false;
  4372   st->print_cr("Java Threads: ( => current thread )");
  4373   ALL_JAVA_THREADS(thread) {
  4374     bool is_current = (current == thread);
  4375     found_current = found_current || is_current;
  4377     st->print("%s", is_current ? "=>" : "  ");
  4379     st->print(PTR_FORMAT, thread);
  4380     st->print(" ");
  4381     thread->print_on_error(st, buf, buflen);
  4382     st->cr();
  4384   st->cr();
  4386   st->print_cr("Other Threads:");
  4387   if (VMThread::vm_thread()) {
  4388     bool is_current = (current == VMThread::vm_thread());
  4389     found_current = found_current || is_current;
  4390     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4392     st->print(PTR_FORMAT, VMThread::vm_thread());
  4393     st->print(" ");
  4394     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4395     st->cr();
  4397   WatcherThread* wt = WatcherThread::watcher_thread();
  4398   if (wt != NULL) {
  4399     bool is_current = (current == wt);
  4400     found_current = found_current || is_current;
  4401     st->print("%s", is_current ? "=>" : "  ");
  4403     st->print(PTR_FORMAT, wt);
  4404     st->print(" ");
  4405     wt->print_on_error(st, buf, buflen);
  4406     st->cr();
  4408   if (!found_current) {
  4409     st->cr();
  4410     st->print("=>" PTR_FORMAT " (exited) ", current);
  4411     current->print_on_error(st, buf, buflen);
  4412     st->cr();
  4416 // Internal SpinLock and Mutex
  4417 // Based on ParkEvent
  4419 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4420 //
  4421 // We employ SpinLocks _only for low-contention, fixed-length
  4422 // short-duration critical sections where we're concerned
  4423 // about native mutex_t or HotSpot Mutex:: latency.
  4424 // The mux construct provides a spin-then-block mutual exclusion
  4425 // mechanism.
  4426 //
  4427 // Testing has shown that contention on the ListLock guarding gFreeList
  4428 // is common.  If we implement ListLock as a simple SpinLock it's common
  4429 // for the JVM to devolve to yielding with little progress.  This is true
  4430 // despite the fact that the critical sections protected by ListLock are
  4431 // extremely short.
  4432 //
  4433 // TODO-FIXME: ListLock should be of type SpinLock.
  4434 // We should make this a 1st-class type, integrated into the lock
  4435 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4436 // should have sufficient padding to avoid false-sharing and excessive
  4437 // cache-coherency traffic.
  4440 typedef volatile int SpinLockT ;
  4442 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4443   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4444      return ;   // normal fast-path return
  4447   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4448   TEVENT (SpinAcquire - ctx) ;
  4449   int ctr = 0 ;
  4450   int Yields = 0 ;
  4451   for (;;) {
  4452      while (*adr != 0) {
  4453         ++ctr ;
  4454         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4455            if (Yields > 5) {
  4456              os::naked_short_sleep(1);
  4457            } else {
  4458              os::NakedYield() ;
  4459              ++Yields ;
  4461         } else {
  4462            SpinPause() ;
  4465      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4469 void Thread::SpinRelease (volatile int * adr) {
  4470   assert (*adr != 0, "invariant") ;
  4471   OrderAccess::fence() ;      // guarantee at least release consistency.
  4472   // Roach-motel semantics.
  4473   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4474   // but prior LDs and STs within the critical section can't be allowed
  4475   // to reorder or float past the ST that releases the lock.
  4476   *adr = 0 ;
  4479 // muxAcquire and muxRelease:
  4480 //
  4481 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4482 //    The LSB of the word is set IFF the lock is held.
  4483 //    The remainder of the word points to the head of a singly-linked list
  4484 //    of threads blocked on the lock.
  4485 //
  4486 // *  The current implementation of muxAcquire-muxRelease uses its own
  4487 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4488 //    minimizing the peak number of extant ParkEvent instances then
  4489 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4490 //    as certain invariants were satisfied.  Specifically, care would need
  4491 //    to be taken with regards to consuming unpark() "permits".
  4492 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4493 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4494 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4495 //    consume an unpark() permit intended for monitorenter, for instance.
  4496 //    One way around this would be to widen the restricted-range semaphore
  4497 //    implemented in park().  Another alternative would be to provide
  4498 //    multiple instances of the PlatformEvent() for each thread.  One
  4499 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4500 //
  4501 // *  Usage:
  4502 //    -- Only as leaf locks
  4503 //    -- for short-term locking only as muxAcquire does not perform
  4504 //       thread state transitions.
  4505 //
  4506 // Alternatives:
  4507 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4508 //    but with parking or spin-then-park instead of pure spinning.
  4509 // *  Use Taura-Oyama-Yonenzawa locks.
  4510 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4511 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4512 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4513 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4514 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4515 //    boundaries by using placement-new.
  4516 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4517 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4518 //    The validity of the backlinks must be ratified before we trust the value.
  4519 //    If the backlinks are invalid the exiting thread must back-track through the
  4520 //    the forward links, which are always trustworthy.
  4521 // *  Add a successor indication.  The LockWord is currently encoded as
  4522 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4523 //    to provide the usual futile-wakeup optimization.
  4524 //    See RTStt for details.
  4525 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4526 //
  4529 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4530 enum MuxBits { LOCKBIT = 1 } ;
  4532 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4533   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4534   if (w == 0) return ;
  4535   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4536      return ;
  4539   TEVENT (muxAcquire - Contention) ;
  4540   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4541   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4542   for (;;) {
  4543      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4545      // Optional spin phase: spin-then-park strategy
  4546      while (--its >= 0) {
  4547        w = *Lock ;
  4548        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4549           return ;
  4553      Self->reset() ;
  4554      Self->OnList = intptr_t(Lock) ;
  4555      // The following fence() isn't _strictly necessary as the subsequent
  4556      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4557      OrderAccess::fence();
  4558      for (;;) {
  4559         w = *Lock ;
  4560         if ((w & LOCKBIT) == 0) {
  4561             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4562                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4563                 return ;
  4565             continue ;      // Interference -- *Lock changed -- Just retry
  4567         assert (w & LOCKBIT, "invariant") ;
  4568         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4569         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4572      while (Self->OnList != 0) {
  4573         Self->park() ;
  4578 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4579   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4580   if (w == 0) return ;
  4581   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4582     return ;
  4585   TEVENT (muxAcquire - Contention) ;
  4586   ParkEvent * ReleaseAfter = NULL ;
  4587   if (ev == NULL) {
  4588     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4590   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4591   for (;;) {
  4592     guarantee (ev->OnList == 0, "invariant") ;
  4593     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4595     // Optional spin phase: spin-then-park strategy
  4596     while (--its >= 0) {
  4597       w = *Lock ;
  4598       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4599         if (ReleaseAfter != NULL) {
  4600           ParkEvent::Release (ReleaseAfter) ;
  4602         return ;
  4606     ev->reset() ;
  4607     ev->OnList = intptr_t(Lock) ;
  4608     // The following fence() isn't _strictly necessary as the subsequent
  4609     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4610     OrderAccess::fence();
  4611     for (;;) {
  4612       w = *Lock ;
  4613       if ((w & LOCKBIT) == 0) {
  4614         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4615           ev->OnList = 0 ;
  4616           // We call ::Release while holding the outer lock, thus
  4617           // artificially lengthening the critical section.
  4618           // Consider deferring the ::Release() until the subsequent unlock(),
  4619           // after we've dropped the outer lock.
  4620           if (ReleaseAfter != NULL) {
  4621             ParkEvent::Release (ReleaseAfter) ;
  4623           return ;
  4625         continue ;      // Interference -- *Lock changed -- Just retry
  4627       assert (w & LOCKBIT, "invariant") ;
  4628       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4629       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4632     while (ev->OnList != 0) {
  4633       ev->park() ;
  4638 // Release() must extract a successor from the list and then wake that thread.
  4639 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4640 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4641 // Release() would :
  4642 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4643 // (B) Extract a successor from the private list "in-hand"
  4644 // (C) attempt to CAS() the residual back into *Lock over null.
  4645 //     If there were any newly arrived threads and the CAS() would fail.
  4646 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4647 //     with the RATs and repeat as needed.  Alternately, Release() might
  4648 //     detach and extract a successor, but then pass the residual list to the wakee.
  4649 //     The wakee would be responsible for reattaching and remerging before it
  4650 //     competed for the lock.
  4651 //
  4652 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4653 // multiple concurrent pushers, but only one popper or detacher.
  4654 // This implementation pops from the head of the list.  This is unfair,
  4655 // but tends to provide excellent throughput as hot threads remain hot.
  4656 // (We wake recently run threads first).
  4658 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4659   for (;;) {
  4660     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4661     assert (w & LOCKBIT, "invariant") ;
  4662     if (w == LOCKBIT) return ;
  4663     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4664     assert (List != NULL, "invariant") ;
  4665     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4666     ParkEvent * nxt = List->ListNext ;
  4668     // The following CAS() releases the lock and pops the head element.
  4669     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4670       continue ;
  4672     List->OnList = 0 ;
  4673     OrderAccess::fence() ;
  4674     List->unpark () ;
  4675     return ;
  4680 void Threads::verify() {
  4681   ALL_JAVA_THREADS(p) {
  4682     p->verify();
  4684   VMThread* thread = VMThread::vm_thread();
  4685   if (thread != NULL) thread->verify();

mercurial