src/share/vm/gc_implementation/g1/g1BlockOffsetTable.hpp

Fri, 06 Feb 2009 01:38:50 +0300

author
apetrusenko
date
Fri, 06 Feb 2009 01:38:50 +0300
changeset 980
58054a18d735
parent 777
37f87013dfd8
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6484959: G1: introduce survivor spaces
6797754: G1: combined bugfix
Summary: Implemented a policy to control G1 survivor space parameters.
Reviewed-by: tonyp, iveresov

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // The CollectedHeap type requires subtypes to implement a method
    26 // "block_start".  For some subtypes, notably generational
    27 // systems using card-table-based write barriers, the efficiency of this
    28 // operation may be important.  Implementations of the "BlockOffsetArray"
    29 // class may be useful in providing such efficient implementations.
    30 //
    31 // While generally mirroring the structure of the BOT for GenCollectedHeap,
    32 // the following types are tailored more towards G1's uses; these should,
    33 // however, be merged back into a common BOT to avoid code duplication
    34 // and reduce maintenance overhead.
    35 //
    36 //    G1BlockOffsetTable (abstract)
    37 //    -- G1BlockOffsetArray                (uses G1BlockOffsetSharedArray)
    38 //       -- G1BlockOffsetArrayContigSpace
    39 //
    40 // A main impediment to the consolidation of this code might be the
    41 // effect of making some of the block_start*() calls non-const as
    42 // below. Whether that might adversely affect performance optimizations
    43 // that compilers might normally perform in the case of non-G1
    44 // collectors needs to be carefully investigated prior to any such
    45 // consolidation.
    47 // Forward declarations
    48 class ContiguousSpace;
    49 class G1BlockOffsetSharedArray;
    51 class G1BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
    52   friend class VMStructs;
    53 protected:
    54   // These members describe the region covered by the table.
    56   // The space this table is covering.
    57   HeapWord* _bottom;    // == reserved.start
    58   HeapWord* _end;       // End of currently allocated region.
    60 public:
    61   // Initialize the table to cover the given space.
    62   // The contents of the initial table are undefined.
    63   G1BlockOffsetTable(HeapWord* bottom, HeapWord* end) :
    64     _bottom(bottom), _end(end)
    65     {
    66       assert(_bottom <= _end, "arguments out of order");
    67     }
    69   // Note that the committed size of the covered space may have changed,
    70   // so the table size might also wish to change.
    71   virtual void resize(size_t new_word_size) = 0;
    73   virtual void set_bottom(HeapWord* new_bottom) {
    74     assert(new_bottom <= _end, "new_bottom > _end");
    75     _bottom = new_bottom;
    76     resize(pointer_delta(_end, _bottom));
    77   }
    79   // Requires "addr" to be contained by a block, and returns the address of
    80   // the start of that block.  (May have side effects, namely updating of
    81   // shared array entries that "point" too far backwards.  This can occur,
    82   // for example, when LAB allocation is used in a space covered by the
    83   // table.)
    84   virtual HeapWord* block_start_unsafe(const void* addr) = 0;
    85   // Same as above, but does not have any of the possible side effects
    86   // discussed above.
    87   virtual HeapWord* block_start_unsafe_const(const void* addr) const = 0;
    89   // Returns the address of the start of the block containing "addr", or
    90   // else "null" if it is covered by no block.  (May have side effects,
    91   // namely updating of shared array entries that "point" too far
    92   // backwards.  This can occur, for example, when lab allocation is used
    93   // in a space covered by the table.)
    94   inline HeapWord* block_start(const void* addr);
    95   // Same as above, but does not have any of the possible side effects
    96   // discussed above.
    97   inline HeapWord* block_start_const(const void* addr) const;
    98 };
   100 // This implementation of "G1BlockOffsetTable" divides the covered region
   101 // into "N"-word subregions (where "N" = 2^"LogN".  An array with an entry
   102 // for each such subregion indicates how far back one must go to find the
   103 // start of the chunk that includes the first word of the subregion.
   104 //
   105 // Each BlockOffsetArray is owned by a Space.  However, the actual array
   106 // may be shared by several BlockOffsetArrays; this is useful
   107 // when a single resizable area (such as a generation) is divided up into
   108 // several spaces in which contiguous allocation takes place,
   109 // such as, for example, in G1 or in the train generation.)
   111 // Here is the shared array type.
   113 class G1BlockOffsetSharedArray: public CHeapObj {
   114   friend class G1BlockOffsetArray;
   115   friend class G1BlockOffsetArrayContigSpace;
   116   friend class VMStructs;
   118 private:
   119   // The reserved region covered by the shared array.
   120   MemRegion _reserved;
   122   // End of the current committed region.
   123   HeapWord* _end;
   125   // Array for keeping offsets for retrieving object start fast given an
   126   // address.
   127   VirtualSpace _vs;
   128   u_char* _offset_array;          // byte array keeping backwards offsets
   130   // Bounds checking accessors:
   131   // For performance these have to devolve to array accesses in product builds.
   132   u_char offset_array(size_t index) const {
   133     assert(index < _vs.committed_size(), "index out of range");
   134     return _offset_array[index];
   135   }
   137   void set_offset_array(size_t index, u_char offset) {
   138     assert(index < _vs.committed_size(), "index out of range");
   139     assert(offset <= N_words, "offset too large");
   140     _offset_array[index] = offset;
   141   }
   143   void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
   144     assert(index < _vs.committed_size(), "index out of range");
   145     assert(high >= low, "addresses out of order");
   146     assert(pointer_delta(high, low) <= N_words, "offset too large");
   147     _offset_array[index] = (u_char) pointer_delta(high, low);
   148   }
   150   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
   151     assert(index_for(right - 1) < _vs.committed_size(),
   152            "right address out of range");
   153     assert(left  < right, "Heap addresses out of order");
   154     size_t num_cards = pointer_delta(right, left) >> LogN_words;
   155     memset(&_offset_array[index_for(left)], offset, num_cards);
   156   }
   158   void set_offset_array(size_t left, size_t right, u_char offset) {
   159     assert(right < _vs.committed_size(), "right address out of range");
   160     assert(left  <= right, "indexes out of order");
   161     size_t num_cards = right - left + 1;
   162     memset(&_offset_array[left], offset, num_cards);
   163   }
   165   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
   166     assert(index < _vs.committed_size(), "index out of range");
   167     assert(high >= low, "addresses out of order");
   168     assert(pointer_delta(high, low) <= N_words, "offset too large");
   169     assert(_offset_array[index] == pointer_delta(high, low),
   170            "Wrong offset");
   171   }
   173   bool is_card_boundary(HeapWord* p) const;
   175   // Return the number of slots needed for an offset array
   176   // that covers mem_region_words words.
   177   // We always add an extra slot because if an object
   178   // ends on a card boundary we put a 0 in the next
   179   // offset array slot, so we want that slot always
   180   // to be reserved.
   182   size_t compute_size(size_t mem_region_words) {
   183     size_t number_of_slots = (mem_region_words / N_words) + 1;
   184     return ReservedSpace::page_align_size_up(number_of_slots);
   185   }
   187 public:
   188   enum SomePublicConstants {
   189     LogN = 9,
   190     LogN_words = LogN - LogHeapWordSize,
   191     N_bytes = 1 << LogN,
   192     N_words = 1 << LogN_words
   193   };
   195   // Initialize the table to cover from "base" to (at least)
   196   // "base + init_word_size".  In the future, the table may be expanded
   197   // (see "resize" below) up to the size of "_reserved" (which must be at
   198   // least "init_word_size".) The contents of the initial table are
   199   // undefined; it is the responsibility of the constituent
   200   // G1BlockOffsetTable(s) to initialize cards.
   201   G1BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
   203   // Notes a change in the committed size of the region covered by the
   204   // table.  The "new_word_size" may not be larger than the size of the
   205   // reserved region this table covers.
   206   void resize(size_t new_word_size);
   208   void set_bottom(HeapWord* new_bottom);
   210   // Updates all the BlockOffsetArray's sharing this shared array to
   211   // reflect the current "top"'s of their spaces.
   212   void update_offset_arrays();
   214   // Return the appropriate index into "_offset_array" for "p".
   215   inline size_t index_for(const void* p) const;
   217   // Return the address indicating the start of the region corresponding to
   218   // "index" in "_offset_array".
   219   inline HeapWord* address_for_index(size_t index) const;
   220 };
   222 // And here is the G1BlockOffsetTable subtype that uses the array.
   224 class G1BlockOffsetArray: public G1BlockOffsetTable {
   225   friend class G1BlockOffsetSharedArray;
   226   friend class G1BlockOffsetArrayContigSpace;
   227   friend class VMStructs;
   228 private:
   229   enum SomePrivateConstants {
   230     N_words = G1BlockOffsetSharedArray::N_words,
   231     LogN    = G1BlockOffsetSharedArray::LogN
   232   };
   234   // The following enums are used by do_block_helper
   235   enum Action {
   236     Action_single,      // BOT records a single block (see single_block())
   237     Action_mark,        // BOT marks the start of a block (see mark_block())
   238     Action_check        // Check that BOT records block correctly
   239                         // (see verify_single_block()).
   240   };
   242   // This is the array, which can be shared by several BlockOffsetArray's
   243   // servicing different
   244   G1BlockOffsetSharedArray* _array;
   246   // The space that owns this subregion.
   247   Space* _sp;
   249   // If "_sp" is a contiguous space, the field below is the view of "_sp"
   250   // as a contiguous space, else NULL.
   251   ContiguousSpace* _csp;
   253   // If true, array entries are initialized to 0; otherwise, they are
   254   // initialized to point backwards to the beginning of the covered region.
   255   bool _init_to_zero;
   257   // The portion [_unallocated_block, _sp.end()) of the space that
   258   // is a single block known not to contain any objects.
   259   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
   260   HeapWord* _unallocated_block;
   262   // Sets the entries
   263   // corresponding to the cards starting at "start" and ending at "end"
   264   // to point back to the card before "start": the interval [start, end)
   265   // is right-open.
   266   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
   267   // Same as above, except that the args here are a card _index_ interval
   268   // that is closed: [start_index, end_index]
   269   void set_remainder_to_point_to_start_incl(size_t start, size_t end);
   271   // A helper function for BOT adjustment/verification work
   272   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
   274 protected:
   276   ContiguousSpace* csp() const { return _csp; }
   278   // Returns the address of a block whose start is at most "addr".
   279   // If "has_max_index" is true, "assumes "max_index" is the last valid one
   280   // in the array.
   281   inline HeapWord* block_at_or_preceding(const void* addr,
   282                                          bool has_max_index,
   283                                          size_t max_index) const;
   285   // "q" is a block boundary that is <= "addr"; "n" is the address of the
   286   // next block (or the end of the space.)  Return the address of the
   287   // beginning of the block that contains "addr".  Does so without side
   288   // effects (see, e.g., spec of  block_start.)
   289   inline HeapWord*
   290   forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n,
   291                                          const void* addr) const;
   293   // "q" is a block boundary that is <= "addr"; return the address of the
   294   // beginning of the block that contains "addr".  May have side effects
   295   // on "this", by updating imprecise entries.
   296   inline HeapWord* forward_to_block_containing_addr(HeapWord* q,
   297                                                     const void* addr);
   299   // "q" is a block boundary that is <= "addr"; "n" is the address of the
   300   // next block (or the end of the space.)  Return the address of the
   301   // beginning of the block that contains "addr".  May have side effects
   302   // on "this", by updating imprecise entries.
   303   HeapWord* forward_to_block_containing_addr_slow(HeapWord* q,
   304                                                   HeapWord* n,
   305                                                   const void* addr);
   307   // Requires that "*threshold_" be the first array entry boundary at or
   308   // above "blk_start", and that "*index_" be the corresponding array
   309   // index.  If the block starts at or crosses "*threshold_", records
   310   // "blk_start" as the appropriate block start for the array index
   311   // starting at "*threshold_", and for any other indices crossed by the
   312   // block.  Updates "*threshold_" and "*index_" to correspond to the first
   313   // index after the block end.
   314   void alloc_block_work2(HeapWord** threshold_, size_t* index_,
   315                          HeapWord* blk_start, HeapWord* blk_end);
   317 public:
   318   // The space may not have it's bottom and top set yet, which is why the
   319   // region is passed as a parameter.  If "init_to_zero" is true, the
   320   // elements of the array are initialized to zero.  Otherwise, they are
   321   // initialized to point backwards to the beginning.
   322   G1BlockOffsetArray(G1BlockOffsetSharedArray* array, MemRegion mr,
   323                      bool init_to_zero);
   325   // Note: this ought to be part of the constructor, but that would require
   326   // "this" to be passed as a parameter to a member constructor for
   327   // the containing concrete subtype of Space.
   328   // This would be legal C++, but MS VC++ doesn't allow it.
   329   void set_space(Space* sp);
   331   // Resets the covered region to the given "mr".
   332   void set_region(MemRegion mr);
   334   // Resets the covered region to one with the same _bottom as before but
   335   // the "new_word_size".
   336   void resize(size_t new_word_size);
   338   // These must be guaranteed to work properly (i.e., do nothing)
   339   // when "blk_start" ("blk" for second version) is "NULL".
   340   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
   341   virtual void alloc_block(HeapWord* blk, size_t size) {
   342     alloc_block(blk, blk + size);
   343   }
   345   // The following methods are useful and optimized for a
   346   // general, non-contiguous space.
   348   // The given arguments are required to be the starts of adjacent ("blk1"
   349   // before "blk2") well-formed blocks covered by "this".  After this call,
   350   // they should be considered to form one block.
   351   virtual void join_blocks(HeapWord* blk1, HeapWord* blk2);
   353   // Given a block [blk_start, blk_start + full_blk_size), and
   354   // a left_blk_size < full_blk_size, adjust the BOT to show two
   355   // blocks [blk_start, blk_start + left_blk_size) and
   356   // [blk_start + left_blk_size, blk_start + full_blk_size).
   357   // It is assumed (and verified in the non-product VM) that the
   358   // BOT was correct for the original block.
   359   void split_block(HeapWord* blk_start, size_t full_blk_size,
   360                            size_t left_blk_size);
   362   // Adjust the BOT to show that it has a single block in the
   363   // range [blk_start, blk_start + size). All necessary BOT
   364   // cards are adjusted, but _unallocated_block isn't.
   365   void single_block(HeapWord* blk_start, HeapWord* blk_end);
   366   void single_block(HeapWord* blk, size_t size) {
   367     single_block(blk, blk + size);
   368   }
   370   // Adjust BOT to show that it has a block in the range
   371   // [blk_start, blk_start + size). Only the first card
   372   // of BOT is touched. It is assumed (and verified in the
   373   // non-product VM) that the remaining cards of the block
   374   // are correct.
   375   void mark_block(HeapWord* blk_start, HeapWord* blk_end);
   376   void mark_block(HeapWord* blk, size_t size) {
   377     mark_block(blk, blk + size);
   378   }
   380   // Adjust _unallocated_block to indicate that a particular
   381   // block has been newly allocated or freed. It is assumed (and
   382   // verified in the non-product VM) that the BOT is correct for
   383   // the given block.
   384   inline void allocated(HeapWord* blk_start, HeapWord* blk_end) {
   385     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   386     verify_single_block(blk_start, blk_end);
   387     if (BlockOffsetArrayUseUnallocatedBlock) {
   388       _unallocated_block = MAX2(_unallocated_block, blk_end);
   389     }
   390   }
   392   inline void allocated(HeapWord* blk, size_t size) {
   393     allocated(blk, blk + size);
   394   }
   396   inline void freed(HeapWord* blk_start, HeapWord* blk_end);
   398   inline void freed(HeapWord* blk, size_t size);
   400   virtual HeapWord* block_start_unsafe(const void* addr);
   401   virtual HeapWord* block_start_unsafe_const(const void* addr) const;
   403   // Requires "addr" to be the start of a card and returns the
   404   // start of the block that contains the given address.
   405   HeapWord* block_start_careful(const void* addr) const;
   407   // If true, initialize array slots with no allocated blocks to zero.
   408   // Otherwise, make them point back to the front.
   409   bool init_to_zero() { return _init_to_zero; }
   411   // Verification & debugging - ensure that the offset table reflects the fact
   412   // that the block [blk_start, blk_end) or [blk, blk + size) is a
   413   // single block of storage. NOTE: can;t const this because of
   414   // call to non-const do_block_internal() below.
   415   inline void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) {
   416     if (VerifyBlockOffsetArray) {
   417       do_block_internal(blk_start, blk_end, Action_check);
   418     }
   419   }
   421   inline void verify_single_block(HeapWord* blk, size_t size) {
   422     verify_single_block(blk, blk + size);
   423   }
   425   // Verify that the given block is before _unallocated_block
   426   inline void verify_not_unallocated(HeapWord* blk_start,
   427                                      HeapWord* blk_end) const {
   428     if (BlockOffsetArrayUseUnallocatedBlock) {
   429       assert(blk_start < blk_end, "Block inconsistency?");
   430       assert(blk_end <= _unallocated_block, "_unallocated_block problem");
   431     }
   432   }
   434   inline void verify_not_unallocated(HeapWord* blk, size_t size) const {
   435     verify_not_unallocated(blk, blk + size);
   436   }
   438   void check_all_cards(size_t left_card, size_t right_card) const;
   439 };
   441 // A subtype of BlockOffsetArray that takes advantage of the fact
   442 // that its underlying space is a ContiguousSpace, so that its "active"
   443 // region can be more efficiently tracked (than for a non-contiguous space).
   444 class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray {
   445   friend class VMStructs;
   447   // allocation boundary at which offset array must be updated
   448   HeapWord* _next_offset_threshold;
   449   size_t    _next_offset_index;      // index corresponding to that boundary
   451   // Work function to be called when allocation start crosses the next
   452   // threshold in the contig space.
   453   void alloc_block_work1(HeapWord* blk_start, HeapWord* blk_end) {
   454     alloc_block_work2(&_next_offset_threshold, &_next_offset_index,
   455                       blk_start, blk_end);
   456   }
   459  public:
   460   G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, MemRegion mr);
   462   // Initialize the threshold to reflect the first boundary after the
   463   // bottom of the covered region.
   464   HeapWord* initialize_threshold();
   466   // Zero out the entry for _bottom (offset will be zero).
   467   void      zero_bottom_entry();
   469   // Return the next threshold, the point at which the table should be
   470   // updated.
   471   HeapWord* threshold() const { return _next_offset_threshold; }
   473   // These must be guaranteed to work properly (i.e., do nothing)
   474   // when "blk_start" ("blk" for second version) is "NULL".  In this
   475   // implementation, that's true because NULL is represented as 0, and thus
   476   // never exceeds the "_next_offset_threshold".
   477   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   478     if (blk_end > _next_offset_threshold)
   479       alloc_block_work1(blk_start, blk_end);
   480   }
   481   void alloc_block(HeapWord* blk, size_t size) {
   482      alloc_block(blk, blk+size);
   483   }
   485   HeapWord* block_start_unsafe(const void* addr);
   486   HeapWord* block_start_unsafe_const(const void* addr) const;
   487 };

mercurial