src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Fri, 20 Jan 2012 18:01:32 +0100

author
brutisso
date
Fri, 20 Jan 2012 18:01:32 +0100
changeset 3460
57025542827f
parent 3458
7ca7be5a6a0b
child 3461
6a78aa6ac1ff
permissions
-rw-r--r--

7131791: G1: Asserts in nightly testing due to 6976060
Summary: Create a handle and fake an object to make sure that we don't loose the memory we just allocated
Reviewed-by: tonyp, stefank

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1MarkSweep.hpp"
    37 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    38 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    39 #include "gc_implementation/g1/heapRegion.inline.hpp"
    40 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    41 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    42 #include "gc_implementation/g1/vm_operations_g1.hpp"
    43 #include "gc_implementation/shared/isGCActiveMark.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/genOopClosures.inline.hpp"
    46 #include "memory/generationSpec.hpp"
    47 #include "memory/referenceProcessor.hpp"
    48 #include "oops/oop.inline.hpp"
    49 #include "oops/oop.pcgc.inline.hpp"
    50 #include "runtime/aprofiler.hpp"
    51 #include "runtime/vmThread.hpp"
    53 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    55 // turn it on so that the contents of the young list (scan-only /
    56 // to-be-collected) are printed at "strategic" points before / during
    57 // / after the collection --- this is useful for debugging
    58 #define YOUNG_LIST_VERBOSE 0
    59 // CURRENT STATUS
    60 // This file is under construction.  Search for "FIXME".
    62 // INVARIANTS/NOTES
    63 //
    64 // All allocation activity covered by the G1CollectedHeap interface is
    65 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    66 // and allocate_new_tlab, which are the "entry" points to the
    67 // allocation code from the rest of the JVM.  (Note that this does not
    68 // apply to TLAB allocation, which is not part of this interface: it
    69 // is done by clients of this interface.)
    71 // Notes on implementation of parallelism in different tasks.
    72 //
    73 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    74 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    75 // It does use run_task() which sets _n_workers in the task.
    76 // G1ParTask executes g1_process_strong_roots() ->
    77 // SharedHeap::process_strong_roots() which calls eventuall to
    78 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    79 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    80 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    81 //
    83 // Local to this file.
    85 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    86   SuspendibleThreadSet* _sts;
    87   G1RemSet* _g1rs;
    88   ConcurrentG1Refine* _cg1r;
    89   bool _concurrent;
    90 public:
    91   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    92                               G1RemSet* g1rs,
    93                               ConcurrentG1Refine* cg1r) :
    94     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    95   {}
    96   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    97     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    98     // This path is executed by the concurrent refine or mutator threads,
    99     // concurrently, and so we do not care if card_ptr contains references
   100     // that point into the collection set.
   101     assert(!oops_into_cset, "should be");
   103     if (_concurrent && _sts->should_yield()) {
   104       // Caller will actually yield.
   105       return false;
   106     }
   107     // Otherwise, we finished successfully; return true.
   108     return true;
   109   }
   110   void set_concurrent(bool b) { _concurrent = b; }
   111 };
   114 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   115   int _calls;
   116   G1CollectedHeap* _g1h;
   117   CardTableModRefBS* _ctbs;
   118   int _histo[256];
   119 public:
   120   ClearLoggedCardTableEntryClosure() :
   121     _calls(0)
   122   {
   123     _g1h = G1CollectedHeap::heap();
   124     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   125     for (int i = 0; i < 256; i++) _histo[i] = 0;
   126   }
   127   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   128     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   129       _calls++;
   130       unsigned char* ujb = (unsigned char*)card_ptr;
   131       int ind = (int)(*ujb);
   132       _histo[ind]++;
   133       *card_ptr = -1;
   134     }
   135     return true;
   136   }
   137   int calls() { return _calls; }
   138   void print_histo() {
   139     gclog_or_tty->print_cr("Card table value histogram:");
   140     for (int i = 0; i < 256; i++) {
   141       if (_histo[i] != 0) {
   142         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   143       }
   144     }
   145   }
   146 };
   148 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   149   int _calls;
   150   G1CollectedHeap* _g1h;
   151   CardTableModRefBS* _ctbs;
   152 public:
   153   RedirtyLoggedCardTableEntryClosure() :
   154     _calls(0)
   155   {
   156     _g1h = G1CollectedHeap::heap();
   157     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   158   }
   159   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   160     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   161       _calls++;
   162       *card_ptr = 0;
   163     }
   164     return true;
   165   }
   166   int calls() { return _calls; }
   167 };
   169 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   170 public:
   171   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   172     *card_ptr = CardTableModRefBS::dirty_card_val();
   173     return true;
   174   }
   175 };
   177 YoungList::YoungList(G1CollectedHeap* g1h)
   178   : _g1h(g1h), _head(NULL),
   179     _length(0),
   180     _last_sampled_rs_lengths(0),
   181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   182 {
   183   guarantee( check_list_empty(false), "just making sure..." );
   184 }
   186 void YoungList::push_region(HeapRegion *hr) {
   187   assert(!hr->is_young(), "should not already be young");
   188   assert(hr->get_next_young_region() == NULL, "cause it should!");
   190   hr->set_next_young_region(_head);
   191   _head = hr;
   193   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   194   ++_length;
   195 }
   197 void YoungList::add_survivor_region(HeapRegion* hr) {
   198   assert(hr->is_survivor(), "should be flagged as survivor region");
   199   assert(hr->get_next_young_region() == NULL, "cause it should!");
   201   hr->set_next_young_region(_survivor_head);
   202   if (_survivor_head == NULL) {
   203     _survivor_tail = hr;
   204   }
   205   _survivor_head = hr;
   206   ++_survivor_length;
   207 }
   209 void YoungList::empty_list(HeapRegion* list) {
   210   while (list != NULL) {
   211     HeapRegion* next = list->get_next_young_region();
   212     list->set_next_young_region(NULL);
   213     list->uninstall_surv_rate_group();
   214     list->set_not_young();
   215     list = next;
   216   }
   217 }
   219 void YoungList::empty_list() {
   220   assert(check_list_well_formed(), "young list should be well formed");
   222   empty_list(_head);
   223   _head = NULL;
   224   _length = 0;
   226   empty_list(_survivor_head);
   227   _survivor_head = NULL;
   228   _survivor_tail = NULL;
   229   _survivor_length = 0;
   231   _last_sampled_rs_lengths = 0;
   233   assert(check_list_empty(false), "just making sure...");
   234 }
   236 bool YoungList::check_list_well_formed() {
   237   bool ret = true;
   239   size_t length = 0;
   240   HeapRegion* curr = _head;
   241   HeapRegion* last = NULL;
   242   while (curr != NULL) {
   243     if (!curr->is_young()) {
   244       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   245                              "incorrectly tagged (y: %d, surv: %d)",
   246                              curr->bottom(), curr->end(),
   247                              curr->is_young(), curr->is_survivor());
   248       ret = false;
   249     }
   250     ++length;
   251     last = curr;
   252     curr = curr->get_next_young_region();
   253   }
   254   ret = ret && (length == _length);
   256   if (!ret) {
   257     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   258     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   259                            length, _length);
   260   }
   262   return ret;
   263 }
   265 bool YoungList::check_list_empty(bool check_sample) {
   266   bool ret = true;
   268   if (_length != 0) {
   269     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   270                   _length);
   271     ret = false;
   272   }
   273   if (check_sample && _last_sampled_rs_lengths != 0) {
   274     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   275     ret = false;
   276   }
   277   if (_head != NULL) {
   278     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   279     ret = false;
   280   }
   281   if (!ret) {
   282     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   283   }
   285   return ret;
   286 }
   288 void
   289 YoungList::rs_length_sampling_init() {
   290   _sampled_rs_lengths = 0;
   291   _curr               = _head;
   292 }
   294 bool
   295 YoungList::rs_length_sampling_more() {
   296   return _curr != NULL;
   297 }
   299 void
   300 YoungList::rs_length_sampling_next() {
   301   assert( _curr != NULL, "invariant" );
   302   size_t rs_length = _curr->rem_set()->occupied();
   304   _sampled_rs_lengths += rs_length;
   306   // The current region may not yet have been added to the
   307   // incremental collection set (it gets added when it is
   308   // retired as the current allocation region).
   309   if (_curr->in_collection_set()) {
   310     // Update the collection set policy information for this region
   311     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   312   }
   314   _curr = _curr->get_next_young_region();
   315   if (_curr == NULL) {
   316     _last_sampled_rs_lengths = _sampled_rs_lengths;
   317     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   318   }
   319 }
   321 void
   322 YoungList::reset_auxilary_lists() {
   323   guarantee( is_empty(), "young list should be empty" );
   324   assert(check_list_well_formed(), "young list should be well formed");
   326   // Add survivor regions to SurvRateGroup.
   327   _g1h->g1_policy()->note_start_adding_survivor_regions();
   328   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   330   int young_index_in_cset = 0;
   331   for (HeapRegion* curr = _survivor_head;
   332        curr != NULL;
   333        curr = curr->get_next_young_region()) {
   334     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   336     // The region is a non-empty survivor so let's add it to
   337     // the incremental collection set for the next evacuation
   338     // pause.
   339     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   340     young_index_in_cset += 1;
   341   }
   342   assert((size_t) young_index_in_cset == _survivor_length,
   343          "post-condition");
   344   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   346   _head   = _survivor_head;
   347   _length = _survivor_length;
   348   if (_survivor_head != NULL) {
   349     assert(_survivor_tail != NULL, "cause it shouldn't be");
   350     assert(_survivor_length > 0, "invariant");
   351     _survivor_tail->set_next_young_region(NULL);
   352   }
   354   // Don't clear the survivor list handles until the start of
   355   // the next evacuation pause - we need it in order to re-tag
   356   // the survivor regions from this evacuation pause as 'young'
   357   // at the start of the next.
   359   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   361   assert(check_list_well_formed(), "young list should be well formed");
   362 }
   364 void YoungList::print() {
   365   HeapRegion* lists[] = {_head,   _survivor_head};
   366   const char* names[] = {"YOUNG", "SURVIVOR"};
   368   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   369     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   370     HeapRegion *curr = lists[list];
   371     if (curr == NULL)
   372       gclog_or_tty->print_cr("  empty");
   373     while (curr != NULL) {
   374       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   375                              "age: %4d, y: %d, surv: %d",
   376                              curr->bottom(), curr->end(),
   377                              curr->top(),
   378                              curr->prev_top_at_mark_start(),
   379                              curr->next_top_at_mark_start(),
   380                              curr->top_at_conc_mark_count(),
   381                              curr->age_in_surv_rate_group_cond(),
   382                              curr->is_young(),
   383                              curr->is_survivor());
   384       curr = curr->get_next_young_region();
   385     }
   386   }
   388   gclog_or_tty->print_cr("");
   389 }
   391 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   392 {
   393   // Claim the right to put the region on the dirty cards region list
   394   // by installing a self pointer.
   395   HeapRegion* next = hr->get_next_dirty_cards_region();
   396   if (next == NULL) {
   397     HeapRegion* res = (HeapRegion*)
   398       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   399                           NULL);
   400     if (res == NULL) {
   401       HeapRegion* head;
   402       do {
   403         // Put the region to the dirty cards region list.
   404         head = _dirty_cards_region_list;
   405         next = (HeapRegion*)
   406           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   407         if (next == head) {
   408           assert(hr->get_next_dirty_cards_region() == hr,
   409                  "hr->get_next_dirty_cards_region() != hr");
   410           if (next == NULL) {
   411             // The last region in the list points to itself.
   412             hr->set_next_dirty_cards_region(hr);
   413           } else {
   414             hr->set_next_dirty_cards_region(next);
   415           }
   416         }
   417       } while (next != head);
   418     }
   419   }
   420 }
   422 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   423 {
   424   HeapRegion* head;
   425   HeapRegion* hr;
   426   do {
   427     head = _dirty_cards_region_list;
   428     if (head == NULL) {
   429       return NULL;
   430     }
   431     HeapRegion* new_head = head->get_next_dirty_cards_region();
   432     if (head == new_head) {
   433       // The last region.
   434       new_head = NULL;
   435     }
   436     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   437                                           head);
   438   } while (hr != head);
   439   assert(hr != NULL, "invariant");
   440   hr->set_next_dirty_cards_region(NULL);
   441   return hr;
   442 }
   444 void G1CollectedHeap::stop_conc_gc_threads() {
   445   _cg1r->stop();
   446   _cmThread->stop();
   447 }
   449 #ifdef ASSERT
   450 // A region is added to the collection set as it is retired
   451 // so an address p can point to a region which will be in the
   452 // collection set but has not yet been retired.  This method
   453 // therefore is only accurate during a GC pause after all
   454 // regions have been retired.  It is used for debugging
   455 // to check if an nmethod has references to objects that can
   456 // be move during a partial collection.  Though it can be
   457 // inaccurate, it is sufficient for G1 because the conservative
   458 // implementation of is_scavengable() for G1 will indicate that
   459 // all nmethods must be scanned during a partial collection.
   460 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   461   HeapRegion* hr = heap_region_containing(p);
   462   return hr != NULL && hr->in_collection_set();
   463 }
   464 #endif
   466 // Returns true if the reference points to an object that
   467 // can move in an incremental collecction.
   468 bool G1CollectedHeap::is_scavengable(const void* p) {
   469   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   470   G1CollectorPolicy* g1p = g1h->g1_policy();
   471   HeapRegion* hr = heap_region_containing(p);
   472   if (hr == NULL) {
   473      // perm gen (or null)
   474      return false;
   475   } else {
   476     return !hr->isHumongous();
   477   }
   478 }
   480 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   481   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   482   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   484   // Count the dirty cards at the start.
   485   CountNonCleanMemRegionClosure count1(this);
   486   ct_bs->mod_card_iterate(&count1);
   487   int orig_count = count1.n();
   489   // First clear the logged cards.
   490   ClearLoggedCardTableEntryClosure clear;
   491   dcqs.set_closure(&clear);
   492   dcqs.apply_closure_to_all_completed_buffers();
   493   dcqs.iterate_closure_all_threads(false);
   494   clear.print_histo();
   496   // Now ensure that there's no dirty cards.
   497   CountNonCleanMemRegionClosure count2(this);
   498   ct_bs->mod_card_iterate(&count2);
   499   if (count2.n() != 0) {
   500     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   501                            count2.n(), orig_count);
   502   }
   503   guarantee(count2.n() == 0, "Card table should be clean.");
   505   RedirtyLoggedCardTableEntryClosure redirty;
   506   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   507   dcqs.apply_closure_to_all_completed_buffers();
   508   dcqs.iterate_closure_all_threads(false);
   509   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   510                          clear.calls(), orig_count);
   511   guarantee(redirty.calls() == clear.calls(),
   512             "Or else mechanism is broken.");
   514   CountNonCleanMemRegionClosure count3(this);
   515   ct_bs->mod_card_iterate(&count3);
   516   if (count3.n() != orig_count) {
   517     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   518                            orig_count, count3.n());
   519     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   520   }
   522   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   523 }
   525 // Private class members.
   527 G1CollectedHeap* G1CollectedHeap::_g1h;
   529 // Private methods.
   531 HeapRegion*
   532 G1CollectedHeap::new_region_try_secondary_free_list() {
   533   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   534   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   535     if (!_secondary_free_list.is_empty()) {
   536       if (G1ConcRegionFreeingVerbose) {
   537         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   538                                "secondary_free_list has "SIZE_FORMAT" entries",
   539                                _secondary_free_list.length());
   540       }
   541       // It looks as if there are free regions available on the
   542       // secondary_free_list. Let's move them to the free_list and try
   543       // again to allocate from it.
   544       append_secondary_free_list();
   546       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   547              "empty we should have moved at least one entry to the free_list");
   548       HeapRegion* res = _free_list.remove_head();
   549       if (G1ConcRegionFreeingVerbose) {
   550         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   551                                "allocated "HR_FORMAT" from secondary_free_list",
   552                                HR_FORMAT_PARAMS(res));
   553       }
   554       return res;
   555     }
   557     // Wait here until we get notifed either when (a) there are no
   558     // more free regions coming or (b) some regions have been moved on
   559     // the secondary_free_list.
   560     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   561   }
   563   if (G1ConcRegionFreeingVerbose) {
   564     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   565                            "could not allocate from secondary_free_list");
   566   }
   567   return NULL;
   568 }
   570 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   571   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   572          "the only time we use this to allocate a humongous region is "
   573          "when we are allocating a single humongous region");
   575   HeapRegion* res;
   576   if (G1StressConcRegionFreeing) {
   577     if (!_secondary_free_list.is_empty()) {
   578       if (G1ConcRegionFreeingVerbose) {
   579         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   580                                "forced to look at the secondary_free_list");
   581       }
   582       res = new_region_try_secondary_free_list();
   583       if (res != NULL) {
   584         return res;
   585       }
   586     }
   587   }
   588   res = _free_list.remove_head_or_null();
   589   if (res == NULL) {
   590     if (G1ConcRegionFreeingVerbose) {
   591       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   592                              "res == NULL, trying the secondary_free_list");
   593     }
   594     res = new_region_try_secondary_free_list();
   595   }
   596   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   597     // Currently, only attempts to allocate GC alloc regions set
   598     // do_expand to true. So, we should only reach here during a
   599     // safepoint. If this assumption changes we might have to
   600     // reconsider the use of _expand_heap_after_alloc_failure.
   601     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   603     ergo_verbose1(ErgoHeapSizing,
   604                   "attempt heap expansion",
   605                   ergo_format_reason("region allocation request failed")
   606                   ergo_format_byte("allocation request"),
   607                   word_size * HeapWordSize);
   608     if (expand(word_size * HeapWordSize)) {
   609       // Given that expand() succeeded in expanding the heap, and we
   610       // always expand the heap by an amount aligned to the heap
   611       // region size, the free list should in theory not be empty. So
   612       // it would probably be OK to use remove_head(). But the extra
   613       // check for NULL is unlikely to be a performance issue here (we
   614       // just expanded the heap!) so let's just be conservative and
   615       // use remove_head_or_null().
   616       res = _free_list.remove_head_or_null();
   617     } else {
   618       _expand_heap_after_alloc_failure = false;
   619     }
   620   }
   621   return res;
   622 }
   624 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
   625                                                           size_t word_size) {
   626   assert(isHumongous(word_size), "word_size should be humongous");
   627   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   629   size_t first = G1_NULL_HRS_INDEX;
   630   if (num_regions == 1) {
   631     // Only one region to allocate, no need to go through the slower
   632     // path. The caller will attempt the expasion if this fails, so
   633     // let's not try to expand here too.
   634     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   635     if (hr != NULL) {
   636       first = hr->hrs_index();
   637     } else {
   638       first = G1_NULL_HRS_INDEX;
   639     }
   640   } else {
   641     // We can't allocate humongous regions while cleanupComplete() is
   642     // running, since some of the regions we find to be empty might not
   643     // yet be added to the free list and it is not straightforward to
   644     // know which list they are on so that we can remove them. Note
   645     // that we only need to do this if we need to allocate more than
   646     // one region to satisfy the current humongous allocation
   647     // request. If we are only allocating one region we use the common
   648     // region allocation code (see above).
   649     wait_while_free_regions_coming();
   650     append_secondary_free_list_if_not_empty_with_lock();
   652     if (free_regions() >= num_regions) {
   653       first = _hrs.find_contiguous(num_regions);
   654       if (first != G1_NULL_HRS_INDEX) {
   655         for (size_t i = first; i < first + num_regions; ++i) {
   656           HeapRegion* hr = region_at(i);
   657           assert(hr->is_empty(), "sanity");
   658           assert(is_on_master_free_list(hr), "sanity");
   659           hr->set_pending_removal(true);
   660         }
   661         _free_list.remove_all_pending(num_regions);
   662       }
   663     }
   664   }
   665   return first;
   666 }
   668 HeapWord*
   669 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
   670                                                            size_t num_regions,
   671                                                            size_t word_size) {
   672   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   673   assert(isHumongous(word_size), "word_size should be humongous");
   674   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   676   // Index of last region in the series + 1.
   677   size_t last = first + num_regions;
   679   // We need to initialize the region(s) we just discovered. This is
   680   // a bit tricky given that it can happen concurrently with
   681   // refinement threads refining cards on these regions and
   682   // potentially wanting to refine the BOT as they are scanning
   683   // those cards (this can happen shortly after a cleanup; see CR
   684   // 6991377). So we have to set up the region(s) carefully and in
   685   // a specific order.
   687   // The word size sum of all the regions we will allocate.
   688   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
   689   assert(word_size <= word_size_sum, "sanity");
   691   // This will be the "starts humongous" region.
   692   HeapRegion* first_hr = region_at(first);
   693   // The header of the new object will be placed at the bottom of
   694   // the first region.
   695   HeapWord* new_obj = first_hr->bottom();
   696   // This will be the new end of the first region in the series that
   697   // should also match the end of the last region in the seriers.
   698   HeapWord* new_end = new_obj + word_size_sum;
   699   // This will be the new top of the first region that will reflect
   700   // this allocation.
   701   HeapWord* new_top = new_obj + word_size;
   703   // First, we need to zero the header of the space that we will be
   704   // allocating. When we update top further down, some refinement
   705   // threads might try to scan the region. By zeroing the header we
   706   // ensure that any thread that will try to scan the region will
   707   // come across the zero klass word and bail out.
   708   //
   709   // NOTE: It would not have been correct to have used
   710   // CollectedHeap::fill_with_object() and make the space look like
   711   // an int array. The thread that is doing the allocation will
   712   // later update the object header to a potentially different array
   713   // type and, for a very short period of time, the klass and length
   714   // fields will be inconsistent. This could cause a refinement
   715   // thread to calculate the object size incorrectly.
   716   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   718   // We will set up the first region as "starts humongous". This
   719   // will also update the BOT covering all the regions to reflect
   720   // that there is a single object that starts at the bottom of the
   721   // first region.
   722   first_hr->set_startsHumongous(new_top, new_end);
   724   // Then, if there are any, we will set up the "continues
   725   // humongous" regions.
   726   HeapRegion* hr = NULL;
   727   for (size_t i = first + 1; i < last; ++i) {
   728     hr = region_at(i);
   729     hr->set_continuesHumongous(first_hr);
   730   }
   731   // If we have "continues humongous" regions (hr != NULL), then the
   732   // end of the last one should match new_end.
   733   assert(hr == NULL || hr->end() == new_end, "sanity");
   735   // Up to this point no concurrent thread would have been able to
   736   // do any scanning on any region in this series. All the top
   737   // fields still point to bottom, so the intersection between
   738   // [bottom,top] and [card_start,card_end] will be empty. Before we
   739   // update the top fields, we'll do a storestore to make sure that
   740   // no thread sees the update to top before the zeroing of the
   741   // object header and the BOT initialization.
   742   OrderAccess::storestore();
   744   // Now that the BOT and the object header have been initialized,
   745   // we can update top of the "starts humongous" region.
   746   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   747          "new_top should be in this region");
   748   first_hr->set_top(new_top);
   749   if (_hr_printer.is_active()) {
   750     HeapWord* bottom = first_hr->bottom();
   751     HeapWord* end = first_hr->orig_end();
   752     if ((first + 1) == last) {
   753       // the series has a single humongous region
   754       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   755     } else {
   756       // the series has more than one humongous regions
   757       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   758     }
   759   }
   761   // Now, we will update the top fields of the "continues humongous"
   762   // regions. The reason we need to do this is that, otherwise,
   763   // these regions would look empty and this will confuse parts of
   764   // G1. For example, the code that looks for a consecutive number
   765   // of empty regions will consider them empty and try to
   766   // re-allocate them. We can extend is_empty() to also include
   767   // !continuesHumongous(), but it is easier to just update the top
   768   // fields here. The way we set top for all regions (i.e., top ==
   769   // end for all regions but the last one, top == new_top for the
   770   // last one) is actually used when we will free up the humongous
   771   // region in free_humongous_region().
   772   hr = NULL;
   773   for (size_t i = first + 1; i < last; ++i) {
   774     hr = region_at(i);
   775     if ((i + 1) == last) {
   776       // last continues humongous region
   777       assert(hr->bottom() < new_top && new_top <= hr->end(),
   778              "new_top should fall on this region");
   779       hr->set_top(new_top);
   780       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   781     } else {
   782       // not last one
   783       assert(new_top > hr->end(), "new_top should be above this region");
   784       hr->set_top(hr->end());
   785       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   786     }
   787   }
   788   // If we have continues humongous regions (hr != NULL), then the
   789   // end of the last one should match new_end and its top should
   790   // match new_top.
   791   assert(hr == NULL ||
   792          (hr->end() == new_end && hr->top() == new_top), "sanity");
   794   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   795   _summary_bytes_used += first_hr->used();
   796   _humongous_set.add(first_hr);
   798   return new_obj;
   799 }
   801 // If could fit into free regions w/o expansion, try.
   802 // Otherwise, if can expand, do so.
   803 // Otherwise, if using ex regions might help, try with ex given back.
   804 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   805   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   807   verify_region_sets_optional();
   809   size_t num_regions =
   810          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   811   size_t x_size = expansion_regions();
   812   size_t fs = _hrs.free_suffix();
   813   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
   814   if (first == G1_NULL_HRS_INDEX) {
   815     // The only thing we can do now is attempt expansion.
   816     if (fs + x_size >= num_regions) {
   817       // If the number of regions we're trying to allocate for this
   818       // object is at most the number of regions in the free suffix,
   819       // then the call to humongous_obj_allocate_find_first() above
   820       // should have succeeded and we wouldn't be here.
   821       //
   822       // We should only be trying to expand when the free suffix is
   823       // not sufficient for the object _and_ we have some expansion
   824       // room available.
   825       assert(num_regions > fs, "earlier allocation should have succeeded");
   827       ergo_verbose1(ErgoHeapSizing,
   828                     "attempt heap expansion",
   829                     ergo_format_reason("humongous allocation request failed")
   830                     ergo_format_byte("allocation request"),
   831                     word_size * HeapWordSize);
   832       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   833         // Even though the heap was expanded, it might not have
   834         // reached the desired size. So, we cannot assume that the
   835         // allocation will succeed.
   836         first = humongous_obj_allocate_find_first(num_regions, word_size);
   837       }
   838     }
   839   }
   841   HeapWord* result = NULL;
   842   if (first != G1_NULL_HRS_INDEX) {
   843     result =
   844       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   845     assert(result != NULL, "it should always return a valid result");
   847     // A successful humongous object allocation changes the used space
   848     // information of the old generation so we need to recalculate the
   849     // sizes and update the jstat counters here.
   850     g1mm()->update_sizes();
   851   }
   853   verify_region_sets_optional();
   855   return result;
   856 }
   858 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   859   assert_heap_not_locked_and_not_at_safepoint();
   860   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   862   unsigned int dummy_gc_count_before;
   863   return attempt_allocation(word_size, &dummy_gc_count_before);
   864 }
   866 HeapWord*
   867 G1CollectedHeap::mem_allocate(size_t word_size,
   868                               bool*  gc_overhead_limit_was_exceeded) {
   869   assert_heap_not_locked_and_not_at_safepoint();
   871   // Loop until the allocation is satisified, or unsatisfied after GC.
   872   for (int try_count = 1; /* we'll return */; try_count += 1) {
   873     unsigned int gc_count_before;
   875     HeapWord* result = NULL;
   876     if (!isHumongous(word_size)) {
   877       result = attempt_allocation(word_size, &gc_count_before);
   878     } else {
   879       result = attempt_allocation_humongous(word_size, &gc_count_before);
   880     }
   881     if (result != NULL) {
   882       return result;
   883     }
   885     // Create the garbage collection operation...
   886     VM_G1CollectForAllocation op(gc_count_before, word_size);
   887     // ...and get the VM thread to execute it.
   888     VMThread::execute(&op);
   890     if (op.prologue_succeeded() && op.pause_succeeded()) {
   891       // If the operation was successful we'll return the result even
   892       // if it is NULL. If the allocation attempt failed immediately
   893       // after a Full GC, it's unlikely we'll be able to allocate now.
   894       HeapWord* result = op.result();
   895       if (result != NULL && !isHumongous(word_size)) {
   896         // Allocations that take place on VM operations do not do any
   897         // card dirtying and we have to do it here. We only have to do
   898         // this for non-humongous allocations, though.
   899         dirty_young_block(result, word_size);
   900       }
   901       return result;
   902     } else {
   903       assert(op.result() == NULL,
   904              "the result should be NULL if the VM op did not succeed");
   905     }
   907     // Give a warning if we seem to be looping forever.
   908     if ((QueuedAllocationWarningCount > 0) &&
   909         (try_count % QueuedAllocationWarningCount == 0)) {
   910       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   911     }
   912   }
   914   ShouldNotReachHere();
   915   return NULL;
   916 }
   918 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   919                                            unsigned int *gc_count_before_ret) {
   920   // Make sure you read the note in attempt_allocation_humongous().
   922   assert_heap_not_locked_and_not_at_safepoint();
   923   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   924          "be called for humongous allocation requests");
   926   // We should only get here after the first-level allocation attempt
   927   // (attempt_allocation()) failed to allocate.
   929   // We will loop until a) we manage to successfully perform the
   930   // allocation or b) we successfully schedule a collection which
   931   // fails to perform the allocation. b) is the only case when we'll
   932   // return NULL.
   933   HeapWord* result = NULL;
   934   for (int try_count = 1; /* we'll return */; try_count += 1) {
   935     bool should_try_gc;
   936     unsigned int gc_count_before;
   938     {
   939       MutexLockerEx x(Heap_lock);
   941       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   942                                                       false /* bot_updates */);
   943       if (result != NULL) {
   944         return result;
   945       }
   947       // If we reach here, attempt_allocation_locked() above failed to
   948       // allocate a new region. So the mutator alloc region should be NULL.
   949       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   951       if (GC_locker::is_active_and_needs_gc()) {
   952         if (g1_policy()->can_expand_young_list()) {
   953           // No need for an ergo verbose message here,
   954           // can_expand_young_list() does this when it returns true.
   955           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   956                                                       false /* bot_updates */);
   957           if (result != NULL) {
   958             return result;
   959           }
   960         }
   961         should_try_gc = false;
   962       } else {
   963         // Read the GC count while still holding the Heap_lock.
   964         gc_count_before = SharedHeap::heap()->total_collections();
   965         should_try_gc = true;
   966       }
   967     }
   969     if (should_try_gc) {
   970       bool succeeded;
   971       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   972       if (result != NULL) {
   973         assert(succeeded, "only way to get back a non-NULL result");
   974         return result;
   975       }
   977       if (succeeded) {
   978         // If we get here we successfully scheduled a collection which
   979         // failed to allocate. No point in trying to allocate
   980         // further. We'll just return NULL.
   981         MutexLockerEx x(Heap_lock);
   982         *gc_count_before_ret = SharedHeap::heap()->total_collections();
   983         return NULL;
   984       }
   985     } else {
   986       GC_locker::stall_until_clear();
   987     }
   989     // We can reach here if we were unsuccessul in scheduling a
   990     // collection (because another thread beat us to it) or if we were
   991     // stalled due to the GC locker. In either can we should retry the
   992     // allocation attempt in case another thread successfully
   993     // performed a collection and reclaimed enough space. We do the
   994     // first attempt (without holding the Heap_lock) here and the
   995     // follow-on attempt will be at the start of the next loop
   996     // iteration (after taking the Heap_lock).
   997     result = _mutator_alloc_region.attempt_allocation(word_size,
   998                                                       false /* bot_updates */);
   999     if (result != NULL ){
  1000       return result;
  1003     // Give a warning if we seem to be looping forever.
  1004     if ((QueuedAllocationWarningCount > 0) &&
  1005         (try_count % QueuedAllocationWarningCount == 0)) {
  1006       warning("G1CollectedHeap::attempt_allocation_slow() "
  1007               "retries %d times", try_count);
  1011   ShouldNotReachHere();
  1012   return NULL;
  1015 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1016                                           unsigned int * gc_count_before_ret) {
  1017   // The structure of this method has a lot of similarities to
  1018   // attempt_allocation_slow(). The reason these two were not merged
  1019   // into a single one is that such a method would require several "if
  1020   // allocation is not humongous do this, otherwise do that"
  1021   // conditional paths which would obscure its flow. In fact, an early
  1022   // version of this code did use a unified method which was harder to
  1023   // follow and, as a result, it had subtle bugs that were hard to
  1024   // track down. So keeping these two methods separate allows each to
  1025   // be more readable. It will be good to keep these two in sync as
  1026   // much as possible.
  1028   assert_heap_not_locked_and_not_at_safepoint();
  1029   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1030          "should only be called for humongous allocations");
  1032   // We will loop until a) we manage to successfully perform the
  1033   // allocation or b) we successfully schedule a collection which
  1034   // fails to perform the allocation. b) is the only case when we'll
  1035   // return NULL.
  1036   HeapWord* result = NULL;
  1037   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1038     bool should_try_gc;
  1039     unsigned int gc_count_before;
  1042       MutexLockerEx x(Heap_lock);
  1044       // Given that humongous objects are not allocated in young
  1045       // regions, we'll first try to do the allocation without doing a
  1046       // collection hoping that there's enough space in the heap.
  1047       result = humongous_obj_allocate(word_size);
  1049       if (result == NULL) {
  1050         if (GC_locker::is_active_and_needs_gc()) {
  1051           should_try_gc = false;
  1052         } else {
  1053           // Read the GC count while still holding the Heap_lock.
  1054           gc_count_before = SharedHeap::heap()->total_collections();
  1055           should_try_gc = true;
  1060     if (result != NULL) {
  1061       if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation")) {
  1062         // We need to release the Heap_lock before we try to call collect().
  1063         // The result will not be stored in any object before this method
  1064         // returns, so the GC might miss it. Thus, we create a handle to the result
  1065         // and fake an object at that place.
  1066         CollectedHeap::fill_with_object(result, word_size, false);
  1067         Handle h((oop)result);
  1068         collect(GCCause::_g1_humongous_allocation);
  1069         assert(result == (HeapWord*)h(), "Humongous objects should not be moved by collections");
  1071       return result;
  1074     if (should_try_gc) {
  1075       // If we failed to allocate the humongous object, we should try to
  1076       // do a collection pause (if we're allowed) in case it reclaims
  1077       // enough space for the allocation to succeed after the pause.
  1079       bool succeeded;
  1080       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1081       if (result != NULL) {
  1082         assert(succeeded, "only way to get back a non-NULL result");
  1083         return result;
  1086       if (succeeded) {
  1087         // If we get here we successfully scheduled a collection which
  1088         // failed to allocate. No point in trying to allocate
  1089         // further. We'll just return NULL.
  1090         MutexLockerEx x(Heap_lock);
  1091         *gc_count_before_ret = SharedHeap::heap()->total_collections();
  1092         return NULL;
  1094     } else {
  1095       GC_locker::stall_until_clear();
  1098     // We can reach here if we were unsuccessul in scheduling a
  1099     // collection (because another thread beat us to it) or if we were
  1100     // stalled due to the GC locker. In either can we should retry the
  1101     // allocation attempt in case another thread successfully
  1102     // performed a collection and reclaimed enough space.  Give a
  1103     // warning if we seem to be looping forever.
  1105     if ((QueuedAllocationWarningCount > 0) &&
  1106         (try_count % QueuedAllocationWarningCount == 0)) {
  1107       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1108               "retries %d times", try_count);
  1112   ShouldNotReachHere();
  1113   return NULL;
  1116 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1117                                        bool expect_null_mutator_alloc_region) {
  1118   assert_at_safepoint(true /* should_be_vm_thread */);
  1119   assert(_mutator_alloc_region.get() == NULL ||
  1120                                              !expect_null_mutator_alloc_region,
  1121          "the current alloc region was unexpectedly found to be non-NULL");
  1123   if (!isHumongous(word_size)) {
  1124     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1125                                                       false /* bot_updates */);
  1126   } else {
  1127     HeapWord* result = humongous_obj_allocate(word_size);
  1128     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1129       g1_policy()->set_initiate_conc_mark_if_possible();
  1131     return result;
  1134   ShouldNotReachHere();
  1137 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1138   ModRefBarrierSet* _mr_bs;
  1139 public:
  1140   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1141   bool doHeapRegion(HeapRegion* r) {
  1142     r->reset_gc_time_stamp();
  1143     if (r->continuesHumongous())
  1144       return false;
  1145     HeapRegionRemSet* hrrs = r->rem_set();
  1146     if (hrrs != NULL) hrrs->clear();
  1147     // You might think here that we could clear just the cards
  1148     // corresponding to the used region.  But no: if we leave a dirty card
  1149     // in a region we might allocate into, then it would prevent that card
  1150     // from being enqueued, and cause it to be missed.
  1151     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1152     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1153     return false;
  1155 };
  1158 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1159   ModRefBarrierSet* _mr_bs;
  1160 public:
  1161   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1162   bool doHeapRegion(HeapRegion* r) {
  1163     if (r->continuesHumongous()) return false;
  1164     if (r->used_region().word_size() != 0) {
  1165       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1167     return false;
  1169 };
  1171 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1172   G1CollectedHeap*   _g1h;
  1173   UpdateRSOopClosure _cl;
  1174   int                _worker_i;
  1175 public:
  1176   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1177     _cl(g1->g1_rem_set(), worker_i),
  1178     _worker_i(worker_i),
  1179     _g1h(g1)
  1180   { }
  1182   bool doHeapRegion(HeapRegion* r) {
  1183     if (!r->continuesHumongous()) {
  1184       _cl.set_from(r);
  1185       r->oop_iterate(&_cl);
  1187     return false;
  1189 };
  1191 class ParRebuildRSTask: public AbstractGangTask {
  1192   G1CollectedHeap* _g1;
  1193 public:
  1194   ParRebuildRSTask(G1CollectedHeap* g1)
  1195     : AbstractGangTask("ParRebuildRSTask"),
  1196       _g1(g1)
  1197   { }
  1199   void work(uint worker_id) {
  1200     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1201     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1202                                           _g1->workers()->active_workers(),
  1203                                          HeapRegion::RebuildRSClaimValue);
  1205 };
  1207 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1208 private:
  1209   G1HRPrinter* _hr_printer;
  1210 public:
  1211   bool doHeapRegion(HeapRegion* hr) {
  1212     assert(!hr->is_young(), "not expecting to find young regions");
  1213     // We only generate output for non-empty regions.
  1214     if (!hr->is_empty()) {
  1215       if (!hr->isHumongous()) {
  1216         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1217       } else if (hr->startsHumongous()) {
  1218         if (hr->capacity() == HeapRegion::GrainBytes) {
  1219           // single humongous region
  1220           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1221         } else {
  1222           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1224       } else {
  1225         assert(hr->continuesHumongous(), "only way to get here");
  1226         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1229     return false;
  1232   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1233     : _hr_printer(hr_printer) { }
  1234 };
  1236 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1237                                     bool clear_all_soft_refs,
  1238                                     size_t word_size) {
  1239   assert_at_safepoint(true /* should_be_vm_thread */);
  1241   if (GC_locker::check_active_before_gc()) {
  1242     return false;
  1245   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1246   ResourceMark rm;
  1248   if (PrintHeapAtGC) {
  1249     Universe::print_heap_before_gc();
  1252   HRSPhaseSetter x(HRSPhaseFullGC);
  1253   verify_region_sets_optional();
  1255   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1256                            collector_policy()->should_clear_all_soft_refs();
  1258   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1261     IsGCActiveMark x;
  1263     // Timing
  1264     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1265     assert(!system_gc || explicit_gc, "invariant");
  1266     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1267     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1268     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1269                 PrintGC, true, gclog_or_tty);
  1271     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1272     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1274     double start = os::elapsedTime();
  1275     g1_policy()->record_full_collection_start();
  1277     wait_while_free_regions_coming();
  1278     append_secondary_free_list_if_not_empty_with_lock();
  1280     gc_prologue(true);
  1281     increment_total_collections(true /* full gc */);
  1283     size_t g1h_prev_used = used();
  1284     assert(used() == recalculate_used(), "Should be equal");
  1286     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1287       HandleMark hm;  // Discard invalid handles created during verification
  1288       gclog_or_tty->print(" VerifyBeforeGC:");
  1289       prepare_for_verify();
  1290       Universe::verify(/* allow dirty */ true,
  1291                        /* silent      */ false,
  1292                        /* option      */ VerifyOption_G1UsePrevMarking);
  1295     pre_full_gc_dump();
  1297     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1299     // Disable discovery and empty the discovered lists
  1300     // for the CM ref processor.
  1301     ref_processor_cm()->disable_discovery();
  1302     ref_processor_cm()->abandon_partial_discovery();
  1303     ref_processor_cm()->verify_no_references_recorded();
  1305     // Abandon current iterations of concurrent marking and concurrent
  1306     // refinement, if any are in progress.
  1307     concurrent_mark()->abort();
  1309     // Make sure we'll choose a new allocation region afterwards.
  1310     release_mutator_alloc_region();
  1311     abandon_gc_alloc_regions();
  1312     g1_rem_set()->cleanupHRRS();
  1314     // We should call this after we retire any currently active alloc
  1315     // regions so that all the ALLOC / RETIRE events are generated
  1316     // before the start GC event.
  1317     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1319     // We may have added regions to the current incremental collection
  1320     // set between the last GC or pause and now. We need to clear the
  1321     // incremental collection set and then start rebuilding it afresh
  1322     // after this full GC.
  1323     abandon_collection_set(g1_policy()->inc_cset_head());
  1324     g1_policy()->clear_incremental_cset();
  1325     g1_policy()->stop_incremental_cset_building();
  1327     tear_down_region_sets(false /* free_list_only */);
  1328     g1_policy()->set_gcs_are_young(true);
  1330     // See the comments in g1CollectedHeap.hpp and
  1331     // G1CollectedHeap::ref_processing_init() about
  1332     // how reference processing currently works in G1.
  1334     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1335     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1337     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1338     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1340     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1341     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1343     // Do collection work
  1345       HandleMark hm;  // Discard invalid handles created during gc
  1346       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1349     assert(free_regions() == 0, "we should not have added any free regions");
  1350     rebuild_region_sets(false /* free_list_only */);
  1352     // Enqueue any discovered reference objects that have
  1353     // not been removed from the discovered lists.
  1354     ref_processor_stw()->enqueue_discovered_references();
  1356     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1358     MemoryService::track_memory_usage();
  1360     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1361       HandleMark hm;  // Discard invalid handles created during verification
  1362       gclog_or_tty->print(" VerifyAfterGC:");
  1363       prepare_for_verify();
  1364       Universe::verify(/* allow dirty */ false,
  1365                        /* silent      */ false,
  1366                        /* option      */ VerifyOption_G1UsePrevMarking);
  1370     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1371     ref_processor_stw()->verify_no_references_recorded();
  1373     // Note: since we've just done a full GC, concurrent
  1374     // marking is no longer active. Therefore we need not
  1375     // re-enable reference discovery for the CM ref processor.
  1376     // That will be done at the start of the next marking cycle.
  1377     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1378     ref_processor_cm()->verify_no_references_recorded();
  1380     reset_gc_time_stamp();
  1381     // Since everything potentially moved, we will clear all remembered
  1382     // sets, and clear all cards.  Later we will rebuild remebered
  1383     // sets. We will also reset the GC time stamps of the regions.
  1384     PostMCRemSetClearClosure rs_clear(mr_bs());
  1385     heap_region_iterate(&rs_clear);
  1387     // Resize the heap if necessary.
  1388     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1390     if (_hr_printer.is_active()) {
  1391       // We should do this after we potentially resize the heap so
  1392       // that all the COMMIT / UNCOMMIT events are generated before
  1393       // the end GC event.
  1395       PostCompactionPrinterClosure cl(hr_printer());
  1396       heap_region_iterate(&cl);
  1398       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1401     if (_cg1r->use_cache()) {
  1402       _cg1r->clear_and_record_card_counts();
  1403       _cg1r->clear_hot_cache();
  1406     // Rebuild remembered sets of all regions.
  1407     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1408       uint n_workers =
  1409         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1410                                        workers()->active_workers(),
  1411                                        Threads::number_of_non_daemon_threads());
  1412       assert(UseDynamicNumberOfGCThreads ||
  1413              n_workers == workers()->total_workers(),
  1414              "If not dynamic should be using all the  workers");
  1415       workers()->set_active_workers(n_workers);
  1416       // Set parallel threads in the heap (_n_par_threads) only
  1417       // before a parallel phase and always reset it to 0 after
  1418       // the phase so that the number of parallel threads does
  1419       // no get carried forward to a serial phase where there
  1420       // may be code that is "possibly_parallel".
  1421       set_par_threads(n_workers);
  1423       ParRebuildRSTask rebuild_rs_task(this);
  1424       assert(check_heap_region_claim_values(
  1425              HeapRegion::InitialClaimValue), "sanity check");
  1426       assert(UseDynamicNumberOfGCThreads ||
  1427              workers()->active_workers() == workers()->total_workers(),
  1428         "Unless dynamic should use total workers");
  1429       // Use the most recent number of  active workers
  1430       assert(workers()->active_workers() > 0,
  1431         "Active workers not properly set");
  1432       set_par_threads(workers()->active_workers());
  1433       workers()->run_task(&rebuild_rs_task);
  1434       set_par_threads(0);
  1435       assert(check_heap_region_claim_values(
  1436              HeapRegion::RebuildRSClaimValue), "sanity check");
  1437       reset_heap_region_claim_values();
  1438     } else {
  1439       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1440       heap_region_iterate(&rebuild_rs);
  1443     if (PrintGC) {
  1444       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1447     if (true) { // FIXME
  1448       // Ask the permanent generation to adjust size for full collections
  1449       perm()->compute_new_size();
  1452     // Start a new incremental collection set for the next pause
  1453     assert(g1_policy()->collection_set() == NULL, "must be");
  1454     g1_policy()->start_incremental_cset_building();
  1456     // Clear the _cset_fast_test bitmap in anticipation of adding
  1457     // regions to the incremental collection set for the next
  1458     // evacuation pause.
  1459     clear_cset_fast_test();
  1461     init_mutator_alloc_region();
  1463     double end = os::elapsedTime();
  1464     g1_policy()->record_full_collection_end();
  1466 #ifdef TRACESPINNING
  1467     ParallelTaskTerminator::print_termination_counts();
  1468 #endif
  1470     gc_epilogue(true);
  1472     // Discard all rset updates
  1473     JavaThread::dirty_card_queue_set().abandon_logs();
  1474     assert(!G1DeferredRSUpdate
  1475            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1478   _young_list->reset_sampled_info();
  1479   // At this point there should be no regions in the
  1480   // entire heap tagged as young.
  1481   assert( check_young_list_empty(true /* check_heap */),
  1482     "young list should be empty at this point");
  1484   // Update the number of full collections that have been completed.
  1485   increment_full_collections_completed(false /* concurrent */);
  1487   _hrs.verify_optional();
  1488   verify_region_sets_optional();
  1490   if (PrintHeapAtGC) {
  1491     Universe::print_heap_after_gc();
  1493   g1mm()->update_sizes();
  1494   post_full_gc_dump();
  1496   return true;
  1499 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1500   // do_collection() will return whether it succeeded in performing
  1501   // the GC. Currently, there is no facility on the
  1502   // do_full_collection() API to notify the caller than the collection
  1503   // did not succeed (e.g., because it was locked out by the GC
  1504   // locker). So, right now, we'll ignore the return value.
  1505   bool dummy = do_collection(true,                /* explicit_gc */
  1506                              clear_all_soft_refs,
  1507                              0                    /* word_size */);
  1510 // This code is mostly copied from TenuredGeneration.
  1511 void
  1512 G1CollectedHeap::
  1513 resize_if_necessary_after_full_collection(size_t word_size) {
  1514   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1516   // Include the current allocation, if any, and bytes that will be
  1517   // pre-allocated to support collections, as "used".
  1518   const size_t used_after_gc = used();
  1519   const size_t capacity_after_gc = capacity();
  1520   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1522   // This is enforced in arguments.cpp.
  1523   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1524          "otherwise the code below doesn't make sense");
  1526   // We don't have floating point command-line arguments
  1527   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1528   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1529   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1530   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1532   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1533   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1535   // We have to be careful here as these two calculations can overflow
  1536   // 32-bit size_t's.
  1537   double used_after_gc_d = (double) used_after_gc;
  1538   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1539   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1541   // Let's make sure that they are both under the max heap size, which
  1542   // by default will make them fit into a size_t.
  1543   double desired_capacity_upper_bound = (double) max_heap_size;
  1544   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1545                                     desired_capacity_upper_bound);
  1546   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1547                                     desired_capacity_upper_bound);
  1549   // We can now safely turn them into size_t's.
  1550   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1551   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1553   // This assert only makes sense here, before we adjust them
  1554   // with respect to the min and max heap size.
  1555   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1556          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1557                  "maximum_desired_capacity = "SIZE_FORMAT,
  1558                  minimum_desired_capacity, maximum_desired_capacity));
  1560   // Should not be greater than the heap max size. No need to adjust
  1561   // it with respect to the heap min size as it's a lower bound (i.e.,
  1562   // we'll try to make the capacity larger than it, not smaller).
  1563   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1564   // Should not be less than the heap min size. No need to adjust it
  1565   // with respect to the heap max size as it's an upper bound (i.e.,
  1566   // we'll try to make the capacity smaller than it, not greater).
  1567   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1569   if (capacity_after_gc < minimum_desired_capacity) {
  1570     // Don't expand unless it's significant
  1571     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1572     ergo_verbose4(ErgoHeapSizing,
  1573                   "attempt heap expansion",
  1574                   ergo_format_reason("capacity lower than "
  1575                                      "min desired capacity after Full GC")
  1576                   ergo_format_byte("capacity")
  1577                   ergo_format_byte("occupancy")
  1578                   ergo_format_byte_perc("min desired capacity"),
  1579                   capacity_after_gc, used_after_gc,
  1580                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1581     expand(expand_bytes);
  1583     // No expansion, now see if we want to shrink
  1584   } else if (capacity_after_gc > maximum_desired_capacity) {
  1585     // Capacity too large, compute shrinking size
  1586     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1587     ergo_verbose4(ErgoHeapSizing,
  1588                   "attempt heap shrinking",
  1589                   ergo_format_reason("capacity higher than "
  1590                                      "max desired capacity after Full GC")
  1591                   ergo_format_byte("capacity")
  1592                   ergo_format_byte("occupancy")
  1593                   ergo_format_byte_perc("max desired capacity"),
  1594                   capacity_after_gc, used_after_gc,
  1595                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1596     shrink(shrink_bytes);
  1601 HeapWord*
  1602 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1603                                            bool* succeeded) {
  1604   assert_at_safepoint(true /* should_be_vm_thread */);
  1606   *succeeded = true;
  1607   // Let's attempt the allocation first.
  1608   HeapWord* result =
  1609     attempt_allocation_at_safepoint(word_size,
  1610                                  false /* expect_null_mutator_alloc_region */);
  1611   if (result != NULL) {
  1612     assert(*succeeded, "sanity");
  1613     return result;
  1616   // In a G1 heap, we're supposed to keep allocation from failing by
  1617   // incremental pauses.  Therefore, at least for now, we'll favor
  1618   // expansion over collection.  (This might change in the future if we can
  1619   // do something smarter than full collection to satisfy a failed alloc.)
  1620   result = expand_and_allocate(word_size);
  1621   if (result != NULL) {
  1622     assert(*succeeded, "sanity");
  1623     return result;
  1626   // Expansion didn't work, we'll try to do a Full GC.
  1627   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1628                                     false, /* clear_all_soft_refs */
  1629                                     word_size);
  1630   if (!gc_succeeded) {
  1631     *succeeded = false;
  1632     return NULL;
  1635   // Retry the allocation
  1636   result = attempt_allocation_at_safepoint(word_size,
  1637                                   true /* expect_null_mutator_alloc_region */);
  1638   if (result != NULL) {
  1639     assert(*succeeded, "sanity");
  1640     return result;
  1643   // Then, try a Full GC that will collect all soft references.
  1644   gc_succeeded = do_collection(false, /* explicit_gc */
  1645                                true,  /* clear_all_soft_refs */
  1646                                word_size);
  1647   if (!gc_succeeded) {
  1648     *succeeded = false;
  1649     return NULL;
  1652   // Retry the allocation once more
  1653   result = attempt_allocation_at_safepoint(word_size,
  1654                                   true /* expect_null_mutator_alloc_region */);
  1655   if (result != NULL) {
  1656     assert(*succeeded, "sanity");
  1657     return result;
  1660   assert(!collector_policy()->should_clear_all_soft_refs(),
  1661          "Flag should have been handled and cleared prior to this point");
  1663   // What else?  We might try synchronous finalization later.  If the total
  1664   // space available is large enough for the allocation, then a more
  1665   // complete compaction phase than we've tried so far might be
  1666   // appropriate.
  1667   assert(*succeeded, "sanity");
  1668   return NULL;
  1671 // Attempting to expand the heap sufficiently
  1672 // to support an allocation of the given "word_size".  If
  1673 // successful, perform the allocation and return the address of the
  1674 // allocated block, or else "NULL".
  1676 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1677   assert_at_safepoint(true /* should_be_vm_thread */);
  1679   verify_region_sets_optional();
  1681   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1682   ergo_verbose1(ErgoHeapSizing,
  1683                 "attempt heap expansion",
  1684                 ergo_format_reason("allocation request failed")
  1685                 ergo_format_byte("allocation request"),
  1686                 word_size * HeapWordSize);
  1687   if (expand(expand_bytes)) {
  1688     _hrs.verify_optional();
  1689     verify_region_sets_optional();
  1690     return attempt_allocation_at_safepoint(word_size,
  1691                                  false /* expect_null_mutator_alloc_region */);
  1693   return NULL;
  1696 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1697                                              HeapWord* new_end) {
  1698   assert(old_end != new_end, "don't call this otherwise");
  1699   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1701   // Update the committed mem region.
  1702   _g1_committed.set_end(new_end);
  1703   // Tell the card table about the update.
  1704   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1705   // Tell the BOT about the update.
  1706   _bot_shared->resize(_g1_committed.word_size());
  1709 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1710   size_t old_mem_size = _g1_storage.committed_size();
  1711   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1712   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1713                                        HeapRegion::GrainBytes);
  1714   ergo_verbose2(ErgoHeapSizing,
  1715                 "expand the heap",
  1716                 ergo_format_byte("requested expansion amount")
  1717                 ergo_format_byte("attempted expansion amount"),
  1718                 expand_bytes, aligned_expand_bytes);
  1720   // First commit the memory.
  1721   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1722   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1723   if (successful) {
  1724     // Then propagate this update to the necessary data structures.
  1725     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1726     update_committed_space(old_end, new_end);
  1728     FreeRegionList expansion_list("Local Expansion List");
  1729     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1730     assert(mr.start() == old_end, "post-condition");
  1731     // mr might be a smaller region than what was requested if
  1732     // expand_by() was unable to allocate the HeapRegion instances
  1733     assert(mr.end() <= new_end, "post-condition");
  1735     size_t actual_expand_bytes = mr.byte_size();
  1736     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1737     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1738            "post-condition");
  1739     if (actual_expand_bytes < aligned_expand_bytes) {
  1740       // We could not expand _hrs to the desired size. In this case we
  1741       // need to shrink the committed space accordingly.
  1742       assert(mr.end() < new_end, "invariant");
  1744       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1745       // First uncommit the memory.
  1746       _g1_storage.shrink_by(diff_bytes);
  1747       // Then propagate this update to the necessary data structures.
  1748       update_committed_space(new_end, mr.end());
  1750     _free_list.add_as_tail(&expansion_list);
  1752     if (_hr_printer.is_active()) {
  1753       HeapWord* curr = mr.start();
  1754       while (curr < mr.end()) {
  1755         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1756         _hr_printer.commit(curr, curr_end);
  1757         curr = curr_end;
  1759       assert(curr == mr.end(), "post-condition");
  1761     g1_policy()->record_new_heap_size(n_regions());
  1762   } else {
  1763     ergo_verbose0(ErgoHeapSizing,
  1764                   "did not expand the heap",
  1765                   ergo_format_reason("heap expansion operation failed"));
  1766     // The expansion of the virtual storage space was unsuccessful.
  1767     // Let's see if it was because we ran out of swap.
  1768     if (G1ExitOnExpansionFailure &&
  1769         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1770       // We had head room...
  1771       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1774   return successful;
  1777 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1778   size_t old_mem_size = _g1_storage.committed_size();
  1779   size_t aligned_shrink_bytes =
  1780     ReservedSpace::page_align_size_down(shrink_bytes);
  1781   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1782                                          HeapRegion::GrainBytes);
  1783   size_t num_regions_deleted = 0;
  1784   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1785   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1786   assert(mr.end() == old_end, "post-condition");
  1788   ergo_verbose3(ErgoHeapSizing,
  1789                 "shrink the heap",
  1790                 ergo_format_byte("requested shrinking amount")
  1791                 ergo_format_byte("aligned shrinking amount")
  1792                 ergo_format_byte("attempted shrinking amount"),
  1793                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1794   if (mr.byte_size() > 0) {
  1795     if (_hr_printer.is_active()) {
  1796       HeapWord* curr = mr.end();
  1797       while (curr > mr.start()) {
  1798         HeapWord* curr_end = curr;
  1799         curr -= HeapRegion::GrainWords;
  1800         _hr_printer.uncommit(curr, curr_end);
  1802       assert(curr == mr.start(), "post-condition");
  1805     _g1_storage.shrink_by(mr.byte_size());
  1806     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1807     assert(mr.start() == new_end, "post-condition");
  1809     _expansion_regions += num_regions_deleted;
  1810     update_committed_space(old_end, new_end);
  1811     HeapRegionRemSet::shrink_heap(n_regions());
  1812     g1_policy()->record_new_heap_size(n_regions());
  1813   } else {
  1814     ergo_verbose0(ErgoHeapSizing,
  1815                   "did not shrink the heap",
  1816                   ergo_format_reason("heap shrinking operation failed"));
  1820 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1821   verify_region_sets_optional();
  1823   // We should only reach here at the end of a Full GC which means we
  1824   // should not not be holding to any GC alloc regions. The method
  1825   // below will make sure of that and do any remaining clean up.
  1826   abandon_gc_alloc_regions();
  1828   // Instead of tearing down / rebuilding the free lists here, we
  1829   // could instead use the remove_all_pending() method on free_list to
  1830   // remove only the ones that we need to remove.
  1831   tear_down_region_sets(true /* free_list_only */);
  1832   shrink_helper(shrink_bytes);
  1833   rebuild_region_sets(true /* free_list_only */);
  1835   _hrs.verify_optional();
  1836   verify_region_sets_optional();
  1839 // Public methods.
  1841 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1842 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1843 #endif // _MSC_VER
  1846 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1847   SharedHeap(policy_),
  1848   _g1_policy(policy_),
  1849   _dirty_card_queue_set(false),
  1850   _into_cset_dirty_card_queue_set(false),
  1851   _is_alive_closure_cm(this),
  1852   _is_alive_closure_stw(this),
  1853   _ref_processor_cm(NULL),
  1854   _ref_processor_stw(NULL),
  1855   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1856   _bot_shared(NULL),
  1857   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1858   _evac_failure_scan_stack(NULL) ,
  1859   _mark_in_progress(false),
  1860   _cg1r(NULL), _summary_bytes_used(0),
  1861   _g1mm(NULL),
  1862   _refine_cte_cl(NULL),
  1863   _full_collection(false),
  1864   _free_list("Master Free List"),
  1865   _secondary_free_list("Secondary Free List"),
  1866   _old_set("Old Set"),
  1867   _humongous_set("Master Humongous Set"),
  1868   _free_regions_coming(false),
  1869   _young_list(new YoungList(this)),
  1870   _gc_time_stamp(0),
  1871   _retained_old_gc_alloc_region(NULL),
  1872   _expand_heap_after_alloc_failure(true),
  1873   _surviving_young_words(NULL),
  1874   _full_collections_completed(0),
  1875   _in_cset_fast_test(NULL),
  1876   _in_cset_fast_test_base(NULL),
  1877   _dirty_cards_region_list(NULL),
  1878   _worker_cset_start_region(NULL),
  1879   _worker_cset_start_region_time_stamp(NULL) {
  1880   _g1h = this; // To catch bugs.
  1881   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1882     vm_exit_during_initialization("Failed necessary allocation.");
  1885   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1887   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1888   _task_queues = new RefToScanQueueSet(n_queues);
  1890   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1891   assert(n_rem_sets > 0, "Invariant.");
  1893   HeapRegionRemSetIterator** iter_arr =
  1894     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1895   for (int i = 0; i < n_queues; i++) {
  1896     iter_arr[i] = new HeapRegionRemSetIterator();
  1898   _rem_set_iterator = iter_arr;
  1900   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
  1901   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
  1903   for (int i = 0; i < n_queues; i++) {
  1904     RefToScanQueue* q = new RefToScanQueue();
  1905     q->initialize();
  1906     _task_queues->register_queue(i, q);
  1909   clear_cset_start_regions();
  1911   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1914 jint G1CollectedHeap::initialize() {
  1915   CollectedHeap::pre_initialize();
  1916   os::enable_vtime();
  1918   // Necessary to satisfy locking discipline assertions.
  1920   MutexLocker x(Heap_lock);
  1922   // We have to initialize the printer before committing the heap, as
  1923   // it will be used then.
  1924   _hr_printer.set_active(G1PrintHeapRegions);
  1926   // While there are no constraints in the GC code that HeapWordSize
  1927   // be any particular value, there are multiple other areas in the
  1928   // system which believe this to be true (e.g. oop->object_size in some
  1929   // cases incorrectly returns the size in wordSize units rather than
  1930   // HeapWordSize).
  1931   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1933   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1934   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1936   // Ensure that the sizes are properly aligned.
  1937   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1938   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1940   _cg1r = new ConcurrentG1Refine();
  1942   // Reserve the maximum.
  1943   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1944   // Includes the perm-gen.
  1946   // When compressed oops are enabled, the preferred heap base
  1947   // is calculated by subtracting the requested size from the
  1948   // 32Gb boundary and using the result as the base address for
  1949   // heap reservation. If the requested size is not aligned to
  1950   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1951   // into the ReservedHeapSpace constructor) then the actual
  1952   // base of the reserved heap may end up differing from the
  1953   // address that was requested (i.e. the preferred heap base).
  1954   // If this happens then we could end up using a non-optimal
  1955   // compressed oops mode.
  1957   // Since max_byte_size is aligned to the size of a heap region (checked
  1958   // above), we also need to align the perm gen size as it might not be.
  1959   const size_t total_reserved = max_byte_size +
  1960                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1961   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1963   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1965   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1966                             UseLargePages, addr);
  1968   if (UseCompressedOops) {
  1969     if (addr != NULL && !heap_rs.is_reserved()) {
  1970       // Failed to reserve at specified address - the requested memory
  1971       // region is taken already, for example, by 'java' launcher.
  1972       // Try again to reserver heap higher.
  1973       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1975       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1976                                  UseLargePages, addr);
  1978       if (addr != NULL && !heap_rs0.is_reserved()) {
  1979         // Failed to reserve at specified address again - give up.
  1980         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1981         assert(addr == NULL, "");
  1983         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1984                                    UseLargePages, addr);
  1985         heap_rs = heap_rs1;
  1986       } else {
  1987         heap_rs = heap_rs0;
  1992   if (!heap_rs.is_reserved()) {
  1993     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1994     return JNI_ENOMEM;
  1997   // It is important to do this in a way such that concurrent readers can't
  1998   // temporarily think somethings in the heap.  (I've actually seen this
  1999   // happen in asserts: DLD.)
  2000   _reserved.set_word_size(0);
  2001   _reserved.set_start((HeapWord*)heap_rs.base());
  2002   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2004   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  2006   // Create the gen rem set (and barrier set) for the entire reserved region.
  2007   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2008   set_barrier_set(rem_set()->bs());
  2009   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2010     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2011   } else {
  2012     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2013     return JNI_ENOMEM;
  2016   // Also create a G1 rem set.
  2017   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2018     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2019   } else {
  2020     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2021     return JNI_ENOMEM;
  2024   // Carve out the G1 part of the heap.
  2026   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2027   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2028                            g1_rs.size()/HeapWordSize);
  2029   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2031   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2033   _g1_storage.initialize(g1_rs, 0);
  2034   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2035   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2036                   (HeapWord*) _g1_reserved.end(),
  2037                   _expansion_regions);
  2039   // 6843694 - ensure that the maximum region index can fit
  2040   // in the remembered set structures.
  2041   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2042   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2044   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2045   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2046   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2047             "too many cards per region");
  2049   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2051   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2052                                              heap_word_size(init_byte_size));
  2054   _g1h = this;
  2056    _in_cset_fast_test_length = max_regions();
  2057    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2059    // We're biasing _in_cset_fast_test to avoid subtracting the
  2060    // beginning of the heap every time we want to index; basically
  2061    // it's the same with what we do with the card table.
  2062    _in_cset_fast_test = _in_cset_fast_test_base -
  2063                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2065    // Clear the _cset_fast_test bitmap in anticipation of adding
  2066    // regions to the incremental collection set for the first
  2067    // evacuation pause.
  2068    clear_cset_fast_test();
  2070   // Create the ConcurrentMark data structure and thread.
  2071   // (Must do this late, so that "max_regions" is defined.)
  2072   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  2073   _cmThread = _cm->cmThread();
  2075   // Initialize the from_card cache structure of HeapRegionRemSet.
  2076   HeapRegionRemSet::init_heap(max_regions());
  2078   // Now expand into the initial heap size.
  2079   if (!expand(init_byte_size)) {
  2080     vm_exit_during_initialization("Failed to allocate initial heap.");
  2081     return JNI_ENOMEM;
  2084   // Perform any initialization actions delegated to the policy.
  2085   g1_policy()->init();
  2087   _refine_cte_cl =
  2088     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2089                                     g1_rem_set(),
  2090                                     concurrent_g1_refine());
  2091   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2093   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2094                                                SATB_Q_FL_lock,
  2095                                                G1SATBProcessCompletedThreshold,
  2096                                                Shared_SATB_Q_lock);
  2098   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2099                                                 DirtyCardQ_FL_lock,
  2100                                                 concurrent_g1_refine()->yellow_zone(),
  2101                                                 concurrent_g1_refine()->red_zone(),
  2102                                                 Shared_DirtyCardQ_lock);
  2104   if (G1DeferredRSUpdate) {
  2105     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2106                                       DirtyCardQ_FL_lock,
  2107                                       -1, // never trigger processing
  2108                                       -1, // no limit on length
  2109                                       Shared_DirtyCardQ_lock,
  2110                                       &JavaThread::dirty_card_queue_set());
  2113   // Initialize the card queue set used to hold cards containing
  2114   // references into the collection set.
  2115   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2116                                              DirtyCardQ_FL_lock,
  2117                                              -1, // never trigger processing
  2118                                              -1, // no limit on length
  2119                                              Shared_DirtyCardQ_lock,
  2120                                              &JavaThread::dirty_card_queue_set());
  2122   // In case we're keeping closure specialization stats, initialize those
  2123   // counts and that mechanism.
  2124   SpecializationStats::clear();
  2126   // Do later initialization work for concurrent refinement.
  2127   _cg1r->init();
  2129   // Here we allocate the dummy full region that is required by the
  2130   // G1AllocRegion class. If we don't pass an address in the reserved
  2131   // space here, lots of asserts fire.
  2133   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2134                                              _g1_reserved.start());
  2135   // We'll re-use the same region whether the alloc region will
  2136   // require BOT updates or not and, if it doesn't, then a non-young
  2137   // region will complain that it cannot support allocations without
  2138   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2139   dummy_region->set_young();
  2140   // Make sure it's full.
  2141   dummy_region->set_top(dummy_region->end());
  2142   G1AllocRegion::setup(this, dummy_region);
  2144   init_mutator_alloc_region();
  2146   // Do create of the monitoring and management support so that
  2147   // values in the heap have been properly initialized.
  2148   _g1mm = new G1MonitoringSupport(this);
  2150   return JNI_OK;
  2153 void G1CollectedHeap::ref_processing_init() {
  2154   // Reference processing in G1 currently works as follows:
  2155   //
  2156   // * There are two reference processor instances. One is
  2157   //   used to record and process discovered references
  2158   //   during concurrent marking; the other is used to
  2159   //   record and process references during STW pauses
  2160   //   (both full and incremental).
  2161   // * Both ref processors need to 'span' the entire heap as
  2162   //   the regions in the collection set may be dotted around.
  2163   //
  2164   // * For the concurrent marking ref processor:
  2165   //   * Reference discovery is enabled at initial marking.
  2166   //   * Reference discovery is disabled and the discovered
  2167   //     references processed etc during remarking.
  2168   //   * Reference discovery is MT (see below).
  2169   //   * Reference discovery requires a barrier (see below).
  2170   //   * Reference processing may or may not be MT
  2171   //     (depending on the value of ParallelRefProcEnabled
  2172   //     and ParallelGCThreads).
  2173   //   * A full GC disables reference discovery by the CM
  2174   //     ref processor and abandons any entries on it's
  2175   //     discovered lists.
  2176   //
  2177   // * For the STW processor:
  2178   //   * Non MT discovery is enabled at the start of a full GC.
  2179   //   * Processing and enqueueing during a full GC is non-MT.
  2180   //   * During a full GC, references are processed after marking.
  2181   //
  2182   //   * Discovery (may or may not be MT) is enabled at the start
  2183   //     of an incremental evacuation pause.
  2184   //   * References are processed near the end of a STW evacuation pause.
  2185   //   * For both types of GC:
  2186   //     * Discovery is atomic - i.e. not concurrent.
  2187   //     * Reference discovery will not need a barrier.
  2189   SharedHeap::ref_processing_init();
  2190   MemRegion mr = reserved_region();
  2192   // Concurrent Mark ref processor
  2193   _ref_processor_cm =
  2194     new ReferenceProcessor(mr,    // span
  2195                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2196                                 // mt processing
  2197                            (int) ParallelGCThreads,
  2198                                 // degree of mt processing
  2199                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2200                                 // mt discovery
  2201                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2202                                 // degree of mt discovery
  2203                            false,
  2204                                 // Reference discovery is not atomic
  2205                            &_is_alive_closure_cm,
  2206                                 // is alive closure
  2207                                 // (for efficiency/performance)
  2208                            true);
  2209                                 // Setting next fields of discovered
  2210                                 // lists requires a barrier.
  2212   // STW ref processor
  2213   _ref_processor_stw =
  2214     new ReferenceProcessor(mr,    // span
  2215                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2216                                 // mt processing
  2217                            MAX2((int)ParallelGCThreads, 1),
  2218                                 // degree of mt processing
  2219                            (ParallelGCThreads > 1),
  2220                                 // mt discovery
  2221                            MAX2((int)ParallelGCThreads, 1),
  2222                                 // degree of mt discovery
  2223                            true,
  2224                                 // Reference discovery is atomic
  2225                            &_is_alive_closure_stw,
  2226                                 // is alive closure
  2227                                 // (for efficiency/performance)
  2228                            false);
  2229                                 // Setting next fields of discovered
  2230                                 // lists requires a barrier.
  2233 size_t G1CollectedHeap::capacity() const {
  2234   return _g1_committed.byte_size();
  2237 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2238                                                  DirtyCardQueue* into_cset_dcq,
  2239                                                  bool concurrent,
  2240                                                  int worker_i) {
  2241   // Clean cards in the hot card cache
  2242   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2244   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2245   int n_completed_buffers = 0;
  2246   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2247     n_completed_buffers++;
  2249   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2250                                                   (double) n_completed_buffers);
  2251   dcqs.clear_n_completed_buffers();
  2252   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2256 // Computes the sum of the storage used by the various regions.
  2258 size_t G1CollectedHeap::used() const {
  2259   assert(Heap_lock->owner() != NULL,
  2260          "Should be owned on this thread's behalf.");
  2261   size_t result = _summary_bytes_used;
  2262   // Read only once in case it is set to NULL concurrently
  2263   HeapRegion* hr = _mutator_alloc_region.get();
  2264   if (hr != NULL)
  2265     result += hr->used();
  2266   return result;
  2269 size_t G1CollectedHeap::used_unlocked() const {
  2270   size_t result = _summary_bytes_used;
  2271   return result;
  2274 class SumUsedClosure: public HeapRegionClosure {
  2275   size_t _used;
  2276 public:
  2277   SumUsedClosure() : _used(0) {}
  2278   bool doHeapRegion(HeapRegion* r) {
  2279     if (!r->continuesHumongous()) {
  2280       _used += r->used();
  2282     return false;
  2284   size_t result() { return _used; }
  2285 };
  2287 size_t G1CollectedHeap::recalculate_used() const {
  2288   SumUsedClosure blk;
  2289   heap_region_iterate(&blk);
  2290   return blk.result();
  2293 size_t G1CollectedHeap::unsafe_max_alloc() {
  2294   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2295   // otherwise, is there space in the current allocation region?
  2297   // We need to store the current allocation region in a local variable
  2298   // here. The problem is that this method doesn't take any locks and
  2299   // there may be other threads which overwrite the current allocation
  2300   // region field. attempt_allocation(), for example, sets it to NULL
  2301   // and this can happen *after* the NULL check here but before the call
  2302   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2303   // to be a problem in the optimized build, since the two loads of the
  2304   // current allocation region field are optimized away.
  2305   HeapRegion* hr = _mutator_alloc_region.get();
  2306   if (hr == NULL) {
  2307     return 0;
  2309   return hr->free();
  2312 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2313   return
  2314     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
  2315      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent) ||
  2316       cause == GCCause::_g1_humongous_allocation);
  2319 #ifndef PRODUCT
  2320 void G1CollectedHeap::allocate_dummy_regions() {
  2321   // Let's fill up most of the region
  2322   size_t word_size = HeapRegion::GrainWords - 1024;
  2323   // And as a result the region we'll allocate will be humongous.
  2324   guarantee(isHumongous(word_size), "sanity");
  2326   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2327     // Let's use the existing mechanism for the allocation
  2328     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2329     if (dummy_obj != NULL) {
  2330       MemRegion mr(dummy_obj, word_size);
  2331       CollectedHeap::fill_with_object(mr);
  2332     } else {
  2333       // If we can't allocate once, we probably cannot allocate
  2334       // again. Let's get out of the loop.
  2335       break;
  2339 #endif // !PRODUCT
  2341 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2342   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2344   // We assume that if concurrent == true, then the caller is a
  2345   // concurrent thread that was joined the Suspendible Thread
  2346   // Set. If there's ever a cheap way to check this, we should add an
  2347   // assert here.
  2349   // We have already incremented _total_full_collections at the start
  2350   // of the GC, so total_full_collections() represents how many full
  2351   // collections have been started.
  2352   unsigned int full_collections_started = total_full_collections();
  2354   // Given that this method is called at the end of a Full GC or of a
  2355   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2356   // interrupt a concurrent cycle), the number of full collections
  2357   // completed should be either one (in the case where there was no
  2358   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2359   // behind the number of full collections started.
  2361   // This is the case for the inner caller, i.e. a Full GC.
  2362   assert(concurrent ||
  2363          (full_collections_started == _full_collections_completed + 1) ||
  2364          (full_collections_started == _full_collections_completed + 2),
  2365          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2366                  "is inconsistent with _full_collections_completed = %u",
  2367                  full_collections_started, _full_collections_completed));
  2369   // This is the case for the outer caller, i.e. the concurrent cycle.
  2370   assert(!concurrent ||
  2371          (full_collections_started == _full_collections_completed + 1),
  2372          err_msg("for outer caller (concurrent cycle): "
  2373                  "full_collections_started = %u "
  2374                  "is inconsistent with _full_collections_completed = %u",
  2375                  full_collections_started, _full_collections_completed));
  2377   _full_collections_completed += 1;
  2379   // We need to clear the "in_progress" flag in the CM thread before
  2380   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2381   // is set) so that if a waiter requests another System.gc() it doesn't
  2382   // incorrectly see that a marking cyle is still in progress.
  2383   if (concurrent) {
  2384     _cmThread->clear_in_progress();
  2387   // This notify_all() will ensure that a thread that called
  2388   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2389   // and it's waiting for a full GC to finish will be woken up. It is
  2390   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2391   FullGCCount_lock->notify_all();
  2394 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2395   assert_at_safepoint(true /* should_be_vm_thread */);
  2396   GCCauseSetter gcs(this, cause);
  2397   switch (cause) {
  2398     case GCCause::_heap_inspection:
  2399     case GCCause::_heap_dump: {
  2400       HandleMark hm;
  2401       do_full_collection(false);         // don't clear all soft refs
  2402       break;
  2404     default: // XXX FIX ME
  2405       ShouldNotReachHere(); // Unexpected use of this function
  2409 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2410   // The caller doesn't have the Heap_lock
  2411   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  2413   unsigned int gc_count_before;
  2414   unsigned int full_gc_count_before;
  2416     MutexLocker ml(Heap_lock);
  2418     // Read the GC count while holding the Heap_lock
  2419     gc_count_before = SharedHeap::heap()->total_collections();
  2420     full_gc_count_before = SharedHeap::heap()->total_full_collections();
  2423   if (should_do_concurrent_full_gc(cause)) {
  2424     // Schedule an initial-mark evacuation pause that will start a
  2425     // concurrent cycle. We're setting word_size to 0 which means that
  2426     // we are not requesting a post-GC allocation.
  2427     VM_G1IncCollectionPause op(gc_count_before,
  2428                                0,     /* word_size */
  2429                                true,  /* should_initiate_conc_mark */
  2430                                g1_policy()->max_pause_time_ms(),
  2431                                cause);
  2432     VMThread::execute(&op);
  2433   } else {
  2434     if (cause == GCCause::_gc_locker
  2435         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2437       // Schedule a standard evacuation pause. We're setting word_size
  2438       // to 0 which means that we are not requesting a post-GC allocation.
  2439       VM_G1IncCollectionPause op(gc_count_before,
  2440                                  0,     /* word_size */
  2441                                  false, /* should_initiate_conc_mark */
  2442                                  g1_policy()->max_pause_time_ms(),
  2443                                  cause);
  2444       VMThread::execute(&op);
  2445     } else {
  2446       // Schedule a Full GC.
  2447       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2448       VMThread::execute(&op);
  2453 bool G1CollectedHeap::is_in(const void* p) const {
  2454   if (_g1_committed.contains(p)) {
  2455     // Given that we know that p is in the committed space,
  2456     // heap_region_containing_raw() should successfully
  2457     // return the containing region.
  2458     HeapRegion* hr = heap_region_containing_raw(p);
  2459     return hr->is_in(p);
  2460   } else {
  2461     return _perm_gen->as_gen()->is_in(p);
  2465 // Iteration functions.
  2467 // Iterates an OopClosure over all ref-containing fields of objects
  2468 // within a HeapRegion.
  2470 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2471   MemRegion _mr;
  2472   OopClosure* _cl;
  2473 public:
  2474   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2475     : _mr(mr), _cl(cl) {}
  2476   bool doHeapRegion(HeapRegion* r) {
  2477     if (! r->continuesHumongous()) {
  2478       r->oop_iterate(_cl);
  2480     return false;
  2482 };
  2484 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2485   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2486   heap_region_iterate(&blk);
  2487   if (do_perm) {
  2488     perm_gen()->oop_iterate(cl);
  2492 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2493   IterateOopClosureRegionClosure blk(mr, cl);
  2494   heap_region_iterate(&blk);
  2495   if (do_perm) {
  2496     perm_gen()->oop_iterate(cl);
  2500 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2502 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2503   ObjectClosure* _cl;
  2504 public:
  2505   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2506   bool doHeapRegion(HeapRegion* r) {
  2507     if (! r->continuesHumongous()) {
  2508       r->object_iterate(_cl);
  2510     return false;
  2512 };
  2514 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2515   IterateObjectClosureRegionClosure blk(cl);
  2516   heap_region_iterate(&blk);
  2517   if (do_perm) {
  2518     perm_gen()->object_iterate(cl);
  2522 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2523   // FIXME: is this right?
  2524   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2527 // Calls a SpaceClosure on a HeapRegion.
  2529 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2530   SpaceClosure* _cl;
  2531 public:
  2532   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2533   bool doHeapRegion(HeapRegion* r) {
  2534     _cl->do_space(r);
  2535     return false;
  2537 };
  2539 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2540   SpaceClosureRegionClosure blk(cl);
  2541   heap_region_iterate(&blk);
  2544 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2545   _hrs.iterate(cl);
  2548 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2549                                                HeapRegionClosure* cl) const {
  2550   _hrs.iterate_from(r, cl);
  2553 void
  2554 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2555                                                  uint worker,
  2556                                                  uint no_of_par_workers,
  2557                                                  jint claim_value) {
  2558   const size_t regions = n_regions();
  2559   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2560                              no_of_par_workers :
  2561                              1);
  2562   assert(UseDynamicNumberOfGCThreads ||
  2563          no_of_par_workers == workers()->total_workers(),
  2564          "Non dynamic should use fixed number of workers");
  2565   // try to spread out the starting points of the workers
  2566   const size_t start_index = regions / max_workers * (size_t) worker;
  2568   // each worker will actually look at all regions
  2569   for (size_t count = 0; count < regions; ++count) {
  2570     const size_t index = (start_index + count) % regions;
  2571     assert(0 <= index && index < regions, "sanity");
  2572     HeapRegion* r = region_at(index);
  2573     // we'll ignore "continues humongous" regions (we'll process them
  2574     // when we come across their corresponding "start humongous"
  2575     // region) and regions already claimed
  2576     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2577       continue;
  2579     // OK, try to claim it
  2580     if (r->claimHeapRegion(claim_value)) {
  2581       // success!
  2582       assert(!r->continuesHumongous(), "sanity");
  2583       if (r->startsHumongous()) {
  2584         // If the region is "starts humongous" we'll iterate over its
  2585         // "continues humongous" first; in fact we'll do them
  2586         // first. The order is important. In on case, calling the
  2587         // closure on the "starts humongous" region might de-allocate
  2588         // and clear all its "continues humongous" regions and, as a
  2589         // result, we might end up processing them twice. So, we'll do
  2590         // them first (notice: most closures will ignore them anyway) and
  2591         // then we'll do the "starts humongous" region.
  2592         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  2593           HeapRegion* chr = region_at(ch_index);
  2595           // if the region has already been claimed or it's not
  2596           // "continues humongous" we're done
  2597           if (chr->claim_value() == claim_value ||
  2598               !chr->continuesHumongous()) {
  2599             break;
  2602           // Noone should have claimed it directly. We can given
  2603           // that we claimed its "starts humongous" region.
  2604           assert(chr->claim_value() != claim_value, "sanity");
  2605           assert(chr->humongous_start_region() == r, "sanity");
  2607           if (chr->claimHeapRegion(claim_value)) {
  2608             // we should always be able to claim it; noone else should
  2609             // be trying to claim this region
  2611             bool res2 = cl->doHeapRegion(chr);
  2612             assert(!res2, "Should not abort");
  2614             // Right now, this holds (i.e., no closure that actually
  2615             // does something with "continues humongous" regions
  2616             // clears them). We might have to weaken it in the future,
  2617             // but let's leave these two asserts here for extra safety.
  2618             assert(chr->continuesHumongous(), "should still be the case");
  2619             assert(chr->humongous_start_region() == r, "sanity");
  2620           } else {
  2621             guarantee(false, "we should not reach here");
  2626       assert(!r->continuesHumongous(), "sanity");
  2627       bool res = cl->doHeapRegion(r);
  2628       assert(!res, "Should not abort");
  2633 class ResetClaimValuesClosure: public HeapRegionClosure {
  2634 public:
  2635   bool doHeapRegion(HeapRegion* r) {
  2636     r->set_claim_value(HeapRegion::InitialClaimValue);
  2637     return false;
  2639 };
  2641 void G1CollectedHeap::reset_heap_region_claim_values() {
  2642   ResetClaimValuesClosure blk;
  2643   heap_region_iterate(&blk);
  2646 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2647   ResetClaimValuesClosure blk;
  2648   collection_set_iterate(&blk);
  2651 #ifdef ASSERT
  2652 // This checks whether all regions in the heap have the correct claim
  2653 // value. I also piggy-backed on this a check to ensure that the
  2654 // humongous_start_region() information on "continues humongous"
  2655 // regions is correct.
  2657 class CheckClaimValuesClosure : public HeapRegionClosure {
  2658 private:
  2659   jint _claim_value;
  2660   size_t _failures;
  2661   HeapRegion* _sh_region;
  2662 public:
  2663   CheckClaimValuesClosure(jint claim_value) :
  2664     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2665   bool doHeapRegion(HeapRegion* r) {
  2666     if (r->claim_value() != _claim_value) {
  2667       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2668                              "claim value = %d, should be %d",
  2669                              HR_FORMAT_PARAMS(r),
  2670                              r->claim_value(), _claim_value);
  2671       ++_failures;
  2673     if (!r->isHumongous()) {
  2674       _sh_region = NULL;
  2675     } else if (r->startsHumongous()) {
  2676       _sh_region = r;
  2677     } else if (r->continuesHumongous()) {
  2678       if (r->humongous_start_region() != _sh_region) {
  2679         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2680                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2681                                HR_FORMAT_PARAMS(r),
  2682                                r->humongous_start_region(),
  2683                                _sh_region);
  2684         ++_failures;
  2687     return false;
  2689   size_t failures() {
  2690     return _failures;
  2692 };
  2694 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2695   CheckClaimValuesClosure cl(claim_value);
  2696   heap_region_iterate(&cl);
  2697   return cl.failures() == 0;
  2700 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2701   jint   _claim_value;
  2702   size_t _failures;
  2704 public:
  2705   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2706     _claim_value(claim_value),
  2707     _failures(0) { }
  2709   size_t failures() {
  2710     return _failures;
  2713   bool doHeapRegion(HeapRegion* hr) {
  2714     assert(hr->in_collection_set(), "how?");
  2715     assert(!hr->isHumongous(), "H-region in CSet");
  2716     if (hr->claim_value() != _claim_value) {
  2717       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2718                              "claim value = %d, should be %d",
  2719                              HR_FORMAT_PARAMS(hr),
  2720                              hr->claim_value(), _claim_value);
  2721       _failures += 1;
  2723     return false;
  2725 };
  2727 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2728   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2729   collection_set_iterate(&cl);
  2730   return cl.failures() == 0;
  2732 #endif // ASSERT
  2734 // Clear the cached CSet starting regions and (more importantly)
  2735 // the time stamps. Called when we reset the GC time stamp.
  2736 void G1CollectedHeap::clear_cset_start_regions() {
  2737   assert(_worker_cset_start_region != NULL, "sanity");
  2738   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2740   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2741   for (int i = 0; i < n_queues; i++) {
  2742     _worker_cset_start_region[i] = NULL;
  2743     _worker_cset_start_region_time_stamp[i] = 0;
  2747 // Given the id of a worker, obtain or calculate a suitable
  2748 // starting region for iterating over the current collection set.
  2749 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2750   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2752   HeapRegion* result = NULL;
  2753   unsigned gc_time_stamp = get_gc_time_stamp();
  2755   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2756     // Cached starting region for current worker was set
  2757     // during the current pause - so it's valid.
  2758     // Note: the cached starting heap region may be NULL
  2759     // (when the collection set is empty).
  2760     result = _worker_cset_start_region[worker_i];
  2761     assert(result == NULL || result->in_collection_set(), "sanity");
  2762     return result;
  2765   // The cached entry was not valid so let's calculate
  2766   // a suitable starting heap region for this worker.
  2768   // We want the parallel threads to start their collection
  2769   // set iteration at different collection set regions to
  2770   // avoid contention.
  2771   // If we have:
  2772   //          n collection set regions
  2773   //          p threads
  2774   // Then thread t will start at region floor ((t * n) / p)
  2776   result = g1_policy()->collection_set();
  2777   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2778     size_t cs_size = g1_policy()->cset_region_length();
  2779     uint active_workers = workers()->active_workers();
  2780     assert(UseDynamicNumberOfGCThreads ||
  2781              active_workers == workers()->total_workers(),
  2782              "Unless dynamic should use total workers");
  2784     size_t end_ind   = (cs_size * worker_i) / active_workers;
  2785     size_t start_ind = 0;
  2787     if (worker_i > 0 &&
  2788         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2789       // Previous workers starting region is valid
  2790       // so let's iterate from there
  2791       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2792       result = _worker_cset_start_region[worker_i - 1];
  2795     for (size_t i = start_ind; i < end_ind; i++) {
  2796       result = result->next_in_collection_set();
  2800   // Note: the calculated starting heap region may be NULL
  2801   // (when the collection set is empty).
  2802   assert(result == NULL || result->in_collection_set(), "sanity");
  2803   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2804          "should be updated only once per pause");
  2805   _worker_cset_start_region[worker_i] = result;
  2806   OrderAccess::storestore();
  2807   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2808   return result;
  2811 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2812   HeapRegion* r = g1_policy()->collection_set();
  2813   while (r != NULL) {
  2814     HeapRegion* next = r->next_in_collection_set();
  2815     if (cl->doHeapRegion(r)) {
  2816       cl->incomplete();
  2817       return;
  2819     r = next;
  2823 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2824                                                   HeapRegionClosure *cl) {
  2825   if (r == NULL) {
  2826     // The CSet is empty so there's nothing to do.
  2827     return;
  2830   assert(r->in_collection_set(),
  2831          "Start region must be a member of the collection set.");
  2832   HeapRegion* cur = r;
  2833   while (cur != NULL) {
  2834     HeapRegion* next = cur->next_in_collection_set();
  2835     if (cl->doHeapRegion(cur) && false) {
  2836       cl->incomplete();
  2837       return;
  2839     cur = next;
  2841   cur = g1_policy()->collection_set();
  2842   while (cur != r) {
  2843     HeapRegion* next = cur->next_in_collection_set();
  2844     if (cl->doHeapRegion(cur) && false) {
  2845       cl->incomplete();
  2846       return;
  2848     cur = next;
  2852 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2853   return n_regions() > 0 ? region_at(0) : NULL;
  2857 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2858   Space* res = heap_region_containing(addr);
  2859   if (res == NULL)
  2860     res = perm_gen()->space_containing(addr);
  2861   return res;
  2864 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2865   Space* sp = space_containing(addr);
  2866   if (sp != NULL) {
  2867     return sp->block_start(addr);
  2869   return NULL;
  2872 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2873   Space* sp = space_containing(addr);
  2874   assert(sp != NULL, "block_size of address outside of heap");
  2875   return sp->block_size(addr);
  2878 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2879   Space* sp = space_containing(addr);
  2880   return sp->block_is_obj(addr);
  2883 bool G1CollectedHeap::supports_tlab_allocation() const {
  2884   return true;
  2887 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2888   return HeapRegion::GrainBytes;
  2891 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2892   // Return the remaining space in the cur alloc region, but not less than
  2893   // the min TLAB size.
  2895   // Also, this value can be at most the humongous object threshold,
  2896   // since we can't allow tlabs to grow big enough to accomodate
  2897   // humongous objects.
  2899   HeapRegion* hr = _mutator_alloc_region.get();
  2900   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2901   if (hr == NULL) {
  2902     return max_tlab_size;
  2903   } else {
  2904     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2908 size_t G1CollectedHeap::max_capacity() const {
  2909   return _g1_reserved.byte_size();
  2912 jlong G1CollectedHeap::millis_since_last_gc() {
  2913   // assert(false, "NYI");
  2914   return 0;
  2917 void G1CollectedHeap::prepare_for_verify() {
  2918   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2919     ensure_parsability(false);
  2921   g1_rem_set()->prepare_for_verify();
  2924 class VerifyLivenessOopClosure: public OopClosure {
  2925   G1CollectedHeap* _g1h;
  2926   VerifyOption _vo;
  2927 public:
  2928   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2929     _g1h(g1h), _vo(vo)
  2930   { }
  2931   void do_oop(narrowOop *p) { do_oop_work(p); }
  2932   void do_oop(      oop *p) { do_oop_work(p); }
  2934   template <class T> void do_oop_work(T *p) {
  2935     oop obj = oopDesc::load_decode_heap_oop(p);
  2936     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2937               "Dead object referenced by a not dead object");
  2939 };
  2941 class VerifyObjsInRegionClosure: public ObjectClosure {
  2942 private:
  2943   G1CollectedHeap* _g1h;
  2944   size_t _live_bytes;
  2945   HeapRegion *_hr;
  2946   VerifyOption _vo;
  2947 public:
  2948   // _vo == UsePrevMarking -> use "prev" marking information,
  2949   // _vo == UseNextMarking -> use "next" marking information,
  2950   // _vo == UseMarkWord    -> use mark word from object header.
  2951   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  2952     : _live_bytes(0), _hr(hr), _vo(vo) {
  2953     _g1h = G1CollectedHeap::heap();
  2955   void do_object(oop o) {
  2956     VerifyLivenessOopClosure isLive(_g1h, _vo);
  2957     assert(o != NULL, "Huh?");
  2958     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  2959       // If the object is alive according to the mark word,
  2960       // then verify that the marking information agrees.
  2961       // Note we can't verify the contra-positive of the
  2962       // above: if the object is dead (according to the mark
  2963       // word), it may not be marked, or may have been marked
  2964       // but has since became dead, or may have been allocated
  2965       // since the last marking.
  2966       if (_vo == VerifyOption_G1UseMarkWord) {
  2967         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  2970       o->oop_iterate(&isLive);
  2971       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2972         size_t obj_size = o->size();    // Make sure we don't overflow
  2973         _live_bytes += (obj_size * HeapWordSize);
  2977   size_t live_bytes() { return _live_bytes; }
  2978 };
  2980 class PrintObjsInRegionClosure : public ObjectClosure {
  2981   HeapRegion *_hr;
  2982   G1CollectedHeap *_g1;
  2983 public:
  2984   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2985     _g1 = G1CollectedHeap::heap();
  2986   };
  2988   void do_object(oop o) {
  2989     if (o != NULL) {
  2990       HeapWord *start = (HeapWord *) o;
  2991       size_t word_sz = o->size();
  2992       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2993                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2994                           (void*) o, word_sz,
  2995                           _g1->isMarkedPrev(o),
  2996                           _g1->isMarkedNext(o),
  2997                           _hr->obj_allocated_since_prev_marking(o));
  2998       HeapWord *end = start + word_sz;
  2999       HeapWord *cur;
  3000       int *val;
  3001       for (cur = start; cur < end; cur++) {
  3002         val = (int *) cur;
  3003         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3007 };
  3009 class VerifyRegionClosure: public HeapRegionClosure {
  3010 private:
  3011   bool         _allow_dirty;
  3012   bool         _par;
  3013   VerifyOption _vo;
  3014   bool         _failures;
  3015 public:
  3016   // _vo == UsePrevMarking -> use "prev" marking information,
  3017   // _vo == UseNextMarking -> use "next" marking information,
  3018   // _vo == UseMarkWord    -> use mark word from object header.
  3019   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
  3020     : _allow_dirty(allow_dirty),
  3021       _par(par),
  3022       _vo(vo),
  3023       _failures(false) {}
  3025   bool failures() {
  3026     return _failures;
  3029   bool doHeapRegion(HeapRegion* r) {
  3030     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  3031               "Should be unclaimed at verify points.");
  3032     if (!r->continuesHumongous()) {
  3033       bool failures = false;
  3034       r->verify(_allow_dirty, _vo, &failures);
  3035       if (failures) {
  3036         _failures = true;
  3037       } else {
  3038         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3039         r->object_iterate(&not_dead_yet_cl);
  3040         if (_vo != VerifyOption_G1UseNextMarking) {
  3041           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3042             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3043                                    "max_live_bytes "SIZE_FORMAT" "
  3044                                    "< calculated "SIZE_FORMAT,
  3045                                    r->bottom(), r->end(),
  3046                                    r->max_live_bytes(),
  3047                                  not_dead_yet_cl.live_bytes());
  3048             _failures = true;
  3050         } else {
  3051           // When vo == UseNextMarking we cannot currently do a sanity
  3052           // check on the live bytes as the calculation has not been
  3053           // finalized yet.
  3057     return false; // stop the region iteration if we hit a failure
  3059 };
  3061 class VerifyRootsClosure: public OopsInGenClosure {
  3062 private:
  3063   G1CollectedHeap* _g1h;
  3064   VerifyOption     _vo;
  3065   bool             _failures;
  3066 public:
  3067   // _vo == UsePrevMarking -> use "prev" marking information,
  3068   // _vo == UseNextMarking -> use "next" marking information,
  3069   // _vo == UseMarkWord    -> use mark word from object header.
  3070   VerifyRootsClosure(VerifyOption vo) :
  3071     _g1h(G1CollectedHeap::heap()),
  3072     _vo(vo),
  3073     _failures(false) { }
  3075   bool failures() { return _failures; }
  3077   template <class T> void do_oop_nv(T* p) {
  3078     T heap_oop = oopDesc::load_heap_oop(p);
  3079     if (!oopDesc::is_null(heap_oop)) {
  3080       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3081       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3082         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3083                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3084         if (_vo == VerifyOption_G1UseMarkWord) {
  3085           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3087         obj->print_on(gclog_or_tty);
  3088         _failures = true;
  3093   void do_oop(oop* p)       { do_oop_nv(p); }
  3094   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3095 };
  3097 // This is the task used for parallel heap verification.
  3099 class G1ParVerifyTask: public AbstractGangTask {
  3100 private:
  3101   G1CollectedHeap* _g1h;
  3102   bool             _allow_dirty;
  3103   VerifyOption     _vo;
  3104   bool             _failures;
  3106 public:
  3107   // _vo == UsePrevMarking -> use "prev" marking information,
  3108   // _vo == UseNextMarking -> use "next" marking information,
  3109   // _vo == UseMarkWord    -> use mark word from object header.
  3110   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
  3111     AbstractGangTask("Parallel verify task"),
  3112     _g1h(g1h),
  3113     _allow_dirty(allow_dirty),
  3114     _vo(vo),
  3115     _failures(false) { }
  3117   bool failures() {
  3118     return _failures;
  3121   void work(uint worker_id) {
  3122     HandleMark hm;
  3123     VerifyRegionClosure blk(_allow_dirty, true, _vo);
  3124     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3125                                           _g1h->workers()->active_workers(),
  3126                                           HeapRegion::ParVerifyClaimValue);
  3127     if (blk.failures()) {
  3128       _failures = true;
  3131 };
  3133 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  3134   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
  3137 void G1CollectedHeap::verify(bool allow_dirty,
  3138                              bool silent,
  3139                              VerifyOption vo) {
  3140   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3141     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  3142     VerifyRootsClosure rootsCl(vo);
  3144     assert(Thread::current()->is_VM_thread(),
  3145       "Expected to be executed serially by the VM thread at this point");
  3147     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3149     // We apply the relevant closures to all the oops in the
  3150     // system dictionary, the string table and the code cache.
  3151     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  3153     process_strong_roots(true,      // activate StrongRootsScope
  3154                          true,      // we set "collecting perm gen" to true,
  3155                                     // so we don't reset the dirty cards in the perm gen.
  3156                          SharedHeap::ScanningOption(so),  // roots scanning options
  3157                          &rootsCl,
  3158                          &blobsCl,
  3159                          &rootsCl);
  3161     // If we're verifying after the marking phase of a Full GC then we can't
  3162     // treat the perm gen as roots into the G1 heap. Some of the objects in
  3163     // the perm gen may be dead and hence not marked. If one of these dead
  3164     // objects is considered to be a root then we may end up with a false
  3165     // "Root location <x> points to dead ob <y>" failure.
  3166     if (vo != VerifyOption_G1UseMarkWord) {
  3167       // Since we used "collecting_perm_gen" == true above, we will not have
  3168       // checked the refs from perm into the G1-collected heap. We check those
  3169       // references explicitly below. Whether the relevant cards are dirty
  3170       // is checked further below in the rem set verification.
  3171       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  3172       perm_gen()->oop_iterate(&rootsCl);
  3174     bool failures = rootsCl.failures();
  3176     if (vo != VerifyOption_G1UseMarkWord) {
  3177       // If we're verifying during a full GC then the region sets
  3178       // will have been torn down at the start of the GC. Therefore
  3179       // verifying the region sets will fail. So we only verify
  3180       // the region sets when not in a full GC.
  3181       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3182       verify_region_sets();
  3185     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3186     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3187       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3188              "sanity check");
  3190       G1ParVerifyTask task(this, allow_dirty, vo);
  3191       assert(UseDynamicNumberOfGCThreads ||
  3192         workers()->active_workers() == workers()->total_workers(),
  3193         "If not dynamic should be using all the workers");
  3194       int n_workers = workers()->active_workers();
  3195       set_par_threads(n_workers);
  3196       workers()->run_task(&task);
  3197       set_par_threads(0);
  3198       if (task.failures()) {
  3199         failures = true;
  3202       // Checks that the expected amount of parallel work was done.
  3203       // The implication is that n_workers is > 0.
  3204       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3205              "sanity check");
  3207       reset_heap_region_claim_values();
  3209       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3210              "sanity check");
  3211     } else {
  3212       VerifyRegionClosure blk(allow_dirty, false, vo);
  3213       heap_region_iterate(&blk);
  3214       if (blk.failures()) {
  3215         failures = true;
  3218     if (!silent) gclog_or_tty->print("RemSet ");
  3219     rem_set()->verify();
  3221     if (failures) {
  3222       gclog_or_tty->print_cr("Heap:");
  3223       // It helps to have the per-region information in the output to
  3224       // help us track down what went wrong. This is why we call
  3225       // print_extended_on() instead of print_on().
  3226       print_extended_on(gclog_or_tty);
  3227       gclog_or_tty->print_cr("");
  3228 #ifndef PRODUCT
  3229       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3230         concurrent_mark()->print_reachable("at-verification-failure",
  3231                                            vo, false /* all */);
  3233 #endif
  3234       gclog_or_tty->flush();
  3236     guarantee(!failures, "there should not have been any failures");
  3237   } else {
  3238     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3242 class PrintRegionClosure: public HeapRegionClosure {
  3243   outputStream* _st;
  3244 public:
  3245   PrintRegionClosure(outputStream* st) : _st(st) {}
  3246   bool doHeapRegion(HeapRegion* r) {
  3247     r->print_on(_st);
  3248     return false;
  3250 };
  3252 void G1CollectedHeap::print_on(outputStream* st) const {
  3253   st->print(" %-20s", "garbage-first heap");
  3254   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3255             capacity()/K, used_unlocked()/K);
  3256   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3257             _g1_storage.low_boundary(),
  3258             _g1_storage.high(),
  3259             _g1_storage.high_boundary());
  3260   st->cr();
  3261   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3262   size_t young_regions = _young_list->length();
  3263   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  3264             young_regions, young_regions * HeapRegion::GrainBytes / K);
  3265   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  3266   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  3267             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  3268   st->cr();
  3269   perm()->as_gen()->print_on(st);
  3272 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3273   print_on(st);
  3275   // Print the per-region information.
  3276   st->cr();
  3277   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), HS=humongous(starts), HC=humongous(continues), CS=collection set, F=free, TS=gc time stamp, PTAMS=previous top-at-mark-start, NTAMS=next top-at-mark-start)");
  3278   PrintRegionClosure blk(st);
  3279   heap_region_iterate(&blk);
  3282 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3283   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3284     workers()->print_worker_threads_on(st);
  3286   _cmThread->print_on(st);
  3287   st->cr();
  3288   _cm->print_worker_threads_on(st);
  3289   _cg1r->print_worker_threads_on(st);
  3290   st->cr();
  3293 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3294   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3295     workers()->threads_do(tc);
  3297   tc->do_thread(_cmThread);
  3298   _cg1r->threads_do(tc);
  3301 void G1CollectedHeap::print_tracing_info() const {
  3302   // We'll overload this to mean "trace GC pause statistics."
  3303   if (TraceGen0Time || TraceGen1Time) {
  3304     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3305     // to that.
  3306     g1_policy()->print_tracing_info();
  3308   if (G1SummarizeRSetStats) {
  3309     g1_rem_set()->print_summary_info();
  3311   if (G1SummarizeConcMark) {
  3312     concurrent_mark()->print_summary_info();
  3314   g1_policy()->print_yg_surv_rate_info();
  3315   SpecializationStats::print();
  3318 #ifndef PRODUCT
  3319 // Helpful for debugging RSet issues.
  3321 class PrintRSetsClosure : public HeapRegionClosure {
  3322 private:
  3323   const char* _msg;
  3324   size_t _occupied_sum;
  3326 public:
  3327   bool doHeapRegion(HeapRegion* r) {
  3328     HeapRegionRemSet* hrrs = r->rem_set();
  3329     size_t occupied = hrrs->occupied();
  3330     _occupied_sum += occupied;
  3332     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3333                            HR_FORMAT_PARAMS(r));
  3334     if (occupied == 0) {
  3335       gclog_or_tty->print_cr("  RSet is empty");
  3336     } else {
  3337       hrrs->print();
  3339     gclog_or_tty->print_cr("----------");
  3340     return false;
  3343   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3344     gclog_or_tty->cr();
  3345     gclog_or_tty->print_cr("========================================");
  3346     gclog_or_tty->print_cr(msg);
  3347     gclog_or_tty->cr();
  3350   ~PrintRSetsClosure() {
  3351     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3352     gclog_or_tty->print_cr("========================================");
  3353     gclog_or_tty->cr();
  3355 };
  3357 void G1CollectedHeap::print_cset_rsets() {
  3358   PrintRSetsClosure cl("Printing CSet RSets");
  3359   collection_set_iterate(&cl);
  3362 void G1CollectedHeap::print_all_rsets() {
  3363   PrintRSetsClosure cl("Printing All RSets");;
  3364   heap_region_iterate(&cl);
  3366 #endif // PRODUCT
  3368 G1CollectedHeap* G1CollectedHeap::heap() {
  3369   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3370          "not a garbage-first heap");
  3371   return _g1h;
  3374 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3375   // always_do_update_barrier = false;
  3376   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3377   // Call allocation profiler
  3378   AllocationProfiler::iterate_since_last_gc();
  3379   // Fill TLAB's and such
  3380   ensure_parsability(true);
  3383 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3384   // FIXME: what is this about?
  3385   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3386   // is set.
  3387   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3388                         "derived pointer present"));
  3389   // always_do_update_barrier = true;
  3391   // We have just completed a GC. Update the soft reference
  3392   // policy with the new heap occupancy
  3393   Universe::update_heap_info_at_gc();
  3396 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3397                                                unsigned int gc_count_before,
  3398                                                bool* succeeded) {
  3399   assert_heap_not_locked_and_not_at_safepoint();
  3400   g1_policy()->record_stop_world_start();
  3401   VM_G1IncCollectionPause op(gc_count_before,
  3402                              word_size,
  3403                              false, /* should_initiate_conc_mark */
  3404                              g1_policy()->max_pause_time_ms(),
  3405                              GCCause::_g1_inc_collection_pause);
  3406   VMThread::execute(&op);
  3408   HeapWord* result = op.result();
  3409   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3410   assert(result == NULL || ret_succeeded,
  3411          "the result should be NULL if the VM did not succeed");
  3412   *succeeded = ret_succeeded;
  3414   assert_heap_not_locked();
  3415   return result;
  3418 void
  3419 G1CollectedHeap::doConcurrentMark() {
  3420   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3421   if (!_cmThread->in_progress()) {
  3422     _cmThread->set_started();
  3423     CGC_lock->notify();
  3427 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  3428                                                        bool young) {
  3429   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  3432 void G1CollectedHeap::check_if_region_is_too_expensive(double
  3433                                                            predicted_time_ms) {
  3434   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  3437 size_t G1CollectedHeap::pending_card_num() {
  3438   size_t extra_cards = 0;
  3439   JavaThread *curr = Threads::first();
  3440   while (curr != NULL) {
  3441     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3442     extra_cards += dcq.size();
  3443     curr = curr->next();
  3445   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3446   size_t buffer_size = dcqs.buffer_size();
  3447   size_t buffer_num = dcqs.completed_buffers_num();
  3448   return buffer_size * buffer_num + extra_cards;
  3451 size_t G1CollectedHeap::max_pending_card_num() {
  3452   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3453   size_t buffer_size = dcqs.buffer_size();
  3454   size_t buffer_num  = dcqs.completed_buffers_num();
  3455   int thread_num  = Threads::number_of_threads();
  3456   return (buffer_num + thread_num) * buffer_size;
  3459 size_t G1CollectedHeap::cards_scanned() {
  3460   return g1_rem_set()->cardsScanned();
  3463 void
  3464 G1CollectedHeap::setup_surviving_young_words() {
  3465   guarantee( _surviving_young_words == NULL, "pre-condition" );
  3466   size_t array_length = g1_policy()->young_cset_region_length();
  3467   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  3468   if (_surviving_young_words == NULL) {
  3469     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3470                           "Not enough space for young surv words summary.");
  3472   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  3473 #ifdef ASSERT
  3474   for (size_t i = 0;  i < array_length; ++i) {
  3475     assert( _surviving_young_words[i] == 0, "memset above" );
  3477 #endif // !ASSERT
  3480 void
  3481 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3482   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3483   size_t array_length = g1_policy()->young_cset_region_length();
  3484   for (size_t i = 0; i < array_length; ++i)
  3485     _surviving_young_words[i] += surv_young_words[i];
  3488 void
  3489 G1CollectedHeap::cleanup_surviving_young_words() {
  3490   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3491   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3492   _surviving_young_words = NULL;
  3495 #ifdef ASSERT
  3496 class VerifyCSetClosure: public HeapRegionClosure {
  3497 public:
  3498   bool doHeapRegion(HeapRegion* hr) {
  3499     // Here we check that the CSet region's RSet is ready for parallel
  3500     // iteration. The fields that we'll verify are only manipulated
  3501     // when the region is part of a CSet and is collected. Afterwards,
  3502     // we reset these fields when we clear the region's RSet (when the
  3503     // region is freed) so they are ready when the region is
  3504     // re-allocated. The only exception to this is if there's an
  3505     // evacuation failure and instead of freeing the region we leave
  3506     // it in the heap. In that case, we reset these fields during
  3507     // evacuation failure handling.
  3508     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3510     // Here's a good place to add any other checks we'd like to
  3511     // perform on CSet regions.
  3512     return false;
  3514 };
  3515 #endif // ASSERT
  3517 #if TASKQUEUE_STATS
  3518 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3519   st->print_raw_cr("GC Task Stats");
  3520   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3521   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3524 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3525   print_taskqueue_stats_hdr(st);
  3527   TaskQueueStats totals;
  3528   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3529   for (int i = 0; i < n; ++i) {
  3530     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3531     totals += task_queue(i)->stats;
  3533   st->print_raw("tot "); totals.print(st); st->cr();
  3535   DEBUG_ONLY(totals.verify());
  3538 void G1CollectedHeap::reset_taskqueue_stats() {
  3539   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3540   for (int i = 0; i < n; ++i) {
  3541     task_queue(i)->stats.reset();
  3544 #endif // TASKQUEUE_STATS
  3546 bool
  3547 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3548   assert_at_safepoint(true /* should_be_vm_thread */);
  3549   guarantee(!is_gc_active(), "collection is not reentrant");
  3551   if (GC_locker::check_active_before_gc()) {
  3552     return false;
  3555   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3556   ResourceMark rm;
  3558   if (PrintHeapAtGC) {
  3559     Universe::print_heap_before_gc();
  3562   HRSPhaseSetter x(HRSPhaseEvacuation);
  3563   verify_region_sets_optional();
  3564   verify_dirty_young_regions();
  3566   // This call will decide whether this pause is an initial-mark
  3567   // pause. If it is, during_initial_mark_pause() will return true
  3568   // for the duration of this pause.
  3569   g1_policy()->decide_on_conc_mark_initiation();
  3571   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3572   assert(!g1_policy()->during_initial_mark_pause() ||
  3573           g1_policy()->gcs_are_young(), "sanity");
  3575   // We also do not allow mixed GCs during marking.
  3576   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3578   // Record whether this pause is an initial mark. When the current
  3579   // thread has completed its logging output and it's safe to signal
  3580   // the CM thread, the flag's value in the policy has been reset.
  3581   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3583   // Inner scope for scope based logging, timers, and stats collection
  3585     char verbose_str[128];
  3586     sprintf(verbose_str, "GC pause ");
  3587     if (g1_policy()->gcs_are_young()) {
  3588       strcat(verbose_str, "(young)");
  3589     } else {
  3590       strcat(verbose_str, "(mixed)");
  3592     if (g1_policy()->during_initial_mark_pause()) {
  3593       strcat(verbose_str, " (initial-mark)");
  3594       // We are about to start a marking cycle, so we increment the
  3595       // full collection counter.
  3596       increment_total_full_collections();
  3599     // if PrintGCDetails is on, we'll print long statistics information
  3600     // in the collector policy code, so let's not print this as the output
  3601     // is messy if we do.
  3602     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  3603     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3604     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  3606     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3607     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3609     // If the secondary_free_list is not empty, append it to the
  3610     // free_list. No need to wait for the cleanup operation to finish;
  3611     // the region allocation code will check the secondary_free_list
  3612     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3613     // set, skip this step so that the region allocation code has to
  3614     // get entries from the secondary_free_list.
  3615     if (!G1StressConcRegionFreeing) {
  3616       append_secondary_free_list_if_not_empty_with_lock();
  3619     assert(check_young_list_well_formed(),
  3620       "young list should be well formed");
  3622     // Don't dynamically change the number of GC threads this early.  A value of
  3623     // 0 is used to indicate serial work.  When parallel work is done,
  3624     // it will be set.
  3626     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3627       IsGCActiveMark x;
  3629       gc_prologue(false);
  3630       increment_total_collections(false /* full gc */);
  3631       increment_gc_time_stamp();
  3633       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3634         HandleMark hm;  // Discard invalid handles created during verification
  3635         gclog_or_tty->print(" VerifyBeforeGC:");
  3636         prepare_for_verify();
  3637         Universe::verify(/* allow dirty */ false,
  3638                          /* silent      */ false,
  3639                          /* option      */ VerifyOption_G1UsePrevMarking);
  3642       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3644       // Please see comment in g1CollectedHeap.hpp and
  3645       // G1CollectedHeap::ref_processing_init() to see how
  3646       // reference processing currently works in G1.
  3648       // Enable discovery in the STW reference processor
  3649       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3650                                             true /*verify_no_refs*/);
  3653         // We want to temporarily turn off discovery by the
  3654         // CM ref processor, if necessary, and turn it back on
  3655         // on again later if we do. Using a scoped
  3656         // NoRefDiscovery object will do this.
  3657         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3659         // Forget the current alloc region (we might even choose it to be part
  3660         // of the collection set!).
  3661         release_mutator_alloc_region();
  3663         // We should call this after we retire the mutator alloc
  3664         // region(s) so that all the ALLOC / RETIRE events are generated
  3665         // before the start GC event.
  3666         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3668         // The elapsed time induced by the start time below deliberately elides
  3669         // the possible verification above.
  3670         double start_time_sec = os::elapsedTime();
  3671         size_t start_used_bytes = used();
  3673 #if YOUNG_LIST_VERBOSE
  3674         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3675         _young_list->print();
  3676         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3677 #endif // YOUNG_LIST_VERBOSE
  3679         g1_policy()->record_collection_pause_start(start_time_sec,
  3680                                                    start_used_bytes);
  3682 #if YOUNG_LIST_VERBOSE
  3683         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3684         _young_list->print();
  3685 #endif // YOUNG_LIST_VERBOSE
  3687         if (g1_policy()->during_initial_mark_pause()) {
  3688           concurrent_mark()->checkpointRootsInitialPre();
  3690         perm_gen()->save_marks();
  3692 #if YOUNG_LIST_VERBOSE
  3693         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3694         _young_list->print();
  3695         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3696 #endif // YOUNG_LIST_VERBOSE
  3698         g1_policy()->choose_collection_set(target_pause_time_ms);
  3700         _cm->note_start_of_gc();
  3701         // We should not verify the per-thread SATB buffers given that
  3702         // we have not filtered them yet (we'll do so during the
  3703         // GC). We also call this after choose_collection_set() to
  3704         // ensure that the CSet has been finalized.
  3705         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3706                                  true  /* verify_enqueued_buffers */,
  3707                                  false /* verify_thread_buffers */,
  3708                                  true  /* verify_fingers */);
  3710         if (_hr_printer.is_active()) {
  3711           HeapRegion* hr = g1_policy()->collection_set();
  3712           while (hr != NULL) {
  3713             G1HRPrinter::RegionType type;
  3714             if (!hr->is_young()) {
  3715               type = G1HRPrinter::Old;
  3716             } else if (hr->is_survivor()) {
  3717               type = G1HRPrinter::Survivor;
  3718             } else {
  3719               type = G1HRPrinter::Eden;
  3721             _hr_printer.cset(hr);
  3722             hr = hr->next_in_collection_set();
  3726 #ifdef ASSERT
  3727         VerifyCSetClosure cl;
  3728         collection_set_iterate(&cl);
  3729 #endif // ASSERT
  3731         setup_surviving_young_words();
  3733         // Initialize the GC alloc regions.
  3734         init_gc_alloc_regions();
  3736         // Actually do the work...
  3737         evacuate_collection_set();
  3739         // We do this to mainly verify the per-thread SATB buffers
  3740         // (which have been filtered by now) since we didn't verify
  3741         // them earlier. No point in re-checking the stacks / enqueued
  3742         // buffers given that the CSet has not changed since last time
  3743         // we checked.
  3744         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3745                                  false /* verify_enqueued_buffers */,
  3746                                  true  /* verify_thread_buffers */,
  3747                                  true  /* verify_fingers */);
  3749         free_collection_set(g1_policy()->collection_set());
  3750         g1_policy()->clear_collection_set();
  3752         cleanup_surviving_young_words();
  3754         // Start a new incremental collection set for the next pause.
  3755         g1_policy()->start_incremental_cset_building();
  3757         // Clear the _cset_fast_test bitmap in anticipation of adding
  3758         // regions to the incremental collection set for the next
  3759         // evacuation pause.
  3760         clear_cset_fast_test();
  3762         _young_list->reset_sampled_info();
  3764         // Don't check the whole heap at this point as the
  3765         // GC alloc regions from this pause have been tagged
  3766         // as survivors and moved on to the survivor list.
  3767         // Survivor regions will fail the !is_young() check.
  3768         assert(check_young_list_empty(false /* check_heap */),
  3769           "young list should be empty");
  3771 #if YOUNG_LIST_VERBOSE
  3772         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3773         _young_list->print();
  3774 #endif // YOUNG_LIST_VERBOSE
  3776         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3777                                             _young_list->first_survivor_region(),
  3778                                             _young_list->last_survivor_region());
  3780         _young_list->reset_auxilary_lists();
  3782         if (evacuation_failed()) {
  3783           _summary_bytes_used = recalculate_used();
  3784         } else {
  3785           // The "used" of the the collection set have already been subtracted
  3786           // when they were freed.  Add in the bytes evacuated.
  3787           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3790         if (g1_policy()->during_initial_mark_pause()) {
  3791           concurrent_mark()->checkpointRootsInitialPost();
  3792           set_marking_started();
  3793           // Note that we don't actually trigger the CM thread at
  3794           // this point. We do that later when we're sure that
  3795           // the current thread has completed its logging output.
  3798         allocate_dummy_regions();
  3800 #if YOUNG_LIST_VERBOSE
  3801         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3802         _young_list->print();
  3803         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3804 #endif // YOUNG_LIST_VERBOSE
  3806         init_mutator_alloc_region();
  3809           size_t expand_bytes = g1_policy()->expansion_amount();
  3810           if (expand_bytes > 0) {
  3811             size_t bytes_before = capacity();
  3812             // No need for an ergo verbose message here,
  3813             // expansion_amount() does this when it returns a value > 0.
  3814             if (!expand(expand_bytes)) {
  3815               // We failed to expand the heap so let's verify that
  3816               // committed/uncommitted amount match the backing store
  3817               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3818               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3823         // We redo the verificaiton but now wrt to the new CSet which
  3824         // has just got initialized after the previous CSet was freed.
  3825         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3826                                  true  /* verify_enqueued_buffers */,
  3827                                  true  /* verify_thread_buffers */,
  3828                                  true  /* verify_fingers */);
  3829         _cm->note_end_of_gc();
  3831         double end_time_sec = os::elapsedTime();
  3832         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3833         g1_policy()->record_pause_time_ms(pause_time_ms);
  3834         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3835                                 workers()->active_workers() : 1);
  3836         g1_policy()->record_collection_pause_end(active_workers);
  3838         MemoryService::track_memory_usage();
  3840         // In prepare_for_verify() below we'll need to scan the deferred
  3841         // update buffers to bring the RSets up-to-date if
  3842         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3843         // the update buffers we'll probably need to scan cards on the
  3844         // regions we just allocated to (i.e., the GC alloc
  3845         // regions). However, during the last GC we called
  3846         // set_saved_mark() on all the GC alloc regions, so card
  3847         // scanning might skip the [saved_mark_word()...top()] area of
  3848         // those regions (i.e., the area we allocated objects into
  3849         // during the last GC). But it shouldn't. Given that
  3850         // saved_mark_word() is conditional on whether the GC time stamp
  3851         // on the region is current or not, by incrementing the GC time
  3852         // stamp here we invalidate all the GC time stamps on all the
  3853         // regions and saved_mark_word() will simply return top() for
  3854         // all the regions. This is a nicer way of ensuring this rather
  3855         // than iterating over the regions and fixing them. In fact, the
  3856         // GC time stamp increment here also ensures that
  3857         // saved_mark_word() will return top() between pauses, i.e.,
  3858         // during concurrent refinement. So we don't need the
  3859         // is_gc_active() check to decided which top to use when
  3860         // scanning cards (see CR 7039627).
  3861         increment_gc_time_stamp();
  3863         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3864           HandleMark hm;  // Discard invalid handles created during verification
  3865           gclog_or_tty->print(" VerifyAfterGC:");
  3866           prepare_for_verify();
  3867           Universe::verify(/* allow dirty */ true,
  3868                            /* silent      */ false,
  3869                            /* option      */ VerifyOption_G1UsePrevMarking);
  3872         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  3873         ref_processor_stw()->verify_no_references_recorded();
  3875         // CM reference discovery will be re-enabled if necessary.
  3878       // We should do this after we potentially expand the heap so
  3879       // that all the COMMIT events are generated before the end GC
  3880       // event, and after we retire the GC alloc regions so that all
  3881       // RETIRE events are generated before the end GC event.
  3882       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3884       // We have to do this after we decide whether to expand the heap or not.
  3885       g1_policy()->print_heap_transition();
  3887       if (mark_in_progress()) {
  3888         concurrent_mark()->update_g1_committed();
  3891 #ifdef TRACESPINNING
  3892       ParallelTaskTerminator::print_termination_counts();
  3893 #endif
  3895       gc_epilogue(false);
  3898     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3899       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3900       print_tracing_info();
  3901       vm_exit(-1);
  3905   // The closing of the inner scope, immediately above, will complete
  3906   // the PrintGC logging output. The record_collection_pause_end() call
  3907   // above will complete the logging output of PrintGCDetails.
  3908   //
  3909   // It is not yet to safe, however, to tell the concurrent mark to
  3910   // start as we have some optional output below. We don't want the
  3911   // output from the concurrent mark thread interfering with this
  3912   // logging output either.
  3914   _hrs.verify_optional();
  3915   verify_region_sets_optional();
  3917   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3918   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3920   if (PrintHeapAtGC) {
  3921     Universe::print_heap_after_gc();
  3923   g1mm()->update_sizes();
  3925   if (G1SummarizeRSetStats &&
  3926       (G1SummarizeRSetStatsPeriod > 0) &&
  3927       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3928     g1_rem_set()->print_summary_info();
  3931   // It should now be safe to tell the concurrent mark thread to start
  3932   // without its logging output interfering with the logging output
  3933   // that came from the pause.
  3935   if (should_start_conc_mark) {
  3936     // CAUTION: after the doConcurrentMark() call below,
  3937     // the concurrent marking thread(s) could be running
  3938     // concurrently with us. Make sure that anything after
  3939     // this point does not assume that we are the only GC thread
  3940     // running. Note: of course, the actual marking work will
  3941     // not start until the safepoint itself is released in
  3942     // ConcurrentGCThread::safepoint_desynchronize().
  3943     doConcurrentMark();
  3946   return true;
  3949 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3951   size_t gclab_word_size;
  3952   switch (purpose) {
  3953     case GCAllocForSurvived:
  3954       gclab_word_size = YoungPLABSize;
  3955       break;
  3956     case GCAllocForTenured:
  3957       gclab_word_size = OldPLABSize;
  3958       break;
  3959     default:
  3960       assert(false, "unknown GCAllocPurpose");
  3961       gclab_word_size = OldPLABSize;
  3962       break;
  3964   return gclab_word_size;
  3967 void G1CollectedHeap::init_mutator_alloc_region() {
  3968   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3969   _mutator_alloc_region.init();
  3972 void G1CollectedHeap::release_mutator_alloc_region() {
  3973   _mutator_alloc_region.release();
  3974   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3977 void G1CollectedHeap::init_gc_alloc_regions() {
  3978   assert_at_safepoint(true /* should_be_vm_thread */);
  3980   _survivor_gc_alloc_region.init();
  3981   _old_gc_alloc_region.init();
  3982   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  3983   _retained_old_gc_alloc_region = NULL;
  3985   // We will discard the current GC alloc region if:
  3986   // a) it's in the collection set (it can happen!),
  3987   // b) it's already full (no point in using it),
  3988   // c) it's empty (this means that it was emptied during
  3989   // a cleanup and it should be on the free list now), or
  3990   // d) it's humongous (this means that it was emptied
  3991   // during a cleanup and was added to the free list, but
  3992   // has been subseqently used to allocate a humongous
  3993   // object that may be less than the region size).
  3994   if (retained_region != NULL &&
  3995       !retained_region->in_collection_set() &&
  3996       !(retained_region->top() == retained_region->end()) &&
  3997       !retained_region->is_empty() &&
  3998       !retained_region->isHumongous()) {
  3999     retained_region->set_saved_mark();
  4000     // The retained region was added to the old region set when it was
  4001     // retired. We have to remove it now, since we don't allow regions
  4002     // we allocate to in the region sets. We'll re-add it later, when
  4003     // it's retired again.
  4004     _old_set.remove(retained_region);
  4005     bool during_im = g1_policy()->during_initial_mark_pause();
  4006     retained_region->note_start_of_copying(during_im);
  4007     _old_gc_alloc_region.set(retained_region);
  4008     _hr_printer.reuse(retained_region);
  4012 void G1CollectedHeap::release_gc_alloc_regions() {
  4013   _survivor_gc_alloc_region.release();
  4014   // If we have an old GC alloc region to release, we'll save it in
  4015   // _retained_old_gc_alloc_region. If we don't
  4016   // _retained_old_gc_alloc_region will become NULL. This is what we
  4017   // want either way so no reason to check explicitly for either
  4018   // condition.
  4019   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4022 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4023   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4024   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4025   _retained_old_gc_alloc_region = NULL;
  4028 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4029   _drain_in_progress = false;
  4030   set_evac_failure_closure(cl);
  4031   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4034 void G1CollectedHeap::finalize_for_evac_failure() {
  4035   assert(_evac_failure_scan_stack != NULL &&
  4036          _evac_failure_scan_stack->length() == 0,
  4037          "Postcondition");
  4038   assert(!_drain_in_progress, "Postcondition");
  4039   delete _evac_failure_scan_stack;
  4040   _evac_failure_scan_stack = NULL;
  4043 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4044   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4045   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  4047   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4049   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4050     set_par_threads();
  4051     workers()->run_task(&rsfp_task);
  4052     set_par_threads(0);
  4053   } else {
  4054     rsfp_task.work(0);
  4057   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4059   // Reset the claim values in the regions in the collection set.
  4060   reset_cset_heap_region_claim_values();
  4062   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4063   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  4065   // Now restore saved marks, if any.
  4066   if (_objs_with_preserved_marks != NULL) {
  4067     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4068     guarantee(_objs_with_preserved_marks->length() ==
  4069               _preserved_marks_of_objs->length(), "Both or none.");
  4070     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4071       oop obj   = _objs_with_preserved_marks->at(i);
  4072       markOop m = _preserved_marks_of_objs->at(i);
  4073       obj->set_mark(m);
  4076     // Delete the preserved marks growable arrays (allocated on the C heap).
  4077     delete _objs_with_preserved_marks;
  4078     delete _preserved_marks_of_objs;
  4079     _objs_with_preserved_marks = NULL;
  4080     _preserved_marks_of_objs = NULL;
  4084 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4085   _evac_failure_scan_stack->push(obj);
  4088 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4089   assert(_evac_failure_scan_stack != NULL, "precondition");
  4091   while (_evac_failure_scan_stack->length() > 0) {
  4092      oop obj = _evac_failure_scan_stack->pop();
  4093      _evac_failure_closure->set_region(heap_region_containing(obj));
  4094      obj->oop_iterate_backwards(_evac_failure_closure);
  4098 oop
  4099 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4100                                                oop old) {
  4101   assert(obj_in_cs(old),
  4102          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4103                  (HeapWord*) old));
  4104   markOop m = old->mark();
  4105   oop forward_ptr = old->forward_to_atomic(old);
  4106   if (forward_ptr == NULL) {
  4107     // Forward-to-self succeeded.
  4109     if (_evac_failure_closure != cl) {
  4110       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4111       assert(!_drain_in_progress,
  4112              "Should only be true while someone holds the lock.");
  4113       // Set the global evac-failure closure to the current thread's.
  4114       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4115       set_evac_failure_closure(cl);
  4116       // Now do the common part.
  4117       handle_evacuation_failure_common(old, m);
  4118       // Reset to NULL.
  4119       set_evac_failure_closure(NULL);
  4120     } else {
  4121       // The lock is already held, and this is recursive.
  4122       assert(_drain_in_progress, "This should only be the recursive case.");
  4123       handle_evacuation_failure_common(old, m);
  4125     return old;
  4126   } else {
  4127     // Forward-to-self failed. Either someone else managed to allocate
  4128     // space for this object (old != forward_ptr) or they beat us in
  4129     // self-forwarding it (old == forward_ptr).
  4130     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4131            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4132                    "should not be in the CSet",
  4133                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4134     return forward_ptr;
  4138 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4139   set_evacuation_failed(true);
  4141   preserve_mark_if_necessary(old, m);
  4143   HeapRegion* r = heap_region_containing(old);
  4144   if (!r->evacuation_failed()) {
  4145     r->set_evacuation_failed(true);
  4146     _hr_printer.evac_failure(r);
  4149   push_on_evac_failure_scan_stack(old);
  4151   if (!_drain_in_progress) {
  4152     // prevent recursion in copy_to_survivor_space()
  4153     _drain_in_progress = true;
  4154     drain_evac_failure_scan_stack();
  4155     _drain_in_progress = false;
  4159 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4160   assert(evacuation_failed(), "Oversaving!");
  4161   // We want to call the "for_promotion_failure" version only in the
  4162   // case of a promotion failure.
  4163   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4164     if (_objs_with_preserved_marks == NULL) {
  4165       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4166       _objs_with_preserved_marks =
  4167         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4168       _preserved_marks_of_objs =
  4169         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4171     _objs_with_preserved_marks->push(obj);
  4172     _preserved_marks_of_objs->push(m);
  4176 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4177                                                   size_t word_size) {
  4178   if (purpose == GCAllocForSurvived) {
  4179     HeapWord* result = survivor_attempt_allocation(word_size);
  4180     if (result != NULL) {
  4181       return result;
  4182     } else {
  4183       // Let's try to allocate in the old gen in case we can fit the
  4184       // object there.
  4185       return old_attempt_allocation(word_size);
  4187   } else {
  4188     assert(purpose ==  GCAllocForTenured, "sanity");
  4189     HeapWord* result = old_attempt_allocation(word_size);
  4190     if (result != NULL) {
  4191       return result;
  4192     } else {
  4193       // Let's try to allocate in the survivors in case we can fit the
  4194       // object there.
  4195       return survivor_attempt_allocation(word_size);
  4199   ShouldNotReachHere();
  4200   // Trying to keep some compilers happy.
  4201   return NULL;
  4204 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4205   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4207 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  4208   : _g1h(g1h),
  4209     _refs(g1h->task_queue(queue_num)),
  4210     _dcq(&g1h->dirty_card_queue_set()),
  4211     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4212     _g1_rem(g1h->g1_rem_set()),
  4213     _hash_seed(17), _queue_num(queue_num),
  4214     _term_attempts(0),
  4215     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4216     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4217     _age_table(false),
  4218     _strong_roots_time(0), _term_time(0),
  4219     _alloc_buffer_waste(0), _undo_waste(0) {
  4220   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4221   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4222   // non-young regions (where the age is -1)
  4223   // We also add a few elements at the beginning and at the end in
  4224   // an attempt to eliminate cache contention
  4225   size_t real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4226   size_t array_length = PADDING_ELEM_NUM +
  4227                         real_length +
  4228                         PADDING_ELEM_NUM;
  4229   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4230   if (_surviving_young_words_base == NULL)
  4231     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4232                           "Not enough space for young surv histo.");
  4233   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4234   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  4236   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4237   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4239   _start = os::elapsedTime();
  4242 void
  4243 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4245   st->print_raw_cr("GC Termination Stats");
  4246   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4247                    " ------waste (KiB)------");
  4248   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4249                    "  total   alloc    undo");
  4250   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4251                    " ------- ------- -------");
  4254 void
  4255 G1ParScanThreadState::print_termination_stats(int i,
  4256                                               outputStream* const st) const
  4258   const double elapsed_ms = elapsed_time() * 1000.0;
  4259   const double s_roots_ms = strong_roots_time() * 1000.0;
  4260   const double term_ms    = term_time() * 1000.0;
  4261   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4262                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4263                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4264                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4265                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4266                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4267                alloc_buffer_waste() * HeapWordSize / K,
  4268                undo_waste() * HeapWordSize / K);
  4271 #ifdef ASSERT
  4272 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4273   assert(ref != NULL, "invariant");
  4274   assert(UseCompressedOops, "sanity");
  4275   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4276   oop p = oopDesc::load_decode_heap_oop(ref);
  4277   assert(_g1h->is_in_g1_reserved(p),
  4278          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4279   return true;
  4282 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4283   assert(ref != NULL, "invariant");
  4284   if (has_partial_array_mask(ref)) {
  4285     // Must be in the collection set--it's already been copied.
  4286     oop p = clear_partial_array_mask(ref);
  4287     assert(_g1h->obj_in_cs(p),
  4288            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4289   } else {
  4290     oop p = oopDesc::load_decode_heap_oop(ref);
  4291     assert(_g1h->is_in_g1_reserved(p),
  4292            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4294   return true;
  4297 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4298   if (ref.is_narrow()) {
  4299     return verify_ref((narrowOop*) ref);
  4300   } else {
  4301     return verify_ref((oop*) ref);
  4304 #endif // ASSERT
  4306 void G1ParScanThreadState::trim_queue() {
  4307   assert(_evac_cl != NULL, "not set");
  4308   assert(_evac_failure_cl != NULL, "not set");
  4309   assert(_partial_scan_cl != NULL, "not set");
  4311   StarTask ref;
  4312   do {
  4313     // Drain the overflow stack first, so other threads can steal.
  4314     while (refs()->pop_overflow(ref)) {
  4315       deal_with_reference(ref);
  4318     while (refs()->pop_local(ref)) {
  4319       deal_with_reference(ref);
  4321   } while (!refs()->is_empty());
  4324 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4325                                      G1ParScanThreadState* par_scan_state) :
  4326   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4327   _par_scan_state(par_scan_state),
  4328   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4329   _mark_in_progress(_g1->mark_in_progress()) { }
  4331 void G1ParCopyHelper::mark_object(oop obj) {
  4332 #ifdef ASSERT
  4333   HeapRegion* hr = _g1->heap_region_containing(obj);
  4334   assert(hr != NULL, "sanity");
  4335   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4336 #endif // ASSERT
  4338   // We know that the object is not moving so it's safe to read its size.
  4339   _cm->grayRoot(obj, (size_t) obj->size());
  4342 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4343 #ifdef ASSERT
  4344   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4345   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4346   assert(from_obj != to_obj, "should not be self-forwarded");
  4348   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4349   assert(from_hr != NULL, "sanity");
  4350   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4352   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4353   assert(to_hr != NULL, "sanity");
  4354   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4355 #endif // ASSERT
  4357   // The object might be in the process of being copied by another
  4358   // worker so we cannot trust that its to-space image is
  4359   // well-formed. So we have to read its size from its from-space
  4360   // image which we know should not be changing.
  4361   _cm->grayRoot(to_obj, (size_t) from_obj->size());
  4364 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  4365   size_t    word_sz = old->size();
  4366   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4367   // +1 to make the -1 indexes valid...
  4368   int       young_index = from_region->young_index_in_cset()+1;
  4369   assert( (from_region->is_young() && young_index >  0) ||
  4370          (!from_region->is_young() && young_index == 0), "invariant" );
  4371   G1CollectorPolicy* g1p = _g1->g1_policy();
  4372   markOop m = old->mark();
  4373   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4374                                            : m->age();
  4375   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4376                                                              word_sz);
  4377   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4378   oop       obj     = oop(obj_ptr);
  4380   if (obj_ptr == NULL) {
  4381     // This will either forward-to-self, or detect that someone else has
  4382     // installed a forwarding pointer.
  4383     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4384     return _g1->handle_evacuation_failure_par(cl, old);
  4387   // We're going to allocate linearly, so might as well prefetch ahead.
  4388   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4390   oop forward_ptr = old->forward_to_atomic(obj);
  4391   if (forward_ptr == NULL) {
  4392     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4393     if (g1p->track_object_age(alloc_purpose)) {
  4394       // We could simply do obj->incr_age(). However, this causes a
  4395       // performance issue. obj->incr_age() will first check whether
  4396       // the object has a displaced mark by checking its mark word;
  4397       // getting the mark word from the new location of the object
  4398       // stalls. So, given that we already have the mark word and we
  4399       // are about to install it anyway, it's better to increase the
  4400       // age on the mark word, when the object does not have a
  4401       // displaced mark word. We're not expecting many objects to have
  4402       // a displaced marked word, so that case is not optimized
  4403       // further (it could be...) and we simply call obj->incr_age().
  4405       if (m->has_displaced_mark_helper()) {
  4406         // in this case, we have to install the mark word first,
  4407         // otherwise obj looks to be forwarded (the old mark word,
  4408         // which contains the forward pointer, was copied)
  4409         obj->set_mark(m);
  4410         obj->incr_age();
  4411       } else {
  4412         m = m->incr_age();
  4413         obj->set_mark(m);
  4415       _par_scan_state->age_table()->add(obj, word_sz);
  4416     } else {
  4417       obj->set_mark(m);
  4420     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4421     surv_young_words[young_index] += word_sz;
  4423     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4424       // We keep track of the next start index in the length field of
  4425       // the to-space object. The actual length can be found in the
  4426       // length field of the from-space object.
  4427       arrayOop(obj)->set_length(0);
  4428       oop* old_p = set_partial_array_mask(old);
  4429       _par_scan_state->push_on_queue(old_p);
  4430     } else {
  4431       // No point in using the slower heap_region_containing() method,
  4432       // given that we know obj is in the heap.
  4433       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4434       obj->oop_iterate_backwards(_scanner);
  4436   } else {
  4437     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4438     obj = forward_ptr;
  4440   return obj;
  4443 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4444 template <class T>
  4445 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4446 ::do_oop_work(T* p) {
  4447   oop obj = oopDesc::load_decode_heap_oop(p);
  4448   assert(barrier != G1BarrierRS || obj != NULL,
  4449          "Precondition: G1BarrierRS implies obj is non-NULL");
  4451   // here the null check is implicit in the cset_fast_test() test
  4452   if (_g1->in_cset_fast_test(obj)) {
  4453     oop forwardee;
  4454     if (obj->is_forwarded()) {
  4455       forwardee = obj->forwardee();
  4456     } else {
  4457       forwardee = copy_to_survivor_space(obj);
  4459     assert(forwardee != NULL, "forwardee should not be NULL");
  4460     oopDesc::encode_store_heap_oop(p, forwardee);
  4461     if (do_mark_object && forwardee != obj) {
  4462       // If the object is self-forwarded we don't need to explicitly
  4463       // mark it, the evacuation failure protocol will do so.
  4464       mark_forwarded_object(obj, forwardee);
  4467     // When scanning the RS, we only care about objs in CS.
  4468     if (barrier == G1BarrierRS) {
  4469       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4471   } else {
  4472     // The object is not in collection set. If we're a root scanning
  4473     // closure during an initial mark pause (i.e. do_mark_object will
  4474     // be true) then attempt to mark the object.
  4475     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4476       mark_object(obj);
  4480   if (barrier == G1BarrierEvac && obj != NULL) {
  4481     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4484   if (do_gen_barrier && obj != NULL) {
  4485     par_do_barrier(p);
  4489 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4490 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4492 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4493   assert(has_partial_array_mask(p), "invariant");
  4494   oop from_obj = clear_partial_array_mask(p);
  4496   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4497   assert(from_obj->is_objArray(), "must be obj array");
  4498   objArrayOop from_obj_array = objArrayOop(from_obj);
  4499   // The from-space object contains the real length.
  4500   int length                 = from_obj_array->length();
  4502   assert(from_obj->is_forwarded(), "must be forwarded");
  4503   oop to_obj                 = from_obj->forwardee();
  4504   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4505   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4506   // We keep track of the next start index in the length field of the
  4507   // to-space object.
  4508   int next_index             = to_obj_array->length();
  4509   assert(0 <= next_index && next_index < length,
  4510          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4512   int start                  = next_index;
  4513   int end                    = length;
  4514   int remainder              = end - start;
  4515   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4516   if (remainder > 2 * ParGCArrayScanChunk) {
  4517     end = start + ParGCArrayScanChunk;
  4518     to_obj_array->set_length(end);
  4519     // Push the remainder before we process the range in case another
  4520     // worker has run out of things to do and can steal it.
  4521     oop* from_obj_p = set_partial_array_mask(from_obj);
  4522     _par_scan_state->push_on_queue(from_obj_p);
  4523   } else {
  4524     assert(length == end, "sanity");
  4525     // We'll process the final range for this object. Restore the length
  4526     // so that the heap remains parsable in case of evacuation failure.
  4527     to_obj_array->set_length(end);
  4529   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4530   // Process indexes [start,end). It will also process the header
  4531   // along with the first chunk (i.e., the chunk with start == 0).
  4532   // Note that at this point the length field of to_obj_array is not
  4533   // correct given that we are using it to keep track of the next
  4534   // start index. oop_iterate_range() (thankfully!) ignores the length
  4535   // field and only relies on the start / end parameters.  It does
  4536   // however return the size of the object which will be incorrect. So
  4537   // we have to ignore it even if we wanted to use it.
  4538   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4541 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4542 protected:
  4543   G1CollectedHeap*              _g1h;
  4544   G1ParScanThreadState*         _par_scan_state;
  4545   RefToScanQueueSet*            _queues;
  4546   ParallelTaskTerminator*       _terminator;
  4548   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4549   RefToScanQueueSet*      queues()         { return _queues; }
  4550   ParallelTaskTerminator* terminator()     { return _terminator; }
  4552 public:
  4553   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4554                                 G1ParScanThreadState* par_scan_state,
  4555                                 RefToScanQueueSet* queues,
  4556                                 ParallelTaskTerminator* terminator)
  4557     : _g1h(g1h), _par_scan_state(par_scan_state),
  4558       _queues(queues), _terminator(terminator) {}
  4560   void do_void();
  4562 private:
  4563   inline bool offer_termination();
  4564 };
  4566 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4567   G1ParScanThreadState* const pss = par_scan_state();
  4568   pss->start_term_time();
  4569   const bool res = terminator()->offer_termination();
  4570   pss->end_term_time();
  4571   return res;
  4574 void G1ParEvacuateFollowersClosure::do_void() {
  4575   StarTask stolen_task;
  4576   G1ParScanThreadState* const pss = par_scan_state();
  4577   pss->trim_queue();
  4579   do {
  4580     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4581       assert(pss->verify_task(stolen_task), "sanity");
  4582       if (stolen_task.is_narrow()) {
  4583         pss->deal_with_reference((narrowOop*) stolen_task);
  4584       } else {
  4585         pss->deal_with_reference((oop*) stolen_task);
  4588       // We've just processed a reference and we might have made
  4589       // available new entries on the queues. So we have to make sure
  4590       // we drain the queues as necessary.
  4591       pss->trim_queue();
  4593   } while (!offer_termination());
  4595   pss->retire_alloc_buffers();
  4598 class G1ParTask : public AbstractGangTask {
  4599 protected:
  4600   G1CollectedHeap*       _g1h;
  4601   RefToScanQueueSet      *_queues;
  4602   ParallelTaskTerminator _terminator;
  4603   uint _n_workers;
  4605   Mutex _stats_lock;
  4606   Mutex* stats_lock() { return &_stats_lock; }
  4608   size_t getNCards() {
  4609     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4610       / G1BlockOffsetSharedArray::N_bytes;
  4613 public:
  4614   G1ParTask(G1CollectedHeap* g1h,
  4615             RefToScanQueueSet *task_queues)
  4616     : AbstractGangTask("G1 collection"),
  4617       _g1h(g1h),
  4618       _queues(task_queues),
  4619       _terminator(0, _queues),
  4620       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4621   {}
  4623   RefToScanQueueSet* queues() { return _queues; }
  4625   RefToScanQueue *work_queue(int i) {
  4626     return queues()->queue(i);
  4629   ParallelTaskTerminator* terminator() { return &_terminator; }
  4631   virtual void set_for_termination(int active_workers) {
  4632     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4633     // in the young space (_par_seq_tasks) in the G1 heap
  4634     // for SequentialSubTasksDone.
  4635     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4636     // both of which need setting by set_n_termination().
  4637     _g1h->SharedHeap::set_n_termination(active_workers);
  4638     _g1h->set_n_termination(active_workers);
  4639     terminator()->reset_for_reuse(active_workers);
  4640     _n_workers = active_workers;
  4643   void work(uint worker_id) {
  4644     if (worker_id >= _n_workers) return;  // no work needed this round
  4646     double start_time_ms = os::elapsedTime() * 1000.0;
  4647     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
  4649     ResourceMark rm;
  4650     HandleMark   hm;
  4652     ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4654     G1ParScanThreadState            pss(_g1h, worker_id);
  4655     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4656     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4657     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4659     pss.set_evac_closure(&scan_evac_cl);
  4660     pss.set_evac_failure_closure(&evac_failure_cl);
  4661     pss.set_partial_scan_closure(&partial_scan_cl);
  4663     G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4664     G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4666     G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4667     G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4669     OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4670     OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4672     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4673       // We also need to mark copied objects.
  4674       scan_root_cl = &scan_mark_root_cl;
  4675       scan_perm_cl = &scan_mark_perm_cl;
  4678     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4680     pss.start_strong_roots();
  4681     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4682                                   SharedHeap::SO_AllClasses,
  4683                                   scan_root_cl,
  4684                                   &push_heap_rs_cl,
  4685                                   scan_perm_cl,
  4686                                   worker_id);
  4687     pss.end_strong_roots();
  4690       double start = os::elapsedTime();
  4691       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4692       evac.do_void();
  4693       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4694       double term_ms = pss.term_time()*1000.0;
  4695       _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4696       _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
  4698     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4699     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4701     // Clean up any par-expanded rem sets.
  4702     HeapRegionRemSet::par_cleanup();
  4704     if (ParallelGCVerbose) {
  4705       MutexLocker x(stats_lock());
  4706       pss.print_termination_stats(worker_id);
  4709     assert(pss.refs()->is_empty(), "should be empty");
  4710     double end_time_ms = os::elapsedTime() * 1000.0;
  4711     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
  4713 };
  4715 // *** Common G1 Evacuation Stuff
  4717 // This method is run in a GC worker.
  4719 void
  4720 G1CollectedHeap::
  4721 g1_process_strong_roots(bool collecting_perm_gen,
  4722                         SharedHeap::ScanningOption so,
  4723                         OopClosure* scan_non_heap_roots,
  4724                         OopsInHeapRegionClosure* scan_rs,
  4725                         OopsInGenClosure* scan_perm,
  4726                         int worker_i) {
  4728   // First scan the strong roots, including the perm gen.
  4729   double ext_roots_start = os::elapsedTime();
  4730   double closure_app_time_sec = 0.0;
  4732   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4733   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4734   buf_scan_perm.set_generation(perm_gen());
  4736   // Walk the code cache w/o buffering, because StarTask cannot handle
  4737   // unaligned oop locations.
  4738   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4740   process_strong_roots(false, // no scoping; this is parallel code
  4741                        collecting_perm_gen, so,
  4742                        &buf_scan_non_heap_roots,
  4743                        &eager_scan_code_roots,
  4744                        &buf_scan_perm);
  4746   // Now the CM ref_processor roots.
  4747   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4748     // We need to treat the discovered reference lists of the
  4749     // concurrent mark ref processor as roots and keep entries
  4750     // (which are added by the marking threads) on them live
  4751     // until they can be processed at the end of marking.
  4752     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4755   // Finish up any enqueued closure apps (attributed as object copy time).
  4756   buf_scan_non_heap_roots.done();
  4757   buf_scan_perm.done();
  4759   double ext_roots_end = os::elapsedTime();
  4761   g1_policy()->reset_obj_copy_time(worker_i);
  4762   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4763                                 buf_scan_non_heap_roots.closure_app_seconds();
  4764   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4766   double ext_root_time_ms =
  4767     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4769   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4771   // During conc marking we have to filter the per-thread SATB buffers
  4772   // to make sure we remove any oops into the CSet (which will show up
  4773   // as implicitly live).
  4774   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4775     if (mark_in_progress()) {
  4776       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4779   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4780   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4782   // Now scan the complement of the collection set.
  4783   if (scan_rs != NULL) {
  4784     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4787   _process_strong_tasks->all_tasks_completed();
  4790 void
  4791 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4792                                        OopClosure* non_root_closure) {
  4793   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4794   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4797 // Weak Reference Processing support
  4799 // An always "is_alive" closure that is used to preserve referents.
  4800 // If the object is non-null then it's alive.  Used in the preservation
  4801 // of referent objects that are pointed to by reference objects
  4802 // discovered by the CM ref processor.
  4803 class G1AlwaysAliveClosure: public BoolObjectClosure {
  4804   G1CollectedHeap* _g1;
  4805 public:
  4806   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4807   void do_object(oop p) { assert(false, "Do not call."); }
  4808   bool do_object_b(oop p) {
  4809     if (p != NULL) {
  4810       return true;
  4812     return false;
  4814 };
  4816 bool G1STWIsAliveClosure::do_object_b(oop p) {
  4817   // An object is reachable if it is outside the collection set,
  4818   // or is inside and copied.
  4819   return !_g1->obj_in_cs(p) || p->is_forwarded();
  4822 // Non Copying Keep Alive closure
  4823 class G1KeepAliveClosure: public OopClosure {
  4824   G1CollectedHeap* _g1;
  4825 public:
  4826   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4827   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  4828   void do_oop(      oop* p) {
  4829     oop obj = *p;
  4831     if (_g1->obj_in_cs(obj)) {
  4832       assert( obj->is_forwarded(), "invariant" );
  4833       *p = obj->forwardee();
  4836 };
  4838 // Copying Keep Alive closure - can be called from both
  4839 // serial and parallel code as long as different worker
  4840 // threads utilize different G1ParScanThreadState instances
  4841 // and different queues.
  4843 class G1CopyingKeepAliveClosure: public OopClosure {
  4844   G1CollectedHeap*         _g1h;
  4845   OopClosure*              _copy_non_heap_obj_cl;
  4846   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  4847   G1ParScanThreadState*    _par_scan_state;
  4849 public:
  4850   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  4851                             OopClosure* non_heap_obj_cl,
  4852                             OopsInHeapRegionClosure* perm_obj_cl,
  4853                             G1ParScanThreadState* pss):
  4854     _g1h(g1h),
  4855     _copy_non_heap_obj_cl(non_heap_obj_cl),
  4856     _copy_perm_obj_cl(perm_obj_cl),
  4857     _par_scan_state(pss)
  4858   {}
  4860   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  4861   virtual void do_oop(      oop* p) { do_oop_work(p); }
  4863   template <class T> void do_oop_work(T* p) {
  4864     oop obj = oopDesc::load_decode_heap_oop(p);
  4866     if (_g1h->obj_in_cs(obj)) {
  4867       // If the referent object has been forwarded (either copied
  4868       // to a new location or to itself in the event of an
  4869       // evacuation failure) then we need to update the reference
  4870       // field and, if both reference and referent are in the G1
  4871       // heap, update the RSet for the referent.
  4872       //
  4873       // If the referent has not been forwarded then we have to keep
  4874       // it alive by policy. Therefore we have copy the referent.
  4875       //
  4876       // If the reference field is in the G1 heap then we can push
  4877       // on the PSS queue. When the queue is drained (after each
  4878       // phase of reference processing) the object and it's followers
  4879       // will be copied, the reference field set to point to the
  4880       // new location, and the RSet updated. Otherwise we need to
  4881       // use the the non-heap or perm closures directly to copy
  4882       // the refernt object and update the pointer, while avoiding
  4883       // updating the RSet.
  4885       if (_g1h->is_in_g1_reserved(p)) {
  4886         _par_scan_state->push_on_queue(p);
  4887       } else {
  4888         // The reference field is not in the G1 heap.
  4889         if (_g1h->perm_gen()->is_in(p)) {
  4890           _copy_perm_obj_cl->do_oop(p);
  4891         } else {
  4892           _copy_non_heap_obj_cl->do_oop(p);
  4897 };
  4899 // Serial drain queue closure. Called as the 'complete_gc'
  4900 // closure for each discovered list in some of the
  4901 // reference processing phases.
  4903 class G1STWDrainQueueClosure: public VoidClosure {
  4904 protected:
  4905   G1CollectedHeap* _g1h;
  4906   G1ParScanThreadState* _par_scan_state;
  4908   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4910 public:
  4911   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  4912     _g1h(g1h),
  4913     _par_scan_state(pss)
  4914   { }
  4916   void do_void() {
  4917     G1ParScanThreadState* const pss = par_scan_state();
  4918     pss->trim_queue();
  4920 };
  4922 // Parallel Reference Processing closures
  4924 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  4925 // processing during G1 evacuation pauses.
  4927 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  4928 private:
  4929   G1CollectedHeap*   _g1h;
  4930   RefToScanQueueSet* _queues;
  4931   FlexibleWorkGang*  _workers;
  4932   int                _active_workers;
  4934 public:
  4935   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  4936                         FlexibleWorkGang* workers,
  4937                         RefToScanQueueSet *task_queues,
  4938                         int n_workers) :
  4939     _g1h(g1h),
  4940     _queues(task_queues),
  4941     _workers(workers),
  4942     _active_workers(n_workers)
  4944     assert(n_workers > 0, "shouldn't call this otherwise");
  4947   // Executes the given task using concurrent marking worker threads.
  4948   virtual void execute(ProcessTask& task);
  4949   virtual void execute(EnqueueTask& task);
  4950 };
  4952 // Gang task for possibly parallel reference processing
  4954 class G1STWRefProcTaskProxy: public AbstractGangTask {
  4955   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  4956   ProcessTask&     _proc_task;
  4957   G1CollectedHeap* _g1h;
  4958   RefToScanQueueSet *_task_queues;
  4959   ParallelTaskTerminator* _terminator;
  4961 public:
  4962   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  4963                      G1CollectedHeap* g1h,
  4964                      RefToScanQueueSet *task_queues,
  4965                      ParallelTaskTerminator* terminator) :
  4966     AbstractGangTask("Process reference objects in parallel"),
  4967     _proc_task(proc_task),
  4968     _g1h(g1h),
  4969     _task_queues(task_queues),
  4970     _terminator(terminator)
  4971   {}
  4973   virtual void work(uint worker_id) {
  4974     // The reference processing task executed by a single worker.
  4975     ResourceMark rm;
  4976     HandleMark   hm;
  4978     G1STWIsAliveClosure is_alive(_g1h);
  4980     G1ParScanThreadState pss(_g1h, worker_id);
  4982     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  4983     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  4984     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  4986     pss.set_evac_closure(&scan_evac_cl);
  4987     pss.set_evac_failure_closure(&evac_failure_cl);
  4988     pss.set_partial_scan_closure(&partial_scan_cl);
  4990     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  4991     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  4993     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  4994     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  4996     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  4997     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  4999     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5000       // We also need to mark copied objects.
  5001       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5002       copy_perm_cl = &copy_mark_perm_cl;
  5005     // Keep alive closure.
  5006     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5008     // Complete GC closure
  5009     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5011     // Call the reference processing task's work routine.
  5012     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5014     // Note we cannot assert that the refs array is empty here as not all
  5015     // of the processing tasks (specifically phase2 - pp2_work) execute
  5016     // the complete_gc closure (which ordinarily would drain the queue) so
  5017     // the queue may not be empty.
  5019 };
  5021 // Driver routine for parallel reference processing.
  5022 // Creates an instance of the ref processing gang
  5023 // task and has the worker threads execute it.
  5024 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5025   assert(_workers != NULL, "Need parallel worker threads.");
  5027   ParallelTaskTerminator terminator(_active_workers, _queues);
  5028   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5030   _g1h->set_par_threads(_active_workers);
  5031   _workers->run_task(&proc_task_proxy);
  5032   _g1h->set_par_threads(0);
  5035 // Gang task for parallel reference enqueueing.
  5037 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5038   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5039   EnqueueTask& _enq_task;
  5041 public:
  5042   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5043     AbstractGangTask("Enqueue reference objects in parallel"),
  5044     _enq_task(enq_task)
  5045   { }
  5047   virtual void work(uint worker_id) {
  5048     _enq_task.work(worker_id);
  5050 };
  5052 // Driver routine for parallel reference enqueing.
  5053 // Creates an instance of the ref enqueueing gang
  5054 // task and has the worker threads execute it.
  5056 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5057   assert(_workers != NULL, "Need parallel worker threads.");
  5059   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5061   _g1h->set_par_threads(_active_workers);
  5062   _workers->run_task(&enq_task_proxy);
  5063   _g1h->set_par_threads(0);
  5066 // End of weak reference support closures
  5068 // Abstract task used to preserve (i.e. copy) any referent objects
  5069 // that are in the collection set and are pointed to by reference
  5070 // objects discovered by the CM ref processor.
  5072 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5073 protected:
  5074   G1CollectedHeap* _g1h;
  5075   RefToScanQueueSet      *_queues;
  5076   ParallelTaskTerminator _terminator;
  5077   uint _n_workers;
  5079 public:
  5080   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5081     AbstractGangTask("ParPreserveCMReferents"),
  5082     _g1h(g1h),
  5083     _queues(task_queues),
  5084     _terminator(workers, _queues),
  5085     _n_workers(workers)
  5086   { }
  5088   void work(uint worker_id) {
  5089     ResourceMark rm;
  5090     HandleMark   hm;
  5092     G1ParScanThreadState            pss(_g1h, worker_id);
  5093     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5094     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5095     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5097     pss.set_evac_closure(&scan_evac_cl);
  5098     pss.set_evac_failure_closure(&evac_failure_cl);
  5099     pss.set_partial_scan_closure(&partial_scan_cl);
  5101     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5104     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5105     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5107     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5108     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5110     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5111     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5113     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5114       // We also need to mark copied objects.
  5115       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5116       copy_perm_cl = &copy_mark_perm_cl;
  5119     // Is alive closure
  5120     G1AlwaysAliveClosure always_alive(_g1h);
  5122     // Copying keep alive closure. Applied to referent objects that need
  5123     // to be copied.
  5124     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5126     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5128     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5129     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5131     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5132     // So this must be true - but assert just in case someone decides to
  5133     // change the worker ids.
  5134     assert(0 <= worker_id && worker_id < limit, "sanity");
  5135     assert(!rp->discovery_is_atomic(), "check this code");
  5137     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5138     for (uint idx = worker_id; idx < limit; idx += stride) {
  5139       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5141       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5142       while (iter.has_next()) {
  5143         // Since discovery is not atomic for the CM ref processor, we
  5144         // can see some null referent objects.
  5145         iter.load_ptrs(DEBUG_ONLY(true));
  5146         oop ref = iter.obj();
  5148         // This will filter nulls.
  5149         if (iter.is_referent_alive()) {
  5150           iter.make_referent_alive();
  5152         iter.move_to_next();
  5156     // Drain the queue - which may cause stealing
  5157     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5158     drain_queue.do_void();
  5159     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5160     assert(pss.refs()->is_empty(), "should be");
  5162 };
  5164 // Weak Reference processing during an evacuation pause (part 1).
  5165 void G1CollectedHeap::process_discovered_references() {
  5166   double ref_proc_start = os::elapsedTime();
  5168   ReferenceProcessor* rp = _ref_processor_stw;
  5169   assert(rp->discovery_enabled(), "should have been enabled");
  5171   // Any reference objects, in the collection set, that were 'discovered'
  5172   // by the CM ref processor should have already been copied (either by
  5173   // applying the external root copy closure to the discovered lists, or
  5174   // by following an RSet entry).
  5175   //
  5176   // But some of the referents, that are in the collection set, that these
  5177   // reference objects point to may not have been copied: the STW ref
  5178   // processor would have seen that the reference object had already
  5179   // been 'discovered' and would have skipped discovering the reference,
  5180   // but would not have treated the reference object as a regular oop.
  5181   // As a reult the copy closure would not have been applied to the
  5182   // referent object.
  5183   //
  5184   // We need to explicitly copy these referent objects - the references
  5185   // will be processed at the end of remarking.
  5186   //
  5187   // We also need to do this copying before we process the reference
  5188   // objects discovered by the STW ref processor in case one of these
  5189   // referents points to another object which is also referenced by an
  5190   // object discovered by the STW ref processor.
  5192   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5193                         workers()->active_workers() : 1);
  5195   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5196            active_workers == workers()->active_workers(),
  5197            "Need to reset active_workers");
  5199   set_par_threads(active_workers);
  5200   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
  5202   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5203     workers()->run_task(&keep_cm_referents);
  5204   } else {
  5205     keep_cm_referents.work(0);
  5208   set_par_threads(0);
  5210   // Closure to test whether a referent is alive.
  5211   G1STWIsAliveClosure is_alive(this);
  5213   // Even when parallel reference processing is enabled, the processing
  5214   // of JNI refs is serial and performed serially by the current thread
  5215   // rather than by a worker. The following PSS will be used for processing
  5216   // JNI refs.
  5218   // Use only a single queue for this PSS.
  5219   G1ParScanThreadState pss(this, 0);
  5221   // We do not embed a reference processor in the copying/scanning
  5222   // closures while we're actually processing the discovered
  5223   // reference objects.
  5224   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5225   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5226   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5228   pss.set_evac_closure(&scan_evac_cl);
  5229   pss.set_evac_failure_closure(&evac_failure_cl);
  5230   pss.set_partial_scan_closure(&partial_scan_cl);
  5232   assert(pss.refs()->is_empty(), "pre-condition");
  5234   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5235   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5237   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5238   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5240   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5241   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5243   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5244     // We also need to mark copied objects.
  5245     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5246     copy_perm_cl = &copy_mark_perm_cl;
  5249   // Keep alive closure.
  5250   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5252   // Serial Complete GC closure
  5253   G1STWDrainQueueClosure drain_queue(this, &pss);
  5255   // Setup the soft refs policy...
  5256   rp->setup_policy(false);
  5258   if (!rp->processing_is_mt()) {
  5259     // Serial reference processing...
  5260     rp->process_discovered_references(&is_alive,
  5261                                       &keep_alive,
  5262                                       &drain_queue,
  5263                                       NULL);
  5264   } else {
  5265     // Parallel reference processing
  5266     assert(rp->num_q() == active_workers, "sanity");
  5267     assert(active_workers <= rp->max_num_q(), "sanity");
  5269     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5270     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5273   // We have completed copying any necessary live referent objects
  5274   // (that were not copied during the actual pause) so we can
  5275   // retire any active alloc buffers
  5276   pss.retire_alloc_buffers();
  5277   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5279   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5280   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
  5283 // Weak Reference processing during an evacuation pause (part 2).
  5284 void G1CollectedHeap::enqueue_discovered_references() {
  5285   double ref_enq_start = os::elapsedTime();
  5287   ReferenceProcessor* rp = _ref_processor_stw;
  5288   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5290   // Now enqueue any remaining on the discovered lists on to
  5291   // the pending list.
  5292   if (!rp->processing_is_mt()) {
  5293     // Serial reference processing...
  5294     rp->enqueue_discovered_references();
  5295   } else {
  5296     // Parallel reference enqueuing
  5298     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
  5299     assert(active_workers == workers()->active_workers(),
  5300            "Need to reset active_workers");
  5301     assert(rp->num_q() == active_workers, "sanity");
  5302     assert(active_workers <= rp->max_num_q(), "sanity");
  5304     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5305     rp->enqueue_discovered_references(&par_task_executor);
  5308   rp->verify_no_references_recorded();
  5309   assert(!rp->discovery_enabled(), "should have been disabled");
  5311   // FIXME
  5312   // CM's reference processing also cleans up the string and symbol tables.
  5313   // Should we do that here also? We could, but it is a serial operation
  5314   // and could signicantly increase the pause time.
  5316   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5317   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
  5320 void G1CollectedHeap::evacuate_collection_set() {
  5321   _expand_heap_after_alloc_failure = true;
  5322   set_evacuation_failed(false);
  5324   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5325   concurrent_g1_refine()->set_use_cache(false);
  5326   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5328   uint n_workers;
  5329   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5330     n_workers =
  5331       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5332                                      workers()->active_workers(),
  5333                                      Threads::number_of_non_daemon_threads());
  5334     assert(UseDynamicNumberOfGCThreads ||
  5335            n_workers == workers()->total_workers(),
  5336            "If not dynamic should be using all the  workers");
  5337     workers()->set_active_workers(n_workers);
  5338     set_par_threads(n_workers);
  5339   } else {
  5340     assert(n_par_threads() == 0,
  5341            "Should be the original non-parallel value");
  5342     n_workers = 1;
  5345   G1ParTask g1_par_task(this, _task_queues);
  5347   init_for_evac_failure(NULL);
  5349   rem_set()->prepare_for_younger_refs_iterate(true);
  5351   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5352   double start_par = os::elapsedTime();
  5354   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5355     // The individual threads will set their evac-failure closures.
  5356     StrongRootsScope srs(this);
  5357     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5358     // These tasks use ShareHeap::_process_strong_tasks
  5359     assert(UseDynamicNumberOfGCThreads ||
  5360            workers()->active_workers() == workers()->total_workers(),
  5361            "If not dynamic should be using all the  workers");
  5362     workers()->run_task(&g1_par_task);
  5363   } else {
  5364     StrongRootsScope srs(this);
  5365     g1_par_task.set_for_termination(n_workers);
  5366     g1_par_task.work(0);
  5369   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  5370   g1_policy()->record_par_time(par_time);
  5372   set_par_threads(0);
  5374   // Process any discovered reference objects - we have
  5375   // to do this _before_ we retire the GC alloc regions
  5376   // as we may have to copy some 'reachable' referent
  5377   // objects (and their reachable sub-graphs) that were
  5378   // not copied during the pause.
  5379   process_discovered_references();
  5381   // Weak root processing.
  5382   // Note: when JSR 292 is enabled and code blobs can contain
  5383   // non-perm oops then we will need to process the code blobs
  5384   // here too.
  5386     G1STWIsAliveClosure is_alive(this);
  5387     G1KeepAliveClosure keep_alive(this);
  5388     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5391   release_gc_alloc_regions();
  5392   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5394   concurrent_g1_refine()->clear_hot_cache();
  5395   concurrent_g1_refine()->set_use_cache(true);
  5397   finalize_for_evac_failure();
  5399   if (evacuation_failed()) {
  5400     remove_self_forwarding_pointers();
  5401     if (PrintGCDetails) {
  5402       gclog_or_tty->print(" (to-space overflow)");
  5403     } else if (PrintGC) {
  5404       gclog_or_tty->print("--");
  5408   // Enqueue any remaining references remaining on the STW
  5409   // reference processor's discovered lists. We need to do
  5410   // this after the card table is cleaned (and verified) as
  5411   // the act of enqueuing entries on to the pending list
  5412   // will log these updates (and dirty their associated
  5413   // cards). We need these updates logged to update any
  5414   // RSets.
  5415   enqueue_discovered_references();
  5417   if (G1DeferredRSUpdate) {
  5418     RedirtyLoggedCardTableEntryFastClosure redirty;
  5419     dirty_card_queue_set().set_closure(&redirty);
  5420     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5422     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5423     dcq.merge_bufferlists(&dirty_card_queue_set());
  5424     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5426   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5429 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5430                                      size_t* pre_used,
  5431                                      FreeRegionList* free_list,
  5432                                      OldRegionSet* old_proxy_set,
  5433                                      HumongousRegionSet* humongous_proxy_set,
  5434                                      HRRSCleanupTask* hrrs_cleanup_task,
  5435                                      bool par) {
  5436   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5437     if (hr->isHumongous()) {
  5438       assert(hr->startsHumongous(), "we should only see starts humongous");
  5439       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5440     } else {
  5441       _old_set.remove_with_proxy(hr, old_proxy_set);
  5442       free_region(hr, pre_used, free_list, par);
  5444   } else {
  5445     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5449 void G1CollectedHeap::free_region(HeapRegion* hr,
  5450                                   size_t* pre_used,
  5451                                   FreeRegionList* free_list,
  5452                                   bool par) {
  5453   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5454   assert(!hr->is_empty(), "the region should not be empty");
  5455   assert(free_list != NULL, "pre-condition");
  5457   *pre_used += hr->used();
  5458   hr->hr_clear(par, true /* clear_space */);
  5459   free_list->add_as_head(hr);
  5462 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5463                                      size_t* pre_used,
  5464                                      FreeRegionList* free_list,
  5465                                      HumongousRegionSet* humongous_proxy_set,
  5466                                      bool par) {
  5467   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5468   assert(free_list != NULL, "pre-condition");
  5469   assert(humongous_proxy_set != NULL, "pre-condition");
  5471   size_t hr_used = hr->used();
  5472   size_t hr_capacity = hr->capacity();
  5473   size_t hr_pre_used = 0;
  5474   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5475   hr->set_notHumongous();
  5476   free_region(hr, &hr_pre_used, free_list, par);
  5478   size_t i = hr->hrs_index() + 1;
  5479   size_t num = 1;
  5480   while (i < n_regions()) {
  5481     HeapRegion* curr_hr = region_at(i);
  5482     if (!curr_hr->continuesHumongous()) {
  5483       break;
  5485     curr_hr->set_notHumongous();
  5486     free_region(curr_hr, &hr_pre_used, free_list, par);
  5487     num += 1;
  5488     i += 1;
  5490   assert(hr_pre_used == hr_used,
  5491          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5492                  "should be the same", hr_pre_used, hr_used));
  5493   *pre_used += hr_pre_used;
  5496 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5497                                        FreeRegionList* free_list,
  5498                                        OldRegionSet* old_proxy_set,
  5499                                        HumongousRegionSet* humongous_proxy_set,
  5500                                        bool par) {
  5501   if (pre_used > 0) {
  5502     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5503     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5504     assert(_summary_bytes_used >= pre_used,
  5505            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5506                    "should be >= pre_used: "SIZE_FORMAT,
  5507                    _summary_bytes_used, pre_used));
  5508     _summary_bytes_used -= pre_used;
  5510   if (free_list != NULL && !free_list->is_empty()) {
  5511     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5512     _free_list.add_as_head(free_list);
  5514   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5515     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5516     _old_set.update_from_proxy(old_proxy_set);
  5518   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5519     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5520     _humongous_set.update_from_proxy(humongous_proxy_set);
  5524 class G1ParCleanupCTTask : public AbstractGangTask {
  5525   CardTableModRefBS* _ct_bs;
  5526   G1CollectedHeap* _g1h;
  5527   HeapRegion* volatile _su_head;
  5528 public:
  5529   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5530                      G1CollectedHeap* g1h) :
  5531     AbstractGangTask("G1 Par Cleanup CT Task"),
  5532     _ct_bs(ct_bs), _g1h(g1h) { }
  5534   void work(uint worker_id) {
  5535     HeapRegion* r;
  5536     while (r = _g1h->pop_dirty_cards_region()) {
  5537       clear_cards(r);
  5541   void clear_cards(HeapRegion* r) {
  5542     // Cards of the survivors should have already been dirtied.
  5543     if (!r->is_survivor()) {
  5544       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5547 };
  5549 #ifndef PRODUCT
  5550 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5551   G1CollectedHeap* _g1h;
  5552   CardTableModRefBS* _ct_bs;
  5553 public:
  5554   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5555     : _g1h(g1h), _ct_bs(ct_bs) { }
  5556   virtual bool doHeapRegion(HeapRegion* r) {
  5557     if (r->is_survivor()) {
  5558       _g1h->verify_dirty_region(r);
  5559     } else {
  5560       _g1h->verify_not_dirty_region(r);
  5562     return false;
  5564 };
  5566 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5567   // All of the region should be clean.
  5568   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5569   MemRegion mr(hr->bottom(), hr->end());
  5570   ct_bs->verify_not_dirty_region(mr);
  5573 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5574   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5575   // dirty allocated blocks as they allocate them. The thread that
  5576   // retires each region and replaces it with a new one will do a
  5577   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5578   // not dirty that area (one less thing to have to do while holding
  5579   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5580   // is dirty.
  5581   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5582   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5583   ct_bs->verify_dirty_region(mr);
  5586 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5587   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5588   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5589     verify_dirty_region(hr);
  5593 void G1CollectedHeap::verify_dirty_young_regions() {
  5594   verify_dirty_young_list(_young_list->first_region());
  5595   verify_dirty_young_list(_young_list->first_survivor_region());
  5597 #endif
  5599 void G1CollectedHeap::cleanUpCardTable() {
  5600   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5601   double start = os::elapsedTime();
  5604     // Iterate over the dirty cards region list.
  5605     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5607     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5608       set_par_threads();
  5609       workers()->run_task(&cleanup_task);
  5610       set_par_threads(0);
  5611     } else {
  5612       while (_dirty_cards_region_list) {
  5613         HeapRegion* r = _dirty_cards_region_list;
  5614         cleanup_task.clear_cards(r);
  5615         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5616         if (_dirty_cards_region_list == r) {
  5617           // The last region.
  5618           _dirty_cards_region_list = NULL;
  5620         r->set_next_dirty_cards_region(NULL);
  5623 #ifndef PRODUCT
  5624     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5625       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5626       heap_region_iterate(&cleanup_verifier);
  5628 #endif
  5631   double elapsed = os::elapsedTime() - start;
  5632   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
  5635 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5636   size_t pre_used = 0;
  5637   FreeRegionList local_free_list("Local List for CSet Freeing");
  5639   double young_time_ms     = 0.0;
  5640   double non_young_time_ms = 0.0;
  5642   // Since the collection set is a superset of the the young list,
  5643   // all we need to do to clear the young list is clear its
  5644   // head and length, and unlink any young regions in the code below
  5645   _young_list->clear();
  5647   G1CollectorPolicy* policy = g1_policy();
  5649   double start_sec = os::elapsedTime();
  5650   bool non_young = true;
  5652   HeapRegion* cur = cs_head;
  5653   int age_bound = -1;
  5654   size_t rs_lengths = 0;
  5656   while (cur != NULL) {
  5657     assert(!is_on_master_free_list(cur), "sanity");
  5658     if (non_young) {
  5659       if (cur->is_young()) {
  5660         double end_sec = os::elapsedTime();
  5661         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5662         non_young_time_ms += elapsed_ms;
  5664         start_sec = os::elapsedTime();
  5665         non_young = false;
  5667     } else {
  5668       if (!cur->is_young()) {
  5669         double end_sec = os::elapsedTime();
  5670         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5671         young_time_ms += elapsed_ms;
  5673         start_sec = os::elapsedTime();
  5674         non_young = true;
  5678     rs_lengths += cur->rem_set()->occupied();
  5680     HeapRegion* next = cur->next_in_collection_set();
  5681     assert(cur->in_collection_set(), "bad CS");
  5682     cur->set_next_in_collection_set(NULL);
  5683     cur->set_in_collection_set(false);
  5685     if (cur->is_young()) {
  5686       int index = cur->young_index_in_cset();
  5687       assert(index != -1, "invariant");
  5688       assert((size_t) index < policy->young_cset_region_length(), "invariant");
  5689       size_t words_survived = _surviving_young_words[index];
  5690       cur->record_surv_words_in_group(words_survived);
  5692       // At this point the we have 'popped' cur from the collection set
  5693       // (linked via next_in_collection_set()) but it is still in the
  5694       // young list (linked via next_young_region()). Clear the
  5695       // _next_young_region field.
  5696       cur->set_next_young_region(NULL);
  5697     } else {
  5698       int index = cur->young_index_in_cset();
  5699       assert(index == -1, "invariant");
  5702     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5703             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5704             "invariant" );
  5706     if (!cur->evacuation_failed()) {
  5707       MemRegion used_mr = cur->used_region();
  5709       // And the region is empty.
  5710       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5712       // If marking is in progress then clear any objects marked in
  5713       // the current region. Note mark_in_progress() returns false,
  5714       // even during an initial mark pause, until the set_marking_started()
  5715       // call which takes place later in the pause.
  5716       if (mark_in_progress()) {
  5717         assert(!g1_policy()->during_initial_mark_pause(), "sanity");
  5718         _cm->nextMarkBitMap()->clearRange(used_mr);
  5721       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5722     } else {
  5723       cur->uninstall_surv_rate_group();
  5724       if (cur->is_young()) {
  5725         cur->set_young_index_in_cset(-1);
  5727       cur->set_not_young();
  5728       cur->set_evacuation_failed(false);
  5729       // The region is now considered to be old.
  5730       _old_set.add(cur);
  5732     cur = next;
  5735   policy->record_max_rs_lengths(rs_lengths);
  5736   policy->cset_regions_freed();
  5738   double end_sec = os::elapsedTime();
  5739   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5741   if (non_young) {
  5742     non_young_time_ms += elapsed_ms;
  5743   } else {
  5744     young_time_ms += elapsed_ms;
  5747   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5748                                     NULL /* old_proxy_set */,
  5749                                     NULL /* humongous_proxy_set */,
  5750                                     false /* par */);
  5751   policy->record_young_free_cset_time_ms(young_time_ms);
  5752   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5755 // This routine is similar to the above but does not record
  5756 // any policy statistics or update free lists; we are abandoning
  5757 // the current incremental collection set in preparation of a
  5758 // full collection. After the full GC we will start to build up
  5759 // the incremental collection set again.
  5760 // This is only called when we're doing a full collection
  5761 // and is immediately followed by the tearing down of the young list.
  5763 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5764   HeapRegion* cur = cs_head;
  5766   while (cur != NULL) {
  5767     HeapRegion* next = cur->next_in_collection_set();
  5768     assert(cur->in_collection_set(), "bad CS");
  5769     cur->set_next_in_collection_set(NULL);
  5770     cur->set_in_collection_set(false);
  5771     cur->set_young_index_in_cset(-1);
  5772     cur = next;
  5776 void G1CollectedHeap::set_free_regions_coming() {
  5777   if (G1ConcRegionFreeingVerbose) {
  5778     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5779                            "setting free regions coming");
  5782   assert(!free_regions_coming(), "pre-condition");
  5783   _free_regions_coming = true;
  5786 void G1CollectedHeap::reset_free_regions_coming() {
  5788     assert(free_regions_coming(), "pre-condition");
  5789     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5790     _free_regions_coming = false;
  5791     SecondaryFreeList_lock->notify_all();
  5794   if (G1ConcRegionFreeingVerbose) {
  5795     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5796                            "reset free regions coming");
  5800 void G1CollectedHeap::wait_while_free_regions_coming() {
  5801   // Most of the time we won't have to wait, so let's do a quick test
  5802   // first before we take the lock.
  5803   if (!free_regions_coming()) {
  5804     return;
  5807   if (G1ConcRegionFreeingVerbose) {
  5808     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5809                            "waiting for free regions");
  5813     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5814     while (free_regions_coming()) {
  5815       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5819   if (G1ConcRegionFreeingVerbose) {
  5820     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5821                            "done waiting for free regions");
  5825 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5826   assert(heap_lock_held_for_gc(),
  5827               "the heap lock should already be held by or for this thread");
  5828   _young_list->push_region(hr);
  5831 class NoYoungRegionsClosure: public HeapRegionClosure {
  5832 private:
  5833   bool _success;
  5834 public:
  5835   NoYoungRegionsClosure() : _success(true) { }
  5836   bool doHeapRegion(HeapRegion* r) {
  5837     if (r->is_young()) {
  5838       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5839                              r->bottom(), r->end());
  5840       _success = false;
  5842     return false;
  5844   bool success() { return _success; }
  5845 };
  5847 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5848   bool ret = _young_list->check_list_empty(check_sample);
  5850   if (check_heap) {
  5851     NoYoungRegionsClosure closure;
  5852     heap_region_iterate(&closure);
  5853     ret = ret && closure.success();
  5856   return ret;
  5859 class TearDownRegionSetsClosure : public HeapRegionClosure {
  5860 private:
  5861   OldRegionSet *_old_set;
  5863 public:
  5864   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  5866   bool doHeapRegion(HeapRegion* r) {
  5867     if (r->is_empty()) {
  5868       // We ignore empty regions, we'll empty the free list afterwards
  5869     } else if (r->is_young()) {
  5870       // We ignore young regions, we'll empty the young list afterwards
  5871     } else if (r->isHumongous()) {
  5872       // We ignore humongous regions, we're not tearing down the
  5873       // humongous region set
  5874     } else {
  5875       // The rest should be old
  5876       _old_set->remove(r);
  5878     return false;
  5881   ~TearDownRegionSetsClosure() {
  5882     assert(_old_set->is_empty(), "post-condition");
  5884 };
  5886 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  5887   assert_at_safepoint(true /* should_be_vm_thread */);
  5889   if (!free_list_only) {
  5890     TearDownRegionSetsClosure cl(&_old_set);
  5891     heap_region_iterate(&cl);
  5893     // Need to do this after the heap iteration to be able to
  5894     // recognize the young regions and ignore them during the iteration.
  5895     _young_list->empty_list();
  5897   _free_list.remove_all();
  5900 class RebuildRegionSetsClosure : public HeapRegionClosure {
  5901 private:
  5902   bool            _free_list_only;
  5903   OldRegionSet*   _old_set;
  5904   FreeRegionList* _free_list;
  5905   size_t          _total_used;
  5907 public:
  5908   RebuildRegionSetsClosure(bool free_list_only,
  5909                            OldRegionSet* old_set, FreeRegionList* free_list) :
  5910     _free_list_only(free_list_only),
  5911     _old_set(old_set), _free_list(free_list), _total_used(0) {
  5912     assert(_free_list->is_empty(), "pre-condition");
  5913     if (!free_list_only) {
  5914       assert(_old_set->is_empty(), "pre-condition");
  5918   bool doHeapRegion(HeapRegion* r) {
  5919     if (r->continuesHumongous()) {
  5920       return false;
  5923     if (r->is_empty()) {
  5924       // Add free regions to the free list
  5925       _free_list->add_as_tail(r);
  5926     } else if (!_free_list_only) {
  5927       assert(!r->is_young(), "we should not come across young regions");
  5929       if (r->isHumongous()) {
  5930         // We ignore humongous regions, we left the humongous set unchanged
  5931       } else {
  5932         // The rest should be old, add them to the old set
  5933         _old_set->add(r);
  5935       _total_used += r->used();
  5938     return false;
  5941   size_t total_used() {
  5942     return _total_used;
  5944 };
  5946 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  5947   assert_at_safepoint(true /* should_be_vm_thread */);
  5949   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  5950   heap_region_iterate(&cl);
  5952   if (!free_list_only) {
  5953     _summary_bytes_used = cl.total_used();
  5955   assert(_summary_bytes_used == recalculate_used(),
  5956          err_msg("inconsistent _summary_bytes_used, "
  5957                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  5958                  _summary_bytes_used, recalculate_used()));
  5961 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5962   _refine_cte_cl->set_concurrent(concurrent);
  5965 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5966   HeapRegion* hr = heap_region_containing(p);
  5967   if (hr == NULL) {
  5968     return is_in_permanent(p);
  5969   } else {
  5970     return hr->is_in(p);
  5974 // Methods for the mutator alloc region
  5976 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  5977                                                       bool force) {
  5978   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5979   assert(!force || g1_policy()->can_expand_young_list(),
  5980          "if force is true we should be able to expand the young list");
  5981   bool young_list_full = g1_policy()->is_young_list_full();
  5982   if (force || !young_list_full) {
  5983     HeapRegion* new_alloc_region = new_region(word_size,
  5984                                               false /* do_expand */);
  5985     if (new_alloc_region != NULL) {
  5986       set_region_short_lived_locked(new_alloc_region);
  5987       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  5988       return new_alloc_region;
  5991   return NULL;
  5994 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  5995                                                   size_t allocated_bytes) {
  5996   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5997   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  5999   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6000   _summary_bytes_used += allocated_bytes;
  6001   _hr_printer.retire(alloc_region);
  6002   // We update the eden sizes here, when the region is retired,
  6003   // instead of when it's allocated, since this is the point that its
  6004   // used space has been recored in _summary_bytes_used.
  6005   g1mm()->update_eden_size();
  6008 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6009                                                     bool force) {
  6010   return _g1h->new_mutator_alloc_region(word_size, force);
  6013 void G1CollectedHeap::set_par_threads() {
  6014   // Don't change the number of workers.  Use the value previously set
  6015   // in the workgroup.
  6016   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6017   uint n_workers = workers()->active_workers();
  6018   assert(UseDynamicNumberOfGCThreads ||
  6019            n_workers == workers()->total_workers(),
  6020       "Otherwise should be using the total number of workers");
  6021   if (n_workers == 0) {
  6022     assert(false, "Should have been set in prior evacuation pause.");
  6023     n_workers = ParallelGCThreads;
  6024     workers()->set_active_workers(n_workers);
  6026   set_par_threads(n_workers);
  6029 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6030                                        size_t allocated_bytes) {
  6031   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6034 // Methods for the GC alloc regions
  6036 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6037                                                  size_t count,
  6038                                                  GCAllocPurpose ap) {
  6039   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6041   if (count < g1_policy()->max_regions(ap)) {
  6042     HeapRegion* new_alloc_region = new_region(word_size,
  6043                                               true /* do_expand */);
  6044     if (new_alloc_region != NULL) {
  6045       // We really only need to do this for old regions given that we
  6046       // should never scan survivors. But it doesn't hurt to do it
  6047       // for survivors too.
  6048       new_alloc_region->set_saved_mark();
  6049       if (ap == GCAllocForSurvived) {
  6050         new_alloc_region->set_survivor();
  6051         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6052       } else {
  6053         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6055       bool during_im = g1_policy()->during_initial_mark_pause();
  6056       new_alloc_region->note_start_of_copying(during_im);
  6057       return new_alloc_region;
  6058     } else {
  6059       g1_policy()->note_alloc_region_limit_reached(ap);
  6062   return NULL;
  6065 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6066                                              size_t allocated_bytes,
  6067                                              GCAllocPurpose ap) {
  6068   bool during_im = g1_policy()->during_initial_mark_pause();
  6069   alloc_region->note_end_of_copying(during_im);
  6070   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6071   if (ap == GCAllocForSurvived) {
  6072     young_list()->add_survivor_region(alloc_region);
  6073   } else {
  6074     _old_set.add(alloc_region);
  6076   _hr_printer.retire(alloc_region);
  6079 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6080                                                        bool force) {
  6081   assert(!force, "not supported for GC alloc regions");
  6082   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6085 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6086                                           size_t allocated_bytes) {
  6087   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6088                                GCAllocForSurvived);
  6091 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6092                                                   bool force) {
  6093   assert(!force, "not supported for GC alloc regions");
  6094   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6097 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6098                                      size_t allocated_bytes) {
  6099   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6100                                GCAllocForTenured);
  6102 // Heap region set verification
  6104 class VerifyRegionListsClosure : public HeapRegionClosure {
  6105 private:
  6106   FreeRegionList*     _free_list;
  6107   OldRegionSet*       _old_set;
  6108   HumongousRegionSet* _humongous_set;
  6109   size_t              _region_count;
  6111 public:
  6112   VerifyRegionListsClosure(OldRegionSet* old_set,
  6113                            HumongousRegionSet* humongous_set,
  6114                            FreeRegionList* free_list) :
  6115     _old_set(old_set), _humongous_set(humongous_set),
  6116     _free_list(free_list), _region_count(0) { }
  6118   size_t region_count()      { return _region_count;      }
  6120   bool doHeapRegion(HeapRegion* hr) {
  6121     _region_count += 1;
  6123     if (hr->continuesHumongous()) {
  6124       return false;
  6127     if (hr->is_young()) {
  6128       // TODO
  6129     } else if (hr->startsHumongous()) {
  6130       _humongous_set->verify_next_region(hr);
  6131     } else if (hr->is_empty()) {
  6132       _free_list->verify_next_region(hr);
  6133     } else {
  6134       _old_set->verify_next_region(hr);
  6136     return false;
  6138 };
  6140 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
  6141                                              HeapWord* bottom) {
  6142   HeapWord* end = bottom + HeapRegion::GrainWords;
  6143   MemRegion mr(bottom, end);
  6144   assert(_g1_reserved.contains(mr), "invariant");
  6145   // This might return NULL if the allocation fails
  6146   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  6149 void G1CollectedHeap::verify_region_sets() {
  6150   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6152   // First, check the explicit lists.
  6153   _free_list.verify();
  6155     // Given that a concurrent operation might be adding regions to
  6156     // the secondary free list we have to take the lock before
  6157     // verifying it.
  6158     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6159     _secondary_free_list.verify();
  6161   _old_set.verify();
  6162   _humongous_set.verify();
  6164   // If a concurrent region freeing operation is in progress it will
  6165   // be difficult to correctly attributed any free regions we come
  6166   // across to the correct free list given that they might belong to
  6167   // one of several (free_list, secondary_free_list, any local lists,
  6168   // etc.). So, if that's the case we will skip the rest of the
  6169   // verification operation. Alternatively, waiting for the concurrent
  6170   // operation to complete will have a non-trivial effect on the GC's
  6171   // operation (no concurrent operation will last longer than the
  6172   // interval between two calls to verification) and it might hide
  6173   // any issues that we would like to catch during testing.
  6174   if (free_regions_coming()) {
  6175     return;
  6178   // Make sure we append the secondary_free_list on the free_list so
  6179   // that all free regions we will come across can be safely
  6180   // attributed to the free_list.
  6181   append_secondary_free_list_if_not_empty_with_lock();
  6183   // Finally, make sure that the region accounting in the lists is
  6184   // consistent with what we see in the heap.
  6185   _old_set.verify_start();
  6186   _humongous_set.verify_start();
  6187   _free_list.verify_start();
  6189   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6190   heap_region_iterate(&cl);
  6192   _old_set.verify_end();
  6193   _humongous_set.verify_end();
  6194   _free_list.verify_end();

mercurial