src/share/vm/opto/library_call.cpp

Fri, 04 Mar 2016 16:15:48 +0300

author
vkempik
date
Fri, 04 Mar 2016 16:15:48 +0300
changeset 8490
5601e440e5e7
parent 8307
daaf806995b3
child 8504
a96cf90239c6
permissions
-rw-r--r--

8130150: Implement BigInteger.montgomeryMultiply intrinsic
Reviewed-by: kvn, mdoerr

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/connode.hpp"
    35 #include "opto/idealKit.hpp"
    36 #include "opto/mathexactnode.hpp"
    37 #include "opto/mulnode.hpp"
    38 #include "opto/parse.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "opto/subnode.hpp"
    41 #include "prims/nativeLookup.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "trace/traceMacros.hpp"
    45 class LibraryIntrinsic : public InlineCallGenerator {
    46   // Extend the set of intrinsics known to the runtime:
    47  public:
    48  private:
    49   bool             _is_virtual;
    50   bool             _does_virtual_dispatch;
    51   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
    52   int8_t           _last_predicate; // Last generated predicate
    53   vmIntrinsics::ID _intrinsic_id;
    55  public:
    56   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
    57     : InlineCallGenerator(m),
    58       _is_virtual(is_virtual),
    59       _does_virtual_dispatch(does_virtual_dispatch),
    60       _predicates_count((int8_t)predicates_count),
    61       _last_predicate((int8_t)-1),
    62       _intrinsic_id(id)
    63   {
    64   }
    65   virtual bool is_intrinsic() const { return true; }
    66   virtual bool is_virtual()   const { return _is_virtual; }
    67   virtual bool is_predicated() const { return _predicates_count > 0; }
    68   virtual int  predicates_count() const { return _predicates_count; }
    69   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    70   virtual JVMState* generate(JVMState* jvms);
    71   virtual Node* generate_predicate(JVMState* jvms, int predicate);
    72   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    73 };
    76 // Local helper class for LibraryIntrinsic:
    77 class LibraryCallKit : public GraphKit {
    78  private:
    79   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    80   Node*             _result;        // the result node, if any
    81   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    83   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    85  public:
    86   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    87     : GraphKit(jvms),
    88       _intrinsic(intrinsic),
    89       _result(NULL)
    90   {
    91     // Check if this is a root compile.  In that case we don't have a caller.
    92     if (!jvms->has_method()) {
    93       _reexecute_sp = sp();
    94     } else {
    95       // Find out how many arguments the interpreter needs when deoptimizing
    96       // and save the stack pointer value so it can used by uncommon_trap.
    97       // We find the argument count by looking at the declared signature.
    98       bool ignored_will_link;
    99       ciSignature* declared_signature = NULL;
   100       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
   101       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
   102       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
   103     }
   104   }
   106   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   108   ciMethod*         caller()    const    { return jvms()->method(); }
   109   int               bci()       const    { return jvms()->bci(); }
   110   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   111   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   112   ciMethod*         callee()    const    { return _intrinsic->method(); }
   114   bool  try_to_inline(int predicate);
   115   Node* try_to_predicate(int predicate);
   117   void push_result() {
   118     // Push the result onto the stack.
   119     if (!stopped() && result() != NULL) {
   120       BasicType bt = result()->bottom_type()->basic_type();
   121       push_node(bt, result());
   122     }
   123   }
   125  private:
   126   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   127     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   128   }
   130   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   131   void  set_result(RegionNode* region, PhiNode* value);
   132   Node*     result() { return _result; }
   134   virtual int reexecute_sp() { return _reexecute_sp; }
   136   // Helper functions to inline natives
   137   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   138   Node* generate_slow_guard(Node* test, RegionNode* region);
   139   Node* generate_fair_guard(Node* test, RegionNode* region);
   140   Node* generate_negative_guard(Node* index, RegionNode* region,
   141                                 // resulting CastII of index:
   142                                 Node* *pos_index = NULL);
   143   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   144                                    // resulting CastII of index:
   145                                    Node* *pos_index = NULL);
   146   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   147                              Node* array_length,
   148                              RegionNode* region);
   149   Node* generate_current_thread(Node* &tls_output);
   150   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   151                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   152   Node* load_mirror_from_klass(Node* klass);
   153   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   154                                       RegionNode* region, int null_path,
   155                                       int offset);
   156   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   157                                RegionNode* region, int null_path) {
   158     int offset = java_lang_Class::klass_offset_in_bytes();
   159     return load_klass_from_mirror_common(mirror, never_see_null,
   160                                          region, null_path,
   161                                          offset);
   162   }
   163   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   164                                      RegionNode* region, int null_path) {
   165     int offset = java_lang_Class::array_klass_offset_in_bytes();
   166     return load_klass_from_mirror_common(mirror, never_see_null,
   167                                          region, null_path,
   168                                          offset);
   169   }
   170   Node* generate_access_flags_guard(Node* kls,
   171                                     int modifier_mask, int modifier_bits,
   172                                     RegionNode* region);
   173   Node* generate_interface_guard(Node* kls, RegionNode* region);
   174   Node* generate_array_guard(Node* kls, RegionNode* region) {
   175     return generate_array_guard_common(kls, region, false, false);
   176   }
   177   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   178     return generate_array_guard_common(kls, region, false, true);
   179   }
   180   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   181     return generate_array_guard_common(kls, region, true, false);
   182   }
   183   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   184     return generate_array_guard_common(kls, region, true, true);
   185   }
   186   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   187                                     bool obj_array, bool not_array);
   188   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   189   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   190                                      bool is_virtual = false, bool is_static = false);
   191   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   192     return generate_method_call(method_id, false, true);
   193   }
   194   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   195     return generate_method_call(method_id, true, false);
   196   }
   197   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   199   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   200   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   201   bool inline_string_compareTo();
   202   bool inline_string_indexOf();
   203   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   204   bool inline_string_equals();
   205   Node* round_double_node(Node* n);
   206   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   207   bool inline_math_native(vmIntrinsics::ID id);
   208   bool inline_trig(vmIntrinsics::ID id);
   209   bool inline_math(vmIntrinsics::ID id);
   210   template <typename OverflowOp>
   211   bool inline_math_overflow(Node* arg1, Node* arg2);
   212   void inline_math_mathExact(Node* math, Node* test);
   213   bool inline_math_addExactI(bool is_increment);
   214   bool inline_math_addExactL(bool is_increment);
   215   bool inline_math_multiplyExactI();
   216   bool inline_math_multiplyExactL();
   217   bool inline_math_negateExactI();
   218   bool inline_math_negateExactL();
   219   bool inline_math_subtractExactI(bool is_decrement);
   220   bool inline_math_subtractExactL(bool is_decrement);
   221   bool inline_exp();
   222   bool inline_pow();
   223   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   224   bool inline_min_max(vmIntrinsics::ID id);
   225   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   226   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   227   int classify_unsafe_addr(Node* &base, Node* &offset);
   228   Node* make_unsafe_address(Node* base, Node* offset);
   229   // Helper for inline_unsafe_access.
   230   // Generates the guards that check whether the result of
   231   // Unsafe.getObject should be recorded in an SATB log buffer.
   232   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   233   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   234   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   235   static bool klass_needs_init_guard(Node* kls);
   236   bool inline_unsafe_allocate();
   237   bool inline_unsafe_copyMemory();
   238   bool inline_native_currentThread();
   239 #ifdef TRACE_HAVE_INTRINSICS
   240   bool inline_native_classID();
   241   bool inline_native_threadID();
   242 #endif
   243   bool inline_native_time_funcs(address method, const char* funcName);
   244   bool inline_native_isInterrupted();
   245   bool inline_native_Class_query(vmIntrinsics::ID id);
   246   bool inline_native_subtype_check();
   248   bool inline_native_newArray();
   249   bool inline_native_getLength();
   250   bool inline_array_copyOf(bool is_copyOfRange);
   251   bool inline_array_equals();
   252   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   253   bool inline_native_clone(bool is_virtual);
   254   bool inline_native_Reflection_getCallerClass();
   255   // Helper function for inlining native object hash method
   256   bool inline_native_hashcode(bool is_virtual, bool is_static);
   257   bool inline_native_getClass();
   259   // Helper functions for inlining arraycopy
   260   bool inline_arraycopy();
   261   void generate_arraycopy(const TypePtr* adr_type,
   262                           BasicType basic_elem_type,
   263                           Node* src,  Node* src_offset,
   264                           Node* dest, Node* dest_offset,
   265                           Node* copy_length,
   266                           bool disjoint_bases = false,
   267                           bool length_never_negative = false,
   268                           RegionNode* slow_region = NULL);
   269   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   270                                                 RegionNode* slow_region);
   271   void generate_clear_array(const TypePtr* adr_type,
   272                             Node* dest,
   273                             BasicType basic_elem_type,
   274                             Node* slice_off,
   275                             Node* slice_len,
   276                             Node* slice_end);
   277   bool generate_block_arraycopy(const TypePtr* adr_type,
   278                                 BasicType basic_elem_type,
   279                                 AllocateNode* alloc,
   280                                 Node* src,  Node* src_offset,
   281                                 Node* dest, Node* dest_offset,
   282                                 Node* dest_size, bool dest_uninitialized);
   283   void generate_slow_arraycopy(const TypePtr* adr_type,
   284                                Node* src,  Node* src_offset,
   285                                Node* dest, Node* dest_offset,
   286                                Node* copy_length, bool dest_uninitialized);
   287   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   288                                      Node* dest_elem_klass,
   289                                      Node* src,  Node* src_offset,
   290                                      Node* dest, Node* dest_offset,
   291                                      Node* copy_length, bool dest_uninitialized);
   292   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   293                                    Node* src,  Node* src_offset,
   294                                    Node* dest, Node* dest_offset,
   295                                    Node* copy_length, bool dest_uninitialized);
   296   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   297                                     BasicType basic_elem_type,
   298                                     bool disjoint_bases,
   299                                     Node* src,  Node* src_offset,
   300                                     Node* dest, Node* dest_offset,
   301                                     Node* copy_length, bool dest_uninitialized);
   302   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   303   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   304   bool inline_unsafe_ordered_store(BasicType type);
   305   bool inline_unsafe_fence(vmIntrinsics::ID id);
   306   bool inline_fp_conversions(vmIntrinsics::ID id);
   307   bool inline_number_methods(vmIntrinsics::ID id);
   308   bool inline_reference_get();
   309   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   310   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   311   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   312   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   313   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   314   bool inline_sha_implCompress(vmIntrinsics::ID id);
   315   bool inline_digestBase_implCompressMB(int predicate);
   316   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
   317                                  bool long_state, address stubAddr, const char *stubName,
   318                                  Node* src_start, Node* ofs, Node* limit);
   319   Node* get_state_from_sha_object(Node *sha_object);
   320   Node* get_state_from_sha5_object(Node *sha_object);
   321   Node* inline_digestBase_implCompressMB_predicate(int predicate);
   322   bool inline_encodeISOArray();
   323   bool inline_updateCRC32();
   324   bool inline_updateBytesCRC32();
   325   bool inline_updateByteBufferCRC32();
   326   bool inline_multiplyToLen();
   327   bool inline_squareToLen();
   328   bool inline_mulAdd();
   329   bool inline_montgomeryMultiply();
   330   bool inline_montgomerySquare();
   332   bool inline_profileBoolean();
   333 };
   336 //---------------------------make_vm_intrinsic----------------------------
   337 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   338   vmIntrinsics::ID id = m->intrinsic_id();
   339   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   341   ccstr disable_intr = NULL;
   343   if ((DisableIntrinsic[0] != '\0'
   344        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
   345       (method_has_option_value("DisableIntrinsic", disable_intr)
   346        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
   347     // disabled by a user request on the command line:
   348     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   349     return NULL;
   350   }
   352   if (!m->is_loaded()) {
   353     // do not attempt to inline unloaded methods
   354     return NULL;
   355   }
   357   // Only a few intrinsics implement a virtual dispatch.
   358   // They are expensive calls which are also frequently overridden.
   359   if (is_virtual) {
   360     switch (id) {
   361     case vmIntrinsics::_hashCode:
   362     case vmIntrinsics::_clone:
   363       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   364       break;
   365     default:
   366       return NULL;
   367     }
   368   }
   370   // -XX:-InlineNatives disables nearly all intrinsics:
   371   if (!InlineNatives) {
   372     switch (id) {
   373     case vmIntrinsics::_indexOf:
   374     case vmIntrinsics::_compareTo:
   375     case vmIntrinsics::_equals:
   376     case vmIntrinsics::_equalsC:
   377     case vmIntrinsics::_getAndAddInt:
   378     case vmIntrinsics::_getAndAddLong:
   379     case vmIntrinsics::_getAndSetInt:
   380     case vmIntrinsics::_getAndSetLong:
   381     case vmIntrinsics::_getAndSetObject:
   382     case vmIntrinsics::_loadFence:
   383     case vmIntrinsics::_storeFence:
   384     case vmIntrinsics::_fullFence:
   385       break;  // InlineNatives does not control String.compareTo
   386     case vmIntrinsics::_Reference_get:
   387       break;  // InlineNatives does not control Reference.get
   388     default:
   389       return NULL;
   390     }
   391   }
   393   int predicates = 0;
   394   bool does_virtual_dispatch = false;
   396   switch (id) {
   397   case vmIntrinsics::_compareTo:
   398     if (!SpecialStringCompareTo)  return NULL;
   399     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   400     break;
   401   case vmIntrinsics::_indexOf:
   402     if (!SpecialStringIndexOf)  return NULL;
   403     break;
   404   case vmIntrinsics::_equals:
   405     if (!SpecialStringEquals)  return NULL;
   406     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   407     break;
   408   case vmIntrinsics::_equalsC:
   409     if (!SpecialArraysEquals)  return NULL;
   410     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   411     break;
   412   case vmIntrinsics::_arraycopy:
   413     if (!InlineArrayCopy)  return NULL;
   414     break;
   415   case vmIntrinsics::_copyMemory:
   416     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   417     if (!InlineArrayCopy)  return NULL;
   418     break;
   419   case vmIntrinsics::_hashCode:
   420     if (!InlineObjectHash)  return NULL;
   421     does_virtual_dispatch = true;
   422     break;
   423   case vmIntrinsics::_clone:
   424     does_virtual_dispatch = true;
   425   case vmIntrinsics::_copyOf:
   426   case vmIntrinsics::_copyOfRange:
   427     if (!InlineObjectCopy)  return NULL;
   428     // These also use the arraycopy intrinsic mechanism:
   429     if (!InlineArrayCopy)  return NULL;
   430     break;
   431   case vmIntrinsics::_encodeISOArray:
   432     if (!SpecialEncodeISOArray)  return NULL;
   433     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   434     break;
   435   case vmIntrinsics::_checkIndex:
   436     // We do not intrinsify this.  The optimizer does fine with it.
   437     return NULL;
   439   case vmIntrinsics::_getCallerClass:
   440     if (!UseNewReflection)  return NULL;
   441     if (!InlineReflectionGetCallerClass)  return NULL;
   442     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   443     break;
   445   case vmIntrinsics::_bitCount_i:
   446     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   447     break;
   449   case vmIntrinsics::_bitCount_l:
   450     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   451     break;
   453   case vmIntrinsics::_numberOfLeadingZeros_i:
   454     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   455     break;
   457   case vmIntrinsics::_numberOfLeadingZeros_l:
   458     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   459     break;
   461   case vmIntrinsics::_numberOfTrailingZeros_i:
   462     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   463     break;
   465   case vmIntrinsics::_numberOfTrailingZeros_l:
   466     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   467     break;
   469   case vmIntrinsics::_reverseBytes_c:
   470     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   471     break;
   472   case vmIntrinsics::_reverseBytes_s:
   473     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   474     break;
   475   case vmIntrinsics::_reverseBytes_i:
   476     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   477     break;
   478   case vmIntrinsics::_reverseBytes_l:
   479     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   480     break;
   482   case vmIntrinsics::_Reference_get:
   483     // Use the intrinsic version of Reference.get() so that the value in
   484     // the referent field can be registered by the G1 pre-barrier code.
   485     // Also add memory barrier to prevent commoning reads from this field
   486     // across safepoint since GC can change it value.
   487     break;
   489   case vmIntrinsics::_compareAndSwapObject:
   490 #ifdef _LP64
   491     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   492 #endif
   493     break;
   495   case vmIntrinsics::_compareAndSwapLong:
   496     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   497     break;
   499   case vmIntrinsics::_getAndAddInt:
   500     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   501     break;
   503   case vmIntrinsics::_getAndAddLong:
   504     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   505     break;
   507   case vmIntrinsics::_getAndSetInt:
   508     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   509     break;
   511   case vmIntrinsics::_getAndSetLong:
   512     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   513     break;
   515   case vmIntrinsics::_getAndSetObject:
   516 #ifdef _LP64
   517     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   518     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   519     break;
   520 #else
   521     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   522     break;
   523 #endif
   525   case vmIntrinsics::_aescrypt_encryptBlock:
   526   case vmIntrinsics::_aescrypt_decryptBlock:
   527     if (!UseAESIntrinsics) return NULL;
   528     break;
   530   case vmIntrinsics::_multiplyToLen:
   531     if (!UseMultiplyToLenIntrinsic) return NULL;
   532     break;
   534   case vmIntrinsics::_squareToLen:
   535     if (!UseSquareToLenIntrinsic) return NULL;
   536     break;
   538   case vmIntrinsics::_mulAdd:
   539     if (!UseMulAddIntrinsic) return NULL;
   540     break;
   542   case vmIntrinsics::_montgomeryMultiply:
   543      if (!UseMontgomeryMultiplyIntrinsic) return NULL;
   544     break;
   545   case vmIntrinsics::_montgomerySquare:
   546      if (!UseMontgomerySquareIntrinsic) return NULL;
   547     break;
   549   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   550   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   551     if (!UseAESIntrinsics) return NULL;
   552     // these two require the predicated logic
   553     predicates = 1;
   554     break;
   556   case vmIntrinsics::_sha_implCompress:
   557     if (!UseSHA1Intrinsics) return NULL;
   558     break;
   560   case vmIntrinsics::_sha2_implCompress:
   561     if (!UseSHA256Intrinsics) return NULL;
   562     break;
   564   case vmIntrinsics::_sha5_implCompress:
   565     if (!UseSHA512Intrinsics) return NULL;
   566     break;
   568   case vmIntrinsics::_digestBase_implCompressMB:
   569     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
   570     predicates = 3;
   571     break;
   573   case vmIntrinsics::_updateCRC32:
   574   case vmIntrinsics::_updateBytesCRC32:
   575   case vmIntrinsics::_updateByteBufferCRC32:
   576     if (!UseCRC32Intrinsics) return NULL;
   577     break;
   579   case vmIntrinsics::_incrementExactI:
   580   case vmIntrinsics::_addExactI:
   581     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
   582     break;
   583   case vmIntrinsics::_incrementExactL:
   584   case vmIntrinsics::_addExactL:
   585     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
   586     break;
   587   case vmIntrinsics::_decrementExactI:
   588   case vmIntrinsics::_subtractExactI:
   589     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   590     break;
   591   case vmIntrinsics::_decrementExactL:
   592   case vmIntrinsics::_subtractExactL:
   593     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   594     break;
   595   case vmIntrinsics::_negateExactI:
   596     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   597     break;
   598   case vmIntrinsics::_negateExactL:
   599     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   600     break;
   601   case vmIntrinsics::_multiplyExactI:
   602     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
   603     break;
   604   case vmIntrinsics::_multiplyExactL:
   605     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
   606     break;
   608  default:
   609     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   610     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   611     break;
   612   }
   614   // -XX:-InlineClassNatives disables natives from the Class class.
   615   // The flag applies to all reflective calls, notably Array.newArray
   616   // (visible to Java programmers as Array.newInstance).
   617   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   618       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   619     if (!InlineClassNatives)  return NULL;
   620   }
   622   // -XX:-InlineThreadNatives disables natives from the Thread class.
   623   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   624     if (!InlineThreadNatives)  return NULL;
   625   }
   627   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   628   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   629       m->holder()->name() == ciSymbol::java_lang_Float() ||
   630       m->holder()->name() == ciSymbol::java_lang_Double()) {
   631     if (!InlineMathNatives)  return NULL;
   632   }
   634   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   635   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   636     if (!InlineUnsafeOps)  return NULL;
   637   }
   639   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
   640 }
   642 //----------------------register_library_intrinsics-----------------------
   643 // Initialize this file's data structures, for each Compile instance.
   644 void Compile::register_library_intrinsics() {
   645   // Nothing to do here.
   646 }
   648 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   649   LibraryCallKit kit(jvms, this);
   650   Compile* C = kit.C;
   651   int nodes = C->unique();
   652 #ifndef PRODUCT
   653   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   654     char buf[1000];
   655     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   656     tty->print_cr("Intrinsic %s", str);
   657   }
   658 #endif
   659   ciMethod* callee = kit.callee();
   660   const int bci    = kit.bci();
   662   // Try to inline the intrinsic.
   663   if (kit.try_to_inline(_last_predicate)) {
   664     if (C->print_intrinsics() || C->print_inlining()) {
   665       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   666     }
   667     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   668     if (C->log()) {
   669       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   670                      vmIntrinsics::name_at(intrinsic_id()),
   671                      (is_virtual() ? " virtual='1'" : ""),
   672                      C->unique() - nodes);
   673     }
   674     // Push the result from the inlined method onto the stack.
   675     kit.push_result();
   676     return kit.transfer_exceptions_into_jvms();
   677   }
   679   // The intrinsic bailed out
   680   if (C->print_intrinsics() || C->print_inlining()) {
   681     if (jvms->has_method()) {
   682       // Not a root compile.
   683       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   684       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   685     } else {
   686       // Root compile
   687       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   688                vmIntrinsics::name_at(intrinsic_id()),
   689                (is_virtual() ? " (virtual)" : ""), bci);
   690     }
   691   }
   692   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   693   return NULL;
   694 }
   696 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
   697   LibraryCallKit kit(jvms, this);
   698   Compile* C = kit.C;
   699   int nodes = C->unique();
   700   _last_predicate = predicate;
   701 #ifndef PRODUCT
   702   assert(is_predicated() && predicate < predicates_count(), "sanity");
   703   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   704     char buf[1000];
   705     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   706     tty->print_cr("Predicate for intrinsic %s", str);
   707   }
   708 #endif
   709   ciMethod* callee = kit.callee();
   710   const int bci    = kit.bci();
   712   Node* slow_ctl = kit.try_to_predicate(predicate);
   713   if (!kit.failing()) {
   714     if (C->print_intrinsics() || C->print_inlining()) {
   715       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
   716     }
   717     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   718     if (C->log()) {
   719       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   720                      vmIntrinsics::name_at(intrinsic_id()),
   721                      (is_virtual() ? " virtual='1'" : ""),
   722                      C->unique() - nodes);
   723     }
   724     return slow_ctl; // Could be NULL if the check folds.
   725   }
   727   // The intrinsic bailed out
   728   if (C->print_intrinsics() || C->print_inlining()) {
   729     if (jvms->has_method()) {
   730       // Not a root compile.
   731       const char* msg = "failed to generate predicate for intrinsic";
   732       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   733     } else {
   734       // Root compile
   735       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   736                                         vmIntrinsics::name_at(intrinsic_id()),
   737                                         (is_virtual() ? " (virtual)" : ""), bci);
   738     }
   739   }
   740   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   741   return NULL;
   742 }
   744 bool LibraryCallKit::try_to_inline(int predicate) {
   745   // Handle symbolic names for otherwise undistinguished boolean switches:
   746   const bool is_store       = true;
   747   const bool is_native_ptr  = true;
   748   const bool is_static      = true;
   749   const bool is_volatile    = true;
   751   if (!jvms()->has_method()) {
   752     // Root JVMState has a null method.
   753     assert(map()->memory()->Opcode() == Op_Parm, "");
   754     // Insert the memory aliasing node
   755     set_all_memory(reset_memory());
   756   }
   757   assert(merged_memory(), "");
   760   switch (intrinsic_id()) {
   761   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   762   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   763   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   765   case vmIntrinsics::_dsin:
   766   case vmIntrinsics::_dcos:
   767   case vmIntrinsics::_dtan:
   768   case vmIntrinsics::_dabs:
   769   case vmIntrinsics::_datan2:
   770   case vmIntrinsics::_dsqrt:
   771   case vmIntrinsics::_dexp:
   772   case vmIntrinsics::_dlog:
   773   case vmIntrinsics::_dlog10:
   774   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   776   case vmIntrinsics::_min:
   777   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   779   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   780   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   781   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   782   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   783   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   784   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   785   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   786   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   787   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   788   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   789   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   790   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   792   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   794   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   795   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   796   case vmIntrinsics::_equals:                   return inline_string_equals();
   798   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   799   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   800   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   801   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   802   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   803   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   804   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   805   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   806   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   808   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   809   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   810   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   811   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   812   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   813   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   814   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   815   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   816   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   818   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   819   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   820   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   821   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   822   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   823   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   824   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   825   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   827   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   828   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   829   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   830   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   831   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   832   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   833   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   834   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   836   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   837   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   838   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   839   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   840   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   841   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   842   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   843   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   844   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   846   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   847   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   848   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   849   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   850   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   851   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   852   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   853   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   854   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   856   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   857   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   858   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   859   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   861   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   862   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   863   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   865   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   866   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   867   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   869   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   870   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   871   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   872   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   873   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   875   case vmIntrinsics::_loadFence:
   876   case vmIntrinsics::_storeFence:
   877   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   879   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   880   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   882 #ifdef TRACE_HAVE_INTRINSICS
   883   case vmIntrinsics::_classID:                  return inline_native_classID();
   884   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   885   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   886 #endif
   887   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   888   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   889   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   890   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   891   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   892   case vmIntrinsics::_getLength:                return inline_native_getLength();
   893   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   894   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   895   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   896   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   898   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   900   case vmIntrinsics::_isInstance:
   901   case vmIntrinsics::_getModifiers:
   902   case vmIntrinsics::_isInterface:
   903   case vmIntrinsics::_isArray:
   904   case vmIntrinsics::_isPrimitive:
   905   case vmIntrinsics::_getSuperclass:
   906   case vmIntrinsics::_getComponentType:
   907   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   909   case vmIntrinsics::_floatToRawIntBits:
   910   case vmIntrinsics::_floatToIntBits:
   911   case vmIntrinsics::_intBitsToFloat:
   912   case vmIntrinsics::_doubleToRawLongBits:
   913   case vmIntrinsics::_doubleToLongBits:
   914   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   916   case vmIntrinsics::_numberOfLeadingZeros_i:
   917   case vmIntrinsics::_numberOfLeadingZeros_l:
   918   case vmIntrinsics::_numberOfTrailingZeros_i:
   919   case vmIntrinsics::_numberOfTrailingZeros_l:
   920   case vmIntrinsics::_bitCount_i:
   921   case vmIntrinsics::_bitCount_l:
   922   case vmIntrinsics::_reverseBytes_i:
   923   case vmIntrinsics::_reverseBytes_l:
   924   case vmIntrinsics::_reverseBytes_s:
   925   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   927   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   929   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   931   case vmIntrinsics::_aescrypt_encryptBlock:
   932   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   934   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   935   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   936     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   938   case vmIntrinsics::_sha_implCompress:
   939   case vmIntrinsics::_sha2_implCompress:
   940   case vmIntrinsics::_sha5_implCompress:
   941     return inline_sha_implCompress(intrinsic_id());
   943   case vmIntrinsics::_digestBase_implCompressMB:
   944     return inline_digestBase_implCompressMB(predicate);
   946   case vmIntrinsics::_multiplyToLen:
   947     return inline_multiplyToLen();
   949   case vmIntrinsics::_squareToLen:
   950     return inline_squareToLen();
   952   case vmIntrinsics::_mulAdd:
   953     return inline_mulAdd();
   955   case vmIntrinsics::_montgomeryMultiply:
   956     return inline_montgomeryMultiply();
   957   case vmIntrinsics::_montgomerySquare:
   958     return inline_montgomerySquare();
   960   case vmIntrinsics::_encodeISOArray:
   961     return inline_encodeISOArray();
   963   case vmIntrinsics::_updateCRC32:
   964     return inline_updateCRC32();
   965   case vmIntrinsics::_updateBytesCRC32:
   966     return inline_updateBytesCRC32();
   967   case vmIntrinsics::_updateByteBufferCRC32:
   968     return inline_updateByteBufferCRC32();
   970   case vmIntrinsics::_profileBoolean:
   971     return inline_profileBoolean();
   973   default:
   974     // If you get here, it may be that someone has added a new intrinsic
   975     // to the list in vmSymbols.hpp without implementing it here.
   976 #ifndef PRODUCT
   977     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   978       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   979                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   980     }
   981 #endif
   982     return false;
   983   }
   984 }
   986 Node* LibraryCallKit::try_to_predicate(int predicate) {
   987   if (!jvms()->has_method()) {
   988     // Root JVMState has a null method.
   989     assert(map()->memory()->Opcode() == Op_Parm, "");
   990     // Insert the memory aliasing node
   991     set_all_memory(reset_memory());
   992   }
   993   assert(merged_memory(), "");
   995   switch (intrinsic_id()) {
   996   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   997     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   998   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   999     return inline_cipherBlockChaining_AESCrypt_predicate(true);
  1000   case vmIntrinsics::_digestBase_implCompressMB:
  1001     return inline_digestBase_implCompressMB_predicate(predicate);
  1003   default:
  1004     // If you get here, it may be that someone has added a new intrinsic
  1005     // to the list in vmSymbols.hpp without implementing it here.
  1006 #ifndef PRODUCT
  1007     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
  1008       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
  1009                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
  1011 #endif
  1012     Node* slow_ctl = control();
  1013     set_control(top()); // No fast path instrinsic
  1014     return slow_ctl;
  1018 //------------------------------set_result-------------------------------
  1019 // Helper function for finishing intrinsics.
  1020 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
  1021   record_for_igvn(region);
  1022   set_control(_gvn.transform(region));
  1023   set_result( _gvn.transform(value));
  1024   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
  1027 //------------------------------generate_guard---------------------------
  1028 // Helper function for generating guarded fast-slow graph structures.
  1029 // The given 'test', if true, guards a slow path.  If the test fails
  1030 // then a fast path can be taken.  (We generally hope it fails.)
  1031 // In all cases, GraphKit::control() is updated to the fast path.
  1032 // The returned value represents the control for the slow path.
  1033 // The return value is never 'top'; it is either a valid control
  1034 // or NULL if it is obvious that the slow path can never be taken.
  1035 // Also, if region and the slow control are not NULL, the slow edge
  1036 // is appended to the region.
  1037 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
  1038   if (stopped()) {
  1039     // Already short circuited.
  1040     return NULL;
  1043   // Build an if node and its projections.
  1044   // If test is true we take the slow path, which we assume is uncommon.
  1045   if (_gvn.type(test) == TypeInt::ZERO) {
  1046     // The slow branch is never taken.  No need to build this guard.
  1047     return NULL;
  1050   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
  1052   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
  1053   if (if_slow == top()) {
  1054     // The slow branch is never taken.  No need to build this guard.
  1055     return NULL;
  1058   if (region != NULL)
  1059     region->add_req(if_slow);
  1061   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
  1062   set_control(if_fast);
  1064   return if_slow;
  1067 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
  1068   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
  1070 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
  1071   return generate_guard(test, region, PROB_FAIR);
  1074 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
  1075                                                      Node* *pos_index) {
  1076   if (stopped())
  1077     return NULL;                // already stopped
  1078   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
  1079     return NULL;                // index is already adequately typed
  1080   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1081   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1082   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
  1083   if (is_neg != NULL && pos_index != NULL) {
  1084     // Emulate effect of Parse::adjust_map_after_if.
  1085     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
  1086     ccast->set_req(0, control());
  1087     (*pos_index) = _gvn.transform(ccast);
  1089   return is_neg;
  1092 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1093                                                         Node* *pos_index) {
  1094   if (stopped())
  1095     return NULL;                // already stopped
  1096   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1097     return NULL;                // index is already adequately typed
  1098   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1099   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1100   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1101   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1102   if (is_notp != NULL && pos_index != NULL) {
  1103     // Emulate effect of Parse::adjust_map_after_if.
  1104     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1105     ccast->set_req(0, control());
  1106     (*pos_index) = _gvn.transform(ccast);
  1108   return is_notp;
  1111 // Make sure that 'position' is a valid limit index, in [0..length].
  1112 // There are two equivalent plans for checking this:
  1113 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1114 //   B. offset  <=  (arrayLength - copyLength)
  1115 // We require that all of the values above, except for the sum and
  1116 // difference, are already known to be non-negative.
  1117 // Plan A is robust in the face of overflow, if offset and copyLength
  1118 // are both hugely positive.
  1119 //
  1120 // Plan B is less direct and intuitive, but it does not overflow at
  1121 // all, since the difference of two non-negatives is always
  1122 // representable.  Whenever Java methods must perform the equivalent
  1123 // check they generally use Plan B instead of Plan A.
  1124 // For the moment we use Plan A.
  1125 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1126                                                   Node* subseq_length,
  1127                                                   Node* array_length,
  1128                                                   RegionNode* region) {
  1129   if (stopped())
  1130     return NULL;                // already stopped
  1131   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1132   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1133     return NULL;                // common case of whole-array copy
  1134   Node* last = subseq_length;
  1135   if (!zero_offset)             // last += offset
  1136     last = _gvn.transform(new (C) AddINode(last, offset));
  1137   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1138   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1139   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1140   return is_over;
  1144 //--------------------------generate_current_thread--------------------
  1145 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1146   ciKlass*    thread_klass = env()->Thread_klass();
  1147   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1148   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1149   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1150   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1151   tls_output = thread;
  1152   return threadObj;
  1156 //------------------------------make_string_method_node------------------------
  1157 // Helper method for String intrinsic functions. This version is called
  1158 // with str1 and str2 pointing to String object nodes.
  1159 //
  1160 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1161   Node* no_ctrl = NULL;
  1163   // Get start addr of string
  1164   Node* str1_value   = load_String_value(no_ctrl, str1);
  1165   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1166   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1168   // Get length of string 1
  1169   Node* str1_len  = load_String_length(no_ctrl, str1);
  1171   Node* str2_value   = load_String_value(no_ctrl, str2);
  1172   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1173   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1175   Node* str2_len = NULL;
  1176   Node* result = NULL;
  1178   switch (opcode) {
  1179   case Op_StrIndexOf:
  1180     // Get length of string 2
  1181     str2_len = load_String_length(no_ctrl, str2);
  1183     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1184                                  str1_start, str1_len, str2_start, str2_len);
  1185     break;
  1186   case Op_StrComp:
  1187     // Get length of string 2
  1188     str2_len = load_String_length(no_ctrl, str2);
  1190     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1191                                  str1_start, str1_len, str2_start, str2_len);
  1192     break;
  1193   case Op_StrEquals:
  1194     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1195                                str1_start, str2_start, str1_len);
  1196     break;
  1197   default:
  1198     ShouldNotReachHere();
  1199     return NULL;
  1202   // All these intrinsics have checks.
  1203   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1205   return _gvn.transform(result);
  1208 // Helper method for String intrinsic functions. This version is called
  1209 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1210 // to Int nodes containing the lenghts of str1 and str2.
  1211 //
  1212 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1213   Node* result = NULL;
  1214   switch (opcode) {
  1215   case Op_StrIndexOf:
  1216     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1217                                  str1_start, cnt1, str2_start, cnt2);
  1218     break;
  1219   case Op_StrComp:
  1220     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1221                                  str1_start, cnt1, str2_start, cnt2);
  1222     break;
  1223   case Op_StrEquals:
  1224     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1225                                  str1_start, str2_start, cnt1);
  1226     break;
  1227   default:
  1228     ShouldNotReachHere();
  1229     return NULL;
  1232   // All these intrinsics have checks.
  1233   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1235   return _gvn.transform(result);
  1238 //------------------------------inline_string_compareTo------------------------
  1239 // public int java.lang.String.compareTo(String anotherString);
  1240 bool LibraryCallKit::inline_string_compareTo() {
  1241   Node* receiver = null_check(argument(0));
  1242   Node* arg      = null_check(argument(1));
  1243   if (stopped()) {
  1244     return true;
  1246   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1247   return true;
  1250 //------------------------------inline_string_equals------------------------
  1251 bool LibraryCallKit::inline_string_equals() {
  1252   Node* receiver = null_check_receiver();
  1253   // NOTE: Do not null check argument for String.equals() because spec
  1254   // allows to specify NULL as argument.
  1255   Node* argument = this->argument(1);
  1256   if (stopped()) {
  1257     return true;
  1260   // paths (plus control) merge
  1261   RegionNode* region = new (C) RegionNode(5);
  1262   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1264   // does source == target string?
  1265   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1266   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1268   Node* if_eq = generate_slow_guard(bol, NULL);
  1269   if (if_eq != NULL) {
  1270     // receiver == argument
  1271     phi->init_req(2, intcon(1));
  1272     region->init_req(2, if_eq);
  1275   // get String klass for instanceOf
  1276   ciInstanceKlass* klass = env()->String_klass();
  1278   if (!stopped()) {
  1279     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1280     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1281     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1283     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1284     //instanceOf == true, fallthrough
  1286     if (inst_false != NULL) {
  1287       phi->init_req(3, intcon(0));
  1288       region->init_req(3, inst_false);
  1292   if (!stopped()) {
  1293     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1295     // Properly cast the argument to String
  1296     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1297     // This path is taken only when argument's type is String:NotNull.
  1298     argument = cast_not_null(argument, false);
  1300     Node* no_ctrl = NULL;
  1302     // Get start addr of receiver
  1303     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1304     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1305     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1307     // Get length of receiver
  1308     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1310     // Get start addr of argument
  1311     Node* argument_val    = load_String_value(no_ctrl, argument);
  1312     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1313     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1315     // Get length of argument
  1316     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1318     // Check for receiver count != argument count
  1319     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1320     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1321     Node* if_ne = generate_slow_guard(bol, NULL);
  1322     if (if_ne != NULL) {
  1323       phi->init_req(4, intcon(0));
  1324       region->init_req(4, if_ne);
  1327     // Check for count == 0 is done by assembler code for StrEquals.
  1329     if (!stopped()) {
  1330       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1331       phi->init_req(1, equals);
  1332       region->init_req(1, control());
  1336   // post merge
  1337   set_control(_gvn.transform(region));
  1338   record_for_igvn(region);
  1340   set_result(_gvn.transform(phi));
  1341   return true;
  1344 //------------------------------inline_array_equals----------------------------
  1345 bool LibraryCallKit::inline_array_equals() {
  1346   Node* arg1 = argument(0);
  1347   Node* arg2 = argument(1);
  1348   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1349   return true;
  1352 // Java version of String.indexOf(constant string)
  1353 // class StringDecl {
  1354 //   StringDecl(char[] ca) {
  1355 //     offset = 0;
  1356 //     count = ca.length;
  1357 //     value = ca;
  1358 //   }
  1359 //   int offset;
  1360 //   int count;
  1361 //   char[] value;
  1362 // }
  1363 //
  1364 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1365 //                             int targetOffset, int cache_i, int md2) {
  1366 //   int cache = cache_i;
  1367 //   int sourceOffset = string_object.offset;
  1368 //   int sourceCount = string_object.count;
  1369 //   int targetCount = target_object.length;
  1370 //
  1371 //   int targetCountLess1 = targetCount - 1;
  1372 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1373 //
  1374 //   char[] source = string_object.value;
  1375 //   char[] target = target_object;
  1376 //   int lastChar = target[targetCountLess1];
  1377 //
  1378 //  outer_loop:
  1379 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1380 //     int src = source[i + targetCountLess1];
  1381 //     if (src == lastChar) {
  1382 //       // With random strings and a 4-character alphabet,
  1383 //       // reverse matching at this point sets up 0.8% fewer
  1384 //       // frames, but (paradoxically) makes 0.3% more probes.
  1385 //       // Since those probes are nearer the lastChar probe,
  1386 //       // there is may be a net D$ win with reverse matching.
  1387 //       // But, reversing loop inhibits unroll of inner loop
  1388 //       // for unknown reason.  So, does running outer loop from
  1389 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1390 //       for (int j = 0; j < targetCountLess1; j++) {
  1391 //         if (target[targetOffset + j] != source[i+j]) {
  1392 //           if ((cache & (1 << source[i+j])) == 0) {
  1393 //             if (md2 < j+1) {
  1394 //               i += j+1;
  1395 //               continue outer_loop;
  1396 //             }
  1397 //           }
  1398 //           i += md2;
  1399 //           continue outer_loop;
  1400 //         }
  1401 //       }
  1402 //       return i - sourceOffset;
  1403 //     }
  1404 //     if ((cache & (1 << src)) == 0) {
  1405 //       i += targetCountLess1;
  1406 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1407 //     i++;
  1408 //   }
  1409 //   return -1;
  1410 // }
  1412 //------------------------------string_indexOf------------------------
  1413 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1414                                      jint cache_i, jint md2_i) {
  1416   Node* no_ctrl  = NULL;
  1417   float likely   = PROB_LIKELY(0.9);
  1418   float unlikely = PROB_UNLIKELY(0.9);
  1420   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1422   Node* source        = load_String_value(no_ctrl, string_object);
  1423   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1424   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1426   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1427   jint target_length = target_array->length();
  1428   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1429   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1431   // String.value field is known to be @Stable.
  1432   if (UseImplicitStableValues) {
  1433     target = cast_array_to_stable(target, target_type);
  1436   IdealKit kit(this, false, true);
  1437 #define __ kit.
  1438   Node* zero             = __ ConI(0);
  1439   Node* one              = __ ConI(1);
  1440   Node* cache            = __ ConI(cache_i);
  1441   Node* md2              = __ ConI(md2_i);
  1442   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1443   Node* targetCount      = __ ConI(target_length);
  1444   Node* targetCountLess1 = __ ConI(target_length - 1);
  1445   Node* targetOffset     = __ ConI(targetOffset_i);
  1446   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1448   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1449   Node* outer_loop = __ make_label(2 /* goto */);
  1450   Node* return_    = __ make_label(1);
  1452   __ set(rtn,__ ConI(-1));
  1453   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1454        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1455        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1456        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1457        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1458          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1459               Node* tpj = __ AddI(targetOffset, __ value(j));
  1460               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1461               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1462               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1463               __ if_then(targ, BoolTest::ne, src2); {
  1464                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1465                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1466                     __ increment(i, __ AddI(__ value(j), one));
  1467                     __ goto_(outer_loop);
  1468                   } __ end_if(); __ dead(j);
  1469                 }__ end_if(); __ dead(j);
  1470                 __ increment(i, md2);
  1471                 __ goto_(outer_loop);
  1472               }__ end_if();
  1473               __ increment(j, one);
  1474          }__ end_loop(); __ dead(j);
  1475          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1476          __ goto_(return_);
  1477        }__ end_if();
  1478        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1479          __ increment(i, targetCountLess1);
  1480        }__ end_if();
  1481        __ increment(i, one);
  1482        __ bind(outer_loop);
  1483   }__ end_loop(); __ dead(i);
  1484   __ bind(return_);
  1486   // Final sync IdealKit and GraphKit.
  1487   final_sync(kit);
  1488   Node* result = __ value(rtn);
  1489 #undef __
  1490   C->set_has_loops(true);
  1491   return result;
  1494 //------------------------------inline_string_indexOf------------------------
  1495 bool LibraryCallKit::inline_string_indexOf() {
  1496   Node* receiver = argument(0);
  1497   Node* arg      = argument(1);
  1499   Node* result;
  1500   // Disable the use of pcmpestri until it can be guaranteed that
  1501   // the load doesn't cross into the uncommited space.
  1502   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1503       UseSSE42Intrinsics) {
  1504     // Generate SSE4.2 version of indexOf
  1505     // We currently only have match rules that use SSE4.2
  1507     receiver = null_check(receiver);
  1508     arg      = null_check(arg);
  1509     if (stopped()) {
  1510       return true;
  1513     ciInstanceKlass* str_klass = env()->String_klass();
  1514     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1516     // Make the merge point
  1517     RegionNode* result_rgn = new (C) RegionNode(4);
  1518     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1519     Node* no_ctrl  = NULL;
  1521     // Get start addr of source string
  1522     Node* source = load_String_value(no_ctrl, receiver);
  1523     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1524     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1526     // Get length of source string
  1527     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1529     // Get start addr of substring
  1530     Node* substr = load_String_value(no_ctrl, arg);
  1531     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1532     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1534     // Get length of source string
  1535     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1537     // Check for substr count > string count
  1538     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1539     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1540     Node* if_gt = generate_slow_guard(bol, NULL);
  1541     if (if_gt != NULL) {
  1542       result_phi->init_req(2, intcon(-1));
  1543       result_rgn->init_req(2, if_gt);
  1546     if (!stopped()) {
  1547       // Check for substr count == 0
  1548       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1549       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1550       Node* if_zero = generate_slow_guard(bol, NULL);
  1551       if (if_zero != NULL) {
  1552         result_phi->init_req(3, intcon(0));
  1553         result_rgn->init_req(3, if_zero);
  1557     if (!stopped()) {
  1558       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1559       result_phi->init_req(1, result);
  1560       result_rgn->init_req(1, control());
  1562     set_control(_gvn.transform(result_rgn));
  1563     record_for_igvn(result_rgn);
  1564     result = _gvn.transform(result_phi);
  1566   } else { // Use LibraryCallKit::string_indexOf
  1567     // don't intrinsify if argument isn't a constant string.
  1568     if (!arg->is_Con()) {
  1569      return false;
  1571     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1572     if (str_type == NULL) {
  1573       return false;
  1575     ciInstanceKlass* klass = env()->String_klass();
  1576     ciObject* str_const = str_type->const_oop();
  1577     if (str_const == NULL || str_const->klass() != klass) {
  1578       return false;
  1580     ciInstance* str = str_const->as_instance();
  1581     assert(str != NULL, "must be instance");
  1583     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1584     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1586     int o;
  1587     int c;
  1588     if (java_lang_String::has_offset_field()) {
  1589       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1590       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1591     } else {
  1592       o = 0;
  1593       c = pat->length();
  1596     // constant strings have no offset and count == length which
  1597     // simplifies the resulting code somewhat so lets optimize for that.
  1598     if (o != 0 || c != pat->length()) {
  1599      return false;
  1602     receiver = null_check(receiver, T_OBJECT);
  1603     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1604     if (stopped()) {
  1605       return true;
  1608     // The null string as a pattern always returns 0 (match at beginning of string)
  1609     if (c == 0) {
  1610       set_result(intcon(0));
  1611       return true;
  1614     // Generate default indexOf
  1615     jchar lastChar = pat->char_at(o + (c - 1));
  1616     int cache = 0;
  1617     int i;
  1618     for (i = 0; i < c - 1; i++) {
  1619       assert(i < pat->length(), "out of range");
  1620       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1623     int md2 = c;
  1624     for (i = 0; i < c - 1; i++) {
  1625       assert(i < pat->length(), "out of range");
  1626       if (pat->char_at(o + i) == lastChar) {
  1627         md2 = (c - 1) - i;
  1631     result = string_indexOf(receiver, pat, o, cache, md2);
  1633   set_result(result);
  1634   return true;
  1637 //--------------------------round_double_node--------------------------------
  1638 // Round a double node if necessary.
  1639 Node* LibraryCallKit::round_double_node(Node* n) {
  1640   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1641     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1642   return n;
  1645 //------------------------------inline_math-----------------------------------
  1646 // public static double Math.abs(double)
  1647 // public static double Math.sqrt(double)
  1648 // public static double Math.log(double)
  1649 // public static double Math.log10(double)
  1650 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1651   Node* arg = round_double_node(argument(0));
  1652   Node* n;
  1653   switch (id) {
  1654   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1655   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1656   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1657   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1658   default:  fatal_unexpected_iid(id);  break;
  1660   set_result(_gvn.transform(n));
  1661   return true;
  1664 //------------------------------inline_trig----------------------------------
  1665 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1666 // argument reduction which will turn into a fast/slow diamond.
  1667 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1668   Node* arg = round_double_node(argument(0));
  1669   Node* n = NULL;
  1671   switch (id) {
  1672   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1673   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1674   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1675   default:  fatal_unexpected_iid(id);  break;
  1677   n = _gvn.transform(n);
  1679   // Rounding required?  Check for argument reduction!
  1680   if (Matcher::strict_fp_requires_explicit_rounding) {
  1681     static const double     pi_4 =  0.7853981633974483;
  1682     static const double neg_pi_4 = -0.7853981633974483;
  1683     // pi/2 in 80-bit extended precision
  1684     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1685     // -pi/2 in 80-bit extended precision
  1686     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1687     // Cutoff value for using this argument reduction technique
  1688     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1689     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1691     // Pseudocode for sin:
  1692     // if (x <= Math.PI / 4.0) {
  1693     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1694     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1695     // } else {
  1696     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1697     // }
  1698     // return StrictMath.sin(x);
  1700     // Pseudocode for cos:
  1701     // if (x <= Math.PI / 4.0) {
  1702     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1703     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1704     // } else {
  1705     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1706     // }
  1707     // return StrictMath.cos(x);
  1709     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1710     // requires a special machine instruction to load it.  Instead we'll try
  1711     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1712     // probably do the math inside the SIN encoding.
  1714     // Make the merge point
  1715     RegionNode* r = new (C) RegionNode(3);
  1716     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1718     // Flatten arg so we need only 1 test
  1719     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1720     // Node for PI/4 constant
  1721     Node *pi4 = makecon(TypeD::make(pi_4));
  1722     // Check PI/4 : abs(arg)
  1723     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1724     // Check: If PI/4 < abs(arg) then go slow
  1725     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1726     // Branch either way
  1727     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1728     set_control(opt_iff(r,iff));
  1730     // Set fast path result
  1731     phi->init_req(2, n);
  1733     // Slow path - non-blocking leaf call
  1734     Node* call = NULL;
  1735     switch (id) {
  1736     case vmIntrinsics::_dsin:
  1737       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1738                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1739                                "Sin", NULL, arg, top());
  1740       break;
  1741     case vmIntrinsics::_dcos:
  1742       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1743                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1744                                "Cos", NULL, arg, top());
  1745       break;
  1746     case vmIntrinsics::_dtan:
  1747       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1748                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1749                                "Tan", NULL, arg, top());
  1750       break;
  1752     assert(control()->in(0) == call, "");
  1753     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1754     r->init_req(1, control());
  1755     phi->init_req(1, slow_result);
  1757     // Post-merge
  1758     set_control(_gvn.transform(r));
  1759     record_for_igvn(r);
  1760     n = _gvn.transform(phi);
  1762     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1764   set_result(n);
  1765   return true;
  1768 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1769   //-------------------
  1770   //result=(result.isNaN())? funcAddr():result;
  1771   // Check: If isNaN() by checking result!=result? then either trap
  1772   // or go to runtime
  1773   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1774   // Build the boolean node
  1775   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1777   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1778     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1779       // The pow or exp intrinsic returned a NaN, which requires a call
  1780       // to the runtime.  Recompile with the runtime call.
  1781       uncommon_trap(Deoptimization::Reason_intrinsic,
  1782                     Deoptimization::Action_make_not_entrant);
  1784     return result;
  1785   } else {
  1786     // If this inlining ever returned NaN in the past, we compile a call
  1787     // to the runtime to properly handle corner cases
  1789     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1790     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1791     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1793     if (!if_slow->is_top()) {
  1794       RegionNode* result_region = new (C) RegionNode(3);
  1795       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1797       result_region->init_req(1, if_fast);
  1798       result_val->init_req(1, result);
  1800       set_control(if_slow);
  1802       const TypePtr* no_memory_effects = NULL;
  1803       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1804                                    no_memory_effects,
  1805                                    x, top(), y, y ? top() : NULL);
  1806       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1807 #ifdef ASSERT
  1808       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1809       assert(value_top == top(), "second value must be top");
  1810 #endif
  1812       result_region->init_req(2, control());
  1813       result_val->init_req(2, value);
  1814       set_control(_gvn.transform(result_region));
  1815       return _gvn.transform(result_val);
  1816     } else {
  1817       return result;
  1822 //------------------------------inline_exp-------------------------------------
  1823 // Inline exp instructions, if possible.  The Intel hardware only misses
  1824 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1825 bool LibraryCallKit::inline_exp() {
  1826   Node* arg = round_double_node(argument(0));
  1827   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1829   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1830   set_result(n);
  1832   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1833   return true;
  1836 //------------------------------inline_pow-------------------------------------
  1837 // Inline power instructions, if possible.
  1838 bool LibraryCallKit::inline_pow() {
  1839   // Pseudocode for pow
  1840   // if (y == 2) {
  1841   //   return x * x;
  1842   // } else {
  1843   //   if (x <= 0.0) {
  1844   //     long longy = (long)y;
  1845   //     if ((double)longy == y) { // if y is long
  1846   //       if (y + 1 == y) longy = 0; // huge number: even
  1847   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1848   //     } else {
  1849   //       result = NaN;
  1850   //     }
  1851   //   } else {
  1852   //     result = DPow(x,y);
  1853   //   }
  1854   //   if (result != result)?  {
  1855   //     result = uncommon_trap() or runtime_call();
  1856   //   }
  1857   //   return result;
  1858   // }
  1860   Node* x = round_double_node(argument(0));
  1861   Node* y = round_double_node(argument(2));
  1863   Node* result = NULL;
  1865   Node*   const_two_node = makecon(TypeD::make(2.0));
  1866   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
  1867   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
  1868   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1869   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
  1870   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
  1872   RegionNode* region_node = new (C) RegionNode(3);
  1873   region_node->init_req(1, if_true);
  1875   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
  1876   // special case for x^y where y == 2, we can convert it to x * x
  1877   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
  1879   // set control to if_false since we will now process the false branch
  1880   set_control(if_false);
  1882   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1883     // Short form: skip the fancy tests and just check for NaN result.
  1884     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1885   } else {
  1886     // If this inlining ever returned NaN in the past, include all
  1887     // checks + call to the runtime.
  1889     // Set the merge point for If node with condition of (x <= 0.0)
  1890     // There are four possible paths to region node and phi node
  1891     RegionNode *r = new (C) RegionNode(4);
  1892     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1894     // Build the first if node: if (x <= 0.0)
  1895     // Node for 0 constant
  1896     Node *zeronode = makecon(TypeD::ZERO);
  1897     // Check x:0
  1898     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1899     // Check: If (x<=0) then go complex path
  1900     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1901     // Branch either way
  1902     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1903     // Fast path taken; set region slot 3
  1904     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1905     r->init_req(3,fast_taken); // Capture fast-control
  1907     // Fast path not-taken, i.e. slow path
  1908     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1910     // Set fast path result
  1911     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1912     phi->init_req(3, fast_result);
  1914     // Complex path
  1915     // Build the second if node (if y is long)
  1916     // Node for (long)y
  1917     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1918     // Node for (double)((long) y)
  1919     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1920     // Check (double)((long) y) : y
  1921     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1922     // Check if (y isn't long) then go to slow path
  1924     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1925     // Branch either way
  1926     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1927     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1929     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1931     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1932     // Node for constant 1
  1933     Node *conone = longcon(1);
  1934     // 1& (long)y
  1935     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1937     // A huge number is always even. Detect a huge number by checking
  1938     // if y + 1 == y and set integer to be tested for parity to 0.
  1939     // Required for corner case:
  1940     // (long)9.223372036854776E18 = max_jlong
  1941     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1942     // max_jlong is odd but 9.223372036854776E18 is even
  1943     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1944     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1945     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1946     Node* correctedsign = NULL;
  1947     if (ConditionalMoveLimit != 0) {
  1948       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1949     } else {
  1950       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1951       RegionNode *r = new (C) RegionNode(3);
  1952       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1953       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1954       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1955       phi->init_req(1, signnode);
  1956       phi->init_req(2, longcon(0));
  1957       correctedsign = _gvn.transform(phi);
  1958       ylong_path = _gvn.transform(r);
  1959       record_for_igvn(r);
  1962     // zero node
  1963     Node *conzero = longcon(0);
  1964     // Check (1&(long)y)==0?
  1965     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1966     // Check if (1&(long)y)!=0?, if so the result is negative
  1967     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1968     // abs(x)
  1969     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1970     // abs(x)^y
  1971     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1972     // -abs(x)^y
  1973     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1974     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1975     Node *signresult = NULL;
  1976     if (ConditionalMoveLimit != 0) {
  1977       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1978     } else {
  1979       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1980       RegionNode *r = new (C) RegionNode(3);
  1981       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1982       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1983       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1984       phi->init_req(1, absxpowy);
  1985       phi->init_req(2, negabsxpowy);
  1986       signresult = _gvn.transform(phi);
  1987       ylong_path = _gvn.transform(r);
  1988       record_for_igvn(r);
  1990     // Set complex path fast result
  1991     r->init_req(2, ylong_path);
  1992     phi->init_req(2, signresult);
  1994     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1995     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1996     r->init_req(1,slow_path);
  1997     phi->init_req(1,slow_result);
  1999     // Post merge
  2000     set_control(_gvn.transform(r));
  2001     record_for_igvn(r);
  2002     result = _gvn.transform(phi);
  2005   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  2007   // control from finish_pow_exp is now input to the region node
  2008   region_node->set_req(2, control());
  2009   // the result from finish_pow_exp is now input to the phi node
  2010   phi_node->init_req(2, result);
  2011   set_control(_gvn.transform(region_node));
  2012   record_for_igvn(region_node);
  2013   set_result(_gvn.transform(phi_node));
  2015   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2016   return true;
  2019 //------------------------------runtime_math-----------------------------
  2020 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  2021   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  2022          "must be (DD)D or (D)D type");
  2024   // Inputs
  2025   Node* a = round_double_node(argument(0));
  2026   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  2028   const TypePtr* no_memory_effects = NULL;
  2029   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  2030                                  no_memory_effects,
  2031                                  a, top(), b, b ? top() : NULL);
  2032   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  2033 #ifdef ASSERT
  2034   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  2035   assert(value_top == top(), "second value must be top");
  2036 #endif
  2038   set_result(value);
  2039   return true;
  2042 //------------------------------inline_math_native-----------------------------
  2043 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  2044 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  2045   switch (id) {
  2046     // These intrinsics are not properly supported on all hardware
  2047   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  2048     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  2049   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  2050     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  2051   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  2052     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  2054   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  2055     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  2056   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  2057     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  2059     // These intrinsics are supported on all hardware
  2060   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
  2061   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  2063   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  2064     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  2065   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  2066     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  2067 #undef FN_PTR
  2069    // These intrinsics are not yet correctly implemented
  2070   case vmIntrinsics::_datan2:
  2071     return false;
  2073   default:
  2074     fatal_unexpected_iid(id);
  2075     return false;
  2079 static bool is_simple_name(Node* n) {
  2080   return (n->req() == 1         // constant
  2081           || (n->is_Type() && n->as_Type()->type()->singleton())
  2082           || n->is_Proj()       // parameter or return value
  2083           || n->is_Phi()        // local of some sort
  2084           );
  2087 //----------------------------inline_min_max-----------------------------------
  2088 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  2089   set_result(generate_min_max(id, argument(0), argument(1)));
  2090   return true;
  2093 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
  2094   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
  2095   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2096   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  2097   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  2100     PreserveJVMState pjvms(this);
  2101     PreserveReexecuteState preexecs(this);
  2102     jvms()->set_should_reexecute(true);
  2104     set_control(slow_path);
  2105     set_i_o(i_o());
  2107     uncommon_trap(Deoptimization::Reason_intrinsic,
  2108                   Deoptimization::Action_none);
  2111   set_control(fast_path);
  2112   set_result(math);
  2115 template <typename OverflowOp>
  2116 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
  2117   typedef typename OverflowOp::MathOp MathOp;
  2119   MathOp* mathOp = new(C) MathOp(arg1, arg2);
  2120   Node* operation = _gvn.transform( mathOp );
  2121   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
  2122   inline_math_mathExact(operation, ofcheck);
  2123   return true;
  2126 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2127   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
  2130 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2131   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
  2134 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2135   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
  2138 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2139   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
  2142 bool LibraryCallKit::inline_math_negateExactI() {
  2143   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
  2146 bool LibraryCallKit::inline_math_negateExactL() {
  2147   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
  2150 bool LibraryCallKit::inline_math_multiplyExactI() {
  2151   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
  2154 bool LibraryCallKit::inline_math_multiplyExactL() {
  2155   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
  2158 Node*
  2159 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2160   // These are the candidate return value:
  2161   Node* xvalue = x0;
  2162   Node* yvalue = y0;
  2164   if (xvalue == yvalue) {
  2165     return xvalue;
  2168   bool want_max = (id == vmIntrinsics::_max);
  2170   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2171   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2172   if (txvalue == NULL || tyvalue == NULL)  return top();
  2173   // This is not really necessary, but it is consistent with a
  2174   // hypothetical MaxINode::Value method:
  2175   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2177   // %%% This folding logic should (ideally) be in a different place.
  2178   // Some should be inside IfNode, and there to be a more reliable
  2179   // transformation of ?: style patterns into cmoves.  We also want
  2180   // more powerful optimizations around cmove and min/max.
  2182   // Try to find a dominating comparison of these guys.
  2183   // It can simplify the index computation for Arrays.copyOf
  2184   // and similar uses of System.arraycopy.
  2185   // First, compute the normalized version of CmpI(x, y).
  2186   int   cmp_op = Op_CmpI;
  2187   Node* xkey = xvalue;
  2188   Node* ykey = yvalue;
  2189   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2190   if (ideal_cmpxy->is_Cmp()) {
  2191     // E.g., if we have CmpI(length - offset, count),
  2192     // it might idealize to CmpI(length, count + offset)
  2193     cmp_op = ideal_cmpxy->Opcode();
  2194     xkey = ideal_cmpxy->in(1);
  2195     ykey = ideal_cmpxy->in(2);
  2198   // Start by locating any relevant comparisons.
  2199   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2200   Node* cmpxy = NULL;
  2201   Node* cmpyx = NULL;
  2202   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2203     Node* cmp = start_from->fast_out(k);
  2204     if (cmp->outcnt() > 0 &&            // must have prior uses
  2205         cmp->in(0) == NULL &&           // must be context-independent
  2206         cmp->Opcode() == cmp_op) {      // right kind of compare
  2207       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2208       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2212   const int NCMPS = 2;
  2213   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2214   int cmpn;
  2215   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2216     if (cmps[cmpn] != NULL)  break;     // find a result
  2218   if (cmpn < NCMPS) {
  2219     // Look for a dominating test that tells us the min and max.
  2220     int depth = 0;                // Limit search depth for speed
  2221     Node* dom = control();
  2222     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2223       if (++depth >= 100)  break;
  2224       Node* ifproj = dom;
  2225       if (!ifproj->is_Proj())  continue;
  2226       Node* iff = ifproj->in(0);
  2227       if (!iff->is_If())  continue;
  2228       Node* bol = iff->in(1);
  2229       if (!bol->is_Bool())  continue;
  2230       Node* cmp = bol->in(1);
  2231       if (cmp == NULL)  continue;
  2232       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2233         if (cmps[cmpn] == cmp)  break;
  2234       if (cmpn == NCMPS)  continue;
  2235       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2236       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2237       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2238       // At this point, we know that 'x btest y' is true.
  2239       switch (btest) {
  2240       case BoolTest::eq:
  2241         // They are proven equal, so we can collapse the min/max.
  2242         // Either value is the answer.  Choose the simpler.
  2243         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2244           return yvalue;
  2245         return xvalue;
  2246       case BoolTest::lt:          // x < y
  2247       case BoolTest::le:          // x <= y
  2248         return (want_max ? yvalue : xvalue);
  2249       case BoolTest::gt:          // x > y
  2250       case BoolTest::ge:          // x >= y
  2251         return (want_max ? xvalue : yvalue);
  2256   // We failed to find a dominating test.
  2257   // Let's pick a test that might GVN with prior tests.
  2258   Node*          best_bol   = NULL;
  2259   BoolTest::mask best_btest = BoolTest::illegal;
  2260   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2261     Node* cmp = cmps[cmpn];
  2262     if (cmp == NULL)  continue;
  2263     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2264       Node* bol = cmp->fast_out(j);
  2265       if (!bol->is_Bool())  continue;
  2266       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2267       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2268       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2269       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2270         best_bol   = bol->as_Bool();
  2271         best_btest = btest;
  2276   Node* answer_if_true  = NULL;
  2277   Node* answer_if_false = NULL;
  2278   switch (best_btest) {
  2279   default:
  2280     if (cmpxy == NULL)
  2281       cmpxy = ideal_cmpxy;
  2282     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2283     // and fall through:
  2284   case BoolTest::lt:          // x < y
  2285   case BoolTest::le:          // x <= y
  2286     answer_if_true  = (want_max ? yvalue : xvalue);
  2287     answer_if_false = (want_max ? xvalue : yvalue);
  2288     break;
  2289   case BoolTest::gt:          // x > y
  2290   case BoolTest::ge:          // x >= y
  2291     answer_if_true  = (want_max ? xvalue : yvalue);
  2292     answer_if_false = (want_max ? yvalue : xvalue);
  2293     break;
  2296   jint hi, lo;
  2297   if (want_max) {
  2298     // We can sharpen the minimum.
  2299     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2300     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2301   } else {
  2302     // We can sharpen the maximum.
  2303     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2304     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2307   // Use a flow-free graph structure, to avoid creating excess control edges
  2308   // which could hinder other optimizations.
  2309   // Since Math.min/max is often used with arraycopy, we want
  2310   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2311   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2312                                answer_if_false, answer_if_true,
  2313                                TypeInt::make(lo, hi, widen));
  2315   return _gvn.transform(cmov);
  2317   /*
  2318   // This is not as desirable as it may seem, since Min and Max
  2319   // nodes do not have a full set of optimizations.
  2320   // And they would interfere, anyway, with 'if' optimizations
  2321   // and with CMoveI canonical forms.
  2322   switch (id) {
  2323   case vmIntrinsics::_min:
  2324     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2325   case vmIntrinsics::_max:
  2326     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2327   default:
  2328     ShouldNotReachHere();
  2330   */
  2333 inline int
  2334 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2335   const TypePtr* base_type = TypePtr::NULL_PTR;
  2336   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2337   if (base_type == NULL) {
  2338     // Unknown type.
  2339     return Type::AnyPtr;
  2340   } else if (base_type == TypePtr::NULL_PTR) {
  2341     // Since this is a NULL+long form, we have to switch to a rawptr.
  2342     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2343     offset = MakeConX(0);
  2344     return Type::RawPtr;
  2345   } else if (base_type->base() == Type::RawPtr) {
  2346     return Type::RawPtr;
  2347   } else if (base_type->isa_oopptr()) {
  2348     // Base is never null => always a heap address.
  2349     if (base_type->ptr() == TypePtr::NotNull) {
  2350       return Type::OopPtr;
  2352     // Offset is small => always a heap address.
  2353     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2354     if (offset_type != NULL &&
  2355         base_type->offset() == 0 &&     // (should always be?)
  2356         offset_type->_lo >= 0 &&
  2357         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2358       return Type::OopPtr;
  2360     // Otherwise, it might either be oop+off or NULL+addr.
  2361     return Type::AnyPtr;
  2362   } else {
  2363     // No information:
  2364     return Type::AnyPtr;
  2368 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2369   int kind = classify_unsafe_addr(base, offset);
  2370   if (kind == Type::RawPtr) {
  2371     return basic_plus_adr(top(), base, offset);
  2372   } else {
  2373     return basic_plus_adr(base, offset);
  2377 //--------------------------inline_number_methods-----------------------------
  2378 // inline int     Integer.numberOfLeadingZeros(int)
  2379 // inline int        Long.numberOfLeadingZeros(long)
  2380 //
  2381 // inline int     Integer.numberOfTrailingZeros(int)
  2382 // inline int        Long.numberOfTrailingZeros(long)
  2383 //
  2384 // inline int     Integer.bitCount(int)
  2385 // inline int        Long.bitCount(long)
  2386 //
  2387 // inline char  Character.reverseBytes(char)
  2388 // inline short     Short.reverseBytes(short)
  2389 // inline int     Integer.reverseBytes(int)
  2390 // inline long       Long.reverseBytes(long)
  2391 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2392   Node* arg = argument(0);
  2393   Node* n;
  2394   switch (id) {
  2395   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2396   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2397   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2398   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2399   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2400   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2401   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2402   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2403   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2404   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2405   default:  fatal_unexpected_iid(id);  break;
  2407   set_result(_gvn.transform(n));
  2408   return true;
  2411 //----------------------------inline_unsafe_access----------------------------
  2413 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2415 // Helper that guards and inserts a pre-barrier.
  2416 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2417                                         Node* pre_val, bool need_mem_bar) {
  2418   // We could be accessing the referent field of a reference object. If so, when G1
  2419   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2420   // This routine performs some compile time filters and generates suitable
  2421   // runtime filters that guard the pre-barrier code.
  2422   // Also add memory barrier for non volatile load from the referent field
  2423   // to prevent commoning of loads across safepoint.
  2424   if (!UseG1GC && !need_mem_bar)
  2425     return;
  2427   // Some compile time checks.
  2429   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2430   const TypeX* otype = offset->find_intptr_t_type();
  2431   if (otype != NULL && otype->is_con() &&
  2432       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2433     // Constant offset but not the reference_offset so just return
  2434     return;
  2437   // We only need to generate the runtime guards for instances.
  2438   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2439   if (btype != NULL) {
  2440     if (btype->isa_aryptr()) {
  2441       // Array type so nothing to do
  2442       return;
  2445     const TypeInstPtr* itype = btype->isa_instptr();
  2446     if (itype != NULL) {
  2447       // Can the klass of base_oop be statically determined to be
  2448       // _not_ a sub-class of Reference and _not_ Object?
  2449       ciKlass* klass = itype->klass();
  2450       if ( klass->is_loaded() &&
  2451           !klass->is_subtype_of(env()->Reference_klass()) &&
  2452           !env()->Object_klass()->is_subtype_of(klass)) {
  2453         return;
  2458   // The compile time filters did not reject base_oop/offset so
  2459   // we need to generate the following runtime filters
  2460   //
  2461   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2462   //   if (instance_of(base, java.lang.ref.Reference)) {
  2463   //     pre_barrier(_, pre_val, ...);
  2464   //   }
  2465   // }
  2467   float likely   = PROB_LIKELY(  0.999);
  2468   float unlikely = PROB_UNLIKELY(0.999);
  2470   IdealKit ideal(this);
  2471 #define __ ideal.
  2473   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2475   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2476       // Update graphKit memory and control from IdealKit.
  2477       sync_kit(ideal);
  2479       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2480       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2482       // Update IdealKit memory and control from graphKit.
  2483       __ sync_kit(this);
  2485       Node* one = __ ConI(1);
  2486       // is_instof == 0 if base_oop == NULL
  2487       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2489         // Update graphKit from IdeakKit.
  2490         sync_kit(ideal);
  2492         // Use the pre-barrier to record the value in the referent field
  2493         pre_barrier(false /* do_load */,
  2494                     __ ctrl(),
  2495                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2496                     pre_val /* pre_val */,
  2497                     T_OBJECT);
  2498         if (need_mem_bar) {
  2499           // Add memory barrier to prevent commoning reads from this field
  2500           // across safepoint since GC can change its value.
  2501           insert_mem_bar(Op_MemBarCPUOrder);
  2503         // Update IdealKit from graphKit.
  2504         __ sync_kit(this);
  2506       } __ end_if(); // _ref_type != ref_none
  2507   } __ end_if(); // offset == referent_offset
  2509   // Final sync IdealKit and GraphKit.
  2510   final_sync(ideal);
  2511 #undef __
  2515 // Interpret Unsafe.fieldOffset cookies correctly:
  2516 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2518 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2519   // Attempt to infer a sharper value type from the offset and base type.
  2520   ciKlass* sharpened_klass = NULL;
  2522   // See if it is an instance field, with an object type.
  2523   if (alias_type->field() != NULL) {
  2524     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2525     if (alias_type->field()->type()->is_klass()) {
  2526       sharpened_klass = alias_type->field()->type()->as_klass();
  2530   // See if it is a narrow oop array.
  2531   if (adr_type->isa_aryptr()) {
  2532     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2533       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2534       if (elem_type != NULL) {
  2535         sharpened_klass = elem_type->klass();
  2540   // The sharpened class might be unloaded if there is no class loader
  2541   // contraint in place.
  2542   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2543     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2545 #ifndef PRODUCT
  2546     if (C->print_intrinsics() || C->print_inlining()) {
  2547       tty->print("  from base type: ");  adr_type->dump();
  2548       tty->print("  sharpened value: ");  tjp->dump();
  2550 #endif
  2551     // Sharpen the value type.
  2552     return tjp;
  2554   return NULL;
  2557 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2558   if (callee()->is_static())  return false;  // caller must have the capability!
  2560 #ifndef PRODUCT
  2562     ResourceMark rm;
  2563     // Check the signatures.
  2564     ciSignature* sig = callee()->signature();
  2565 #ifdef ASSERT
  2566     if (!is_store) {
  2567       // Object getObject(Object base, int/long offset), etc.
  2568       BasicType rtype = sig->return_type()->basic_type();
  2569       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2570           rtype = T_ADDRESS;  // it is really a C void*
  2571       assert(rtype == type, "getter must return the expected value");
  2572       if (!is_native_ptr) {
  2573         assert(sig->count() == 2, "oop getter has 2 arguments");
  2574         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2575         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2576       } else {
  2577         assert(sig->count() == 1, "native getter has 1 argument");
  2578         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2580     } else {
  2581       // void putObject(Object base, int/long offset, Object x), etc.
  2582       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2583       if (!is_native_ptr) {
  2584         assert(sig->count() == 3, "oop putter has 3 arguments");
  2585         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2586         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2587       } else {
  2588         assert(sig->count() == 2, "native putter has 2 arguments");
  2589         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2591       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2592       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2593         vtype = T_ADDRESS;  // it is really a C void*
  2594       assert(vtype == type, "putter must accept the expected value");
  2596 #endif // ASSERT
  2598 #endif //PRODUCT
  2600   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2602   Node* receiver = argument(0);  // type: oop
  2604   // Build address expression.  See the code in inline_unsafe_prefetch.
  2605   Node* adr;
  2606   Node* heap_base_oop = top();
  2607   Node* offset = top();
  2608   Node* val;
  2610   if (!is_native_ptr) {
  2611     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2612     Node* base = argument(1);  // type: oop
  2613     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2614     offset = argument(2);  // type: long
  2615     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2616     // to be plain byte offsets, which are also the same as those accepted
  2617     // by oopDesc::field_base.
  2618     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2619            "fieldOffset must be byte-scaled");
  2620     // 32-bit machines ignore the high half!
  2621     offset = ConvL2X(offset);
  2622     adr = make_unsafe_address(base, offset);
  2623     heap_base_oop = base;
  2624     val = is_store ? argument(4) : NULL;
  2625   } else {
  2626     Node* ptr = argument(1);  // type: long
  2627     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2628     adr = make_unsafe_address(NULL, ptr);
  2629     val = is_store ? argument(3) : NULL;
  2632   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2634   // First guess at the value type.
  2635   const Type *value_type = Type::get_const_basic_type(type);
  2637   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2638   // there was not enough information to nail it down.
  2639   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2640   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2642   // We will need memory barriers unless we can determine a unique
  2643   // alias category for this reference.  (Note:  If for some reason
  2644   // the barriers get omitted and the unsafe reference begins to "pollute"
  2645   // the alias analysis of the rest of the graph, either Compile::can_alias
  2646   // or Compile::must_alias will throw a diagnostic assert.)
  2647   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2649   // If we are reading the value of the referent field of a Reference
  2650   // object (either by using Unsafe directly or through reflection)
  2651   // then, if G1 is enabled, we need to record the referent in an
  2652   // SATB log buffer using the pre-barrier mechanism.
  2653   // Also we need to add memory barrier to prevent commoning reads
  2654   // from this field across safepoint since GC can change its value.
  2655   bool need_read_barrier = !is_native_ptr && !is_store &&
  2656                            offset != top() && heap_base_oop != top();
  2658   if (!is_store && type == T_OBJECT) {
  2659     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2660     if (tjp != NULL) {
  2661       value_type = tjp;
  2665   receiver = null_check(receiver);
  2666   if (stopped()) {
  2667     return true;
  2669   // Heap pointers get a null-check from the interpreter,
  2670   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2671   // and it is not possible to fully distinguish unintended nulls
  2672   // from intended ones in this API.
  2674   if (is_volatile) {
  2675     // We need to emit leading and trailing CPU membars (see below) in
  2676     // addition to memory membars when is_volatile. This is a little
  2677     // too strong, but avoids the need to insert per-alias-type
  2678     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2679     // we cannot do effectively here because we probably only have a
  2680     // rough approximation of type.
  2681     need_mem_bar = true;
  2682     // For Stores, place a memory ordering barrier now.
  2683     if (is_store) {
  2684       insert_mem_bar(Op_MemBarRelease);
  2685     } else {
  2686       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2687         insert_mem_bar(Op_MemBarVolatile);
  2692   // Memory barrier to prevent normal and 'unsafe' accesses from
  2693   // bypassing each other.  Happens after null checks, so the
  2694   // exception paths do not take memory state from the memory barrier,
  2695   // so there's no problems making a strong assert about mixing users
  2696   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2697   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2698   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2700   if (!is_store) {
  2701     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
  2702     // To be valid, unsafe loads may depend on other conditions than
  2703     // the one that guards them: pin the Load node
  2704     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
  2705     // load value
  2706     switch (type) {
  2707     case T_BOOLEAN:
  2708     case T_CHAR:
  2709     case T_BYTE:
  2710     case T_SHORT:
  2711     case T_INT:
  2712     case T_LONG:
  2713     case T_FLOAT:
  2714     case T_DOUBLE:
  2715       break;
  2716     case T_OBJECT:
  2717       if (need_read_barrier) {
  2718         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2720       break;
  2721     case T_ADDRESS:
  2722       // Cast to an int type.
  2723       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2724       p = ConvX2UL(p);
  2725       break;
  2726     default:
  2727       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2728       break;
  2730     // The load node has the control of the preceding MemBarCPUOrder.  All
  2731     // following nodes will have the control of the MemBarCPUOrder inserted at
  2732     // the end of this method.  So, pushing the load onto the stack at a later
  2733     // point is fine.
  2734     set_result(p);
  2735   } else {
  2736     // place effect of store into memory
  2737     switch (type) {
  2738     case T_DOUBLE:
  2739       val = dstore_rounding(val);
  2740       break;
  2741     case T_ADDRESS:
  2742       // Repackage the long as a pointer.
  2743       val = ConvL2X(val);
  2744       val = _gvn.transform(new (C) CastX2PNode(val));
  2745       break;
  2748     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  2749     if (type != T_OBJECT ) {
  2750       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  2751     } else {
  2752       // Possibly an oop being stored to Java heap or native memory
  2753       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2754         // oop to Java heap.
  2755         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2756       } else {
  2757         // We can't tell at compile time if we are storing in the Java heap or outside
  2758         // of it. So we need to emit code to conditionally do the proper type of
  2759         // store.
  2761         IdealKit ideal(this);
  2762 #define __ ideal.
  2763         // QQQ who knows what probability is here??
  2764         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2765           // Sync IdealKit and graphKit.
  2766           sync_kit(ideal);
  2767           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2768           // Update IdealKit memory.
  2769           __ sync_kit(this);
  2770         } __ else_(); {
  2771           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  2772         } __ end_if();
  2773         // Final sync IdealKit and GraphKit.
  2774         final_sync(ideal);
  2775 #undef __
  2780   if (is_volatile) {
  2781     if (!is_store) {
  2782       insert_mem_bar(Op_MemBarAcquire);
  2783     } else {
  2784       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2785         insert_mem_bar(Op_MemBarVolatile);
  2790   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2792   return true;
  2795 //----------------------------inline_unsafe_prefetch----------------------------
  2797 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2798 #ifndef PRODUCT
  2800     ResourceMark rm;
  2801     // Check the signatures.
  2802     ciSignature* sig = callee()->signature();
  2803 #ifdef ASSERT
  2804     // Object getObject(Object base, int/long offset), etc.
  2805     BasicType rtype = sig->return_type()->basic_type();
  2806     if (!is_native_ptr) {
  2807       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2808       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2809       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2810     } else {
  2811       assert(sig->count() == 1, "native prefetch has 1 argument");
  2812       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2814 #endif // ASSERT
  2816 #endif // !PRODUCT
  2818   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2820   const int idx = is_static ? 0 : 1;
  2821   if (!is_static) {
  2822     null_check_receiver();
  2823     if (stopped()) {
  2824       return true;
  2828   // Build address expression.  See the code in inline_unsafe_access.
  2829   Node *adr;
  2830   if (!is_native_ptr) {
  2831     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2832     Node* base   = argument(idx + 0);  // type: oop
  2833     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2834     Node* offset = argument(idx + 1);  // type: long
  2835     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2836     // to be plain byte offsets, which are also the same as those accepted
  2837     // by oopDesc::field_base.
  2838     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2839            "fieldOffset must be byte-scaled");
  2840     // 32-bit machines ignore the high half!
  2841     offset = ConvL2X(offset);
  2842     adr = make_unsafe_address(base, offset);
  2843   } else {
  2844     Node* ptr = argument(idx + 0);  // type: long
  2845     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2846     adr = make_unsafe_address(NULL, ptr);
  2849   // Generate the read or write prefetch
  2850   Node *prefetch;
  2851   if (is_store) {
  2852     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2853   } else {
  2854     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2856   prefetch->init_req(0, control());
  2857   set_i_o(_gvn.transform(prefetch));
  2859   return true;
  2862 //----------------------------inline_unsafe_load_store----------------------------
  2863 // This method serves a couple of different customers (depending on LoadStoreKind):
  2864 //
  2865 // LS_cmpxchg:
  2866 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2867 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2868 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2869 //
  2870 // LS_xadd:
  2871 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2872 //   public long getAndAddLong(Object o, long offset, long delta)
  2873 //
  2874 // LS_xchg:
  2875 //   int    getAndSet(Object o, long offset, int    newValue)
  2876 //   long   getAndSet(Object o, long offset, long   newValue)
  2877 //   Object getAndSet(Object o, long offset, Object newValue)
  2878 //
  2879 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2880   // This basic scheme here is the same as inline_unsafe_access, but
  2881   // differs in enough details that combining them would make the code
  2882   // overly confusing.  (This is a true fact! I originally combined
  2883   // them, but even I was confused by it!) As much code/comments as
  2884   // possible are retained from inline_unsafe_access though to make
  2885   // the correspondences clearer. - dl
  2887   if (callee()->is_static())  return false;  // caller must have the capability!
  2889 #ifndef PRODUCT
  2890   BasicType rtype;
  2892     ResourceMark rm;
  2893     // Check the signatures.
  2894     ciSignature* sig = callee()->signature();
  2895     rtype = sig->return_type()->basic_type();
  2896     if (kind == LS_xadd || kind == LS_xchg) {
  2897       // Check the signatures.
  2898 #ifdef ASSERT
  2899       assert(rtype == type, "get and set must return the expected type");
  2900       assert(sig->count() == 3, "get and set has 3 arguments");
  2901       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2902       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2903       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2904 #endif // ASSERT
  2905     } else if (kind == LS_cmpxchg) {
  2906       // Check the signatures.
  2907 #ifdef ASSERT
  2908       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2909       assert(sig->count() == 4, "CAS has 4 arguments");
  2910       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2911       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2912 #endif // ASSERT
  2913     } else {
  2914       ShouldNotReachHere();
  2917 #endif //PRODUCT
  2919   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2921   // Get arguments:
  2922   Node* receiver = NULL;
  2923   Node* base     = NULL;
  2924   Node* offset   = NULL;
  2925   Node* oldval   = NULL;
  2926   Node* newval   = NULL;
  2927   if (kind == LS_cmpxchg) {
  2928     const bool two_slot_type = type2size[type] == 2;
  2929     receiver = argument(0);  // type: oop
  2930     base     = argument(1);  // type: oop
  2931     offset   = argument(2);  // type: long
  2932     oldval   = argument(4);  // type: oop, int, or long
  2933     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2934   } else if (kind == LS_xadd || kind == LS_xchg){
  2935     receiver = argument(0);  // type: oop
  2936     base     = argument(1);  // type: oop
  2937     offset   = argument(2);  // type: long
  2938     oldval   = NULL;
  2939     newval   = argument(4);  // type: oop, int, or long
  2942   // Null check receiver.
  2943   receiver = null_check(receiver);
  2944   if (stopped()) {
  2945     return true;
  2948   // Build field offset expression.
  2949   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2950   // to be plain byte offsets, which are also the same as those accepted
  2951   // by oopDesc::field_base.
  2952   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2953   // 32-bit machines ignore the high half of long offsets
  2954   offset = ConvL2X(offset);
  2955   Node* adr = make_unsafe_address(base, offset);
  2956   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2958   // For CAS, unlike inline_unsafe_access, there seems no point in
  2959   // trying to refine types. Just use the coarse types here.
  2960   const Type *value_type = Type::get_const_basic_type(type);
  2961   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2962   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2964   if (kind == LS_xchg && type == T_OBJECT) {
  2965     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2966     if (tjp != NULL) {
  2967       value_type = tjp;
  2971   int alias_idx = C->get_alias_index(adr_type);
  2973   // Memory-model-wise, a LoadStore acts like a little synchronized
  2974   // block, so needs barriers on each side.  These don't translate
  2975   // into actual barriers on most machines, but we still need rest of
  2976   // compiler to respect ordering.
  2978   insert_mem_bar(Op_MemBarRelease);
  2979   insert_mem_bar(Op_MemBarCPUOrder);
  2981   // 4984716: MemBars must be inserted before this
  2982   //          memory node in order to avoid a false
  2983   //          dependency which will confuse the scheduler.
  2984   Node *mem = memory(alias_idx);
  2986   // For now, we handle only those cases that actually exist: ints,
  2987   // longs, and Object. Adding others should be straightforward.
  2988   Node* load_store;
  2989   switch(type) {
  2990   case T_INT:
  2991     if (kind == LS_xadd) {
  2992       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2993     } else if (kind == LS_xchg) {
  2994       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2995     } else if (kind == LS_cmpxchg) {
  2996       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2997     } else {
  2998       ShouldNotReachHere();
  3000     break;
  3001   case T_LONG:
  3002     if (kind == LS_xadd) {
  3003       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  3004     } else if (kind == LS_xchg) {
  3005       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  3006     } else if (kind == LS_cmpxchg) {
  3007       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  3008     } else {
  3009       ShouldNotReachHere();
  3011     break;
  3012   case T_OBJECT:
  3013     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  3014     // could be delayed during Parse (for example, in adjust_map_after_if()).
  3015     // Execute transformation here to avoid barrier generation in such case.
  3016     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  3017       newval = _gvn.makecon(TypePtr::NULL_PTR);
  3019     // Reference stores need a store barrier.
  3020     if (kind == LS_xchg) {
  3021       // If pre-barrier must execute before the oop store, old value will require do_load here.
  3022       if (!can_move_pre_barrier()) {
  3023         pre_barrier(true /* do_load*/,
  3024                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  3025                     NULL /* pre_val*/,
  3026                     T_OBJECT);
  3027       } // Else move pre_barrier to use load_store value, see below.
  3028     } else if (kind == LS_cmpxchg) {
  3029       // Same as for newval above:
  3030       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  3031         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  3033       // The only known value which might get overwritten is oldval.
  3034       pre_barrier(false /* do_load */,
  3035                   control(), NULL, NULL, max_juint, NULL, NULL,
  3036                   oldval /* pre_val */,
  3037                   T_OBJECT);
  3038     } else {
  3039       ShouldNotReachHere();
  3042 #ifdef _LP64
  3043     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3044       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  3045       if (kind == LS_xchg) {
  3046         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  3047                                                            newval_enc, adr_type, value_type->make_narrowoop()));
  3048       } else {
  3049         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3050         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  3051         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  3052                                                                 newval_enc, oldval_enc));
  3054     } else
  3055 #endif
  3057       if (kind == LS_xchg) {
  3058         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  3059       } else {
  3060         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3061         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  3064     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  3065     break;
  3066   default:
  3067     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  3068     break;
  3071   // SCMemProjNodes represent the memory state of a LoadStore. Their
  3072   // main role is to prevent LoadStore nodes from being optimized away
  3073   // when their results aren't used.
  3074   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  3075   set_memory(proj, alias_idx);
  3077   if (type == T_OBJECT && kind == LS_xchg) {
  3078 #ifdef _LP64
  3079     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3080       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  3082 #endif
  3083     if (can_move_pre_barrier()) {
  3084       // Don't need to load pre_val. The old value is returned by load_store.
  3085       // The pre_barrier can execute after the xchg as long as no safepoint
  3086       // gets inserted between them.
  3087       pre_barrier(false /* do_load */,
  3088                   control(), NULL, NULL, max_juint, NULL, NULL,
  3089                   load_store /* pre_val */,
  3090                   T_OBJECT);
  3094   // Add the trailing membar surrounding the access
  3095   insert_mem_bar(Op_MemBarCPUOrder);
  3096   insert_mem_bar(Op_MemBarAcquire);
  3098   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3099   set_result(load_store);
  3100   return true;
  3103 //----------------------------inline_unsafe_ordered_store----------------------
  3104 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  3105 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  3106 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  3107 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3108   // This is another variant of inline_unsafe_access, differing in
  3109   // that it always issues store-store ("release") barrier and ensures
  3110   // store-atomicity (which only matters for "long").
  3112   if (callee()->is_static())  return false;  // caller must have the capability!
  3114 #ifndef PRODUCT
  3116     ResourceMark rm;
  3117     // Check the signatures.
  3118     ciSignature* sig = callee()->signature();
  3119 #ifdef ASSERT
  3120     BasicType rtype = sig->return_type()->basic_type();
  3121     assert(rtype == T_VOID, "must return void");
  3122     assert(sig->count() == 3, "has 3 arguments");
  3123     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3124     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3125 #endif // ASSERT
  3127 #endif //PRODUCT
  3129   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3131   // Get arguments:
  3132   Node* receiver = argument(0);  // type: oop
  3133   Node* base     = argument(1);  // type: oop
  3134   Node* offset   = argument(2);  // type: long
  3135   Node* val      = argument(4);  // type: oop, int, or long
  3137   // Null check receiver.
  3138   receiver = null_check(receiver);
  3139   if (stopped()) {
  3140     return true;
  3143   // Build field offset expression.
  3144   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3145   // 32-bit machines ignore the high half of long offsets
  3146   offset = ConvL2X(offset);
  3147   Node* adr = make_unsafe_address(base, offset);
  3148   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3149   const Type *value_type = Type::get_const_basic_type(type);
  3150   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3152   insert_mem_bar(Op_MemBarRelease);
  3153   insert_mem_bar(Op_MemBarCPUOrder);
  3154   // Ensure that the store is atomic for longs:
  3155   const bool require_atomic_access = true;
  3156   Node* store;
  3157   if (type == T_OBJECT) // reference stores need a store barrier.
  3158     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  3159   else {
  3160     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  3162   insert_mem_bar(Op_MemBarCPUOrder);
  3163   return true;
  3166 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3167   // Regardless of form, don't allow previous ld/st to move down,
  3168   // then issue acquire, release, or volatile mem_bar.
  3169   insert_mem_bar(Op_MemBarCPUOrder);
  3170   switch(id) {
  3171     case vmIntrinsics::_loadFence:
  3172       insert_mem_bar(Op_LoadFence);
  3173       return true;
  3174     case vmIntrinsics::_storeFence:
  3175       insert_mem_bar(Op_StoreFence);
  3176       return true;
  3177     case vmIntrinsics::_fullFence:
  3178       insert_mem_bar(Op_MemBarVolatile);
  3179       return true;
  3180     default:
  3181       fatal_unexpected_iid(id);
  3182       return false;
  3186 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3187   if (!kls->is_Con()) {
  3188     return true;
  3190   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3191   if (klsptr == NULL) {
  3192     return true;
  3194   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3195   // don't need a guard for a klass that is already initialized
  3196   return !ik->is_initialized();
  3199 //----------------------------inline_unsafe_allocate---------------------------
  3200 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3201 bool LibraryCallKit::inline_unsafe_allocate() {
  3202   if (callee()->is_static())  return false;  // caller must have the capability!
  3204   null_check_receiver();  // null-check, then ignore
  3205   Node* cls = null_check(argument(1));
  3206   if (stopped())  return true;
  3208   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3209   kls = null_check(kls);
  3210   if (stopped())  return true;  // argument was like int.class
  3212   Node* test = NULL;
  3213   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3214     // Note:  The argument might still be an illegal value like
  3215     // Serializable.class or Object[].class.   The runtime will handle it.
  3216     // But we must make an explicit check for initialization.
  3217     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3218     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3219     // can generate code to load it as unsigned byte.
  3220     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  3221     Node* bits = intcon(InstanceKlass::fully_initialized);
  3222     test = _gvn.transform(new (C) SubINode(inst, bits));
  3223     // The 'test' is non-zero if we need to take a slow path.
  3226   Node* obj = new_instance(kls, test);
  3227   set_result(obj);
  3228   return true;
  3231 #ifdef TRACE_HAVE_INTRINSICS
  3232 /*
  3233  * oop -> myklass
  3234  * myklass->trace_id |= USED
  3235  * return myklass->trace_id & ~0x3
  3236  */
  3237 bool LibraryCallKit::inline_native_classID() {
  3238   null_check_receiver();  // null-check, then ignore
  3239   Node* cls = null_check(argument(1), T_OBJECT);
  3240   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3241   kls = null_check(kls, T_OBJECT);
  3242   ByteSize offset = TRACE_ID_OFFSET;
  3243   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3244   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  3245   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3246   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3247   Node* clsused = longcon(0x01l); // set the class bit
  3248   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3250   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3251   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  3252   set_result(andl);
  3253   return true;
  3256 bool LibraryCallKit::inline_native_threadID() {
  3257   Node* tls_ptr = NULL;
  3258   Node* cur_thr = generate_current_thread(tls_ptr);
  3259   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3260   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3261   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3263   Node* threadid = NULL;
  3264   size_t thread_id_size = OSThread::thread_id_size();
  3265   if (thread_id_size == (size_t) BytesPerLong) {
  3266     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  3267   } else if (thread_id_size == (size_t) BytesPerInt) {
  3268     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  3269   } else {
  3270     ShouldNotReachHere();
  3272   set_result(threadid);
  3273   return true;
  3275 #endif
  3277 //------------------------inline_native_time_funcs--------------
  3278 // inline code for System.currentTimeMillis() and System.nanoTime()
  3279 // these have the same type and signature
  3280 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3281   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3282   const TypePtr* no_memory_effects = NULL;
  3283   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3284   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3285 #ifdef ASSERT
  3286   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3287   assert(value_top == top(), "second value must be top");
  3288 #endif
  3289   set_result(value);
  3290   return true;
  3293 //------------------------inline_native_currentThread------------------
  3294 bool LibraryCallKit::inline_native_currentThread() {
  3295   Node* junk = NULL;
  3296   set_result(generate_current_thread(junk));
  3297   return true;
  3300 //------------------------inline_native_isInterrupted------------------
  3301 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3302 bool LibraryCallKit::inline_native_isInterrupted() {
  3303   // Add a fast path to t.isInterrupted(clear_int):
  3304   //   (t == Thread.current() &&
  3305   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
  3306   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3307   // So, in the common case that the interrupt bit is false,
  3308   // we avoid making a call into the VM.  Even if the interrupt bit
  3309   // is true, if the clear_int argument is false, we avoid the VM call.
  3310   // However, if the receiver is not currentThread, we must call the VM,
  3311   // because there must be some locking done around the operation.
  3313   // We only go to the fast case code if we pass two guards.
  3314   // Paths which do not pass are accumulated in the slow_region.
  3316   enum {
  3317     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3318     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3319     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3320     PATH_LIMIT
  3321   };
  3323   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3324   // out of the function.
  3325   insert_mem_bar(Op_MemBarCPUOrder);
  3327   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3328   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3330   RegionNode* slow_region = new (C) RegionNode(1);
  3331   record_for_igvn(slow_region);
  3333   // (a) Receiving thread must be the current thread.
  3334   Node* rec_thr = argument(0);
  3335   Node* tls_ptr = NULL;
  3336   Node* cur_thr = generate_current_thread(tls_ptr);
  3337   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3338   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3340   generate_slow_guard(bol_thr, slow_region);
  3342   // (b) Interrupt bit on TLS must be false.
  3343   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3344   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3345   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3347   // Set the control input on the field _interrupted read to prevent it floating up.
  3348   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  3349   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3350   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3352   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3354   // First fast path:  if (!TLS._interrupted) return false;
  3355   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3356   result_rgn->init_req(no_int_result_path, false_bit);
  3357   result_val->init_req(no_int_result_path, intcon(0));
  3359   // drop through to next case
  3360   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3362 #ifndef TARGET_OS_FAMILY_windows
  3363   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3364   Node* clr_arg = argument(1);
  3365   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3366   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3367   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3369   // Second fast path:  ... else if (!clear_int) return true;
  3370   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3371   result_rgn->init_req(no_clear_result_path, false_arg);
  3372   result_val->init_req(no_clear_result_path, intcon(1));
  3374   // drop through to next case
  3375   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3376 #else
  3377   // To return true on Windows you must read the _interrupted field
  3378   // and check the the event state i.e. take the slow path.
  3379 #endif // TARGET_OS_FAMILY_windows
  3381   // (d) Otherwise, go to the slow path.
  3382   slow_region->add_req(control());
  3383   set_control( _gvn.transform(slow_region));
  3385   if (stopped()) {
  3386     // There is no slow path.
  3387     result_rgn->init_req(slow_result_path, top());
  3388     result_val->init_req(slow_result_path, top());
  3389   } else {
  3390     // non-virtual because it is a private non-static
  3391     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3393     Node* slow_val = set_results_for_java_call(slow_call);
  3394     // this->control() comes from set_results_for_java_call
  3396     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3397     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3399     // These two phis are pre-filled with copies of of the fast IO and Memory
  3400     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3401     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3403     result_rgn->init_req(slow_result_path, control());
  3404     result_io ->init_req(slow_result_path, i_o());
  3405     result_mem->init_req(slow_result_path, reset_memory());
  3406     result_val->init_req(slow_result_path, slow_val);
  3408     set_all_memory(_gvn.transform(result_mem));
  3409     set_i_o(       _gvn.transform(result_io));
  3412   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3413   set_result(result_rgn, result_val);
  3414   return true;
  3417 //---------------------------load_mirror_from_klass----------------------------
  3418 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3419 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3420   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3421   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3424 //-----------------------load_klass_from_mirror_common-------------------------
  3425 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3426 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3427 // and branch to the given path on the region.
  3428 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3429 // compile for the non-null case.
  3430 // If the region is NULL, force never_see_null = true.
  3431 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3432                                                     bool never_see_null,
  3433                                                     RegionNode* region,
  3434                                                     int null_path,
  3435                                                     int offset) {
  3436   if (region == NULL)  never_see_null = true;
  3437   Node* p = basic_plus_adr(mirror, offset);
  3438   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3439   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3440   Node* null_ctl = top();
  3441   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3442   if (region != NULL) {
  3443     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3444     region->init_req(null_path, null_ctl);
  3445   } else {
  3446     assert(null_ctl == top(), "no loose ends");
  3448   return kls;
  3451 //--------------------(inline_native_Class_query helpers)---------------------
  3452 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3453 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3454 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3455   // Branch around if the given klass has the given modifier bit set.
  3456   // Like generate_guard, adds a new path onto the region.
  3457   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3458   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  3459   Node* mask = intcon(modifier_mask);
  3460   Node* bits = intcon(modifier_bits);
  3461   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3462   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3463   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3464   return generate_fair_guard(bol, region);
  3466 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3467   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3470 //-------------------------inline_native_Class_query-------------------
  3471 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3472   const Type* return_type = TypeInt::BOOL;
  3473   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3474   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3475   bool expect_prim = false;     // most of these guys expect to work on refs
  3477   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3479   Node* mirror = argument(0);
  3480   Node* obj    = top();
  3482   switch (id) {
  3483   case vmIntrinsics::_isInstance:
  3484     // nothing is an instance of a primitive type
  3485     prim_return_value = intcon(0);
  3486     obj = argument(1);
  3487     break;
  3488   case vmIntrinsics::_getModifiers:
  3489     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3490     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3491     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3492     break;
  3493   case vmIntrinsics::_isInterface:
  3494     prim_return_value = intcon(0);
  3495     break;
  3496   case vmIntrinsics::_isArray:
  3497     prim_return_value = intcon(0);
  3498     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3499     break;
  3500   case vmIntrinsics::_isPrimitive:
  3501     prim_return_value = intcon(1);
  3502     expect_prim = true;  // obviously
  3503     break;
  3504   case vmIntrinsics::_getSuperclass:
  3505     prim_return_value = null();
  3506     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3507     break;
  3508   case vmIntrinsics::_getComponentType:
  3509     prim_return_value = null();
  3510     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3511     break;
  3512   case vmIntrinsics::_getClassAccessFlags:
  3513     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3514     return_type = TypeInt::INT;  // not bool!  6297094
  3515     break;
  3516   default:
  3517     fatal_unexpected_iid(id);
  3518     break;
  3521   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3522   if (mirror_con == NULL)  return false;  // cannot happen?
  3524 #ifndef PRODUCT
  3525   if (C->print_intrinsics() || C->print_inlining()) {
  3526     ciType* k = mirror_con->java_mirror_type();
  3527     if (k) {
  3528       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3529       k->print_name();
  3530       tty->cr();
  3533 #endif
  3535   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3536   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3537   record_for_igvn(region);
  3538   PhiNode* phi = new (C) PhiNode(region, return_type);
  3540   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3541   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3542   // if it is. See bug 4774291.
  3544   // For Reflection.getClassAccessFlags(), the null check occurs in
  3545   // the wrong place; see inline_unsafe_access(), above, for a similar
  3546   // situation.
  3547   mirror = null_check(mirror);
  3548   // If mirror or obj is dead, only null-path is taken.
  3549   if (stopped())  return true;
  3551   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3553   // Now load the mirror's klass metaobject, and null-check it.
  3554   // Side-effects region with the control path if the klass is null.
  3555   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3556   // If kls is null, we have a primitive mirror.
  3557   phi->init_req(_prim_path, prim_return_value);
  3558   if (stopped()) { set_result(region, phi); return true; }
  3559   bool safe_for_replace = (region->in(_prim_path) == top());
  3561   Node* p;  // handy temp
  3562   Node* null_ctl;
  3564   // Now that we have the non-null klass, we can perform the real query.
  3565   // For constant classes, the query will constant-fold in LoadNode::Value.
  3566   Node* query_value = top();
  3567   switch (id) {
  3568   case vmIntrinsics::_isInstance:
  3569     // nothing is an instance of a primitive type
  3570     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3571     break;
  3573   case vmIntrinsics::_getModifiers:
  3574     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3575     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3576     break;
  3578   case vmIntrinsics::_isInterface:
  3579     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3580     if (generate_interface_guard(kls, region) != NULL)
  3581       // A guard was added.  If the guard is taken, it was an interface.
  3582       phi->add_req(intcon(1));
  3583     // If we fall through, it's a plain class.
  3584     query_value = intcon(0);
  3585     break;
  3587   case vmIntrinsics::_isArray:
  3588     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3589     if (generate_array_guard(kls, region) != NULL)
  3590       // A guard was added.  If the guard is taken, it was an array.
  3591       phi->add_req(intcon(1));
  3592     // If we fall through, it's a plain class.
  3593     query_value = intcon(0);
  3594     break;
  3596   case vmIntrinsics::_isPrimitive:
  3597     query_value = intcon(0); // "normal" path produces false
  3598     break;
  3600   case vmIntrinsics::_getSuperclass:
  3601     // The rules here are somewhat unfortunate, but we can still do better
  3602     // with random logic than with a JNI call.
  3603     // Interfaces store null or Object as _super, but must report null.
  3604     // Arrays store an intermediate super as _super, but must report Object.
  3605     // Other types can report the actual _super.
  3606     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3607     if (generate_interface_guard(kls, region) != NULL)
  3608       // A guard was added.  If the guard is taken, it was an interface.
  3609       phi->add_req(null());
  3610     if (generate_array_guard(kls, region) != NULL)
  3611       // A guard was added.  If the guard is taken, it was an array.
  3612       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3613     // If we fall through, it's a plain class.  Get its _super.
  3614     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3615     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3616     null_ctl = top();
  3617     kls = null_check_oop(kls, &null_ctl);
  3618     if (null_ctl != top()) {
  3619       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3620       region->add_req(null_ctl);
  3621       phi   ->add_req(null());
  3623     if (!stopped()) {
  3624       query_value = load_mirror_from_klass(kls);
  3626     break;
  3628   case vmIntrinsics::_getComponentType:
  3629     if (generate_array_guard(kls, region) != NULL) {
  3630       // Be sure to pin the oop load to the guard edge just created:
  3631       Node* is_array_ctrl = region->in(region->req()-1);
  3632       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3633       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3634       phi->add_req(cmo);
  3636     query_value = null();  // non-array case is null
  3637     break;
  3639   case vmIntrinsics::_getClassAccessFlags:
  3640     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3641     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3642     break;
  3644   default:
  3645     fatal_unexpected_iid(id);
  3646     break;
  3649   // Fall-through is the normal case of a query to a real class.
  3650   phi->init_req(1, query_value);
  3651   region->init_req(1, control());
  3653   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3654   set_result(region, phi);
  3655   return true;
  3658 //--------------------------inline_native_subtype_check------------------------
  3659 // This intrinsic takes the JNI calls out of the heart of
  3660 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3661 bool LibraryCallKit::inline_native_subtype_check() {
  3662   // Pull both arguments off the stack.
  3663   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3664   args[0] = argument(0);
  3665   args[1] = argument(1);
  3666   Node* klasses[2];             // corresponding Klasses: superk, subk
  3667   klasses[0] = klasses[1] = top();
  3669   enum {
  3670     // A full decision tree on {superc is prim, subc is prim}:
  3671     _prim_0_path = 1,           // {P,N} => false
  3672                                 // {P,P} & superc!=subc => false
  3673     _prim_same_path,            // {P,P} & superc==subc => true
  3674     _prim_1_path,               // {N,P} => false
  3675     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3676     _both_ref_path,             // {N,N} & subtype check loses => false
  3677     PATH_LIMIT
  3678   };
  3680   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3681   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3682   record_for_igvn(region);
  3684   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3685   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3686   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3688   // First null-check both mirrors and load each mirror's klass metaobject.
  3689   int which_arg;
  3690   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3691     Node* arg = args[which_arg];
  3692     arg = null_check(arg);
  3693     if (stopped())  break;
  3694     args[which_arg] = arg;
  3696     Node* p = basic_plus_adr(arg, class_klass_offset);
  3697     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
  3698     klasses[which_arg] = _gvn.transform(kls);
  3701   // Having loaded both klasses, test each for null.
  3702   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3703   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3704     Node* kls = klasses[which_arg];
  3705     Node* null_ctl = top();
  3706     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3707     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3708     region->init_req(prim_path, null_ctl);
  3709     if (stopped())  break;
  3710     klasses[which_arg] = kls;
  3713   if (!stopped()) {
  3714     // now we have two reference types, in klasses[0..1]
  3715     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3716     Node* superk = klasses[0];  // the receiver
  3717     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3718     // now we have a successful reference subtype check
  3719     region->set_req(_ref_subtype_path, control());
  3722   // If both operands are primitive (both klasses null), then
  3723   // we must return true when they are identical primitives.
  3724   // It is convenient to test this after the first null klass check.
  3725   set_control(region->in(_prim_0_path)); // go back to first null check
  3726   if (!stopped()) {
  3727     // Since superc is primitive, make a guard for the superc==subc case.
  3728     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3729     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3730     generate_guard(bol_eq, region, PROB_FAIR);
  3731     if (region->req() == PATH_LIMIT+1) {
  3732       // A guard was added.  If the added guard is taken, superc==subc.
  3733       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3734       region->del_req(PATH_LIMIT);
  3736     region->set_req(_prim_0_path, control()); // Not equal after all.
  3739   // these are the only paths that produce 'true':
  3740   phi->set_req(_prim_same_path,   intcon(1));
  3741   phi->set_req(_ref_subtype_path, intcon(1));
  3743   // pull together the cases:
  3744   assert(region->req() == PATH_LIMIT, "sane region");
  3745   for (uint i = 1; i < region->req(); i++) {
  3746     Node* ctl = region->in(i);
  3747     if (ctl == NULL || ctl == top()) {
  3748       region->set_req(i, top());
  3749       phi   ->set_req(i, top());
  3750     } else if (phi->in(i) == NULL) {
  3751       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3755   set_control(_gvn.transform(region));
  3756   set_result(_gvn.transform(phi));
  3757   return true;
  3760 //---------------------generate_array_guard_common------------------------
  3761 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3762                                                   bool obj_array, bool not_array) {
  3763   // If obj_array/non_array==false/false:
  3764   // Branch around if the given klass is in fact an array (either obj or prim).
  3765   // If obj_array/non_array==false/true:
  3766   // Branch around if the given klass is not an array klass of any kind.
  3767   // If obj_array/non_array==true/true:
  3768   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3769   // If obj_array/non_array==true/false:
  3770   // Branch around if the kls is an oop array (Object[] or subtype)
  3771   //
  3772   // Like generate_guard, adds a new path onto the region.
  3773   jint  layout_con = 0;
  3774   Node* layout_val = get_layout_helper(kls, layout_con);
  3775   if (layout_val == NULL) {
  3776     bool query = (obj_array
  3777                   ? Klass::layout_helper_is_objArray(layout_con)
  3778                   : Klass::layout_helper_is_array(layout_con));
  3779     if (query == not_array) {
  3780       return NULL;                       // never a branch
  3781     } else {                             // always a branch
  3782       Node* always_branch = control();
  3783       if (region != NULL)
  3784         region->add_req(always_branch);
  3785       set_control(top());
  3786       return always_branch;
  3789   // Now test the correct condition.
  3790   jint  nval = (obj_array
  3791                 ? ((jint)Klass::_lh_array_tag_type_value
  3792                    <<    Klass::_lh_array_tag_shift)
  3793                 : Klass::_lh_neutral_value);
  3794   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3795   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3796   // invert the test if we are looking for a non-array
  3797   if (not_array)  btest = BoolTest(btest).negate();
  3798   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3799   return generate_fair_guard(bol, region);
  3803 //-----------------------inline_native_newArray--------------------------
  3804 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3805 bool LibraryCallKit::inline_native_newArray() {
  3806   Node* mirror    = argument(0);
  3807   Node* count_val = argument(1);
  3809   mirror = null_check(mirror);
  3810   // If mirror or obj is dead, only null-path is taken.
  3811   if (stopped())  return true;
  3813   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3814   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3815   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3816                                           TypeInstPtr::NOTNULL);
  3817   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3818   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3819                                           TypePtr::BOTTOM);
  3821   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3822   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3823                                                   result_reg, _slow_path);
  3824   Node* normal_ctl   = control();
  3825   Node* no_array_ctl = result_reg->in(_slow_path);
  3827   // Generate code for the slow case.  We make a call to newArray().
  3828   set_control(no_array_ctl);
  3829   if (!stopped()) {
  3830     // Either the input type is void.class, or else the
  3831     // array klass has not yet been cached.  Either the
  3832     // ensuing call will throw an exception, or else it
  3833     // will cache the array klass for next time.
  3834     PreserveJVMState pjvms(this);
  3835     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3836     Node* slow_result = set_results_for_java_call(slow_call);
  3837     // this->control() comes from set_results_for_java_call
  3838     result_reg->set_req(_slow_path, control());
  3839     result_val->set_req(_slow_path, slow_result);
  3840     result_io ->set_req(_slow_path, i_o());
  3841     result_mem->set_req(_slow_path, reset_memory());
  3844   set_control(normal_ctl);
  3845   if (!stopped()) {
  3846     // Normal case:  The array type has been cached in the java.lang.Class.
  3847     // The following call works fine even if the array type is polymorphic.
  3848     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3849     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3850     result_reg->init_req(_normal_path, control());
  3851     result_val->init_req(_normal_path, obj);
  3852     result_io ->init_req(_normal_path, i_o());
  3853     result_mem->init_req(_normal_path, reset_memory());
  3856   // Return the combined state.
  3857   set_i_o(        _gvn.transform(result_io)  );
  3858   set_all_memory( _gvn.transform(result_mem));
  3860   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3861   set_result(result_reg, result_val);
  3862   return true;
  3865 //----------------------inline_native_getLength--------------------------
  3866 // public static native int java.lang.reflect.Array.getLength(Object array);
  3867 bool LibraryCallKit::inline_native_getLength() {
  3868   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3870   Node* array = null_check(argument(0));
  3871   // If array is dead, only null-path is taken.
  3872   if (stopped())  return true;
  3874   // Deoptimize if it is a non-array.
  3875   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3877   if (non_array != NULL) {
  3878     PreserveJVMState pjvms(this);
  3879     set_control(non_array);
  3880     uncommon_trap(Deoptimization::Reason_intrinsic,
  3881                   Deoptimization::Action_maybe_recompile);
  3884   // If control is dead, only non-array-path is taken.
  3885   if (stopped())  return true;
  3887   // The works fine even if the array type is polymorphic.
  3888   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3889   Node* result = load_array_length(array);
  3891   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3892   set_result(result);
  3893   return true;
  3896 //------------------------inline_array_copyOf----------------------------
  3897 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3898 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3899 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3900   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3902   // Get the arguments.
  3903   Node* original          = argument(0);
  3904   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3905   Node* end               = is_copyOfRange? argument(2): argument(1);
  3906   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3908   Node* newcopy;
  3910   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3911   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3912   { PreserveReexecuteState preexecs(this);
  3913     jvms()->set_should_reexecute(true);
  3915     array_type_mirror = null_check(array_type_mirror);
  3916     original          = null_check(original);
  3918     // Check if a null path was taken unconditionally.
  3919     if (stopped())  return true;
  3921     Node* orig_length = load_array_length(original);
  3923     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3924     klass_node = null_check(klass_node);
  3926     RegionNode* bailout = new (C) RegionNode(1);
  3927     record_for_igvn(bailout);
  3929     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3930     // Bail out if that is so.
  3931     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3932     if (not_objArray != NULL) {
  3933       // Improve the klass node's type from the new optimistic assumption:
  3934       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3935       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3936       Node* cast = new (C) CastPPNode(klass_node, akls);
  3937       cast->init_req(0, control());
  3938       klass_node = _gvn.transform(cast);
  3941     // Bail out if either start or end is negative.
  3942     generate_negative_guard(start, bailout, &start);
  3943     generate_negative_guard(end,   bailout, &end);
  3945     Node* length = end;
  3946     if (_gvn.type(start) != TypeInt::ZERO) {
  3947       length = _gvn.transform(new (C) SubINode(end, start));
  3950     // Bail out if length is negative.
  3951     // Without this the new_array would throw
  3952     // NegativeArraySizeException but IllegalArgumentException is what
  3953     // should be thrown
  3954     generate_negative_guard(length, bailout, &length);
  3956     if (bailout->req() > 1) {
  3957       PreserveJVMState pjvms(this);
  3958       set_control(_gvn.transform(bailout));
  3959       uncommon_trap(Deoptimization::Reason_intrinsic,
  3960                     Deoptimization::Action_maybe_recompile);
  3963     if (!stopped()) {
  3964       // How many elements will we copy from the original?
  3965       // The answer is MinI(orig_length - start, length).
  3966       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3967       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3969       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3971       // Generate a direct call to the right arraycopy function(s).
  3972       // We know the copy is disjoint but we might not know if the
  3973       // oop stores need checking.
  3974       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3975       // This will fail a store-check if x contains any non-nulls.
  3976       bool disjoint_bases = true;
  3977       // if start > orig_length then the length of the copy may be
  3978       // negative.
  3979       bool length_never_negative = !is_copyOfRange;
  3980       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3981                          original, start, newcopy, intcon(0), moved,
  3982                          disjoint_bases, length_never_negative);
  3984   } // original reexecute is set back here
  3986   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3987   if (!stopped()) {
  3988     set_result(newcopy);
  3990   return true;
  3994 //----------------------generate_virtual_guard---------------------------
  3995 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3996 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3997                                              RegionNode* slow_region) {
  3998   ciMethod* method = callee();
  3999   int vtable_index = method->vtable_index();
  4000   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  4001          err_msg_res("bad index %d", vtable_index));
  4002   // Get the Method* out of the appropriate vtable entry.
  4003   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  4004                      vtable_index*vtableEntry::size()) * wordSize +
  4005                      vtableEntry::method_offset_in_bytes();
  4006   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  4007   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  4009   // Compare the target method with the expected method (e.g., Object.hashCode).
  4010   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  4012   Node* native_call = makecon(native_call_addr);
  4013   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  4014   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  4016   return generate_slow_guard(test_native, slow_region);
  4019 //-----------------------generate_method_call----------------------------
  4020 // Use generate_method_call to make a slow-call to the real
  4021 // method if the fast path fails.  An alternative would be to
  4022 // use a stub like OptoRuntime::slow_arraycopy_Java.
  4023 // This only works for expanding the current library call,
  4024 // not another intrinsic.  (E.g., don't use this for making an
  4025 // arraycopy call inside of the copyOf intrinsic.)
  4026 CallJavaNode*
  4027 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  4028   // When compiling the intrinsic method itself, do not use this technique.
  4029   guarantee(callee() != C->method(), "cannot make slow-call to self");
  4031   ciMethod* method = callee();
  4032   // ensure the JVMS we have will be correct for this call
  4033   guarantee(method_id == method->intrinsic_id(), "must match");
  4035   const TypeFunc* tf = TypeFunc::make(method);
  4036   CallJavaNode* slow_call;
  4037   if (is_static) {
  4038     assert(!is_virtual, "");
  4039     slow_call = new(C) CallStaticJavaNode(C, tf,
  4040                            SharedRuntime::get_resolve_static_call_stub(),
  4041                            method, bci());
  4042   } else if (is_virtual) {
  4043     null_check_receiver();
  4044     int vtable_index = Method::invalid_vtable_index;
  4045     if (UseInlineCaches) {
  4046       // Suppress the vtable call
  4047     } else {
  4048       // hashCode and clone are not a miranda methods,
  4049       // so the vtable index is fixed.
  4050       // No need to use the linkResolver to get it.
  4051        vtable_index = method->vtable_index();
  4052        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  4053               err_msg_res("bad index %d", vtable_index));
  4055     slow_call = new(C) CallDynamicJavaNode(tf,
  4056                           SharedRuntime::get_resolve_virtual_call_stub(),
  4057                           method, vtable_index, bci());
  4058   } else {  // neither virtual nor static:  opt_virtual
  4059     null_check_receiver();
  4060     slow_call = new(C) CallStaticJavaNode(C, tf,
  4061                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  4062                                 method, bci());
  4063     slow_call->set_optimized_virtual(true);
  4065   set_arguments_for_java_call(slow_call);
  4066   set_edges_for_java_call(slow_call);
  4067   return slow_call;
  4071 /**
  4072  * Build special case code for calls to hashCode on an object. This call may
  4073  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
  4074  * slightly different code.
  4075  */
  4076 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  4077   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  4078   assert(!(is_virtual && is_static), "either virtual, special, or static");
  4080   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  4082   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4083   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
  4084   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  4085   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
  4086   Node* obj = NULL;
  4087   if (!is_static) {
  4088     // Check for hashing null object
  4089     obj = null_check_receiver();
  4090     if (stopped())  return true;        // unconditionally null
  4091     result_reg->init_req(_null_path, top());
  4092     result_val->init_req(_null_path, top());
  4093   } else {
  4094     // Do a null check, and return zero if null.
  4095     // System.identityHashCode(null) == 0
  4096     obj = argument(0);
  4097     Node* null_ctl = top();
  4098     obj = null_check_oop(obj, &null_ctl);
  4099     result_reg->init_req(_null_path, null_ctl);
  4100     result_val->init_req(_null_path, _gvn.intcon(0));
  4103   // Unconditionally null?  Then return right away.
  4104   if (stopped()) {
  4105     set_control( result_reg->in(_null_path));
  4106     if (!stopped())
  4107       set_result(result_val->in(_null_path));
  4108     return true;
  4111   // We only go to the fast case code if we pass a number of guards.  The
  4112   // paths which do not pass are accumulated in the slow_region.
  4113   RegionNode* slow_region = new (C) RegionNode(1);
  4114   record_for_igvn(slow_region);
  4116   // If this is a virtual call, we generate a funny guard.  We pull out
  4117   // the vtable entry corresponding to hashCode() from the target object.
  4118   // If the target method which we are calling happens to be the native
  4119   // Object hashCode() method, we pass the guard.  We do not need this
  4120   // guard for non-virtual calls -- the caller is known to be the native
  4121   // Object hashCode().
  4122   if (is_virtual) {
  4123     // After null check, get the object's klass.
  4124     Node* obj_klass = load_object_klass(obj);
  4125     generate_virtual_guard(obj_klass, slow_region);
  4128   // Get the header out of the object, use LoadMarkNode when available
  4129   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4130   // The control of the load must be NULL. Otherwise, the load can move before
  4131   // the null check after castPP removal.
  4132   Node* no_ctrl = NULL;
  4133   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  4135   // Test the header to see if it is unlocked.
  4136   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4137   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4138   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4139   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4140   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4142   generate_slow_guard(test_unlocked, slow_region);
  4144   // Get the hash value and check to see that it has been properly assigned.
  4145   // We depend on hash_mask being at most 32 bits and avoid the use of
  4146   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4147   // vm: see markOop.hpp.
  4148   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4149   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4150   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4151   // This hack lets the hash bits live anywhere in the mark object now, as long
  4152   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4153   // Java spec says that HashCode is an int so there's no point in capturing
  4154   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4155   hshifted_header      = ConvX2I(hshifted_header);
  4156   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4158   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4159   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4160   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4162   generate_slow_guard(test_assigned, slow_region);
  4164   Node* init_mem = reset_memory();
  4165   // fill in the rest of the null path:
  4166   result_io ->init_req(_null_path, i_o());
  4167   result_mem->init_req(_null_path, init_mem);
  4169   result_val->init_req(_fast_path, hash_val);
  4170   result_reg->init_req(_fast_path, control());
  4171   result_io ->init_req(_fast_path, i_o());
  4172   result_mem->init_req(_fast_path, init_mem);
  4174   // Generate code for the slow case.  We make a call to hashCode().
  4175   set_control(_gvn.transform(slow_region));
  4176   if (!stopped()) {
  4177     // No need for PreserveJVMState, because we're using up the present state.
  4178     set_all_memory(init_mem);
  4179     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4180     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4181     Node* slow_result = set_results_for_java_call(slow_call);
  4182     // this->control() comes from set_results_for_java_call
  4183     result_reg->init_req(_slow_path, control());
  4184     result_val->init_req(_slow_path, slow_result);
  4185     result_io  ->set_req(_slow_path, i_o());
  4186     result_mem ->set_req(_slow_path, reset_memory());
  4189   // Return the combined state.
  4190   set_i_o(        _gvn.transform(result_io)  );
  4191   set_all_memory( _gvn.transform(result_mem));
  4193   set_result(result_reg, result_val);
  4194   return true;
  4197 //---------------------------inline_native_getClass----------------------------
  4198 // public final native Class<?> java.lang.Object.getClass();
  4199 //
  4200 // Build special case code for calls to getClass on an object.
  4201 bool LibraryCallKit::inline_native_getClass() {
  4202   Node* obj = null_check_receiver();
  4203   if (stopped())  return true;
  4204   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4205   return true;
  4208 //-----------------inline_native_Reflection_getCallerClass---------------------
  4209 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4210 //
  4211 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4212 //
  4213 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4214 // in that it must skip particular security frames and checks for
  4215 // caller sensitive methods.
  4216 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4217 #ifndef PRODUCT
  4218   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4219     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4221 #endif
  4223   if (!jvms()->has_method()) {
  4224 #ifndef PRODUCT
  4225     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4226       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4228 #endif
  4229     return false;
  4232   // Walk back up the JVM state to find the caller at the required
  4233   // depth.
  4234   JVMState* caller_jvms = jvms();
  4236   // Cf. JVM_GetCallerClass
  4237   // NOTE: Start the loop at depth 1 because the current JVM state does
  4238   // not include the Reflection.getCallerClass() frame.
  4239   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4240     ciMethod* m = caller_jvms->method();
  4241     switch (n) {
  4242     case 0:
  4243       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4244       break;
  4245     case 1:
  4246       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4247       if (!m->caller_sensitive()) {
  4248 #ifndef PRODUCT
  4249         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4250           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4252 #endif
  4253         return false;  // bail-out; let JVM_GetCallerClass do the work
  4255       break;
  4256     default:
  4257       if (!m->is_ignored_by_security_stack_walk()) {
  4258         // We have reached the desired frame; return the holder class.
  4259         // Acquire method holder as java.lang.Class and push as constant.
  4260         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4261         ciInstance* caller_mirror = caller_klass->java_mirror();
  4262         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4264 #ifndef PRODUCT
  4265         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4266           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4267           tty->print_cr("  JVM state at this point:");
  4268           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4269             ciMethod* m = jvms()->of_depth(i)->method();
  4270             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4273 #endif
  4274         return true;
  4276       break;
  4280 #ifndef PRODUCT
  4281   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4282     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4283     tty->print_cr("  JVM state at this point:");
  4284     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4285       ciMethod* m = jvms()->of_depth(i)->method();
  4286       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4289 #endif
  4291   return false;  // bail-out; let JVM_GetCallerClass do the work
  4294 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4295   Node* arg = argument(0);
  4296   Node* result;
  4298   switch (id) {
  4299   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4300   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4301   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4302   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4304   case vmIntrinsics::_doubleToLongBits: {
  4305     // two paths (plus control) merge in a wood
  4306     RegionNode *r = new (C) RegionNode(3);
  4307     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4309     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4310     // Build the boolean node
  4311     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4313     // Branch either way.
  4314     // NaN case is less traveled, which makes all the difference.
  4315     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4316     Node *opt_isnan = _gvn.transform(ifisnan);
  4317     assert( opt_isnan->is_If(), "Expect an IfNode");
  4318     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4319     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4321     set_control(iftrue);
  4323     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4324     Node *slow_result = longcon(nan_bits); // return NaN
  4325     phi->init_req(1, _gvn.transform( slow_result ));
  4326     r->init_req(1, iftrue);
  4328     // Else fall through
  4329     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4330     set_control(iffalse);
  4332     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4333     r->init_req(2, iffalse);
  4335     // Post merge
  4336     set_control(_gvn.transform(r));
  4337     record_for_igvn(r);
  4339     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4340     result = phi;
  4341     assert(result->bottom_type()->isa_long(), "must be");
  4342     break;
  4345   case vmIntrinsics::_floatToIntBits: {
  4346     // two paths (plus control) merge in a wood
  4347     RegionNode *r = new (C) RegionNode(3);
  4348     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4350     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4351     // Build the boolean node
  4352     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4354     // Branch either way.
  4355     // NaN case is less traveled, which makes all the difference.
  4356     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4357     Node *opt_isnan = _gvn.transform(ifisnan);
  4358     assert( opt_isnan->is_If(), "Expect an IfNode");
  4359     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4360     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4362     set_control(iftrue);
  4364     static const jint nan_bits = 0x7fc00000;
  4365     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4366     phi->init_req(1, _gvn.transform( slow_result ));
  4367     r->init_req(1, iftrue);
  4369     // Else fall through
  4370     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4371     set_control(iffalse);
  4373     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4374     r->init_req(2, iffalse);
  4376     // Post merge
  4377     set_control(_gvn.transform(r));
  4378     record_for_igvn(r);
  4380     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4381     result = phi;
  4382     assert(result->bottom_type()->isa_int(), "must be");
  4383     break;
  4386   default:
  4387     fatal_unexpected_iid(id);
  4388     break;
  4390   set_result(_gvn.transform(result));
  4391   return true;
  4394 #ifdef _LP64
  4395 #define XTOP ,top() /*additional argument*/
  4396 #else  //_LP64
  4397 #define XTOP        /*no additional argument*/
  4398 #endif //_LP64
  4400 //----------------------inline_unsafe_copyMemory-------------------------
  4401 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4402 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4403   if (callee()->is_static())  return false;  // caller must have the capability!
  4404   null_check_receiver();  // null-check receiver
  4405   if (stopped())  return true;
  4407   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4409   Node* src_ptr =         argument(1);   // type: oop
  4410   Node* src_off = ConvL2X(argument(2));  // type: long
  4411   Node* dst_ptr =         argument(4);   // type: oop
  4412   Node* dst_off = ConvL2X(argument(5));  // type: long
  4413   Node* size    = ConvL2X(argument(7));  // type: long
  4415   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4416          "fieldOffset must be byte-scaled");
  4418   Node* src = make_unsafe_address(src_ptr, src_off);
  4419   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4421   // Conservatively insert a memory barrier on all memory slices.
  4422   // Do not let writes of the copy source or destination float below the copy.
  4423   insert_mem_bar(Op_MemBarCPUOrder);
  4425   // Call it.  Note that the length argument is not scaled.
  4426   make_runtime_call(RC_LEAF|RC_NO_FP,
  4427                     OptoRuntime::fast_arraycopy_Type(),
  4428                     StubRoutines::unsafe_arraycopy(),
  4429                     "unsafe_arraycopy",
  4430                     TypeRawPtr::BOTTOM,
  4431                     src, dst, size XTOP);
  4433   // Do not let reads of the copy destination float above the copy.
  4434   insert_mem_bar(Op_MemBarCPUOrder);
  4436   return true;
  4439 //------------------------clone_coping-----------------------------------
  4440 // Helper function for inline_native_clone.
  4441 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4442   assert(obj_size != NULL, "");
  4443   Node* raw_obj = alloc_obj->in(1);
  4444   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4446   AllocateNode* alloc = NULL;
  4447   if (ReduceBulkZeroing) {
  4448     // We will be completely responsible for initializing this object -
  4449     // mark Initialize node as complete.
  4450     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4451     // The object was just allocated - there should be no any stores!
  4452     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4453     // Mark as complete_with_arraycopy so that on AllocateNode
  4454     // expansion, we know this AllocateNode is initialized by an array
  4455     // copy and a StoreStore barrier exists after the array copy.
  4456     alloc->initialization()->set_complete_with_arraycopy();
  4459   // Copy the fastest available way.
  4460   // TODO: generate fields copies for small objects instead.
  4461   Node* src  = obj;
  4462   Node* dest = alloc_obj;
  4463   Node* size = _gvn.transform(obj_size);
  4465   // Exclude the header but include array length to copy by 8 bytes words.
  4466   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4467   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4468                             instanceOopDesc::base_offset_in_bytes();
  4469   // base_off:
  4470   // 8  - 32-bit VM
  4471   // 12 - 64-bit VM, compressed klass
  4472   // 16 - 64-bit VM, normal klass
  4473   if (base_off % BytesPerLong != 0) {
  4474     assert(UseCompressedClassPointers, "");
  4475     if (is_array) {
  4476       // Exclude length to copy by 8 bytes words.
  4477       base_off += sizeof(int);
  4478     } else {
  4479       // Include klass to copy by 8 bytes words.
  4480       base_off = instanceOopDesc::klass_offset_in_bytes();
  4482     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4484   src  = basic_plus_adr(src,  base_off);
  4485   dest = basic_plus_adr(dest, base_off);
  4487   // Compute the length also, if needed:
  4488   Node* countx = size;
  4489   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4490   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4492   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4493   bool disjoint_bases = true;
  4494   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4495                                src, NULL, dest, NULL, countx,
  4496                                /*dest_uninitialized*/true);
  4498   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4499   if (card_mark) {
  4500     assert(!is_array, "");
  4501     // Put in store barrier for any and all oops we are sticking
  4502     // into this object.  (We could avoid this if we could prove
  4503     // that the object type contains no oop fields at all.)
  4504     Node* no_particular_value = NULL;
  4505     Node* no_particular_field = NULL;
  4506     int raw_adr_idx = Compile::AliasIdxRaw;
  4507     post_barrier(control(),
  4508                  memory(raw_adr_type),
  4509                  alloc_obj,
  4510                  no_particular_field,
  4511                  raw_adr_idx,
  4512                  no_particular_value,
  4513                  T_OBJECT,
  4514                  false);
  4517   // Do not let reads from the cloned object float above the arraycopy.
  4518   if (alloc != NULL) {
  4519     // Do not let stores that initialize this object be reordered with
  4520     // a subsequent store that would make this object accessible by
  4521     // other threads.
  4522     // Record what AllocateNode this StoreStore protects so that
  4523     // escape analysis can go from the MemBarStoreStoreNode to the
  4524     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4525     // based on the escape status of the AllocateNode.
  4526     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4527   } else {
  4528     insert_mem_bar(Op_MemBarCPUOrder);
  4532 //------------------------inline_native_clone----------------------------
  4533 // protected native Object java.lang.Object.clone();
  4534 //
  4535 // Here are the simple edge cases:
  4536 //  null receiver => normal trap
  4537 //  virtual and clone was overridden => slow path to out-of-line clone
  4538 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4539 //
  4540 // The general case has two steps, allocation and copying.
  4541 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4542 //
  4543 // Copying also has two cases, oop arrays and everything else.
  4544 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4545 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4546 //
  4547 // These steps fold up nicely if and when the cloned object's klass
  4548 // can be sharply typed as an object array, a type array, or an instance.
  4549 //
  4550 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4551   PhiNode* result_val;
  4553   // Set the reexecute bit for the interpreter to reexecute
  4554   // the bytecode that invokes Object.clone if deoptimization happens.
  4555   { PreserveReexecuteState preexecs(this);
  4556     jvms()->set_should_reexecute(true);
  4558     Node* obj = null_check_receiver();
  4559     if (stopped())  return true;
  4561     Node* obj_klass = load_object_klass(obj);
  4562     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4563     const TypeOopPtr*   toop   = ((tklass != NULL)
  4564                                 ? tklass->as_instance_type()
  4565                                 : TypeInstPtr::NOTNULL);
  4567     // Conservatively insert a memory barrier on all memory slices.
  4568     // Do not let writes into the original float below the clone.
  4569     insert_mem_bar(Op_MemBarCPUOrder);
  4571     // paths into result_reg:
  4572     enum {
  4573       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4574       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4575       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4576       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4577       PATH_LIMIT
  4578     };
  4579     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4580     result_val             = new(C) PhiNode(result_reg,
  4581                                             TypeInstPtr::NOTNULL);
  4582     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4583     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4584                                             TypePtr::BOTTOM);
  4585     record_for_igvn(result_reg);
  4587     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4588     int raw_adr_idx = Compile::AliasIdxRaw;
  4590     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4591     if (array_ctl != NULL) {
  4592       // It's an array.
  4593       PreserveJVMState pjvms(this);
  4594       set_control(array_ctl);
  4595       Node* obj_length = load_array_length(obj);
  4596       Node* obj_size  = NULL;
  4597       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4599       if (!use_ReduceInitialCardMarks()) {
  4600         // If it is an oop array, it requires very special treatment,
  4601         // because card marking is required on each card of the array.
  4602         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4603         if (is_obja != NULL) {
  4604           PreserveJVMState pjvms2(this);
  4605           set_control(is_obja);
  4606           // Generate a direct call to the right arraycopy function(s).
  4607           bool disjoint_bases = true;
  4608           bool length_never_negative = true;
  4609           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4610                              obj, intcon(0), alloc_obj, intcon(0),
  4611                              obj_length,
  4612                              disjoint_bases, length_never_negative);
  4613           result_reg->init_req(_objArray_path, control());
  4614           result_val->init_req(_objArray_path, alloc_obj);
  4615           result_i_o ->set_req(_objArray_path, i_o());
  4616           result_mem ->set_req(_objArray_path, reset_memory());
  4619       // Otherwise, there are no card marks to worry about.
  4620       // (We can dispense with card marks if we know the allocation
  4621       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4622       //  causes the non-eden paths to take compensating steps to
  4623       //  simulate a fresh allocation, so that no further
  4624       //  card marks are required in compiled code to initialize
  4625       //  the object.)
  4627       if (!stopped()) {
  4628         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4630         // Present the results of the copy.
  4631         result_reg->init_req(_array_path, control());
  4632         result_val->init_req(_array_path, alloc_obj);
  4633         result_i_o ->set_req(_array_path, i_o());
  4634         result_mem ->set_req(_array_path, reset_memory());
  4638     // We only go to the instance fast case code if we pass a number of guards.
  4639     // The paths which do not pass are accumulated in the slow_region.
  4640     RegionNode* slow_region = new (C) RegionNode(1);
  4641     record_for_igvn(slow_region);
  4642     if (!stopped()) {
  4643       // It's an instance (we did array above).  Make the slow-path tests.
  4644       // If this is a virtual call, we generate a funny guard.  We grab
  4645       // the vtable entry corresponding to clone() from the target object.
  4646       // If the target method which we are calling happens to be the
  4647       // Object clone() method, we pass the guard.  We do not need this
  4648       // guard for non-virtual calls; the caller is known to be the native
  4649       // Object clone().
  4650       if (is_virtual) {
  4651         generate_virtual_guard(obj_klass, slow_region);
  4654       // The object must be cloneable and must not have a finalizer.
  4655       // Both of these conditions may be checked in a single test.
  4656       // We could optimize the cloneable test further, but we don't care.
  4657       generate_access_flags_guard(obj_klass,
  4658                                   // Test both conditions:
  4659                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4660                                   // Must be cloneable but not finalizer:
  4661                                   JVM_ACC_IS_CLONEABLE,
  4662                                   slow_region);
  4665     if (!stopped()) {
  4666       // It's an instance, and it passed the slow-path tests.
  4667       PreserveJVMState pjvms(this);
  4668       Node* obj_size  = NULL;
  4669       // Need to deoptimize on exception from allocation since Object.clone intrinsic
  4670       // is reexecuted if deoptimization occurs and there could be problems when merging
  4671       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
  4672       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
  4674       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4676       // Present the results of the slow call.
  4677       result_reg->init_req(_instance_path, control());
  4678       result_val->init_req(_instance_path, alloc_obj);
  4679       result_i_o ->set_req(_instance_path, i_o());
  4680       result_mem ->set_req(_instance_path, reset_memory());
  4683     // Generate code for the slow case.  We make a call to clone().
  4684     set_control(_gvn.transform(slow_region));
  4685     if (!stopped()) {
  4686       PreserveJVMState pjvms(this);
  4687       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4688       Node* slow_result = set_results_for_java_call(slow_call);
  4689       // this->control() comes from set_results_for_java_call
  4690       result_reg->init_req(_slow_path, control());
  4691       result_val->init_req(_slow_path, slow_result);
  4692       result_i_o ->set_req(_slow_path, i_o());
  4693       result_mem ->set_req(_slow_path, reset_memory());
  4696     // Return the combined state.
  4697     set_control(    _gvn.transform(result_reg));
  4698     set_i_o(        _gvn.transform(result_i_o));
  4699     set_all_memory( _gvn.transform(result_mem));
  4700   } // original reexecute is set back here
  4702   set_result(_gvn.transform(result_val));
  4703   return true;
  4706 //------------------------------basictype2arraycopy----------------------------
  4707 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4708                                             Node* src_offset,
  4709                                             Node* dest_offset,
  4710                                             bool disjoint_bases,
  4711                                             const char* &name,
  4712                                             bool dest_uninitialized) {
  4713   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4714   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4716   bool aligned = false;
  4717   bool disjoint = disjoint_bases;
  4719   // if the offsets are the same, we can treat the memory regions as
  4720   // disjoint, because either the memory regions are in different arrays,
  4721   // or they are identical (which we can treat as disjoint.)  We can also
  4722   // treat a copy with a destination index  less that the source index
  4723   // as disjoint since a low->high copy will work correctly in this case.
  4724   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4725       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4726     // both indices are constants
  4727     int s_offs = src_offset_inttype->get_con();
  4728     int d_offs = dest_offset_inttype->get_con();
  4729     int element_size = type2aelembytes(t);
  4730     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4731               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4732     if (s_offs >= d_offs)  disjoint = true;
  4733   } else if (src_offset == dest_offset && src_offset != NULL) {
  4734     // This can occur if the offsets are identical non-constants.
  4735     disjoint = true;
  4738   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4742 //------------------------------inline_arraycopy-----------------------
  4743 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4744 //                                                      Object dest, int destPos,
  4745 //                                                      int length);
  4746 bool LibraryCallKit::inline_arraycopy() {
  4747   // Get the arguments.
  4748   Node* src         = argument(0);  // type: oop
  4749   Node* src_offset  = argument(1);  // type: int
  4750   Node* dest        = argument(2);  // type: oop
  4751   Node* dest_offset = argument(3);  // type: int
  4752   Node* length      = argument(4);  // type: int
  4754   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4755   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4756   // is.  The checks we choose to mandate at compile time are:
  4757   //
  4758   // (1) src and dest are arrays.
  4759   const Type* src_type  = src->Value(&_gvn);
  4760   const Type* dest_type = dest->Value(&_gvn);
  4761   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4762   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4764   // Do we have the type of src?
  4765   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4766   // Do we have the type of dest?
  4767   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4768   // Is the type for src from speculation?
  4769   bool src_spec = false;
  4770   // Is the type for dest from speculation?
  4771   bool dest_spec = false;
  4773   if (!has_src || !has_dest) {
  4774     // We don't have sufficient type information, let's see if
  4775     // speculative types can help. We need to have types for both src
  4776     // and dest so that it pays off.
  4778     // Do we already have or could we have type information for src
  4779     bool could_have_src = has_src;
  4780     // Do we already have or could we have type information for dest
  4781     bool could_have_dest = has_dest;
  4783     ciKlass* src_k = NULL;
  4784     if (!has_src) {
  4785       src_k = src_type->speculative_type();
  4786       if (src_k != NULL && src_k->is_array_klass()) {
  4787         could_have_src = true;
  4791     ciKlass* dest_k = NULL;
  4792     if (!has_dest) {
  4793       dest_k = dest_type->speculative_type();
  4794       if (dest_k != NULL && dest_k->is_array_klass()) {
  4795         could_have_dest = true;
  4799     if (could_have_src && could_have_dest) {
  4800       // This is going to pay off so emit the required guards
  4801       if (!has_src) {
  4802         src = maybe_cast_profiled_obj(src, src_k);
  4803         src_type  = _gvn.type(src);
  4804         top_src  = src_type->isa_aryptr();
  4805         has_src = (top_src != NULL && top_src->klass() != NULL);
  4806         src_spec = true;
  4808       if (!has_dest) {
  4809         dest = maybe_cast_profiled_obj(dest, dest_k);
  4810         dest_type  = _gvn.type(dest);
  4811         top_dest  = dest_type->isa_aryptr();
  4812         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4813         dest_spec = true;
  4818   if (!has_src || !has_dest) {
  4819     // Conservatively insert a memory barrier on all memory slices.
  4820     // Do not let writes into the source float below the arraycopy.
  4821     insert_mem_bar(Op_MemBarCPUOrder);
  4823     // Call StubRoutines::generic_arraycopy stub.
  4824     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4825                        src, src_offset, dest, dest_offset, length);
  4827     // Do not let reads from the destination float above the arraycopy.
  4828     // Since we cannot type the arrays, we don't know which slices
  4829     // might be affected.  We could restrict this barrier only to those
  4830     // memory slices which pertain to array elements--but don't bother.
  4831     if (!InsertMemBarAfterArraycopy)
  4832       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4833       insert_mem_bar(Op_MemBarCPUOrder);
  4834     return true;
  4837   // (2) src and dest arrays must have elements of the same BasicType
  4838   // Figure out the size and type of the elements we will be copying.
  4839   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4840   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4841   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4842   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4844   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4845     // The component types are not the same or are not recognized.  Punt.
  4846     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4847     generate_slow_arraycopy(TypePtr::BOTTOM,
  4848                             src, src_offset, dest, dest_offset, length,
  4849                             /*dest_uninitialized*/false);
  4850     return true;
  4853   if (src_elem == T_OBJECT) {
  4854     // If both arrays are object arrays then having the exact types
  4855     // for both will remove the need for a subtype check at runtime
  4856     // before the call and may make it possible to pick a faster copy
  4857     // routine (without a subtype check on every element)
  4858     // Do we have the exact type of src?
  4859     bool could_have_src = src_spec;
  4860     // Do we have the exact type of dest?
  4861     bool could_have_dest = dest_spec;
  4862     ciKlass* src_k = top_src->klass();
  4863     ciKlass* dest_k = top_dest->klass();
  4864     if (!src_spec) {
  4865       src_k = src_type->speculative_type();
  4866       if (src_k != NULL && src_k->is_array_klass()) {
  4867           could_have_src = true;
  4870     if (!dest_spec) {
  4871       dest_k = dest_type->speculative_type();
  4872       if (dest_k != NULL && dest_k->is_array_klass()) {
  4873         could_have_dest = true;
  4876     if (could_have_src && could_have_dest) {
  4877       // If we can have both exact types, emit the missing guards
  4878       if (could_have_src && !src_spec) {
  4879         src = maybe_cast_profiled_obj(src, src_k);
  4881       if (could_have_dest && !dest_spec) {
  4882         dest = maybe_cast_profiled_obj(dest, dest_k);
  4887   //---------------------------------------------------------------------------
  4888   // We will make a fast path for this call to arraycopy.
  4890   // We have the following tests left to perform:
  4891   //
  4892   // (3) src and dest must not be null.
  4893   // (4) src_offset must not be negative.
  4894   // (5) dest_offset must not be negative.
  4895   // (6) length must not be negative.
  4896   // (7) src_offset + length must not exceed length of src.
  4897   // (8) dest_offset + length must not exceed length of dest.
  4898   // (9) each element of an oop array must be assignable
  4900   RegionNode* slow_region = new (C) RegionNode(1);
  4901   record_for_igvn(slow_region);
  4903   // (3) operands must not be null
  4904   // We currently perform our null checks with the null_check routine.
  4905   // This means that the null exceptions will be reported in the caller
  4906   // rather than (correctly) reported inside of the native arraycopy call.
  4907   // This should be corrected, given time.  We do our null check with the
  4908   // stack pointer restored.
  4909   src  = null_check(src,  T_ARRAY);
  4910   dest = null_check(dest, T_ARRAY);
  4912   // (4) src_offset must not be negative.
  4913   generate_negative_guard(src_offset, slow_region);
  4915   // (5) dest_offset must not be negative.
  4916   generate_negative_guard(dest_offset, slow_region);
  4918   // (6) length must not be negative (moved to generate_arraycopy()).
  4919   // generate_negative_guard(length, slow_region);
  4921   // (7) src_offset + length must not exceed length of src.
  4922   generate_limit_guard(src_offset, length,
  4923                        load_array_length(src),
  4924                        slow_region);
  4926   // (8) dest_offset + length must not exceed length of dest.
  4927   generate_limit_guard(dest_offset, length,
  4928                        load_array_length(dest),
  4929                        slow_region);
  4931   // (9) each element of an oop array must be assignable
  4932   // The generate_arraycopy subroutine checks this.
  4934   // This is where the memory effects are placed:
  4935   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4936   generate_arraycopy(adr_type, dest_elem,
  4937                      src, src_offset, dest, dest_offset, length,
  4938                      false, false, slow_region);
  4940   return true;
  4943 //-----------------------------generate_arraycopy----------------------
  4944 // Generate an optimized call to arraycopy.
  4945 // Caller must guard against non-arrays.
  4946 // Caller must determine a common array basic-type for both arrays.
  4947 // Caller must validate offsets against array bounds.
  4948 // The slow_region has already collected guard failure paths
  4949 // (such as out of bounds length or non-conformable array types).
  4950 // The generated code has this shape, in general:
  4951 //
  4952 //     if (length == 0)  return   // via zero_path
  4953 //     slowval = -1
  4954 //     if (types unknown) {
  4955 //       slowval = call generic copy loop
  4956 //       if (slowval == 0)  return  // via checked_path
  4957 //     } else if (indexes in bounds) {
  4958 //       if ((is object array) && !(array type check)) {
  4959 //         slowval = call checked copy loop
  4960 //         if (slowval == 0)  return  // via checked_path
  4961 //       } else {
  4962 //         call bulk copy loop
  4963 //         return  // via fast_path
  4964 //       }
  4965 //     }
  4966 //     // adjust params for remaining work:
  4967 //     if (slowval != -1) {
  4968 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4969 //     }
  4970 //   slow_region:
  4971 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4972 //     return  // via slow_call_path
  4973 //
  4974 // This routine is used from several intrinsics:  System.arraycopy,
  4975 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4976 //
  4977 void
  4978 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4979                                    BasicType basic_elem_type,
  4980                                    Node* src,  Node* src_offset,
  4981                                    Node* dest, Node* dest_offset,
  4982                                    Node* copy_length,
  4983                                    bool disjoint_bases,
  4984                                    bool length_never_negative,
  4985                                    RegionNode* slow_region) {
  4987   if (slow_region == NULL) {
  4988     slow_region = new(C) RegionNode(1);
  4989     record_for_igvn(slow_region);
  4992   Node* original_dest      = dest;
  4993   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4994   bool  dest_uninitialized = false;
  4996   // See if this is the initialization of a newly-allocated array.
  4997   // If so, we will take responsibility here for initializing it to zero.
  4998   // (Note:  Because tightly_coupled_allocation performs checks on the
  4999   // out-edges of the dest, we need to avoid making derived pointers
  5000   // from it until we have checked its uses.)
  5001   if (ReduceBulkZeroing
  5002       && !ZeroTLAB              // pointless if already zeroed
  5003       && basic_elem_type != T_CONFLICT // avoid corner case
  5004       && !src->eqv_uncast(dest)
  5005       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  5006           != NULL)
  5007       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  5008       && alloc->maybe_set_complete(&_gvn)) {
  5009     // "You break it, you buy it."
  5010     InitializeNode* init = alloc->initialization();
  5011     assert(init->is_complete(), "we just did this");
  5012     init->set_complete_with_arraycopy();
  5013     assert(dest->is_CheckCastPP(), "sanity");
  5014     assert(dest->in(0)->in(0) == init, "dest pinned");
  5015     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  5016     // From this point on, every exit path is responsible for
  5017     // initializing any non-copied parts of the object to zero.
  5018     // Also, if this flag is set we make sure that arraycopy interacts properly
  5019     // with G1, eliding pre-barriers. See CR 6627983.
  5020     dest_uninitialized = true;
  5021   } else {
  5022     // No zeroing elimination here.
  5023     alloc             = NULL;
  5024     //original_dest   = dest;
  5025     //dest_uninitialized = false;
  5028   // Results are placed here:
  5029   enum { fast_path        = 1,  // normal void-returning assembly stub
  5030          checked_path     = 2,  // special assembly stub with cleanup
  5031          slow_call_path   = 3,  // something went wrong; call the VM
  5032          zero_path        = 4,  // bypass when length of copy is zero
  5033          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  5034          PATH_LIMIT       = 6
  5035   };
  5036   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  5037   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  5038   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  5039   record_for_igvn(result_region);
  5040   _gvn.set_type_bottom(result_i_o);
  5041   _gvn.set_type_bottom(result_memory);
  5042   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  5044   // The slow_control path:
  5045   Node* slow_control;
  5046   Node* slow_i_o = i_o();
  5047   Node* slow_mem = memory(adr_type);
  5048   debug_only(slow_control = (Node*) badAddress);
  5050   // Checked control path:
  5051   Node* checked_control = top();
  5052   Node* checked_mem     = NULL;
  5053   Node* checked_i_o     = NULL;
  5054   Node* checked_value   = NULL;
  5056   if (basic_elem_type == T_CONFLICT) {
  5057     assert(!dest_uninitialized, "");
  5058     Node* cv = generate_generic_arraycopy(adr_type,
  5059                                           src, src_offset, dest, dest_offset,
  5060                                           copy_length, dest_uninitialized);
  5061     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5062     checked_control = control();
  5063     checked_i_o     = i_o();
  5064     checked_mem     = memory(adr_type);
  5065     checked_value   = cv;
  5066     set_control(top());         // no fast path
  5069   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  5070   if (not_pos != NULL) {
  5071     PreserveJVMState pjvms(this);
  5072     set_control(not_pos);
  5074     // (6) length must not be negative.
  5075     if (!length_never_negative) {
  5076       generate_negative_guard(copy_length, slow_region);
  5079     // copy_length is 0.
  5080     if (!stopped() && dest_uninitialized) {
  5081       Node* dest_length = alloc->in(AllocateNode::ALength);
  5082       if (copy_length->eqv_uncast(dest_length)
  5083           || _gvn.find_int_con(dest_length, 1) <= 0) {
  5084         // There is no zeroing to do. No need for a secondary raw memory barrier.
  5085       } else {
  5086         // Clear the whole thing since there are no source elements to copy.
  5087         generate_clear_array(adr_type, dest, basic_elem_type,
  5088                              intcon(0), NULL,
  5089                              alloc->in(AllocateNode::AllocSize));
  5090         // Use a secondary InitializeNode as raw memory barrier.
  5091         // Currently it is needed only on this path since other
  5092         // paths have stub or runtime calls as raw memory barriers.
  5093         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5094                                                        Compile::AliasIdxRaw,
  5095                                                        top())->as_Initialize();
  5096         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5100     // Present the results of the fast call.
  5101     result_region->init_req(zero_path, control());
  5102     result_i_o   ->init_req(zero_path, i_o());
  5103     result_memory->init_req(zero_path, memory(adr_type));
  5106   if (!stopped() && dest_uninitialized) {
  5107     // We have to initialize the *uncopied* part of the array to zero.
  5108     // The copy destination is the slice dest[off..off+len].  The other slices
  5109     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5110     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5111     Node* dest_length = alloc->in(AllocateNode::ALength);
  5112     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  5113                                                           copy_length));
  5115     // If there is a head section that needs zeroing, do it now.
  5116     if (find_int_con(dest_offset, -1) != 0) {
  5117       generate_clear_array(adr_type, dest, basic_elem_type,
  5118                            intcon(0), dest_offset,
  5119                            NULL);
  5122     // Next, perform a dynamic check on the tail length.
  5123     // It is often zero, and we can win big if we prove this.
  5124     // There are two wins:  Avoid generating the ClearArray
  5125     // with its attendant messy index arithmetic, and upgrade
  5126     // the copy to a more hardware-friendly word size of 64 bits.
  5127     Node* tail_ctl = NULL;
  5128     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5129       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  5130       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  5131       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5132       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5135     // At this point, let's assume there is no tail.
  5136     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5137       // There is no tail.  Try an upgrade to a 64-bit copy.
  5138       bool didit = false;
  5139       { PreserveJVMState pjvms(this);
  5140         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5141                                          src, src_offset, dest, dest_offset,
  5142                                          dest_size, dest_uninitialized);
  5143         if (didit) {
  5144           // Present the results of the block-copying fast call.
  5145           result_region->init_req(bcopy_path, control());
  5146           result_i_o   ->init_req(bcopy_path, i_o());
  5147           result_memory->init_req(bcopy_path, memory(adr_type));
  5150       if (didit)
  5151         set_control(top());     // no regular fast path
  5154     // Clear the tail, if any.
  5155     if (tail_ctl != NULL) {
  5156       Node* notail_ctl = stopped() ? NULL : control();
  5157       set_control(tail_ctl);
  5158       if (notail_ctl == NULL) {
  5159         generate_clear_array(adr_type, dest, basic_elem_type,
  5160                              dest_tail, NULL,
  5161                              dest_size);
  5162       } else {
  5163         // Make a local merge.
  5164         Node* done_ctl = new(C) RegionNode(3);
  5165         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5166         done_ctl->init_req(1, notail_ctl);
  5167         done_mem->init_req(1, memory(adr_type));
  5168         generate_clear_array(adr_type, dest, basic_elem_type,
  5169                              dest_tail, NULL,
  5170                              dest_size);
  5171         done_ctl->init_req(2, control());
  5172         done_mem->init_req(2, memory(adr_type));
  5173         set_control( _gvn.transform(done_ctl));
  5174         set_memory(  _gvn.transform(done_mem), adr_type );
  5179   BasicType copy_type = basic_elem_type;
  5180   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5181   if (!stopped() && copy_type == T_OBJECT) {
  5182     // If src and dest have compatible element types, we can copy bits.
  5183     // Types S[] and D[] are compatible if D is a supertype of S.
  5184     //
  5185     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5186     // which performs a fast optimistic per-oop check, and backs off
  5187     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5188     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5190     // Get the Klass* for both src and dest
  5191     Node* src_klass  = load_object_klass(src);
  5192     Node* dest_klass = load_object_klass(dest);
  5194     // Generate the subtype check.
  5195     // This might fold up statically, or then again it might not.
  5196     //
  5197     // Non-static example:  Copying List<String>.elements to a new String[].
  5198     // The backing store for a List<String> is always an Object[],
  5199     // but its elements are always type String, if the generic types
  5200     // are correct at the source level.
  5201     //
  5202     // Test S[] against D[], not S against D, because (probably)
  5203     // the secondary supertype cache is less busy for S[] than S.
  5204     // This usually only matters when D is an interface.
  5205     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5206     // Plug failing path into checked_oop_disjoint_arraycopy
  5207     if (not_subtype_ctrl != top()) {
  5208       PreserveJVMState pjvms(this);
  5209       set_control(not_subtype_ctrl);
  5210       // (At this point we can assume disjoint_bases, since types differ.)
  5211       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5212       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5213       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5214       Node* dest_elem_klass = _gvn.transform(n1);
  5215       Node* cv = generate_checkcast_arraycopy(adr_type,
  5216                                               dest_elem_klass,
  5217                                               src, src_offset, dest, dest_offset,
  5218                                               ConvI2X(copy_length), dest_uninitialized);
  5219       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5220       checked_control = control();
  5221       checked_i_o     = i_o();
  5222       checked_mem     = memory(adr_type);
  5223       checked_value   = cv;
  5225     // At this point we know we do not need type checks on oop stores.
  5227     // Let's see if we need card marks:
  5228     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5229       // If we do not need card marks, copy using the jint or jlong stub.
  5230       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5231       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5232              "sizes agree");
  5236   if (!stopped()) {
  5237     // Generate the fast path, if possible.
  5238     PreserveJVMState pjvms(this);
  5239     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5240                                  src, src_offset, dest, dest_offset,
  5241                                  ConvI2X(copy_length), dest_uninitialized);
  5243     // Present the results of the fast call.
  5244     result_region->init_req(fast_path, control());
  5245     result_i_o   ->init_req(fast_path, i_o());
  5246     result_memory->init_req(fast_path, memory(adr_type));
  5249   // Here are all the slow paths up to this point, in one bundle:
  5250   slow_control = top();
  5251   if (slow_region != NULL)
  5252     slow_control = _gvn.transform(slow_region);
  5253   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5255   set_control(checked_control);
  5256   if (!stopped()) {
  5257     // Clean up after the checked call.
  5258     // The returned value is either 0 or -1^K,
  5259     // where K = number of partially transferred array elements.
  5260     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5261     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5262     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5264     // If it is 0, we are done, so transfer to the end.
  5265     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5266     result_region->init_req(checked_path, checks_done);
  5267     result_i_o   ->init_req(checked_path, checked_i_o);
  5268     result_memory->init_req(checked_path, checked_mem);
  5270     // If it is not zero, merge into the slow call.
  5271     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5272     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5273     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5274     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5275     record_for_igvn(slow_reg2);
  5276     slow_reg2  ->init_req(1, slow_control);
  5277     slow_i_o2  ->init_req(1, slow_i_o);
  5278     slow_mem2  ->init_req(1, slow_mem);
  5279     slow_reg2  ->init_req(2, control());
  5280     slow_i_o2  ->init_req(2, checked_i_o);
  5281     slow_mem2  ->init_req(2, checked_mem);
  5283     slow_control = _gvn.transform(slow_reg2);
  5284     slow_i_o     = _gvn.transform(slow_i_o2);
  5285     slow_mem     = _gvn.transform(slow_mem2);
  5287     if (alloc != NULL) {
  5288       // We'll restart from the very beginning, after zeroing the whole thing.
  5289       // This can cause double writes, but that's OK since dest is brand new.
  5290       // So we ignore the low 31 bits of the value returned from the stub.
  5291     } else {
  5292       // We must continue the copy exactly where it failed, or else
  5293       // another thread might see the wrong number of writes to dest.
  5294       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5295       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5296       slow_offset->init_req(1, intcon(0));
  5297       slow_offset->init_req(2, checked_offset);
  5298       slow_offset  = _gvn.transform(slow_offset);
  5300       // Adjust the arguments by the conditionally incoming offset.
  5301       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5302       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5303       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5305       // Tweak the node variables to adjust the code produced below:
  5306       src_offset  = src_off_plus;
  5307       dest_offset = dest_off_plus;
  5308       copy_length = length_minus;
  5312   set_control(slow_control);
  5313   if (!stopped()) {
  5314     // Generate the slow path, if needed.
  5315     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5317     set_memory(slow_mem, adr_type);
  5318     set_i_o(slow_i_o);
  5320     if (dest_uninitialized) {
  5321       generate_clear_array(adr_type, dest, basic_elem_type,
  5322                            intcon(0), NULL,
  5323                            alloc->in(AllocateNode::AllocSize));
  5326     generate_slow_arraycopy(adr_type,
  5327                             src, src_offset, dest, dest_offset,
  5328                             copy_length, /*dest_uninitialized*/false);
  5330     result_region->init_req(slow_call_path, control());
  5331     result_i_o   ->init_req(slow_call_path, i_o());
  5332     result_memory->init_req(slow_call_path, memory(adr_type));
  5335   // Remove unused edges.
  5336   for (uint i = 1; i < result_region->req(); i++) {
  5337     if (result_region->in(i) == NULL)
  5338       result_region->init_req(i, top());
  5341   // Finished; return the combined state.
  5342   set_control( _gvn.transform(result_region));
  5343   set_i_o(     _gvn.transform(result_i_o)    );
  5344   set_memory(  _gvn.transform(result_memory), adr_type );
  5346   // The memory edges above are precise in order to model effects around
  5347   // array copies accurately to allow value numbering of field loads around
  5348   // arraycopy.  Such field loads, both before and after, are common in Java
  5349   // collections and similar classes involving header/array data structures.
  5350   //
  5351   // But with low number of register or when some registers are used or killed
  5352   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5353   // The next memory barrier is added to avoid it. If the arraycopy can be
  5354   // optimized away (which it can, sometimes) then we can manually remove
  5355   // the membar also.
  5356   //
  5357   // Do not let reads from the cloned object float above the arraycopy.
  5358   if (alloc != NULL) {
  5359     // Do not let stores that initialize this object be reordered with
  5360     // a subsequent store that would make this object accessible by
  5361     // other threads.
  5362     // Record what AllocateNode this StoreStore protects so that
  5363     // escape analysis can go from the MemBarStoreStoreNode to the
  5364     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5365     // based on the escape status of the AllocateNode.
  5366     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5367   } else if (InsertMemBarAfterArraycopy)
  5368     insert_mem_bar(Op_MemBarCPUOrder);
  5372 // Helper function which determines if an arraycopy immediately follows
  5373 // an allocation, with no intervening tests or other escapes for the object.
  5374 AllocateArrayNode*
  5375 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5376                                            RegionNode* slow_region) {
  5377   if (stopped())             return NULL;  // no fast path
  5378   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5380   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5381   if (alloc == NULL)  return NULL;
  5383   Node* rawmem = memory(Compile::AliasIdxRaw);
  5384   // Is the allocation's memory state untouched?
  5385   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5386     // Bail out if there have been raw-memory effects since the allocation.
  5387     // (Example:  There might have been a call or safepoint.)
  5388     return NULL;
  5390   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5391   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5392     return NULL;
  5395   // There must be no unexpected observers of this allocation.
  5396   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5397     Node* obs = ptr->fast_out(i);
  5398     if (obs != this->map()) {
  5399       return NULL;
  5403   // This arraycopy must unconditionally follow the allocation of the ptr.
  5404   Node* alloc_ctl = ptr->in(0);
  5405   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5407   Node* ctl = control();
  5408   while (ctl != alloc_ctl) {
  5409     // There may be guards which feed into the slow_region.
  5410     // Any other control flow means that we might not get a chance
  5411     // to finish initializing the allocated object.
  5412     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5413       IfNode* iff = ctl->in(0)->as_If();
  5414       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5415       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5416       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5417         ctl = iff->in(0);       // This test feeds the known slow_region.
  5418         continue;
  5420       // One more try:  Various low-level checks bottom out in
  5421       // uncommon traps.  If the debug-info of the trap omits
  5422       // any reference to the allocation, as we've already
  5423       // observed, then there can be no objection to the trap.
  5424       bool found_trap = false;
  5425       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5426         Node* obs = not_ctl->fast_out(j);
  5427         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5428             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5429           found_trap = true; break;
  5432       if (found_trap) {
  5433         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5434         continue;
  5437     return NULL;
  5440   // If we get this far, we have an allocation which immediately
  5441   // precedes the arraycopy, and we can take over zeroing the new object.
  5442   // The arraycopy will finish the initialization, and provide
  5443   // a new control state to which we will anchor the destination pointer.
  5445   return alloc;
  5448 // Helper for initialization of arrays, creating a ClearArray.
  5449 // It writes zero bits in [start..end), within the body of an array object.
  5450 // The memory effects are all chained onto the 'adr_type' alias category.
  5451 //
  5452 // Since the object is otherwise uninitialized, we are free
  5453 // to put a little "slop" around the edges of the cleared area,
  5454 // as long as it does not go back into the array's header,
  5455 // or beyond the array end within the heap.
  5456 //
  5457 // The lower edge can be rounded down to the nearest jint and the
  5458 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5459 //
  5460 // Arguments:
  5461 //   adr_type           memory slice where writes are generated
  5462 //   dest               oop of the destination array
  5463 //   basic_elem_type    element type of the destination
  5464 //   slice_idx          array index of first element to store
  5465 //   slice_len          number of elements to store (or NULL)
  5466 //   dest_size          total size in bytes of the array object
  5467 //
  5468 // Exactly one of slice_len or dest_size must be non-NULL.
  5469 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5470 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5471 void
  5472 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5473                                      Node* dest,
  5474                                      BasicType basic_elem_type,
  5475                                      Node* slice_idx,
  5476                                      Node* slice_len,
  5477                                      Node* dest_size) {
  5478   // one or the other but not both of slice_len and dest_size:
  5479   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5480   if (slice_len == NULL)  slice_len = top();
  5481   if (dest_size == NULL)  dest_size = top();
  5483   // operate on this memory slice:
  5484   Node* mem = memory(adr_type); // memory slice to operate on
  5486   // scaling and rounding of indexes:
  5487   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5488   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5489   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5490   int bump_bit  = (-1 << scale) & BytesPerInt;
  5492   // determine constant starts and ends
  5493   const intptr_t BIG_NEG = -128;
  5494   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5495   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5496   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5497   if (slice_len_con == 0) {
  5498     return;                     // nothing to do here
  5500   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5501   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5502   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5503     assert(end_con < 0, "not two cons");
  5504     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5505                        BytesPerLong);
  5508   if (start_con >= 0 && end_con >= 0) {
  5509     // Constant start and end.  Simple.
  5510     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5511                                        start_con, end_con, &_gvn);
  5512   } else if (start_con >= 0 && dest_size != top()) {
  5513     // Constant start, pre-rounded end after the tail of the array.
  5514     Node* end = dest_size;
  5515     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5516                                        start_con, end, &_gvn);
  5517   } else if (start_con >= 0 && slice_len != top()) {
  5518     // Constant start, non-constant end.  End needs rounding up.
  5519     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5520     intptr_t end_base  = abase + (slice_idx_con << scale);
  5521     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5522     Node*    end       = ConvI2X(slice_len);
  5523     if (scale != 0)
  5524       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5525     end_base += end_round;
  5526     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5527     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5528     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5529                                        start_con, end, &_gvn);
  5530   } else if (start_con < 0 && dest_size != top()) {
  5531     // Non-constant start, pre-rounded end after the tail of the array.
  5532     // This is almost certainly a "round-to-end" operation.
  5533     Node* start = slice_idx;
  5534     start = ConvI2X(start);
  5535     if (scale != 0)
  5536       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5537     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5538     if ((bump_bit | clear_low) != 0) {
  5539       int to_clear = (bump_bit | clear_low);
  5540       // Align up mod 8, then store a jint zero unconditionally
  5541       // just before the mod-8 boundary.
  5542       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5543           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5544         bump_bit = 0;
  5545         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5546       } else {
  5547         // Bump 'start' up to (or past) the next jint boundary:
  5548         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5549         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5551       // Round bumped 'start' down to jlong boundary in body of array.
  5552       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5553       if (bump_bit != 0) {
  5554         // Store a zero to the immediately preceding jint:
  5555         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5556         Node* p1 = basic_plus_adr(dest, x1);
  5557         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  5558         mem = _gvn.transform(mem);
  5561     Node* end = dest_size; // pre-rounded
  5562     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5563                                        start, end, &_gvn);
  5564   } else {
  5565     // Non-constant start, unrounded non-constant end.
  5566     // (Nobody zeroes a random midsection of an array using this routine.)
  5567     ShouldNotReachHere();       // fix caller
  5570   // Done.
  5571   set_memory(mem, adr_type);
  5575 bool
  5576 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5577                                          BasicType basic_elem_type,
  5578                                          AllocateNode* alloc,
  5579                                          Node* src,  Node* src_offset,
  5580                                          Node* dest, Node* dest_offset,
  5581                                          Node* dest_size, bool dest_uninitialized) {
  5582   // See if there is an advantage from block transfer.
  5583   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5584   if (scale >= LogBytesPerLong)
  5585     return false;               // it is already a block transfer
  5587   // Look at the alignment of the starting offsets.
  5588   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5590   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5591   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5592   if (src_off_con < 0 || dest_off_con < 0)
  5593     // At present, we can only understand constants.
  5594     return false;
  5596   intptr_t src_off  = abase + (src_off_con  << scale);
  5597   intptr_t dest_off = abase + (dest_off_con << scale);
  5599   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5600     // Non-aligned; too bad.
  5601     // One more chance:  Pick off an initial 32-bit word.
  5602     // This is a common case, since abase can be odd mod 8.
  5603     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5604         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5605       Node* sptr = basic_plus_adr(src,  src_off);
  5606       Node* dptr = basic_plus_adr(dest, dest_off);
  5607       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  5608       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  5609       src_off += BytesPerInt;
  5610       dest_off += BytesPerInt;
  5611     } else {
  5612       return false;
  5615   assert(src_off % BytesPerLong == 0, "");
  5616   assert(dest_off % BytesPerLong == 0, "");
  5618   // Do this copy by giant steps.
  5619   Node* sptr  = basic_plus_adr(src,  src_off);
  5620   Node* dptr  = basic_plus_adr(dest, dest_off);
  5621   Node* countx = dest_size;
  5622   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5623   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5625   bool disjoint_bases = true;   // since alloc != NULL
  5626   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5627                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5629   return true;
  5633 // Helper function; generates code for the slow case.
  5634 // We make a call to a runtime method which emulates the native method,
  5635 // but without the native wrapper overhead.
  5636 void
  5637 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5638                                         Node* src,  Node* src_offset,
  5639                                         Node* dest, Node* dest_offset,
  5640                                         Node* copy_length, bool dest_uninitialized) {
  5641   assert(!dest_uninitialized, "Invariant");
  5642   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5643                                  OptoRuntime::slow_arraycopy_Type(),
  5644                                  OptoRuntime::slow_arraycopy_Java(),
  5645                                  "slow_arraycopy", adr_type,
  5646                                  src, src_offset, dest, dest_offset,
  5647                                  copy_length);
  5649   // Handle exceptions thrown by this fellow:
  5650   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5653 // Helper function; generates code for cases requiring runtime checks.
  5654 Node*
  5655 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5656                                              Node* dest_elem_klass,
  5657                                              Node* src,  Node* src_offset,
  5658                                              Node* dest, Node* dest_offset,
  5659                                              Node* copy_length, bool dest_uninitialized) {
  5660   if (stopped())  return NULL;
  5662   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5663   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5664     return NULL;
  5667   // Pick out the parameters required to perform a store-check
  5668   // for the target array.  This is an optimistic check.  It will
  5669   // look in each non-null element's class, at the desired klass's
  5670   // super_check_offset, for the desired klass.
  5671   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5672   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5673   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  5674   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5675   Node* check_value  = dest_elem_klass;
  5677   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5678   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5680   // (We know the arrays are never conjoint, because their types differ.)
  5681   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5682                                  OptoRuntime::checkcast_arraycopy_Type(),
  5683                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5684                                  // five arguments, of which two are
  5685                                  // intptr_t (jlong in LP64)
  5686                                  src_start, dest_start,
  5687                                  copy_length XTOP,
  5688                                  check_offset XTOP,
  5689                                  check_value);
  5691   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5695 // Helper function; generates code for cases requiring runtime checks.
  5696 Node*
  5697 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5698                                            Node* src,  Node* src_offset,
  5699                                            Node* dest, Node* dest_offset,
  5700                                            Node* copy_length, bool dest_uninitialized) {
  5701   assert(!dest_uninitialized, "Invariant");
  5702   if (stopped())  return NULL;
  5703   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5704   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5705     return NULL;
  5708   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5709                     OptoRuntime::generic_arraycopy_Type(),
  5710                     copyfunc_addr, "generic_arraycopy", adr_type,
  5711                     src, src_offset, dest, dest_offset, copy_length);
  5713   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5716 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5717 void
  5718 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5719                                              BasicType basic_elem_type,
  5720                                              bool disjoint_bases,
  5721                                              Node* src,  Node* src_offset,
  5722                                              Node* dest, Node* dest_offset,
  5723                                              Node* copy_length, bool dest_uninitialized) {
  5724   if (stopped())  return;               // nothing to do
  5726   Node* src_start  = src;
  5727   Node* dest_start = dest;
  5728   if (src_offset != NULL || dest_offset != NULL) {
  5729     assert(src_offset != NULL && dest_offset != NULL, "");
  5730     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5731     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5734   // Figure out which arraycopy runtime method to call.
  5735   const char* copyfunc_name = "arraycopy";
  5736   address     copyfunc_addr =
  5737       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5738                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5740   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5741   make_runtime_call(RC_LEAF|RC_NO_FP,
  5742                     OptoRuntime::fast_arraycopy_Type(),
  5743                     copyfunc_addr, copyfunc_name, adr_type,
  5744                     src_start, dest_start, copy_length XTOP);
  5747 //-------------inline_encodeISOArray-----------------------------------
  5748 // encode char[] to byte[] in ISO_8859_1
  5749 bool LibraryCallKit::inline_encodeISOArray() {
  5750   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5751   // no receiver since it is static method
  5752   Node *src         = argument(0);
  5753   Node *src_offset  = argument(1);
  5754   Node *dst         = argument(2);
  5755   Node *dst_offset  = argument(3);
  5756   Node *length      = argument(4);
  5758   const Type* src_type = src->Value(&_gvn);
  5759   const Type* dst_type = dst->Value(&_gvn);
  5760   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5761   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5762   if (top_src  == NULL || top_src->klass()  == NULL ||
  5763       top_dest == NULL || top_dest->klass() == NULL) {
  5764     // failed array check
  5765     return false;
  5768   // Figure out the size and type of the elements we will be copying.
  5769   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5770   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5771   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5772     return false;
  5774   Node* src_start = array_element_address(src, src_offset, src_elem);
  5775   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5776   // 'src_start' points to src array + scaled offset
  5777   // 'dst_start' points to dst array + scaled offset
  5779   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5780   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5781   enc = _gvn.transform(enc);
  5782   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5783   set_memory(res_mem, mtype);
  5784   set_result(enc);
  5785   return true;
  5788 //-------------inline_multiplyToLen-----------------------------------
  5789 bool LibraryCallKit::inline_multiplyToLen() {
  5790   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
  5792   address stubAddr = StubRoutines::multiplyToLen();
  5793   if (stubAddr == NULL) {
  5794     return false; // Intrinsic's stub is not implemented on this platform
  5796   const char* stubName = "multiplyToLen";
  5798   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
  5800   // no receiver because it is a static method
  5801   Node* x    = argument(0);
  5802   Node* xlen = argument(1);
  5803   Node* y    = argument(2);
  5804   Node* ylen = argument(3);
  5805   Node* z    = argument(4);
  5807   const Type* x_type = x->Value(&_gvn);
  5808   const Type* y_type = y->Value(&_gvn);
  5809   const TypeAryPtr* top_x = x_type->isa_aryptr();
  5810   const TypeAryPtr* top_y = y_type->isa_aryptr();
  5811   if (top_x  == NULL || top_x->klass()  == NULL ||
  5812       top_y == NULL || top_y->klass() == NULL) {
  5813     // failed array check
  5814     return false;
  5817   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5818   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5819   if (x_elem != T_INT || y_elem != T_INT) {
  5820     return false;
  5823   // Set the original stack and the reexecute bit for the interpreter to reexecute
  5824   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
  5825   // on the return from z array allocation in runtime.
  5826   { PreserveReexecuteState preexecs(this);
  5827     jvms()->set_should_reexecute(true);
  5829     Node* x_start = array_element_address(x, intcon(0), x_elem);
  5830     Node* y_start = array_element_address(y, intcon(0), y_elem);
  5831     // 'x_start' points to x array + scaled xlen
  5832     // 'y_start' points to y array + scaled ylen
  5834     // Allocate the result array
  5835     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
  5836     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
  5837     Node* klass_node = makecon(TypeKlassPtr::make(klass));
  5839     IdealKit ideal(this);
  5841 #define __ ideal.
  5842      Node* one = __ ConI(1);
  5843      Node* zero = __ ConI(0);
  5844      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
  5845      __ set(need_alloc, zero);
  5846      __ set(z_alloc, z);
  5847      __ if_then(z, BoolTest::eq, null()); {
  5848        __ increment (need_alloc, one);
  5849      } __ else_(); {
  5850        // Update graphKit memory and control from IdealKit.
  5851        sync_kit(ideal);
  5852        Node* zlen_arg = load_array_length(z);
  5853        // Update IdealKit memory and control from graphKit.
  5854        __ sync_kit(this);
  5855        __ if_then(zlen_arg, BoolTest::lt, zlen); {
  5856          __ increment (need_alloc, one);
  5857        } __ end_if();
  5858      } __ end_if();
  5860      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
  5861        // Update graphKit memory and control from IdealKit.
  5862        sync_kit(ideal);
  5863        Node * narr = new_array(klass_node, zlen, 1);
  5864        // Update IdealKit memory and control from graphKit.
  5865        __ sync_kit(this);
  5866        __ set(z_alloc, narr);
  5867      } __ end_if();
  5869      sync_kit(ideal);
  5870      z = __ value(z_alloc);
  5871      // Can't use TypeAryPtr::INTS which uses Bottom offset.
  5872      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
  5873      // Final sync IdealKit and GraphKit.
  5874      final_sync(ideal);
  5875 #undef __
  5877     Node* z_start = array_element_address(z, intcon(0), T_INT);
  5879     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5880                                    OptoRuntime::multiplyToLen_Type(),
  5881                                    stubAddr, stubName, TypePtr::BOTTOM,
  5882                                    x_start, xlen, y_start, ylen, z_start, zlen);
  5883   } // original reexecute is set back here
  5885   C->set_has_split_ifs(true); // Has chance for split-if optimization
  5886   set_result(z);
  5887   return true;
  5890 //-------------inline_squareToLen------------------------------------
  5891 bool LibraryCallKit::inline_squareToLen() {
  5892   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
  5894   address stubAddr = StubRoutines::squareToLen();
  5895   if (stubAddr == NULL) {
  5896     return false; // Intrinsic's stub is not implemented on this platform
  5898   const char* stubName = "squareToLen";
  5900   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
  5902   Node* x    = argument(0);
  5903   Node* len  = argument(1);
  5904   Node* z    = argument(2);
  5905   Node* zlen = argument(3);
  5907   const Type* x_type = x->Value(&_gvn);
  5908   const Type* z_type = z->Value(&_gvn);
  5909   const TypeAryPtr* top_x = x_type->isa_aryptr();
  5910   const TypeAryPtr* top_z = z_type->isa_aryptr();
  5911   if (top_x  == NULL || top_x->klass()  == NULL ||
  5912       top_z  == NULL || top_z->klass()  == NULL) {
  5913     // failed array check
  5914     return false;
  5917   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5918   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5919   if (x_elem != T_INT || z_elem != T_INT) {
  5920     return false;
  5924   Node* x_start = array_element_address(x, intcon(0), x_elem);
  5925   Node* z_start = array_element_address(z, intcon(0), z_elem);
  5927   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5928                                   OptoRuntime::squareToLen_Type(),
  5929                                   stubAddr, stubName, TypePtr::BOTTOM,
  5930                                   x_start, len, z_start, zlen);
  5932   set_result(z);
  5933   return true;
  5936 //-------------inline_mulAdd------------------------------------------
  5937 bool LibraryCallKit::inline_mulAdd() {
  5938   assert(UseMulAddIntrinsic, "not implementated on this platform");
  5940   address stubAddr = StubRoutines::mulAdd();
  5941   if (stubAddr == NULL) {
  5942     return false; // Intrinsic's stub is not implemented on this platform
  5944   const char* stubName = "mulAdd";
  5946   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
  5948   Node* out      = argument(0);
  5949   Node* in       = argument(1);
  5950   Node* offset   = argument(2);
  5951   Node* len      = argument(3);
  5952   Node* k        = argument(4);
  5954   const Type* out_type = out->Value(&_gvn);
  5955   const Type* in_type = in->Value(&_gvn);
  5956   const TypeAryPtr* top_out = out_type->isa_aryptr();
  5957   const TypeAryPtr* top_in = in_type->isa_aryptr();
  5958   if (top_out  == NULL || top_out->klass()  == NULL ||
  5959       top_in == NULL || top_in->klass() == NULL) {
  5960     // failed array check
  5961     return false;
  5964   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5965   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5966   if (out_elem != T_INT || in_elem != T_INT) {
  5967     return false;
  5970   Node* outlen = load_array_length(out);
  5971   Node* new_offset = _gvn.transform(new (C) SubINode(outlen, offset));
  5972   Node* out_start = array_element_address(out, intcon(0), out_elem);
  5973   Node* in_start = array_element_address(in, intcon(0), in_elem);
  5975   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5976                                   OptoRuntime::mulAdd_Type(),
  5977                                   stubAddr, stubName, TypePtr::BOTTOM,
  5978                                   out_start,in_start, new_offset, len, k);
  5979   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5980   set_result(result);
  5981   return true;
  5984 //-------------inline_montgomeryMultiply-----------------------------------
  5985 bool LibraryCallKit::inline_montgomeryMultiply() {
  5986   address stubAddr = StubRoutines::montgomeryMultiply();
  5987   if (stubAddr == NULL) {
  5988     return false; // Intrinsic's stub is not implemented on this platform
  5991   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
  5992   const char* stubName = "montgomery_square";
  5994   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
  5996   Node* a    = argument(0);
  5997   Node* b    = argument(1);
  5998   Node* n    = argument(2);
  5999   Node* len  = argument(3);
  6000   Node* inv  = argument(4);
  6001   Node* m    = argument(6);
  6003   const Type* a_type = a->Value(&_gvn);
  6004   const TypeAryPtr* top_a = a_type->isa_aryptr();
  6005   const Type* b_type = b->Value(&_gvn);
  6006   const TypeAryPtr* top_b = b_type->isa_aryptr();
  6007   const Type* n_type = a->Value(&_gvn);
  6008   const TypeAryPtr* top_n = n_type->isa_aryptr();
  6009   const Type* m_type = a->Value(&_gvn);
  6010   const TypeAryPtr* top_m = m_type->isa_aryptr();
  6011   if (top_a  == NULL || top_a->klass()  == NULL ||
  6012       top_b == NULL || top_b->klass()  == NULL ||
  6013       top_n == NULL || top_n->klass()  == NULL ||
  6014       top_m == NULL || top_m->klass()  == NULL) {
  6015     // failed array check
  6016     return false;
  6019   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6020   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6021   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6022   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6023   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
  6024     return false;
  6027   // Make the call
  6029     Node* a_start = array_element_address(a, intcon(0), a_elem);
  6030     Node* b_start = array_element_address(b, intcon(0), b_elem);
  6031     Node* n_start = array_element_address(n, intcon(0), n_elem);
  6032     Node* m_start = array_element_address(m, intcon(0), m_elem);
  6034     Node* call = make_runtime_call(RC_LEAF,
  6035                                    OptoRuntime::montgomeryMultiply_Type(),
  6036                                    stubAddr, stubName, TypePtr::BOTTOM,
  6037                                    a_start, b_start, n_start, len, inv, top(),
  6038                                    m_start);
  6039     set_result(m);
  6042   return true;
  6045 bool LibraryCallKit::inline_montgomerySquare() {
  6046   address stubAddr = StubRoutines::montgomerySquare();
  6047   if (stubAddr == NULL) {
  6048     return false; // Intrinsic's stub is not implemented on this platform
  6051   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
  6052   const char* stubName = "montgomery_square";
  6054   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
  6056   Node* a    = argument(0);
  6057   Node* n    = argument(1);
  6058   Node* len  = argument(2);
  6059   Node* inv  = argument(3);
  6060   Node* m    = argument(5);
  6062   const Type* a_type = a->Value(&_gvn);
  6063   const TypeAryPtr* top_a = a_type->isa_aryptr();
  6064   const Type* n_type = a->Value(&_gvn);
  6065   const TypeAryPtr* top_n = n_type->isa_aryptr();
  6066   const Type* m_type = a->Value(&_gvn);
  6067   const TypeAryPtr* top_m = m_type->isa_aryptr();
  6068   if (top_a  == NULL || top_a->klass()  == NULL ||
  6069       top_n == NULL || top_n->klass()  == NULL ||
  6070       top_m == NULL || top_m->klass()  == NULL) {
  6071     // failed array check
  6072     return false;
  6075   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6076   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6077   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6078   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
  6079     return false;
  6082   // Make the call
  6084     Node* a_start = array_element_address(a, intcon(0), a_elem);
  6085     Node* n_start = array_element_address(n, intcon(0), n_elem);
  6086     Node* m_start = array_element_address(m, intcon(0), m_elem);
  6088     Node* call = make_runtime_call(RC_LEAF,
  6089                                    OptoRuntime::montgomerySquare_Type(),
  6090                                    stubAddr, stubName, TypePtr::BOTTOM,
  6091                                    a_start, n_start, len, inv, top(),
  6092                                    m_start);
  6093     set_result(m);
  6096   return true;
  6100 /**
  6101  * Calculate CRC32 for byte.
  6102  * int java.util.zip.CRC32.update(int crc, int b)
  6103  */
  6104 bool LibraryCallKit::inline_updateCRC32() {
  6105   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  6106   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  6107   // no receiver since it is static method
  6108   Node* crc  = argument(0); // type: int
  6109   Node* b    = argument(1); // type: int
  6111   /*
  6112    *    int c = ~ crc;
  6113    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  6114    *    b = b ^ (c >>> 8);
  6115    *    crc = ~b;
  6116    */
  6118   Node* M1 = intcon(-1);
  6119   crc = _gvn.transform(new (C) XorINode(crc, M1));
  6120   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  6121   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  6123   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  6124   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  6125   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  6126   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  6128   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  6129   result = _gvn.transform(new (C) XorINode(crc, result));
  6130   result = _gvn.transform(new (C) XorINode(result, M1));
  6131   set_result(result);
  6132   return true;
  6135 /**
  6136  * Calculate CRC32 for byte[] array.
  6137  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  6138  */
  6139 bool LibraryCallKit::inline_updateBytesCRC32() {
  6140   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  6141   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  6142   // no receiver since it is static method
  6143   Node* crc     = argument(0); // type: int
  6144   Node* src     = argument(1); // type: oop
  6145   Node* offset  = argument(2); // type: int
  6146   Node* length  = argument(3); // type: int
  6148   const Type* src_type = src->Value(&_gvn);
  6149   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6150   if (top_src  == NULL || top_src->klass()  == NULL) {
  6151     // failed array check
  6152     return false;
  6155   // Figure out the size and type of the elements we will be copying.
  6156   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6157   if (src_elem != T_BYTE) {
  6158     return false;
  6161   // 'src_start' points to src array + scaled offset
  6162   Node* src_start = array_element_address(src, offset, src_elem);
  6164   // We assume that range check is done by caller.
  6165   // TODO: generate range check (offset+length < src.length) in debug VM.
  6167   // Call the stub.
  6168   address stubAddr = StubRoutines::updateBytesCRC32();
  6169   const char *stubName = "updateBytesCRC32";
  6171   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  6172                                  stubAddr, stubName, TypePtr::BOTTOM,
  6173                                  crc, src_start, length);
  6174   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6175   set_result(result);
  6176   return true;
  6179 /**
  6180  * Calculate CRC32 for ByteBuffer.
  6181  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  6182  */
  6183 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  6184   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  6185   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  6186   // no receiver since it is static method
  6187   Node* crc     = argument(0); // type: int
  6188   Node* src     = argument(1); // type: long
  6189   Node* offset  = argument(3); // type: int
  6190   Node* length  = argument(4); // type: int
  6192   src = ConvL2X(src);  // adjust Java long to machine word
  6193   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  6194   offset = ConvI2X(offset);
  6196   // 'src_start' points to src array + scaled offset
  6197   Node* src_start = basic_plus_adr(top(), base, offset);
  6199   // Call the stub.
  6200   address stubAddr = StubRoutines::updateBytesCRC32();
  6201   const char *stubName = "updateBytesCRC32";
  6203   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  6204                                  stubAddr, stubName, TypePtr::BOTTOM,
  6205                                  crc, src_start, length);
  6206   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6207   set_result(result);
  6208   return true;
  6211 //----------------------------inline_reference_get----------------------------
  6212 // public T java.lang.ref.Reference.get();
  6213 bool LibraryCallKit::inline_reference_get() {
  6214   const int referent_offset = java_lang_ref_Reference::referent_offset;
  6215   guarantee(referent_offset > 0, "should have already been set");
  6217   // Get the argument:
  6218   Node* reference_obj = null_check_receiver();
  6219   if (stopped()) return true;
  6221   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  6223   ciInstanceKlass* klass = env()->Object_klass();
  6224   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  6226   Node* no_ctrl = NULL;
  6227   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  6229   // Use the pre-barrier to record the value in the referent field
  6230   pre_barrier(false /* do_load */,
  6231               control(),
  6232               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  6233               result /* pre_val */,
  6234               T_OBJECT);
  6236   // Add memory barrier to prevent commoning reads from this field
  6237   // across safepoint since GC can change its value.
  6238   insert_mem_bar(Op_MemBarCPUOrder);
  6240   set_result(result);
  6241   return true;
  6245 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  6246                                               bool is_exact=true, bool is_static=false) {
  6248   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  6249   assert(tinst != NULL, "obj is null");
  6250   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  6251   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  6253   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  6254                                                                           ciSymbol::make(fieldTypeString),
  6255                                                                           is_static);
  6256   if (field == NULL) return (Node *) NULL;
  6257   assert (field != NULL, "undefined field");
  6259   // Next code  copied from Parse::do_get_xxx():
  6261   // Compute address and memory type.
  6262   int offset  = field->offset_in_bytes();
  6263   bool is_vol = field->is_volatile();
  6264   ciType* field_klass = field->type();
  6265   assert(field_klass->is_loaded(), "should be loaded");
  6266   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  6267   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  6268   BasicType bt = field->layout_type();
  6270   // Build the resultant type of the load
  6271   const Type *type;
  6272   if (bt == T_OBJECT) {
  6273     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  6274   } else {
  6275     type = Type::get_const_basic_type(bt);
  6278   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
  6279     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
  6281   // Build the load.
  6282   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
  6283   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
  6284   // If reference is volatile, prevent following memory ops from
  6285   // floating up past the volatile read.  Also prevents commoning
  6286   // another volatile read.
  6287   if (is_vol) {
  6288     // Memory barrier includes bogus read of value to force load BEFORE membar
  6289     insert_mem_bar(Op_MemBarAcquire, loadedField);
  6291   return loadedField;
  6295 //------------------------------inline_aescrypt_Block-----------------------
  6296 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  6297   address stubAddr;
  6298   const char *stubName;
  6299   assert(UseAES, "need AES instruction support");
  6301   switch(id) {
  6302   case vmIntrinsics::_aescrypt_encryptBlock:
  6303     stubAddr = StubRoutines::aescrypt_encryptBlock();
  6304     stubName = "aescrypt_encryptBlock";
  6305     break;
  6306   case vmIntrinsics::_aescrypt_decryptBlock:
  6307     stubAddr = StubRoutines::aescrypt_decryptBlock();
  6308     stubName = "aescrypt_decryptBlock";
  6309     break;
  6311   if (stubAddr == NULL) return false;
  6313   Node* aescrypt_object = argument(0);
  6314   Node* src             = argument(1);
  6315   Node* src_offset      = argument(2);
  6316   Node* dest            = argument(3);
  6317   Node* dest_offset     = argument(4);
  6319   // (1) src and dest are arrays.
  6320   const Type* src_type = src->Value(&_gvn);
  6321   const Type* dest_type = dest->Value(&_gvn);
  6322   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6323   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6324   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6326   // for the quick and dirty code we will skip all the checks.
  6327   // we are just trying to get the call to be generated.
  6328   Node* src_start  = src;
  6329   Node* dest_start = dest;
  6330   if (src_offset != NULL || dest_offset != NULL) {
  6331     assert(src_offset != NULL && dest_offset != NULL, "");
  6332     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6333     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6336   // now need to get the start of its expanded key array
  6337   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6338   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6339   if (k_start == NULL) return false;
  6341   if (Matcher::pass_original_key_for_aes()) {
  6342     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6343     // compatibility issues between Java key expansion and SPARC crypto instructions
  6344     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6345     if (original_k_start == NULL) return false;
  6347     // Call the stub.
  6348     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  6349                       stubAddr, stubName, TypePtr::BOTTOM,
  6350                       src_start, dest_start, k_start, original_k_start);
  6351   } else {
  6352     // Call the stub.
  6353     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  6354                       stubAddr, stubName, TypePtr::BOTTOM,
  6355                       src_start, dest_start, k_start);
  6358   return true;
  6361 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  6362 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  6363   address stubAddr;
  6364   const char *stubName;
  6366   assert(UseAES, "need AES instruction support");
  6368   switch(id) {
  6369   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  6370     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  6371     stubName = "cipherBlockChaining_encryptAESCrypt";
  6372     break;
  6373   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  6374     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  6375     stubName = "cipherBlockChaining_decryptAESCrypt";
  6376     break;
  6378   if (stubAddr == NULL) return false;
  6380   Node* cipherBlockChaining_object = argument(0);
  6381   Node* src                        = argument(1);
  6382   Node* src_offset                 = argument(2);
  6383   Node* len                        = argument(3);
  6384   Node* dest                       = argument(4);
  6385   Node* dest_offset                = argument(5);
  6387   // (1) src and dest are arrays.
  6388   const Type* src_type = src->Value(&_gvn);
  6389   const Type* dest_type = dest->Value(&_gvn);
  6390   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6391   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6392   assert (top_src  != NULL && top_src->klass()  != NULL
  6393           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6395   // checks are the responsibility of the caller
  6396   Node* src_start  = src;
  6397   Node* dest_start = dest;
  6398   if (src_offset != NULL || dest_offset != NULL) {
  6399     assert(src_offset != NULL && dest_offset != NULL, "");
  6400     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6401     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6404   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  6405   // (because of the predicated logic executed earlier).
  6406   // so we cast it here safely.
  6407   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6409   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6410   if (embeddedCipherObj == NULL) return false;
  6412   // cast it to what we know it will be at runtime
  6413   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  6414   assert(tinst != NULL, "CBC obj is null");
  6415   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  6416   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6417   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
  6419   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6420   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  6421   const TypeOopPtr* xtype = aklass->as_instance_type();
  6422   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  6423   aescrypt_object = _gvn.transform(aescrypt_object);
  6425   // we need to get the start of the aescrypt_object's expanded key array
  6426   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6427   if (k_start == NULL) return false;
  6429   // similarly, get the start address of the r vector
  6430   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  6431   if (objRvec == NULL) return false;
  6432   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  6434   Node* cbcCrypt;
  6435   if (Matcher::pass_original_key_for_aes()) {
  6436     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6437     // compatibility issues between Java key expansion and SPARC crypto instructions
  6438     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6439     if (original_k_start == NULL) return false;
  6441     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  6442     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6443                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6444                                  stubAddr, stubName, TypePtr::BOTTOM,
  6445                                  src_start, dest_start, k_start, r_start, len, original_k_start);
  6446   } else {
  6447     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  6448     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6449                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6450                                  stubAddr, stubName, TypePtr::BOTTOM,
  6451                                  src_start, dest_start, k_start, r_start, len);
  6454   // return cipher length (int)
  6455   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  6456   set_result(retvalue);
  6457   return true;
  6460 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6461 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6462   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6463   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6464   if (objAESCryptKey == NULL) return (Node *) NULL;
  6466   // now have the array, need to get the start address of the K array
  6467   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6468   return k_start;
  6471 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
  6472 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6473   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  6474   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6475   if (objAESCryptKey == NULL) return (Node *) NULL;
  6477   // now have the array, need to get the start address of the lastKey array
  6478   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  6479   return original_k_start;
  6482 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6483 // Return node representing slow path of predicate check.
  6484 // the pseudo code we want to emulate with this predicate is:
  6485 // for encryption:
  6486 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6487 // for decryption:
  6488 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6489 //    note cipher==plain is more conservative than the original java code but that's OK
  6490 //
  6491 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6492   // The receiver was checked for NULL already.
  6493   Node* objCBC = argument(0);
  6495   // Load embeddedCipher field of CipherBlockChaining object.
  6496   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6498   // get AESCrypt klass for instanceOf check
  6499   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6500   // will have same classloader as CipherBlockChaining object
  6501   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6502   assert(tinst != NULL, "CBCobj is null");
  6503   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6505   // we want to do an instanceof comparison against the AESCrypt class
  6506   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6507   if (!klass_AESCrypt->is_loaded()) {
  6508     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6509     Node* ctrl = control();
  6510     set_control(top()); // no regular fast path
  6511     return ctrl;
  6513   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6515   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6516   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6517   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6519   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6521   // for encryption, we are done
  6522   if (!decrypting)
  6523     return instof_false;  // even if it is NULL
  6525   // for decryption, we need to add a further check to avoid
  6526   // taking the intrinsic path when cipher and plain are the same
  6527   // see the original java code for why.
  6528   RegionNode* region = new(C) RegionNode(3);
  6529   region->init_req(1, instof_false);
  6530   Node* src = argument(1);
  6531   Node* dest = argument(4);
  6532   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6533   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6534   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6535   region->init_req(2, src_dest_conjoint);
  6537   record_for_igvn(region);
  6538   return _gvn.transform(region);
  6541 //------------------------------inline_sha_implCompress-----------------------
  6542 //
  6543 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
  6544 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
  6545 //
  6546 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
  6547 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
  6548 //
  6549 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
  6550 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
  6551 //
  6552 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
  6553   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
  6555   Node* sha_obj = argument(0);
  6556   Node* src     = argument(1); // type oop
  6557   Node* ofs     = argument(2); // type int
  6559   const Type* src_type = src->Value(&_gvn);
  6560   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6561   if (top_src  == NULL || top_src->klass()  == NULL) {
  6562     // failed array check
  6563     return false;
  6565   // Figure out the size and type of the elements we will be copying.
  6566   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6567   if (src_elem != T_BYTE) {
  6568     return false;
  6570   // 'src_start' points to src array + offset
  6571   Node* src_start = array_element_address(src, ofs, src_elem);
  6572   Node* state = NULL;
  6573   address stubAddr;
  6574   const char *stubName;
  6576   switch(id) {
  6577   case vmIntrinsics::_sha_implCompress:
  6578     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
  6579     state = get_state_from_sha_object(sha_obj);
  6580     stubAddr = StubRoutines::sha1_implCompress();
  6581     stubName = "sha1_implCompress";
  6582     break;
  6583   case vmIntrinsics::_sha2_implCompress:
  6584     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
  6585     state = get_state_from_sha_object(sha_obj);
  6586     stubAddr = StubRoutines::sha256_implCompress();
  6587     stubName = "sha256_implCompress";
  6588     break;
  6589   case vmIntrinsics::_sha5_implCompress:
  6590     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
  6591     state = get_state_from_sha5_object(sha_obj);
  6592     stubAddr = StubRoutines::sha512_implCompress();
  6593     stubName = "sha512_implCompress";
  6594     break;
  6595   default:
  6596     fatal_unexpected_iid(id);
  6597     return false;
  6599   if (state == NULL) return false;
  6601   // Call the stub.
  6602   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
  6603                                  stubAddr, stubName, TypePtr::BOTTOM,
  6604                                  src_start, state);
  6606   return true;
  6609 //------------------------------inline_digestBase_implCompressMB-----------------------
  6610 //
  6611 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
  6612 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
  6613 //
  6614 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
  6615   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6616          "need SHA1/SHA256/SHA512 instruction support");
  6617   assert((uint)predicate < 3, "sanity");
  6618   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
  6620   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
  6621   Node* src            = argument(1); // byte[] array
  6622   Node* ofs            = argument(2); // type int
  6623   Node* limit          = argument(3); // type int
  6625   const Type* src_type = src->Value(&_gvn);
  6626   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6627   if (top_src  == NULL || top_src->klass()  == NULL) {
  6628     // failed array check
  6629     return false;
  6631   // Figure out the size and type of the elements we will be copying.
  6632   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6633   if (src_elem != T_BYTE) {
  6634     return false;
  6636   // 'src_start' points to src array + offset
  6637   Node* src_start = array_element_address(src, ofs, src_elem);
  6639   const char* klass_SHA_name = NULL;
  6640   const char* stub_name = NULL;
  6641   address     stub_addr = NULL;
  6642   bool        long_state = false;
  6644   switch (predicate) {
  6645   case 0:
  6646     if (UseSHA1Intrinsics) {
  6647       klass_SHA_name = "sun/security/provider/SHA";
  6648       stub_name = "sha1_implCompressMB";
  6649       stub_addr = StubRoutines::sha1_implCompressMB();
  6651     break;
  6652   case 1:
  6653     if (UseSHA256Intrinsics) {
  6654       klass_SHA_name = "sun/security/provider/SHA2";
  6655       stub_name = "sha256_implCompressMB";
  6656       stub_addr = StubRoutines::sha256_implCompressMB();
  6658     break;
  6659   case 2:
  6660     if (UseSHA512Intrinsics) {
  6661       klass_SHA_name = "sun/security/provider/SHA5";
  6662       stub_name = "sha512_implCompressMB";
  6663       stub_addr = StubRoutines::sha512_implCompressMB();
  6664       long_state = true;
  6666     break;
  6667   default:
  6668     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6670   if (klass_SHA_name != NULL) {
  6671     // get DigestBase klass to lookup for SHA klass
  6672     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
  6673     assert(tinst != NULL, "digestBase_obj is not instance???");
  6674     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6676     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6677     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
  6678     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6679     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
  6681   return false;
  6683 //------------------------------inline_sha_implCompressMB-----------------------
  6684 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
  6685                                                bool long_state, address stubAddr, const char *stubName,
  6686                                                Node* src_start, Node* ofs, Node* limit) {
  6687   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
  6688   const TypeOopPtr* xtype = aklass->as_instance_type();
  6689   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
  6690   sha_obj = _gvn.transform(sha_obj);
  6692   Node* state;
  6693   if (long_state) {
  6694     state = get_state_from_sha5_object(sha_obj);
  6695   } else {
  6696     state = get_state_from_sha_object(sha_obj);
  6698   if (state == NULL) return false;
  6700   // Call the stub.
  6701   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  6702                                  OptoRuntime::digestBase_implCompressMB_Type(),
  6703                                  stubAddr, stubName, TypePtr::BOTTOM,
  6704                                  src_start, state, ofs, limit);
  6705   // return ofs (int)
  6706   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6707   set_result(result);
  6709   return true;
  6712 //------------------------------get_state_from_sha_object-----------------------
  6713 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
  6714   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
  6715   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
  6716   if (sha_state == NULL) return (Node *) NULL;
  6718   // now have the array, need to get the start address of the state array
  6719   Node* state = array_element_address(sha_state, intcon(0), T_INT);
  6720   return state;
  6723 //------------------------------get_state_from_sha5_object-----------------------
  6724 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
  6725   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
  6726   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
  6727   if (sha_state == NULL) return (Node *) NULL;
  6729   // now have the array, need to get the start address of the state array
  6730   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
  6731   return state;
  6734 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
  6735 // Return node representing slow path of predicate check.
  6736 // the pseudo code we want to emulate with this predicate is:
  6737 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
  6738 //
  6739 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
  6740   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6741          "need SHA1/SHA256/SHA512 instruction support");
  6742   assert((uint)predicate < 3, "sanity");
  6744   // The receiver was checked for NULL already.
  6745   Node* digestBaseObj = argument(0);
  6747   // get DigestBase klass for instanceOf check
  6748   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
  6749   assert(tinst != NULL, "digestBaseObj is null");
  6750   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6752   const char* klass_SHA_name = NULL;
  6753   switch (predicate) {
  6754   case 0:
  6755     if (UseSHA1Intrinsics) {
  6756       // we want to do an instanceof comparison against the SHA class
  6757       klass_SHA_name = "sun/security/provider/SHA";
  6759     break;
  6760   case 1:
  6761     if (UseSHA256Intrinsics) {
  6762       // we want to do an instanceof comparison against the SHA2 class
  6763       klass_SHA_name = "sun/security/provider/SHA2";
  6765     break;
  6766   case 2:
  6767     if (UseSHA512Intrinsics) {
  6768       // we want to do an instanceof comparison against the SHA5 class
  6769       klass_SHA_name = "sun/security/provider/SHA5";
  6771     break;
  6772   default:
  6773     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6776   ciKlass* klass_SHA = NULL;
  6777   if (klass_SHA_name != NULL) {
  6778     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6780   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
  6781     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
  6782     Node* ctrl = control();
  6783     set_control(top()); // no intrinsic path
  6784     return ctrl;
  6786   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6788   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
  6789   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
  6790   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6791   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6793   return instof_false;  // even if it is NULL
  6796 bool LibraryCallKit::inline_profileBoolean() {
  6797   Node* counts = argument(1);
  6798   const TypeAryPtr* ary = NULL;
  6799   ciArray* aobj = NULL;
  6800   if (counts->is_Con()
  6801       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
  6802       && (aobj = ary->const_oop()->as_array()) != NULL
  6803       && (aobj->length() == 2)) {
  6804     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
  6805     jint false_cnt = aobj->element_value(0).as_int();
  6806     jint  true_cnt = aobj->element_value(1).as_int();
  6808     if (C->log() != NULL) {
  6809       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
  6810                      false_cnt, true_cnt);
  6813     if (false_cnt + true_cnt == 0) {
  6814       // According to profile, never executed.
  6815       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
  6816                           Deoptimization::Action_reinterpret);
  6817       return true;
  6820     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
  6821     // is a number of each value occurrences.
  6822     Node* result = argument(0);
  6823     if (false_cnt == 0 || true_cnt == 0) {
  6824       // According to profile, one value has been never seen.
  6825       int expected_val = (false_cnt == 0) ? 1 : 0;
  6827       Node* cmp  = _gvn.transform(new (C) CmpINode(result, intcon(expected_val)));
  6828       Node* test = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  6830       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
  6831       Node* fast_path = _gvn.transform(new (C) IfTrueNode(check));
  6832       Node* slow_path = _gvn.transform(new (C) IfFalseNode(check));
  6834       { // Slow path: uncommon trap for never seen value and then reexecute
  6835         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
  6836         // the value has been seen at least once.
  6837         PreserveJVMState pjvms(this);
  6838         PreserveReexecuteState preexecs(this);
  6839         jvms()->set_should_reexecute(true);
  6841         set_control(slow_path);
  6842         set_i_o(i_o());
  6844         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
  6845                             Deoptimization::Action_reinterpret);
  6847       // The guard for never seen value enables sharpening of the result and
  6848       // returning a constant. It allows to eliminate branches on the same value
  6849       // later on.
  6850       set_control(fast_path);
  6851       result = intcon(expected_val);
  6853     // Stop profiling.
  6854     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
  6855     // By replacing method body with profile data (represented as ProfileBooleanNode
  6856     // on IR level) we effectively disable profiling.
  6857     // It enables full speed execution once optimized code is generated.
  6858     Node* profile = _gvn.transform(new (C) ProfileBooleanNode(result, false_cnt, true_cnt));
  6859     C->record_for_igvn(profile);
  6860     set_result(profile);
  6861     return true;
  6862   } else {
  6863     // Continue profiling.
  6864     // Profile data isn't available at the moment. So, execute method's bytecode version.
  6865     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
  6866     // is compiled and counters aren't available since corresponding MethodHandle
  6867     // isn't a compile-time constant.
  6868     return false;

mercurial