src/share/vm/opto/escape.cpp

Fri, 04 Mar 2016 16:15:48 +0300

author
vkempik
date
Fri, 04 Mar 2016 16:15:48 +0300
changeset 8490
5601e440e5e7
parent 8318
ea7ac121a5d3
child 8604
04d83ba48607
child 9319
77603437bcee
permissions
-rw-r--r--

8130150: Implement BigInteger.montgomeryMultiply intrinsic
Reviewed-by: kvn, mdoerr

     1 /*
     2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _in_worklist(C->comp_arena()),
    41   _next_pidx(0),
    42   _collecting(true),
    43   _verify(false),
    44   _compile(C),
    45   _igvn(igvn),
    46   _node_map(C->comp_arena()) {
    47   // Add unknown java object.
    48   add_java_object(C->top(), PointsToNode::GlobalEscape);
    49   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    50   // Add ConP(#NULL) and ConN(#NULL) nodes.
    51   Node* oop_null = igvn->zerocon(T_OBJECT);
    52   assert(oop_null->_idx < nodes_size(), "should be created already");
    53   add_java_object(oop_null, PointsToNode::NoEscape);
    54   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    55   if (UseCompressedOops) {
    56     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    57     assert(noop_null->_idx < nodes_size(), "should be created already");
    58     map_ideal_node(noop_null, null_obj);
    59   }
    60   _pcmp_neq = NULL; // Should be initialized
    61   _pcmp_eq  = NULL;
    62 }
    64 bool ConnectionGraph::has_candidates(Compile *C) {
    65   // EA brings benefits only when the code has allocations and/or locks which
    66   // are represented by ideal Macro nodes.
    67   int cnt = C->macro_count();
    68   for (int i = 0; i < cnt; i++) {
    69     Node *n = C->macro_node(i);
    70     if (n->is_Allocate())
    71       return true;
    72     if (n->is_Lock()) {
    73       Node* obj = n->as_Lock()->obj_node()->uncast();
    74       if (!(obj->is_Parm() || obj->is_Con()))
    75         return true;
    76     }
    77     if (n->is_CallStaticJava() &&
    78         n->as_CallStaticJava()->is_boxing_method()) {
    79       return true;
    80     }
    81   }
    82   return false;
    83 }
    85 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    86   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    87   ResourceMark rm;
    89   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    90   // to create space for them in ConnectionGraph::_nodes[].
    91   Node* oop_null = igvn->zerocon(T_OBJECT);
    92   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    93   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    94   // Perform escape analysis
    95   if (congraph->compute_escape()) {
    96     // There are non escaping objects.
    97     C->set_congraph(congraph);
    98   }
    99   // Cleanup.
   100   if (oop_null->outcnt() == 0)
   101     igvn->hash_delete(oop_null);
   102   if (noop_null->outcnt() == 0)
   103     igvn->hash_delete(noop_null);
   104 }
   106 bool ConnectionGraph::compute_escape() {
   107   Compile* C = _compile;
   108   PhaseGVN* igvn = _igvn;
   110   // Worklists used by EA.
   111   Unique_Node_List delayed_worklist;
   112   GrowableArray<Node*> alloc_worklist;
   113   GrowableArray<Node*> ptr_cmp_worklist;
   114   GrowableArray<Node*> storestore_worklist;
   115   GrowableArray<PointsToNode*>   ptnodes_worklist;
   116   GrowableArray<JavaObjectNode*> java_objects_worklist;
   117   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   118   GrowableArray<FieldNode*>      oop_fields_worklist;
   119   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   121   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   123   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   124   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
   125   // Initialize worklist
   126   if (C->root() != NULL) {
   127     ideal_nodes.push(C->root());
   128   }
   129   // Processed ideal nodes are unique on ideal_nodes list
   130   // but several ideal nodes are mapped to the phantom_obj.
   131   // To avoid duplicated entries on the following worklists
   132   // add the phantom_obj only once to them.
   133   ptnodes_worklist.append(phantom_obj);
   134   java_objects_worklist.append(phantom_obj);
   135   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   136     Node* n = ideal_nodes.at(next);
   137     // Create PointsTo nodes and add them to Connection Graph. Called
   138     // only once per ideal node since ideal_nodes is Unique_Node list.
   139     add_node_to_connection_graph(n, &delayed_worklist);
   140     PointsToNode* ptn = ptnode_adr(n->_idx);
   141     if (ptn != NULL && ptn != phantom_obj) {
   142       ptnodes_worklist.append(ptn);
   143       if (ptn->is_JavaObject()) {
   144         java_objects_worklist.append(ptn->as_JavaObject());
   145         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   146             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   147           // Only allocations and java static calls results are interesting.
   148           non_escaped_worklist.append(ptn->as_JavaObject());
   149         }
   150       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   151         oop_fields_worklist.append(ptn->as_Field());
   152       }
   153     }
   154     if (n->is_MergeMem()) {
   155       // Collect all MergeMem nodes to add memory slices for
   156       // scalar replaceable objects in split_unique_types().
   157       _mergemem_worklist.append(n->as_MergeMem());
   158     } else if (OptimizePtrCompare && n->is_Cmp() &&
   159                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   160       // Collect compare pointers nodes.
   161       ptr_cmp_worklist.append(n);
   162     } else if (n->is_MemBarStoreStore()) {
   163       // Collect all MemBarStoreStore nodes so that depending on the
   164       // escape status of the associated Allocate node some of them
   165       // may be eliminated.
   166       storestore_worklist.append(n);
   167     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
   168                (n->req() > MemBarNode::Precedent)) {
   169       record_for_optimizer(n);
   170 #ifdef ASSERT
   171     } else if (n->is_AddP()) {
   172       // Collect address nodes for graph verification.
   173       addp_worklist.append(n);
   174 #endif
   175     }
   176     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   177       Node* m = n->fast_out(i);   // Get user
   178       ideal_nodes.push(m);
   179     }
   180   }
   181   if (non_escaped_worklist.length() == 0) {
   182     _collecting = false;
   183     return false; // Nothing to do.
   184   }
   185   // Add final simple edges to graph.
   186   while(delayed_worklist.size() > 0) {
   187     Node* n = delayed_worklist.pop();
   188     add_final_edges(n);
   189   }
   190   int ptnodes_length = ptnodes_worklist.length();
   192 #ifdef ASSERT
   193   if (VerifyConnectionGraph) {
   194     // Verify that no new simple edges could be created and all
   195     // local vars has edges.
   196     _verify = true;
   197     for (int next = 0; next < ptnodes_length; ++next) {
   198       PointsToNode* ptn = ptnodes_worklist.at(next);
   199       add_final_edges(ptn->ideal_node());
   200       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   201         ptn->dump();
   202         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   203       }
   204     }
   205     _verify = false;
   206   }
   207 #endif
   208   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
   209   // processing, calls to CI to resolve symbols (types, fields, methods)
   210   // referenced in bytecode. During symbol resolution VM may throw
   211   // an exception which CI cleans and converts to compilation failure.
   212   if (C->failing())  return false;
   214   // 2. Finish Graph construction by propagating references to all
   215   //    java objects through graph.
   216   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   217                                  java_objects_worklist, oop_fields_worklist)) {
   218     // All objects escaped or hit time or iterations limits.
   219     _collecting = false;
   220     return false;
   221   }
   223   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   224   //    scalar replaceable allocations on alloc_worklist for processing
   225   //    in split_unique_types().
   226   int non_escaped_length = non_escaped_worklist.length();
   227   for (int next = 0; next < non_escaped_length; next++) {
   228     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   229     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
   230     Node* n = ptn->ideal_node();
   231     if (n->is_Allocate()) {
   232       n->as_Allocate()->_is_non_escaping = noescape;
   233     }
   234     if (n->is_CallStaticJava()) {
   235       n->as_CallStaticJava()->_is_non_escaping = noescape;
   236     }
   237     if (noescape && ptn->scalar_replaceable()) {
   238       adjust_scalar_replaceable_state(ptn);
   239       if (ptn->scalar_replaceable()) {
   240         alloc_worklist.append(ptn->ideal_node());
   241       }
   242     }
   243   }
   245 #ifdef ASSERT
   246   if (VerifyConnectionGraph) {
   247     // Verify that graph is complete - no new edges could be added or needed.
   248     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   249                             java_objects_worklist, addp_worklist);
   250   }
   251   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   252   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   253          null_obj->edge_count() == 0 &&
   254          !null_obj->arraycopy_src() &&
   255          !null_obj->arraycopy_dst(), "sanity");
   256 #endif
   258   _collecting = false;
   260   } // TracePhase t3("connectionGraph")
   262   // 4. Optimize ideal graph based on EA information.
   263   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   264   if (has_non_escaping_obj) {
   265     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   266   }
   268 #ifndef PRODUCT
   269   if (PrintEscapeAnalysis) {
   270     dump(ptnodes_worklist); // Dump ConnectionGraph
   271   }
   272 #endif
   274   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   275 #ifdef ASSERT
   276   if (VerifyConnectionGraph) {
   277     int alloc_length = alloc_worklist.length();
   278     for (int next = 0; next < alloc_length; ++next) {
   279       Node* n = alloc_worklist.at(next);
   280       PointsToNode* ptn = ptnode_adr(n->_idx);
   281       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   282     }
   283   }
   284 #endif
   286   // 5. Separate memory graph for scalar replaceable allcations.
   287   if (has_scalar_replaceable_candidates &&
   288       C->AliasLevel() >= 3 && EliminateAllocations) {
   289     // Now use the escape information to create unique types for
   290     // scalar replaceable objects.
   291     split_unique_types(alloc_worklist);
   292     if (C->failing())  return false;
   293     C->print_method(PHASE_AFTER_EA, 2);
   295 #ifdef ASSERT
   296   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   297     tty->print("=== No allocations eliminated for ");
   298     C->method()->print_short_name();
   299     if(!EliminateAllocations) {
   300       tty->print(" since EliminateAllocations is off ===");
   301     } else if(!has_scalar_replaceable_candidates) {
   302       tty->print(" since there are no scalar replaceable candidates ===");
   303     } else if(C->AliasLevel() < 3) {
   304       tty->print(" since AliasLevel < 3 ===");
   305     }
   306     tty->cr();
   307 #endif
   308   }
   309   return has_non_escaping_obj;
   310 }
   312 // Utility function for nodes that load an object
   313 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   314   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   315   // ThreadLocal has RawPtr type.
   316   const Type* t = _igvn->type(n);
   317   if (t->make_ptr() != NULL) {
   318     Node* adr = n->in(MemNode::Address);
   319 #ifdef ASSERT
   320     if (!adr->is_AddP()) {
   321       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
   322     } else {
   323       assert((ptnode_adr(adr->_idx) == NULL ||
   324               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   325     }
   326 #endif
   327     add_local_var_and_edge(n, PointsToNode::NoEscape,
   328                            adr, delayed_worklist);
   329   }
   330 }
   332 // Populate Connection Graph with PointsTo nodes and create simple
   333 // connection graph edges.
   334 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   335   assert(!_verify, "this method sould not be called for verification");
   336   PhaseGVN* igvn = _igvn;
   337   uint n_idx = n->_idx;
   338   PointsToNode* n_ptn = ptnode_adr(n_idx);
   339   if (n_ptn != NULL)
   340     return; // No need to redefine PointsTo node during first iteration.
   342   if (n->is_Call()) {
   343     // Arguments to allocation and locking don't escape.
   344     if (n->is_AbstractLock()) {
   345       // Put Lock and Unlock nodes on IGVN worklist to process them during
   346       // first IGVN optimization when escape information is still available.
   347       record_for_optimizer(n);
   348     } else if (n->is_Allocate()) {
   349       add_call_node(n->as_Call());
   350       record_for_optimizer(n);
   351     } else {
   352       if (n->is_CallStaticJava()) {
   353         const char* name = n->as_CallStaticJava()->_name;
   354         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   355           return; // Skip uncommon traps
   356       }
   357       // Don't mark as processed since call's arguments have to be processed.
   358       delayed_worklist->push(n);
   359       // Check if a call returns an object.
   360       if ((n->as_Call()->returns_pointer() &&
   361            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
   362           (n->is_CallStaticJava() &&
   363            n->as_CallStaticJava()->is_boxing_method())) {
   364         add_call_node(n->as_Call());
   365       }
   366     }
   367     return;
   368   }
   369   // Put this check here to process call arguments since some call nodes
   370   // point to phantom_obj.
   371   if (n_ptn == phantom_obj || n_ptn == null_obj)
   372     return; // Skip predefined nodes.
   374   int opcode = n->Opcode();
   375   switch (opcode) {
   376     case Op_AddP: {
   377       Node* base = get_addp_base(n);
   378       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   379       // Field nodes are created for all field types. They are used in
   380       // adjust_scalar_replaceable_state() and split_unique_types().
   381       // Note, non-oop fields will have only base edges in Connection
   382       // Graph because such fields are not used for oop loads and stores.
   383       int offset = address_offset(n, igvn);
   384       add_field(n, PointsToNode::NoEscape, offset);
   385       if (ptn_base == NULL) {
   386         delayed_worklist->push(n); // Process it later.
   387       } else {
   388         n_ptn = ptnode_adr(n_idx);
   389         add_base(n_ptn->as_Field(), ptn_base);
   390       }
   391       break;
   392     }
   393     case Op_CastX2P: {
   394       map_ideal_node(n, phantom_obj);
   395       break;
   396     }
   397     case Op_CastPP:
   398     case Op_CheckCastPP:
   399     case Op_EncodeP:
   400     case Op_DecodeN:
   401     case Op_EncodePKlass:
   402     case Op_DecodeNKlass: {
   403       add_local_var_and_edge(n, PointsToNode::NoEscape,
   404                              n->in(1), delayed_worklist);
   405       break;
   406     }
   407     case Op_CMoveP: {
   408       add_local_var(n, PointsToNode::NoEscape);
   409       // Do not add edges during first iteration because some could be
   410       // not defined yet.
   411       delayed_worklist->push(n);
   412       break;
   413     }
   414     case Op_ConP:
   415     case Op_ConN:
   416     case Op_ConNKlass: {
   417       // assume all oop constants globally escape except for null
   418       PointsToNode::EscapeState es;
   419       const Type* t = igvn->type(n);
   420       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
   421         es = PointsToNode::NoEscape;
   422       } else {
   423         es = PointsToNode::GlobalEscape;
   424       }
   425       add_java_object(n, es);
   426       break;
   427     }
   428     case Op_CreateEx: {
   429       // assume that all exception objects globally escape
   430       map_ideal_node(n, phantom_obj);
   431       break;
   432     }
   433     case Op_LoadKlass:
   434     case Op_LoadNKlass: {
   435       // Unknown class is loaded
   436       map_ideal_node(n, phantom_obj);
   437       break;
   438     }
   439     case Op_LoadP:
   440     case Op_LoadN:
   441     case Op_LoadPLocked: {
   442       add_objload_to_connection_graph(n, delayed_worklist);
   443       break;
   444     }
   445     case Op_Parm: {
   446       map_ideal_node(n, phantom_obj);
   447       break;
   448     }
   449     case Op_PartialSubtypeCheck: {
   450       // Produces Null or notNull and is used in only in CmpP so
   451       // phantom_obj could be used.
   452       map_ideal_node(n, phantom_obj); // Result is unknown
   453       break;
   454     }
   455     case Op_Phi: {
   456       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   457       // ThreadLocal has RawPtr type.
   458       const Type* t = n->as_Phi()->type();
   459       if (t->make_ptr() != NULL) {
   460         add_local_var(n, PointsToNode::NoEscape);
   461         // Do not add edges during first iteration because some could be
   462         // not defined yet.
   463         delayed_worklist->push(n);
   464       }
   465       break;
   466     }
   467     case Op_Proj: {
   468       // we are only interested in the oop result projection from a call
   469       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   470           n->in(0)->as_Call()->returns_pointer()) {
   471         add_local_var_and_edge(n, PointsToNode::NoEscape,
   472                                n->in(0), delayed_worklist);
   473       }
   474       break;
   475     }
   476     case Op_Rethrow: // Exception object escapes
   477     case Op_Return: {
   478       if (n->req() > TypeFunc::Parms &&
   479           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   480         // Treat Return value as LocalVar with GlobalEscape escape state.
   481         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   482                                n->in(TypeFunc::Parms), delayed_worklist);
   483       }
   484       break;
   485     }
   486     case Op_GetAndSetP:
   487     case Op_GetAndSetN: {
   488       add_objload_to_connection_graph(n, delayed_worklist);
   489       // fallthrough
   490     }
   491     case Op_StoreP:
   492     case Op_StoreN:
   493     case Op_StoreNKlass:
   494     case Op_StorePConditional:
   495     case Op_CompareAndSwapP:
   496     case Op_CompareAndSwapN: {
   497       Node* adr = n->in(MemNode::Address);
   498       const Type *adr_type = igvn->type(adr);
   499       adr_type = adr_type->make_ptr();
   500       if (adr_type == NULL) {
   501         break; // skip dead nodes
   502       }
   503       if (adr_type->isa_oopptr() ||
   504           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   505                         (adr_type == TypeRawPtr::NOTNULL &&
   506                          adr->in(AddPNode::Address)->is_Proj() &&
   507                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   508         delayed_worklist->push(n); // Process it later.
   509 #ifdef ASSERT
   510         assert(adr->is_AddP(), "expecting an AddP");
   511         if (adr_type == TypeRawPtr::NOTNULL) {
   512           // Verify a raw address for a store captured by Initialize node.
   513           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   514           assert(offs != Type::OffsetBot, "offset must be a constant");
   515         }
   516 #endif
   517       } else {
   518         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   519         if (adr->is_BoxLock())
   520           break;
   521         // Stored value escapes in unsafe access.
   522         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   523           // Pointer stores in G1 barriers looks like unsafe access.
   524           // Ignore such stores to be able scalar replace non-escaping
   525           // allocations.
   526           if (UseG1GC && adr->is_AddP()) {
   527             Node* base = get_addp_base(adr);
   528             if (base->Opcode() == Op_LoadP &&
   529                 base->in(MemNode::Address)->is_AddP()) {
   530               adr = base->in(MemNode::Address);
   531               Node* tls = get_addp_base(adr);
   532               if (tls->Opcode() == Op_ThreadLocal) {
   533                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   534                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   535                                      PtrQueue::byte_offset_of_buf())) {
   536                   break; // G1 pre barier previous oop value store.
   537                 }
   538                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   539                                      PtrQueue::byte_offset_of_buf())) {
   540                   break; // G1 post barier card address store.
   541                 }
   542               }
   543             }
   544           }
   545           delayed_worklist->push(n); // Process unsafe access later.
   546           break;
   547         }
   548 #ifdef ASSERT
   549         n->dump(1);
   550         assert(false, "not unsafe or G1 barrier raw StoreP");
   551 #endif
   552       }
   553       break;
   554     }
   555     case Op_AryEq:
   556     case Op_StrComp:
   557     case Op_StrEquals:
   558     case Op_StrIndexOf:
   559     case Op_EncodeISOArray: {
   560       add_local_var(n, PointsToNode::ArgEscape);
   561       delayed_worklist->push(n); // Process it later.
   562       break;
   563     }
   564     case Op_ThreadLocal: {
   565       add_java_object(n, PointsToNode::ArgEscape);
   566       break;
   567     }
   568     default:
   569       ; // Do nothing for nodes not related to EA.
   570   }
   571   return;
   572 }
   574 #ifdef ASSERT
   575 #define ELSE_FAIL(name)                               \
   576       /* Should not be called for not pointer type. */  \
   577       n->dump(1);                                       \
   578       assert(false, name);                              \
   579       break;
   580 #else
   581 #define ELSE_FAIL(name) \
   582       break;
   583 #endif
   585 // Add final simple edges to graph.
   586 void ConnectionGraph::add_final_edges(Node *n) {
   587   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   588 #ifdef ASSERT
   589   if (_verify && n_ptn->is_JavaObject())
   590     return; // This method does not change graph for JavaObject.
   591 #endif
   593   if (n->is_Call()) {
   594     process_call_arguments(n->as_Call());
   595     return;
   596   }
   597   assert(n->is_Store() || n->is_LoadStore() ||
   598          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   599          "node should be registered already");
   600   int opcode = n->Opcode();
   601   switch (opcode) {
   602     case Op_AddP: {
   603       Node* base = get_addp_base(n);
   604       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   605       assert(ptn_base != NULL, "field's base should be registered");
   606       add_base(n_ptn->as_Field(), ptn_base);
   607       break;
   608     }
   609     case Op_CastPP:
   610     case Op_CheckCastPP:
   611     case Op_EncodeP:
   612     case Op_DecodeN:
   613     case Op_EncodePKlass:
   614     case Op_DecodeNKlass: {
   615       add_local_var_and_edge(n, PointsToNode::NoEscape,
   616                              n->in(1), NULL);
   617       break;
   618     }
   619     case Op_CMoveP: {
   620       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   621         Node* in = n->in(i);
   622         if (in == NULL)
   623           continue;  // ignore NULL
   624         Node* uncast_in = in->uncast();
   625         if (uncast_in->is_top() || uncast_in == n)
   626           continue;  // ignore top or inputs which go back this node
   627         PointsToNode* ptn = ptnode_adr(in->_idx);
   628         assert(ptn != NULL, "node should be registered");
   629         add_edge(n_ptn, ptn);
   630       }
   631       break;
   632     }
   633     case Op_LoadP:
   634     case Op_LoadN:
   635     case Op_LoadPLocked: {
   636       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   637       // ThreadLocal has RawPtr type.
   638       const Type* t = _igvn->type(n);
   639       if (t->make_ptr() != NULL) {
   640         Node* adr = n->in(MemNode::Address);
   641         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   642         break;
   643       }
   644       ELSE_FAIL("Op_LoadP");
   645     }
   646     case Op_Phi: {
   647       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   648       // ThreadLocal has RawPtr type.
   649       const Type* t = n->as_Phi()->type();
   650       if (t->make_ptr() != NULL) {
   651         for (uint i = 1; i < n->req(); i++) {
   652           Node* in = n->in(i);
   653           if (in == NULL)
   654             continue;  // ignore NULL
   655           Node* uncast_in = in->uncast();
   656           if (uncast_in->is_top() || uncast_in == n)
   657             continue;  // ignore top or inputs which go back this node
   658           PointsToNode* ptn = ptnode_adr(in->_idx);
   659           assert(ptn != NULL, "node should be registered");
   660           add_edge(n_ptn, ptn);
   661         }
   662         break;
   663       }
   664       ELSE_FAIL("Op_Phi");
   665     }
   666     case Op_Proj: {
   667       // we are only interested in the oop result projection from a call
   668       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   669           n->in(0)->as_Call()->returns_pointer()) {
   670         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   671         break;
   672       }
   673       ELSE_FAIL("Op_Proj");
   674     }
   675     case Op_Rethrow: // Exception object escapes
   676     case Op_Return: {
   677       if (n->req() > TypeFunc::Parms &&
   678           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   679         // Treat Return value as LocalVar with GlobalEscape escape state.
   680         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   681                                n->in(TypeFunc::Parms), NULL);
   682         break;
   683       }
   684       ELSE_FAIL("Op_Return");
   685     }
   686     case Op_StoreP:
   687     case Op_StoreN:
   688     case Op_StoreNKlass:
   689     case Op_StorePConditional:
   690     case Op_CompareAndSwapP:
   691     case Op_CompareAndSwapN:
   692     case Op_GetAndSetP:
   693     case Op_GetAndSetN: {
   694       Node* adr = n->in(MemNode::Address);
   695       const Type *adr_type = _igvn->type(adr);
   696       adr_type = adr_type->make_ptr();
   697 #ifdef ASSERT
   698       if (adr_type == NULL) {
   699         n->dump(1);
   700         assert(adr_type != NULL, "dead node should not be on list");
   701         break;
   702       }
   703 #endif
   704       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
   705         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   706       }
   707       if (adr_type->isa_oopptr() ||
   708           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   709                         (adr_type == TypeRawPtr::NOTNULL &&
   710                          adr->in(AddPNode::Address)->is_Proj() &&
   711                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   712         // Point Address to Value
   713         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   714         assert(adr_ptn != NULL &&
   715                adr_ptn->as_Field()->is_oop(), "node should be registered");
   716         Node *val = n->in(MemNode::ValueIn);
   717         PointsToNode* ptn = ptnode_adr(val->_idx);
   718         assert(ptn != NULL, "node should be registered");
   719         add_edge(adr_ptn, ptn);
   720         break;
   721       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   722         // Stored value escapes in unsafe access.
   723         Node *val = n->in(MemNode::ValueIn);
   724         PointsToNode* ptn = ptnode_adr(val->_idx);
   725         assert(ptn != NULL, "node should be registered");
   726         set_escape_state(ptn, PointsToNode::GlobalEscape);
   727         // Add edge to object for unsafe access with offset.
   728         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   729         assert(adr_ptn != NULL, "node should be registered");
   730         if (adr_ptn->is_Field()) {
   731           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   732           add_edge(adr_ptn, ptn);
   733         }
   734         break;
   735       }
   736       ELSE_FAIL("Op_StoreP");
   737     }
   738     case Op_AryEq:
   739     case Op_StrComp:
   740     case Op_StrEquals:
   741     case Op_StrIndexOf:
   742     case Op_EncodeISOArray: {
   743       // char[] arrays passed to string intrinsic do not escape but
   744       // they are not scalar replaceable. Adjust escape state for them.
   745       // Start from in(2) edge since in(1) is memory edge.
   746       for (uint i = 2; i < n->req(); i++) {
   747         Node* adr = n->in(i);
   748         const Type* at = _igvn->type(adr);
   749         if (!adr->is_top() && at->isa_ptr()) {
   750           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   751                  at->isa_ptr() != NULL, "expecting a pointer");
   752           if (adr->is_AddP()) {
   753             adr = get_addp_base(adr);
   754           }
   755           PointsToNode* ptn = ptnode_adr(adr->_idx);
   756           assert(ptn != NULL, "node should be registered");
   757           add_edge(n_ptn, ptn);
   758         }
   759       }
   760       break;
   761     }
   762     default: {
   763       // This method should be called only for EA specific nodes which may
   764       // miss some edges when they were created.
   765 #ifdef ASSERT
   766       n->dump(1);
   767 #endif
   768       guarantee(false, "unknown node");
   769     }
   770   }
   771   return;
   772 }
   774 void ConnectionGraph::add_call_node(CallNode* call) {
   775   assert(call->returns_pointer(), "only for call which returns pointer");
   776   uint call_idx = call->_idx;
   777   if (call->is_Allocate()) {
   778     Node* k = call->in(AllocateNode::KlassNode);
   779     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   780     assert(kt != NULL, "TypeKlassPtr  required.");
   781     ciKlass* cik = kt->klass();
   782     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   783     bool scalar_replaceable = true;
   784     if (call->is_AllocateArray()) {
   785       if (!cik->is_array_klass()) { // StressReflectiveCode
   786         es = PointsToNode::GlobalEscape;
   787       } else {
   788         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   789         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   790           // Not scalar replaceable if the length is not constant or too big.
   791           scalar_replaceable = false;
   792         }
   793       }
   794     } else {  // Allocate instance
   795       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   796           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
   797          !cik->is_instance_klass() || // StressReflectiveCode
   798           cik->as_instance_klass()->has_finalizer()) {
   799         es = PointsToNode::GlobalEscape;
   800       }
   801     }
   802     add_java_object(call, es);
   803     PointsToNode* ptn = ptnode_adr(call_idx);
   804     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   805       ptn->set_scalar_replaceable(false);
   806     }
   807   } else if (call->is_CallStaticJava()) {
   808     // Call nodes could be different types:
   809     //
   810     // 1. CallDynamicJavaNode (what happened during call is unknown):
   811     //
   812     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   813     //
   814     //    - all oop arguments are escaping globally;
   815     //
   816     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   817     //
   818     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   819     //
   820     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   821     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   822     //      during call is returned;
   823     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   824     //      which are returned and does not escape during call;
   825     //
   826     //    - oop arguments escaping status is defined by bytecode analysis;
   827     //
   828     // For a static call, we know exactly what method is being called.
   829     // Use bytecode estimator to record whether the call's return value escapes.
   830     ciMethod* meth = call->as_CallJava()->method();
   831     if (meth == NULL) {
   832       const char* name = call->as_CallStaticJava()->_name;
   833       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   834       // Returns a newly allocated unescaped object.
   835       add_java_object(call, PointsToNode::NoEscape);
   836       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   837     } else if (meth->is_boxing_method()) {
   838       // Returns boxing object
   839       PointsToNode::EscapeState es;
   840       vmIntrinsics::ID intr = meth->intrinsic_id();
   841       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
   842         // It does not escape if object is always allocated.
   843         es = PointsToNode::NoEscape;
   844       } else {
   845         // It escapes globally if object could be loaded from cache.
   846         es = PointsToNode::GlobalEscape;
   847       }
   848       add_java_object(call, es);
   849     } else {
   850       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   851       call_analyzer->copy_dependencies(_compile->dependencies());
   852       if (call_analyzer->is_return_allocated()) {
   853         // Returns a newly allocated unescaped object, simply
   854         // update dependency information.
   855         // Mark it as NoEscape so that objects referenced by
   856         // it's fields will be marked as NoEscape at least.
   857         add_java_object(call, PointsToNode::NoEscape);
   858         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   859       } else {
   860         // Determine whether any arguments are returned.
   861         const TypeTuple* d = call->tf()->domain();
   862         bool ret_arg = false;
   863         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   864           if (d->field_at(i)->isa_ptr() != NULL &&
   865               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   866             ret_arg = true;
   867             break;
   868           }
   869         }
   870         if (ret_arg) {
   871           add_local_var(call, PointsToNode::ArgEscape);
   872         } else {
   873           // Returns unknown object.
   874           map_ideal_node(call, phantom_obj);
   875         }
   876       }
   877     }
   878   } else {
   879     // An other type of call, assume the worst case:
   880     // returned value is unknown and globally escapes.
   881     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   882     map_ideal_node(call, phantom_obj);
   883   }
   884 }
   886 void ConnectionGraph::process_call_arguments(CallNode *call) {
   887     bool is_arraycopy = false;
   888     switch (call->Opcode()) {
   889 #ifdef ASSERT
   890     case Op_Allocate:
   891     case Op_AllocateArray:
   892     case Op_Lock:
   893     case Op_Unlock:
   894       assert(false, "should be done already");
   895       break;
   896 #endif
   897     case Op_CallLeafNoFP:
   898       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   899                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   900       // fall through
   901     case Op_CallLeaf: {
   902       // Stub calls, objects do not escape but they are not scale replaceable.
   903       // Adjust escape state for outgoing arguments.
   904       const TypeTuple * d = call->tf()->domain();
   905       bool src_has_oops = false;
   906       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   907         const Type* at = d->field_at(i);
   908         Node *arg = call->in(i);
   909         const Type *aat = _igvn->type(arg);
   910         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   911           continue;
   912         if (arg->is_AddP()) {
   913           //
   914           // The inline_native_clone() case when the arraycopy stub is called
   915           // after the allocation before Initialize and CheckCastPP nodes.
   916           // Or normal arraycopy for object arrays case.
   917           //
   918           // Set AddP's base (Allocate) as not scalar replaceable since
   919           // pointer to the base (with offset) is passed as argument.
   920           //
   921           arg = get_addp_base(arg);
   922         }
   923         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   924         assert(arg_ptn != NULL, "should be registered");
   925         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   926         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   927           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   928                  aat->isa_ptr() != NULL, "expecting an Ptr");
   929           bool arg_has_oops = aat->isa_oopptr() &&
   930                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   931                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   932           if (i == TypeFunc::Parms) {
   933             src_has_oops = arg_has_oops;
   934           }
   935           //
   936           // src or dst could be j.l.Object when other is basic type array:
   937           //
   938           //   arraycopy(char[],0,Object*,0,size);
   939           //   arraycopy(Object*,0,char[],0,size);
   940           //
   941           // Don't add edges in such cases.
   942           //
   943           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   944                                        arg_has_oops && (i > TypeFunc::Parms);
   945 #ifdef ASSERT
   946           if (!(is_arraycopy ||
   947                 (call->as_CallLeaf()->_name != NULL &&
   948                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   949                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
   950                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
   951                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
   952                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
   953                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
   954                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
   955                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
   956                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
   957                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
   958                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
   959                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
   960                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
   961                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
   962                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
   963                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
   964                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
   965                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0)
   966                  ))) {
   967             call->dump();
   968             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
   969           }
   970 #endif
   971           // Always process arraycopy's destination object since
   972           // we need to add all possible edges to references in
   973           // source object.
   974           if (arg_esc >= PointsToNode::ArgEscape &&
   975               !arg_is_arraycopy_dest) {
   976             continue;
   977           }
   978           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   979           if (arg_is_arraycopy_dest) {
   980             Node* src = call->in(TypeFunc::Parms);
   981             if (src->is_AddP()) {
   982               src = get_addp_base(src);
   983             }
   984             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   985             assert(src_ptn != NULL, "should be registered");
   986             if (arg_ptn != src_ptn) {
   987               // Special arraycopy edge:
   988               // A destination object's field can't have the source object
   989               // as base since objects escape states are not related.
   990               // Only escape state of destination object's fields affects
   991               // escape state of fields in source object.
   992               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   993             }
   994           }
   995         }
   996       }
   997       break;
   998     }
   999     case Op_CallStaticJava: {
  1000       // For a static call, we know exactly what method is being called.
  1001       // Use bytecode estimator to record the call's escape affects
  1002 #ifdef ASSERT
  1003       const char* name = call->as_CallStaticJava()->_name;
  1004       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
  1005 #endif
  1006       ciMethod* meth = call->as_CallJava()->method();
  1007       if ((meth != NULL) && meth->is_boxing_method()) {
  1008         break; // Boxing methods do not modify any oops.
  1010       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1011       // fall-through if not a Java method or no analyzer information
  1012       if (call_analyzer != NULL) {
  1013         PointsToNode* call_ptn = ptnode_adr(call->_idx);
  1014         const TypeTuple* d = call->tf()->domain();
  1015         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1016           const Type* at = d->field_at(i);
  1017           int k = i - TypeFunc::Parms;
  1018           Node* arg = call->in(i);
  1019           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
  1020           if (at->isa_ptr() != NULL &&
  1021               call_analyzer->is_arg_returned(k)) {
  1022             // The call returns arguments.
  1023             if (call_ptn != NULL) { // Is call's result used?
  1024               assert(call_ptn->is_LocalVar(), "node should be registered");
  1025               assert(arg_ptn != NULL, "node should be registered");
  1026               add_edge(call_ptn, arg_ptn);
  1029           if (at->isa_oopptr() != NULL &&
  1030               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
  1031             if (!call_analyzer->is_arg_stack(k)) {
  1032               // The argument global escapes
  1033               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1034             } else {
  1035               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
  1036               if (!call_analyzer->is_arg_local(k)) {
  1037                 // The argument itself doesn't escape, but any fields might
  1038                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1043         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
  1044           // The call returns arguments.
  1045           assert(call_ptn->edge_count() > 0, "sanity");
  1046           if (!call_analyzer->is_return_local()) {
  1047             // Returns also unknown object.
  1048             add_edge(call_ptn, phantom_obj);
  1051         break;
  1054     default: {
  1055       // Fall-through here if not a Java method or no analyzer information
  1056       // or some other type of call, assume the worst case: all arguments
  1057       // globally escape.
  1058       const TypeTuple* d = call->tf()->domain();
  1059       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1060         const Type* at = d->field_at(i);
  1061         if (at->isa_oopptr() != NULL) {
  1062           Node* arg = call->in(i);
  1063           if (arg->is_AddP()) {
  1064             arg = get_addp_base(arg);
  1066           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
  1067           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
  1075 // Finish Graph construction.
  1076 bool ConnectionGraph::complete_connection_graph(
  1077                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1078                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1079                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1080                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
  1081   // Normally only 1-3 passes needed to build Connection Graph depending
  1082   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  1083   // Set limit to 20 to catch situation when something did go wrong and
  1084   // bailout Escape Analysis.
  1085   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
  1086 #define CG_BUILD_ITER_LIMIT 20
  1088   // Propagate GlobalEscape and ArgEscape escape states and check that
  1089   // we still have non-escaping objects. The method pushs on _worklist
  1090   // Field nodes which reference phantom_object.
  1091   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1092     return false; // Nothing to do.
  1094   // Now propagate references to all JavaObject nodes.
  1095   int java_objects_length = java_objects_worklist.length();
  1096   elapsedTimer time;
  1097   bool timeout = false;
  1098   int new_edges = 1;
  1099   int iterations = 0;
  1100   do {
  1101     while ((new_edges > 0) &&
  1102            (iterations++ < CG_BUILD_ITER_LIMIT)) {
  1103       double start_time = time.seconds();
  1104       time.start();
  1105       new_edges = 0;
  1106       // Propagate references to phantom_object for nodes pushed on _worklist
  1107       // by find_non_escaped_objects() and find_field_value().
  1108       new_edges += add_java_object_edges(phantom_obj, false);
  1109       for (int next = 0; next < java_objects_length; ++next) {
  1110         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1111         new_edges += add_java_object_edges(ptn, true);
  1113 #define SAMPLE_SIZE 4
  1114         if ((next % SAMPLE_SIZE) == 0) {
  1115           // Each 4 iterations calculate how much time it will take
  1116           // to complete graph construction.
  1117           time.stop();
  1118           // Poll for requests from shutdown mechanism to quiesce compiler
  1119           // because Connection graph construction may take long time.
  1120           CompileBroker::maybe_block();
  1121           double stop_time = time.seconds();
  1122           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
  1123           double time_until_end = time_per_iter * (double)(java_objects_length - next);
  1124           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
  1125             timeout = true;
  1126             break; // Timeout
  1128           start_time = stop_time;
  1129           time.start();
  1131 #undef SAMPLE_SIZE
  1134       if (timeout) break;
  1135       if (new_edges > 0) {
  1136         // Update escape states on each iteration if graph was updated.
  1137         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1138           return false; // Nothing to do.
  1141       time.stop();
  1142       if (time.seconds() >= EscapeAnalysisTimeout) {
  1143         timeout = true;
  1144         break;
  1147     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
  1148       time.start();
  1149       // Find fields which have unknown value.
  1150       int fields_length = oop_fields_worklist.length();
  1151       for (int next = 0; next < fields_length; next++) {
  1152         FieldNode* field = oop_fields_worklist.at(next);
  1153         if (field->edge_count() == 0) {
  1154           new_edges += find_field_value(field);
  1155           // This code may added new edges to phantom_object.
  1156           // Need an other cycle to propagate references to phantom_object.
  1159       time.stop();
  1160       if (time.seconds() >= EscapeAnalysisTimeout) {
  1161         timeout = true;
  1162         break;
  1164     } else {
  1165       new_edges = 0; // Bailout
  1167   } while (new_edges > 0);
  1169   // Bailout if passed limits.
  1170   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
  1171     Compile* C = _compile;
  1172     if (C->log() != NULL) {
  1173       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1174       C->log()->text("%s", timeout ? "time" : "iterations");
  1175       C->log()->end_elem(" limit'");
  1177     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1178            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1179     // Possible infinite build_connection_graph loop,
  1180     // bailout (no changes to ideal graph were made).
  1181     return false;
  1183 #ifdef ASSERT
  1184   if (Verbose && PrintEscapeAnalysis) {
  1185     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1186                   iterations, nodes_size(), ptnodes_worklist.length());
  1188 #endif
  1190 #undef CG_BUILD_ITER_LIMIT
  1192   // Find fields initialized by NULL for non-escaping Allocations.
  1193   int non_escaped_length = non_escaped_worklist.length();
  1194   for (int next = 0; next < non_escaped_length; next++) {
  1195     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1196     PointsToNode::EscapeState es = ptn->escape_state();
  1197     assert(es <= PointsToNode::ArgEscape, "sanity");
  1198     if (es == PointsToNode::NoEscape) {
  1199       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1200         // Adding references to NULL object does not change escape states
  1201         // since it does not escape. Also no fields are added to NULL object.
  1202         add_java_object_edges(null_obj, false);
  1205     Node* n = ptn->ideal_node();
  1206     if (n->is_Allocate()) {
  1207       // The object allocated by this Allocate node will never be
  1208       // seen by an other thread. Mark it so that when it is
  1209       // expanded no MemBarStoreStore is added.
  1210       InitializeNode* ini = n->as_Allocate()->initialization();
  1211       if (ini != NULL)
  1212         ini->set_does_not_escape();
  1215   return true; // Finished graph construction.
  1218 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1219 // and check that we still have non-escaping java objects.
  1220 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1221                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1222   GrowableArray<PointsToNode*> escape_worklist;
  1223   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1224   int ptnodes_length = ptnodes_worklist.length();
  1225   for (int next = 0; next < ptnodes_length; ++next) {
  1226     PointsToNode* ptn = ptnodes_worklist.at(next);
  1227     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1228         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1229       escape_worklist.push(ptn);
  1232   // Set escape states to referenced nodes (edges list).
  1233   while (escape_worklist.length() > 0) {
  1234     PointsToNode* ptn = escape_worklist.pop();
  1235     PointsToNode::EscapeState es  = ptn->escape_state();
  1236     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1237     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1238         es >= PointsToNode::ArgEscape) {
  1239       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1240       if (add_edge(ptn, phantom_obj)) {
  1241         // New edge was added
  1242         add_field_uses_to_worklist(ptn->as_Field());
  1245     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1246       PointsToNode* e = i.get();
  1247       if (e->is_Arraycopy()) {
  1248         assert(ptn->arraycopy_dst(), "sanity");
  1249         // Propagate only fields escape state through arraycopy edge.
  1250         if (e->fields_escape_state() < field_es) {
  1251           set_fields_escape_state(e, field_es);
  1252           escape_worklist.push(e);
  1254       } else if (es >= field_es) {
  1255         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1256         if (e->escape_state() < es) {
  1257           set_escape_state(e, es);
  1258           escape_worklist.push(e);
  1260       } else {
  1261         // Propagate field escape state.
  1262         bool es_changed = false;
  1263         if (e->fields_escape_state() < field_es) {
  1264           set_fields_escape_state(e, field_es);
  1265           es_changed = true;
  1267         if ((e->escape_state() < field_es) &&
  1268             e->is_Field() && ptn->is_JavaObject() &&
  1269             e->as_Field()->is_oop()) {
  1270           // Change escape state of referenced fileds.
  1271           set_escape_state(e, field_es);
  1272           es_changed = true;;
  1273         } else if (e->escape_state() < es) {
  1274           set_escape_state(e, es);
  1275           es_changed = true;;
  1277         if (es_changed) {
  1278           escape_worklist.push(e);
  1283   // Remove escaped objects from non_escaped list.
  1284   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1285     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1286     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1287       non_escaped_worklist.delete_at(next);
  1289     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1290       // Find fields in non-escaped allocations which have unknown value.
  1291       find_init_values(ptn, phantom_obj, NULL);
  1294   return (non_escaped_worklist.length() > 0);
  1297 // Add all references to JavaObject node by walking over all uses.
  1298 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1299   int new_edges = 0;
  1300   if (populate_worklist) {
  1301     // Populate _worklist by uses of jobj's uses.
  1302     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1303       PointsToNode* use = i.get();
  1304       if (use->is_Arraycopy())
  1305         continue;
  1306       add_uses_to_worklist(use);
  1307       if (use->is_Field() && use->as_Field()->is_oop()) {
  1308         // Put on worklist all field's uses (loads) and
  1309         // related field nodes (same base and offset).
  1310         add_field_uses_to_worklist(use->as_Field());
  1314   for (int l = 0; l < _worklist.length(); l++) {
  1315     PointsToNode* use = _worklist.at(l);
  1316     if (PointsToNode::is_base_use(use)) {
  1317       // Add reference from jobj to field and from field to jobj (field's base).
  1318       use = PointsToNode::get_use_node(use)->as_Field();
  1319       if (add_base(use->as_Field(), jobj)) {
  1320         new_edges++;
  1322       continue;
  1324     assert(!use->is_JavaObject(), "sanity");
  1325     if (use->is_Arraycopy()) {
  1326       if (jobj == null_obj) // NULL object does not have field edges
  1327         continue;
  1328       // Added edge from Arraycopy node to arraycopy's source java object
  1329       if (add_edge(use, jobj)) {
  1330         jobj->set_arraycopy_src();
  1331         new_edges++;
  1333       // and stop here.
  1334       continue;
  1336     if (!add_edge(use, jobj))
  1337       continue; // No new edge added, there was such edge already.
  1338     new_edges++;
  1339     if (use->is_LocalVar()) {
  1340       add_uses_to_worklist(use);
  1341       if (use->arraycopy_dst()) {
  1342         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1343           PointsToNode* e = i.get();
  1344           if (e->is_Arraycopy()) {
  1345             if (jobj == null_obj) // NULL object does not have field edges
  1346               continue;
  1347             // Add edge from arraycopy's destination java object to Arraycopy node.
  1348             if (add_edge(jobj, e)) {
  1349               new_edges++;
  1350               jobj->set_arraycopy_dst();
  1355     } else {
  1356       // Added new edge to stored in field values.
  1357       // Put on worklist all field's uses (loads) and
  1358       // related field nodes (same base and offset).
  1359       add_field_uses_to_worklist(use->as_Field());
  1362   _worklist.clear();
  1363   _in_worklist.Reset();
  1364   return new_edges;
  1367 // Put on worklist all related field nodes.
  1368 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1369   assert(field->is_oop(), "sanity");
  1370   int offset = field->offset();
  1371   add_uses_to_worklist(field);
  1372   // Loop over all bases of this field and push on worklist Field nodes
  1373   // with the same offset and base (since they may reference the same field).
  1374   for (BaseIterator i(field); i.has_next(); i.next()) {
  1375     PointsToNode* base = i.get();
  1376     add_fields_to_worklist(field, base);
  1377     // Check if the base was source object of arraycopy and go over arraycopy's
  1378     // destination objects since values stored to a field of source object are
  1379     // accessable by uses (loads) of fields of destination objects.
  1380     if (base->arraycopy_src()) {
  1381       for (UseIterator j(base); j.has_next(); j.next()) {
  1382         PointsToNode* arycp = j.get();
  1383         if (arycp->is_Arraycopy()) {
  1384           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1385             PointsToNode* abase = k.get();
  1386             if (abase->arraycopy_dst() && abase != base) {
  1387               // Look for the same arracopy reference.
  1388               add_fields_to_worklist(field, abase);
  1397 // Put on worklist all related field nodes.
  1398 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1399   int offset = field->offset();
  1400   if (base->is_LocalVar()) {
  1401     for (UseIterator j(base); j.has_next(); j.next()) {
  1402       PointsToNode* f = j.get();
  1403       if (PointsToNode::is_base_use(f)) { // Field
  1404         f = PointsToNode::get_use_node(f);
  1405         if (f == field || !f->as_Field()->is_oop())
  1406           continue;
  1407         int offs = f->as_Field()->offset();
  1408         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1409           add_to_worklist(f);
  1413   } else {
  1414     assert(base->is_JavaObject(), "sanity");
  1415     if (// Skip phantom_object since it is only used to indicate that
  1416         // this field's content globally escapes.
  1417         (base != phantom_obj) &&
  1418         // NULL object node does not have fields.
  1419         (base != null_obj)) {
  1420       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1421         PointsToNode* f = i.get();
  1422         // Skip arraycopy edge since store to destination object field
  1423         // does not update value in source object field.
  1424         if (f->is_Arraycopy()) {
  1425           assert(base->arraycopy_dst(), "sanity");
  1426           continue;
  1428         if (f == field || !f->as_Field()->is_oop())
  1429           continue;
  1430         int offs = f->as_Field()->offset();
  1431         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1432           add_to_worklist(f);
  1439 // Find fields which have unknown value.
  1440 int ConnectionGraph::find_field_value(FieldNode* field) {
  1441   // Escaped fields should have init value already.
  1442   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1443   int new_edges = 0;
  1444   for (BaseIterator i(field); i.has_next(); i.next()) {
  1445     PointsToNode* base = i.get();
  1446     if (base->is_JavaObject()) {
  1447       // Skip Allocate's fields which will be processed later.
  1448       if (base->ideal_node()->is_Allocate())
  1449         return 0;
  1450       assert(base == null_obj, "only NULL ptr base expected here");
  1453   if (add_edge(field, phantom_obj)) {
  1454     // New edge was added
  1455     new_edges++;
  1456     add_field_uses_to_worklist(field);
  1458   return new_edges;
  1461 // Find fields initializing values for allocations.
  1462 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1463   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1464   int new_edges = 0;
  1465   Node* alloc = pta->ideal_node();
  1466   if (init_val == phantom_obj) {
  1467     // Do nothing for Allocate nodes since its fields values are "known".
  1468     if (alloc->is_Allocate())
  1469       return 0;
  1470     assert(alloc->as_CallStaticJava(), "sanity");
  1471 #ifdef ASSERT
  1472     if (alloc->as_CallStaticJava()->method() == NULL) {
  1473       const char* name = alloc->as_CallStaticJava()->_name;
  1474       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1476 #endif
  1477     // Non-escaped allocation returned from Java or runtime call have
  1478     // unknown values in fields.
  1479     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1480       PointsToNode* field = i.get();
  1481       if (field->is_Field() && field->as_Field()->is_oop()) {
  1482         if (add_edge(field, phantom_obj)) {
  1483           // New edge was added
  1484           new_edges++;
  1485           add_field_uses_to_worklist(field->as_Field());
  1489     return new_edges;
  1491   assert(init_val == null_obj, "sanity");
  1492   // Do nothing for Call nodes since its fields values are unknown.
  1493   if (!alloc->is_Allocate())
  1494     return 0;
  1496   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1497   Compile* C = _compile;
  1498   bool visited_bottom_offset = false;
  1499   GrowableArray<int> offsets_worklist;
  1501   // Check if an oop field's initializing value is recorded and add
  1502   // a corresponding NULL if field's value if it is not recorded.
  1503   // Connection Graph does not record a default initialization by NULL
  1504   // captured by Initialize node.
  1505   //
  1506   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1507     PointsToNode* field = i.get(); // Field (AddP)
  1508     if (!field->is_Field() || !field->as_Field()->is_oop())
  1509       continue; // Not oop field
  1510     int offset = field->as_Field()->offset();
  1511     if (offset == Type::OffsetBot) {
  1512       if (!visited_bottom_offset) {
  1513         // OffsetBot is used to reference array's element,
  1514         // always add reference to NULL to all Field nodes since we don't
  1515         // known which element is referenced.
  1516         if (add_edge(field, null_obj)) {
  1517           // New edge was added
  1518           new_edges++;
  1519           add_field_uses_to_worklist(field->as_Field());
  1520           visited_bottom_offset = true;
  1523     } else {
  1524       // Check only oop fields.
  1525       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
  1526       if (adr_type->isa_rawptr()) {
  1527 #ifdef ASSERT
  1528         // Raw pointers are used for initializing stores so skip it
  1529         // since it should be recorded already
  1530         Node* base = get_addp_base(field->ideal_node());
  1531         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1532                (base->in(0) == alloc),"unexpected pointer type");
  1533 #endif
  1534         continue;
  1536       if (!offsets_worklist.contains(offset)) {
  1537         offsets_worklist.append(offset);
  1538         Node* value = NULL;
  1539         if (ini != NULL) {
  1540           // StoreP::memory_type() == T_ADDRESS
  1541           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
  1542           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
  1543           // Make sure initializing store has the same type as this AddP.
  1544           // This AddP may reference non existing field because it is on a
  1545           // dead branch of bimorphic call which is not eliminated yet.
  1546           if (store != NULL && store->is_Store() &&
  1547               store->as_Store()->memory_type() == ft) {
  1548             value = store->in(MemNode::ValueIn);
  1549 #ifdef ASSERT
  1550             if (VerifyConnectionGraph) {
  1551               // Verify that AddP already points to all objects the value points to.
  1552               PointsToNode* val = ptnode_adr(value->_idx);
  1553               assert((val != NULL), "should be processed already");
  1554               PointsToNode* missed_obj = NULL;
  1555               if (val->is_JavaObject()) {
  1556                 if (!field->points_to(val->as_JavaObject())) {
  1557                   missed_obj = val;
  1559               } else {
  1560                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
  1561                   tty->print_cr("----------init store has invalid value -----");
  1562                   store->dump();
  1563                   val->dump();
  1564                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
  1566                 for (EdgeIterator j(val); j.has_next(); j.next()) {
  1567                   PointsToNode* obj = j.get();
  1568                   if (obj->is_JavaObject()) {
  1569                     if (!field->points_to(obj->as_JavaObject())) {
  1570                       missed_obj = obj;
  1571                       break;
  1576               if (missed_obj != NULL) {
  1577                 tty->print_cr("----------field---------------------------------");
  1578                 field->dump();
  1579                 tty->print_cr("----------missed referernce to object-----------");
  1580                 missed_obj->dump();
  1581                 tty->print_cr("----------object referernced by init store -----");
  1582                 store->dump();
  1583                 val->dump();
  1584                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
  1587 #endif
  1588           } else {
  1589             // There could be initializing stores which follow allocation.
  1590             // For example, a volatile field store is not collected
  1591             // by Initialize node.
  1592             //
  1593             // Need to check for dependent loads to separate such stores from
  1594             // stores which follow loads. For now, add initial value NULL so
  1595             // that compare pointers optimization works correctly.
  1598         if (value == NULL) {
  1599           // A field's initializing value was not recorded. Add NULL.
  1600           if (add_edge(field, null_obj)) {
  1601             // New edge was added
  1602             new_edges++;
  1603             add_field_uses_to_worklist(field->as_Field());
  1609   return new_edges;
  1612 // Adjust scalar_replaceable state after Connection Graph is built.
  1613 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1614   // Search for non-escaping objects which are not scalar replaceable
  1615   // and mark them to propagate the state to referenced objects.
  1617   // 1. An object is not scalar replaceable if the field into which it is
  1618   // stored has unknown offset (stored into unknown element of an array).
  1619   //
  1620   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1621     PointsToNode* use = i.get();
  1622     assert(!use->is_Arraycopy(), "sanity");
  1623     if (use->is_Field()) {
  1624       FieldNode* field = use->as_Field();
  1625       assert(field->is_oop() && field->scalar_replaceable() &&
  1626              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1627       if (field->offset() == Type::OffsetBot) {
  1628         jobj->set_scalar_replaceable(false);
  1629         return;
  1631       // 2. An object is not scalar replaceable if the field into which it is
  1632       // stored has multiple bases one of which is null.
  1633       if (field->base_count() > 1) {
  1634         for (BaseIterator i(field); i.has_next(); i.next()) {
  1635           PointsToNode* base = i.get();
  1636           if (base == null_obj) {
  1637             jobj->set_scalar_replaceable(false);
  1638             return;
  1643     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1644     // 3. An object is not scalar replaceable if it is merged with other objects.
  1645     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1646       PointsToNode* ptn = j.get();
  1647       if (ptn->is_JavaObject() && ptn != jobj) {
  1648         // Mark all objects.
  1649         jobj->set_scalar_replaceable(false);
  1650          ptn->set_scalar_replaceable(false);
  1653     if (!jobj->scalar_replaceable()) {
  1654       return;
  1658   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1659     // Non-escaping object node should point only to field nodes.
  1660     FieldNode* field = j.get()->as_Field();
  1661     int offset = field->as_Field()->offset();
  1663     // 4. An object is not scalar replaceable if it has a field with unknown
  1664     // offset (array's element is accessed in loop).
  1665     if (offset == Type::OffsetBot) {
  1666       jobj->set_scalar_replaceable(false);
  1667       return;
  1669     // 5. Currently an object is not scalar replaceable if a LoadStore node
  1670     // access its field since the field value is unknown after it.
  1671     //
  1672     Node* n = field->ideal_node();
  1673     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1674       if (n->fast_out(i)->is_LoadStore()) {
  1675         jobj->set_scalar_replaceable(false);
  1676         return;
  1680     // 6. Or the address may point to more then one object. This may produce
  1681     // the false positive result (set not scalar replaceable)
  1682     // since the flow-insensitive escape analysis can't separate
  1683     // the case when stores overwrite the field's value from the case
  1684     // when stores happened on different control branches.
  1685     //
  1686     // Note: it will disable scalar replacement in some cases:
  1687     //
  1688     //    Point p[] = new Point[1];
  1689     //    p[0] = new Point(); // Will be not scalar replaced
  1690     //
  1691     // but it will save us from incorrect optimizations in next cases:
  1692     //
  1693     //    Point p[] = new Point[1];
  1694     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1695     //
  1696     if (field->base_count() > 1) {
  1697       for (BaseIterator i(field); i.has_next(); i.next()) {
  1698         PointsToNode* base = i.get();
  1699         // Don't take into account LocalVar nodes which
  1700         // may point to only one object which should be also
  1701         // this field's base by now.
  1702         if (base->is_JavaObject() && base != jobj) {
  1703           // Mark all bases.
  1704           jobj->set_scalar_replaceable(false);
  1705           base->set_scalar_replaceable(false);
  1712 #ifdef ASSERT
  1713 void ConnectionGraph::verify_connection_graph(
  1714                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1715                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1716                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1717                          GrowableArray<Node*>& addp_worklist) {
  1718   // Verify that graph is complete - no new edges could be added.
  1719   int java_objects_length = java_objects_worklist.length();
  1720   int non_escaped_length  = non_escaped_worklist.length();
  1721   int new_edges = 0;
  1722   for (int next = 0; next < java_objects_length; ++next) {
  1723     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1724     new_edges += add_java_object_edges(ptn, true);
  1726   assert(new_edges == 0, "graph was not complete");
  1727   // Verify that escape state is final.
  1728   int length = non_escaped_worklist.length();
  1729   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1730   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1731          (non_escaped_length == length) &&
  1732          (_worklist.length() == 0), "escape state was not final");
  1734   // Verify fields information.
  1735   int addp_length = addp_worklist.length();
  1736   for (int next = 0; next < addp_length; ++next ) {
  1737     Node* n = addp_worklist.at(next);
  1738     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1739     if (field->is_oop()) {
  1740       // Verify that field has all bases
  1741       Node* base = get_addp_base(n);
  1742       PointsToNode* ptn = ptnode_adr(base->_idx);
  1743       if (ptn->is_JavaObject()) {
  1744         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1745       } else {
  1746         assert(ptn->is_LocalVar(), "sanity");
  1747         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1748           PointsToNode* e = i.get();
  1749           if (e->is_JavaObject()) {
  1750             assert(field->has_base(e->as_JavaObject()), "sanity");
  1754       // Verify that all fields have initializing values.
  1755       if (field->edge_count() == 0) {
  1756         tty->print_cr("----------field does not have references----------");
  1757         field->dump();
  1758         for (BaseIterator i(field); i.has_next(); i.next()) {
  1759           PointsToNode* base = i.get();
  1760           tty->print_cr("----------field has next base---------------------");
  1761           base->dump();
  1762           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
  1763             tty->print_cr("----------base has fields-------------------------");
  1764             for (EdgeIterator j(base); j.has_next(); j.next()) {
  1765               j.get()->dump();
  1767             tty->print_cr("----------base has references---------------------");
  1768             for (UseIterator j(base); j.has_next(); j.next()) {
  1769               j.get()->dump();
  1773         for (UseIterator i(field); i.has_next(); i.next()) {
  1774           i.get()->dump();
  1776         assert(field->edge_count() > 0, "sanity");
  1781 #endif
  1783 // Optimize ideal graph.
  1784 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1785                                            GrowableArray<Node*>& storestore_worklist) {
  1786   Compile* C = _compile;
  1787   PhaseIterGVN* igvn = _igvn;
  1788   if (EliminateLocks) {
  1789     // Mark locks before changing ideal graph.
  1790     int cnt = C->macro_count();
  1791     for( int i=0; i < cnt; i++ ) {
  1792       Node *n = C->macro_node(i);
  1793       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1794         AbstractLockNode* alock = n->as_AbstractLock();
  1795         if (!alock->is_non_esc_obj()) {
  1796           if (not_global_escape(alock->obj_node())) {
  1797             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1798             // The lock could be marked eliminated by lock coarsening
  1799             // code during first IGVN before EA. Replace coarsened flag
  1800             // to eliminate all associated locks/unlocks.
  1801 #ifdef ASSERT
  1802             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
  1803 #endif
  1804             alock->set_non_esc_obj();
  1811   if (OptimizePtrCompare) {
  1812     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1813     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1814     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1815     // Optimize objects compare.
  1816     while (ptr_cmp_worklist.length() != 0) {
  1817       Node *n = ptr_cmp_worklist.pop();
  1818       Node *res = optimize_ptr_compare(n);
  1819       if (res != NULL) {
  1820 #ifndef PRODUCT
  1821         if (PrintOptimizePtrCompare) {
  1822           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1823           if (Verbose) {
  1824             n->dump(1);
  1827 #endif
  1828         igvn->replace_node(n, res);
  1831     // cleanup
  1832     if (_pcmp_neq->outcnt() == 0)
  1833       igvn->hash_delete(_pcmp_neq);
  1834     if (_pcmp_eq->outcnt()  == 0)
  1835       igvn->hash_delete(_pcmp_eq);
  1838   // For MemBarStoreStore nodes added in library_call.cpp, check
  1839   // escape status of associated AllocateNode and optimize out
  1840   // MemBarStoreStore node if the allocated object never escapes.
  1841   while (storestore_worklist.length() != 0) {
  1842     Node *n = storestore_worklist.pop();
  1843     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1844     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1845     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1846     if (not_global_escape(alloc)) {
  1847       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1848       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1849       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1850       igvn->register_new_node_with_optimizer(mb);
  1851       igvn->replace_node(storestore, mb);
  1856 // Optimize objects compare.
  1857 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1858   assert(OptimizePtrCompare, "sanity");
  1859   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1860   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1861   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1862   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1863   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1864   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1866   // Check simple cases first.
  1867   if (jobj1 != NULL) {
  1868     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1869       if (jobj1 == jobj2) {
  1870         // Comparing the same not escaping object.
  1871         return _pcmp_eq;
  1873       Node* obj = jobj1->ideal_node();
  1874       // Comparing not escaping allocation.
  1875       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1876           !ptn2->points_to(jobj1)) {
  1877         return _pcmp_neq; // This includes nullness check.
  1881   if (jobj2 != NULL) {
  1882     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1883       Node* obj = jobj2->ideal_node();
  1884       // Comparing not escaping allocation.
  1885       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1886           !ptn1->points_to(jobj2)) {
  1887         return _pcmp_neq; // This includes nullness check.
  1891   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1892       jobj2 != NULL && jobj2 != phantom_obj &&
  1893       jobj1->ideal_node()->is_Con() &&
  1894       jobj2->ideal_node()->is_Con()) {
  1895     // Klass or String constants compare. Need to be careful with
  1896     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1897     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
  1898     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
  1899     if (t1->make_ptr() == t2->make_ptr()) {
  1900       return _pcmp_eq;
  1901     } else {
  1902       return _pcmp_neq;
  1905   if (ptn1->meet(ptn2)) {
  1906     return NULL; // Sets are not disjoint
  1909   // Sets are disjoint.
  1910   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1911   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1912   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1913   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1914   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1915       set2_has_unknown_ptr && set1_has_null_ptr) {
  1916     // Check nullness of unknown object.
  1917     return NULL;
  1920   // Disjointness by itself is not sufficient since
  1921   // alias analysis is not complete for escaped objects.
  1922   // Disjoint sets are definitely unrelated only when
  1923   // at least one set has only not escaping allocations.
  1924   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1925     if (ptn1->non_escaping_allocation()) {
  1926       return _pcmp_neq;
  1929   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1930     if (ptn2->non_escaping_allocation()) {
  1931       return _pcmp_neq;
  1934   return NULL;
  1937 // Connection Graph constuction functions.
  1939 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1940   PointsToNode* ptadr = _nodes.at(n->_idx);
  1941   if (ptadr != NULL) {
  1942     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1943     return;
  1945   Compile* C = _compile;
  1946   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
  1947   _nodes.at_put(n->_idx, ptadr);
  1950 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1951   PointsToNode* ptadr = _nodes.at(n->_idx);
  1952   if (ptadr != NULL) {
  1953     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1954     return;
  1956   Compile* C = _compile;
  1957   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
  1958   _nodes.at_put(n->_idx, ptadr);
  1961 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1962   PointsToNode* ptadr = _nodes.at(n->_idx);
  1963   if (ptadr != NULL) {
  1964     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1965     return;
  1967   bool unsafe = false;
  1968   bool is_oop = is_oop_field(n, offset, &unsafe);
  1969   if (unsafe) {
  1970     es = PointsToNode::GlobalEscape;
  1972   Compile* C = _compile;
  1973   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
  1974   _nodes.at_put(n->_idx, field);
  1977 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1978                                     PointsToNode* src, PointsToNode* dst) {
  1979   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1980   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1981   PointsToNode* ptadr = _nodes.at(n->_idx);
  1982   if (ptadr != NULL) {
  1983     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1984     return;
  1986   Compile* C = _compile;
  1987   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
  1988   _nodes.at_put(n->_idx, ptadr);
  1989   // Add edge from arraycopy node to source object.
  1990   (void)add_edge(ptadr, src);
  1991   src->set_arraycopy_src();
  1992   // Add edge from destination object to arraycopy node.
  1993   (void)add_edge(dst, ptadr);
  1994   dst->set_arraycopy_dst();
  1997 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
  1998   const Type* adr_type = n->as_AddP()->bottom_type();
  1999   BasicType bt = T_INT;
  2000   if (offset == Type::OffsetBot) {
  2001     // Check only oop fields.
  2002     if (!adr_type->isa_aryptr() ||
  2003         (adr_type->isa_aryptr()->klass() == NULL) ||
  2004          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  2005       // OffsetBot is used to reference array's element. Ignore first AddP.
  2006       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  2007         bt = T_OBJECT;
  2010   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  2011     if (adr_type->isa_instptr()) {
  2012       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  2013       if (field != NULL) {
  2014         bt = field->layout_type();
  2015       } else {
  2016         // Check for unsafe oop field access
  2017         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2018           int opcode = n->fast_out(i)->Opcode();
  2019           if (opcode == Op_StoreP || opcode == Op_LoadP ||
  2020               opcode == Op_StoreN || opcode == Op_LoadN) {
  2021             bt = T_OBJECT;
  2022             (*unsafe) = true;
  2023             break;
  2027     } else if (adr_type->isa_aryptr()) {
  2028       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2029         // Ignore array length load.
  2030       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  2031         // Ignore first AddP.
  2032       } else {
  2033         const Type* elemtype = adr_type->isa_aryptr()->elem();
  2034         bt = elemtype->array_element_basic_type();
  2036     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  2037       // Allocation initialization, ThreadLocal field access, unsafe access
  2038       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2039         int opcode = n->fast_out(i)->Opcode();
  2040         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  2041             opcode == Op_StoreN || opcode == Op_LoadN) {
  2042           bt = T_OBJECT;
  2043           break;
  2048   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  2051 // Returns unique pointed java object or NULL.
  2052 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  2053   assert(!_collecting, "should not call when contructed graph");
  2054   // If the node was created after the escape computation we can't answer.
  2055   uint idx = n->_idx;
  2056   if (idx >= nodes_size()) {
  2057     return NULL;
  2059   PointsToNode* ptn = ptnode_adr(idx);
  2060   if (ptn->is_JavaObject()) {
  2061     return ptn->as_JavaObject();
  2063   assert(ptn->is_LocalVar(), "sanity");
  2064   // Check all java objects it points to.
  2065   JavaObjectNode* jobj = NULL;
  2066   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2067     PointsToNode* e = i.get();
  2068     if (e->is_JavaObject()) {
  2069       if (jobj == NULL) {
  2070         jobj = e->as_JavaObject();
  2071       } else if (jobj != e) {
  2072         return NULL;
  2076   return jobj;
  2079 // Return true if this node points only to non-escaping allocations.
  2080 bool PointsToNode::non_escaping_allocation() {
  2081   if (is_JavaObject()) {
  2082     Node* n = ideal_node();
  2083     if (n->is_Allocate() || n->is_CallStaticJava()) {
  2084       return (escape_state() == PointsToNode::NoEscape);
  2085     } else {
  2086       return false;
  2089   assert(is_LocalVar(), "sanity");
  2090   // Check all java objects it points to.
  2091   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2092     PointsToNode* e = i.get();
  2093     if (e->is_JavaObject()) {
  2094       Node* n = e->ideal_node();
  2095       if ((e->escape_state() != PointsToNode::NoEscape) ||
  2096           !(n->is_Allocate() || n->is_CallStaticJava())) {
  2097         return false;
  2101   return true;
  2104 // Return true if we know the node does not escape globally.
  2105 bool ConnectionGraph::not_global_escape(Node *n) {
  2106   assert(!_collecting, "should not call during graph construction");
  2107   // If the node was created after the escape computation we can't answer.
  2108   uint idx = n->_idx;
  2109   if (idx >= nodes_size()) {
  2110     return false;
  2112   PointsToNode* ptn = ptnode_adr(idx);
  2113   PointsToNode::EscapeState es = ptn->escape_state();
  2114   // If we have already computed a value, return it.
  2115   if (es >= PointsToNode::GlobalEscape)
  2116     return false;
  2117   if (ptn->is_JavaObject()) {
  2118     return true; // (es < PointsToNode::GlobalEscape);
  2120   assert(ptn->is_LocalVar(), "sanity");
  2121   // Check all java objects it points to.
  2122   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2123     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  2124       return false;
  2126   return true;
  2130 // Helper functions
  2132 // Return true if this node points to specified node or nodes it points to.
  2133 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  2134   if (is_JavaObject()) {
  2135     return (this == ptn);
  2137   assert(is_LocalVar() || is_Field(), "sanity");
  2138   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2139     if (i.get() == ptn)
  2140       return true;
  2142   return false;
  2145 // Return true if one node points to an other.
  2146 bool PointsToNode::meet(PointsToNode* ptn) {
  2147   if (this == ptn) {
  2148     return true;
  2149   } else if (ptn->is_JavaObject()) {
  2150     return this->points_to(ptn->as_JavaObject());
  2151   } else if (this->is_JavaObject()) {
  2152     return ptn->points_to(this->as_JavaObject());
  2154   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  2155   int ptn_count =  ptn->edge_count();
  2156   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2157     PointsToNode* this_e = i.get();
  2158     for (int j = 0; j < ptn_count; j++) {
  2159       if (this_e == ptn->edge(j))
  2160         return true;
  2163   return false;
  2166 #ifdef ASSERT
  2167 // Return true if bases point to this java object.
  2168 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  2169   for (BaseIterator i(this); i.has_next(); i.next()) {
  2170     if (i.get() == jobj)
  2171       return true;
  2173   return false;
  2175 #endif
  2177 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  2178   const Type *adr_type = phase->type(adr);
  2179   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  2180       adr->in(AddPNode::Address)->is_Proj() &&
  2181       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2182     // We are computing a raw address for a store captured by an Initialize
  2183     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  2184     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2185     assert(offs != Type::OffsetBot ||
  2186            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  2187            "offset must be a constant or it is initialization of array");
  2188     return offs;
  2190   const TypePtr *t_ptr = adr_type->isa_ptr();
  2191   assert(t_ptr != NULL, "must be a pointer type");
  2192   return t_ptr->offset();
  2195 Node* ConnectionGraph::get_addp_base(Node *addp) {
  2196   assert(addp->is_AddP(), "must be AddP");
  2197   //
  2198   // AddP cases for Base and Address inputs:
  2199   // case #1. Direct object's field reference:
  2200   //     Allocate
  2201   //       |
  2202   //     Proj #5 ( oop result )
  2203   //       |
  2204   //     CheckCastPP (cast to instance type)
  2205   //      | |
  2206   //     AddP  ( base == address )
  2207   //
  2208   // case #2. Indirect object's field reference:
  2209   //      Phi
  2210   //       |
  2211   //     CastPP (cast to instance type)
  2212   //      | |
  2213   //     AddP  ( base == address )
  2214   //
  2215   // case #3. Raw object's field reference for Initialize node:
  2216   //      Allocate
  2217   //        |
  2218   //      Proj #5 ( oop result )
  2219   //  top   |
  2220   //     \  |
  2221   //     AddP  ( base == top )
  2222   //
  2223   // case #4. Array's element reference:
  2224   //   {CheckCastPP | CastPP}
  2225   //     |  | |
  2226   //     |  AddP ( array's element offset )
  2227   //     |  |
  2228   //     AddP ( array's offset )
  2229   //
  2230   // case #5. Raw object's field reference for arraycopy stub call:
  2231   //          The inline_native_clone() case when the arraycopy stub is called
  2232   //          after the allocation before Initialize and CheckCastPP nodes.
  2233   //      Allocate
  2234   //        |
  2235   //      Proj #5 ( oop result )
  2236   //       | |
  2237   //       AddP  ( base == address )
  2238   //
  2239   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2240   //          Raw object's field reference:
  2241   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2242   //  top   |
  2243   //     \  |
  2244   //     AddP  ( base == top )
  2245   //
  2246   // case #7. Klass's field reference.
  2247   //      LoadKlass
  2248   //       | |
  2249   //       AddP  ( base == address )
  2250   //
  2251   // case #8. narrow Klass's field reference.
  2252   //      LoadNKlass
  2253   //       |
  2254   //      DecodeN
  2255   //       | |
  2256   //       AddP  ( base == address )
  2257   //
  2258   Node *base = addp->in(AddPNode::Base);
  2259   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2260     base = addp->in(AddPNode::Address);
  2261     while (base->is_AddP()) {
  2262       // Case #6 (unsafe access) may have several chained AddP nodes.
  2263       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2264       base = base->in(AddPNode::Address);
  2266     Node* uncast_base = base->uncast();
  2267     int opcode = uncast_base->Opcode();
  2268     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2269            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
  2270            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
  2271            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2273   return base;
  2276 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2277   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2278   Node* addp2 = addp->raw_out(0);
  2279   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2280       addp2->in(AddPNode::Base) == n &&
  2281       addp2->in(AddPNode::Address) == addp) {
  2282     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2283     //
  2284     // Find array's offset to push it on worklist first and
  2285     // as result process an array's element offset first (pushed second)
  2286     // to avoid CastPP for the array's offset.
  2287     // Otherwise the inserted CastPP (LocalVar) will point to what
  2288     // the AddP (Field) points to. Which would be wrong since
  2289     // the algorithm expects the CastPP has the same point as
  2290     // as AddP's base CheckCastPP (LocalVar).
  2291     //
  2292     //    ArrayAllocation
  2293     //     |
  2294     //    CheckCastPP
  2295     //     |
  2296     //    memProj (from ArrayAllocation CheckCastPP)
  2297     //     |  ||
  2298     //     |  ||   Int (element index)
  2299     //     |  ||    |   ConI (log(element size))
  2300     //     |  ||    |   /
  2301     //     |  ||   LShift
  2302     //     |  ||  /
  2303     //     |  AddP (array's element offset)
  2304     //     |  |
  2305     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2306     //     | / /
  2307     //     AddP (array's offset)
  2308     //      |
  2309     //     Load/Store (memory operation on array's element)
  2310     //
  2311     return addp2;
  2313   return NULL;
  2316 //
  2317 // Adjust the type and inputs of an AddP which computes the
  2318 // address of a field of an instance
  2319 //
  2320 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2321   PhaseGVN* igvn = _igvn;
  2322   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2323   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2324   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2325   if (t == NULL) {
  2326     // We are computing a raw address for a store captured by an Initialize
  2327     // compute an appropriate address type (cases #3 and #5).
  2328     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2329     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2330     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2331     assert(offs != Type::OffsetBot, "offset must be a constant");
  2332     t = base_t->add_offset(offs)->is_oopptr();
  2334   int inst_id =  base_t->instance_id();
  2335   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2336                              "old type must be non-instance or match new type");
  2338   // The type 't' could be subclass of 'base_t'.
  2339   // As result t->offset() could be large then base_t's size and it will
  2340   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2341   // constructor verifies correctness of the offset.
  2342   //
  2343   // It could happened on subclass's branch (from the type profiling
  2344   // inlining) which was not eliminated during parsing since the exactness
  2345   // of the allocation type was not propagated to the subclass type check.
  2346   //
  2347   // Or the type 't' could be not related to 'base_t' at all.
  2348   // It could happened when CHA type is different from MDO type on a dead path
  2349   // (for example, from instanceof check) which is not collapsed during parsing.
  2350   //
  2351   // Do nothing for such AddP node and don't process its users since
  2352   // this code branch will go away.
  2353   //
  2354   if (!t->is_known_instance() &&
  2355       !base_t->klass()->is_subtype_of(t->klass())) {
  2356      return false; // bail out
  2358   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2359   // Do NOT remove the next line: ensure a new alias index is allocated
  2360   // for the instance type. Note: C++ will not remove it since the call
  2361   // has side effect.
  2362   int alias_idx = _compile->get_alias_index(tinst);
  2363   igvn->set_type(addp, tinst);
  2364   // record the allocation in the node map
  2365   set_map(addp, get_map(base->_idx));
  2366   // Set addp's Base and Address to 'base'.
  2367   Node *abase = addp->in(AddPNode::Base);
  2368   Node *adr   = addp->in(AddPNode::Address);
  2369   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2370       adr->in(0)->_idx == (uint)inst_id) {
  2371     // Skip AddP cases #3 and #5.
  2372   } else {
  2373     assert(!abase->is_top(), "sanity"); // AddP case #3
  2374     if (abase != base) {
  2375       igvn->hash_delete(addp);
  2376       addp->set_req(AddPNode::Base, base);
  2377       if (abase == adr) {
  2378         addp->set_req(AddPNode::Address, base);
  2379       } else {
  2380         // AddP case #4 (adr is array's element offset AddP node)
  2381 #ifdef ASSERT
  2382         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2383         assert(adr->is_AddP() && atype != NULL &&
  2384                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2385 #endif
  2387       igvn->hash_insert(addp);
  2390   // Put on IGVN worklist since at least addp's type was changed above.
  2391   record_for_optimizer(addp);
  2392   return true;
  2395 //
  2396 // Create a new version of orig_phi if necessary. Returns either the newly
  2397 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2398 // phi was created.  Cache the last newly created phi in the node map.
  2399 //
  2400 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2401   Compile *C = _compile;
  2402   PhaseGVN* igvn = _igvn;
  2403   new_created = false;
  2404   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2405   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2406   if (phi_alias_idx == alias_idx) {
  2407     return orig_phi;
  2409   // Have we recently created a Phi for this alias index?
  2410   PhiNode *result = get_map_phi(orig_phi->_idx);
  2411   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2412     return result;
  2414   // Previous check may fail when the same wide memory Phi was split into Phis
  2415   // for different memory slices. Search all Phis for this region.
  2416   if (result != NULL) {
  2417     Node* region = orig_phi->in(0);
  2418     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2419       Node* phi = region->fast_out(i);
  2420       if (phi->is_Phi() &&
  2421           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2422         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2423         return phi->as_Phi();
  2427   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
  2428     if (C->do_escape_analysis() == true && !C->failing()) {
  2429       // Retry compilation without escape analysis.
  2430       // If this is the first failure, the sentinel string will "stick"
  2431       // to the Compile object, and the C2Compiler will see it and retry.
  2432       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2434     return NULL;
  2436   orig_phi_worklist.append_if_missing(orig_phi);
  2437   const TypePtr *atype = C->get_adr_type(alias_idx);
  2438   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2439   C->copy_node_notes_to(result, orig_phi);
  2440   igvn->set_type(result, result->bottom_type());
  2441   record_for_optimizer(result);
  2442   set_map(orig_phi, result);
  2443   new_created = true;
  2444   return result;
  2447 //
  2448 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2449 // specified alias index.
  2450 //
  2451 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2452   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2453   Compile *C = _compile;
  2454   PhaseGVN* igvn = _igvn;
  2455   bool new_phi_created;
  2456   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2457   if (!new_phi_created) {
  2458     return result;
  2460   GrowableArray<PhiNode *>  phi_list;
  2461   GrowableArray<uint>  cur_input;
  2462   PhiNode *phi = orig_phi;
  2463   uint idx = 1;
  2464   bool finished = false;
  2465   while(!finished) {
  2466     while (idx < phi->req()) {
  2467       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2468       if (mem != NULL && mem->is_Phi()) {
  2469         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2470         if (new_phi_created) {
  2471           // found an phi for which we created a new split, push current one on worklist and begin
  2472           // processing new one
  2473           phi_list.push(phi);
  2474           cur_input.push(idx);
  2475           phi = mem->as_Phi();
  2476           result = newphi;
  2477           idx = 1;
  2478           continue;
  2479         } else {
  2480           mem = newphi;
  2483       if (C->failing()) {
  2484         return NULL;
  2486       result->set_req(idx++, mem);
  2488 #ifdef ASSERT
  2489     // verify that the new Phi has an input for each input of the original
  2490     assert( phi->req() == result->req(), "must have same number of inputs.");
  2491     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2492 #endif
  2493     // Check if all new phi's inputs have specified alias index.
  2494     // Otherwise use old phi.
  2495     for (uint i = 1; i < phi->req(); i++) {
  2496       Node* in = result->in(i);
  2497       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2499     // we have finished processing a Phi, see if there are any more to do
  2500     finished = (phi_list.length() == 0 );
  2501     if (!finished) {
  2502       phi = phi_list.pop();
  2503       idx = cur_input.pop();
  2504       PhiNode *prev_result = get_map_phi(phi->_idx);
  2505       prev_result->set_req(idx++, result);
  2506       result = prev_result;
  2509   return result;
  2512 //
  2513 // The next methods are derived from methods in MemNode.
  2514 //
  2515 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2516   Node *mem = mmem;
  2517   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2518   // means an array I have not precisely typed yet.  Do not do any
  2519   // alias stuff with it any time soon.
  2520   if (toop->base() != Type::AnyPtr &&
  2521       !(toop->klass() != NULL &&
  2522         toop->klass()->is_java_lang_Object() &&
  2523         toop->offset() == Type::OffsetBot)) {
  2524     mem = mmem->memory_at(alias_idx);
  2525     // Update input if it is progress over what we have now
  2527   return mem;
  2530 //
  2531 // Move memory users to their memory slices.
  2532 //
  2533 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2534   Compile* C = _compile;
  2535   PhaseGVN* igvn = _igvn;
  2536   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2537   assert(tp != NULL, "ptr type");
  2538   int alias_idx = C->get_alias_index(tp);
  2539   int general_idx = C->get_general_index(alias_idx);
  2541   // Move users first
  2542   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2543     Node* use = n->fast_out(i);
  2544     if (use->is_MergeMem()) {
  2545       MergeMemNode* mmem = use->as_MergeMem();
  2546       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2547       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2548         continue; // Nothing to do
  2550       // Replace previous general reference to mem node.
  2551       uint orig_uniq = C->unique();
  2552       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2553       assert(orig_uniq == C->unique(), "no new nodes");
  2554       mmem->set_memory_at(general_idx, m);
  2555       --imax;
  2556       --i;
  2557     } else if (use->is_MemBar()) {
  2558       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2559       if (use->req() > MemBarNode::Precedent &&
  2560           use->in(MemBarNode::Precedent) == n) {
  2561         // Don't move related membars.
  2562         record_for_optimizer(use);
  2563         continue;
  2565       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2566       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2567           alias_idx == general_idx) {
  2568         continue; // Nothing to do
  2570       // Move to general memory slice.
  2571       uint orig_uniq = C->unique();
  2572       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2573       assert(orig_uniq == C->unique(), "no new nodes");
  2574       igvn->hash_delete(use);
  2575       imax -= use->replace_edge(n, m);
  2576       igvn->hash_insert(use);
  2577       record_for_optimizer(use);
  2578       --i;
  2579 #ifdef ASSERT
  2580     } else if (use->is_Mem()) {
  2581       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2582         // Don't move related cardmark.
  2583         continue;
  2585       // Memory nodes should have new memory input.
  2586       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2587       assert(tp != NULL, "ptr type");
  2588       int idx = C->get_alias_index(tp);
  2589       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2590              "Following memory nodes should have new memory input or be on the same memory slice");
  2591     } else if (use->is_Phi()) {
  2592       // Phi nodes should be split and moved already.
  2593       tp = use->as_Phi()->adr_type()->isa_ptr();
  2594       assert(tp != NULL, "ptr type");
  2595       int idx = C->get_alias_index(tp);
  2596       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2597     } else {
  2598       use->dump();
  2599       assert(false, "should not be here");
  2600 #endif
  2605 //
  2606 // Search memory chain of "mem" to find a MemNode whose address
  2607 // is the specified alias index.
  2608 //
  2609 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2610   if (orig_mem == NULL)
  2611     return orig_mem;
  2612   Compile* C = _compile;
  2613   PhaseGVN* igvn = _igvn;
  2614   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2615   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2616   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2617   Node *prev = NULL;
  2618   Node *result = orig_mem;
  2619   while (prev != result) {
  2620     prev = result;
  2621     if (result == start_mem)
  2622       break;  // hit one of our sentinels
  2623     if (result->is_Mem()) {
  2624       const Type *at = igvn->type(result->in(MemNode::Address));
  2625       if (at == Type::TOP)
  2626         break; // Dead
  2627       assert (at->isa_ptr() != NULL, "pointer type required.");
  2628       int idx = C->get_alias_index(at->is_ptr());
  2629       if (idx == alias_idx)
  2630         break; // Found
  2631       if (!is_instance && (at->isa_oopptr() == NULL ||
  2632                            !at->is_oopptr()->is_known_instance())) {
  2633         break; // Do not skip store to general memory slice.
  2635       result = result->in(MemNode::Memory);
  2637     if (!is_instance)
  2638       continue;  // don't search further for non-instance types
  2639     // skip over a call which does not affect this memory slice
  2640     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2641       Node *proj_in = result->in(0);
  2642       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2643         break;  // hit one of our sentinels
  2644       } else if (proj_in->is_Call()) {
  2645         CallNode *call = proj_in->as_Call();
  2646         if (!call->may_modify(toop, igvn)) {
  2647           result = call->in(TypeFunc::Memory);
  2649       } else if (proj_in->is_Initialize()) {
  2650         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2651         // Stop if this is the initialization for the object instance which
  2652         // which contains this memory slice, otherwise skip over it.
  2653         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2654           result = proj_in->in(TypeFunc::Memory);
  2656       } else if (proj_in->is_MemBar()) {
  2657         result = proj_in->in(TypeFunc::Memory);
  2659     } else if (result->is_MergeMem()) {
  2660       MergeMemNode *mmem = result->as_MergeMem();
  2661       result = step_through_mergemem(mmem, alias_idx, toop);
  2662       if (result == mmem->base_memory()) {
  2663         // Didn't find instance memory, search through general slice recursively.
  2664         result = mmem->memory_at(C->get_general_index(alias_idx));
  2665         result = find_inst_mem(result, alias_idx, orig_phis);
  2666         if (C->failing()) {
  2667           return NULL;
  2669         mmem->set_memory_at(alias_idx, result);
  2671     } else if (result->is_Phi() &&
  2672                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2673       Node *un = result->as_Phi()->unique_input(igvn);
  2674       if (un != NULL) {
  2675         orig_phis.append_if_missing(result->as_Phi());
  2676         result = un;
  2677       } else {
  2678         break;
  2680     } else if (result->is_ClearArray()) {
  2681       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2682         // Can not bypass initialization of the instance
  2683         // we are looking for.
  2684         break;
  2686       // Otherwise skip it (the call updated 'result' value).
  2687     } else if (result->Opcode() == Op_SCMemProj) {
  2688       Node* mem = result->in(0);
  2689       Node* adr = NULL;
  2690       if (mem->is_LoadStore()) {
  2691         adr = mem->in(MemNode::Address);
  2692       } else {
  2693         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
  2694         adr = mem->in(3); // Memory edge corresponds to destination array
  2696       const Type *at = igvn->type(adr);
  2697       if (at != Type::TOP) {
  2698         assert (at->isa_ptr() != NULL, "pointer type required.");
  2699         int idx = C->get_alias_index(at->is_ptr());
  2700         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2701         break;
  2703       result = mem->in(MemNode::Memory);
  2706   if (result->is_Phi()) {
  2707     PhiNode *mphi = result->as_Phi();
  2708     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2709     const TypePtr *t = mphi->adr_type();
  2710     if (!is_instance) {
  2711       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2712       // during Phase 4 if needed.
  2713       orig_phis.append_if_missing(mphi);
  2714     } else if (C->get_alias_index(t) != alias_idx) {
  2715       // Create a new Phi with the specified alias index type.
  2716       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2719   // the result is either MemNode, PhiNode, InitializeNode.
  2720   return result;
  2723 //
  2724 //  Convert the types of unescaped object to instance types where possible,
  2725 //  propagate the new type information through the graph, and update memory
  2726 //  edges and MergeMem inputs to reflect the new type.
  2727 //
  2728 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2729 //  The processing is done in 4 phases:
  2730 //
  2731 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2732 //            types for the CheckCastPP for allocations where possible.
  2733 //            Propagate the the new types through users as follows:
  2734 //               casts and Phi:  push users on alloc_worklist
  2735 //               AddP:  cast Base and Address inputs to the instance type
  2736 //                      push any AddP users on alloc_worklist and push any memnode
  2737 //                      users onto memnode_worklist.
  2738 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2739 //            search the Memory chain for a store with the appropriate type
  2740 //            address type.  If a Phi is found, create a new version with
  2741 //            the appropriate memory slices from each of the Phi inputs.
  2742 //            For stores, process the users as follows:
  2743 //               MemNode:  push on memnode_worklist
  2744 //               MergeMem: push on mergemem_worklist
  2745 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2746 //            moving the first node encountered of each  instance type to the
  2747 //            the input corresponding to its alias index.
  2748 //            appropriate memory slice.
  2749 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2750 //
  2751 // In the following example, the CheckCastPP nodes are the cast of allocation
  2752 // results and the allocation of node 29 is unescaped and eligible to be an
  2753 // instance type.
  2754 //
  2755 // We start with:
  2756 //
  2757 //     7 Parm #memory
  2758 //    10  ConI  "12"
  2759 //    19  CheckCastPP   "Foo"
  2760 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2761 //    29  CheckCastPP   "Foo"
  2762 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2763 //
  2764 //    40  StoreP  25   7  20   ... alias_index=4
  2765 //    50  StoreP  35  40  30   ... alias_index=4
  2766 //    60  StoreP  45  50  20   ... alias_index=4
  2767 //    70  LoadP    _  60  30   ... alias_index=4
  2768 //    80  Phi     75  50  60   Memory alias_index=4
  2769 //    90  LoadP    _  80  30   ... alias_index=4
  2770 //   100  LoadP    _  80  20   ... alias_index=4
  2771 //
  2772 //
  2773 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2774 // and creating a new alias index for node 30.  This gives:
  2775 //
  2776 //     7 Parm #memory
  2777 //    10  ConI  "12"
  2778 //    19  CheckCastPP   "Foo"
  2779 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2780 //    29  CheckCastPP   "Foo"  iid=24
  2781 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2782 //
  2783 //    40  StoreP  25   7  20   ... alias_index=4
  2784 //    50  StoreP  35  40  30   ... alias_index=6
  2785 //    60  StoreP  45  50  20   ... alias_index=4
  2786 //    70  LoadP    _  60  30   ... alias_index=6
  2787 //    80  Phi     75  50  60   Memory alias_index=4
  2788 //    90  LoadP    _  80  30   ... alias_index=6
  2789 //   100  LoadP    _  80  20   ... alias_index=4
  2790 //
  2791 // In phase 2, new memory inputs are computed for the loads and stores,
  2792 // And a new version of the phi is created.  In phase 4, the inputs to
  2793 // node 80 are updated and then the memory nodes are updated with the
  2794 // values computed in phase 2.  This results in:
  2795 //
  2796 //     7 Parm #memory
  2797 //    10  ConI  "12"
  2798 //    19  CheckCastPP   "Foo"
  2799 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2800 //    29  CheckCastPP   "Foo"  iid=24
  2801 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2802 //
  2803 //    40  StoreP  25  7   20   ... alias_index=4
  2804 //    50  StoreP  35  7   30   ... alias_index=6
  2805 //    60  StoreP  45  40  20   ... alias_index=4
  2806 //    70  LoadP    _  50  30   ... alias_index=6
  2807 //    80  Phi     75  40  60   Memory alias_index=4
  2808 //   120  Phi     75  50  50   Memory alias_index=6
  2809 //    90  LoadP    _ 120  30   ... alias_index=6
  2810 //   100  LoadP    _  80  20   ... alias_index=4
  2811 //
  2812 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2813   GrowableArray<Node *>  memnode_worklist;
  2814   GrowableArray<PhiNode *>  orig_phis;
  2815   PhaseIterGVN  *igvn = _igvn;
  2816   uint new_index_start = (uint) _compile->num_alias_types();
  2817   Arena* arena = Thread::current()->resource_area();
  2818   VectorSet visited(arena);
  2819   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2820   uint unique_old = _compile->unique();
  2822   //  Phase 1:  Process possible allocations from alloc_worklist.
  2823   //  Create instance types for the CheckCastPP for allocations where possible.
  2824   //
  2825   // (Note: don't forget to change the order of the second AddP node on
  2826   //  the alloc_worklist if the order of the worklist processing is changed,
  2827   //  see the comment in find_second_addp().)
  2828   //
  2829   while (alloc_worklist.length() != 0) {
  2830     Node *n = alloc_worklist.pop();
  2831     uint ni = n->_idx;
  2832     if (n->is_Call()) {
  2833       CallNode *alloc = n->as_Call();
  2834       // copy escape information to call node
  2835       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2836       PointsToNode::EscapeState es = ptn->escape_state();
  2837       // We have an allocation or call which returns a Java object,
  2838       // see if it is unescaped.
  2839       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2840         continue;
  2841       // Find CheckCastPP for the allocate or for the return value of a call
  2842       n = alloc->result_cast();
  2843       if (n == NULL) {            // No uses except Initialize node
  2844         if (alloc->is_Allocate()) {
  2845           // Set the scalar_replaceable flag for allocation
  2846           // so it could be eliminated if it has no uses.
  2847           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2849         if (alloc->is_CallStaticJava()) {
  2850           // Set the scalar_replaceable flag for boxing method
  2851           // so it could be eliminated if it has no uses.
  2852           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2854         continue;
  2856       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2857         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2858         continue;
  2861       // The inline code for Object.clone() casts the allocation result to
  2862       // java.lang.Object and then to the actual type of the allocated
  2863       // object. Detect this case and use the second cast.
  2864       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2865       // the allocation result is cast to java.lang.Object and then
  2866       // to the actual Array type.
  2867       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2868           && (alloc->is_AllocateArray() ||
  2869               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2870         Node *cast2 = NULL;
  2871         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2872           Node *use = n->fast_out(i);
  2873           if (use->is_CheckCastPP()) {
  2874             cast2 = use;
  2875             break;
  2878         if (cast2 != NULL) {
  2879           n = cast2;
  2880         } else {
  2881           // Non-scalar replaceable if the allocation type is unknown statically
  2882           // (reflection allocation), the object can't be restored during
  2883           // deoptimization without precise type.
  2884           continue;
  2888       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2889       if (t == NULL)
  2890         continue;  // not a TypeOopPtr
  2891       if (!t->klass_is_exact())
  2892         continue; // not an unique type
  2894       if (alloc->is_Allocate()) {
  2895         // Set the scalar_replaceable flag for allocation
  2896         // so it could be eliminated.
  2897         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2899       if (alloc->is_CallStaticJava()) {
  2900         // Set the scalar_replaceable flag for boxing method
  2901         // so it could be eliminated.
  2902         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2904       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2905       // in order for an object to be scalar-replaceable, it must be:
  2906       //   - a direct allocation (not a call returning an object)
  2907       //   - non-escaping
  2908       //   - eligible to be a unique type
  2909       //   - not determined to be ineligible by escape analysis
  2910       set_map(alloc, n);
  2911       set_map(n, alloc);
  2912       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
  2913       igvn->hash_delete(n);
  2914       igvn->set_type(n,  tinst);
  2915       n->raise_bottom_type(tinst);
  2916       igvn->hash_insert(n);
  2917       record_for_optimizer(n);
  2918       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2920         // First, put on the worklist all Field edges from Connection Graph
  2921         // which is more accurate then putting immediate users from Ideal Graph.
  2922         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2923           PointsToNode* tgt = e.get();
  2924           Node* use = tgt->ideal_node();
  2925           assert(tgt->is_Field() && use->is_AddP(),
  2926                  "only AddP nodes are Field edges in CG");
  2927           if (use->outcnt() > 0) { // Don't process dead nodes
  2928             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2929             if (addp2 != NULL) {
  2930               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2931               alloc_worklist.append_if_missing(addp2);
  2933             alloc_worklist.append_if_missing(use);
  2937         // An allocation may have an Initialize which has raw stores. Scan
  2938         // the users of the raw allocation result and push AddP users
  2939         // on alloc_worklist.
  2940         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2941         assert (raw_result != NULL, "must have an allocation result");
  2942         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2943           Node *use = raw_result->fast_out(i);
  2944           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2945             Node* addp2 = find_second_addp(use, raw_result);
  2946             if (addp2 != NULL) {
  2947               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2948               alloc_worklist.append_if_missing(addp2);
  2950             alloc_worklist.append_if_missing(use);
  2951           } else if (use->is_MemBar()) {
  2952             memnode_worklist.append_if_missing(use);
  2956     } else if (n->is_AddP()) {
  2957       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2958       if (jobj == NULL || jobj == phantom_obj) {
  2959 #ifdef ASSERT
  2960         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2961         ptnode_adr(n->_idx)->dump();
  2962         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2963 #endif
  2964         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2965         return;
  2967       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2968       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2969     } else if (n->is_Phi() ||
  2970                n->is_CheckCastPP() ||
  2971                n->is_EncodeP() ||
  2972                n->is_DecodeN() ||
  2973                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2974       if (visited.test_set(n->_idx)) {
  2975         assert(n->is_Phi(), "loops only through Phi's");
  2976         continue;  // already processed
  2978       JavaObjectNode* jobj = unique_java_object(n);
  2979       if (jobj == NULL || jobj == phantom_obj) {
  2980 #ifdef ASSERT
  2981         ptnode_adr(n->_idx)->dump();
  2982         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2983 #endif
  2984         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2985         return;
  2986       } else {
  2987         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2988         TypeNode *tn = n->as_Type();
  2989         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2990         assert(tinst != NULL && tinst->is_known_instance() &&
  2991                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2993         const Type *tn_type = igvn->type(tn);
  2994         const TypeOopPtr *tn_t;
  2995         if (tn_type->isa_narrowoop()) {
  2996           tn_t = tn_type->make_ptr()->isa_oopptr();
  2997         } else {
  2998           tn_t = tn_type->isa_oopptr();
  3000         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  3001           if (tn_type->isa_narrowoop()) {
  3002             tn_type = tinst->make_narrowoop();
  3003           } else {
  3004             tn_type = tinst;
  3006           igvn->hash_delete(tn);
  3007           igvn->set_type(tn, tn_type);
  3008           tn->set_type(tn_type);
  3009           igvn->hash_insert(tn);
  3010           record_for_optimizer(n);
  3011         } else {
  3012           assert(tn_type == TypePtr::NULL_PTR ||
  3013                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  3014                  "unexpected type");
  3015           continue; // Skip dead path with different type
  3018     } else {
  3019       debug_only(n->dump();)
  3020       assert(false, "EA: unexpected node");
  3021       continue;
  3023     // push allocation's users on appropriate worklist
  3024     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3025       Node *use = n->fast_out(i);
  3026       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  3027         // Load/store to instance's field
  3028         memnode_worklist.append_if_missing(use);
  3029       } else if (use->is_MemBar()) {
  3030         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3031           memnode_worklist.append_if_missing(use);
  3033       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  3034         Node* addp2 = find_second_addp(use, n);
  3035         if (addp2 != NULL) {
  3036           alloc_worklist.append_if_missing(addp2);
  3038         alloc_worklist.append_if_missing(use);
  3039       } else if (use->is_Phi() ||
  3040                  use->is_CheckCastPP() ||
  3041                  use->is_EncodeNarrowPtr() ||
  3042                  use->is_DecodeNarrowPtr() ||
  3043                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  3044         alloc_worklist.append_if_missing(use);
  3045 #ifdef ASSERT
  3046       } else if (use->is_Mem()) {
  3047         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  3048       } else if (use->is_MergeMem()) {
  3049         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3050       } else if (use->is_SafePoint()) {
  3051         // Look for MergeMem nodes for calls which reference unique allocation
  3052         // (through CheckCastPP nodes) even for debug info.
  3053         Node* m = use->in(TypeFunc::Memory);
  3054         if (m->is_MergeMem()) {
  3055           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3057       } else if (use->Opcode() == Op_EncodeISOArray) {
  3058         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3059           // EncodeISOArray overwrites destination array
  3060           memnode_worklist.append_if_missing(use);
  3062       } else {
  3063         uint op = use->Opcode();
  3064         if (!(op == Op_CmpP || op == Op_Conv2B ||
  3065               op == Op_CastP2X || op == Op_StoreCM ||
  3066               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  3067               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3068           n->dump();
  3069           use->dump();
  3070           assert(false, "EA: missing allocation reference path");
  3072 #endif
  3077   // New alias types were created in split_AddP().
  3078   uint new_index_end = (uint) _compile->num_alias_types();
  3079   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  3081   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  3082   //            compute new values for Memory inputs  (the Memory inputs are not
  3083   //            actually updated until phase 4.)
  3084   if (memnode_worklist.length() == 0)
  3085     return;  // nothing to do
  3086   while (memnode_worklist.length() != 0) {
  3087     Node *n = memnode_worklist.pop();
  3088     if (visited.test_set(n->_idx))
  3089       continue;
  3090     if (n->is_Phi() || n->is_ClearArray()) {
  3091       // we don't need to do anything, but the users must be pushed
  3092     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  3093       // we don't need to do anything, but the users must be pushed
  3094       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  3095       if (n == NULL)
  3096         continue;
  3097     } else if (n->Opcode() == Op_EncodeISOArray) {
  3098       // get the memory projection
  3099       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3100         Node *use = n->fast_out(i);
  3101         if (use->Opcode() == Op_SCMemProj) {
  3102           n = use;
  3103           break;
  3106       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3107     } else {
  3108       assert(n->is_Mem(), "memory node required.");
  3109       Node *addr = n->in(MemNode::Address);
  3110       const Type *addr_t = igvn->type(addr);
  3111       if (addr_t == Type::TOP)
  3112         continue;
  3113       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  3114       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  3115       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  3116       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  3117       if (_compile->failing()) {
  3118         return;
  3120       if (mem != n->in(MemNode::Memory)) {
  3121         // We delay the memory edge update since we need old one in
  3122         // MergeMem code below when instances memory slices are separated.
  3123         set_map(n, mem);
  3125       if (n->is_Load()) {
  3126         continue;  // don't push users
  3127       } else if (n->is_LoadStore()) {
  3128         // get the memory projection
  3129         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3130           Node *use = n->fast_out(i);
  3131           if (use->Opcode() == Op_SCMemProj) {
  3132             n = use;
  3133             break;
  3136         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3139     // push user on appropriate worklist
  3140     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3141       Node *use = n->fast_out(i);
  3142       if (use->is_Phi() || use->is_ClearArray()) {
  3143         memnode_worklist.append_if_missing(use);
  3144       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
  3145         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  3146           continue;
  3147         memnode_worklist.append_if_missing(use);
  3148       } else if (use->is_MemBar()) {
  3149         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3150           memnode_worklist.append_if_missing(use);
  3152 #ifdef ASSERT
  3153       } else if(use->is_Mem()) {
  3154         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  3155       } else if (use->is_MergeMem()) {
  3156         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3157       } else if (use->Opcode() == Op_EncodeISOArray) {
  3158         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3159           // EncodeISOArray overwrites destination array
  3160           memnode_worklist.append_if_missing(use);
  3162       } else {
  3163         uint op = use->Opcode();
  3164         if (!(op == Op_StoreCM ||
  3165               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  3166                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  3167               op == Op_AryEq || op == Op_StrComp ||
  3168               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3169           n->dump();
  3170           use->dump();
  3171           assert(false, "EA: missing memory path");
  3173 #endif
  3178   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  3179   //            Walk each memory slice moving the first node encountered of each
  3180   //            instance type to the the input corresponding to its alias index.
  3181   uint length = _mergemem_worklist.length();
  3182   for( uint next = 0; next < length; ++next ) {
  3183     MergeMemNode* nmm = _mergemem_worklist.at(next);
  3184     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  3185     // Note: we don't want to use MergeMemStream here because we only want to
  3186     // scan inputs which exist at the start, not ones we add during processing.
  3187     // Note 2: MergeMem may already contains instance memory slices added
  3188     // during find_inst_mem() call when memory nodes were processed above.
  3189     igvn->hash_delete(nmm);
  3190     uint nslices = MIN2(nmm->req(), new_index_start);
  3191     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  3192       Node* mem = nmm->in(i);
  3193       Node* cur = NULL;
  3194       if (mem == NULL || mem->is_top())
  3195         continue;
  3196       // First, update mergemem by moving memory nodes to corresponding slices
  3197       // if their type became more precise since this mergemem was created.
  3198       while (mem->is_Mem()) {
  3199         const Type *at = igvn->type(mem->in(MemNode::Address));
  3200         if (at != Type::TOP) {
  3201           assert (at->isa_ptr() != NULL, "pointer type required.");
  3202           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  3203           if (idx == i) {
  3204             if (cur == NULL)
  3205               cur = mem;
  3206           } else {
  3207             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  3208               nmm->set_memory_at(idx, mem);
  3212         mem = mem->in(MemNode::Memory);
  3214       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  3215       // Find any instance of the current type if we haven't encountered
  3216       // already a memory slice of the instance along the memory chain.
  3217       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3218         if((uint)_compile->get_general_index(ni) == i) {
  3219           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  3220           if (nmm->is_empty_memory(m)) {
  3221             Node* result = find_inst_mem(mem, ni, orig_phis);
  3222             if (_compile->failing()) {
  3223               return;
  3225             nmm->set_memory_at(ni, result);
  3230     // Find the rest of instances values
  3231     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3232       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  3233       Node* result = step_through_mergemem(nmm, ni, tinst);
  3234       if (result == nmm->base_memory()) {
  3235         // Didn't find instance memory, search through general slice recursively.
  3236         result = nmm->memory_at(_compile->get_general_index(ni));
  3237         result = find_inst_mem(result, ni, orig_phis);
  3238         if (_compile->failing()) {
  3239           return;
  3241         nmm->set_memory_at(ni, result);
  3244     igvn->hash_insert(nmm);
  3245     record_for_optimizer(nmm);
  3248   //  Phase 4:  Update the inputs of non-instance memory Phis and
  3249   //            the Memory input of memnodes
  3250   // First update the inputs of any non-instance Phi's from
  3251   // which we split out an instance Phi.  Note we don't have
  3252   // to recursively process Phi's encounted on the input memory
  3253   // chains as is done in split_memory_phi() since they  will
  3254   // also be processed here.
  3255   for (int j = 0; j < orig_phis.length(); j++) {
  3256     PhiNode *phi = orig_phis.at(j);
  3257     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3258     igvn->hash_delete(phi);
  3259     for (uint i = 1; i < phi->req(); i++) {
  3260       Node *mem = phi->in(i);
  3261       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3262       if (_compile->failing()) {
  3263         return;
  3265       if (mem != new_mem) {
  3266         phi->set_req(i, new_mem);
  3269     igvn->hash_insert(phi);
  3270     record_for_optimizer(phi);
  3273   // Update the memory inputs of MemNodes with the value we computed
  3274   // in Phase 2 and move stores memory users to corresponding memory slices.
  3275   // Disable memory split verification code until the fix for 6984348.
  3276   // Currently it produces false negative results since it does not cover all cases.
  3277 #if 0 // ifdef ASSERT
  3278   visited.Reset();
  3279   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3280 #endif
  3281   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3282     Node*    n = ideal_nodes.at(i);
  3283     Node* nmem = get_map(n->_idx);
  3284     assert(nmem != NULL, "sanity");
  3285     if (n->is_Mem()) {
  3286 #if 0 // ifdef ASSERT
  3287       Node* old_mem = n->in(MemNode::Memory);
  3288       if (!visited.test_set(old_mem->_idx)) {
  3289         old_mems.push(old_mem, old_mem->outcnt());
  3291 #endif
  3292       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3293       if (!n->is_Load()) {
  3294         // Move memory users of a store first.
  3295         move_inst_mem(n, orig_phis);
  3297       // Now update memory input
  3298       igvn->hash_delete(n);
  3299       n->set_req(MemNode::Memory, nmem);
  3300       igvn->hash_insert(n);
  3301       record_for_optimizer(n);
  3302     } else {
  3303       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3304              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3307 #if 0 // ifdef ASSERT
  3308   // Verify that memory was split correctly
  3309   while (old_mems.is_nonempty()) {
  3310     Node* old_mem = old_mems.node();
  3311     uint  old_cnt = old_mems.index();
  3312     old_mems.pop();
  3313     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3315 #endif
  3318 #ifndef PRODUCT
  3319 static const char *node_type_names[] = {
  3320   "UnknownType",
  3321   "JavaObject",
  3322   "LocalVar",
  3323   "Field",
  3324   "Arraycopy"
  3325 };
  3327 static const char *esc_names[] = {
  3328   "UnknownEscape",
  3329   "NoEscape",
  3330   "ArgEscape",
  3331   "GlobalEscape"
  3332 };
  3334 void PointsToNode::dump(bool print_state) const {
  3335   NodeType nt = node_type();
  3336   tty->print("%s ", node_type_names[(int) nt]);
  3337   if (print_state) {
  3338     EscapeState es = escape_state();
  3339     EscapeState fields_es = fields_escape_state();
  3340     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3341     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3342       tty->print("NSR ");
  3344   if (is_Field()) {
  3345     FieldNode* f = (FieldNode*)this;
  3346     if (f->is_oop())
  3347       tty->print("oop ");
  3348     if (f->offset() > 0)
  3349       tty->print("+%d ", f->offset());
  3350     tty->print("(");
  3351     for (BaseIterator i(f); i.has_next(); i.next()) {
  3352       PointsToNode* b = i.get();
  3353       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3355     tty->print(" )");
  3357   tty->print("[");
  3358   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3359     PointsToNode* e = i.get();
  3360     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3362   tty->print(" [");
  3363   for (UseIterator i(this); i.has_next(); i.next()) {
  3364     PointsToNode* u = i.get();
  3365     bool is_base = false;
  3366     if (PointsToNode::is_base_use(u)) {
  3367       is_base = true;
  3368       u = PointsToNode::get_use_node(u)->as_Field();
  3370     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3372   tty->print(" ]]  ");
  3373   if (_node == NULL)
  3374     tty->print_cr("<null>");
  3375   else
  3376     _node->dump();
  3379 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3380   bool first = true;
  3381   int ptnodes_length = ptnodes_worklist.length();
  3382   for (int i = 0; i < ptnodes_length; i++) {
  3383     PointsToNode *ptn = ptnodes_worklist.at(i);
  3384     if (ptn == NULL || !ptn->is_JavaObject())
  3385       continue;
  3386     PointsToNode::EscapeState es = ptn->escape_state();
  3387     if ((es != PointsToNode::NoEscape) && !Verbose) {
  3388       continue;
  3390     Node* n = ptn->ideal_node();
  3391     if (n->is_Allocate() || (n->is_CallStaticJava() &&
  3392                              n->as_CallStaticJava()->is_boxing_method())) {
  3393       if (first) {
  3394         tty->cr();
  3395         tty->print("======== Connection graph for ");
  3396         _compile->method()->print_short_name();
  3397         tty->cr();
  3398         first = false;
  3400       ptn->dump();
  3401       // Print all locals and fields which reference this allocation
  3402       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3403         PointsToNode* use = j.get();
  3404         if (use->is_LocalVar()) {
  3405           use->dump(Verbose);
  3406         } else if (Verbose) {
  3407           use->dump();
  3410       tty->cr();
  3414 #endif

mercurial