src/cpu/x86/vm/vm_version_x86.cpp

Fri, 04 Mar 2016 16:15:48 +0300

author
vkempik
date
Fri, 04 Mar 2016 16:15:48 +0300
changeset 8490
5601e440e5e7
parent 8318
ea7ac121a5d3
child 8319
0cd040567d60
permissions
-rw-r--r--

8130150: Implement BigInteger.montgomeryMultiply intrinsic
Reviewed-by: kvn, mdoerr

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "runtime/java.hpp"
    30 #include "runtime/stubCodeGenerator.hpp"
    31 #include "vm_version_x86.hpp"
    32 #ifdef TARGET_OS_FAMILY_linux
    33 # include "os_linux.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_FAMILY_solaris
    36 # include "os_solaris.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_FAMILY_windows
    39 # include "os_windows.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_FAMILY_bsd
    42 # include "os_bsd.inline.hpp"
    43 #endif
    46 int VM_Version::_cpu;
    47 int VM_Version::_model;
    48 int VM_Version::_stepping;
    49 int VM_Version::_cpuFeatures;
    50 const char*           VM_Version::_features_str = "";
    51 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    53 // Address of instruction which causes SEGV
    54 address VM_Version::_cpuinfo_segv_addr = 0;
    55 // Address of instruction after the one which causes SEGV
    56 address VM_Version::_cpuinfo_cont_addr = 0;
    58 static BufferBlob* stub_blob;
    59 static const int stub_size = 600;
    61 extern "C" {
    62   typedef void (*get_cpu_info_stub_t)(void*);
    63 }
    64 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
    67 class VM_Version_StubGenerator: public StubCodeGenerator {
    68  public:
    70   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    72   address generate_get_cpu_info() {
    73     // Flags to test CPU type.
    74     const uint32_t HS_EFL_AC           = 0x40000;
    75     const uint32_t HS_EFL_ID           = 0x200000;
    76     // Values for when we don't have a CPUID instruction.
    77     const int      CPU_FAMILY_SHIFT = 8;
    78     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    79     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    81     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    82     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
    84     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
    85 #   define __ _masm->
    87     address start = __ pc();
    89     //
    90     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
    91     //
    92     // LP64: rcx and rdx are first and second argument registers on windows
    94     __ push(rbp);
    95 #ifdef _LP64
    96     __ mov(rbp, c_rarg0); // cpuid_info address
    97 #else
    98     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    99 #endif
   100     __ push(rbx);
   101     __ push(rsi);
   102     __ pushf();          // preserve rbx, and flags
   103     __ pop(rax);
   104     __ push(rax);
   105     __ mov(rcx, rax);
   106     //
   107     // if we are unable to change the AC flag, we have a 386
   108     //
   109     __ xorl(rax, HS_EFL_AC);
   110     __ push(rax);
   111     __ popf();
   112     __ pushf();
   113     __ pop(rax);
   114     __ cmpptr(rax, rcx);
   115     __ jccb(Assembler::notEqual, detect_486);
   117     __ movl(rax, CPU_FAMILY_386);
   118     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   119     __ jmp(done);
   121     //
   122     // If we are unable to change the ID flag, we have a 486 which does
   123     // not support the "cpuid" instruction.
   124     //
   125     __ bind(detect_486);
   126     __ mov(rax, rcx);
   127     __ xorl(rax, HS_EFL_ID);
   128     __ push(rax);
   129     __ popf();
   130     __ pushf();
   131     __ pop(rax);
   132     __ cmpptr(rcx, rax);
   133     __ jccb(Assembler::notEqual, detect_586);
   135     __ bind(cpu486);
   136     __ movl(rax, CPU_FAMILY_486);
   137     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   138     __ jmp(done);
   140     //
   141     // At this point, we have a chip which supports the "cpuid" instruction
   142     //
   143     __ bind(detect_586);
   144     __ xorl(rax, rax);
   145     __ cpuid();
   146     __ orl(rax, rax);
   147     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   148                                         // value of at least 1, we give up and
   149                                         // assume a 486
   150     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   151     __ movl(Address(rsi, 0), rax);
   152     __ movl(Address(rsi, 4), rbx);
   153     __ movl(Address(rsi, 8), rcx);
   154     __ movl(Address(rsi,12), rdx);
   156     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   157     __ jccb(Assembler::belowEqual, std_cpuid4);
   159     //
   160     // cpuid(0xB) Processor Topology
   161     //
   162     __ movl(rax, 0xb);
   163     __ xorl(rcx, rcx);   // Threads level
   164     __ cpuid();
   166     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   167     __ movl(Address(rsi, 0), rax);
   168     __ movl(Address(rsi, 4), rbx);
   169     __ movl(Address(rsi, 8), rcx);
   170     __ movl(Address(rsi,12), rdx);
   172     __ movl(rax, 0xb);
   173     __ movl(rcx, 1);     // Cores level
   174     __ cpuid();
   175     __ push(rax);
   176     __ andl(rax, 0x1f);  // Determine if valid topology level
   177     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   178     __ andl(rax, 0xffff);
   179     __ pop(rax);
   180     __ jccb(Assembler::equal, std_cpuid4);
   182     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   183     __ movl(Address(rsi, 0), rax);
   184     __ movl(Address(rsi, 4), rbx);
   185     __ movl(Address(rsi, 8), rcx);
   186     __ movl(Address(rsi,12), rdx);
   188     __ movl(rax, 0xb);
   189     __ movl(rcx, 2);     // Packages level
   190     __ cpuid();
   191     __ push(rax);
   192     __ andl(rax, 0x1f);  // Determine if valid topology level
   193     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   194     __ andl(rax, 0xffff);
   195     __ pop(rax);
   196     __ jccb(Assembler::equal, std_cpuid4);
   198     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   199     __ movl(Address(rsi, 0), rax);
   200     __ movl(Address(rsi, 4), rbx);
   201     __ movl(Address(rsi, 8), rcx);
   202     __ movl(Address(rsi,12), rdx);
   204     //
   205     // cpuid(0x4) Deterministic cache params
   206     //
   207     __ bind(std_cpuid4);
   208     __ movl(rax, 4);
   209     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   210     __ jccb(Assembler::greater, std_cpuid1);
   212     __ xorl(rcx, rcx);   // L1 cache
   213     __ cpuid();
   214     __ push(rax);
   215     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   216     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   217     __ pop(rax);
   218     __ jccb(Assembler::equal, std_cpuid1);
   220     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   221     __ movl(Address(rsi, 0), rax);
   222     __ movl(Address(rsi, 4), rbx);
   223     __ movl(Address(rsi, 8), rcx);
   224     __ movl(Address(rsi,12), rdx);
   226     //
   227     // Standard cpuid(0x1)
   228     //
   229     __ bind(std_cpuid1);
   230     __ movl(rax, 1);
   231     __ cpuid();
   232     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   233     __ movl(Address(rsi, 0), rax);
   234     __ movl(Address(rsi, 4), rbx);
   235     __ movl(Address(rsi, 8), rcx);
   236     __ movl(Address(rsi,12), rdx);
   238     //
   239     // Check if OS has enabled XGETBV instruction to access XCR0
   240     // (OSXSAVE feature flag) and CPU supports AVX
   241     //
   242     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
   243     __ cmpl(rcx, 0x18000000);
   244     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
   246     //
   247     // XCR0, XFEATURE_ENABLED_MASK register
   248     //
   249     __ xorl(rcx, rcx);   // zero for XCR0 register
   250     __ xgetbv();
   251     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
   252     __ movl(Address(rsi, 0), rax);
   253     __ movl(Address(rsi, 4), rdx);
   255     __ andl(rax, 0x6); // xcr0 bits sse | ymm
   256     __ cmpl(rax, 0x6);
   257     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
   259     //
   260     // Some OSs have a bug when upper 128bits of YMM
   261     // registers are not restored after a signal processing.
   262     // Generate SEGV here (reference through NULL)
   263     // and check upper YMM bits after it.
   264     //
   265     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
   266     intx saved_useavx = UseAVX;
   267     intx saved_usesse = UseSSE;
   268     UseAVX = 1;
   269     UseSSE = 2;
   271     // load value into all 32 bytes of ymm7 register
   272     __ movl(rcx, VM_Version::ymm_test_value());
   274     __ movdl(xmm0, rcx);
   275     __ pshufd(xmm0, xmm0, 0x00);
   276     __ vinsertf128h(xmm0, xmm0, xmm0);
   277     __ vmovdqu(xmm7, xmm0);
   278 #ifdef _LP64
   279     __ vmovdqu(xmm8,  xmm0);
   280     __ vmovdqu(xmm15, xmm0);
   281 #endif
   283     __ xorl(rsi, rsi);
   284     VM_Version::set_cpuinfo_segv_addr( __ pc() );
   285     // Generate SEGV
   286     __ movl(rax, Address(rsi, 0));
   288     VM_Version::set_cpuinfo_cont_addr( __ pc() );
   289     // Returns here after signal. Save xmm0 to check it later.
   290     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
   291     __ vmovdqu(Address(rsi,  0), xmm0);
   292     __ vmovdqu(Address(rsi, 32), xmm7);
   293 #ifdef _LP64
   294     __ vmovdqu(Address(rsi, 64), xmm8);
   295     __ vmovdqu(Address(rsi, 96), xmm15);
   296 #endif
   298     VM_Version::clean_cpuFeatures();
   299     UseAVX = saved_useavx;
   300     UseSSE = saved_usesse;
   302     //
   303     // cpuid(0x7) Structured Extended Features
   304     //
   305     __ bind(sef_cpuid);
   306     __ movl(rax, 7);
   307     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
   308     __ jccb(Assembler::greater, ext_cpuid);
   310     __ xorl(rcx, rcx);
   311     __ cpuid();
   312     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
   313     __ movl(Address(rsi, 0), rax);
   314     __ movl(Address(rsi, 4), rbx);
   316     //
   317     // Extended cpuid(0x80000000)
   318     //
   319     __ bind(ext_cpuid);
   320     __ movl(rax, 0x80000000);
   321     __ cpuid();
   322     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   323     __ jcc(Assembler::belowEqual, done);
   324     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   325     __ jccb(Assembler::belowEqual, ext_cpuid1);
   326     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
   327     __ jccb(Assembler::belowEqual, ext_cpuid5);
   328     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   329     __ jccb(Assembler::belowEqual, ext_cpuid7);
   330     //
   331     // Extended cpuid(0x80000008)
   332     //
   333     __ movl(rax, 0x80000008);
   334     __ cpuid();
   335     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   336     __ movl(Address(rsi, 0), rax);
   337     __ movl(Address(rsi, 4), rbx);
   338     __ movl(Address(rsi, 8), rcx);
   339     __ movl(Address(rsi,12), rdx);
   341     //
   342     // Extended cpuid(0x80000007)
   343     //
   344     __ bind(ext_cpuid7);
   345     __ movl(rax, 0x80000007);
   346     __ cpuid();
   347     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
   348     __ movl(Address(rsi, 0), rax);
   349     __ movl(Address(rsi, 4), rbx);
   350     __ movl(Address(rsi, 8), rcx);
   351     __ movl(Address(rsi,12), rdx);
   353     //
   354     // Extended cpuid(0x80000005)
   355     //
   356     __ bind(ext_cpuid5);
   357     __ movl(rax, 0x80000005);
   358     __ cpuid();
   359     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   360     __ movl(Address(rsi, 0), rax);
   361     __ movl(Address(rsi, 4), rbx);
   362     __ movl(Address(rsi, 8), rcx);
   363     __ movl(Address(rsi,12), rdx);
   365     //
   366     // Extended cpuid(0x80000001)
   367     //
   368     __ bind(ext_cpuid1);
   369     __ movl(rax, 0x80000001);
   370     __ cpuid();
   371     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   372     __ movl(Address(rsi, 0), rax);
   373     __ movl(Address(rsi, 4), rbx);
   374     __ movl(Address(rsi, 8), rcx);
   375     __ movl(Address(rsi,12), rdx);
   377     //
   378     // return
   379     //
   380     __ bind(done);
   381     __ popf();
   382     __ pop(rsi);
   383     __ pop(rbx);
   384     __ pop(rbp);
   385     __ ret(0);
   387 #   undef __
   389     return start;
   390   };
   391 };
   394 void VM_Version::get_cpu_info_wrapper() {
   395   get_cpu_info_stub(&_cpuid_info);
   396 }
   398 #ifndef CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED
   399   #define CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(f) f()
   400 #endif
   402 void VM_Version::get_processor_features() {
   404   _cpu = 4; // 486 by default
   405   _model = 0;
   406   _stepping = 0;
   407   _cpuFeatures = 0;
   408   _logical_processors_per_package = 1;
   410   if (!Use486InstrsOnly) {
   411     // Get raw processor info
   413     // Some platforms (like Win*) need a wrapper around here
   414     // in order to properly handle SEGV for YMM registers test.
   415     CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(get_cpu_info_wrapper);
   417     assert_is_initialized();
   418     _cpu = extended_cpu_family();
   419     _model = extended_cpu_model();
   420     _stepping = cpu_stepping();
   422     if (cpu_family() > 4) { // it supports CPUID
   423       _cpuFeatures = feature_flags();
   424       // Logical processors are only available on P4s and above,
   425       // and only if hyperthreading is available.
   426       _logical_processors_per_package = logical_processor_count();
   427     }
   428   }
   430   _supports_cx8 = supports_cmpxchg8();
   431   // xchg and xadd instructions
   432   _supports_atomic_getset4 = true;
   433   _supports_atomic_getadd4 = true;
   434   LP64_ONLY(_supports_atomic_getset8 = true);
   435   LP64_ONLY(_supports_atomic_getadd8 = true);
   437 #ifdef _LP64
   438   // OS should support SSE for x64 and hardware should support at least SSE2.
   439   if (!VM_Version::supports_sse2()) {
   440     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   441   }
   442   // in 64 bit the use of SSE2 is the minimum
   443   if (UseSSE < 2) UseSSE = 2;
   444 #endif
   446 #ifdef AMD64
   447   // flush_icache_stub have to be generated first.
   448   // That is why Icache line size is hard coded in ICache class,
   449   // see icache_x86.hpp. It is also the reason why we can't use
   450   // clflush instruction in 32-bit VM since it could be running
   451   // on CPU which does not support it.
   452   //
   453   // The only thing we can do is to verify that flushed
   454   // ICache::line_size has correct value.
   455   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   456   // clflush_size is size in quadwords (8 bytes).
   457   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   458 #endif
   460   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   461   if (!os::supports_sse())
   462     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   464   if (UseSSE < 4) {
   465     _cpuFeatures &= ~CPU_SSE4_1;
   466     _cpuFeatures &= ~CPU_SSE4_2;
   467   }
   469   if (UseSSE < 3) {
   470     _cpuFeatures &= ~CPU_SSE3;
   471     _cpuFeatures &= ~CPU_SSSE3;
   472     _cpuFeatures &= ~CPU_SSE4A;
   473   }
   475   if (UseSSE < 2)
   476     _cpuFeatures &= ~CPU_SSE2;
   478   if (UseSSE < 1)
   479     _cpuFeatures &= ~CPU_SSE;
   481   if (UseAVX < 2)
   482     _cpuFeatures &= ~CPU_AVX2;
   484   if (UseAVX < 1)
   485     _cpuFeatures &= ~CPU_AVX;
   487   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
   488     _cpuFeatures &= ~CPU_AES;
   490   if (logical_processors_per_package() == 1) {
   491     // HT processor could be installed on a system which doesn't support HT.
   492     _cpuFeatures &= ~CPU_HT;
   493   }
   495   char buf[256];
   496   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   497                cores_per_cpu(), threads_per_core(),
   498                cpu_family(), _model, _stepping,
   499                (supports_cmov() ? ", cmov" : ""),
   500                (supports_cmpxchg8() ? ", cx8" : ""),
   501                (supports_fxsr() ? ", fxsr" : ""),
   502                (supports_mmx()  ? ", mmx"  : ""),
   503                (supports_sse()  ? ", sse"  : ""),
   504                (supports_sse2() ? ", sse2" : ""),
   505                (supports_sse3() ? ", sse3" : ""),
   506                (supports_ssse3()? ", ssse3": ""),
   507                (supports_sse4_1() ? ", sse4.1" : ""),
   508                (supports_sse4_2() ? ", sse4.2" : ""),
   509                (supports_popcnt() ? ", popcnt" : ""),
   510                (supports_avx()    ? ", avx" : ""),
   511                (supports_avx2()   ? ", avx2" : ""),
   512                (supports_aes()    ? ", aes" : ""),
   513                (supports_clmul()  ? ", clmul" : ""),
   514                (supports_erms()   ? ", erms" : ""),
   515                (supports_rtm()    ? ", rtm" : ""),
   516                (supports_mmx_ext() ? ", mmxext" : ""),
   517                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   518                (supports_lzcnt()   ? ", lzcnt": ""),
   519                (supports_sse4a()   ? ", sse4a": ""),
   520                (supports_ht() ? ", ht": ""),
   521                (supports_tsc() ? ", tsc": ""),
   522                (supports_tscinv_bit() ? ", tscinvbit": ""),
   523                (supports_tscinv() ? ", tscinv": ""),
   524                (supports_bmi1() ? ", bmi1" : ""),
   525                (supports_bmi2() ? ", bmi2" : ""),
   526                (supports_adx() ? ", adx" : ""));
   527   _features_str = strdup(buf);
   529   // UseSSE is set to the smaller of what hardware supports and what
   530   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   531   // older Pentiums which do not support it.
   532   if (UseSSE > 4) UseSSE=4;
   533   if (UseSSE < 0) UseSSE=0;
   534   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
   535     UseSSE = MIN2((intx)3,UseSSE);
   536   if (!supports_sse3()) // Drop to 2 if no SSE3 support
   537     UseSSE = MIN2((intx)2,UseSSE);
   538   if (!supports_sse2()) // Drop to 1 if no SSE2 support
   539     UseSSE = MIN2((intx)1,UseSSE);
   540   if (!supports_sse ()) // Drop to 0 if no SSE  support
   541     UseSSE = 0;
   543   if (UseAVX > 2) UseAVX=2;
   544   if (UseAVX < 0) UseAVX=0;
   545   if (!supports_avx2()) // Drop to 1 if no AVX2 support
   546     UseAVX = MIN2((intx)1,UseAVX);
   547   if (!supports_avx ()) // Drop to 0 if no AVX  support
   548     UseAVX = 0;
   550   // Use AES instructions if available.
   551   if (supports_aes()) {
   552     if (FLAG_IS_DEFAULT(UseAES)) {
   553       UseAES = true;
   554     }
   555   } else if (UseAES) {
   556     if (!FLAG_IS_DEFAULT(UseAES))
   557       warning("AES instructions are not available on this CPU");
   558     FLAG_SET_DEFAULT(UseAES, false);
   559   }
   561   // Use CLMUL instructions if available.
   562   if (supports_clmul()) {
   563     if (FLAG_IS_DEFAULT(UseCLMUL)) {
   564       UseCLMUL = true;
   565     }
   566   } else if (UseCLMUL) {
   567     if (!FLAG_IS_DEFAULT(UseCLMUL))
   568       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
   569     FLAG_SET_DEFAULT(UseCLMUL, false);
   570   }
   572   if (UseCLMUL && (UseSSE > 2)) {
   573     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
   574       UseCRC32Intrinsics = true;
   575     }
   576   } else if (UseCRC32Intrinsics) {
   577     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
   578       warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
   579     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
   580   }
   582   // The AES intrinsic stubs require AES instruction support (of course)
   583   // but also require sse3 mode for instructions it use.
   584   if (UseAES && (UseSSE > 2)) {
   585     if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
   586       UseAESIntrinsics = true;
   587     }
   588   } else if (UseAESIntrinsics) {
   589     if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
   590       warning("AES intrinsics are not available on this CPU");
   591     FLAG_SET_DEFAULT(UseAESIntrinsics, false);
   592   }
   594   if (UseSHA) {
   595     warning("SHA instructions are not available on this CPU");
   596     FLAG_SET_DEFAULT(UseSHA, false);
   597   }
   598   if (UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics) {
   599     warning("SHA intrinsics are not available on this CPU");
   600     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
   601     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
   602     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
   603   }
   605   // Adjust RTM (Restricted Transactional Memory) flags
   606   if (!supports_rtm() && UseRTMLocking) {
   607     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
   608     // setting during arguments processing. See use_biased_locking().
   609     // VM_Version_init() is executed after UseBiasedLocking is used
   610     // in Thread::allocate().
   611     vm_exit_during_initialization("RTM instructions are not available on this CPU");
   612   }
   614 #if INCLUDE_RTM_OPT
   615   if (UseRTMLocking) {
   616     if (is_intel_family_core()) {
   617       if ((_model == CPU_MODEL_HASWELL_E3) ||
   618           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
   619           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
   620         if (!UnlockExperimentalVMOptions) {
   621           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
   622         } else {
   623           warning("UseRTMLocking is only available as experimental option on this platform.");
   624         }
   625       }
   626     }
   627     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
   628       // RTM locking should be used only for applications with
   629       // high lock contention. For now we do not use it by default.
   630       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
   631     }
   632     if (!is_power_of_2(RTMTotalCountIncrRate)) {
   633       warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
   634       FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
   635     }
   636     if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
   637       warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
   638       FLAG_SET_DEFAULT(RTMAbortRatio, 50);
   639     }
   640   } else { // !UseRTMLocking
   641     if (UseRTMForStackLocks) {
   642       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
   643         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
   644       }
   645       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
   646     }
   647     if (UseRTMDeopt) {
   648       FLAG_SET_DEFAULT(UseRTMDeopt, false);
   649     }
   650     if (PrintPreciseRTMLockingStatistics) {
   651       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
   652     }
   653   }
   654 #else
   655   if (UseRTMLocking) {
   656     // Only C2 does RTM locking optimization.
   657     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
   658     // setting during arguments processing. See use_biased_locking().
   659     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
   660   }
   661 #endif
   663 #ifdef COMPILER2
   664   if (UseFPUForSpilling) {
   665     if (UseSSE < 2) {
   666       // Only supported with SSE2+
   667       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   668     }
   669   }
   670   if (MaxVectorSize > 0) {
   671     if (!is_power_of_2(MaxVectorSize)) {
   672       warning("MaxVectorSize must be a power of 2");
   673       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   674     }
   675     if (MaxVectorSize > 32) {
   676       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   677     }
   678     if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
   679       // 32 bytes vectors (in YMM) are only supported with AVX+
   680       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   681     }
   682     if (UseSSE < 2) {
   683       // Vectors (in XMM) are only supported with SSE2+
   684       FLAG_SET_DEFAULT(MaxVectorSize, 0);
   685     }
   686 #ifdef ASSERT
   687     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
   688       tty->print_cr("State of YMM registers after signal handle:");
   689       int nreg = 2 LP64_ONLY(+2);
   690       const char* ymm_name[4] = {"0", "7", "8", "15"};
   691       for (int i = 0; i < nreg; i++) {
   692         tty->print("YMM%s:", ymm_name[i]);
   693         for (int j = 7; j >=0; j--) {
   694           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
   695         }
   696         tty->cr();
   697       }
   698     }
   699 #endif
   700   }
   702 #ifdef _LP64
   703   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
   704     UseMultiplyToLenIntrinsic = true;
   705   }
   706   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
   707     UseSquareToLenIntrinsic = true;
   708   }
   709   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
   710     UseMulAddIntrinsic = true;
   711   }
   712   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
   713     UseMontgomeryMultiplyIntrinsic = true;
   714   }
   715   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
   716     UseMontgomerySquareIntrinsic = true;
   717   }
   718 #else
   719   if (UseMultiplyToLenIntrinsic) {
   720     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
   721       warning("multiplyToLen intrinsic is not available in 32-bit VM");
   722     }
   723     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
   724   }
   725   if (UseSquareToLenIntrinsic) {
   726     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
   727       warning("squareToLen intrinsic is not available in 32-bit VM");
   728     }
   729     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
   730   }
   731   if (UseMulAddIntrinsic) {
   732     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
   733       warning("mulAdd intrinsic is not available in 32-bit VM");
   734     }
   735     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
   736   }
   737   if (UseMontgomeryMultiplyIntrinsic) {
   738     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
   739       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
   740     }
   741     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
   742   }
   743   if (UseMontgomerySquareIntrinsic) {
   744     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
   745       warning("montgomerySquare intrinsic is not available in 32-bit VM");
   746     }
   747     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
   748   }
   749 #endif
   750 #endif // COMPILER2
   752   // On new cpus instructions which update whole XMM register should be used
   753   // to prevent partial register stall due to dependencies on high half.
   754   //
   755   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   756   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   757   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   758   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   760   if( is_amd() ) { // AMD cpus specific settings
   761     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   762       // Use it on new AMD cpus starting from Opteron.
   763       UseAddressNop = true;
   764     }
   765     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   766       // Use it on new AMD cpus starting from Opteron.
   767       UseNewLongLShift = true;
   768     }
   769     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   770       if( supports_sse4a() ) {
   771         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   772       } else {
   773         UseXmmLoadAndClearUpper = false;
   774       }
   775     }
   776     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   777       if( supports_sse4a() ) {
   778         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   779       } else {
   780         UseXmmRegToRegMoveAll = false;
   781       }
   782     }
   783     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   784       if( supports_sse4a() ) {
   785         UseXmmI2F = true;
   786       } else {
   787         UseXmmI2F = false;
   788       }
   789     }
   790     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   791       if( supports_sse4a() ) {
   792         UseXmmI2D = true;
   793       } else {
   794         UseXmmI2D = false;
   795       }
   796     }
   797     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   798       if( supports_sse4_2() && UseSSE >= 4 ) {
   799         UseSSE42Intrinsics = true;
   800       }
   801     }
   803     // some defaults for AMD family 15h
   804     if ( cpu_family() == 0x15 ) {
   805       // On family 15h processors default is no sw prefetch
   806       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   807         AllocatePrefetchStyle = 0;
   808       }
   809       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   810       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   811         AllocatePrefetchInstr = 3;
   812       }
   813       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   814       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   815         UseXMMForArrayCopy = true;
   816       }
   817       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   818         UseUnalignedLoadStores = true;
   819       }
   820     }
   822 #ifdef COMPILER2
   823     if (MaxVectorSize > 16) {
   824       // Limit vectors size to 16 bytes on current AMD cpus.
   825       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   826     }
   827 #endif // COMPILER2
   828   }
   830   if( is_intel() ) { // Intel cpus specific settings
   831     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   832       UseStoreImmI16 = false; // don't use it on Intel cpus
   833     }
   834     if( cpu_family() == 6 || cpu_family() == 15 ) {
   835       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   836         // Use it on all Intel cpus starting from PentiumPro
   837         UseAddressNop = true;
   838       }
   839     }
   840     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   841       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   842     }
   843     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   844       if( supports_sse3() ) {
   845         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   846       } else {
   847         UseXmmRegToRegMoveAll = false;
   848       }
   849     }
   850     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   851 #ifdef COMPILER2
   852       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   853         // For new Intel cpus do the next optimization:
   854         // don't align the beginning of a loop if there are enough instructions
   855         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   856         // in current fetch line (OptoLoopAlignment) or the padding
   857         // is big (> MaxLoopPad).
   858         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   859         // generated NOP instructions. 11 is the largest size of one
   860         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   861         MaxLoopPad = 11;
   862       }
   863 #endif // COMPILER2
   864       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   865         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   866       }
   867       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
   868         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   869           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   870         }
   871       }
   872       if (supports_sse4_2() && UseSSE >= 4) {
   873         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   874           UseSSE42Intrinsics = true;
   875         }
   876       }
   877     }
   878     if ((cpu_family() == 0x06) &&
   879         ((extended_cpu_model() == 0x36) || // Centerton
   880          (extended_cpu_model() == 0x37) || // Silvermont
   881          (extended_cpu_model() == 0x4D))) {
   882 #ifdef COMPILER2
   883       if (FLAG_IS_DEFAULT(OptoScheduling)) {
   884         OptoScheduling = true;
   885       }
   886 #endif
   887       if (supports_sse4_2()) { // Silvermont
   888         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   889           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   890         }
   891       }
   892     }
   893     if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
   894       AllocatePrefetchInstr = 3;
   895     }
   896   }
   898   // Use count leading zeros count instruction if available.
   899   if (supports_lzcnt()) {
   900     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   901       UseCountLeadingZerosInstruction = true;
   902     }
   903    } else if (UseCountLeadingZerosInstruction) {
   904     warning("lzcnt instruction is not available on this CPU");
   905     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
   906   }
   908   // Use count trailing zeros instruction if available
   909   if (supports_bmi1()) {
   910     // tzcnt does not require VEX prefix
   911     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
   912       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
   913         // Don't use tzcnt if BMI1 is switched off on command line.
   914         UseCountTrailingZerosInstruction = false;
   915       } else {
   916         UseCountTrailingZerosInstruction = true;
   917       }
   918     }
   919   } else if (UseCountTrailingZerosInstruction) {
   920     warning("tzcnt instruction is not available on this CPU");
   921     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
   922   }
   924   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
   925   // VEX prefix is generated only when AVX > 0.
   926   if (supports_bmi1() && supports_avx()) {
   927     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
   928       UseBMI1Instructions = true;
   929     }
   930   } else if (UseBMI1Instructions) {
   931     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
   932     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
   933   }
   935   if (supports_bmi2() && supports_avx()) {
   936     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
   937       UseBMI2Instructions = true;
   938     }
   939   } else if (UseBMI2Instructions) {
   940     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
   941     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
   942   }
   944   // Use population count instruction if available.
   945   if (supports_popcnt()) {
   946     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   947       UsePopCountInstruction = true;
   948     }
   949   } else if (UsePopCountInstruction) {
   950     warning("POPCNT instruction is not available on this CPU");
   951     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
   952   }
   954   // Use fast-string operations if available.
   955   if (supports_erms()) {
   956     if (FLAG_IS_DEFAULT(UseFastStosb)) {
   957       UseFastStosb = true;
   958     }
   959   } else if (UseFastStosb) {
   960     warning("fast-string operations are not available on this CPU");
   961     FLAG_SET_DEFAULT(UseFastStosb, false);
   962   }
   964 #ifdef COMPILER2
   965   if (FLAG_IS_DEFAULT(AlignVector)) {
   966     // Modern processors allow misaligned memory operations for vectors.
   967     AlignVector = !UseUnalignedLoadStores;
   968   }
   969 #endif // COMPILER2
   971   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   972   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   974   // set valid Prefetch instruction
   975   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   976   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   977   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   978   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   980   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   981   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   982   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   983   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   985   // Allocation prefetch settings
   986   intx cache_line_size = prefetch_data_size();
   987   if( cache_line_size > AllocatePrefetchStepSize )
   988     AllocatePrefetchStepSize = cache_line_size;
   990   assert(AllocatePrefetchLines > 0, "invalid value");
   991   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
   992     AllocatePrefetchLines = 3;
   993   assert(AllocateInstancePrefetchLines > 0, "invalid value");
   994   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
   995     AllocateInstancePrefetchLines = 1;
   997   AllocatePrefetchDistance = allocate_prefetch_distance();
   998   AllocatePrefetchStyle    = allocate_prefetch_style();
  1000   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
  1001     if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
  1002 #ifdef _LP64
  1003       AllocatePrefetchDistance = 384;
  1004 #else
  1005       AllocatePrefetchDistance = 320;
  1006 #endif
  1008     if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
  1009       AllocatePrefetchDistance = 192;
  1010       AllocatePrefetchLines = 4;
  1012 #ifdef COMPILER2
  1013     if (supports_sse4_2()) {
  1014       if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
  1015         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
  1018 #endif
  1020   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
  1022 #ifdef _LP64
  1023   // Prefetch settings
  1024   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
  1025   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
  1026   PrefetchFieldsAhead         = prefetch_fields_ahead();
  1027 #endif
  1029   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
  1030      (cache_line_size > ContendedPaddingWidth))
  1031      ContendedPaddingWidth = cache_line_size;
  1033 #ifndef PRODUCT
  1034   if (PrintMiscellaneous && Verbose) {
  1035     tty->print_cr("Logical CPUs per core: %u",
  1036                   logical_processors_per_package());
  1037     tty->print("UseSSE=%d", (int) UseSSE);
  1038     if (UseAVX > 0) {
  1039       tty->print("  UseAVX=%d", (int) UseAVX);
  1041     if (UseAES) {
  1042       tty->print("  UseAES=1");
  1044 #ifdef COMPILER2
  1045     if (MaxVectorSize > 0) {
  1046       tty->print("  MaxVectorSize=%d", (int) MaxVectorSize);
  1048 #endif
  1049     tty->cr();
  1050     tty->print("Allocation");
  1051     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
  1052       tty->print_cr(": no prefetching");
  1053     } else {
  1054       tty->print(" prefetching: ");
  1055       if (UseSSE == 0 && supports_3dnow_prefetch()) {
  1056         tty->print("PREFETCHW");
  1057       } else if (UseSSE >= 1) {
  1058         if (AllocatePrefetchInstr == 0) {
  1059           tty->print("PREFETCHNTA");
  1060         } else if (AllocatePrefetchInstr == 1) {
  1061           tty->print("PREFETCHT0");
  1062         } else if (AllocatePrefetchInstr == 2) {
  1063           tty->print("PREFETCHT2");
  1064         } else if (AllocatePrefetchInstr == 3) {
  1065           tty->print("PREFETCHW");
  1068       if (AllocatePrefetchLines > 1) {
  1069         tty->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
  1070       } else {
  1071         tty->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
  1075     if (PrefetchCopyIntervalInBytes > 0) {
  1076       tty->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
  1078     if (PrefetchScanIntervalInBytes > 0) {
  1079       tty->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
  1081     if (PrefetchFieldsAhead > 0) {
  1082       tty->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
  1084     if (ContendedPaddingWidth > 0) {
  1085       tty->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
  1088 #endif // !PRODUCT
  1091 bool VM_Version::use_biased_locking() {
  1092 #if INCLUDE_RTM_OPT
  1093   // RTM locking is most useful when there is high lock contention and
  1094   // low data contention.  With high lock contention the lock is usually
  1095   // inflated and biased locking is not suitable for that case.
  1096   // RTM locking code requires that biased locking is off.
  1097   // Note: we can't switch off UseBiasedLocking in get_processor_features()
  1098   // because it is used by Thread::allocate() which is called before
  1099   // VM_Version::initialize().
  1100   if (UseRTMLocking && UseBiasedLocking) {
  1101     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
  1102       FLAG_SET_DEFAULT(UseBiasedLocking, false);
  1103     } else {
  1104       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
  1105       UseBiasedLocking = false;
  1108 #endif
  1109   return UseBiasedLocking;
  1112 void VM_Version::initialize() {
  1113   ResourceMark rm;
  1114   // Making this stub must be FIRST use of assembler
  1116   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
  1117   if (stub_blob == NULL) {
  1118     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
  1120   CodeBuffer c(stub_blob);
  1121   VM_Version_StubGenerator g(&c);
  1122   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
  1123                                      g.generate_get_cpu_info());
  1125   get_processor_features();

mercurial