src/share/vm/memory/collectorPolicy.cpp

Tue, 24 Dec 2013 11:48:39 -0800

author
mikael
date
Tue, 24 Dec 2013 11:48:39 -0800
changeset 6198
55fb97c4c58d
parent 6091
236cecd9ec97
child 6641
1d01a7f3a336
permissions
-rw-r--r--

8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Summary: Copyright year updated for files modified during 2013
Reviewed-by: twisti, iveresov

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "runtime/vmThread.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 // CollectorPolicy methods.
    50 CollectorPolicy::CollectorPolicy() :
    51     _space_alignment(0),
    52     _heap_alignment(0),
    53     _initial_heap_byte_size(InitialHeapSize),
    54     _max_heap_byte_size(MaxHeapSize),
    55     _min_heap_byte_size(Arguments::min_heap_size()),
    56     _max_heap_size_cmdline(false),
    57     _size_policy(NULL),
    58     _should_clear_all_soft_refs(false),
    59     _all_soft_refs_clear(false)
    60 {}
    62 #ifdef ASSERT
    63 void CollectorPolicy::assert_flags() {
    64   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
    65   assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
    66   assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
    67 }
    69 void CollectorPolicy::assert_size_info() {
    70   assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
    71   assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
    72   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
    73   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
    74   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
    75   assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
    76   assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
    77   assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
    78 }
    79 #endif // ASSERT
    81 void CollectorPolicy::initialize_flags() {
    82   assert(_space_alignment != 0, "Space alignment not set up properly");
    83   assert(_heap_alignment != 0, "Heap alignment not set up properly");
    84   assert(_heap_alignment >= _space_alignment,
    85          err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
    86                  _heap_alignment, _space_alignment));
    87   assert(_heap_alignment % _space_alignment == 0,
    88          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
    89                  _heap_alignment, _space_alignment));
    91   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
    92     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
    93       vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
    94     }
    95     if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
    96       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
    97     }
    98     _max_heap_size_cmdline = true;
    99   }
   101   // Check heap parameter properties
   102   if (InitialHeapSize < M) {
   103     vm_exit_during_initialization("Too small initial heap");
   104   }
   105   if (_min_heap_byte_size < M) {
   106     vm_exit_during_initialization("Too small minimum heap");
   107   }
   109   // User inputs from -Xmx and -Xms must be aligned
   110   _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
   111   uintx aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
   112   uintx aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
   114   // Write back to flags if the values changed
   115   if (aligned_initial_heap_size != InitialHeapSize) {
   116     FLAG_SET_ERGO(uintx, InitialHeapSize, aligned_initial_heap_size);
   117   }
   118   if (aligned_max_heap_size != MaxHeapSize) {
   119     FLAG_SET_ERGO(uintx, MaxHeapSize, aligned_max_heap_size);
   120   }
   122   if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
   123       InitialHeapSize < _min_heap_byte_size) {
   124     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   125   }
   126   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
   127     FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
   128   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
   129     FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
   130     if (InitialHeapSize < _min_heap_byte_size) {
   131       _min_heap_byte_size = InitialHeapSize;
   132     }
   133   }
   135   _initial_heap_byte_size = InitialHeapSize;
   136   _max_heap_byte_size = MaxHeapSize;
   138   FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
   140   DEBUG_ONLY(CollectorPolicy::assert_flags();)
   141 }
   143 void CollectorPolicy::initialize_size_info() {
   144   if (PrintGCDetails && Verbose) {
   145     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   146       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   147       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
   148   }
   150   DEBUG_ONLY(CollectorPolicy::assert_size_info();)
   151 }
   153 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   154   bool result = _should_clear_all_soft_refs;
   155   set_should_clear_all_soft_refs(false);
   156   return result;
   157 }
   159 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   160                                            int max_covered_regions) {
   161   return new CardTableRS(whole_heap, max_covered_regions);
   162 }
   164 void CollectorPolicy::cleared_all_soft_refs() {
   165   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   166   // have been cleared in the last collection but if the gc overhear
   167   // limit continues to be near, SoftRefs should still be cleared.
   168   if (size_policy() != NULL) {
   169     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   170   }
   171   _all_soft_refs_clear = true;
   172 }
   174 size_t CollectorPolicy::compute_heap_alignment() {
   175   // The card marking array and the offset arrays for old generations are
   176   // committed in os pages as well. Make sure they are entirely full (to
   177   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   178   // byte entry and the os page size is 4096, the maximum heap size should
   179   // be 512*4096 = 2MB aligned.
   181   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
   182   // is supported.
   183   // Requirements of any new remembered set implementations must be added here.
   184   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
   186   // Parallel GC does its own alignment of the generations to avoid requiring a
   187   // large page (256M on some platforms) for the permanent generation.  The
   188   // other collectors should also be updated to do their own alignment and then
   189   // this use of lcm() should be removed.
   190   if (UseLargePages && !UseParallelGC) {
   191       // in presence of large pages we have to make sure that our
   192       // alignment is large page aware
   193       alignment = lcm(os::large_page_size(), alignment);
   194   }
   196   return alignment;
   197 }
   199 // GenCollectorPolicy methods.
   201 GenCollectorPolicy::GenCollectorPolicy() :
   202     _min_gen0_size(0),
   203     _initial_gen0_size(0),
   204     _max_gen0_size(0),
   205     _gen_alignment(0),
   206     _generations(NULL)
   207 {}
   209 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   210   return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
   211 }
   213 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   214                                                  size_t maximum_size) {
   215   size_t max_minus = maximum_size - _gen_alignment;
   216   return desired_size < max_minus ? desired_size : max_minus;
   217 }
   220 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   221                                                 size_t init_promo_size,
   222                                                 size_t init_survivor_size) {
   223   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
   224   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   225                                         init_promo_size,
   226                                         init_survivor_size,
   227                                         max_gc_pause_sec,
   228                                         GCTimeRatio);
   229 }
   231 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
   232   // The young generation must be aligned and have room for eden + two survivors
   233   return align_size_up(3 * _space_alignment, _gen_alignment);
   234 }
   236 #ifdef ASSERT
   237 void GenCollectorPolicy::assert_flags() {
   238   CollectorPolicy::assert_flags();
   239   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
   240   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
   241   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
   242   assert(NewSize % _gen_alignment == 0, "NewSize alignment");
   243   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
   244 }
   246 void TwoGenerationCollectorPolicy::assert_flags() {
   247   GenCollectorPolicy::assert_flags();
   248   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
   249   assert(OldSize % _gen_alignment == 0, "OldSize alignment");
   250 }
   252 void GenCollectorPolicy::assert_size_info() {
   253   CollectorPolicy::assert_size_info();
   254   // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
   255   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
   256   assert(NewSize == _initial_gen0_size, "Discrepancy between NewSize flag and local storage");
   257   assert(MaxNewSize == _max_gen0_size, "Discrepancy between MaxNewSize flag and local storage");
   258   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
   259   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
   260   assert(_min_gen0_size % _gen_alignment == 0, "_min_gen0_size alignment");
   261   assert(_initial_gen0_size % _gen_alignment == 0, "_initial_gen0_size alignment");
   262   assert(_max_gen0_size % _gen_alignment == 0, "_max_gen0_size alignment");
   263 }
   265 void TwoGenerationCollectorPolicy::assert_size_info() {
   266   GenCollectorPolicy::assert_size_info();
   267   assert(OldSize == _initial_gen1_size, "Discrepancy between OldSize flag and local storage");
   268   assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
   269   assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
   270   assert(_max_gen1_size % _gen_alignment == 0, "_max_gen1_size alignment");
   271   assert(_initial_gen1_size % _gen_alignment == 0, "_initial_gen1_size alignment");
   272   assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
   273 }
   274 #endif // ASSERT
   276 void GenCollectorPolicy::initialize_flags() {
   277   CollectorPolicy::initialize_flags();
   279   assert(_gen_alignment != 0, "Generation alignment not set up properly");
   280   assert(_heap_alignment >= _gen_alignment,
   281          err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
   282                  _heap_alignment, _gen_alignment));
   283   assert(_gen_alignment % _space_alignment == 0,
   284          err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
   285                  _gen_alignment, _space_alignment));
   286   assert(_heap_alignment % _gen_alignment == 0,
   287          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
   288                  _heap_alignment, _gen_alignment));
   290   // All generational heaps have a youngest gen; handle those flags here
   292   // Make sure the heap is large enough for two generations
   293   uintx smallest_new_size = young_gen_size_lower_bound();
   294   uintx smallest_heap_size = align_size_up(smallest_new_size + align_size_up(_space_alignment, _gen_alignment),
   295                                            _heap_alignment);
   296   if (MaxHeapSize < smallest_heap_size) {
   297     FLAG_SET_ERGO(uintx, MaxHeapSize, smallest_heap_size);
   298     _max_heap_byte_size = MaxHeapSize;
   299   }
   300   // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
   301   if (_min_heap_byte_size < smallest_heap_size) {
   302     _min_heap_byte_size = smallest_heap_size;
   303     if (InitialHeapSize < _min_heap_byte_size) {
   304       FLAG_SET_ERGO(uintx, InitialHeapSize, smallest_heap_size);
   305       _initial_heap_byte_size = smallest_heap_size;
   306     }
   307   }
   309   // Now take the actual NewSize into account. We will silently increase NewSize
   310   // if the user specified a smaller value.
   311   smallest_new_size = MAX2(smallest_new_size, (uintx)align_size_down(NewSize, _gen_alignment));
   312   if (smallest_new_size != NewSize) {
   313     FLAG_SET_ERGO(uintx, NewSize, smallest_new_size);
   314   }
   315   _initial_gen0_size = NewSize;
   317   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
   318     uintx min_new_size = MAX2(_gen_alignment, _min_gen0_size);
   320     if (MaxNewSize >= MaxHeapSize) {
   321       // Make sure there is room for an old generation
   322       uintx smaller_max_new_size = MaxHeapSize - _gen_alignment;
   323       if (FLAG_IS_CMDLINE(MaxNewSize)) {
   324         warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
   325                 "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
   326                 MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
   327       }
   328       FLAG_SET_ERGO(uintx, MaxNewSize, smaller_max_new_size);
   329       if (NewSize > MaxNewSize) {
   330         FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
   331         _initial_gen0_size = NewSize;
   332       }
   333     } else if (MaxNewSize < min_new_size) {
   334       FLAG_SET_ERGO(uintx, MaxNewSize, min_new_size);
   335     } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
   336       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
   337     }
   338     _max_gen0_size = MaxNewSize;
   339   }
   341   if (NewSize > MaxNewSize) {
   342     // At this point this should only happen if the user specifies a large NewSize and/or
   343     // a small (but not too small) MaxNewSize.
   344     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   345       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
   346               "A new max generation size of " SIZE_FORMAT "k will be used.",
   347               NewSize/K, MaxNewSize/K, NewSize/K);
   348     }
   349     FLAG_SET_ERGO(uintx, MaxNewSize, NewSize);
   350     _max_gen0_size = MaxNewSize;
   351   }
   353   if (SurvivorRatio < 1 || NewRatio < 1) {
   354     vm_exit_during_initialization("Invalid young gen ratio specified");
   355   }
   357   DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
   358 }
   360 void TwoGenerationCollectorPolicy::initialize_flags() {
   361   GenCollectorPolicy::initialize_flags();
   363   if (!is_size_aligned(OldSize, _gen_alignment)) {
   364     FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _gen_alignment));
   365   }
   367   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
   368     // NewRatio will be used later to set the young generation size so we use
   369     // it to calculate how big the heap should be based on the requested OldSize
   370     // and NewRatio.
   371     assert(NewRatio > 0, "NewRatio should have been set up earlier");
   372     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
   374     calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
   375     FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
   376     _max_heap_byte_size = MaxHeapSize;
   377     FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
   378     _initial_heap_byte_size = InitialHeapSize;
   379   }
   381   // adjust max heap size if necessary
   382   if (NewSize + OldSize > MaxHeapSize) {
   383     if (_max_heap_size_cmdline) {
   384       // somebody set a maximum heap size with the intention that we should not
   385       // exceed it. Adjust New/OldSize as necessary.
   386       uintx calculated_size = NewSize + OldSize;
   387       double shrink_factor = (double) MaxHeapSize / calculated_size;
   388       uintx smaller_new_size = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
   389       FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), smaller_new_size));
   390       _initial_gen0_size = NewSize;
   392       // OldSize is already aligned because above we aligned MaxHeapSize to
   393       // _heap_alignment, and we just made sure that NewSize is aligned to
   394       // _gen_alignment. In initialize_flags() we verified that _heap_alignment
   395       // is a multiple of _gen_alignment.
   396       FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
   397     } else {
   398       FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
   399       _max_heap_byte_size = MaxHeapSize;
   400     }
   401   }
   403   always_do_update_barrier = UseConcMarkSweepGC;
   405   DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_flags();)
   406 }
   408 // Values set on the command line win over any ergonomically
   409 // set command line parameters.
   410 // Ergonomic choice of parameters are done before this
   411 // method is called.  Values for command line parameters such as NewSize
   412 // and MaxNewSize feed those ergonomic choices into this method.
   413 // This method makes the final generation sizings consistent with
   414 // themselves and with overall heap sizings.
   415 // In the absence of explicitly set command line flags, policies
   416 // such as the use of NewRatio are used to size the generation.
   417 void GenCollectorPolicy::initialize_size_info() {
   418   CollectorPolicy::initialize_size_info();
   420   // _space_alignment is used for alignment within a generation.
   421   // There is additional alignment done down stream for some
   422   // collectors that sometimes causes unwanted rounding up of
   423   // generations sizes.
   425   // Determine maximum size of gen0
   427   size_t max_new_size = 0;
   428   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
   429     max_new_size = MaxNewSize;
   430   } else {
   431     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
   432     // Bound the maximum size by NewSize below (since it historically
   433     // would have been NewSize and because the NewRatio calculation could
   434     // yield a size that is too small) and bound it by MaxNewSize above.
   435     // Ergonomics plays here by previously calculating the desired
   436     // NewSize and MaxNewSize.
   437     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   438   }
   439   assert(max_new_size > 0, "All paths should set max_new_size");
   441   // Given the maximum gen0 size, determine the initial and
   442   // minimum gen0 sizes.
   444   if (_max_heap_byte_size == _min_heap_byte_size) {
   445     // The maximum and minimum heap sizes are the same so
   446     // the generations minimum and initial must be the
   447     // same as its maximum.
   448     _min_gen0_size = max_new_size;
   449     _initial_gen0_size = max_new_size;
   450     _max_gen0_size = max_new_size;
   451   } else {
   452     size_t desired_new_size = 0;
   453     if (!FLAG_IS_DEFAULT(NewSize)) {
   454       // If NewSize is set ergonomically (for example by cms), it
   455       // would make sense to use it.  If it is used, also use it
   456       // to set the initial size.  Although there is no reason
   457       // the minimum size and the initial size have to be the same,
   458       // the current implementation gets into trouble during the calculation
   459       // of the tenured generation sizes if they are different.
   460       // Note that this makes the initial size and the minimum size
   461       // generally small compared to the NewRatio calculation.
   462       _min_gen0_size = NewSize;
   463       desired_new_size = NewSize;
   464       max_new_size = MAX2(max_new_size, NewSize);
   465     } else {
   466       // For the case where NewSize is the default, use NewRatio
   467       // to size the minimum and initial generation sizes.
   468       // Use the default NewSize as the floor for these values.  If
   469       // NewRatio is overly large, the resulting sizes can be too
   470       // small.
   471       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
   472       desired_new_size =
   473         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
   474     }
   476     assert(_min_gen0_size > 0, "Sanity check");
   477     _initial_gen0_size = desired_new_size;
   478     _max_gen0_size = max_new_size;
   480     // At this point the desirable initial and minimum sizes have been
   481     // determined without regard to the maximum sizes.
   483     // Bound the sizes by the corresponding overall heap sizes.
   484     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
   485     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
   486     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
   488     // At this point all three sizes have been checked against the
   489     // maximum sizes but have not been checked for consistency
   490     // among the three.
   492     // Final check min <= initial <= max
   493     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
   494     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
   495     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
   496   }
   498   // Write back to flags if necessary
   499   if (NewSize != _initial_gen0_size) {
   500     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
   501   }
   503   if (MaxNewSize != _max_gen0_size) {
   504     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
   505   }
   507   if (PrintGCDetails && Verbose) {
   508     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   509       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   510       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   511   }
   513   DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
   514 }
   516 // Call this method during the sizing of the gen1 to make
   517 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   518 // the most freedom in sizing because it is done before the
   519 // policy for gen1 is applied.  Once gen1 policies have been applied,
   520 // there may be conflicts in the shape of the heap and this method
   521 // is used to make the needed adjustments.  The application of the
   522 // policies could be more sophisticated (iterative for example) but
   523 // keeping it simple also seems a worthwhile goal.
   524 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   525                                                      size_t* gen1_size_ptr,
   526                                                      const size_t heap_size) {
   527   bool result = false;
   529   if ((*gen0_size_ptr + *gen1_size_ptr) > heap_size) {
   530     uintx smallest_new_size = young_gen_size_lower_bound();
   531     if ((heap_size < (*gen0_size_ptr + _min_gen1_size)) &&
   532         (heap_size >= _min_gen1_size + smallest_new_size)) {
   533       // Adjust gen0 down to accommodate _min_gen1_size
   534       *gen0_size_ptr = align_size_down_bounded(heap_size - _min_gen1_size, _gen_alignment);
   535       result = true;
   536     } else {
   537       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _gen_alignment);
   538     }
   539   }
   540   return result;
   541 }
   543 // Minimum sizes of the generations may be different than
   544 // the initial sizes.  An inconsistently is permitted here
   545 // in the total size that can be specified explicitly by
   546 // command line specification of OldSize and NewSize and
   547 // also a command line specification of -Xms.  Issue a warning
   548 // but allow the values to pass.
   550 void TwoGenerationCollectorPolicy::initialize_size_info() {
   551   GenCollectorPolicy::initialize_size_info();
   553   // At this point the minimum, initial and maximum sizes
   554   // of the overall heap and of gen0 have been determined.
   555   // The maximum gen1 size can be determined from the maximum gen0
   556   // and maximum heap size since no explicit flags exits
   557   // for setting the gen1 maximum.
   558   _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _gen_alignment);
   560   // If no explicit command line flag has been set for the
   561   // gen1 size, use what is left for gen1.
   562   if (!FLAG_IS_CMDLINE(OldSize)) {
   563     // The user has not specified any value but the ergonomics
   564     // may have chosen a value (which may or may not be consistent
   565     // with the overall heap size).  In either case make
   566     // the minimum, maximum and initial sizes consistent
   567     // with the gen0 sizes and the overall heap sizes.
   568     _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _gen_alignment);
   569     _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _gen_alignment);
   570     // _max_gen1_size has already been made consistent above
   571     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
   572   } else {
   573     // It's been explicitly set on the command line.  Use the
   574     // OldSize and then determine the consequences.
   575     _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
   576     _initial_gen1_size = OldSize;
   578     // If the user has explicitly set an OldSize that is inconsistent
   579     // with other command line flags, issue a warning.
   580     // The generation minimums and the overall heap mimimum should
   581     // be within one generation alignment.
   582     if ((_min_gen1_size + _min_gen0_size + _gen_alignment) < _min_heap_byte_size) {
   583       warning("Inconsistency between minimum heap size and minimum "
   584               "generation sizes: using minimum heap = " SIZE_FORMAT,
   585               _min_heap_byte_size);
   586     }
   587     if (OldSize > _max_gen1_size) {
   588       warning("Inconsistency between maximum heap size and maximum "
   589               "generation sizes: using maximum heap = " SIZE_FORMAT
   590               " -XX:OldSize flag is being ignored",
   591               _max_heap_byte_size);
   592     }
   593     // If there is an inconsistency between the OldSize and the minimum and/or
   594     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   595     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size, _min_heap_byte_size)) {
   596       if (PrintGCDetails && Verbose) {
   597         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   598               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   599               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   600       }
   601     }
   602     // Initial size
   603     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   604                           _initial_heap_byte_size)) {
   605       if (PrintGCDetails && Verbose) {
   606         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   607           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   608           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   609       }
   610     }
   611   }
   612   // Enforce the maximum gen1 size.
   613   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
   615   // Check that min gen1 <= initial gen1 <= max gen1
   616   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
   617   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
   619   // Write back to flags if necessary
   620   if (NewSize != _initial_gen0_size) {
   621     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
   622   }
   624   if (MaxNewSize != _max_gen0_size) {
   625     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
   626   }
   628   if (OldSize != _initial_gen1_size) {
   629     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
   630   }
   632   if (PrintGCDetails && Verbose) {
   633     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   634       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   635       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
   636   }
   638   DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_size_info();)
   639 }
   641 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   642                                         bool is_tlab,
   643                                         bool* gc_overhead_limit_was_exceeded) {
   644   GenCollectedHeap *gch = GenCollectedHeap::heap();
   646   debug_only(gch->check_for_valid_allocation_state());
   647   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   649   // In general gc_overhead_limit_was_exceeded should be false so
   650   // set it so here and reset it to true only if the gc time
   651   // limit is being exceeded as checked below.
   652   *gc_overhead_limit_was_exceeded = false;
   654   HeapWord* result = NULL;
   656   // Loop until the allocation is satisified,
   657   // or unsatisfied after GC.
   658   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
   659     HandleMark hm; // discard any handles allocated in each iteration
   661     // First allocation attempt is lock-free.
   662     Generation *gen0 = gch->get_gen(0);
   663     assert(gen0->supports_inline_contig_alloc(),
   664       "Otherwise, must do alloc within heap lock");
   665     if (gen0->should_allocate(size, is_tlab)) {
   666       result = gen0->par_allocate(size, is_tlab);
   667       if (result != NULL) {
   668         assert(gch->is_in_reserved(result), "result not in heap");
   669         return result;
   670       }
   671     }
   672     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   673     {
   674       MutexLocker ml(Heap_lock);
   675       if (PrintGC && Verbose) {
   676         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   677                       " attempting locked slow path allocation");
   678       }
   679       // Note that only large objects get a shot at being
   680       // allocated in later generations.
   681       bool first_only = ! should_try_older_generation_allocation(size);
   683       result = gch->attempt_allocation(size, is_tlab, first_only);
   684       if (result != NULL) {
   685         assert(gch->is_in_reserved(result), "result not in heap");
   686         return result;
   687       }
   689       if (GC_locker::is_active_and_needs_gc()) {
   690         if (is_tlab) {
   691           return NULL;  // Caller will retry allocating individual object
   692         }
   693         if (!gch->is_maximal_no_gc()) {
   694           // Try and expand heap to satisfy request
   695           result = expand_heap_and_allocate(size, is_tlab);
   696           // result could be null if we are out of space
   697           if (result != NULL) {
   698             return result;
   699           }
   700         }
   702         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
   703           return NULL; // we didn't get to do a GC and we didn't get any memory
   704         }
   706         // If this thread is not in a jni critical section, we stall
   707         // the requestor until the critical section has cleared and
   708         // GC allowed. When the critical section clears, a GC is
   709         // initiated by the last thread exiting the critical section; so
   710         // we retry the allocation sequence from the beginning of the loop,
   711         // rather than causing more, now probably unnecessary, GC attempts.
   712         JavaThread* jthr = JavaThread::current();
   713         if (!jthr->in_critical()) {
   714           MutexUnlocker mul(Heap_lock);
   715           // Wait for JNI critical section to be exited
   716           GC_locker::stall_until_clear();
   717           gclocker_stalled_count += 1;
   718           continue;
   719         } else {
   720           if (CheckJNICalls) {
   721             fatal("Possible deadlock due to allocating while"
   722                   " in jni critical section");
   723           }
   724           return NULL;
   725         }
   726       }
   728       // Read the gc count while the heap lock is held.
   729       gc_count_before = Universe::heap()->total_collections();
   730     }
   732     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
   733     VMThread::execute(&op);
   734     if (op.prologue_succeeded()) {
   735       result = op.result();
   736       if (op.gc_locked()) {
   737          assert(result == NULL, "must be NULL if gc_locked() is true");
   738          continue;  // retry and/or stall as necessary
   739       }
   741       // Allocation has failed and a collection
   742       // has been done.  If the gc time limit was exceeded the
   743       // this time, return NULL so that an out-of-memory
   744       // will be thrown.  Clear gc_overhead_limit_exceeded
   745       // so that the overhead exceeded does not persist.
   747       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   748       const bool softrefs_clear = all_soft_refs_clear();
   750       if (limit_exceeded && softrefs_clear) {
   751         *gc_overhead_limit_was_exceeded = true;
   752         size_policy()->set_gc_overhead_limit_exceeded(false);
   753         if (op.result() != NULL) {
   754           CollectedHeap::fill_with_object(op.result(), size);
   755         }
   756         return NULL;
   757       }
   758       assert(result == NULL || gch->is_in_reserved(result),
   759              "result not in heap");
   760       return result;
   761     }
   763     // Give a warning if we seem to be looping forever.
   764     if ((QueuedAllocationWarningCount > 0) &&
   765         (try_count % QueuedAllocationWarningCount == 0)) {
   766           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   767                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   768     }
   769   }
   770 }
   772 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   773                                                        bool   is_tlab) {
   774   GenCollectedHeap *gch = GenCollectedHeap::heap();
   775   HeapWord* result = NULL;
   776   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   777     Generation *gen = gch->get_gen(i);
   778     if (gen->should_allocate(size, is_tlab)) {
   779       result = gen->expand_and_allocate(size, is_tlab);
   780     }
   781   }
   782   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   783   return result;
   784 }
   786 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   787                                                         bool   is_tlab) {
   788   GenCollectedHeap *gch = GenCollectedHeap::heap();
   789   GCCauseSetter x(gch, GCCause::_allocation_failure);
   790   HeapWord* result = NULL;
   792   assert(size != 0, "Precondition violated");
   793   if (GC_locker::is_active_and_needs_gc()) {
   794     // GC locker is active; instead of a collection we will attempt
   795     // to expand the heap, if there's room for expansion.
   796     if (!gch->is_maximal_no_gc()) {
   797       result = expand_heap_and_allocate(size, is_tlab);
   798     }
   799     return result;   // could be null if we are out of space
   800   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   801     // Do an incremental collection.
   802     gch->do_collection(false            /* full */,
   803                        false            /* clear_all_soft_refs */,
   804                        size             /* size */,
   805                        is_tlab          /* is_tlab */,
   806                        number_of_generations() - 1 /* max_level */);
   807   } else {
   808     if (Verbose && PrintGCDetails) {
   809       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   810     }
   811     // Try a full collection; see delta for bug id 6266275
   812     // for the original code and why this has been simplified
   813     // with from-space allocation criteria modified and
   814     // such allocation moved out of the safepoint path.
   815     gch->do_collection(true             /* full */,
   816                        false            /* clear_all_soft_refs */,
   817                        size             /* size */,
   818                        is_tlab          /* is_tlab */,
   819                        number_of_generations() - 1 /* max_level */);
   820   }
   822   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   824   if (result != NULL) {
   825     assert(gch->is_in_reserved(result), "result not in heap");
   826     return result;
   827   }
   829   // OK, collection failed, try expansion.
   830   result = expand_heap_and_allocate(size, is_tlab);
   831   if (result != NULL) {
   832     return result;
   833   }
   835   // If we reach this point, we're really out of memory. Try every trick
   836   // we can to reclaim memory. Force collection of soft references. Force
   837   // a complete compaction of the heap. Any additional methods for finding
   838   // free memory should be here, especially if they are expensive. If this
   839   // attempt fails, an OOM exception will be thrown.
   840   {
   841     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   843     gch->do_collection(true             /* full */,
   844                        true             /* clear_all_soft_refs */,
   845                        size             /* size */,
   846                        is_tlab          /* is_tlab */,
   847                        number_of_generations() - 1 /* max_level */);
   848   }
   850   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   851   if (result != NULL) {
   852     assert(gch->is_in_reserved(result), "result not in heap");
   853     return result;
   854   }
   856   assert(!should_clear_all_soft_refs(),
   857     "Flag should have been handled and cleared prior to this point");
   859   // What else?  We might try synchronous finalization later.  If the total
   860   // space available is large enough for the allocation, then a more
   861   // complete compaction phase than we've tried so far might be
   862   // appropriate.
   863   return NULL;
   864 }
   866 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   867                                                  ClassLoaderData* loader_data,
   868                                                  size_t word_size,
   869                                                  Metaspace::MetadataType mdtype) {
   870   uint loop_count = 0;
   871   uint gc_count = 0;
   872   uint full_gc_count = 0;
   874   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   876   do {
   877     MetaWord* result = NULL;
   878     if (GC_locker::is_active_and_needs_gc()) {
   879       // If the GC_locker is active, just expand and allocate.
   880       // If that does not succeed, wait if this thread is not
   881       // in a critical section itself.
   882       result =
   883         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   884                                                                mdtype);
   885       if (result != NULL) {
   886         return result;
   887       }
   888       JavaThread* jthr = JavaThread::current();
   889       if (!jthr->in_critical()) {
   890         // Wait for JNI critical section to be exited
   891         GC_locker::stall_until_clear();
   892         // The GC invoked by the last thread leaving the critical
   893         // section will be a young collection and a full collection
   894         // is (currently) needed for unloading classes so continue
   895         // to the next iteration to get a full GC.
   896         continue;
   897       } else {
   898         if (CheckJNICalls) {
   899           fatal("Possible deadlock due to allocating while"
   900                 " in jni critical section");
   901         }
   902         return NULL;
   903       }
   904     }
   906     {  // Need lock to get self consistent gc_count's
   907       MutexLocker ml(Heap_lock);
   908       gc_count      = Universe::heap()->total_collections();
   909       full_gc_count = Universe::heap()->total_full_collections();
   910     }
   912     // Generate a VM operation
   913     VM_CollectForMetadataAllocation op(loader_data,
   914                                        word_size,
   915                                        mdtype,
   916                                        gc_count,
   917                                        full_gc_count,
   918                                        GCCause::_metadata_GC_threshold);
   919     VMThread::execute(&op);
   921     // If GC was locked out, try again.  Check
   922     // before checking success because the prologue
   923     // could have succeeded and the GC still have
   924     // been locked out.
   925     if (op.gc_locked()) {
   926       continue;
   927     }
   929     if (op.prologue_succeeded()) {
   930       return op.result();
   931     }
   932     loop_count++;
   933     if ((QueuedAllocationWarningCount > 0) &&
   934         (loop_count % QueuedAllocationWarningCount == 0)) {
   935       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   936               " size=%d", loop_count, word_size);
   937     }
   938   } while (true);  // Until a GC is done
   939 }
   941 // Return true if any of the following is true:
   942 // . the allocation won't fit into the current young gen heap
   943 // . gc locker is occupied (jni critical section)
   944 // . heap memory is tight -- the most recent previous collection
   945 //   was a full collection because a partial collection (would
   946 //   have) failed and is likely to fail again
   947 bool GenCollectorPolicy::should_try_older_generation_allocation(
   948         size_t word_size) const {
   949   GenCollectedHeap* gch = GenCollectedHeap::heap();
   950   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   951   return    (word_size > heap_word_size(gen0_capacity))
   952          || GC_locker::is_active_and_needs_gc()
   953          || gch->incremental_collection_failed();
   954 }
   957 //
   958 // MarkSweepPolicy methods
   959 //
   961 void MarkSweepPolicy::initialize_alignments() {
   962   _space_alignment = _gen_alignment = (uintx)Generation::GenGrain;
   963   _heap_alignment = compute_heap_alignment();
   964 }
   966 void MarkSweepPolicy::initialize_generations() {
   967   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
   968   if (_generations == NULL) {
   969     vm_exit_during_initialization("Unable to allocate gen spec");
   970   }
   972   if (UseParNewGC) {
   973     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   974   } else {
   975     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   976   }
   977   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   979   if (_generations[0] == NULL || _generations[1] == NULL) {
   980     vm_exit_during_initialization("Unable to allocate gen spec");
   981   }
   982 }
   984 void MarkSweepPolicy::initialize_gc_policy_counters() {
   985   // initialize the policy counters - 2 collectors, 3 generations
   986   if (UseParNewGC) {
   987     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   988   } else {
   989     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   990   }
   991 }

mercurial