src/share/vm/memory/cardTableRS.cpp

Tue, 24 Dec 2013 11:48:39 -0800

author
mikael
date
Tue, 24 Dec 2013 11:48:39 -0800
changeset 6198
55fb97c4c58d
parent 5519
bd902affe102
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Summary: Copyright year updated for files modified during 2013
Reviewed-by: twisti, iveresov

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableRS.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/generation.hpp"
    30 #include "memory/space.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/java.hpp"
    33 #include "runtime/os.hpp"
    34 #include "utilities/macros.hpp"
    35 #if INCLUDE_ALL_GCS
    36 #include "gc_implementation/g1/concurrentMark.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #endif // INCLUDE_ALL_GCS
    40 CardTableRS::CardTableRS(MemRegion whole_heap,
    41                          int max_covered_regions) :
    42   GenRemSet(),
    43   _cur_youngergen_card_val(youngergenP1_card),
    44   _regions_to_iterate(max_covered_regions - 1)
    45 {
    46 #if INCLUDE_ALL_GCS
    47   if (UseG1GC) {
    48       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
    49                                                   max_covered_regions);
    50   } else {
    51     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    52   }
    53 #else
    54   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    55 #endif
    56   set_bs(_ct_bs);
    57   _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, GenCollectedHeap::max_gens + 1,
    58                          mtGC, 0, AllocFailStrategy::RETURN_NULL);
    59   if (_last_cur_val_in_gen == NULL) {
    60     vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
    61   }
    62   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
    63     _last_cur_val_in_gen[i] = clean_card_val();
    64   }
    65   _ct_bs->set_CTRS(this);
    66 }
    68 CardTableRS::~CardTableRS() {
    69   if (_ct_bs) {
    70     delete _ct_bs;
    71     _ct_bs = NULL;
    72   }
    73   if (_last_cur_val_in_gen) {
    74     FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen, mtInternal);
    75   }
    76 }
    78 void CardTableRS::resize_covered_region(MemRegion new_region) {
    79   _ct_bs->resize_covered_region(new_region);
    80 }
    82 jbyte CardTableRS::find_unused_youngergenP_card_value() {
    83   for (jbyte v = youngergenP1_card;
    84        v < cur_youngergen_and_prev_nonclean_card;
    85        v++) {
    86     bool seen = false;
    87     for (int g = 0; g < _regions_to_iterate; g++) {
    88       if (_last_cur_val_in_gen[g] == v) {
    89         seen = true;
    90         break;
    91       }
    92     }
    93     if (!seen) return v;
    94   }
    95   ShouldNotReachHere();
    96   return 0;
    97 }
    99 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
   100   // Parallel or sequential, we must always set the prev to equal the
   101   // last one written.
   102   if (parallel) {
   103     // Find a parallel value to be used next.
   104     jbyte next_val = find_unused_youngergenP_card_value();
   105     set_cur_youngergen_card_val(next_val);
   107   } else {
   108     // In an sequential traversal we will always write youngergen, so that
   109     // the inline barrier is  correct.
   110     set_cur_youngergen_card_val(youngergen_card);
   111   }
   112 }
   114 void CardTableRS::younger_refs_iterate(Generation* g,
   115                                        OopsInGenClosure* blk) {
   116   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
   117   g->younger_refs_iterate(blk);
   118 }
   120 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
   121   if (_is_par) {
   122     return clear_card_parallel(entry);
   123   } else {
   124     return clear_card_serial(entry);
   125   }
   126 }
   128 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
   129   while (true) {
   130     // In the parallel case, we may have to do this several times.
   131     jbyte entry_val = *entry;
   132     assert(entry_val != CardTableRS::clean_card_val(),
   133            "We shouldn't be looking at clean cards, and this should "
   134            "be the only place they get cleaned.");
   135     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
   136         || _ct->is_prev_youngergen_card_val(entry_val)) {
   137       jbyte res =
   138         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
   139       if (res == entry_val) {
   140         break;
   141       } else {
   142         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
   143                "The CAS above should only fail if another thread did "
   144                "a GC write barrier.");
   145       }
   146     } else if (entry_val ==
   147                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
   148       // Parallelism shouldn't matter in this case.  Only the thread
   149       // assigned to scan the card should change this value.
   150       *entry = _ct->cur_youngergen_card_val();
   151       break;
   152     } else {
   153       assert(entry_val == _ct->cur_youngergen_card_val(),
   154              "Should be the only possibility.");
   155       // In this case, the card was clean before, and become
   156       // cur_youngergen only because of processing of a promoted object.
   157       // We don't have to look at the card.
   158       return false;
   159     }
   160   }
   161   return true;
   162 }
   165 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
   166   jbyte entry_val = *entry;
   167   assert(entry_val != CardTableRS::clean_card_val(),
   168          "We shouldn't be looking at clean cards, and this should "
   169          "be the only place they get cleaned.");
   170   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
   171          "This should be possible in the sequential case.");
   172   *entry = CardTableRS::clean_card_val();
   173   return true;
   174 }
   176 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
   177   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
   178     _dirty_card_closure(dirty_card_closure), _ct(ct) {
   179     // Cannot yet substitute active_workers for n_par_threads
   180     // in the case where parallelism is being turned off by
   181     // setting n_par_threads to 0.
   182     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
   183     assert(!_is_par ||
   184            (SharedHeap::heap()->n_par_threads() ==
   185             SharedHeap::heap()->workers()->active_workers()), "Mismatch");
   186 }
   188 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
   189   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
   190 }
   192 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
   193   assert(mr.word_size() > 0, "Error");
   194   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
   195   // mr.end() may not necessarily be card aligned.
   196   jbyte* cur_entry = _ct->byte_for(mr.last());
   197   const jbyte* limit = _ct->byte_for(mr.start());
   198   HeapWord* end_of_non_clean = mr.end();
   199   HeapWord* start_of_non_clean = end_of_non_clean;
   200   while (cur_entry >= limit) {
   201     HeapWord* cur_hw = _ct->addr_for(cur_entry);
   202     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
   203       // Continue the dirty range by opening the
   204       // dirty window one card to the left.
   205       start_of_non_clean = cur_hw;
   206     } else {
   207       // We hit a "clean" card; process any non-empty
   208       // "dirty" range accumulated so far.
   209       if (start_of_non_clean < end_of_non_clean) {
   210         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   211         _dirty_card_closure->do_MemRegion(mrd);
   212       }
   214       // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
   215       if (is_word_aligned(cur_entry)) {
   216         jbyte* cur_row = cur_entry - BytesPerWord;
   217         while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row()) {
   218           cur_row -= BytesPerWord;
   219         }
   220         cur_entry = cur_row + BytesPerWord;
   221         cur_hw = _ct->addr_for(cur_entry);
   222       }
   224       // Reset the dirty window, while continuing to look
   225       // for the next dirty card that will start a
   226       // new dirty window.
   227       end_of_non_clean = cur_hw;
   228       start_of_non_clean = cur_hw;
   229     }
   230     // Note that "cur_entry" leads "start_of_non_clean" in
   231     // its leftward excursion after this point
   232     // in the loop and, when we hit the left end of "mr",
   233     // will point off of the left end of the card-table
   234     // for "mr".
   235     cur_entry--;
   236   }
   237   // If the first card of "mr" was dirty, we will have
   238   // been left with a dirty window, co-initial with "mr",
   239   // which we now process.
   240   if (start_of_non_clean < end_of_non_clean) {
   241     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   242     _dirty_card_closure->do_MemRegion(mrd);
   243   }
   244 }
   246 // clean (by dirty->clean before) ==> cur_younger_gen
   247 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
   248 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
   249 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
   250 // cur-younger-gen                ==> cur_younger_gen
   251 // cur_youngergen_and_prev_nonclean_card ==> no change.
   252 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
   253   jbyte* entry = ct_bs()->byte_for(field);
   254   do {
   255     jbyte entry_val = *entry;
   256     // We put this first because it's probably the most common case.
   257     if (entry_val == clean_card_val()) {
   258       // No threat of contention with cleaning threads.
   259       *entry = cur_youngergen_card_val();
   260       return;
   261     } else if (card_is_dirty_wrt_gen_iter(entry_val)
   262                || is_prev_youngergen_card_val(entry_val)) {
   263       // Mark it as both cur and prev youngergen; card cleaning thread will
   264       // eventually remove the previous stuff.
   265       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
   266       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
   267       // Did the CAS succeed?
   268       if (res == entry_val) return;
   269       // Otherwise, retry, to see the new value.
   270       continue;
   271     } else {
   272       assert(entry_val == cur_youngergen_and_prev_nonclean_card
   273              || entry_val == cur_youngergen_card_val(),
   274              "should be only possibilities.");
   275       return;
   276     }
   277   } while (true);
   278 }
   280 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
   281                                                 OopsInGenClosure* cl) {
   282   const MemRegion urasm = sp->used_region_at_save_marks();
   283 #ifdef ASSERT
   284   // Convert the assertion check to a warning if we are running
   285   // CMS+ParNew until related bug is fixed.
   286   MemRegion ur    = sp->used_region();
   287   assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
   288          err_msg("Did you forget to call save_marks()? "
   289                  "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   290                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   291                  urasm.start(), urasm.end(), ur.start(), ur.end()));
   292   // In the case of CMS+ParNew, issue a warning
   293   if (!ur.contains(urasm)) {
   294     assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
   295     warning("CMS+ParNew: Did you forget to call save_marks()? "
   296             "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   297             "[" PTR_FORMAT ", " PTR_FORMAT ")",
   298              urasm.start(), urasm.end(), ur.start(), ur.end());
   299     MemRegion ur2 = sp->used_region();
   300     MemRegion urasm2 = sp->used_region_at_save_marks();
   301     if (!ur.equals(ur2)) {
   302       warning("CMS+ParNew: Flickering used_region()!!");
   303     }
   304     if (!urasm.equals(urasm2)) {
   305       warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
   306     }
   307     ShouldNotReachHere();
   308   }
   309 #endif
   310   _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
   311 }
   313 void CardTableRS::clear_into_younger(Generation* old_gen) {
   314   assert(old_gen->level() == 1, "Should only be called for the old generation");
   315   // The card tables for the youngest gen need never be cleared.
   316   // There's a bit of subtlety in the clear() and invalidate()
   317   // methods that we exploit here and in invalidate_or_clear()
   318   // below to avoid missing cards at the fringes. If clear() or
   319   // invalidate() are changed in the future, this code should
   320   // be revisited. 20040107.ysr
   321   clear(old_gen->prev_used_region());
   322 }
   324 void CardTableRS::invalidate_or_clear(Generation* old_gen) {
   325   assert(old_gen->level() == 1, "Should only be called for the old generation");
   326   // Invalidate the cards for the currently occupied part of
   327   // the old generation and clear the cards for the
   328   // unoccupied part of the generation (if any, making use
   329   // of that generation's prev_used_region to determine that
   330   // region). No need to do anything for the youngest
   331   // generation. Also see note#20040107.ysr above.
   332   MemRegion used_mr = old_gen->used_region();
   333   MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
   334   if (!to_be_cleared_mr.is_empty()) {
   335     clear(to_be_cleared_mr);
   336   }
   337   invalidate(used_mr);
   338 }
   341 class VerifyCleanCardClosure: public OopClosure {
   342 private:
   343   HeapWord* _boundary;
   344   HeapWord* _begin;
   345   HeapWord* _end;
   346 protected:
   347   template <class T> void do_oop_work(T* p) {
   348     HeapWord* jp = (HeapWord*)p;
   349     assert(jp >= _begin && jp < _end,
   350            err_msg("Error: jp " PTR_FORMAT " should be within "
   351                    "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
   352                    jp, _begin, _end));
   353     oop obj = oopDesc::load_decode_heap_oop(p);
   354     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
   355               err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
   356                       "clean card crosses boundary" PTR_FORMAT,
   357                       (HeapWord*)obj, jp, _boundary));
   358   }
   360 public:
   361   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
   362     _boundary(b), _begin(begin), _end(end) {
   363     assert(b <= begin,
   364            err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
   365                    b, begin));
   366     assert(begin <= end,
   367            err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
   368                    begin, end));
   369   }
   371   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
   372   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
   373 };
   375 class VerifyCTSpaceClosure: public SpaceClosure {
   376 private:
   377   CardTableRS* _ct;
   378   HeapWord* _boundary;
   379 public:
   380   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
   381     _ct(ct), _boundary(boundary) {}
   382   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
   383 };
   385 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
   386   CardTableRS* _ct;
   387 public:
   388   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
   389   void do_generation(Generation* gen) {
   390     // Skip the youngest generation.
   391     if (gen->level() == 0) return;
   392     // Normally, we're interested in pointers to younger generations.
   393     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
   394     gen->space_iterate(&blk, true);
   395   }
   396 };
   398 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
   399   // We don't need to do young-gen spaces.
   400   if (s->end() <= gen_boundary) return;
   401   MemRegion used = s->used_region();
   403   jbyte* cur_entry = byte_for(used.start());
   404   jbyte* limit = byte_after(used.last());
   405   while (cur_entry < limit) {
   406     if (*cur_entry == CardTableModRefBS::clean_card) {
   407       jbyte* first_dirty = cur_entry+1;
   408       while (first_dirty < limit &&
   409              *first_dirty == CardTableModRefBS::clean_card) {
   410         first_dirty++;
   411       }
   412       // If the first object is a regular object, and it has a
   413       // young-to-old field, that would mark the previous card.
   414       HeapWord* boundary = addr_for(cur_entry);
   415       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
   416       HeapWord* boundary_block = s->block_start(boundary);
   417       HeapWord* begin = boundary;             // Until proven otherwise.
   418       HeapWord* start_block = boundary_block; // Until proven otherwise.
   419       if (boundary_block < boundary) {
   420         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
   421           oop boundary_obj = oop(boundary_block);
   422           if (!boundary_obj->is_objArray() &&
   423               !boundary_obj->is_typeArray()) {
   424             guarantee(cur_entry > byte_for(used.start()),
   425                       "else boundary would be boundary_block");
   426             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
   427               begin = boundary_block + s->block_size(boundary_block);
   428               start_block = begin;
   429             }
   430           }
   431         }
   432       }
   433       // Now traverse objects until end.
   434       if (begin < end) {
   435         MemRegion mr(begin, end);
   436         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
   437         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
   438           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
   439             oop(cur)->oop_iterate_no_header(&verify_blk, mr);
   440           }
   441         }
   442       }
   443       cur_entry = first_dirty;
   444     } else {
   445       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
   446       // is a transient value, that cannot be in the card table
   447       // except during GC, and thus assert that:
   448       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
   449       //        "Illegal CT value");
   450       // That however, need not hold, as will become clear in the
   451       // following...
   453       // We'd normally expect that if we are in the parallel case,
   454       // we can't have left a prev value (which would be different
   455       // from the current value) in the card table, and so we'd like to
   456       // assert that:
   457       // guarantee(cur_youngergen_card_val() == youngergen_card
   458       //           || !is_prev_youngergen_card_val(*cur_entry),
   459       //           "Illegal CT value");
   460       // That, however, may not hold occasionally, because of
   461       // CMS or MSC in the old gen. To wit, consider the
   462       // following two simple illustrative scenarios:
   463       // (a) CMS: Consider the case where a large object L
   464       //     spanning several cards is allocated in the old
   465       //     gen, and has a young gen reference stored in it, dirtying
   466       //     some interior cards. A young collection scans the card,
   467       //     finds a young ref and installs a youngergenP_n value.
   468       //     L then goes dead. Now a CMS collection starts,
   469       //     finds L dead and sweeps it up. Assume that L is
   470       //     abutting _unallocated_blk, so _unallocated_blk is
   471       //     adjusted down to (below) L. Assume further that
   472       //     no young collection intervenes during this CMS cycle.
   473       //     The next young gen cycle will not get to look at this
   474       //     youngergenP_n card since it lies in the unoccupied
   475       //     part of the space.
   476       //     Some young collections later the blocks on this
   477       //     card can be re-allocated either due to direct allocation
   478       //     or due to absorbing promotions. At this time, the
   479       //     before-gc verification will fail the above assert.
   480       // (b) MSC: In this case, an object L with a young reference
   481       //     is on a card that (therefore) holds a youngergen_n value.
   482       //     Suppose also that L lies towards the end of the used
   483       //     the used space before GC. An MSC collection
   484       //     occurs that compacts to such an extent that this
   485       //     card is no longer in the occupied part of the space.
   486       //     Since current code in MSC does not always clear cards
   487       //     in the unused part of old gen, this stale youngergen_n
   488       //     value is left behind and can later be covered by
   489       //     an object when promotion or direct allocation
   490       //     re-allocates that part of the heap.
   491       //
   492       // Fortunately, the presence of such stale card values is
   493       // "only" a minor annoyance in that subsequent young collections
   494       // might needlessly scan such cards, but would still never corrupt
   495       // the heap as a result. However, it's likely not to be a significant
   496       // performance inhibitor in practice. For instance,
   497       // some recent measurements with unoccupied cards eagerly cleared
   498       // out to maintain this invariant, showed next to no
   499       // change in young collection times; of course one can construct
   500       // degenerate examples where the cost can be significant.)
   501       // Note, in particular, that if the "stale" card is modified
   502       // after re-allocation, it would be dirty, not "stale". Thus,
   503       // we can never have a younger ref in such a card and it is
   504       // safe not to scan that card in any collection. [As we see
   505       // below, we do some unnecessary scanning
   506       // in some cases in the current parallel scanning algorithm.]
   507       //
   508       // The main point below is that the parallel card scanning code
   509       // deals correctly with these stale card values. There are two main
   510       // cases to consider where we have a stale "younger gen" value and a
   511       // "derivative" case to consider, where we have a stale
   512       // "cur_younger_gen_and_prev_non_clean" value, as will become
   513       // apparent in the case analysis below.
   514       // o Case 1. If the stale value corresponds to a younger_gen_n
   515       //   value other than the cur_younger_gen value then the code
   516       //   treats this as being tantamount to a prev_younger_gen
   517       //   card. This means that the card may be unnecessarily scanned.
   518       //   There are two sub-cases to consider:
   519       //   o Case 1a. Let us say that the card is in the occupied part
   520       //     of the generation at the time the collection begins. In
   521       //     that case the card will be either cleared when it is scanned
   522       //     for young pointers, or will be set to cur_younger_gen as a
   523       //     result of promotion. (We have elided the normal case where
   524       //     the scanning thread and the promoting thread interleave
   525       //     possibly resulting in a transient
   526       //     cur_younger_gen_and_prev_non_clean value before settling
   527       //     to cur_younger_gen. [End Case 1a.]
   528       //   o Case 1b. Consider now the case when the card is in the unoccupied
   529       //     part of the space which becomes occupied because of promotions
   530       //     into it during the current young GC. In this case the card
   531       //     will never be scanned for young references. The current
   532       //     code will set the card value to either
   533       //     cur_younger_gen_and_prev_non_clean or leave
   534       //     it with its stale value -- because the promotions didn't
   535       //     result in any younger refs on that card. Of these two
   536       //     cases, the latter will be covered in Case 1a during
   537       //     a subsequent scan. To deal with the former case, we need
   538       //     to further consider how we deal with a stale value of
   539       //     cur_younger_gen_and_prev_non_clean in our case analysis
   540       //     below. This we do in Case 3 below. [End Case 1b]
   541       //   [End Case 1]
   542       // o Case 2. If the stale value corresponds to cur_younger_gen being
   543       //   a value not necessarily written by a current promotion, the
   544       //   card will not be scanned by the younger refs scanning code.
   545       //   (This is OK since as we argued above such cards cannot contain
   546       //   any younger refs.) The result is that this value will be
   547       //   treated as a prev_younger_gen value in a subsequent collection,
   548       //   which is addressed in Case 1 above. [End Case 2]
   549       // o Case 3. We here consider the "derivative" case from Case 1b. above
   550       //   because of which we may find a stale
   551       //   cur_younger_gen_and_prev_non_clean card value in the table.
   552       //   Once again, as in Case 1, we consider two subcases, depending
   553       //   on whether the card lies in the occupied or unoccupied part
   554       //   of the space at the start of the young collection.
   555       //   o Case 3a. Let us say the card is in the occupied part of
   556       //     the old gen at the start of the young collection. In that
   557       //     case, the card will be scanned by the younger refs scanning
   558       //     code which will set it to cur_younger_gen. In a subsequent
   559       //     scan, the card will be considered again and get its final
   560       //     correct value. [End Case 3a]
   561       //   o Case 3b. Now consider the case where the card is in the
   562       //     unoccupied part of the old gen, and is occupied as a result
   563       //     of promotions during thus young gc. In that case,
   564       //     the card will not be scanned for younger refs. The presence
   565       //     of newly promoted objects on the card will then result in
   566       //     its keeping the value cur_younger_gen_and_prev_non_clean
   567       //     value, which we have dealt with in Case 3 here. [End Case 3b]
   568       //   [End Case 3]
   569       //
   570       // (Please refer to the code in the helper class
   571       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
   572       //
   573       // The informal arguments above can be tightened into a formal
   574       // correctness proof and it behooves us to write up such a proof,
   575       // or to use model checking to prove that there are no lingering
   576       // concerns.
   577       //
   578       // Clearly because of Case 3b one cannot bound the time for
   579       // which a card will retain what we have called a "stale" value.
   580       // However, one can obtain a Loose upper bound on the redundant
   581       // work as a result of such stale values. Note first that any
   582       // time a stale card lies in the occupied part of the space at
   583       // the start of the collection, it is scanned by younger refs
   584       // code and we can define a rank function on card values that
   585       // declines when this is so. Note also that when a card does not
   586       // lie in the occupied part of the space at the beginning of a
   587       // young collection, its rank can either decline or stay unchanged.
   588       // In this case, no extra work is done in terms of redundant
   589       // younger refs scanning of that card.
   590       // Then, the case analysis above reveals that, in the worst case,
   591       // any such stale card will be scanned unnecessarily at most twice.
   592       //
   593       // It is nonethelss advisable to try and get rid of some of this
   594       // redundant work in a subsequent (low priority) re-design of
   595       // the card-scanning code, if only to simplify the underlying
   596       // state machine analysis/proof. ysr 1/28/2002. XXX
   597       cur_entry++;
   598     }
   599   }
   600 }
   602 void CardTableRS::verify() {
   603   // At present, we only know how to verify the card table RS for
   604   // generational heaps.
   605   VerifyCTGenClosure blk(this);
   606   CollectedHeap* ch = Universe::heap();
   608   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
   609     GenCollectedHeap::heap()->generation_iterate(&blk, false);
   610     _ct_bs->verify();
   611     }
   612   }
   615 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
   616   if (!mr.is_empty()) {
   617     jbyte* cur_entry = byte_for(mr.start());
   618     jbyte* limit = byte_after(mr.last());
   619     // The region mr may not start on a card boundary so
   620     // the first card may reflect a write to the space
   621     // just prior to mr.
   622     if (!is_aligned(mr.start())) {
   623       cur_entry++;
   624     }
   625     for (;cur_entry < limit; cur_entry++) {
   626       guarantee(*cur_entry == CardTableModRefBS::clean_card,
   627                 "Unexpected dirty card found");
   628     }
   629   }
   630 }

mercurial