src/share/vm/interpreter/bytecodeInterpreter.cpp

Tue, 24 Dec 2013 11:48:39 -0800

author
mikael
date
Tue, 24 Dec 2013 11:48:39 -0800
changeset 6198
55fb97c4c58d
parent 5350
a023ec3452c7
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Summary: Copyright year updated for files modified during 2013
Reviewed-by: twisti, iveresov

     1 /*
     2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/vmSymbols.hpp"
    27 #include "gc_interface/collectedHeap.hpp"
    28 #include "interpreter/bytecodeHistogram.hpp"
    29 #include "interpreter/bytecodeInterpreter.hpp"
    30 #include "interpreter/bytecodeInterpreter.inline.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "interpreter/interpreterRuntime.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/methodCounters.hpp"
    36 #include "oops/objArrayKlass.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "prims/jvmtiExport.hpp"
    39 #include "runtime/frame.inline.hpp"
    40 #include "runtime/handles.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/threadCritical.hpp"
    44 #include "utilities/exceptions.hpp"
    45 #ifdef TARGET_OS_ARCH_linux_x86
    46 # include "orderAccess_linux_x86.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_ARCH_linux_sparc
    49 # include "orderAccess_linux_sparc.inline.hpp"
    50 #endif
    51 #ifdef TARGET_OS_ARCH_linux_zero
    52 # include "orderAccess_linux_zero.inline.hpp"
    53 #endif
    54 #ifdef TARGET_OS_ARCH_solaris_x86
    55 # include "orderAccess_solaris_x86.inline.hpp"
    56 #endif
    57 #ifdef TARGET_OS_ARCH_solaris_sparc
    58 # include "orderAccess_solaris_sparc.inline.hpp"
    59 #endif
    60 #ifdef TARGET_OS_ARCH_windows_x86
    61 # include "orderAccess_windows_x86.inline.hpp"
    62 #endif
    63 #ifdef TARGET_OS_ARCH_linux_arm
    64 # include "orderAccess_linux_arm.inline.hpp"
    65 #endif
    66 #ifdef TARGET_OS_ARCH_linux_ppc
    67 # include "orderAccess_linux_ppc.inline.hpp"
    68 #endif
    69 #ifdef TARGET_OS_ARCH_bsd_x86
    70 # include "orderAccess_bsd_x86.inline.hpp"
    71 #endif
    72 #ifdef TARGET_OS_ARCH_bsd_zero
    73 # include "orderAccess_bsd_zero.inline.hpp"
    74 #endif
    77 // no precompiled headers
    78 #ifdef CC_INTERP
    80 /*
    81  * USELABELS - If using GCC, then use labels for the opcode dispatching
    82  * rather -then a switch statement. This improves performance because it
    83  * gives us the oportunity to have the instructions that calculate the
    84  * next opcode to jump to be intermixed with the rest of the instructions
    85  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
    86  */
    87 #undef USELABELS
    88 #ifdef __GNUC__
    89 /*
    90    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
    91    don't use the computed goto approach.
    92 */
    93 #ifndef ASSERT
    94 #define USELABELS
    95 #endif
    96 #endif
    98 #undef CASE
    99 #ifdef USELABELS
   100 #define CASE(opcode) opc ## opcode
   101 #define DEFAULT opc_default
   102 #else
   103 #define CASE(opcode) case Bytecodes:: opcode
   104 #define DEFAULT default
   105 #endif
   107 /*
   108  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
   109  * opcode before going back to the top of the while loop, rather then having
   110  * the top of the while loop handle it. This provides a better opportunity
   111  * for instruction scheduling. Some compilers just do this prefetch
   112  * automatically. Some actually end up with worse performance if you
   113  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
   114  */
   115 #undef PREFETCH_OPCCODE
   116 #define PREFETCH_OPCCODE
   118 /*
   119   Interpreter safepoint: it is expected that the interpreter will have no live
   120   handles of its own creation live at an interpreter safepoint. Therefore we
   121   run a HandleMarkCleaner and trash all handles allocated in the call chain
   122   since the JavaCalls::call_helper invocation that initiated the chain.
   123   There really shouldn't be any handles remaining to trash but this is cheap
   124   in relation to a safepoint.
   125 */
   126 #define SAFEPOINT                                                                 \
   127     if ( SafepointSynchronize::is_synchronizing()) {                              \
   128         {                                                                         \
   129           /* zap freed handles rather than GC'ing them */                         \
   130           HandleMarkCleaner __hmc(THREAD);                                        \
   131         }                                                                         \
   132         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
   133     }
   135 /*
   136  * VM_JAVA_ERROR - Macro for throwing a java exception from
   137  * the interpreter loop. Should really be a CALL_VM but there
   138  * is no entry point to do the transition to vm so we just
   139  * do it by hand here.
   140  */
   141 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
   142     DECACHE_STATE();                                                              \
   143     SET_LAST_JAVA_FRAME();                                                        \
   144     {                                                                             \
   145        ThreadInVMfromJava trans(THREAD);                                          \
   146        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
   147     }                                                                             \
   148     RESET_LAST_JAVA_FRAME();                                                      \
   149     CACHE_STATE();
   151 // Normal throw of a java error
   152 #define VM_JAVA_ERROR(name, msg)                                                  \
   153     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
   154     goto handle_exception;
   156 #ifdef PRODUCT
   157 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
   158 #else
   159 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
   160 {                                                                                                    \
   161     BytecodeCounter::_counter_value++;                                                               \
   162     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
   163     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
   164     if (TraceBytecodes) {                                                                            \
   165       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
   166                                    topOfStack[Interpreter::expr_index_at(1)],   \
   167                                    topOfStack[Interpreter::expr_index_at(2)]),  \
   168                                    handle_exception);                      \
   169     }                                                                      \
   170 }
   171 #endif
   173 #undef DEBUGGER_SINGLE_STEP_NOTIFY
   174 #ifdef VM_JVMTI
   175 /* NOTE: (kbr) This macro must be called AFTER the PC has been
   176    incremented. JvmtiExport::at_single_stepping_point() may cause a
   177    breakpoint opcode to get inserted at the current PC to allow the
   178    debugger to coalesce single-step events.
   180    As a result if we call at_single_stepping_point() we refetch opcode
   181    to get the current opcode. This will override any other prefetching
   182    that might have occurred.
   183 */
   184 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
   185 {                                                                                \
   186       if (_jvmti_interp_events) {                                                \
   187         if (JvmtiExport::should_post_single_step()) {                            \
   188           DECACHE_STATE();                                                       \
   189           SET_LAST_JAVA_FRAME();                                                 \
   190           ThreadInVMfromJava trans(THREAD);                                      \
   191           JvmtiExport::at_single_stepping_point(THREAD,                          \
   192                                           istate->method(),                      \
   193                                           pc);                                   \
   194           RESET_LAST_JAVA_FRAME();                                               \
   195           CACHE_STATE();                                                         \
   196           if (THREAD->pop_frame_pending() &&                                     \
   197               !THREAD->pop_frame_in_process()) {                                 \
   198             goto handle_Pop_Frame;                                               \
   199           }                                                                      \
   200           opcode = *pc;                                                          \
   201         }                                                                        \
   202       }                                                                          \
   203 }
   204 #else
   205 #define DEBUGGER_SINGLE_STEP_NOTIFY()
   206 #endif
   208 /*
   209  * CONTINUE - Macro for executing the next opcode.
   210  */
   211 #undef CONTINUE
   212 #ifdef USELABELS
   213 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
   214 // initialization (which is is the initialization of the table pointer...)
   215 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
   216 #define CONTINUE {                              \
   217         opcode = *pc;                           \
   218         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   219         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   220         DISPATCH(opcode);                       \
   221     }
   222 #else
   223 #ifdef PREFETCH_OPCCODE
   224 #define CONTINUE {                              \
   225         opcode = *pc;                           \
   226         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   227         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   228         continue;                               \
   229     }
   230 #else
   231 #define CONTINUE {                              \
   232         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   233         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   234         continue;                               \
   235     }
   236 #endif
   237 #endif
   240 #define UPDATE_PC(opsize) {pc += opsize; }
   241 /*
   242  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
   243  */
   244 #undef UPDATE_PC_AND_TOS
   245 #define UPDATE_PC_AND_TOS(opsize, stack) \
   246     {pc += opsize; MORE_STACK(stack); }
   248 /*
   249  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
   250  * and executing the next opcode. It's somewhat similar to the combination
   251  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
   252  */
   253 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
   254 #ifdef USELABELS
   255 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   256         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   257         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   258         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   259         DISPATCH(opcode);                                       \
   260     }
   262 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   263         pc += opsize; opcode = *pc;                             \
   264         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   265         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   266         DISPATCH(opcode);                                       \
   267     }
   268 #else
   269 #ifdef PREFETCH_OPCCODE
   270 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   271         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   272         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   273         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   274         goto do_continue;                                       \
   275     }
   277 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   278         pc += opsize; opcode = *pc;                             \
   279         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   280         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   281         goto do_continue;                                       \
   282     }
   283 #else
   284 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
   285         pc += opsize; MORE_STACK(stack);                \
   286         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   287         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   288         goto do_continue;                               \
   289     }
   291 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
   292         pc += opsize;                                   \
   293         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   294         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   295         goto do_continue;                               \
   296     }
   297 #endif /* PREFETCH_OPCCODE */
   298 #endif /* USELABELS */
   300 // About to call a new method, update the save the adjusted pc and return to frame manager
   301 #define UPDATE_PC_AND_RETURN(opsize)  \
   302    DECACHE_TOS();                     \
   303    istate->set_bcp(pc+opsize);        \
   304    return;
   307 #define METHOD istate->method()
   308 #define GET_METHOD_COUNTERS(res)    \
   309   res = METHOD->method_counters();  \
   310   if (res == NULL) {                \
   311     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
   312   }
   314 #define OSR_REQUEST(res, branch_pc) \
   315             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
   316 /*
   317  * For those opcodes that need to have a GC point on a backwards branch
   318  */
   320 // Backedge counting is kind of strange. The asm interpreter will increment
   321 // the backedge counter as a separate counter but it does it's comparisons
   322 // to the sum (scaled) of invocation counter and backedge count to make
   323 // a decision. Seems kind of odd to sum them together like that
   325 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
   328 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
   329     if ((skip) <= 0) {                                                                              \
   330       MethodCounters* mcs;                                                                          \
   331       GET_METHOD_COUNTERS(mcs);                                                                     \
   332       if (UseLoopCounter) {                                                                         \
   333         bool do_OSR = UseOnStackReplacement;                                                        \
   334         mcs->backedge_counter()->increment();                                                       \
   335         if (do_OSR) do_OSR = mcs->backedge_counter()->reached_InvocationLimit();                    \
   336         if (do_OSR) {                                                                               \
   337           nmethod*  osr_nmethod;                                                                    \
   338           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
   339           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
   340             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
   341             istate->set_msg(do_osr);                                                                \
   342             istate->set_osr_buf((address)buf);                                                      \
   343             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
   344             return;                                                                                 \
   345           }                                                                                         \
   346         }                                                                                           \
   347       }  /* UseCompiler ... */                                                                      \
   348       mcs->invocation_counter()->increment();                                                       \
   349       SAFEPOINT;                                                                                    \
   350     }
   352 /*
   353  * For those opcodes that need to have a GC point on a backwards branch
   354  */
   356 /*
   357  * Macros for caching and flushing the interpreter state. Some local
   358  * variables need to be flushed out to the frame before we do certain
   359  * things (like pushing frames or becomming gc safe) and some need to
   360  * be recached later (like after popping a frame). We could use one
   361  * macro to cache or decache everything, but this would be less then
   362  * optimal because we don't always need to cache or decache everything
   363  * because some things we know are already cached or decached.
   364  */
   365 #undef DECACHE_TOS
   366 #undef CACHE_TOS
   367 #undef CACHE_PREV_TOS
   368 #define DECACHE_TOS()    istate->set_stack(topOfStack);
   370 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
   372 #undef DECACHE_PC
   373 #undef CACHE_PC
   374 #define DECACHE_PC()    istate->set_bcp(pc);
   375 #define CACHE_PC()      pc = istate->bcp();
   376 #define CACHE_CP()      cp = istate->constants();
   377 #define CACHE_LOCALS()  locals = istate->locals();
   378 #undef CACHE_FRAME
   379 #define CACHE_FRAME()
   381 /*
   382  * CHECK_NULL - Macro for throwing a NullPointerException if the object
   383  * passed is a null ref.
   384  * On some architectures/platforms it should be possible to do this implicitly
   385  */
   386 #undef CHECK_NULL
   387 #define CHECK_NULL(obj_)                                                 \
   388     if ((obj_) == NULL) {                                                \
   389         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
   390     }                                                                    \
   391     VERIFY_OOP(obj_)
   393 #define VMdoubleConstZero() 0.0
   394 #define VMdoubleConstOne() 1.0
   395 #define VMlongConstZero() (max_jlong-max_jlong)
   396 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
   398 /*
   399  * Alignment
   400  */
   401 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
   403 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
   404 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
   406 // Reload interpreter state after calling the VM or a possible GC
   407 #define CACHE_STATE()   \
   408         CACHE_TOS();    \
   409         CACHE_PC();     \
   410         CACHE_CP();     \
   411         CACHE_LOCALS();
   413 // Call the VM don't check for pending exceptions
   414 #define CALL_VM_NOCHECK(func)                                     \
   415           DECACHE_STATE();                                        \
   416           SET_LAST_JAVA_FRAME();                                  \
   417           func;                                                   \
   418           RESET_LAST_JAVA_FRAME();                                \
   419           CACHE_STATE();                                          \
   420           if (THREAD->pop_frame_pending() &&                      \
   421               !THREAD->pop_frame_in_process()) {                  \
   422             goto handle_Pop_Frame;                                \
   423           }
   425 // Call the VM and check for pending exceptions
   426 #define CALL_VM(func, label) {                                    \
   427           CALL_VM_NOCHECK(func);                                  \
   428           if (THREAD->has_pending_exception()) goto label;        \
   429         }
   431 /*
   432  * BytecodeInterpreter::run(interpreterState istate)
   433  * BytecodeInterpreter::runWithChecks(interpreterState istate)
   434  *
   435  * The real deal. This is where byte codes actually get interpreted.
   436  * Basically it's a big while loop that iterates until we return from
   437  * the method passed in.
   438  *
   439  * The runWithChecks is used if JVMTI is enabled.
   440  *
   441  */
   442 #if defined(VM_JVMTI)
   443 void
   444 BytecodeInterpreter::runWithChecks(interpreterState istate) {
   445 #else
   446 void
   447 BytecodeInterpreter::run(interpreterState istate) {
   448 #endif
   450   // In order to simplify some tests based on switches set at runtime
   451   // we invoke the interpreter a single time after switches are enabled
   452   // and set simpler to to test variables rather than method calls or complex
   453   // boolean expressions.
   455   static int initialized = 0;
   456   static int checkit = 0;
   457   static intptr_t* c_addr = NULL;
   458   static intptr_t  c_value;
   460   if (checkit && *c_addr != c_value) {
   461     os::breakpoint();
   462   }
   463 #ifdef VM_JVMTI
   464   static bool _jvmti_interp_events = 0;
   465 #endif
   467   static int _compiling;  // (UseCompiler || CountCompiledCalls)
   469 #ifdef ASSERT
   470   if (istate->_msg != initialize) {
   471     // We have a problem here if we are running with a pre-hsx24 JDK (for example during bootstrap)
   472     // because in that case, EnableInvokeDynamic is true by default but will be later switched off
   473     // if java_lang_invoke_MethodHandle::compute_offsets() detects that the JDK only has the classes
   474     // for the old JSR292 implementation.
   475     // This leads to a situation where 'istate->_stack_limit' always accounts for
   476     // methodOopDesc::extra_stack_entries() because it is computed in
   477     // CppInterpreterGenerator::generate_compute_interpreter_state() which was generated while
   478     // EnableInvokeDynamic was still true. On the other hand, istate->_method->max_stack() doesn't
   479     // account for extra_stack_entries() anymore because at the time when it is called
   480     // EnableInvokeDynamic was already set to false.
   481     // So we have a second version of the assertion which handles the case where EnableInvokeDynamic was
   482     // switched off because of the wrong classes.
   483     if (EnableInvokeDynamic || FLAG_IS_CMDLINE(EnableInvokeDynamic)) {
   484       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
   485     } else {
   486       const int extra_stack_entries = Method::extra_stack_entries_for_jsr292;
   487       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + extra_stack_entries
   488                                                                                                + 1), "bad stack limit");
   489     }
   490 #ifndef SHARK
   491     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
   492 #endif // !SHARK
   493   }
   494   // Verify linkages.
   495   interpreterState l = istate;
   496   do {
   497     assert(l == l->_self_link, "bad link");
   498     l = l->_prev_link;
   499   } while (l != NULL);
   500   // Screwups with stack management usually cause us to overwrite istate
   501   // save a copy so we can verify it.
   502   interpreterState orig = istate;
   503 #endif
   505   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
   507   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
   508   register address          pc = istate->bcp();
   509   register jubyte opcode;
   510   register intptr_t*        locals = istate->locals();
   511   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
   512 #ifdef LOTS_OF_REGS
   513   register JavaThread*      THREAD = istate->thread();
   514   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
   515 #else
   516 #undef THREAD
   517 #define THREAD istate->thread()
   518 #undef BYTE_MAP_BASE
   519 #define BYTE_MAP_BASE _byte_map_base
   520 #endif
   522 #ifdef USELABELS
   523   const static void* const opclabels_data[256] = {
   524 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
   525 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
   526 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
   527 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
   529 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
   530 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
   531 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
   532 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
   534 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
   535 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
   536 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
   537 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
   539 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
   540 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
   541 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
   542 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
   544 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
   545 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
   546 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
   547 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
   549 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
   550 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
   551 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
   552 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
   554 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
   555 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
   556 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
   557 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
   559 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
   560 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
   561 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
   562 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
   564 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
   565 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
   566 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
   567 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
   569 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
   570 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
   571 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
   572 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
   574 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
   575 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
   576 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
   577 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
   579 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
   580 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
   581 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
   582 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
   584 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
   585 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
   586 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
   587 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   589 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   590 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   591 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   592 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   594 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   595 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
   596 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
   597 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   599 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   600 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   601 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   602 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
   603   };
   604   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
   605 #endif /* USELABELS */
   607 #ifdef ASSERT
   608   // this will trigger a VERIFY_OOP on entry
   609   if (istate->msg() != initialize && ! METHOD->is_static()) {
   610     oop rcvr = LOCALS_OBJECT(0);
   611     VERIFY_OOP(rcvr);
   612   }
   613 #endif
   614 // #define HACK
   615 #ifdef HACK
   616   bool interesting = false;
   617 #endif // HACK
   619   /* QQQ this should be a stack method so we don't know actual direction */
   620   guarantee(istate->msg() == initialize ||
   621          topOfStack >= istate->stack_limit() &&
   622          topOfStack < istate->stack_base(),
   623          "Stack top out of range");
   625   switch (istate->msg()) {
   626     case initialize: {
   627       if (initialized++) ShouldNotReachHere(); // Only one initialize call
   628       _compiling = (UseCompiler || CountCompiledCalls);
   629 #ifdef VM_JVMTI
   630       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
   631 #endif
   632       BarrierSet* bs = Universe::heap()->barrier_set();
   633       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   634       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
   635       return;
   636     }
   637     break;
   638     case method_entry: {
   639       THREAD->set_do_not_unlock();
   640       // count invocations
   641       assert(initialized, "Interpreter not initialized");
   642       if (_compiling) {
   643         MethodCounters* mcs;
   644         GET_METHOD_COUNTERS(mcs);
   645         if (ProfileInterpreter) {
   646           METHOD->increment_interpreter_invocation_count(THREAD);
   647         }
   648         mcs->invocation_counter()->increment();
   649         if (mcs->invocation_counter()->reached_InvocationLimit()) {
   650             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
   652             // We no longer retry on a counter overflow
   654             // istate->set_msg(retry_method);
   655             // THREAD->clr_do_not_unlock();
   656             // return;
   657         }
   658         SAFEPOINT;
   659       }
   661       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   662         // initialize
   663         os::breakpoint();
   664       }
   666 #ifdef HACK
   667       {
   668         ResourceMark rm;
   669         char *method_name = istate->method()->name_and_sig_as_C_string();
   670         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   671           tty->print_cr("entering: depth %d bci: %d",
   672                          (istate->_stack_base - istate->_stack),
   673                          istate->_bcp - istate->_method->code_base());
   674           interesting = true;
   675         }
   676       }
   677 #endif // HACK
   680       // lock method if synchronized
   681       if (METHOD->is_synchronized()) {
   682           // oop rcvr = locals[0].j.r;
   683           oop rcvr;
   684           if (METHOD->is_static()) {
   685             rcvr = METHOD->constants()->pool_holder()->java_mirror();
   686           } else {
   687             rcvr = LOCALS_OBJECT(0);
   688             VERIFY_OOP(rcvr);
   689           }
   690           // The initial monitor is ours for the taking
   691           BasicObjectLock* mon = &istate->monitor_base()[-1];
   692           oop monobj = mon->obj();
   693           assert(mon->obj() == rcvr, "method monitor mis-initialized");
   695           bool success = UseBiasedLocking;
   696           if (UseBiasedLocking) {
   697             markOop mark = rcvr->mark();
   698             if (mark->has_bias_pattern()) {
   699               // The bias pattern is present in the object's header. Need to check
   700               // whether the bias owner and the epoch are both still current.
   701               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
   702               xx = (intptr_t) rcvr->klass()->prototype_header() ^ xx;
   703               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
   704               if (yy != 0 ) {
   705                 // At this point we know that the header has the bias pattern and
   706                 // that we are not the bias owner in the current epoch. We need to
   707                 // figure out more details about the state of the header in order to
   708                 // know what operations can be legally performed on the object's
   709                 // header.
   711                 // If the low three bits in the xor result aren't clear, that means
   712                 // the prototype header is no longer biased and we have to revoke
   713                 // the bias on this object.
   715                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
   716                   // Biasing is still enabled for this data type. See whether the
   717                   // epoch of the current bias is still valid, meaning that the epoch
   718                   // bits of the mark word are equal to the epoch bits of the
   719                   // prototype header. (Note that the prototype header's epoch bits
   720                   // only change at a safepoint.) If not, attempt to rebias the object
   721                   // toward the current thread. Note that we must be absolutely sure
   722                   // that the current epoch is invalid in order to do this because
   723                   // otherwise the manipulations it performs on the mark word are
   724                   // illegal.
   725                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
   726                     // The epoch of the current bias is still valid but we know nothing
   727                     // about the owner; it might be set or it might be clear. Try to
   728                     // acquire the bias of the object using an atomic operation. If this
   729                     // fails we will go in to the runtime to revoke the object's bias.
   730                     // Note that we first construct the presumed unbiased header so we
   731                     // don't accidentally blow away another thread's valid bias.
   732                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
   733                                                            markOopDesc::age_mask_in_place |
   734                                                            markOopDesc::epoch_mask_in_place);
   735                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
   736                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   737                     }
   738                   } else {
   739                     try_rebias:
   740                     // At this point we know the epoch has expired, meaning that the
   741                     // current "bias owner", if any, is actually invalid. Under these
   742                     // circumstances _only_, we are allowed to use the current header's
   743                     // value as the comparison value when doing the cas to acquire the
   744                     // bias in the current epoch. In other words, we allow transfer of
   745                     // the bias from one thread to another directly in this situation.
   746                     xx = (intptr_t) rcvr->klass()->prototype_header() | (intptr_t) THREAD;
   747                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->prototype_header(),
   748                                             (intptr_t*) rcvr->mark_addr(),
   749                                             (intptr_t) mark) != (intptr_t) mark) {
   750                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   751                     }
   752                   }
   753                 } else {
   754                   try_revoke_bias:
   755                   // The prototype mark in the klass doesn't have the bias bit set any
   756                   // more, indicating that objects of this data type are not supposed
   757                   // to be biased any more. We are going to try to reset the mark of
   758                   // this object to the prototype value and fall through to the
   759                   // CAS-based locking scheme. Note that if our CAS fails, it means
   760                   // that another thread raced us for the privilege of revoking the
   761                   // bias of this particular object, so it's okay to continue in the
   762                   // normal locking code.
   763                   //
   764                   xx = (intptr_t) rcvr->klass()->prototype_header() | (intptr_t) THREAD;
   765                   if (Atomic::cmpxchg_ptr(rcvr->klass()->prototype_header(),
   766                                           (intptr_t*) rcvr->mark_addr(),
   767                                           mark) == mark) {
   768                     // (*counters->revoked_lock_entry_count_addr())++;
   769                   success = false;
   770                   }
   771                 }
   772               }
   773             } else {
   774               cas_label:
   775               success = false;
   776             }
   777           }
   778           if (!success) {
   779             markOop displaced = rcvr->mark()->set_unlocked();
   780             mon->lock()->set_displaced_header(displaced);
   781             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
   782               // Is it simple recursive case?
   783               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   784                 mon->lock()->set_displaced_header(NULL);
   785               } else {
   786                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   787               }
   788             }
   789           }
   790       }
   791       THREAD->clr_do_not_unlock();
   793       // Notify jvmti
   794 #ifdef VM_JVMTI
   795       if (_jvmti_interp_events) {
   796         // Whenever JVMTI puts a thread in interp_only_mode, method
   797         // entry/exit events are sent for that thread to track stack depth.
   798         if (THREAD->is_interp_only_mode()) {
   799           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
   800                   handle_exception);
   801         }
   802       }
   803 #endif /* VM_JVMTI */
   805       goto run;
   806     }
   808     case popping_frame: {
   809       // returned from a java call to pop the frame, restart the call
   810       // clear the message so we don't confuse ourselves later
   811       ShouldNotReachHere();  // we don't return this.
   812       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
   813       istate->set_msg(no_request);
   814       THREAD->clr_pop_frame_in_process();
   815       goto run;
   816     }
   818     case method_resume: {
   819       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   820         // resume
   821         os::breakpoint();
   822       }
   823 #ifdef HACK
   824       {
   825         ResourceMark rm;
   826         char *method_name = istate->method()->name_and_sig_as_C_string();
   827         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   828           tty->print_cr("resume: depth %d bci: %d",
   829                          (istate->_stack_base - istate->_stack) ,
   830                          istate->_bcp - istate->_method->code_base());
   831           interesting = true;
   832         }
   833       }
   834 #endif // HACK
   835       // returned from a java call, continue executing.
   836       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
   837         goto handle_Pop_Frame;
   838       }
   840       if (THREAD->has_pending_exception()) goto handle_exception;
   841       // Update the pc by the saved amount of the invoke bytecode size
   842       UPDATE_PC(istate->bcp_advance());
   843       goto run;
   844     }
   846     case deopt_resume2: {
   847       // Returned from an opcode that will reexecute. Deopt was
   848       // a result of a PopFrame request.
   849       //
   850       goto run;
   851     }
   853     case deopt_resume: {
   854       // Returned from an opcode that has completed. The stack has
   855       // the result all we need to do is skip across the bytecode
   856       // and continue (assuming there is no exception pending)
   857       //
   858       // compute continuation length
   859       //
   860       // Note: it is possible to deopt at a return_register_finalizer opcode
   861       // because this requires entering the vm to do the registering. While the
   862       // opcode is complete we can't advance because there are no more opcodes
   863       // much like trying to deopt at a poll return. In that has we simply
   864       // get out of here
   865       //
   866       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
   867         // this will do the right thing even if an exception is pending.
   868         goto handle_return;
   869       }
   870       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
   871       if (THREAD->has_pending_exception()) goto handle_exception;
   872       goto run;
   873     }
   874     case got_monitors: {
   875       // continue locking now that we have a monitor to use
   876       // we expect to find newly allocated monitor at the "top" of the monitor stack.
   877       oop lockee = STACK_OBJECT(-1);
   878       VERIFY_OOP(lockee);
   879       // derefing's lockee ought to provoke implicit null check
   880       // find a free monitor
   881       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
   882       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
   883       entry->set_obj(lockee);
   885       markOop displaced = lockee->mark()->set_unlocked();
   886       entry->lock()->set_displaced_header(displaced);
   887       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
   888         // Is it simple recursive case?
   889         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   890           entry->lock()->set_displaced_header(NULL);
   891         } else {
   892           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   893         }
   894       }
   895       UPDATE_PC_AND_TOS(1, -1);
   896       goto run;
   897     }
   898     default: {
   899       fatal("Unexpected message from frame manager");
   900     }
   901   }
   903 run:
   905   DO_UPDATE_INSTRUCTION_COUNT(*pc)
   906   DEBUGGER_SINGLE_STEP_NOTIFY();
   907 #ifdef PREFETCH_OPCCODE
   908   opcode = *pc;  /* prefetch first opcode */
   909 #endif
   911 #ifndef USELABELS
   912   while (1)
   913 #endif
   914   {
   915 #ifndef PREFETCH_OPCCODE
   916       opcode = *pc;
   917 #endif
   918       // Seems like this happens twice per opcode. At worst this is only
   919       // need at entry to the loop.
   920       // DEBUGGER_SINGLE_STEP_NOTIFY();
   921       /* Using this labels avoids double breakpoints when quickening and
   922        * when returing from transition frames.
   923        */
   924   opcode_switch:
   925       assert(istate == orig, "Corrupted istate");
   926       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
   927       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
   928       assert(topOfStack < istate->stack_base(), "Stack underrun");
   930 #ifdef USELABELS
   931       DISPATCH(opcode);
   932 #else
   933       switch (opcode)
   934 #endif
   935       {
   936       CASE(_nop):
   937           UPDATE_PC_AND_CONTINUE(1);
   939           /* Push miscellaneous constants onto the stack. */
   941       CASE(_aconst_null):
   942           SET_STACK_OBJECT(NULL, 0);
   943           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   945 #undef  OPC_CONST_n
   946 #define OPC_CONST_n(opcode, const_type, value)                          \
   947       CASE(opcode):                                                     \
   948           SET_STACK_ ## const_type(value, 0);                           \
   949           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   951           OPC_CONST_n(_iconst_m1,   INT,       -1);
   952           OPC_CONST_n(_iconst_0,    INT,        0);
   953           OPC_CONST_n(_iconst_1,    INT,        1);
   954           OPC_CONST_n(_iconst_2,    INT,        2);
   955           OPC_CONST_n(_iconst_3,    INT,        3);
   956           OPC_CONST_n(_iconst_4,    INT,        4);
   957           OPC_CONST_n(_iconst_5,    INT,        5);
   958           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
   959           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
   960           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
   962 #undef  OPC_CONST2_n
   963 #define OPC_CONST2_n(opcname, value, key, kind)                         \
   964       CASE(_##opcname):                                                 \
   965       {                                                                 \
   966           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
   967           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   968       }
   969          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
   970          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
   971          OPC_CONST2_n(lconst_0, Zero, long, LONG);
   972          OPC_CONST2_n(lconst_1, One,  long, LONG);
   974          /* Load constant from constant pool: */
   976           /* Push a 1-byte signed integer value onto the stack. */
   977       CASE(_bipush):
   978           SET_STACK_INT((jbyte)(pc[1]), 0);
   979           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   981           /* Push a 2-byte signed integer constant onto the stack. */
   982       CASE(_sipush):
   983           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
   984           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
   986           /* load from local variable */
   988       CASE(_aload):
   989           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
   990           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
   991           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   993       CASE(_iload):
   994       CASE(_fload):
   995           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
   996           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   998       CASE(_lload):
   999           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
  1000           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
  1002       CASE(_dload):
  1003           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
  1004           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
  1006 #undef  OPC_LOAD_n
  1007 #define OPC_LOAD_n(num)                                                 \
  1008       CASE(_aload_##num):                                               \
  1009           VERIFY_OOP(LOCALS_OBJECT(num));                               \
  1010           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
  1011           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
  1013       CASE(_iload_##num):                                               \
  1014       CASE(_fload_##num):                                               \
  1015           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
  1016           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
  1018       CASE(_lload_##num):                                               \
  1019           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
  1020           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
  1021       CASE(_dload_##num):                                               \
  1022           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
  1023           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1025           OPC_LOAD_n(0);
  1026           OPC_LOAD_n(1);
  1027           OPC_LOAD_n(2);
  1028           OPC_LOAD_n(3);
  1030           /* store to a local variable */
  1032       CASE(_astore):
  1033           astore(topOfStack, -1, locals, pc[1]);
  1034           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1036       CASE(_istore):
  1037       CASE(_fstore):
  1038           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
  1039           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1041       CASE(_lstore):
  1042           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
  1043           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1045       CASE(_dstore):
  1046           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
  1047           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1049       CASE(_wide): {
  1050           uint16_t reg = Bytes::get_Java_u2(pc + 2);
  1052           opcode = pc[1];
  1053           switch(opcode) {
  1054               case Bytecodes::_aload:
  1055                   VERIFY_OOP(LOCALS_OBJECT(reg));
  1056                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
  1057                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1059               case Bytecodes::_iload:
  1060               case Bytecodes::_fload:
  1061                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
  1062                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1064               case Bytecodes::_lload:
  1065                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1066                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1068               case Bytecodes::_dload:
  1069                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1070                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1072               case Bytecodes::_astore:
  1073                   astore(topOfStack, -1, locals, reg);
  1074                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1076               case Bytecodes::_istore:
  1077               case Bytecodes::_fstore:
  1078                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
  1079                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1081               case Bytecodes::_lstore:
  1082                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
  1083                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1085               case Bytecodes::_dstore:
  1086                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
  1087                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1089               case Bytecodes::_iinc: {
  1090                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
  1091                   // Be nice to see what this generates.... QQQ
  1092                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
  1093                   UPDATE_PC_AND_CONTINUE(6);
  1095               case Bytecodes::_ret:
  1096                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
  1097                   UPDATE_PC_AND_CONTINUE(0);
  1098               default:
  1099                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
  1104 #undef  OPC_STORE_n
  1105 #define OPC_STORE_n(num)                                                \
  1106       CASE(_astore_##num):                                              \
  1107           astore(topOfStack, -1, locals, num);                          \
  1108           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1109       CASE(_istore_##num):                                              \
  1110       CASE(_fstore_##num):                                              \
  1111           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
  1112           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1114           OPC_STORE_n(0);
  1115           OPC_STORE_n(1);
  1116           OPC_STORE_n(2);
  1117           OPC_STORE_n(3);
  1119 #undef  OPC_DSTORE_n
  1120 #define OPC_DSTORE_n(num)                                               \
  1121       CASE(_dstore_##num):                                              \
  1122           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
  1123           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1124       CASE(_lstore_##num):                                              \
  1125           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
  1126           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1128           OPC_DSTORE_n(0);
  1129           OPC_DSTORE_n(1);
  1130           OPC_DSTORE_n(2);
  1131           OPC_DSTORE_n(3);
  1133           /* stack pop, dup, and insert opcodes */
  1136       CASE(_pop):                /* Discard the top item on the stack */
  1137           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1140       CASE(_pop2):               /* Discard the top 2 items on the stack */
  1141           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1144       CASE(_dup):               /* Duplicate the top item on the stack */
  1145           dup(topOfStack);
  1146           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1148       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
  1149           dup2(topOfStack);
  1150           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1152       CASE(_dup_x1):    /* insert top word two down */
  1153           dup_x1(topOfStack);
  1154           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1156       CASE(_dup_x2):    /* insert top word three down  */
  1157           dup_x2(topOfStack);
  1158           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1160       CASE(_dup2_x1):   /* insert top 2 slots three down */
  1161           dup2_x1(topOfStack);
  1162           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1164       CASE(_dup2_x2):   /* insert top 2 slots four down */
  1165           dup2_x2(topOfStack);
  1166           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1168       CASE(_swap): {        /* swap top two elements on the stack */
  1169           swap(topOfStack);
  1170           UPDATE_PC_AND_CONTINUE(1);
  1173           /* Perform various binary integer operations */
  1175 #undef  OPC_INT_BINARY
  1176 #define OPC_INT_BINARY(opcname, opname, test)                           \
  1177       CASE(_i##opcname):                                                \
  1178           if (test && (STACK_INT(-1) == 0)) {                           \
  1179               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1180                             "/ by zero");                               \
  1181           }                                                             \
  1182           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
  1183                                       STACK_INT(-1)),                   \
  1184                                       -2);                              \
  1185           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1186       CASE(_l##opcname):                                                \
  1187       {                                                                 \
  1188           if (test) {                                                   \
  1189             jlong l1 = STACK_LONG(-1);                                  \
  1190             if (VMlongEqz(l1)) {                                        \
  1191               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1192                             "/ by long zero");                          \
  1193             }                                                           \
  1194           }                                                             \
  1195           /* First long at (-1,-2) next long at (-3,-4) */              \
  1196           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
  1197                                         STACK_LONG(-1)),                \
  1198                                         -3);                            \
  1199           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1202       OPC_INT_BINARY(add, Add, 0);
  1203       OPC_INT_BINARY(sub, Sub, 0);
  1204       OPC_INT_BINARY(mul, Mul, 0);
  1205       OPC_INT_BINARY(and, And, 0);
  1206       OPC_INT_BINARY(or,  Or,  0);
  1207       OPC_INT_BINARY(xor, Xor, 0);
  1208       OPC_INT_BINARY(div, Div, 1);
  1209       OPC_INT_BINARY(rem, Rem, 1);
  1212       /* Perform various binary floating number operations */
  1213       /* On some machine/platforms/compilers div zero check can be implicit */
  1215 #undef  OPC_FLOAT_BINARY
  1216 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
  1217       CASE(_d##opcname): {                                                 \
  1218           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
  1219                                             STACK_DOUBLE(-1)),             \
  1220                                             -3);                           \
  1221           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
  1222       }                                                                    \
  1223       CASE(_f##opcname):                                                   \
  1224           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
  1225                                           STACK_FLOAT(-1)),                \
  1226                                           -2);                             \
  1227           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1230      OPC_FLOAT_BINARY(add, Add);
  1231      OPC_FLOAT_BINARY(sub, Sub);
  1232      OPC_FLOAT_BINARY(mul, Mul);
  1233      OPC_FLOAT_BINARY(div, Div);
  1234      OPC_FLOAT_BINARY(rem, Rem);
  1236       /* Shift operations
  1237        * Shift left int and long: ishl, lshl
  1238        * Logical shift right int and long w/zero extension: iushr, lushr
  1239        * Arithmetic shift right int and long w/sign extension: ishr, lshr
  1240        */
  1242 #undef  OPC_SHIFT_BINARY
  1243 #define OPC_SHIFT_BINARY(opcname, opname)                               \
  1244       CASE(_i##opcname):                                                \
  1245          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
  1246                                      STACK_INT(-1)),                    \
  1247                                      -2);                               \
  1248          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1249       CASE(_l##opcname):                                                \
  1250       {                                                                 \
  1251          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
  1252                                        STACK_INT(-1)),                  \
  1253                                        -2);                             \
  1254          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1257       OPC_SHIFT_BINARY(shl, Shl);
  1258       OPC_SHIFT_BINARY(shr, Shr);
  1259       OPC_SHIFT_BINARY(ushr, Ushr);
  1261      /* Increment local variable by constant */
  1262       CASE(_iinc):
  1264           // locals[pc[1]].j.i += (jbyte)(pc[2]);
  1265           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
  1266           UPDATE_PC_AND_CONTINUE(3);
  1269      /* negate the value on the top of the stack */
  1271       CASE(_ineg):
  1272          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
  1273          UPDATE_PC_AND_CONTINUE(1);
  1275       CASE(_fneg):
  1276          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
  1277          UPDATE_PC_AND_CONTINUE(1);
  1279       CASE(_lneg):
  1281          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
  1282          UPDATE_PC_AND_CONTINUE(1);
  1285       CASE(_dneg):
  1287          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
  1288          UPDATE_PC_AND_CONTINUE(1);
  1291       /* Conversion operations */
  1293       CASE(_i2f):       /* convert top of stack int to float */
  1294          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
  1295          UPDATE_PC_AND_CONTINUE(1);
  1297       CASE(_i2l):       /* convert top of stack int to long */
  1299           // this is ugly QQQ
  1300           jlong r = VMint2Long(STACK_INT(-1));
  1301           MORE_STACK(-1); // Pop
  1302           SET_STACK_LONG(r, 1);
  1304           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1307       CASE(_i2d):       /* convert top of stack int to double */
  1309           // this is ugly QQQ (why cast to jlong?? )
  1310           jdouble r = (jlong)STACK_INT(-1);
  1311           MORE_STACK(-1); // Pop
  1312           SET_STACK_DOUBLE(r, 1);
  1314           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1317       CASE(_l2i):       /* convert top of stack long to int */
  1319           jint r = VMlong2Int(STACK_LONG(-1));
  1320           MORE_STACK(-2); // Pop
  1321           SET_STACK_INT(r, 0);
  1322           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1325       CASE(_l2f):   /* convert top of stack long to float */
  1327           jlong r = STACK_LONG(-1);
  1328           MORE_STACK(-2); // Pop
  1329           SET_STACK_FLOAT(VMlong2Float(r), 0);
  1330           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1333       CASE(_l2d):       /* convert top of stack long to double */
  1335           jlong r = STACK_LONG(-1);
  1336           MORE_STACK(-2); // Pop
  1337           SET_STACK_DOUBLE(VMlong2Double(r), 1);
  1338           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1341       CASE(_f2i):  /* Convert top of stack float to int */
  1342           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
  1343           UPDATE_PC_AND_CONTINUE(1);
  1345       CASE(_f2l):  /* convert top of stack float to long */
  1347           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
  1348           MORE_STACK(-1); // POP
  1349           SET_STACK_LONG(r, 1);
  1350           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1353       CASE(_f2d):  /* convert top of stack float to double */
  1355           jfloat f;
  1356           jdouble r;
  1357           f = STACK_FLOAT(-1);
  1358           r = (jdouble) f;
  1359           MORE_STACK(-1); // POP
  1360           SET_STACK_DOUBLE(r, 1);
  1361           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1364       CASE(_d2i): /* convert top of stack double to int */
  1366           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
  1367           MORE_STACK(-2);
  1368           SET_STACK_INT(r1, 0);
  1369           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1372       CASE(_d2f): /* convert top of stack double to float */
  1374           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
  1375           MORE_STACK(-2);
  1376           SET_STACK_FLOAT(r1, 0);
  1377           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1380       CASE(_d2l): /* convert top of stack double to long */
  1382           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
  1383           MORE_STACK(-2);
  1384           SET_STACK_LONG(r1, 1);
  1385           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1388       CASE(_i2b):
  1389           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
  1390           UPDATE_PC_AND_CONTINUE(1);
  1392       CASE(_i2c):
  1393           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
  1394           UPDATE_PC_AND_CONTINUE(1);
  1396       CASE(_i2s):
  1397           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
  1398           UPDATE_PC_AND_CONTINUE(1);
  1400       /* comparison operators */
  1403 #define COMPARISON_OP(name, comparison)                                      \
  1404       CASE(_if_icmp##name): {                                                \
  1405           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
  1406                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1407           address branch_pc = pc;                                            \
  1408           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1409           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1410           CONTINUE;                                                          \
  1411       }                                                                      \
  1412       CASE(_if##name): {                                                     \
  1413           int skip = (STACK_INT(-1) comparison 0)                            \
  1414                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1415           address branch_pc = pc;                                            \
  1416           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1417           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1418           CONTINUE;                                                          \
  1421 #define COMPARISON_OP2(name, comparison)                                     \
  1422       COMPARISON_OP(name, comparison)                                        \
  1423       CASE(_if_acmp##name): {                                                \
  1424           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
  1425                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
  1426           address branch_pc = pc;                                            \
  1427           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1428           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1429           CONTINUE;                                                          \
  1432 #define NULL_COMPARISON_NOT_OP(name)                                         \
  1433       CASE(_if##name): {                                                     \
  1434           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
  1435                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1436           address branch_pc = pc;                                            \
  1437           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1438           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1439           CONTINUE;                                                          \
  1442 #define NULL_COMPARISON_OP(name)                                             \
  1443       CASE(_if##name): {                                                     \
  1444           int skip = ((STACK_OBJECT(-1) == NULL))                            \
  1445                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1446           address branch_pc = pc;                                            \
  1447           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1448           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1449           CONTINUE;                                                          \
  1451       COMPARISON_OP(lt, <);
  1452       COMPARISON_OP(gt, >);
  1453       COMPARISON_OP(le, <=);
  1454       COMPARISON_OP(ge, >=);
  1455       COMPARISON_OP2(eq, ==);  /* include ref comparison */
  1456       COMPARISON_OP2(ne, !=);  /* include ref comparison */
  1457       NULL_COMPARISON_OP(null);
  1458       NULL_COMPARISON_NOT_OP(nonnull);
  1460       /* Goto pc at specified offset in switch table. */
  1462       CASE(_tableswitch): {
  1463           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1464           int32_t  key  = STACK_INT(-1);
  1465           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
  1466           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
  1467           int32_t  skip;
  1468           key -= low;
  1469           skip = ((uint32_t) key > (uint32_t)(high - low))
  1470                       ? Bytes::get_Java_u4((address)&lpc[0])
  1471                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
  1472           // Does this really need a full backedge check (osr?)
  1473           address branch_pc = pc;
  1474           UPDATE_PC_AND_TOS(skip, -1);
  1475           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1476           CONTINUE;
  1479       /* Goto pc whose table entry matches specified key */
  1481       CASE(_lookupswitch): {
  1482           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1483           int32_t  key  = STACK_INT(-1);
  1484           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
  1485           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
  1486           while (--npairs >= 0) {
  1487               lpc += 2;
  1488               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
  1489                   skip = Bytes::get_Java_u4((address)&lpc[1]);
  1490                   break;
  1493           address branch_pc = pc;
  1494           UPDATE_PC_AND_TOS(skip, -1);
  1495           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1496           CONTINUE;
  1499       CASE(_fcmpl):
  1500       CASE(_fcmpg):
  1502           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
  1503                                         STACK_FLOAT(-1),
  1504                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
  1505                         -2);
  1506           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1509       CASE(_dcmpl):
  1510       CASE(_dcmpg):
  1512           int r = VMdoubleCompare(STACK_DOUBLE(-3),
  1513                                   STACK_DOUBLE(-1),
  1514                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
  1515           MORE_STACK(-4); // Pop
  1516           SET_STACK_INT(r, 0);
  1517           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1520       CASE(_lcmp):
  1522           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
  1523           MORE_STACK(-4);
  1524           SET_STACK_INT(r, 0);
  1525           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1529       /* Return from a method */
  1531       CASE(_areturn):
  1532       CASE(_ireturn):
  1533       CASE(_freturn):
  1535           // Allow a safepoint before returning to frame manager.
  1536           SAFEPOINT;
  1538           goto handle_return;
  1541       CASE(_lreturn):
  1542       CASE(_dreturn):
  1544           // Allow a safepoint before returning to frame manager.
  1545           SAFEPOINT;
  1546           goto handle_return;
  1549       CASE(_return_register_finalizer): {
  1551           oop rcvr = LOCALS_OBJECT(0);
  1552           VERIFY_OOP(rcvr);
  1553           if (rcvr->klass()->has_finalizer()) {
  1554             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
  1556           goto handle_return;
  1558       CASE(_return): {
  1560           // Allow a safepoint before returning to frame manager.
  1561           SAFEPOINT;
  1562           goto handle_return;
  1565       /* Array access byte-codes */
  1567       /* Every array access byte-code starts out like this */
  1568 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
  1569 #define ARRAY_INTRO(arrayOff)                                                  \
  1570       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
  1571       jint     index  = STACK_INT(arrayOff + 1);                               \
  1572       char message[jintAsStringSize];                                          \
  1573       CHECK_NULL(arrObj);                                                      \
  1574       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
  1575           sprintf(message, "%d", index);                                       \
  1576           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
  1577                         message);                                              \
  1580       /* 32-bit loads. These handle conversion from < 32-bit types */
  1581 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
  1582       {                                                                               \
  1583           ARRAY_INTRO(-2);                                                            \
  1584           (void)extra;                                                                \
  1585           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
  1586                            -2);                                                       \
  1587           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
  1590       /* 64-bit loads */
  1591 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
  1592       {                                                                                    \
  1593           ARRAY_INTRO(-2);                                                                 \
  1594           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
  1595           (void)extra;                                                                     \
  1596           UPDATE_PC_AND_CONTINUE(1);                                                       \
  1599       CASE(_iaload):
  1600           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
  1601       CASE(_faload):
  1602           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1603       CASE(_aaload):
  1604           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
  1605       CASE(_baload):
  1606           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1607       CASE(_caload):
  1608           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
  1609       CASE(_saload):
  1610           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1611       CASE(_laload):
  1612           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
  1613       CASE(_daload):
  1614           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1616       /* 32-bit stores. These handle conversion to < 32-bit types */
  1617 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
  1618       {                                                                              \
  1619           ARRAY_INTRO(-3);                                                           \
  1620           (void)extra;                                                               \
  1621           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1622           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
  1625       /* 64-bit stores */
  1626 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
  1627       {                                                                              \
  1628           ARRAY_INTRO(-4);                                                           \
  1629           (void)extra;                                                               \
  1630           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1631           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
  1634       CASE(_iastore):
  1635           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
  1636       CASE(_fastore):
  1637           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1638       /*
  1639        * This one looks different because of the assignability check
  1640        */
  1641       CASE(_aastore): {
  1642           oop rhsObject = STACK_OBJECT(-1);
  1643           VERIFY_OOP(rhsObject);
  1644           ARRAY_INTRO( -3);
  1645           // arrObj, index are set
  1646           if (rhsObject != NULL) {
  1647             /* Check assignability of rhsObject into arrObj */
  1648             Klass* rhsKlassOop = rhsObject->klass(); // EBX (subclass)
  1649             Klass* elemKlassOop = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
  1650             //
  1651             // Check for compatibilty. This check must not GC!!
  1652             // Seems way more expensive now that we must dispatch
  1653             //
  1654             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->is_subtype_of(elemKlassOop)) { // ebx->is...
  1655               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
  1658           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
  1659           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
  1660           *elem_loc = rhsObject;
  1661           // Mark the card
  1662           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
  1663           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
  1665       CASE(_bastore):
  1666           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1667       CASE(_castore):
  1668           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
  1669       CASE(_sastore):
  1670           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1671       CASE(_lastore):
  1672           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
  1673       CASE(_dastore):
  1674           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1676       CASE(_arraylength):
  1678           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
  1679           CHECK_NULL(ary);
  1680           SET_STACK_INT(ary->length(), -1);
  1681           UPDATE_PC_AND_CONTINUE(1);
  1684       /* monitorenter and monitorexit for locking/unlocking an object */
  1686       CASE(_monitorenter): {
  1687         oop lockee = STACK_OBJECT(-1);
  1688         // derefing's lockee ought to provoke implicit null check
  1689         CHECK_NULL(lockee);
  1690         // find a free monitor or one already allocated for this object
  1691         // if we find a matching object then we need a new monitor
  1692         // since this is recursive enter
  1693         BasicObjectLock* limit = istate->monitor_base();
  1694         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1695         BasicObjectLock* entry = NULL;
  1696         while (most_recent != limit ) {
  1697           if (most_recent->obj() == NULL) entry = most_recent;
  1698           else if (most_recent->obj() == lockee) break;
  1699           most_recent++;
  1701         if (entry != NULL) {
  1702           entry->set_obj(lockee);
  1703           markOop displaced = lockee->mark()->set_unlocked();
  1704           entry->lock()->set_displaced_header(displaced);
  1705           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
  1706             // Is it simple recursive case?
  1707             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
  1708               entry->lock()->set_displaced_header(NULL);
  1709             } else {
  1710               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1713           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1714         } else {
  1715           istate->set_msg(more_monitors);
  1716           UPDATE_PC_AND_RETURN(0); // Re-execute
  1720       CASE(_monitorexit): {
  1721         oop lockee = STACK_OBJECT(-1);
  1722         CHECK_NULL(lockee);
  1723         // derefing's lockee ought to provoke implicit null check
  1724         // find our monitor slot
  1725         BasicObjectLock* limit = istate->monitor_base();
  1726         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1727         while (most_recent != limit ) {
  1728           if ((most_recent)->obj() == lockee) {
  1729             BasicLock* lock = most_recent->lock();
  1730             markOop header = lock->displaced_header();
  1731             most_recent->set_obj(NULL);
  1732             // If it isn't recursive we either must swap old header or call the runtime
  1733             if (header != NULL) {
  1734               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  1735                 // restore object for the slow case
  1736                 most_recent->set_obj(lockee);
  1737                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
  1740             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1742           most_recent++;
  1744         // Need to throw illegal monitor state exception
  1745         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
  1746         ShouldNotReachHere();
  1749       /* All of the non-quick opcodes. */
  1751       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
  1752        *  constant pool index in the instruction.
  1753        */
  1754       CASE(_getfield):
  1755       CASE(_getstatic):
  1757           u2 index;
  1758           ConstantPoolCacheEntry* cache;
  1759           index = Bytes::get_native_u2(pc+1);
  1761           // QQQ Need to make this as inlined as possible. Probably need to
  1762           // split all the bytecode cases out so c++ compiler has a chance
  1763           // for constant prop to fold everything possible away.
  1765           cache = cp->entry_at(index);
  1766           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1767             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1768                     handle_exception);
  1769             cache = cp->entry_at(index);
  1772 #ifdef VM_JVMTI
  1773           if (_jvmti_interp_events) {
  1774             int *count_addr;
  1775             oop obj;
  1776             // Check to see if a field modification watch has been set
  1777             // before we take the time to call into the VM.
  1778             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
  1779             if ( *count_addr > 0 ) {
  1780               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1781                 obj = (oop)NULL;
  1782               } else {
  1783                 obj = (oop) STACK_OBJECT(-1);
  1784                 VERIFY_OOP(obj);
  1786               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
  1787                                           obj,
  1788                                           cache),
  1789                                           handle_exception);
  1792 #endif /* VM_JVMTI */
  1794           oop obj;
  1795           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1796             Klass* k = cache->f1_as_klass();
  1797             obj = k->java_mirror();
  1798             MORE_STACK(1);  // Assume single slot push
  1799           } else {
  1800             obj = (oop) STACK_OBJECT(-1);
  1801             CHECK_NULL(obj);
  1804           //
  1805           // Now store the result on the stack
  1806           //
  1807           TosState tos_type = cache->flag_state();
  1808           int field_offset = cache->f2_as_index();
  1809           if (cache->is_volatile()) {
  1810             if (tos_type == atos) {
  1811               VERIFY_OOP(obj->obj_field_acquire(field_offset));
  1812               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
  1813             } else if (tos_type == itos) {
  1814               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
  1815             } else if (tos_type == ltos) {
  1816               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
  1817               MORE_STACK(1);
  1818             } else if (tos_type == btos) {
  1819               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
  1820             } else if (tos_type == ctos) {
  1821               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
  1822             } else if (tos_type == stos) {
  1823               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
  1824             } else if (tos_type == ftos) {
  1825               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
  1826             } else {
  1827               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
  1828               MORE_STACK(1);
  1830           } else {
  1831             if (tos_type == atos) {
  1832               VERIFY_OOP(obj->obj_field(field_offset));
  1833               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
  1834             } else if (tos_type == itos) {
  1835               SET_STACK_INT(obj->int_field(field_offset), -1);
  1836             } else if (tos_type == ltos) {
  1837               SET_STACK_LONG(obj->long_field(field_offset), 0);
  1838               MORE_STACK(1);
  1839             } else if (tos_type == btos) {
  1840               SET_STACK_INT(obj->byte_field(field_offset), -1);
  1841             } else if (tos_type == ctos) {
  1842               SET_STACK_INT(obj->char_field(field_offset), -1);
  1843             } else if (tos_type == stos) {
  1844               SET_STACK_INT(obj->short_field(field_offset), -1);
  1845             } else if (tos_type == ftos) {
  1846               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
  1847             } else {
  1848               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
  1849               MORE_STACK(1);
  1853           UPDATE_PC_AND_CONTINUE(3);
  1856       CASE(_putfield):
  1857       CASE(_putstatic):
  1859           u2 index = Bytes::get_native_u2(pc+1);
  1860           ConstantPoolCacheEntry* cache = cp->entry_at(index);
  1861           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1862             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1863                     handle_exception);
  1864             cache = cp->entry_at(index);
  1867 #ifdef VM_JVMTI
  1868           if (_jvmti_interp_events) {
  1869             int *count_addr;
  1870             oop obj;
  1871             // Check to see if a field modification watch has been set
  1872             // before we take the time to call into the VM.
  1873             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
  1874             if ( *count_addr > 0 ) {
  1875               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1876                 obj = (oop)NULL;
  1878               else {
  1879                 if (cache->is_long() || cache->is_double()) {
  1880                   obj = (oop) STACK_OBJECT(-3);
  1881                 } else {
  1882                   obj = (oop) STACK_OBJECT(-2);
  1884                 VERIFY_OOP(obj);
  1887               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
  1888                                           obj,
  1889                                           cache,
  1890                                           (jvalue *)STACK_SLOT(-1)),
  1891                                           handle_exception);
  1894 #endif /* VM_JVMTI */
  1896           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  1897           // out so c++ compiler has a chance for constant prop to fold everything possible away.
  1899           oop obj;
  1900           int count;
  1901           TosState tos_type = cache->flag_state();
  1903           count = -1;
  1904           if (tos_type == ltos || tos_type == dtos) {
  1905             --count;
  1907           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1908             Klass* k = cache->f1_as_klass();
  1909             obj = k->java_mirror();
  1910           } else {
  1911             --count;
  1912             obj = (oop) STACK_OBJECT(count);
  1913             CHECK_NULL(obj);
  1916           //
  1917           // Now store the result
  1918           //
  1919           int field_offset = cache->f2_as_index();
  1920           if (cache->is_volatile()) {
  1921             if (tos_type == itos) {
  1922               obj->release_int_field_put(field_offset, STACK_INT(-1));
  1923             } else if (tos_type == atos) {
  1924               VERIFY_OOP(STACK_OBJECT(-1));
  1925               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
  1926               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1927             } else if (tos_type == btos) {
  1928               obj->release_byte_field_put(field_offset, STACK_INT(-1));
  1929             } else if (tos_type == ltos) {
  1930               obj->release_long_field_put(field_offset, STACK_LONG(-1));
  1931             } else if (tos_type == ctos) {
  1932               obj->release_char_field_put(field_offset, STACK_INT(-1));
  1933             } else if (tos_type == stos) {
  1934               obj->release_short_field_put(field_offset, STACK_INT(-1));
  1935             } else if (tos_type == ftos) {
  1936               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
  1937             } else {
  1938               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
  1940             OrderAccess::storeload();
  1941           } else {
  1942             if (tos_type == itos) {
  1943               obj->int_field_put(field_offset, STACK_INT(-1));
  1944             } else if (tos_type == atos) {
  1945               VERIFY_OOP(STACK_OBJECT(-1));
  1946               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
  1947               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1948             } else if (tos_type == btos) {
  1949               obj->byte_field_put(field_offset, STACK_INT(-1));
  1950             } else if (tos_type == ltos) {
  1951               obj->long_field_put(field_offset, STACK_LONG(-1));
  1952             } else if (tos_type == ctos) {
  1953               obj->char_field_put(field_offset, STACK_INT(-1));
  1954             } else if (tos_type == stos) {
  1955               obj->short_field_put(field_offset, STACK_INT(-1));
  1956             } else if (tos_type == ftos) {
  1957               obj->float_field_put(field_offset, STACK_FLOAT(-1));
  1958             } else {
  1959               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
  1963           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
  1966       CASE(_new): {
  1967         u2 index = Bytes::get_Java_u2(pc+1);
  1968         ConstantPool* constants = istate->method()->constants();
  1969         if (!constants->tag_at(index).is_unresolved_klass()) {
  1970           // Make sure klass is initialized and doesn't have a finalizer
  1971           Klass* entry = constants->slot_at(index).get_klass();
  1972           assert(entry->is_klass(), "Should be resolved klass");
  1973           Klass* k_entry = (Klass*) entry;
  1974           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
  1975           InstanceKlass* ik = (InstanceKlass*) k_entry;
  1976           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
  1977             size_t obj_size = ik->size_helper();
  1978             oop result = NULL;
  1979             // If the TLAB isn't pre-zeroed then we'll have to do it
  1980             bool need_zero = !ZeroTLAB;
  1981             if (UseTLAB) {
  1982               result = (oop) THREAD->tlab().allocate(obj_size);
  1984             if (result == NULL) {
  1985               need_zero = true;
  1986               // Try allocate in shared eden
  1987         retry:
  1988               HeapWord* compare_to = *Universe::heap()->top_addr();
  1989               HeapWord* new_top = compare_to + obj_size;
  1990               if (new_top <= *Universe::heap()->end_addr()) {
  1991                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
  1992                   goto retry;
  1994                 result = (oop) compare_to;
  1997             if (result != NULL) {
  1998               // Initialize object (if nonzero size and need) and then the header
  1999               if (need_zero ) {
  2000                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
  2001                 obj_size -= sizeof(oopDesc) / oopSize;
  2002                 if (obj_size > 0 ) {
  2003                   memset(to_zero, 0, obj_size * HeapWordSize);
  2006               if (UseBiasedLocking) {
  2007                 result->set_mark(ik->prototype_header());
  2008               } else {
  2009                 result->set_mark(markOopDesc::prototype());
  2011               result->set_klass_gap(0);
  2012               result->set_klass(k_entry);
  2013               SET_STACK_OBJECT(result, 0);
  2014               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  2018         // Slow case allocation
  2019         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
  2020                 handle_exception);
  2021         SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2022         THREAD->set_vm_result(NULL);
  2023         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  2025       CASE(_anewarray): {
  2026         u2 index = Bytes::get_Java_u2(pc+1);
  2027         jint size = STACK_INT(-1);
  2028         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
  2029                 handle_exception);
  2030         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2031         THREAD->set_vm_result(NULL);
  2032         UPDATE_PC_AND_CONTINUE(3);
  2034       CASE(_multianewarray): {
  2035         jint dims = *(pc+3);
  2036         jint size = STACK_INT(-1);
  2037         // stack grows down, dimensions are up!
  2038         jint *dimarray =
  2039                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
  2040                                       Interpreter::stackElementWords-1];
  2041         //adjust pointer to start of stack element
  2042         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
  2043                 handle_exception);
  2044         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
  2045         THREAD->set_vm_result(NULL);
  2046         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
  2048       CASE(_checkcast):
  2049           if (STACK_OBJECT(-1) != NULL) {
  2050             VERIFY_OOP(STACK_OBJECT(-1));
  2051             u2 index = Bytes::get_Java_u2(pc+1);
  2052             if (ProfileInterpreter) {
  2053               // needs Profile_checkcast QQQ
  2054               ShouldNotReachHere();
  2056             // Constant pool may have actual klass or unresolved klass. If it is
  2057             // unresolved we must resolve it
  2058             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2059               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2061             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
  2062             Klass* objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
  2063             //
  2064             // Check for compatibilty. This check must not GC!!
  2065             // Seems way more expensive now that we must dispatch
  2066             //
  2067             if (objKlassOop != klassOf &&
  2068                 !objKlassOop->is_subtype_of(klassOf)) {
  2069               ResourceMark rm(THREAD);
  2070               const char* objName = objKlassOop->external_name();
  2071               const char* klassName = klassOf->external_name();
  2072               char* message = SharedRuntime::generate_class_cast_message(
  2073                 objName, klassName);
  2074               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
  2076           } else {
  2077             if (UncommonNullCast) {
  2078 //              istate->method()->set_null_cast_seen();
  2079 // [RGV] Not sure what to do here!
  2083           UPDATE_PC_AND_CONTINUE(3);
  2085       CASE(_instanceof):
  2086           if (STACK_OBJECT(-1) == NULL) {
  2087             SET_STACK_INT(0, -1);
  2088           } else {
  2089             VERIFY_OOP(STACK_OBJECT(-1));
  2090             u2 index = Bytes::get_Java_u2(pc+1);
  2091             // Constant pool may have actual klass or unresolved klass. If it is
  2092             // unresolved we must resolve it
  2093             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2094               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2096             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
  2097             Klass* objKlassOop = STACK_OBJECT(-1)->klass();
  2098             //
  2099             // Check for compatibilty. This check must not GC!!
  2100             // Seems way more expensive now that we must dispatch
  2101             //
  2102             if ( objKlassOop == klassOf || objKlassOop->is_subtype_of(klassOf)) {
  2103               SET_STACK_INT(1, -1);
  2104             } else {
  2105               SET_STACK_INT(0, -1);
  2108           UPDATE_PC_AND_CONTINUE(3);
  2110       CASE(_ldc_w):
  2111       CASE(_ldc):
  2113           u2 index;
  2114           bool wide = false;
  2115           int incr = 2; // frequent case
  2116           if (opcode == Bytecodes::_ldc) {
  2117             index = pc[1];
  2118           } else {
  2119             index = Bytes::get_Java_u2(pc+1);
  2120             incr = 3;
  2121             wide = true;
  2124           ConstantPool* constants = METHOD->constants();
  2125           switch (constants->tag_at(index).value()) {
  2126           case JVM_CONSTANT_Integer:
  2127             SET_STACK_INT(constants->int_at(index), 0);
  2128             break;
  2130           case JVM_CONSTANT_Float:
  2131             SET_STACK_FLOAT(constants->float_at(index), 0);
  2132             break;
  2134           case JVM_CONSTANT_String:
  2136               oop result = constants->resolved_references()->obj_at(index);
  2137               if (result == NULL) {
  2138                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
  2139                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2140                 THREAD->set_vm_result(NULL);
  2141               } else {
  2142                 VERIFY_OOP(result);
  2143                 SET_STACK_OBJECT(result, 0);
  2145             break;
  2148           case JVM_CONSTANT_Class:
  2149             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
  2150             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
  2151             break;
  2153           case JVM_CONSTANT_UnresolvedClass:
  2154           case JVM_CONSTANT_UnresolvedClassInError:
  2155             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
  2156             SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2157             THREAD->set_vm_result(NULL);
  2158             break;
  2160           default:  ShouldNotReachHere();
  2162           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2165       CASE(_ldc2_w):
  2167           u2 index = Bytes::get_Java_u2(pc+1);
  2169           ConstantPool* constants = METHOD->constants();
  2170           switch (constants->tag_at(index).value()) {
  2172           case JVM_CONSTANT_Long:
  2173              SET_STACK_LONG(constants->long_at(index), 1);
  2174             break;
  2176           case JVM_CONSTANT_Double:
  2177              SET_STACK_DOUBLE(constants->double_at(index), 1);
  2178             break;
  2179           default:  ShouldNotReachHere();
  2181           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
  2184       CASE(_fast_aldc_w):
  2185       CASE(_fast_aldc): {
  2186         u2 index;
  2187         int incr;
  2188         if (opcode == Bytecodes::_fast_aldc) {
  2189           index = pc[1];
  2190           incr = 2;
  2191         } else {
  2192           index = Bytes::get_native_u2(pc+1);
  2193           incr = 3;
  2196         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2197         // This kind of CP cache entry does not need to match the flags byte, because
  2198         // there is a 1-1 relation between bytecode type and CP entry type.
  2199         ConstantPool* constants = METHOD->constants();
  2200         oop result = constants->resolved_references()->obj_at(index);
  2201         if (result == NULL) {
  2202           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
  2203                   handle_exception);
  2204           result = THREAD->vm_result();
  2207         VERIFY_OOP(result);
  2208         SET_STACK_OBJECT(result, 0);
  2209         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2212       CASE(_invokedynamic): {
  2214         if (!EnableInvokeDynamic) {
  2215           // We should not encounter this bytecode if !EnableInvokeDynamic.
  2216           // The verifier will stop it.  However, if we get past the verifier,
  2217           // this will stop the thread in a reasonable way, without crashing the JVM.
  2218           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
  2219                   handle_exception);
  2220           ShouldNotReachHere();
  2223         u4 index = Bytes::get_native_u4(pc+1);
  2224         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
  2226         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
  2227         // This kind of CP cache entry does not need to match the flags byte, because
  2228         // there is a 1-1 relation between bytecode type and CP entry type.
  2229         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
  2230           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
  2231                   handle_exception);
  2232           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
  2235         Method* method = cache->f1_as_method();
  2236         if (VerifyOops) method->verify();
  2238         if (cache->has_appendix()) {
  2239           ConstantPool* constants = METHOD->constants();
  2240           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
  2241           MORE_STACK(1);
  2244         istate->set_msg(call_method);
  2245         istate->set_callee(method);
  2246         istate->set_callee_entry_point(method->from_interpreted_entry());
  2247         istate->set_bcp_advance(5);
  2249         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2252       CASE(_invokehandle): {
  2254         if (!EnableInvokeDynamic) {
  2255           ShouldNotReachHere();
  2258         u2 index = Bytes::get_native_u2(pc+1);
  2259         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2261         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
  2262           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
  2263                   handle_exception);
  2264           cache = cp->entry_at(index);
  2267         Method* method = cache->f1_as_method();
  2268         if (VerifyOops) method->verify();
  2270         if (cache->has_appendix()) {
  2271           ConstantPool* constants = METHOD->constants();
  2272           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
  2273           MORE_STACK(1);
  2276         istate->set_msg(call_method);
  2277         istate->set_callee(method);
  2278         istate->set_callee_entry_point(method->from_interpreted_entry());
  2279         istate->set_bcp_advance(3);
  2281         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2284       CASE(_invokeinterface): {
  2285         u2 index = Bytes::get_native_u2(pc+1);
  2287         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2288         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2290         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2291         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2292           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2293                   handle_exception);
  2294           cache = cp->entry_at(index);
  2297         istate->set_msg(call_method);
  2299         // Special case of invokeinterface called for virtual method of
  2300         // java.lang.Object.  See cpCacheOop.cpp for details.
  2301         // This code isn't produced by javac, but could be produced by
  2302         // another compliant java compiler.
  2303         if (cache->is_forced_virtual()) {
  2304           Method* callee;
  2305           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2306           if (cache->is_vfinal()) {
  2307             callee = cache->f2_as_vfinal_method();
  2308           } else {
  2309             // get receiver
  2310             int parms = cache->parameter_size();
  2311             // Same comments as invokevirtual apply here
  2312             VERIFY_OOP(STACK_OBJECT(-parms));
  2313             InstanceKlass* rcvrKlass = (InstanceKlass*)
  2314                                  STACK_OBJECT(-parms)->klass();
  2315             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
  2317           istate->set_callee(callee);
  2318           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2319 #ifdef VM_JVMTI
  2320           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2321             istate->set_callee_entry_point(callee->interpreter_entry());
  2323 #endif /* VM_JVMTI */
  2324           istate->set_bcp_advance(5);
  2325           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2328         // this could definitely be cleaned up QQQ
  2329         Method* callee;
  2330         Klass* iclass = cache->f1_as_klass();
  2331         // InstanceKlass* interface = (InstanceKlass*) iclass;
  2332         // get receiver
  2333         int parms = cache->parameter_size();
  2334         oop rcvr = STACK_OBJECT(-parms);
  2335         CHECK_NULL(rcvr);
  2336         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
  2337         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
  2338         int i;
  2339         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
  2340           if (ki->interface_klass() == iclass) break;
  2342         // If the interface isn't found, this class doesn't implement this
  2343         // interface.  The link resolver checks this but only for the first
  2344         // time this interface is called.
  2345         if (i == int2->itable_length()) {
  2346           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
  2348         int mindex = cache->f2_as_index();
  2349         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
  2350         callee = im[mindex].method();
  2351         if (callee == NULL) {
  2352           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
  2355         istate->set_callee(callee);
  2356         istate->set_callee_entry_point(callee->from_interpreted_entry());
  2357 #ifdef VM_JVMTI
  2358         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2359           istate->set_callee_entry_point(callee->interpreter_entry());
  2361 #endif /* VM_JVMTI */
  2362         istate->set_bcp_advance(5);
  2363         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2366       CASE(_invokevirtual):
  2367       CASE(_invokespecial):
  2368       CASE(_invokestatic): {
  2369         u2 index = Bytes::get_native_u2(pc+1);
  2371         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2372         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2373         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2375         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2376           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2377                   handle_exception);
  2378           cache = cp->entry_at(index);
  2381         istate->set_msg(call_method);
  2383           Method* callee;
  2384           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
  2385             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2386             if (cache->is_vfinal()) callee = cache->f2_as_vfinal_method();
  2387             else {
  2388               // get receiver
  2389               int parms = cache->parameter_size();
  2390               // this works but needs a resourcemark and seems to create a vtable on every call:
  2391               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
  2392               //
  2393               // this fails with an assert
  2394               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
  2395               // but this works
  2396               VERIFY_OOP(STACK_OBJECT(-parms));
  2397               InstanceKlass* rcvrKlass = (InstanceKlass*) STACK_OBJECT(-parms)->klass();
  2398               /*
  2399                 Executing this code in java.lang.String:
  2400                     public String(char value[]) {
  2401                           this.count = value.length;
  2402                           this.value = (char[])value.clone();
  2405                  a find on rcvr->klass() reports:
  2406                  {type array char}{type array class}
  2407                   - klass: {other class}
  2409                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
  2410                   because rcvr->klass()->oop_is_instance() == 0
  2411                   However it seems to have a vtable in the right location. Huh?
  2413               */
  2414               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
  2416           } else {
  2417             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
  2418               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2420             callee = cache->f1_as_method();
  2423           istate->set_callee(callee);
  2424           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2425 #ifdef VM_JVMTI
  2426           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2427             istate->set_callee_entry_point(callee->interpreter_entry());
  2429 #endif /* VM_JVMTI */
  2430           istate->set_bcp_advance(3);
  2431           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2435       /* Allocate memory for a new java object. */
  2437       CASE(_newarray): {
  2438         BasicType atype = (BasicType) *(pc+1);
  2439         jint size = STACK_INT(-1);
  2440         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
  2441                 handle_exception);
  2442         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2443         THREAD->set_vm_result(NULL);
  2445         UPDATE_PC_AND_CONTINUE(2);
  2448       /* Throw an exception. */
  2450       CASE(_athrow): {
  2451           oop except_oop = STACK_OBJECT(-1);
  2452           CHECK_NULL(except_oop);
  2453           // set pending_exception so we use common code
  2454           THREAD->set_pending_exception(except_oop, NULL, 0);
  2455           goto handle_exception;
  2458       /* goto and jsr. They are exactly the same except jsr pushes
  2459        * the address of the next instruction first.
  2460        */
  2462       CASE(_jsr): {
  2463           /* push bytecode index on stack */
  2464           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
  2465           MORE_STACK(1);
  2466           /* FALL THROUGH */
  2469       CASE(_goto):
  2471           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
  2472           address branch_pc = pc;
  2473           UPDATE_PC(offset);
  2474           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2475           CONTINUE;
  2478       CASE(_jsr_w): {
  2479           /* push return address on the stack */
  2480           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
  2481           MORE_STACK(1);
  2482           /* FALL THROUGH */
  2485       CASE(_goto_w):
  2487           int32_t offset = Bytes::get_Java_u4(pc + 1);
  2488           address branch_pc = pc;
  2489           UPDATE_PC(offset);
  2490           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2491           CONTINUE;
  2494       /* return from a jsr or jsr_w */
  2496       CASE(_ret): {
  2497           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
  2498           UPDATE_PC_AND_CONTINUE(0);
  2501       /* debugger breakpoint */
  2503       CASE(_breakpoint): {
  2504           Bytecodes::Code original_bytecode;
  2505           DECACHE_STATE();
  2506           SET_LAST_JAVA_FRAME();
  2507           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
  2508                               METHOD, pc);
  2509           RESET_LAST_JAVA_FRAME();
  2510           CACHE_STATE();
  2511           if (THREAD->has_pending_exception()) goto handle_exception;
  2512             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
  2513                                                     handle_exception);
  2515           opcode = (jubyte)original_bytecode;
  2516           goto opcode_switch;
  2519       DEFAULT:
  2520           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
  2521                         Bytecodes::name((Bytecodes::Code)opcode)));
  2522           goto finish;
  2524       } /* switch(opc) */
  2527 #ifdef USELABELS
  2528     check_for_exception:
  2529 #endif
  2531       if (!THREAD->has_pending_exception()) {
  2532         CONTINUE;
  2534       /* We will be gcsafe soon, so flush our state. */
  2535       DECACHE_PC();
  2536       goto handle_exception;
  2538   do_continue: ;
  2540   } /* while (1) interpreter loop */
  2543   // An exception exists in the thread state see whether this activation can handle it
  2544   handle_exception: {
  2546     HandleMarkCleaner __hmc(THREAD);
  2547     Handle except_oop(THREAD, THREAD->pending_exception());
  2548     // Prevent any subsequent HandleMarkCleaner in the VM
  2549     // from freeing the except_oop handle.
  2550     HandleMark __hm(THREAD);
  2552     THREAD->clear_pending_exception();
  2553     assert(except_oop(), "No exception to process");
  2554     intptr_t continuation_bci;
  2555     // expression stack is emptied
  2556     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
  2557     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
  2558             handle_exception);
  2560     except_oop = THREAD->vm_result();
  2561     THREAD->set_vm_result(NULL);
  2562     if (continuation_bci >= 0) {
  2563       // Place exception on top of stack
  2564       SET_STACK_OBJECT(except_oop(), 0);
  2565       MORE_STACK(1);
  2566       pc = METHOD->code_base() + continuation_bci;
  2567       if (TraceExceptions) {
  2568         ttyLocker ttyl;
  2569         ResourceMark rm;
  2570         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2571         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2572         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
  2573                       pc - (intptr_t)METHOD->code_base(),
  2574                       continuation_bci, THREAD);
  2576       // for AbortVMOnException flag
  2577       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2578       goto run;
  2580     if (TraceExceptions) {
  2581       ttyLocker ttyl;
  2582       ResourceMark rm;
  2583       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2584       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2585       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
  2586                     pc  - (intptr_t) METHOD->code_base(),
  2587                     THREAD);
  2589     // for AbortVMOnException flag
  2590     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2591     // No handler in this activation, unwind and try again
  2592     THREAD->set_pending_exception(except_oop(), NULL, 0);
  2593     goto handle_return;
  2594   }  /* handle_exception: */
  2598   // Return from an interpreter invocation with the result of the interpretation
  2599   // on the top of the Java Stack (or a pending exception)
  2601 handle_Pop_Frame:
  2603   // We don't really do anything special here except we must be aware
  2604   // that we can get here without ever locking the method (if sync).
  2605   // Also we skip the notification of the exit.
  2607   istate->set_msg(popping_frame);
  2608   // Clear pending so while the pop is in process
  2609   // we don't start another one if a call_vm is done.
  2610   THREAD->clr_pop_frame_pending();
  2611   // Let interpreter (only) see the we're in the process of popping a frame
  2612   THREAD->set_pop_frame_in_process();
  2614 handle_return:
  2616     DECACHE_STATE();
  2618     bool suppress_error = istate->msg() == popping_frame;
  2619     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
  2620     Handle original_exception(THREAD, THREAD->pending_exception());
  2621     Handle illegal_state_oop(THREAD, NULL);
  2623     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
  2624     // in any following VM entries from freeing our live handles, but illegal_state_oop
  2625     // isn't really allocated yet and so doesn't become live until later and
  2626     // in unpredicatable places. Instead we must protect the places where we enter the
  2627     // VM. It would be much simpler (and safer) if we could allocate a real handle with
  2628     // a NULL oop in it and then overwrite the oop later as needed. This isn't
  2629     // unfortunately isn't possible.
  2631     THREAD->clear_pending_exception();
  2633     //
  2634     // As far as we are concerned we have returned. If we have a pending exception
  2635     // that will be returned as this invocation's result. However if we get any
  2636     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
  2637     // will be our final result (i.e. monitor exception trumps a pending exception).
  2638     //
  2640     // If we never locked the method (or really passed the point where we would have),
  2641     // there is no need to unlock it (or look for other monitors), since that
  2642     // could not have happened.
  2644     if (THREAD->do_not_unlock()) {
  2646       // Never locked, reset the flag now because obviously any caller must
  2647       // have passed their point of locking for us to have gotten here.
  2649       THREAD->clr_do_not_unlock();
  2650     } else {
  2651       // At this point we consider that we have returned. We now check that the
  2652       // locks were properly block structured. If we find that they were not
  2653       // used properly we will return with an illegal monitor exception.
  2654       // The exception is checked by the caller not the callee since this
  2655       // checking is considered to be part of the invocation and therefore
  2656       // in the callers scope (JVM spec 8.13).
  2657       //
  2658       // Another weird thing to watch for is if the method was locked
  2659       // recursively and then not exited properly. This means we must
  2660       // examine all the entries in reverse time(and stack) order and
  2661       // unlock as we find them. If we find the method monitor before
  2662       // we are at the initial entry then we should throw an exception.
  2663       // It is not clear the template based interpreter does this
  2664       // correctly
  2666       BasicObjectLock* base = istate->monitor_base();
  2667       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
  2668       bool method_unlock_needed = METHOD->is_synchronized();
  2669       // We know the initial monitor was used for the method don't check that
  2670       // slot in the loop
  2671       if (method_unlock_needed) base--;
  2673       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
  2674       while (end < base) {
  2675         oop lockee = end->obj();
  2676         if (lockee != NULL) {
  2677           BasicLock* lock = end->lock();
  2678           markOop header = lock->displaced_header();
  2679           end->set_obj(NULL);
  2680           // If it isn't recursive we either must swap old header or call the runtime
  2681           if (header != NULL) {
  2682             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  2683               // restore object for the slow case
  2684               end->set_obj(lockee);
  2686                 // Prevent any HandleMarkCleaner from freeing our live handles
  2687                 HandleMark __hm(THREAD);
  2688                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
  2692           // One error is plenty
  2693           if (illegal_state_oop() == NULL && !suppress_error) {
  2695               // Prevent any HandleMarkCleaner from freeing our live handles
  2696               HandleMark __hm(THREAD);
  2697               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2699             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2700             illegal_state_oop = THREAD->pending_exception();
  2701             THREAD->clear_pending_exception();
  2704         end++;
  2706       // Unlock the method if needed
  2707       if (method_unlock_needed) {
  2708         if (base->obj() == NULL) {
  2709           // The method is already unlocked this is not good.
  2710           if (illegal_state_oop() == NULL && !suppress_error) {
  2712               // Prevent any HandleMarkCleaner from freeing our live handles
  2713               HandleMark __hm(THREAD);
  2714               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2716             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2717             illegal_state_oop = THREAD->pending_exception();
  2718             THREAD->clear_pending_exception();
  2720         } else {
  2721           //
  2722           // The initial monitor is always used for the method
  2723           // However if that slot is no longer the oop for the method it was unlocked
  2724           // and reused by something that wasn't unlocked!
  2725           //
  2726           // deopt can come in with rcvr dead because c2 knows
  2727           // its value is preserved in the monitor. So we can't use locals[0] at all
  2728           // and must use first monitor slot.
  2729           //
  2730           oop rcvr = base->obj();
  2731           if (rcvr == NULL) {
  2732             if (!suppress_error) {
  2733               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
  2734               illegal_state_oop = THREAD->pending_exception();
  2735               THREAD->clear_pending_exception();
  2737           } else {
  2738             BasicLock* lock = base->lock();
  2739             markOop header = lock->displaced_header();
  2740             base->set_obj(NULL);
  2741             // If it isn't recursive we either must swap old header or call the runtime
  2742             if (header != NULL) {
  2743               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
  2744                 // restore object for the slow case
  2745                 base->set_obj(rcvr);
  2747                   // Prevent any HandleMarkCleaner from freeing our live handles
  2748                   HandleMark __hm(THREAD);
  2749                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
  2751                 if (THREAD->has_pending_exception()) {
  2752                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
  2753                   THREAD->clear_pending_exception();
  2762     //
  2763     // Notify jvmti/jvmdi
  2764     //
  2765     // NOTE: we do not notify a method_exit if we have a pending exception,
  2766     // including an exception we generate for unlocking checks.  In the former
  2767     // case, JVMDI has already been notified by our call for the exception handler
  2768     // and in both cases as far as JVMDI is concerned we have already returned.
  2769     // If we notify it again JVMDI will be all confused about how many frames
  2770     // are still on the stack (4340444).
  2771     //
  2772     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
  2773     // method_exit events whenever we leave an activation unless it was done
  2774     // for popframe. This is nothing like jvmdi. However we are passing the
  2775     // tests at the moment (apparently because they are jvmdi based) so rather
  2776     // than change this code and possibly fail tests we will leave it alone
  2777     // (with this note) in anticipation of changing the vm and the tests
  2778     // simultaneously.
  2781     //
  2782     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
  2786 #ifdef VM_JVMTI
  2787       if (_jvmti_interp_events) {
  2788         // Whenever JVMTI puts a thread in interp_only_mode, method
  2789         // entry/exit events are sent for that thread to track stack depth.
  2790         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
  2792             // Prevent any HandleMarkCleaner from freeing our live handles
  2793             HandleMark __hm(THREAD);
  2794             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
  2798 #endif /* VM_JVMTI */
  2800     //
  2801     // See if we are returning any exception
  2802     // A pending exception that was pending prior to a possible popping frame
  2803     // overrides the popping frame.
  2804     //
  2805     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
  2806     if (illegal_state_oop() != NULL || original_exception() != NULL) {
  2807       // inform the frame manager we have no result
  2808       istate->set_msg(throwing_exception);
  2809       if (illegal_state_oop() != NULL)
  2810         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
  2811       else
  2812         THREAD->set_pending_exception(original_exception(), NULL, 0);
  2813       istate->set_return_kind((Bytecodes::Code)opcode);
  2814       UPDATE_PC_AND_RETURN(0);
  2817     if (istate->msg() == popping_frame) {
  2818       // Make it simpler on the assembly code and set the message for the frame pop.
  2819       // returns
  2820       if (istate->prev() == NULL) {
  2821         // We must be returning to a deoptimized frame (because popframe only happens between
  2822         // two interpreted frames). We need to save the current arguments in C heap so that
  2823         // the deoptimized frame when it restarts can copy the arguments to its expression
  2824         // stack and re-execute the call. We also have to notify deoptimization that this
  2825         // has occurred and to pick the preserved args copy them to the deoptimized frame's
  2826         // java expression stack. Yuck.
  2827         //
  2828         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
  2829                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
  2830         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
  2832       THREAD->clr_pop_frame_in_process();
  2835     // Normal return
  2836     // Advance the pc and return to frame manager
  2837     istate->set_msg(return_from_method);
  2838     istate->set_return_kind((Bytecodes::Code)opcode);
  2839     UPDATE_PC_AND_RETURN(1);
  2840   } /* handle_return: */
  2842 // This is really a fatal error return
  2844 finish:
  2845   DECACHE_TOS();
  2846   DECACHE_PC();
  2848   return;
  2851 /*
  2852  * All the code following this point is only produced once and is not present
  2853  * in the JVMTI version of the interpreter
  2854 */
  2856 #ifndef VM_JVMTI
  2858 // This constructor should only be used to contruct the object to signal
  2859 // interpreter initialization. All other instances should be created by
  2860 // the frame manager.
  2861 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
  2862   if (msg != initialize) ShouldNotReachHere();
  2863   _msg = msg;
  2864   _self_link = this;
  2865   _prev_link = NULL;
  2868 // Inline static functions for Java Stack and Local manipulation
  2870 // The implementations are platform dependent. We have to worry about alignment
  2871 // issues on some machines which can change on the same platform depending on
  2872 // whether it is an LP64 machine also.
  2873 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
  2874   return (address) tos[Interpreter::expr_index_at(-offset)];
  2877 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
  2878   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
  2881 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
  2882   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
  2885 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
  2886   return (oop)tos [Interpreter::expr_index_at(-offset)];
  2889 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
  2890   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
  2893 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
  2894   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
  2897 // only used for value types
  2898 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
  2899                                                         int offset) {
  2900   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2903 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
  2904                                                        int offset) {
  2905   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2908 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
  2909                                                          int offset) {
  2910   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2913 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
  2914                                                           int offset) {
  2915   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2918 // needs to be platform dep for the 32 bit platforms.
  2919 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
  2920                                                           int offset) {
  2921   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
  2924 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
  2925                                               address addr, int offset) {
  2926   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
  2927                         ((VMJavaVal64*)addr)->d);
  2930 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
  2931                                                         int offset) {
  2932   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2933   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
  2936 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
  2937                                             address addr, int offset) {
  2938   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2939   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
  2940                         ((VMJavaVal64*)addr)->l;
  2943 // Locals
  2945 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
  2946   return (address)locals[Interpreter::local_index_at(-offset)];
  2948 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
  2949   return (jint)locals[Interpreter::local_index_at(-offset)];
  2951 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
  2952   return (jfloat)locals[Interpreter::local_index_at(-offset)];
  2954 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
  2955   return (oop)locals[Interpreter::local_index_at(-offset)];
  2957 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
  2958   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
  2960 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
  2961   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
  2964 // Returns the address of locals value.
  2965 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
  2966   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2968 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
  2969   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2972 // Used for local value or returnAddress
  2973 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
  2974                                    address value, int offset) {
  2975   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
  2977 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
  2978                                    jint value, int offset) {
  2979   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2981 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
  2982                                    jfloat value, int offset) {
  2983   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2985 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
  2986                                    oop value, int offset) {
  2987   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2989 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
  2990                                    jdouble value, int offset) {
  2991   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
  2993 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
  2994                                    jlong value, int offset) {
  2995   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
  2997 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
  2998                                    address addr, int offset) {
  2999   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
  3001 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
  3002                                    address addr, int offset) {
  3003   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
  3006 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
  3007                           intptr_t* locals, int locals_offset) {
  3008   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
  3009   locals[Interpreter::local_index_at(-locals_offset)] = value;
  3013 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
  3014                                    int to_offset) {
  3015   tos[Interpreter::expr_index_at(-to_offset)] =
  3016                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
  3019 void BytecodeInterpreter::dup(intptr_t *tos) {
  3020   copy_stack_slot(tos, -1, 0);
  3022 void BytecodeInterpreter::dup2(intptr_t *tos) {
  3023   copy_stack_slot(tos, -2, 0);
  3024   copy_stack_slot(tos, -1, 1);
  3027 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
  3028   /* insert top word two down */
  3029   copy_stack_slot(tos, -1, 0);
  3030   copy_stack_slot(tos, -2, -1);
  3031   copy_stack_slot(tos, 0, -2);
  3034 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
  3035   /* insert top word three down  */
  3036   copy_stack_slot(tos, -1, 0);
  3037   copy_stack_slot(tos, -2, -1);
  3038   copy_stack_slot(tos, -3, -2);
  3039   copy_stack_slot(tos, 0, -3);
  3041 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
  3042   /* insert top 2 slots three down */
  3043   copy_stack_slot(tos, -1, 1);
  3044   copy_stack_slot(tos, -2, 0);
  3045   copy_stack_slot(tos, -3, -1);
  3046   copy_stack_slot(tos, 1, -2);
  3047   copy_stack_slot(tos, 0, -3);
  3049 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
  3050   /* insert top 2 slots four down */
  3051   copy_stack_slot(tos, -1, 1);
  3052   copy_stack_slot(tos, -2, 0);
  3053   copy_stack_slot(tos, -3, -1);
  3054   copy_stack_slot(tos, -4, -2);
  3055   copy_stack_slot(tos, 1, -3);
  3056   copy_stack_slot(tos, 0, -4);
  3060 void BytecodeInterpreter::swap(intptr_t *tos) {
  3061   // swap top two elements
  3062   intptr_t val = tos[Interpreter::expr_index_at(1)];
  3063   // Copy -2 entry to -1
  3064   copy_stack_slot(tos, -2, -1);
  3065   // Store saved -1 entry into -2
  3066   tos[Interpreter::expr_index_at(2)] = val;
  3068 // --------------------------------------------------------------------------------
  3069 // Non-product code
  3070 #ifndef PRODUCT
  3072 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
  3073   switch (msg) {
  3074      case BytecodeInterpreter::no_request:  return("no_request");
  3075      case BytecodeInterpreter::initialize:  return("initialize");
  3076      // status message to C++ interpreter
  3077      case BytecodeInterpreter::method_entry:  return("method_entry");
  3078      case BytecodeInterpreter::method_resume:  return("method_resume");
  3079      case BytecodeInterpreter::got_monitors:  return("got_monitors");
  3080      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
  3081      // requests to frame manager from C++ interpreter
  3082      case BytecodeInterpreter::call_method:  return("call_method");
  3083      case BytecodeInterpreter::return_from_method:  return("return_from_method");
  3084      case BytecodeInterpreter::more_monitors:  return("more_monitors");
  3085      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
  3086      case BytecodeInterpreter::popping_frame:  return("popping_frame");
  3087      case BytecodeInterpreter::do_osr:  return("do_osr");
  3088      // deopt
  3089      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
  3090      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
  3091      default: return("BAD MSG");
  3094 void
  3095 BytecodeInterpreter::print() {
  3096   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
  3097   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
  3098   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
  3099   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
  3101     ResourceMark rm;
  3102     char *method_name = _method->name_and_sig_as_C_string();
  3103     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
  3105   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
  3106   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
  3107   tty->print_cr("msg: %s", C_msg(this->_msg));
  3108   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
  3109   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
  3110   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
  3111   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
  3112   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
  3113   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
  3114   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
  3115   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
  3116   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
  3117   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
  3118   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
  3119 #ifdef SPARC
  3120   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
  3121   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
  3122   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
  3123   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
  3124 #endif
  3125 #if !defined(ZERO)
  3126   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
  3127 #endif // !ZERO
  3128   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
  3131 extern "C" {
  3132     void PI(uintptr_t arg) {
  3133         ((BytecodeInterpreter*)arg)->print();
  3136 #endif // PRODUCT
  3138 #endif // JVMTI
  3139 #endif // CC_INTERP

mercurial