src/share/vm/adlc/output_h.cpp

Tue, 24 Dec 2013 11:48:39 -0800

author
mikael
date
Tue, 24 Dec 2013 11:48:39 -0800
changeset 6198
55fb97c4c58d
parent 5791
c9ccd7b85f20
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Summary: Copyright year updated for files modified during 2013
Reviewed-by: twisti, iveresov

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // output_h.cpp - Class HPP file output routines for architecture definition
    26 #include "adlc.hpp"
    28 // The comment delimiter used in format statements after assembler instructions.
    29 #define commentSeperator "!"
    31 // Generate the #define that describes the number of registers.
    32 static void defineRegCount(FILE *fp, RegisterForm *registers) {
    33   if (registers) {
    34     int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
    35     fprintf(fp,"\n");
    36     fprintf(fp,"// the number of reserved registers + machine registers.\n");
    37     fprintf(fp,"#define REG_COUNT    %d\n", regCount);
    38   }
    39 }
    41 // Output enumeration of machine register numbers
    42 // (1)
    43 // // Enumerate machine registers starting after reserved regs.
    44 // // in the order of occurrence in the register block.
    45 // enum MachRegisterNumbers {
    46 //   EAX_num = 0,
    47 //   ...
    48 //   _last_Mach_Reg
    49 // }
    50 void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
    51   if (_register) {
    52     RegDef *reg_def = NULL;
    54     // Output a #define for the number of machine registers
    55     defineRegCount(fp_hpp, _register);
    57     // Count all the Save_On_Entry and Always_Save registers
    58     int    saved_on_entry = 0;
    59     int  c_saved_on_entry = 0;
    60     _register->reset_RegDefs();
    61     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
    62       if( strcmp(reg_def->_callconv,"SOE") == 0 ||
    63           strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
    64       if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
    65           strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
    66     }
    67     fprintf(fp_hpp, "\n");
    68     fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
    69     fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
    70     fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
    71     fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
    73     // (1)
    74     // Build definition for enumeration of register numbers
    75     fprintf(fp_hpp, "\n");
    76     fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
    77     fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
    78     fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
    80     // Output the register number for each register in the allocation classes
    81     _register->reset_RegDefs();
    82     int i = 0;
    83     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
    84       fprintf(fp_hpp,"  %s_num,", reg_def->_regname);
    85       for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " ");
    86       fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n",
    87               i++,
    88               reg_def->register_num(),
    89               reg_def->register_encode());
    90     }
    91     // Finish defining enumeration
    92     fprintf(fp_hpp, "  _last_Mach_Reg            // %d\n", i);
    93     fprintf(fp_hpp, "};\n");
    94   }
    96   fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
    97   fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
    98   fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
    99   fprintf(fp_hpp, "#define FORALL_BODY ");
   100   int len = RegisterForm::RegMask_Size();
   101   for( int i = 0; i < len; i++ )
   102     fprintf(fp_hpp, "BODY(%d) ",i);
   103   fprintf(fp_hpp, "\n\n");
   105   fprintf(fp_hpp,"class RegMask;\n");
   106   // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
   107   // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
   108 }
   111 // Output enumeration of machine register encodings
   112 // (2)
   113 // // Enumerate machine registers starting after reserved regs.
   114 // // in the order of occurrence in the alloc_class(es).
   115 // enum MachRegisterEncodes {
   116 //   EAX_enc = 0x00,
   117 //   ...
   118 // }
   119 void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
   120   if (_register) {
   121     RegDef *reg_def = NULL;
   122     RegDef *reg_def_next = NULL;
   124     // (2)
   125     // Build definition for enumeration of encode values
   126     fprintf(fp_hpp, "\n");
   127     fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
   128     fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
   129     fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
   131     // Find max enum string length.
   132     size_t maxlen = 0;
   133     _register->reset_RegDefs();
   134     reg_def = _register->iter_RegDefs();
   135     while (reg_def != NULL) {
   136       size_t len = strlen(reg_def->_regname);
   137       if (len > maxlen) maxlen = len;
   138       reg_def = _register->iter_RegDefs();
   139     }
   141     // Output the register encoding for each register in the allocation classes
   142     _register->reset_RegDefs();
   143     reg_def_next = _register->iter_RegDefs();
   144     while( (reg_def = reg_def_next) != NULL ) {
   145       reg_def_next = _register->iter_RegDefs();
   146       fprintf(fp_hpp,"  %s_enc", reg_def->_regname);
   147       for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " ");
   148       fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," );
   149     }
   150     // Finish defining enumeration
   151     fprintf(fp_hpp, "};\n");
   153   } // Done with register form
   154 }
   157 // Declare an array containing the machine register names, strings.
   158 static void declareRegNames(FILE *fp, RegisterForm *registers) {
   159   if (registers) {
   160 //    fprintf(fp,"\n");
   161 //    fprintf(fp,"// An array of character pointers to machine register names.\n");
   162 //    fprintf(fp,"extern const char *regName[];\n");
   163   }
   164 }
   166 // Declare an array containing the machine register sizes in 32-bit words.
   167 void ArchDesc::declareRegSizes(FILE *fp) {
   168 // regSize[] is not used
   169 }
   171 // Declare an array containing the machine register encoding values
   172 static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
   173   if (registers) {
   174     // // //
   175     // fprintf(fp,"\n");
   176     // fprintf(fp,"// An array containing the machine register encode values\n");
   177     // fprintf(fp,"extern const char  regEncode[];\n");
   178   }
   179 }
   182 // ---------------------------------------------------------------------------
   183 //------------------------------Utilities to build Instruction Classes--------
   184 // ---------------------------------------------------------------------------
   185 static void out_RegMask(FILE *fp) {
   186   fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
   187 }
   189 // ---------------------------------------------------------------------------
   190 //--------Utilities to build MachOper and MachNode derived Classes------------
   191 // ---------------------------------------------------------------------------
   193 //------------------------------Utilities to build Operand Classes------------
   194 static void in_RegMask(FILE *fp) {
   195   fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
   196 }
   198 static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
   199   int i = 0;
   200   Component *comp;
   202   if (oper->num_consts(globals) == 0) return;
   203   // Iterate over the component list looking for constants
   204   oper->_components.reset();
   205   if ((comp = oper->_components.iter()) == NULL) {
   206     assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
   207     const char *type = oper->ideal_type(globals);
   208     if (!strcmp(type, "ConI")) {
   209       if (i > 0) fprintf(fp,", ");
   210       fprintf(fp,"  int32          _c%d;\n", i);
   211     }
   212     else if (!strcmp(type, "ConP")) {
   213       if (i > 0) fprintf(fp,", ");
   214       fprintf(fp,"  const TypePtr *_c%d;\n", i);
   215     }
   216     else if (!strcmp(type, "ConN")) {
   217       if (i > 0) fprintf(fp,", ");
   218       fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
   219     }
   220     else if (!strcmp(type, "ConNKlass")) {
   221       if (i > 0) fprintf(fp,", ");
   222       fprintf(fp,"  const TypeNarrowKlass *_c%d;\n", i);
   223     }
   224     else if (!strcmp(type, "ConL")) {
   225       if (i > 0) fprintf(fp,", ");
   226       fprintf(fp,"  jlong          _c%d;\n", i);
   227     }
   228     else if (!strcmp(type, "ConF")) {
   229       if (i > 0) fprintf(fp,", ");
   230       fprintf(fp,"  jfloat         _c%d;\n", i);
   231     }
   232     else if (!strcmp(type, "ConD")) {
   233       if (i > 0) fprintf(fp,", ");
   234       fprintf(fp,"  jdouble        _c%d;\n", i);
   235     }
   236     else if (!strcmp(type, "Bool")) {
   237       fprintf(fp,"private:\n");
   238       fprintf(fp,"  BoolTest::mask _c%d;\n", i);
   239       fprintf(fp,"public:\n");
   240     }
   241     else {
   242       assert(0, "Non-constant operand lacks component list.");
   243     }
   244   } // end if NULL
   245   else {
   246     oper->_components.reset();
   247     while ((comp = oper->_components.iter()) != NULL) {
   248       if (!strcmp(comp->base_type(globals), "ConI")) {
   249         fprintf(fp,"  jint             _c%d;\n", i);
   250         i++;
   251       }
   252       else if (!strcmp(comp->base_type(globals), "ConP")) {
   253         fprintf(fp,"  const TypePtr *_c%d;\n", i);
   254         i++;
   255       }
   256       else if (!strcmp(comp->base_type(globals), "ConN")) {
   257         fprintf(fp,"  const TypePtr *_c%d;\n", i);
   258         i++;
   259       }
   260       else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
   261         fprintf(fp,"  const TypePtr *_c%d;\n", i);
   262         i++;
   263       }
   264       else if (!strcmp(comp->base_type(globals), "ConL")) {
   265         fprintf(fp,"  jlong            _c%d;\n", i);
   266         i++;
   267       }
   268       else if (!strcmp(comp->base_type(globals), "ConF")) {
   269         fprintf(fp,"  jfloat           _c%d;\n", i);
   270         i++;
   271       }
   272       else if (!strcmp(comp->base_type(globals), "ConD")) {
   273         fprintf(fp,"  jdouble          _c%d;\n", i);
   274         i++;
   275       }
   276     }
   277   }
   278 }
   280 // Declare constructor.
   281 // Parameters start with condition code, then all other constants
   282 //
   283 // (0) public:
   284 // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
   285 // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
   286 //
   287 static void defineConstructor(FILE *fp, const char *name, uint num_consts,
   288                               ComponentList &lst, bool is_ideal_bool,
   289                               Form::DataType constant_type, FormDict &globals) {
   290   fprintf(fp,"public:\n");
   291   // generate line (1)
   292   fprintf(fp,"  %sOper(", name);
   293   if( num_consts == 0 ) {
   294     fprintf(fp,") {}\n");
   295     return;
   296   }
   298   // generate parameters for constants
   299   uint i = 0;
   300   Component *comp;
   301   lst.reset();
   302   if ((comp = lst.iter()) == NULL) {
   303     assert(num_consts == 1, "Bad component list detected.\n");
   304     switch( constant_type ) {
   305     case Form::idealI : {
   306       fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
   307       break;
   308     }
   309     case Form::idealN :      { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
   310     case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; }
   311     case Form::idealP :      { fprintf(fp,"const TypePtr *c%d", i); break; }
   312     case Form::idealL :      { fprintf(fp,"jlong c%d", i);   break;        }
   313     case Form::idealF :      { fprintf(fp,"jfloat c%d", i);  break;        }
   314     case Form::idealD :      { fprintf(fp,"jdouble c%d", i); break;        }
   315     default:
   316       assert(!is_ideal_bool, "Non-constant operand lacks component list.");
   317       break;
   318     }
   319   } // end if NULL
   320   else {
   321     lst.reset();
   322     while((comp = lst.iter()) != NULL) {
   323       if (!strcmp(comp->base_type(globals), "ConI")) {
   324         if (i > 0) fprintf(fp,", ");
   325         fprintf(fp,"int32 c%d", i);
   326         i++;
   327       }
   328       else if (!strcmp(comp->base_type(globals), "ConP")) {
   329         if (i > 0) fprintf(fp,", ");
   330         fprintf(fp,"const TypePtr *c%d", i);
   331         i++;
   332       }
   333       else if (!strcmp(comp->base_type(globals), "ConN")) {
   334         if (i > 0) fprintf(fp,", ");
   335         fprintf(fp,"const TypePtr *c%d", i);
   336         i++;
   337       }
   338       else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
   339         if (i > 0) fprintf(fp,", ");
   340         fprintf(fp,"const TypePtr *c%d", i);
   341         i++;
   342       }
   343       else if (!strcmp(comp->base_type(globals), "ConL")) {
   344         if (i > 0) fprintf(fp,", ");
   345         fprintf(fp,"jlong c%d", i);
   346         i++;
   347       }
   348       else if (!strcmp(comp->base_type(globals), "ConF")) {
   349         if (i > 0) fprintf(fp,", ");
   350         fprintf(fp,"jfloat c%d", i);
   351         i++;
   352       }
   353       else if (!strcmp(comp->base_type(globals), "ConD")) {
   354         if (i > 0) fprintf(fp,", ");
   355         fprintf(fp,"jdouble c%d", i);
   356         i++;
   357       }
   358       else if (!strcmp(comp->base_type(globals), "Bool")) {
   359         if (i > 0) fprintf(fp,", ");
   360         fprintf(fp,"BoolTest::mask c%d", i);
   361         i++;
   362       }
   363     }
   364   }
   365   // finish line (1) and start line (2)
   366   fprintf(fp,")  : ");
   367   // generate initializers for constants
   368   i = 0;
   369   fprintf(fp,"_c%d(c%d)", i, i);
   370   for( i = 1; i < num_consts; ++i) {
   371     fprintf(fp,", _c%d(c%d)", i, i);
   372   }
   373   // The body for the constructor is empty
   374   fprintf(fp," {}\n");
   375 }
   377 // ---------------------------------------------------------------------------
   378 // Utilities to generate format rules for machine operands and instructions
   379 // ---------------------------------------------------------------------------
   381 // Generate the format rule for condition codes
   382 static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
   383   assert(oper != NULL, "what");
   384   CondInterface* cond = oper->_interface->is_CondInterface();
   385   fprintf(fp, "       if( _c%d == BoolTest::eq ) st->print(\"%s\");\n",i,cond->_equal_format);
   386   fprintf(fp, "  else if( _c%d == BoolTest::ne ) st->print(\"%s\");\n",i,cond->_not_equal_format);
   387   fprintf(fp, "  else if( _c%d == BoolTest::le ) st->print(\"%s\");\n",i,cond->_less_equal_format);
   388   fprintf(fp, "  else if( _c%d == BoolTest::ge ) st->print(\"%s\");\n",i,cond->_greater_equal_format);
   389   fprintf(fp, "  else if( _c%d == BoolTest::lt ) st->print(\"%s\");\n",i,cond->_less_format);
   390   fprintf(fp, "  else if( _c%d == BoolTest::gt ) st->print(\"%s\");\n",i,cond->_greater_format);
   391   fprintf(fp, "  else if( _c%d == BoolTest::overflow ) st->print(\"%s\");\n",i,cond->_overflow_format);
   392   fprintf(fp, "  else if( _c%d == BoolTest::no_overflow ) st->print(\"%s\");\n",i,cond->_no_overflow_format);
   393 }
   395 // Output code that dumps constant values, increment "i" if type is constant
   396 static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
   397   if (!strcmp(ideal_type, "ConI")) {
   398     fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
   399     fprintf(fp,"   st->print(\"/0x%%08x\", _c%d);\n", i);
   400     ++i;
   401   }
   402   else if (!strcmp(ideal_type, "ConP")) {
   403     fprintf(fp,"    _c%d->dump_on(st);\n", i);
   404     ++i;
   405   }
   406   else if (!strcmp(ideal_type, "ConN")) {
   407     fprintf(fp,"    _c%d->dump_on(st);\n", i);
   408     ++i;
   409   }
   410   else if (!strcmp(ideal_type, "ConNKlass")) {
   411     fprintf(fp,"    _c%d->dump_on(st);\n", i);
   412     ++i;
   413   }
   414   else if (!strcmp(ideal_type, "ConL")) {
   415     fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
   416     fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, _c%d);\n", i);
   417     ++i;
   418   }
   419   else if (!strcmp(ideal_type, "ConF")) {
   420     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
   421     fprintf(fp,"    jint _c%di = JavaValue(_c%d).get_jint();\n", i, i);
   422     fprintf(fp,"    st->print(\"/0x%%x/\", _c%di);\n", i);
   423     ++i;
   424   }
   425   else if (!strcmp(ideal_type, "ConD")) {
   426     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
   427     fprintf(fp,"    jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i);
   428     fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, _c%dl);\n", i);
   429     ++i;
   430   }
   431   else if (!strcmp(ideal_type, "Bool")) {
   432     defineCCodeDump(oper, fp,i);
   433     ++i;
   434   }
   436   return i;
   437 }
   439 // Generate the format rule for an operand
   440 void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
   441   if (!for_c_file) {
   442     // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
   443     // compile the bodies separately, to cut down on recompilations
   444     fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
   445     fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
   446     return;
   447   }
   449   // Local pointer indicates remaining part of format rule
   450   int idx = 0;                   // position of operand in match rule
   452   // Generate internal format function, used when stored locally
   453   fprintf(fp, "\n#ifndef PRODUCT\n");
   454   fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
   455   // Generate the user-defined portion of the format
   456   if (oper._format) {
   457     if ( oper._format->_strings.count() != 0 ) {
   458       // No initialization code for int_format
   460       // Build the format from the entries in strings and rep_vars
   461       const char  *string  = NULL;
   462       oper._format->_rep_vars.reset();
   463       oper._format->_strings.reset();
   464       while ( (string = oper._format->_strings.iter()) != NULL ) {
   466         // Check if this is a standard string or a replacement variable
   467         if ( string != NameList::_signal ) {
   468           // Normal string
   469           // Pass through to st->print
   470           fprintf(fp,"  st->print(\"%s\");\n", string);
   471         } else {
   472           // Replacement variable
   473           const char *rep_var = oper._format->_rep_vars.iter();
   474           // Check that it is a local name, and an operand
   475           const Form* form = oper._localNames[rep_var];
   476           if (form == NULL) {
   477             globalAD->syntax_err(oper._linenum,
   478                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
   479             assert(form, "replacement variable was not found in local names");
   480           }
   481           OperandForm *op      = form->is_operand();
   482           // Get index if register or constant
   483           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
   484             idx  = oper.register_position( globals, rep_var);
   485           }
   486           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
   487             idx  = oper.constant_position( globals, rep_var);
   488           } else {
   489             idx = 0;
   490           }
   492           // output invocation of "$..."s format function
   493           if ( op != NULL ) op->int_format(fp, globals, idx);
   495           if ( idx == -1 ) {
   496             fprintf(stderr,
   497                     "Using a name, %s, that isn't in match rule\n", rep_var);
   498             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
   499           }
   500         } // Done with a replacement variable
   501       } // Done with all format strings
   502     } else {
   503       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
   504       oper.int_format(fp, globals, 0);
   505     }
   507   } else { // oper._format == NULL
   508     // Provide a few special case formats where the AD writer cannot.
   509     if ( strcmp(oper._ident,"Universe")==0 ) {
   510       fprintf(fp, "  st->print(\"$$univ\");\n");
   511     }
   512     // labelOper::int_format is defined in ad_<...>.cpp
   513   }
   514   // ALWAYS! Provide a special case output for condition codes.
   515   if( oper.is_ideal_bool() ) {
   516     defineCCodeDump(&oper, fp,0);
   517   }
   518   fprintf(fp,"}\n");
   520   // Generate external format function, when data is stored externally
   521   fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
   522   // Generate the user-defined portion of the format
   523   if (oper._format) {
   524     if ( oper._format->_strings.count() != 0 ) {
   526       // Check for a replacement string "$..."
   527       if ( oper._format->_rep_vars.count() != 0 ) {
   528         // Initialization code for ext_format
   529       }
   531       // Build the format from the entries in strings and rep_vars
   532       const char  *string  = NULL;
   533       oper._format->_rep_vars.reset();
   534       oper._format->_strings.reset();
   535       while ( (string = oper._format->_strings.iter()) != NULL ) {
   537         // Check if this is a standard string or a replacement variable
   538         if ( string != NameList::_signal ) {
   539           // Normal string
   540           // Pass through to st->print
   541           fprintf(fp,"  st->print(\"%s\");\n", string);
   542         } else {
   543           // Replacement variable
   544           const char *rep_var = oper._format->_rep_vars.iter();
   545          // Check that it is a local name, and an operand
   546           const Form* form = oper._localNames[rep_var];
   547           if (form == NULL) {
   548             globalAD->syntax_err(oper._linenum,
   549                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
   550             assert(form, "replacement variable was not found in local names");
   551           }
   552           OperandForm *op      = form->is_operand();
   553           // Get index if register or constant
   554           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
   555             idx  = oper.register_position( globals, rep_var);
   556           }
   557           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
   558             idx  = oper.constant_position( globals, rep_var);
   559           } else {
   560             idx = 0;
   561           }
   562           // output invocation of "$..."s format function
   563           if ( op != NULL )   op->ext_format(fp, globals, idx);
   565           // Lookup the index position of the replacement variable
   566           idx      = oper._components.operand_position_format(rep_var, &oper);
   567           if ( idx == -1 ) {
   568             fprintf(stderr,
   569                     "Using a name, %s, that isn't in match rule\n", rep_var);
   570             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
   571           }
   572         } // Done with a replacement variable
   573       } // Done with all format strings
   575     } else {
   576       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
   577       oper.ext_format(fp, globals, 0);
   578     }
   579   } else { // oper._format == NULL
   580     // Provide a few special case formats where the AD writer cannot.
   581     if ( strcmp(oper._ident,"Universe")==0 ) {
   582       fprintf(fp, "  st->print(\"$$univ\");\n");
   583     }
   584     // labelOper::ext_format is defined in ad_<...>.cpp
   585   }
   586   // ALWAYS! Provide a special case output for condition codes.
   587   if( oper.is_ideal_bool() ) {
   588     defineCCodeDump(&oper, fp,0);
   589   }
   590   fprintf(fp, "}\n");
   591   fprintf(fp, "#endif\n");
   592 }
   595 // Generate the format rule for an instruction
   596 void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
   597   if (!for_c_file) {
   598     // compile the bodies separately, to cut down on recompilations
   599     // #ifndef PRODUCT region generated by caller
   600     fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
   601     return;
   602   }
   604   // Define the format function
   605   fprintf(fp, "#ifndef PRODUCT\n");
   606   fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
   608   // Generate the user-defined portion of the format
   609   if( inst._format ) {
   610     // If there are replacement variables,
   611     // Generate index values needed for determining the operand position
   612     if( inst._format->_rep_vars.count() )
   613       inst.index_temps(fp, globals);
   615     // Build the format from the entries in strings and rep_vars
   616     const char  *string  = NULL;
   617     inst._format->_rep_vars.reset();
   618     inst._format->_strings.reset();
   619     while( (string = inst._format->_strings.iter()) != NULL ) {
   620       fprintf(fp,"  ");
   621       // Check if this is a standard string or a replacement variable
   622       if( string == NameList::_signal ) { // Replacement variable
   623         const char* rep_var =  inst._format->_rep_vars.iter();
   624         inst.rep_var_format( fp, rep_var);
   625       } else if( string == NameList::_signal3 ) { // Replacement variable in raw text
   626         const char* rep_var =  inst._format->_rep_vars.iter();
   627         const Form *form   = inst._localNames[rep_var];
   628         if (form == NULL) {
   629           fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
   630           assert(false, "ShouldNotReachHere()");
   631         }
   632         OpClassForm *opc   = form->is_opclass();
   633         assert( opc, "replacement variable was not found in local names");
   634         // Lookup the index position of the replacement variable
   635         int idx  = inst.operand_position_format(rep_var);
   636         if ( idx == -1 ) {
   637           assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
   638           assert( false, "ShouldNotReachHere()");
   639         }
   641         if (inst.is_noninput_operand(idx)) {
   642           assert( false, "ShouldNotReachHere()");
   643         } else {
   644           // Output the format call for this operand
   645           fprintf(fp,"opnd_array(%d)",idx);
   646         }
   647         rep_var =  inst._format->_rep_vars.iter();
   648         inst._format->_strings.iter();
   649         if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
   650           Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
   651           if ( constant_type == Form::idealD ) {
   652             fprintf(fp,"->constantD()");
   653           } else if ( constant_type == Form::idealF ) {
   654             fprintf(fp,"->constantF()");
   655           } else if ( constant_type == Form::idealL ) {
   656             fprintf(fp,"->constantL()");
   657           } else {
   658             fprintf(fp,"->constant()");
   659           }
   660         } else if ( strcmp(rep_var,"$cmpcode") == 0) {
   661             fprintf(fp,"->ccode()");
   662         } else {
   663           assert( false, "ShouldNotReachHere()");
   664         }
   665       } else if( string == NameList::_signal2 ) // Raw program text
   666         fputs(inst._format->_strings.iter(), fp);
   667       else
   668         fprintf(fp,"st->print(\"%s\");\n", string);
   669     } // Done with all format strings
   670   } // Done generating the user-defined portion of the format
   672   // Add call debug info automatically
   673   Form::CallType call_type = inst.is_ideal_call();
   674   if( call_type != Form::invalid_type ) {
   675     switch( call_type ) {
   676     case Form::JAVA_DYNAMIC:
   677       fprintf(fp,"  _method->print_short_name(st);\n");
   678       break;
   679     case Form::JAVA_STATIC:
   680       fprintf(fp,"  if( _method ) _method->print_short_name(st);\n");
   681       fprintf(fp,"  else st->print(\" wrapper for: %%s\", _name);\n");
   682       fprintf(fp,"  if( !_method ) dump_trap_args(st);\n");
   683       break;
   684     case Form::JAVA_COMPILED:
   685     case Form::JAVA_INTERP:
   686       break;
   687     case Form::JAVA_RUNTIME:
   688     case Form::JAVA_LEAF:
   689     case Form::JAVA_NATIVE:
   690       fprintf(fp,"  st->print(\" %%s\", _name);");
   691       break;
   692     default:
   693       assert(0,"ShouldNotReachHere");
   694     }
   695     fprintf(fp,  "  st->print_cr(\"\");\n" );
   696     fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
   697     fprintf(fp,  "  st->print(\"        # \");\n" );
   698     fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
   699   }
   700   else if(inst.is_ideal_safepoint()) {
   701     fprintf(fp,  "  st->print(\"\");\n" );
   702     fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
   703     fprintf(fp,  "  st->print(\"        # \");\n" );
   704     fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
   705   }
   706   else if( inst.is_ideal_if() ) {
   707     fprintf(fp,  "  st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
   708   }
   709   else if( inst.is_ideal_mem() ) {
   710     // Print out the field name if available to improve readability
   711     fprintf(fp,  "  if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
   712     fprintf(fp,  "    ciField* f = ra->C->alias_type(adr_type())->field();\n");
   713     fprintf(fp,  "    st->print(\" %s Field: \");\n", commentSeperator);
   714     fprintf(fp,  "    if (f->is_volatile())\n");
   715     fprintf(fp,  "      st->print(\"volatile \");\n");
   716     fprintf(fp,  "    f->holder()->name()->print_symbol_on(st);\n");
   717     fprintf(fp,  "    st->print(\".\");\n");
   718     fprintf(fp,  "    f->name()->print_symbol_on(st);\n");
   719     fprintf(fp,  "    if (f->is_constant())\n");
   720     fprintf(fp,  "      st->print(\" (constant)\");\n");
   721     fprintf(fp,  "  } else {\n");
   722     // Make sure 'Volatile' gets printed out
   723     fprintf(fp,  "    if (ra->C->alias_type(adr_type())->is_volatile())\n");
   724     fprintf(fp,  "      st->print(\" volatile!\");\n");
   725     fprintf(fp,  "  }\n");
   726   }
   728   // Complete the definition of the format function
   729   fprintf(fp, "}\n#endif\n");
   730 }
   732 void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
   733   if (!_pipeline)
   734     return;
   736   fprintf(fp_hpp, "\n");
   737   fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
   738   fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
   740   if (_pipeline->_maxcycleused <=
   741 #ifdef SPARC
   742     64
   743 #else
   744     32
   745 #endif
   746       ) {
   747     fprintf(fp_hpp, "protected:\n");
   748     fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
   749     fprintf(fp_hpp, "public:\n");
   750     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
   751     if (_pipeline->_maxcycleused <= 32)
   752       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
   753     else {
   754       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
   755       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
   756     }
   757     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
   758     fprintf(fp_hpp, "    _mask = in._mask;\n");
   759     fprintf(fp_hpp, "    return *this;\n");
   760     fprintf(fp_hpp, "  }\n\n");
   761     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
   762     fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
   763     fprintf(fp_hpp, "  }\n\n");
   764     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
   765     fprintf(fp_hpp, "    _mask <<= n;\n");
   766     fprintf(fp_hpp, "    return *this;\n");
   767     fprintf(fp_hpp, "  }\n\n");
   768     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
   769     fprintf(fp_hpp, "    _mask |= in2._mask;\n");
   770     fprintf(fp_hpp, "  }\n\n");
   771     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
   772     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
   773   }
   774   else {
   775     fprintf(fp_hpp, "protected:\n");
   776     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   777     uint l;
   778     fprintf(fp_hpp, "  uint ");
   779     for (l = 1; l <= masklen; l++)
   780       fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
   781     fprintf(fp_hpp, "public:\n");
   782     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
   783     for (l = 1; l <= masklen; l++)
   784       fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
   785     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
   786     for (l = 1; l <= masklen; l++)
   787       fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
   788     for (l = 1; l <= masklen; l++)
   789       fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
   791     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
   792     for (l = 1; l <= masklen; l++)
   793       fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
   794     fprintf(fp_hpp, "    return *this;\n");
   795     fprintf(fp_hpp, "  }\n\n");
   796     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
   797     fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
   798     for (l = 1; l <= masklen; l++)
   799       fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
   800     fprintf(fp_hpp, "    return out;\n");
   801     fprintf(fp_hpp, "  }\n\n");
   802     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
   803     fprintf(fp_hpp, "    return (");
   804     for (l = 1; l <= masklen; l++)
   805       fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
   806     fprintf(fp_hpp, ") ? true : false;\n");
   807     fprintf(fp_hpp, "  }\n\n");
   808     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
   809     fprintf(fp_hpp, "    if (n >= 32)\n");
   810     fprintf(fp_hpp, "      do {\n       ");
   811     for (l = masklen; l > 1; l--)
   812       fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
   813     fprintf(fp_hpp, " _mask%d = 0;\n", 1);
   814     fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
   815     fprintf(fp_hpp, "    if (n > 0) {\n");
   816     fprintf(fp_hpp, "      uint m = 32 - n;\n");
   817     fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
   818     fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
   819     for (l = 2; l < masklen; l++) {
   820       fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
   821     }
   822     fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
   823     fprintf(fp_hpp, "    }\n");
   825     fprintf(fp_hpp, "    return *this;\n");
   826     fprintf(fp_hpp, "  }\n\n");
   827     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
   828     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
   829     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
   830   }
   832   fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
   833   fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
   834   fprintf(fp_hpp, "};\n\n");
   836   uint rescount = 0;
   837   const char *resource;
   839   for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
   840       int mask = _pipeline->_resdict[resource]->is_resource()->mask();
   841       if ((mask & (mask-1)) == 0)
   842         rescount++;
   843     }
   845   fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
   846   fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
   847   fprintf(fp_hpp, "protected:\n");
   848   fprintf(fp_hpp, "  // Mask of used functional units\n");
   849   fprintf(fp_hpp, "  uint _used;\n\n");
   850   fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
   851   fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
   852   fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
   853   fprintf(fp_hpp, "  bool _multiple;\n\n");
   854   fprintf(fp_hpp, "  // Mask of specific used cycles\n");
   855   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
   856   fprintf(fp_hpp, "public:\n");
   857   fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
   858   fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
   859   fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
   860   fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
   861   fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
   862   fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
   863   fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
   864   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
   865   fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
   866   fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
   867   fprintf(fp_hpp, "  }\n\n");
   868   fprintf(fp_hpp, "  void step(uint cycles) {\n");
   869   fprintf(fp_hpp, "    _used = 0;\n");
   870   fprintf(fp_hpp, "    _mask <<= cycles;\n");
   871   fprintf(fp_hpp, "  }\n\n");
   872   fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
   873   fprintf(fp_hpp, "};\n\n");
   875   fprintf(fp_hpp, "// Pipeline_Use Class\n");
   876   fprintf(fp_hpp, "class Pipeline_Use {\n");
   877   fprintf(fp_hpp, "protected:\n");
   878   fprintf(fp_hpp, "  // These resources can be used\n");
   879   fprintf(fp_hpp, "  uint _resources_used;\n\n");
   880   fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
   881   fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
   882   fprintf(fp_hpp, "  // Number of elements\n");
   883   fprintf(fp_hpp, "  uint _count;\n\n");
   884   fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
   885   fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
   886   fprintf(fp_hpp, "public:\n");
   887   fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
   888   fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
   889   fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
   890   fprintf(fp_hpp, "  , _count(count)\n");
   891   fprintf(fp_hpp, "  , _elements(elements)\n");
   892   fprintf(fp_hpp, "  {}\n\n");
   893   fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
   894   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
   895   fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
   896   fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
   897   fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
   898   fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
   899   fprintf(fp_hpp, "  void reset() {\n");
   900   fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
   901   fprintf(fp_hpp, "  };\n\n");
   902   fprintf(fp_hpp, "  void step(uint cycles) {\n");
   903   fprintf(fp_hpp, "    reset();\n");
   904   fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
   905     rescount);
   906   fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
   907   fprintf(fp_hpp, "  };\n\n");
   908   fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
   909   fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
   910     rescount);
   911   fprintf(fp_hpp, "  friend class Pipeline;\n");
   912   fprintf(fp_hpp, "};\n\n");
   914   fprintf(fp_hpp, "// Pipeline Class\n");
   915   fprintf(fp_hpp, "class Pipeline {\n");
   916   fprintf(fp_hpp, "public:\n");
   918   fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
   919     _pipeline ? "true" : "false" );
   921   assert( _pipeline->_maxInstrsPerBundle &&
   922         ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
   923           _pipeline->_instrFetchUnitSize &&
   924           _pipeline->_instrFetchUnits,
   925     "unspecified pipeline architecture units");
   927   uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
   929   fprintf(fp_hpp, "  enum {\n");
   930   fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
   931     _pipeline->_variableSizeInstrs ? 1 : 0);
   932   fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
   933     _pipeline->_variableSizeInstrs ? 0 : 1);
   934   fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
   935     _pipeline->_branchHasDelaySlot ? 1 : 0);
   936   fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
   937     _pipeline->_maxInstrsPerBundle);
   938   fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
   939     _pipeline->_maxBundlesPerCycle);
   940   fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
   941     _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
   942   fprintf(fp_hpp, "  };\n\n");
   944   fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
   945     _pipeline->_instrUnitSize != 0 ? "true" : "false" );
   946   if( _pipeline->_bundleUnitSize != 0 )
   947     if( _pipeline->_instrUnitSize != 0 )
   948       fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
   949     else
   950       fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
   951   else
   952     fprintf(fp_hpp, "// Bundling is not supported\n\n");
   953   if( _pipeline->_instrUnitSize != 0 )
   954     fprintf(fp_hpp, "  // Size of an instruction\n");
   955   else
   956     fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
   957   fprintf(fp_hpp, "  static uint instr_unit_size() {");
   958   if( _pipeline->_instrUnitSize == 0 )
   959     fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
   960   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
   962   if( _pipeline->_bundleUnitSize != 0 )
   963     fprintf(fp_hpp, "  // Size of a bundle\n");
   964   else
   965     fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
   966   fprintf(fp_hpp, "  static uint bundle_unit_size() {");
   967   if( _pipeline->_bundleUnitSize == 0 )
   968     fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
   969   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
   971   fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
   972     _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
   974   fprintf(fp_hpp, "private:\n");
   975   fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
   976   fprintf(fp_hpp, "\n");
   977   fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
   978   fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
   979   fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
   980   fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
   981   fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
   982   fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
   983   fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
   984   fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
   985   fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
   986   fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
   987   fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
   988   fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
   989   fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
   990   fprintf(fp_hpp, "\n");
   991   fprintf(fp_hpp, "public:\n");
   992   fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
   993   fprintf(fp_hpp, "           uint                            count,\n");
   994   fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
   995   fprintf(fp_hpp, "           uint                            fixed_latency,\n");
   996   fprintf(fp_hpp, "           uint                            instruction_count,\n");
   997   fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
   998   fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
   999   fprintf(fp_hpp, "           bool                            force_serialization,\n");
  1000   fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
  1001   fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
  1002   fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
  1003   fprintf(fp_hpp, "           uint                    * const cycles,\n");
  1004   fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
  1005   fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
  1006   fprintf(fp_hpp, "  , _read_stage_count(count)\n");
  1007   fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
  1008   fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
  1009   fprintf(fp_hpp, "  , _read_stages(dst)\n");
  1010   fprintf(fp_hpp, "  , _resource_stage(stage)\n");
  1011   fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
  1012   fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
  1013   fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
  1014   fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
  1015   fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
  1016   fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
  1017   fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
  1018   fprintf(fp_hpp, "  {};\n");
  1019   fprintf(fp_hpp, "\n");
  1020   fprintf(fp_hpp, "  uint writeStage() const {\n");
  1021   fprintf(fp_hpp, "    return (_write_stage);\n");
  1022   fprintf(fp_hpp, "  }\n");
  1023   fprintf(fp_hpp, "\n");
  1024   fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
  1025   fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
  1026   fprintf(fp_hpp, "  }\n\n");
  1027   fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
  1028   fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
  1029   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
  1030   fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
  1031   fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
  1032   fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
  1033   fprintf(fp_hpp, "  uint fixedLatency() const {\n");
  1034   fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
  1035   fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
  1036   fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
  1037   fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
  1038   fprintf(fp_hpp, "    return (_resource_use); }\n\n");
  1039   fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
  1040   fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
  1041   fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
  1042   fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
  1043   fprintf(fp_hpp, "  uint instructionCount() const {\n");
  1044   fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
  1045   fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
  1046   fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
  1047   fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
  1048   fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
  1049   fprintf(fp_hpp, "  bool forceSerialization() const {\n");
  1050   fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
  1051   fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
  1052   fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
  1053   fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
  1054   fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
  1055   fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
  1056   fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
  1057   fprintf(fp_hpp, "#endif\n");
  1058   fprintf(fp_hpp, "};\n\n");
  1060   fprintf(fp_hpp, "// Bundle class\n");
  1061   fprintf(fp_hpp, "class Bundle {\n");
  1063   uint mshift = 0;
  1064   for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
  1065     mshift++;
  1067   uint rshift = rescount;
  1069   fprintf(fp_hpp, "protected:\n");
  1070   fprintf(fp_hpp, "  enum {\n");
  1071   fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
  1072   fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
  1073   fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
  1074   fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
  1075   fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
  1076   fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
  1077   fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
  1078   fprintf(fp_hpp, "\n");
  1079   fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
  1080   fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
  1081   fprintf(fp_hpp, "  };\n\n");
  1082   fprintf(fp_hpp, "  uint _flags          : 3,\n");
  1083   fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
  1084   fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
  1085   fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
  1086   fprintf(fp_hpp, "public:\n");
  1087   fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
  1088   fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
  1089   fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
  1090   fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
  1091   fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
  1093   fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
  1094   fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
  1095   fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
  1096   fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
  1098   fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
  1099   fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
  1100   fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
  1101   fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
  1102   fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
  1103   fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
  1105   fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
  1106   fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
  1107   fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
  1108   fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
  1109   fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
  1110   fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
  1111   fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
  1112   fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
  1114   fprintf(fp_hpp, "  enum {\n");
  1115   fprintf(fp_hpp, "    _nop_count = %d\n",
  1116     _pipeline->_nopcnt);
  1117   fprintf(fp_hpp, "  };\n\n");
  1118   fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
  1119     _pipeline->_nopcnt);
  1120   fprintf(fp_hpp, "#ifndef PRODUCT\n");
  1121   fprintf(fp_hpp, "  void dump(outputStream *st = tty) const;\n");
  1122   fprintf(fp_hpp, "#endif\n");
  1123   fprintf(fp_hpp, "};\n\n");
  1125 //  const char *classname;
  1126 //  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
  1127 //    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
  1128 //    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
  1129 //  }
  1132 //------------------------------declareClasses---------------------------------
  1133 // Construct the class hierarchy of MachNode classes from the instruction &
  1134 // operand lists
  1135 void ArchDesc::declareClasses(FILE *fp) {
  1137   // Declare an array containing the machine register names, strings.
  1138   declareRegNames(fp, _register);
  1140   // Declare an array containing the machine register encoding values
  1141   declareRegEncodes(fp, _register);
  1143   // Generate declarations for the total number of operands
  1144   fprintf(fp,"\n");
  1145   fprintf(fp,"// Total number of operands defined in architecture definition\n");
  1146   int num_operands = 0;
  1147   OperandForm *op;
  1148   for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
  1149     // Ensure this is a machine-world instruction
  1150     if (op->ideal_only()) continue;
  1152     ++num_operands;
  1154   int first_operand_class = num_operands;
  1155   OpClassForm *opc;
  1156   for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  1157     // Ensure this is a machine-world instruction
  1158     if (opc->ideal_only()) continue;
  1160     ++num_operands;
  1162   fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
  1163   fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
  1164   fprintf(fp,"\n");
  1165   // Generate declarations for the total number of instructions
  1166   fprintf(fp,"// Total number of instructions defined in architecture definition\n");
  1167   fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
  1170   // Generate Machine Classes for each operand defined in AD file
  1171   fprintf(fp,"\n");
  1172   fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
  1173   // Iterate through all operands
  1174   _operands.reset();
  1175   OperandForm *oper;
  1176   for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
  1177     // Ensure this is a machine-world instruction
  1178     if (oper->ideal_only() ) continue;
  1179     // The declaration of labelOper is in machine-independent file: machnode
  1180     if ( strcmp(oper->_ident,"label")  == 0 ) continue;
  1181     // The declaration of methodOper is in machine-independent file: machnode
  1182     if ( strcmp(oper->_ident,"method") == 0 ) continue;
  1184     // Build class definition for this operand
  1185     fprintf(fp,"\n");
  1186     fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
  1187     fprintf(fp,"private:\n");
  1188     // Operand definitions that depend upon number of input edges
  1190       uint num_edges = oper->num_edges(_globalNames);
  1191       if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
  1192         fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
  1193               num_edges );
  1195       if( num_edges > 0 ) {
  1196         in_RegMask(fp);
  1200     // Support storing constants inside the MachOper
  1201     declareConstStorage(fp,_globalNames,oper);
  1203     // Support storage of the condition codes
  1204     if( oper->is_ideal_bool() ) {
  1205       fprintf(fp,"  virtual int ccode() const { \n");
  1206       fprintf(fp,"    switch (_c0) {\n");
  1207       fprintf(fp,"    case  BoolTest::eq : return equal();\n");
  1208       fprintf(fp,"    case  BoolTest::gt : return greater();\n");
  1209       fprintf(fp,"    case  BoolTest::lt : return less();\n");
  1210       fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
  1211       fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
  1212       fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
  1213       fprintf(fp,"    case  BoolTest::overflow : return overflow();\n");
  1214       fprintf(fp,"    case  BoolTest::no_overflow: return no_overflow();\n");
  1215       fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
  1216       fprintf(fp,"    }\n");
  1217       fprintf(fp,"  };\n");
  1220     // Support storage of the condition codes
  1221     if( oper->is_ideal_bool() ) {
  1222       fprintf(fp,"  virtual void negate() { \n");
  1223       fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
  1224       fprintf(fp,"  };\n");
  1227     // Declare constructor.
  1228     // Parameters start with condition code, then all other constants
  1229     //
  1230     // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
  1231     // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
  1232     //
  1233     Form::DataType constant_type = oper->simple_type(_globalNames);
  1234     defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
  1235                       oper->_components, oper->is_ideal_bool(),
  1236                       constant_type, _globalNames);
  1238     // Clone function
  1239     fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
  1241     // Support setting a spill offset into a constant operand.
  1242     // We only support setting an 'int' offset, while in the
  1243     // LP64 build spill offsets are added with an AddP which
  1244     // requires a long constant.  Thus we don't support spilling
  1245     // in frames larger than 4Gig.
  1246     if( oper->has_conI(_globalNames) ||
  1247         oper->has_conL(_globalNames) )
  1248       fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
  1250     // virtual functions for encoding and format
  1251     //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
  1252     //            (oper->_encrule)?(oper->_encrule->_encrule):"");
  1253     // Check the interface type, and generate the correct query functions
  1254     // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
  1256     fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
  1257             machOperEnum(oper->_ident));
  1259     // virtual function to look up ideal return type of machine instruction
  1260     //
  1261     // (1)  virtual const Type    *type() const { return .....; }
  1262     //
  1263     if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
  1264         (oper->_matrule->_rChild == NULL)) {
  1265       unsigned int position = 0;
  1266       const char  *opret, *opname, *optype;
  1267       oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
  1268       fprintf(fp,"  virtual const Type    *type() const {");
  1269       const char *type = getIdealType(optype);
  1270       if( type != NULL ) {
  1271         Form::DataType data_type = oper->is_base_constant(_globalNames);
  1272         // Check if we are an ideal pointer type
  1273         if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) {
  1274           // Return the ideal type we already have: <TypePtr *>
  1275           fprintf(fp," return _c0;");
  1276         } else {
  1277           // Return the appropriate bottom type
  1278           fprintf(fp," return %s;", getIdealType(optype));
  1280       } else {
  1281         fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
  1283       fprintf(fp," }\n");
  1284     } else {
  1285       // Check for user-defined stack slots, based upon sRegX
  1286       Form::DataType data_type = oper->is_user_name_for_sReg();
  1287       if( data_type != Form::none ){
  1288         const char *type = NULL;
  1289         switch( data_type ) {
  1290         case Form::idealI: type = "TypeInt::INT";   break;
  1291         case Form::idealP: type = "TypePtr::BOTTOM";break;
  1292         case Form::idealF: type = "Type::FLOAT";    break;
  1293         case Form::idealD: type = "Type::DOUBLE";   break;
  1294         case Form::idealL: type = "TypeLong::LONG"; break;
  1295         case Form::none: // fall through
  1296         default:
  1297           assert( false, "No support for this type of stackSlot");
  1299         fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
  1304     //
  1305     // virtual functions for defining the encoding interface.
  1306     //
  1307     // Access the linearized ideal register mask,
  1308     // map to physical register encoding
  1309     if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
  1310       // Just use the default virtual 'reg' call
  1311     } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
  1312       // Special handling for operand 'sReg', a Stack Slot Register.
  1313       // Map linearized ideal register mask to stack slot number
  1314       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
  1315       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
  1316       fprintf(fp,"  }\n");
  1317       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
  1318       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  1319       fprintf(fp,"  }\n");
  1322     // Output the operand specific access functions used by an enc_class
  1323     // These are only defined when we want to override the default virtual func
  1324     if (oper->_interface != NULL) {
  1325       fprintf(fp,"\n");
  1326       // Check if it is a Memory Interface
  1327       if ( oper->_interface->is_MemInterface() != NULL ) {
  1328         MemInterface *mem_interface = oper->_interface->is_MemInterface();
  1329         const char *base = mem_interface->_base;
  1330         if( base != NULL ) {
  1331           define_oper_interface(fp, *oper, _globalNames, "base", base);
  1333         char *index = mem_interface->_index;
  1334         if( index != NULL ) {
  1335           define_oper_interface(fp, *oper, _globalNames, "index", index);
  1337         const char *scale = mem_interface->_scale;
  1338         if( scale != NULL ) {
  1339           define_oper_interface(fp, *oper, _globalNames, "scale", scale);
  1341         const char *disp = mem_interface->_disp;
  1342         if( disp != NULL ) {
  1343           define_oper_interface(fp, *oper, _globalNames, "disp", disp);
  1344           oper->disp_is_oop(fp, _globalNames);
  1346         if( oper->stack_slots_only(_globalNames) ) {
  1347           // should not call this:
  1348           fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
  1349         } else if ( disp != NULL ) {
  1350           define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
  1352       } // end Memory Interface
  1353       // Check if it is a Conditional Interface
  1354       else if (oper->_interface->is_CondInterface() != NULL) {
  1355         CondInterface *cInterface = oper->_interface->is_CondInterface();
  1356         const char *equal = cInterface->_equal;
  1357         if( equal != NULL ) {
  1358           define_oper_interface(fp, *oper, _globalNames, "equal", equal);
  1360         const char *not_equal = cInterface->_not_equal;
  1361         if( not_equal != NULL ) {
  1362           define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
  1364         const char *less = cInterface->_less;
  1365         if( less != NULL ) {
  1366           define_oper_interface(fp, *oper, _globalNames, "less", less);
  1368         const char *greater_equal = cInterface->_greater_equal;
  1369         if( greater_equal != NULL ) {
  1370           define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
  1372         const char *less_equal = cInterface->_less_equal;
  1373         if( less_equal != NULL ) {
  1374           define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
  1376         const char *greater = cInterface->_greater;
  1377         if( greater != NULL ) {
  1378           define_oper_interface(fp, *oper, _globalNames, "greater", greater);
  1380         const char *overflow = cInterface->_overflow;
  1381         if( overflow != NULL ) {
  1382           define_oper_interface(fp, *oper, _globalNames, "overflow", overflow);
  1384         const char *no_overflow = cInterface->_no_overflow;
  1385         if( no_overflow != NULL ) {
  1386           define_oper_interface(fp, *oper, _globalNames, "no_overflow", no_overflow);
  1388       } // end Conditional Interface
  1389       // Check if it is a Constant Interface
  1390       else if (oper->_interface->is_ConstInterface() != NULL ) {
  1391         assert( oper->num_consts(_globalNames) == 1,
  1392                 "Must have one constant when using CONST_INTER encoding");
  1393         if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
  1394           // Access the locally stored constant
  1395           fprintf(fp,"  virtual intptr_t       constant() const {");
  1396           fprintf(fp,   " return (intptr_t)_c0;");
  1397           fprintf(fp,"  }\n");
  1399         else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
  1400           // Access the locally stored constant
  1401           fprintf(fp,"  virtual intptr_t       constant() const {");
  1402           fprintf(fp,   " return _c0->get_con();");
  1403           fprintf(fp, " }\n");
  1404           // Generate query to determine if this pointer is an oop
  1405           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
  1406           fprintf(fp,   " return _c0->reloc();");
  1407           fprintf(fp, " }\n");
  1409         else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
  1410           // Access the locally stored constant
  1411           fprintf(fp,"  virtual intptr_t       constant() const {");
  1412           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
  1413           fprintf(fp, " }\n");
  1414           // Generate query to determine if this pointer is an oop
  1415           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
  1416           fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
  1417           fprintf(fp, " }\n");
  1419         else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) {
  1420           // Access the locally stored constant
  1421           fprintf(fp,"  virtual intptr_t       constant() const {");
  1422           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
  1423           fprintf(fp, " }\n");
  1424           // Generate query to determine if this pointer is an oop
  1425           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
  1426           fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
  1427           fprintf(fp, " }\n");
  1429         else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
  1430           fprintf(fp,"  virtual intptr_t       constant() const {");
  1431           // We don't support addressing modes with > 4Gig offsets.
  1432           // Truncate to int.
  1433           fprintf(fp,   "  return (intptr_t)_c0;");
  1434           fprintf(fp, " }\n");
  1435           fprintf(fp,"  virtual jlong          constantL() const {");
  1436           fprintf(fp,   " return _c0;");
  1437           fprintf(fp, " }\n");
  1439         else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
  1440           fprintf(fp,"  virtual intptr_t       constant() const {");
  1441           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
  1442           fprintf(fp, " }\n");
  1443           fprintf(fp,"  virtual jfloat         constantF() const {");
  1444           fprintf(fp,   " return (jfloat)_c0;");
  1445           fprintf(fp, " }\n");
  1447         else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
  1448           fprintf(fp,"  virtual intptr_t       constant() const {");
  1449           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
  1450           fprintf(fp, " }\n");
  1451           fprintf(fp,"  virtual jdouble        constantD() const {");
  1452           fprintf(fp,   " return _c0;");
  1453           fprintf(fp, " }\n");
  1456       else if (oper->_interface->is_RegInterface() != NULL) {
  1457         // make sure that a fixed format string isn't used for an
  1458         // operand which might be assiged to multiple registers.
  1459         // Otherwise the opto assembly output could be misleading.
  1460         if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
  1461           syntax_err(oper->_linenum,
  1462                      "Only bound registers can have fixed formats: %s\n",
  1463                      oper->_ident);
  1466       else {
  1467         assert( false, "ShouldNotReachHere();");
  1471     fprintf(fp,"\n");
  1472     // // Currently all XXXOper::hash() methods are identical (990820)
  1473     // declare_hash(fp);
  1474     // // Currently all XXXOper::Cmp() methods are identical (990820)
  1475     // declare_cmp(fp);
  1477     // Do not place dump_spec() and Name() into PRODUCT code
  1478     // int_format and ext_format are not needed in PRODUCT code either
  1479     fprintf(fp, "#ifndef PRODUCT\n");
  1481     // Declare int_format() and ext_format()
  1482     gen_oper_format(fp, _globalNames, *oper);
  1484     // Machine independent print functionality for debugging
  1485     // IF we have constants, create a dump_spec function for the derived class
  1486     //
  1487     // (1)  virtual void           dump_spec() const {
  1488     // (2)    st->print("#%d", _c#);        // Constant != ConP
  1489     //  OR    _c#->dump_on(st);             // Type ConP
  1490     //  ...
  1491     // (3)  }
  1492     uint num_consts = oper->num_consts(_globalNames);
  1493     if( num_consts > 0 ) {
  1494       // line (1)
  1495       fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
  1496       // generate format string for st->print
  1497       // Iterate over the component list & spit out the right thing
  1498       uint i = 0;
  1499       const char *type = oper->ideal_type(_globalNames);
  1500       Component  *comp;
  1501       oper->_components.reset();
  1502       if ((comp = oper->_components.iter()) == NULL) {
  1503         assert(num_consts == 1, "Bad component list detected.\n");
  1504         i = dump_spec_constant( fp, type, i, oper );
  1505         // Check that type actually matched
  1506         assert( i != 0, "Non-constant operand lacks component list.");
  1507       } // end if NULL
  1508       else {
  1509         // line (2)
  1510         // dump all components
  1511         oper->_components.reset();
  1512         while((comp = oper->_components.iter()) != NULL) {
  1513           type = comp->base_type(_globalNames);
  1514           i = dump_spec_constant( fp, type, i, NULL );
  1517       // finish line (3)
  1518       fprintf(fp,"  }\n");
  1521     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
  1522             oper->_ident);
  1524     fprintf(fp,"#endif\n");
  1526     // Close definition of this XxxMachOper
  1527     fprintf(fp,"};\n");
  1531   // Generate Machine Classes for each instruction defined in AD file
  1532   fprintf(fp,"\n");
  1533   fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
  1534   declare_pipe_classes(fp);
  1536   // Generate Machine Classes for each instruction defined in AD file
  1537   fprintf(fp,"\n");
  1538   fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
  1539   _instructions.reset();
  1540   InstructForm *instr;
  1541   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  1542     // Ensure this is a machine-world instruction
  1543     if ( instr->ideal_only() ) continue;
  1545     // Build class definition for this instruction
  1546     fprintf(fp,"\n");
  1547     fprintf(fp,"class %sNode : public %s { \n",
  1548             instr->_ident, instr->mach_base_class(_globalNames) );
  1549     fprintf(fp,"private:\n");
  1550     fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
  1551     if ( instr->is_ideal_jump() ) {
  1552       fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
  1554     fprintf(fp,"public:\n");
  1555     fprintf(fp,"  MachOper *opnd_array(uint operand_index) const {\n");
  1556     fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
  1557     fprintf(fp,"    return _opnd_array[operand_index];\n");
  1558     fprintf(fp,"  }\n");
  1559     fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) {\n");
  1560     fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
  1561     fprintf(fp,"    _opnd_array[operand_index] = operand;\n");
  1562     fprintf(fp,"  }\n");
  1563     fprintf(fp,"private:\n");
  1564     if ( instr->is_ideal_jump() ) {
  1565       fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
  1566       fprintf(fp,"    _index2label.at_put_grow(index_num, blockLabel);\n");
  1567       fprintf(fp,"  }\n");
  1569     if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
  1570       fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
  1573     out_RegMask(fp);                      // output register mask
  1574     fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
  1575             instr->_ident);
  1577     // If this instruction contains a labelOper
  1578     // Declare Node::methods that set operand Label's contents
  1579     int label_position = instr->label_position();
  1580     if( label_position != -1 ) {
  1581       // Set/Save the label, stored in labelOper::_branch_label
  1582       fprintf(fp,"  virtual void           label_set( Label* label, uint block_num );\n");
  1583       fprintf(fp,"  virtual void           save_label( Label** label, uint* block_num );\n");
  1586     // If this instruction contains a methodOper
  1587     // Declare Node::methods that set operand method's contents
  1588     int method_position = instr->method_position();
  1589     if( method_position != -1 ) {
  1590       // Set the address method, stored in methodOper::_method
  1591       fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
  1594     // virtual functions for attributes
  1595     //
  1596     // Each instruction attribute results in a virtual call of same name.
  1597     // The ins_cost is not handled here.
  1598     Attribute *attr = instr->_attribs;
  1599     bool avoid_back_to_back = false;
  1600     while (attr != NULL) {
  1601       if (strcmp(attr->_ident,"ins_cost") &&
  1602           strcmp(attr->_ident,"ins_short_branch")) {
  1603         fprintf(fp,"          int            %s() const { return %s; }\n",
  1604                 attr->_ident, attr->_val);
  1606       // Check value for ins_avoid_back_to_back, and if it is true (1), set the flag
  1607       if (!strcmp(attr->_ident,"ins_avoid_back_to_back") && attr->int_val(*this) != 0)
  1608         avoid_back_to_back = true;
  1609       attr = (Attribute *)attr->_next;
  1612     // virtual functions for encode and format
  1614     // Virtual function for evaluating the constant.
  1615     if (instr->is_mach_constant()) {
  1616       fprintf(fp,"  virtual void           eval_constant(Compile* C);\n");
  1619     // Output the opcode function and the encode function here using the
  1620     // encoding class information in the _insencode slot.
  1621     if ( instr->_insencode ) {
  1622       fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
  1625     // virtual function for getting the size of an instruction
  1626     if ( instr->_size ) {
  1627       fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
  1630     // Return the top-level ideal opcode.
  1631     // Use MachNode::ideal_Opcode() for nodes based on MachNode class
  1632     // if the ideal_Opcode == Op_Node.
  1633     if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
  1634          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
  1635       fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
  1636             instr->ideal_Opcode(_globalNames) );
  1639     // Allow machine-independent optimization, invert the sense of the IF test
  1640     if( instr->is_ideal_if() ) {
  1641       fprintf(fp,"  virtual void           negate() { \n");
  1642       // Identify which operand contains the negate(able) ideal condition code
  1643       int   idx = 0;
  1644       instr->_components.reset();
  1645       for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
  1646         // Check that component is an operand
  1647         Form *form = (Form*)_globalNames[comp->_type];
  1648         OperandForm *opForm = form ? form->is_operand() : NULL;
  1649         if( opForm == NULL ) continue;
  1651         // Lookup the position of the operand in the instruction.
  1652         if( opForm->is_ideal_bool() ) {
  1653           idx = instr->operand_position(comp->_name, comp->_usedef);
  1654           assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
  1655           break;
  1658       fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
  1659       fprintf(fp,"    _prob = 1.0f - _prob;\n");
  1660       fprintf(fp,"  };\n");
  1664     // Identify which input register matches the input register.
  1665     uint  matching_input = instr->two_address(_globalNames);
  1667     // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
  1668     if( matching_input != 0 ) {
  1669       fprintf(fp,"  virtual uint           two_adr() const  ");
  1670       fprintf(fp,"{ return oper_input_base()");
  1671       for( uint i = 2; i <= matching_input; i++ )
  1672         fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
  1673       fprintf(fp,"; }\n");
  1676     // Declare cisc_version, if applicable
  1677     //   MachNode *cisc_version( int offset /* ,... */ );
  1678     instr->declare_cisc_version(*this, fp);
  1680     // If there is an explicit peephole rule, build it
  1681     if ( instr->peepholes() != NULL ) {
  1682       fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
  1685     // Output the declaration for number of relocation entries
  1686     if ( instr->reloc(_globalNames) != 0 ) {
  1687       fprintf(fp,"  virtual int            reloc() const;\n");
  1690     if (instr->alignment() != 1) {
  1691       fprintf(fp,"  virtual int            alignment_required() const { return %d; }\n", instr->alignment());
  1692       fprintf(fp,"  virtual int            compute_padding(int current_offset) const;\n");
  1695     // Starting point for inputs matcher wants.
  1696     // Use MachNode::oper_input_base() for nodes based on MachNode class
  1697     // if the base == 1.
  1698     if ( instr->oper_input_base(_globalNames) != 1 ||
  1699          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
  1700       fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
  1701             instr->oper_input_base(_globalNames));
  1704     // Make the constructor and following methods 'public:'
  1705     fprintf(fp,"public:\n");
  1707     // Constructor
  1708     if ( instr->is_ideal_jump() ) {
  1709       fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
  1710     } else {
  1711       fprintf(fp,"  %sNode() { ", instr->_ident);
  1712       if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
  1713         fprintf(fp,"_cisc_RegMask = NULL; ");
  1717     fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
  1719     bool node_flags_set = false;
  1720     // flag: if this instruction matches an ideal 'Copy*' node
  1721     if ( instr->is_ideal_copy() != 0 ) {
  1722       fprintf(fp,"init_flags(Flag_is_Copy");
  1723       node_flags_set = true;
  1726     // Is an instruction is a constant?  If so, get its type
  1727     Form::DataType  data_type;
  1728     const char     *opType = NULL;
  1729     const char     *result = NULL;
  1730     data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
  1731     // Check if this instruction is a constant
  1732     if ( data_type != Form::none ) {
  1733       if ( node_flags_set ) {
  1734         fprintf(fp," | Flag_is_Con");
  1735       } else {
  1736         fprintf(fp,"init_flags(Flag_is_Con");
  1737         node_flags_set = true;
  1741     // flag: if this instruction is cisc alternate
  1742     if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
  1743       if ( node_flags_set ) {
  1744         fprintf(fp," | Flag_is_cisc_alternate");
  1745       } else {
  1746         fprintf(fp,"init_flags(Flag_is_cisc_alternate");
  1747         node_flags_set = true;
  1751     // flag: if this instruction has short branch form
  1752     if ( instr->has_short_branch_form() ) {
  1753       if ( node_flags_set ) {
  1754         fprintf(fp," | Flag_may_be_short_branch");
  1755       } else {
  1756         fprintf(fp,"init_flags(Flag_may_be_short_branch");
  1757         node_flags_set = true;
  1761     // flag: if this instruction should not be generated back to back.
  1762     if ( avoid_back_to_back ) {
  1763       if ( node_flags_set ) {
  1764         fprintf(fp," | Flag_avoid_back_to_back");
  1765       } else {
  1766         fprintf(fp,"init_flags(Flag_avoid_back_to_back");
  1767         node_flags_set = true;
  1771     // Check if machine instructions that USE memory, but do not DEF memory,
  1772     // depend upon a node that defines memory in machine-independent graph.
  1773     if ( instr->needs_anti_dependence_check(_globalNames) ) {
  1774       if ( node_flags_set ) {
  1775         fprintf(fp," | Flag_needs_anti_dependence_check");
  1776       } else {
  1777         fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
  1778         node_flags_set = true;
  1782     // flag: if this instruction is implemented with a call
  1783     if ( instr->_has_call ) {
  1784       if ( node_flags_set ) {
  1785         fprintf(fp," | Flag_has_call");
  1786       } else {
  1787         fprintf(fp,"init_flags(Flag_has_call");
  1788         node_flags_set = true;
  1792     if ( node_flags_set ) {
  1793       fprintf(fp,"); ");
  1796     fprintf(fp,"}\n");
  1798     // size_of, used by base class's clone to obtain the correct size.
  1799     fprintf(fp,"  virtual uint           size_of() const {");
  1800     fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
  1801     fprintf(fp, " }\n");
  1803     // Virtual methods which are only generated to override base class
  1804     if( instr->expands() || instr->needs_projections() ||
  1805         instr->has_temps() ||
  1806         instr->is_mach_constant() ||
  1807         instr->_matrule != NULL &&
  1808         instr->num_opnds() != instr->num_unique_opnds() ) {
  1809       fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list, Node* mem);\n");
  1812     if (instr->is_pinned(_globalNames)) {
  1813       fprintf(fp,"  virtual bool           pinned() const { return ");
  1814       if (instr->is_parm(_globalNames)) {
  1815         fprintf(fp,"_in[0]->pinned();");
  1816       } else {
  1817         fprintf(fp,"true;");
  1819       fprintf(fp," }\n");
  1821     if (instr->is_projection(_globalNames)) {
  1822       fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
  1824     if ( instr->num_post_match_opnds() != 0
  1825          || instr->is_chain_of_constant(_globalNames) ) {
  1826       fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
  1828     if ( instr->rematerialize(_globalNames, get_registers()) ) {
  1829       fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
  1832     // Declare short branch methods, if applicable
  1833     instr->declare_short_branch_methods(fp);
  1835     // See if there is an "ins_pipe" declaration for this instruction
  1836     if (instr->_ins_pipe) {
  1837       fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
  1838       fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
  1841     // Generate virtual function for MachNodeX::bottom_type when necessary
  1842     //
  1843     // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
  1844     // or else alias analysis on the matched graph may produce bad code.
  1845     // Moreover, the aliasing decisions made on machine-node graph must be
  1846     // no less accurate than those made on the ideal graph, or else the graph
  1847     // may fail to schedule.  (Reason:  Memory ops which are reordered in
  1848     // the ideal graph might look interdependent in the machine graph,
  1849     // thereby removing degrees of scheduling freedom that the optimizer
  1850     // assumed would be available.)
  1851     //
  1852     // %%% We should handle many of these cases with an explicit ADL clause:
  1853     // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
  1854     if( data_type != Form::none ) {
  1855       // A constant's bottom_type returns a Type containing its constant value
  1857       // !!!!!
  1858       // Convert all ints, floats, ... to machine-independent TypeXs
  1859       // as is done for pointers
  1860       //
  1861       // Construct appropriate constant type containing the constant value.
  1862       fprintf(fp,"  virtual const class Type *bottom_type() const {\n");
  1863       switch( data_type ) {
  1864       case Form::idealI:
  1865         fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
  1866         break;
  1867       case Form::idealP:
  1868       case Form::idealN:
  1869       case Form::idealNKlass:
  1870         fprintf(fp,"    return  opnd_array(1)->type();\n");
  1871         break;
  1872       case Form::idealD:
  1873         fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
  1874         break;
  1875       case Form::idealF:
  1876         fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
  1877         break;
  1878       case Form::idealL:
  1879         fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
  1880         break;
  1881       default:
  1882         assert( false, "Unimplemented()" );
  1883         break;
  1885       fprintf(fp,"  };\n");
  1887 /*    else if ( instr->_matrule && instr->_matrule->_rChild &&
  1888         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
  1889         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
  1890       // !!!!! !!!!!
  1891       // Provide explicit bottom type for conversions to int
  1892       // On Intel the result operand is a stackSlot, untyped.
  1893       fprintf(fp,"  virtual const class Type *bottom_type() const {");
  1894       fprintf(fp,   " return  TypeInt::INT;");
  1895       fprintf(fp, " };\n");
  1896     }*/
  1897     else if( instr->is_ideal_copy() &&
  1898               !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
  1899       // !!!!!
  1900       // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
  1901       fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
  1903     else if( instr->is_ideal_loadPC() ) {
  1904       // LoadPCNode provides the return address of a call to native code.
  1905       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
  1906       // since it is a pointer to an internal VM location and must have a zero offset.
  1907       // Allocation detects derived pointers, in part, by their non-zero offsets.
  1908       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
  1910     else if( instr->is_ideal_box() ) {
  1911       // BoxNode provides the address of a stack slot.
  1912       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
  1913       // This prevent s insert_anti_dependencies from complaining. It will
  1914       // complain if it sees that the pointer base is TypePtr::BOTTOM since
  1915       // it doesn't understand what that might alias.
  1916       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
  1918     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
  1919       int offset = 1;
  1920       // Special special hack to see if the Cmp? has been incorporated in the conditional move
  1921       MatchNode *rl = instr->_matrule->_rChild->_lChild;
  1922       if( rl && !strcmp(rl->_opType, "Binary") ) {
  1923           MatchNode *rlr = rl->_rChild;
  1924           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
  1925             offset = 2;
  1927       // Special hack for ideal CMoveP; ideal type depends on inputs
  1928       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
  1929         offset, offset+1, offset+1);
  1931     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
  1932       int offset = 1;
  1933       // Special special hack to see if the Cmp? has been incorporated in the conditional move
  1934       MatchNode *rl = instr->_matrule->_rChild->_lChild;
  1935       if( rl && !strcmp(rl->_opType, "Binary") ) {
  1936           MatchNode *rlr = rl->_rChild;
  1937           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
  1938             offset = 2;
  1940       // Special hack for ideal CMoveN; ideal type depends on inputs
  1941       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
  1942         offset, offset+1, offset+1);
  1944     else if (instr->is_tls_instruction()) {
  1945       // Special hack for tlsLoadP
  1946       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
  1948     else if ( instr->is_ideal_if() ) {
  1949       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
  1951     else if ( instr->is_ideal_membar() ) {
  1952       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
  1955     // Check where 'ideal_type' must be customized
  1956     /*
  1957     if ( instr->_matrule && instr->_matrule->_rChild &&
  1958         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
  1959         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
  1960       fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
  1961     }*/
  1963     // Analyze machine instructions that either USE or DEF memory.
  1964     int memory_operand = instr->memory_operand(_globalNames);
  1965     // Some guys kill all of memory
  1966     if ( instr->is_wide_memory_kill(_globalNames) ) {
  1967       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  1969     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1970       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  1971         fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
  1973       fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
  1976     fprintf(fp, "#ifndef PRODUCT\n");
  1978     // virtual function for generating the user's assembler output
  1979     gen_inst_format(fp, _globalNames,*instr);
  1981     // Machine independent print functionality for debugging
  1982     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
  1983             instr->_ident);
  1985     fprintf(fp, "#endif\n");
  1987     // Close definition of this XxxMachNode
  1988     fprintf(fp,"};\n");
  1989   };
  1993 void ArchDesc::defineStateClass(FILE *fp) {
  1994   static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
  1995   static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
  1997   fprintf(fp,"\n");
  1998   fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
  1999   fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
  2000   fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
  2001   fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
  2002   fprintf(fp,"#define STATE__VALID(index) ");
  2003   fprintf(fp,"    (%s)\n", state__valid);
  2004   fprintf(fp,"\n");
  2005   fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
  2006   fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
  2007   fprintf(fp,"\n");
  2008   fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
  2009   fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
  2010   fprintf(fp,"\n");
  2011   fprintf(fp,"#define STATE__SET_VALID(index) ");
  2012   fprintf(fp,"  (%s)\n", state__set_valid);
  2013   fprintf(fp,"\n");
  2014   fprintf(fp,
  2015           "//---------------------------State-------------------------------------------\n");
  2016   fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
  2017   fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
  2018   fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
  2019   fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
  2020   fprintf(fp,"// two for convenience, but this could change).\n");
  2021   fprintf(fp,"class State : public ResourceObj {\n");
  2022   fprintf(fp,"public:\n");
  2023   fprintf(fp,"  int    _id;         // State identifier\n");
  2024   fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
  2025   fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
  2026   fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
  2027   fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
  2028   fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
  2029   fprintf(fp,"\n");
  2030   fprintf(fp,"  State(void);                      // Constructor\n");
  2031   fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
  2032   fprintf(fp,"\n");
  2033   fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
  2034   fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
  2035   fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
  2036   fprintf(fp,"\n");
  2037   fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
  2038   fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
  2039   fprintf(fp,"\n");
  2040   fprintf(fp,"  // Access function for _valid bit vector\n");
  2041   fprintf(fp,"  bool valid(uint index) {\n");
  2042   fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
  2043   fprintf(fp,"  }\n");
  2044   fprintf(fp,"\n");
  2045   fprintf(fp,"  // Set function for _valid bit vector\n");
  2046   fprintf(fp,"  void set_valid(uint index) {\n");
  2047   fprintf(fp,"    STATE__SET_VALID(index);\n");
  2048   fprintf(fp,"  }\n");
  2049   fprintf(fp,"\n");
  2050   fprintf(fp,"#ifndef PRODUCT\n");
  2051   fprintf(fp,"  void dump();                // Debugging prints\n");
  2052   fprintf(fp,"  void dump(int depth);\n");
  2053   fprintf(fp,"#endif\n");
  2054   if (_dfa_small) {
  2055     // Generate the routine name we'll need
  2056     for (int i = 1; i < _last_opcode; i++) {
  2057       if (_mlistab[i] == NULL) continue;
  2058       fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
  2061   fprintf(fp,"};\n");
  2062   fprintf(fp,"\n");
  2063   fprintf(fp,"\n");
  2068 //---------------------------buildMachOperEnum---------------------------------
  2069 // Build enumeration for densely packed operands.
  2070 // This enumeration is used to index into the arrays in the State objects
  2071 // that indicate cost and a successfull rule match.
  2073 // Information needed to generate the ReduceOp mapping for the DFA
  2074 class OutputMachOperands : public OutputMap {
  2075 public:
  2076   OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  2077     : OutputMap(hpp, cpp, globals, AD, "MachOperands") {};
  2079   void declaration() { }
  2080   void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
  2081   void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
  2082                        OutputMap::closing();
  2084   void map(OpClassForm &opc)  {
  2085     const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident);
  2086     fprintf(_cpp, "  %s", opc_ident_to_upper);
  2087     delete[] opc_ident_to_upper;
  2089   void map(OperandForm &oper) {
  2090     const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident);
  2091     fprintf(_cpp, "  %s", oper_ident_to_upper);
  2092     delete[] oper_ident_to_upper;
  2094   void map(char *name) {
  2095     const char* name_to_upper = _AD.machOperEnum(name);
  2096     fprintf(_cpp, "  %s", name_to_upper);
  2097     delete[] name_to_upper;
  2100   bool do_instructions()      { return false; }
  2101   void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
  2102 };
  2105 void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
  2106   // Construct the table for MachOpcodes
  2107   OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
  2108   build_map(output_mach_operands);
  2112 //---------------------------buildMachEnum----------------------------------
  2113 // Build enumeration for all MachOpers and all MachNodes
  2115 // Information needed to generate the ReduceOp mapping for the DFA
  2116 class OutputMachOpcodes : public OutputMap {
  2117   int begin_inst_chain_rule;
  2118   int end_inst_chain_rule;
  2119   int begin_rematerialize;
  2120   int end_rematerialize;
  2121   int end_instructions;
  2122 public:
  2123   OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  2124     : OutputMap(hpp, cpp, globals, AD, "MachOpcodes"),
  2125       begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
  2126   {};
  2128   void declaration() { }
  2129   void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
  2130   void closing()     {
  2131     if( begin_inst_chain_rule != -1 )
  2132       fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
  2133     if( end_inst_chain_rule   != -1 )
  2134       fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
  2135     if( begin_rematerialize   != -1 )
  2136       fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
  2137     if( end_rematerialize     != -1 )
  2138       fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
  2139     // always execute since do_instructions() is true, and avoids trailing comma
  2140     fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
  2141     OutputMap::closing();
  2143   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
  2144   void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
  2145   void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
  2146                                 else      fprintf(_cpp, "  0"); }
  2147   void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
  2149   void record_position(OutputMap::position place, int idx ) {
  2150     switch(place) {
  2151     case OutputMap::BEGIN_INST_CHAIN_RULES :
  2152       begin_inst_chain_rule = idx;
  2153       break;
  2154     case OutputMap::END_INST_CHAIN_RULES :
  2155       end_inst_chain_rule   = idx;
  2156       break;
  2157     case OutputMap::BEGIN_REMATERIALIZE :
  2158       begin_rematerialize   = idx;
  2159       break;
  2160     case OutputMap::END_REMATERIALIZE :
  2161       end_rematerialize     = idx;
  2162       break;
  2163     case OutputMap::END_INSTRUCTIONS :
  2164       end_instructions      = idx;
  2165       break;
  2166     default:
  2167       break;
  2170 };
  2173 void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
  2174   // Construct the table for MachOpcodes
  2175   OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
  2176   build_map(output_mach_opcodes);
  2180 // Generate an enumeration of the pipeline states, and both
  2181 // the functional units (resources) and the masks for
  2182 // specifying resources
  2183 void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
  2184   int stagelen = (int)strlen("undefined");
  2185   int stagenum = 0;
  2187   if (_pipeline) {              // Find max enum string length
  2188     const char *stage;
  2189     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
  2190       int len = (int)strlen(stage);
  2191       if (stagelen < len) stagelen = len;
  2195   // Generate a list of stages
  2196   fprintf(fp_hpp, "\n");
  2197   fprintf(fp_hpp, "// Pipeline Stages\n");
  2198   fprintf(fp_hpp, "enum machPipelineStages {\n");
  2199   fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
  2201   if( _pipeline ) {
  2202     const char *stage;
  2203     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
  2204       fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
  2207   fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
  2208   fprintf(fp_hpp, "};\n");
  2210   fprintf(fp_hpp, "\n");
  2211   fprintf(fp_hpp, "// Pipeline Resources\n");
  2212   fprintf(fp_hpp, "enum machPipelineResources {\n");
  2213   int rescount = 0;
  2215   if( _pipeline ) {
  2216     const char *resource;
  2217     int reslen = 0;
  2219     // Generate a list of resources, and masks
  2220     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2221       int len = (int)strlen(resource);
  2222       if (reslen < len)
  2223         reslen = len;
  2226     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2227       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
  2228       int mask = resform->mask();
  2229       if ((mask & (mask-1)) == 0)
  2230         fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
  2232     fprintf(fp_hpp, "\n");
  2233     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2234       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
  2235       fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
  2237     fprintf(fp_hpp, "\n");
  2239   fprintf(fp_hpp, "   resource_count = %d\n", rescount);
  2240   fprintf(fp_hpp, "};\n");

mercurial