src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Tue, 24 Dec 2013 11:48:39 -0800

author
mikael
date
Tue, 24 Dec 2013 11:48:39 -0800
changeset 6198
55fb97c4c58d
parent 6039
bd3237e0e18d
child 6223
add2caa66e7e
permissions
-rw-r--r--

8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Summary: Copyright year updated for files modified during 2013
Reviewed-by: twisti, iveresov

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #ifndef CC_INTERP
    50 #ifndef FAST_DISPATCH
    51 #define FAST_DISPATCH 1
    52 #endif
    53 #undef FAST_DISPATCH
    56 // Generation of Interpreter
    57 //
    58 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    61 #define __ _masm->
    64 //----------------------------------------------------------------------------------------------------
    67 void InterpreterGenerator::save_native_result(void) {
    68   // result potentially in O0/O1: save it across calls
    69   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    71   // result potentially in F0/F1: save it across calls
    72   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    74   // save and restore any potential method result value around the unlocking operation
    75   __ stf(FloatRegisterImpl::D, F0, d_tmp);
    76 #ifdef _LP64
    77   __ stx(O0, l_tmp);
    78 #else
    79   __ std(O0, l_tmp);
    80 #endif
    81 }
    83 void InterpreterGenerator::restore_native_result(void) {
    84   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    85   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    87   // Restore any method result value
    88   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
    89 #ifdef _LP64
    90   __ ldx(l_tmp, O0);
    91 #else
    92   __ ldd(l_tmp, O0);
    93 #endif
    94 }
    96 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
    97   assert(!pass_oop || message == NULL, "either oop or message but not both");
    98   address entry = __ pc();
    99   // expression stack must be empty before entering the VM if an exception happened
   100   __ empty_expression_stack();
   101   // load exception object
   102   __ set((intptr_t)name, G3_scratch);
   103   if (pass_oop) {
   104     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
   105   } else {
   106     __ set((intptr_t)message, G4_scratch);
   107     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
   108   }
   109   // throw exception
   110   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
   111   AddressLiteral thrower(Interpreter::throw_exception_entry());
   112   __ jump_to(thrower, G3_scratch);
   113   __ delayed()->nop();
   114   return entry;
   115 }
   117 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   118   address entry = __ pc();
   119   // expression stack must be empty before entering the VM if an exception
   120   // happened
   121   __ empty_expression_stack();
   122   // load exception object
   123   __ call_VM(Oexception,
   124              CAST_FROM_FN_PTR(address,
   125                               InterpreterRuntime::throw_ClassCastException),
   126              Otos_i);
   127   __ should_not_reach_here();
   128   return entry;
   129 }
   132 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
   133   address entry = __ pc();
   134   // expression stack must be empty before entering the VM if an exception happened
   135   __ empty_expression_stack();
   136   // convention: expect aberrant index in register G3_scratch, then shuffle the
   137   // index to G4_scratch for the VM call
   138   __ mov(G3_scratch, G4_scratch);
   139   __ set((intptr_t)name, G3_scratch);
   140   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
   141   __ should_not_reach_here();
   142   return entry;
   143 }
   146 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
   147   address entry = __ pc();
   148   // expression stack must be empty before entering the VM if an exception happened
   149   __ empty_expression_stack();
   150   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   151   __ should_not_reach_here();
   152   return entry;
   153 }
   156 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
   157   address entry = __ pc();
   159 #if !defined(_LP64) && defined(COMPILER2)
   160   // All return values are where we want them, except for Longs.  C2 returns
   161   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   162   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   163   // build even if we are returning from interpreted we just do a little
   164   // stupid shuffing.
   165   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   166   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   167   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   169   if (state == ltos) {
   170     __ srl (G1,  0, O1);
   171     __ srlx(G1, 32, O0);
   172   }
   173 #endif // !_LP64 && COMPILER2
   175   // The callee returns with the stack possibly adjusted by adapter transition
   176   // We remove that possible adjustment here.
   177   // All interpreter local registers are untouched. Any result is passed back
   178   // in the O0/O1 or float registers. Before continuing, the arguments must be
   179   // popped from the java expression stack; i.e., Lesp must be adjusted.
   181   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
   183   const Register cache = G3_scratch;
   184   const Register index  = G1_scratch;
   185   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
   187   const Register flags = cache;
   188   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
   189   const Register parameter_size = flags;
   190   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
   191   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
   192   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
   193   __ dispatch_next(state, step);
   195   return entry;
   196 }
   199 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   200   address entry = __ pc();
   201   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
   202   { Label L;
   203     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   204     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
   205     __ br_null_short(Gtemp, Assembler::pt, L);
   206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   207     __ should_not_reach_here();
   208     __ bind(L);
   209   }
   210   __ dispatch_next(state, step);
   211   return entry;
   212 }
   214 // A result handler converts/unboxes a native call result into
   215 // a java interpreter/compiler result. The current frame is an
   216 // interpreter frame. The activation frame unwind code must be
   217 // consistent with that of TemplateTable::_return(...). In the
   218 // case of native methods, the caller's SP was not modified.
   219 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   220   address entry = __ pc();
   221   Register Itos_i  = Otos_i ->after_save();
   222   Register Itos_l  = Otos_l ->after_save();
   223   Register Itos_l1 = Otos_l1->after_save();
   224   Register Itos_l2 = Otos_l2->after_save();
   225   switch (type) {
   226     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   227     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   228     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   229     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   230     case T_LONG   :
   231 #ifndef _LP64
   232                     __ mov(O1, Itos_l2);  // move other half of long
   233 #endif              // ifdef or no ifdef, fall through to the T_INT case
   234     case T_INT    : __ mov(O0, Itos_i);                         break;
   235     case T_VOID   : /* nothing to do */                         break;
   236     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   237     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   238     case T_OBJECT :
   239       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
   240       __ verify_oop(Itos_i);
   241       break;
   242     default       : ShouldNotReachHere();
   243   }
   244   __ ret();                           // return from interpreter activation
   245   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   246   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
   247   return entry;
   248 }
   250 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   251   address entry = __ pc();
   252   __ push(state);
   253   __ call_VM(noreg, runtime_entry);
   254   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
   255   return entry;
   256 }
   259 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   260   address entry = __ pc();
   261   __ dispatch_next(state);
   262   return entry;
   263 }
   265 //
   266 // Helpers for commoning out cases in the various type of method entries.
   267 //
   269 // increment invocation count & check for overflow
   270 //
   271 // Note: checking for negative value instead of overflow
   272 //       so we have a 'sticky' overflow test
   273 //
   274 // Lmethod: method
   275 // ??: invocation counter
   276 //
   277 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   278   // Note: In tiered we increment either counters in MethodCounters* or in
   279   // MDO depending if we're profiling or not.
   280   const Register Rcounters = G3_scratch;
   281   Label done;
   283   if (TieredCompilation) {
   284     const int increment = InvocationCounter::count_increment;
   285     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
   286     Label no_mdo;
   287     if (ProfileInterpreter) {
   288       // If no method data exists, go to profile_continue.
   289       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
   290       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
   291       // Increment counter
   292       Address mdo_invocation_counter(G4_scratch,
   293                                      in_bytes(MethodData::invocation_counter_offset()) +
   294                                      in_bytes(InvocationCounter::counter_offset()));
   295       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
   296                                  G3_scratch, Lscratch,
   297                                  Assembler::zero, overflow);
   298       __ ba_short(done);
   299     }
   301     // Increment counter in MethodCounters*
   302     __ bind(no_mdo);
   303     Address invocation_counter(Rcounters,
   304             in_bytes(MethodCounters::invocation_counter_offset()) +
   305             in_bytes(InvocationCounter::counter_offset()));
   306     __ get_method_counters(Lmethod, Rcounters, done);
   307     __ increment_mask_and_jump(invocation_counter, increment, mask,
   308                                G4_scratch, Lscratch,
   309                                Assembler::zero, overflow);
   310     __ bind(done);
   311   } else {
   312     // Update standard invocation counters
   313     __ get_method_counters(Lmethod, Rcounters, done);
   314     __ increment_invocation_counter(Rcounters, O0, G4_scratch);
   315     if (ProfileInterpreter) {
   316       Address interpreter_invocation_counter(Rcounters,
   317             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
   318       __ ld(interpreter_invocation_counter, G4_scratch);
   319       __ inc(G4_scratch);
   320       __ st(G4_scratch, interpreter_invocation_counter);
   321     }
   323     if (ProfileInterpreter && profile_method != NULL) {
   324       // Test to see if we should create a method data oop
   325       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
   326       __ load_contents(profile_limit, G3_scratch);
   327       __ cmp_and_br_short(O0, G3_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
   329       // if no method data exists, go to profile_method
   330       __ test_method_data_pointer(*profile_method);
   331     }
   333     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
   334     __ load_contents(invocation_limit, G3_scratch);
   335     __ cmp(O0, G3_scratch);
   336     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
   337     __ delayed()->nop();
   338     __ bind(done);
   339   }
   341 }
   343 // Allocate monitor and lock method (asm interpreter)
   344 // ebx - Method*
   345 //
   346 void InterpreterGenerator::lock_method(void) {
   347   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
   349 #ifdef ASSERT
   350  { Label ok;
   351    __ btst(JVM_ACC_SYNCHRONIZED, O0);
   352    __ br( Assembler::notZero, false, Assembler::pt, ok);
   353    __ delayed()->nop();
   354    __ stop("method doesn't need synchronization");
   355    __ bind(ok);
   356   }
   357 #endif // ASSERT
   359   // get synchronization object to O0
   360   { Label done;
   361     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   362     __ btst(JVM_ACC_STATIC, O0);
   363     __ br( Assembler::zero, true, Assembler::pt, done);
   364     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
   366     __ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0);
   367     __ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0);
   368     __ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0);
   370     // lock the mirror, not the Klass*
   371     __ ld_ptr( O0, mirror_offset, O0);
   373 #ifdef ASSERT
   374     __ tst(O0);
   375     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
   376 #endif // ASSERT
   378     __ bind(done);
   379   }
   381   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
   382   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
   383   // __ untested("lock_object from method entry");
   384   __ lock_object(Lmonitors, O0);
   385 }
   388 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
   389                                                          Register Rscratch,
   390                                                          Register Rscratch2) {
   391   const int page_size = os::vm_page_size();
   392   Label after_frame_check;
   394   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
   396   __ set(page_size, Rscratch);
   397   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
   399   // get the stack base, and in debug, verify it is non-zero
   400   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
   401 #ifdef ASSERT
   402   Label base_not_zero;
   403   __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
   404   __ stop("stack base is zero in generate_stack_overflow_check");
   405   __ bind(base_not_zero);
   406 #endif
   408   // get the stack size, and in debug, verify it is non-zero
   409   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
   410   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
   411 #ifdef ASSERT
   412   Label size_not_zero;
   413   __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
   414   __ stop("stack size is zero in generate_stack_overflow_check");
   415   __ bind(size_not_zero);
   416 #endif
   418   // compute the beginning of the protected zone minus the requested frame size
   419   __ sub( Rscratch, Rscratch2,   Rscratch );
   420   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
   421   __ add( Rscratch, Rscratch2,   Rscratch );
   423   // Add in the size of the frame (which is the same as subtracting it from the
   424   // SP, which would take another register
   425   __ add( Rscratch, Rframe_size, Rscratch );
   427   // the frame is greater than one page in size, so check against
   428   // the bottom of the stack
   429   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
   431   // the stack will overflow, throw an exception
   433   // Note that SP is restored to sender's sp (in the delay slot). This
   434   // is necessary if the sender's frame is an extended compiled frame
   435   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
   436   // adaptations.
   438   // Note also that the restored frame is not necessarily interpreted.
   439   // Use the shared runtime version of the StackOverflowError.
   440   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   441   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
   442   __ jump_to(stub, Rscratch);
   443   __ delayed()->mov(O5_savedSP, SP);
   445   // if you get to here, then there is enough stack space
   446   __ bind( after_frame_check );
   447 }
   450 //
   451 // Generate a fixed interpreter frame. This is identical setup for interpreted
   452 // methods and for native methods hence the shared code.
   454 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   455   //
   456   //
   457   // The entry code sets up a new interpreter frame in 4 steps:
   458   //
   459   // 1) Increase caller's SP by for the extra local space needed:
   460   //    (check for overflow)
   461   //    Efficient implementation of xload/xstore bytecodes requires
   462   //    that arguments and non-argument locals are in a contigously
   463   //    addressable memory block => non-argument locals must be
   464   //    allocated in the caller's frame.
   465   //
   466   // 2) Create a new stack frame and register window:
   467   //    The new stack frame must provide space for the standard
   468   //    register save area, the maximum java expression stack size,
   469   //    the monitor slots (0 slots initially), and some frame local
   470   //    scratch locations.
   471   //
   472   // 3) The following interpreter activation registers must be setup:
   473   //    Lesp       : expression stack pointer
   474   //    Lbcp       : bytecode pointer
   475   //    Lmethod    : method
   476   //    Llocals    : locals pointer
   477   //    Lmonitors  : monitor pointer
   478   //    LcpoolCache: constant pool cache
   479   //
   480   // 4) Initialize the non-argument locals if necessary:
   481   //    Non-argument locals may need to be initialized to NULL
   482   //    for GC to work. If the oop-map information is accurate
   483   //    (in the absence of the JSR problem), no initialization
   484   //    is necessary.
   485   //
   486   // (gri - 2/25/2000)
   489   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
   491   const int extra_space =
   492     rounded_vm_local_words +                   // frame local scratch space
   493     Method::extra_stack_entries() +            // extra stack for jsr 292
   494     frame::memory_parameter_word_sp_offset +   // register save area
   495     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
   497   const Register Glocals_size = G3;
   498   const Register RconstMethod = Glocals_size;
   499   const Register Otmp1 = O3;
   500   const Register Otmp2 = O4;
   501   // Lscratch can't be used as a temporary because the call_stub uses
   502   // it to assert that the stack frame was setup correctly.
   503   const Address constMethod       (G5_method, Method::const_offset());
   504   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
   506   __ ld_ptr( constMethod, RconstMethod );
   507   __ lduh( size_of_parameters, Glocals_size);
   509   // Gargs points to first local + BytesPerWord
   510   // Set the saved SP after the register window save
   511   //
   512   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
   513   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
   514   __ add(Gargs, Otmp1, Gargs);
   516   if (native_call) {
   517     __ calc_mem_param_words( Glocals_size, Gframe_size );
   518     __ add( Gframe_size,  extra_space, Gframe_size);
   519     __ round_to( Gframe_size, WordsPerLong );
   520     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
   521   } else {
   523     //
   524     // Compute number of locals in method apart from incoming parameters
   525     //
   526     const Address size_of_locals    (Otmp1, ConstMethod::size_of_locals_offset());
   527     __ ld_ptr( constMethod, Otmp1 );
   528     __ lduh( size_of_locals, Otmp1 );
   529     __ sub( Otmp1, Glocals_size, Glocals_size );
   530     __ round_to( Glocals_size, WordsPerLong );
   531     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
   533     // see if the frame is greater than one page in size. If so,
   534     // then we need to verify there is enough stack space remaining
   535     // Frame_size = (max_stack + extra_space) * BytesPerWord;
   536     __ ld_ptr( constMethod, Gframe_size );
   537     __ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size );
   538     __ add( Gframe_size, extra_space, Gframe_size );
   539     __ round_to( Gframe_size, WordsPerLong );
   540     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
   542     // Add in java locals size for stack overflow check only
   543     __ add( Gframe_size, Glocals_size, Gframe_size );
   545     const Register Otmp2 = O4;
   546     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
   547     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
   549     __ sub( Gframe_size, Glocals_size, Gframe_size);
   551     //
   552     // bump SP to accomodate the extra locals
   553     //
   554     __ sub( SP, Glocals_size, SP );
   555   }
   557   //
   558   // now set up a stack frame with the size computed above
   559   //
   560   __ neg( Gframe_size );
   561   __ save( SP, Gframe_size, SP );
   563   //
   564   // now set up all the local cache registers
   565   //
   566   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
   567   // that all present references to Lbyte_code initialize the register
   568   // immediately before use
   569   if (native_call) {
   570     __ mov(G0, Lbcp);
   571   } else {
   572     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
   573     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
   574   }
   575   __ mov( G5_method, Lmethod);                 // set Lmethod
   576   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
   577   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
   578 #ifdef _LP64
   579   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
   580 #endif
   581   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
   583   // setup interpreter activation registers
   584   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
   586   if (ProfileInterpreter) {
   587 #ifdef FAST_DISPATCH
   588     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
   589     // they both use I2.
   590     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
   591 #endif // FAST_DISPATCH
   592     __ set_method_data_pointer();
   593   }
   595 }
   597 // Empty method, generate a very fast return.
   599 address InterpreterGenerator::generate_empty_entry(void) {
   601   // A method that does nother but return...
   603   address entry = __ pc();
   604   Label slow_path;
   606   // do nothing for empty methods (do not even increment invocation counter)
   607   if ( UseFastEmptyMethods) {
   608     // If we need a safepoint check, generate full interpreter entry.
   609     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   610     __ set(sync_state, G3_scratch);
   611     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
   613     // Code: _return
   614     __ retl();
   615     __ delayed()->mov(O5_savedSP, SP);
   617     __ bind(slow_path);
   618     (void) generate_normal_entry(false);
   620     return entry;
   621   }
   622   return NULL;
   623 }
   625 // Call an accessor method (assuming it is resolved, otherwise drop into
   626 // vanilla (slow path) entry
   628 // Generates code to elide accessor methods
   629 // Uses G3_scratch and G1_scratch as scratch
   630 address InterpreterGenerator::generate_accessor_entry(void) {
   632   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   633   // parameter size = 1
   634   // Note: We can only use this code if the getfield has been resolved
   635   //       and if we don't have a null-pointer exception => check for
   636   //       these conditions first and use slow path if necessary.
   637   address entry = __ pc();
   638   Label slow_path;
   641   // XXX: for compressed oops pointer loading and decoding doesn't fit in
   642   // delay slot and damages G1
   643   if ( UseFastAccessorMethods && !UseCompressedOops ) {
   644     // Check if we need to reach a safepoint and generate full interpreter
   645     // frame if so.
   646     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   647     __ load_contents(sync_state, G3_scratch);
   648     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   649     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
   651     // Check if local 0 != NULL
   652     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   653     // check if local 0 == NULL and go the slow path
   654     __ br_null_short(Otos_i, Assembler::pn, slow_path);
   657     // read first instruction word and extract bytecode @ 1 and index @ 2
   658     // get first 4 bytes of the bytecodes (big endian!)
   659     __ ld_ptr(G5_method, Method::const_offset(), G1_scratch);
   660     __ ld(G1_scratch, ConstMethod::codes_offset(), G1_scratch);
   662     // move index @ 2 far left then to the right most two bytes.
   663     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   664     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   665                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   667     // get constant pool cache
   668     __ ld_ptr(G5_method, Method::const_offset(), G3_scratch);
   669     __ ld_ptr(G3_scratch, ConstMethod::constants_offset(), G3_scratch);
   670     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
   672     // get specific constant pool cache entry
   673     __ add(G3_scratch, G1_scratch, G3_scratch);
   675     // Check the constant Pool cache entry to see if it has been resolved.
   676     // If not, need the slow path.
   677     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
   678     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
   679     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   680     __ and3(G1_scratch, 0xFF, G1_scratch);
   681     __ cmp_and_br_short(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, Assembler::pn, slow_path);
   683     // Get the type and return field offset from the constant pool cache
   684     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
   685     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
   687     Label xreturn_path;
   688     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   689     // because they are different sizes.
   690     // Get the type from the constant pool cache
   691     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
   692     // Make sure we don't need to mask G1_scratch after the above shift
   693     ConstantPoolCacheEntry::verify_tos_state_shift();
   694     __ cmp(G1_scratch, atos );
   695     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   696     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   697     __ cmp(G1_scratch, itos);
   698     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   699     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   700     __ cmp(G1_scratch, stos);
   701     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   702     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   703     __ cmp(G1_scratch, ctos);
   704     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   705     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   706 #ifdef ASSERT
   707     __ cmp(G1_scratch, btos);
   708     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   709     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   710     __ should_not_reach_here();
   711 #endif
   712     __ ldsb(Otos_i, G3_scratch, Otos_i);
   713     __ bind(xreturn_path);
   715     // _ireturn/_areturn
   716     __ retl();                      // return from leaf routine
   717     __ delayed()->mov(O5_savedSP, SP);
   719     // Generate regular method entry
   720     __ bind(slow_path);
   721     (void) generate_normal_entry(false);
   722     return entry;
   723   }
   724   return NULL;
   725 }
   727 // Method entry for java.lang.ref.Reference.get.
   728 address InterpreterGenerator::generate_Reference_get_entry(void) {
   729 #if INCLUDE_ALL_GCS
   730   // Code: _aload_0, _getfield, _areturn
   731   // parameter size = 1
   732   //
   733   // The code that gets generated by this routine is split into 2 parts:
   734   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   735   //    2. The slow path - which is an expansion of the regular method entry.
   736   //
   737   // Notes:-
   738   // * In the G1 code we do not check whether we need to block for
   739   //   a safepoint. If G1 is enabled then we must execute the specialized
   740   //   code for Reference.get (except when the Reference object is null)
   741   //   so that we can log the value in the referent field with an SATB
   742   //   update buffer.
   743   //   If the code for the getfield template is modified so that the
   744   //   G1 pre-barrier code is executed when the current method is
   745   //   Reference.get() then going through the normal method entry
   746   //   will be fine.
   747   // * The G1 code can, however, check the receiver object (the instance
   748   //   of java.lang.Reference) and jump to the slow path if null. If the
   749   //   Reference object is null then we obviously cannot fetch the referent
   750   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   751   //   regular method entry code to generate the NPE.
   752   //
   753   // This code is based on generate_accessor_enty.
   755   address entry = __ pc();
   757   const int referent_offset = java_lang_ref_Reference::referent_offset;
   758   guarantee(referent_offset > 0, "referent offset not initialized");
   760   if (UseG1GC) {
   761      Label slow_path;
   763     // In the G1 code we don't check if we need to reach a safepoint. We
   764     // continue and the thread will safepoint at the next bytecode dispatch.
   766     // Check if local 0 != NULL
   767     // If the receiver is null then it is OK to jump to the slow path.
   768     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   769     // check if local 0 == NULL and go the slow path
   770     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
   773     // Load the value of the referent field.
   774     if (Assembler::is_simm13(referent_offset)) {
   775       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
   776     } else {
   777       __ set(referent_offset, G3_scratch);
   778       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
   779     }
   781     // Generate the G1 pre-barrier code to log the value of
   782     // the referent field in an SATB buffer. Note with
   783     // these parameters the pre-barrier does not generate
   784     // the load of the previous value
   786     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
   787                             Otos_i /* pre_val */,
   788                             G3_scratch /* tmp */,
   789                             true /* preserve_o_regs */);
   791     // _areturn
   792     __ retl();                      // return from leaf routine
   793     __ delayed()->mov(O5_savedSP, SP);
   795     // Generate regular method entry
   796     __ bind(slow_path);
   797     (void) generate_normal_entry(false);
   798     return entry;
   799   }
   800 #endif // INCLUDE_ALL_GCS
   802   // If G1 is not enabled then attempt to go through the accessor entry point
   803   // Reference.get is an accessor
   804   return generate_accessor_entry();
   805 }
   807 //
   808 // Interpreter stub for calling a native method. (asm interpreter)
   809 // This sets up a somewhat different looking stack for calling the native method
   810 // than the typical interpreter frame setup.
   811 //
   813 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   814   address entry = __ pc();
   816   // the following temporary registers are used during frame creation
   817   const Register Gtmp1 = G3_scratch ;
   818   const Register Gtmp2 = G1_scratch;
   819   bool inc_counter  = UseCompiler || CountCompiledCalls;
   821   // make sure registers are different!
   822   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   824   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
   826   const Register Glocals_size = G3;
   827   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   829   // make sure method is native & not abstract
   830   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   831 #ifdef ASSERT
   832   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
   833   {
   834     Label L;
   835     __ btst(JVM_ACC_NATIVE, Gtmp1);
   836     __ br(Assembler::notZero, false, Assembler::pt, L);
   837     __ delayed()->nop();
   838     __ stop("tried to execute non-native method as native");
   839     __ bind(L);
   840   }
   841   { Label L;
   842     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   843     __ br(Assembler::zero, false, Assembler::pt, L);
   844     __ delayed()->nop();
   845     __ stop("tried to execute abstract method as non-abstract");
   846     __ bind(L);
   847   }
   848 #endif // ASSERT
   850  // generate the code to allocate the interpreter stack frame
   851   generate_fixed_frame(true);
   853   //
   854   // No locals to initialize for native method
   855   //
   857   // this slot will be set later, we initialize it to null here just in
   858   // case we get a GC before the actual value is stored later
   859   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
   861   const Address do_not_unlock_if_synchronized(G2_thread,
   862     JavaThread::do_not_unlock_if_synchronized_offset());
   863   // Since at this point in the method invocation the exception handler
   864   // would try to exit the monitor of synchronized methods which hasn't
   865   // been entered yet, we set the thread local variable
   866   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   867   // runtime, exception handling i.e. unlock_if_synchronized_method will
   868   // check this thread local flag.
   869   // This flag has two effects, one is to force an unwind in the topmost
   870   // interpreter frame and not perform an unlock while doing so.
   872   __ movbool(true, G3_scratch);
   873   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   875   // increment invocation counter and check for overflow
   876   //
   877   // Note: checking for negative value instead of overflow
   878   //       so we have a 'sticky' overflow test (may be of
   879   //       importance as soon as we have true MT/MP)
   880   Label invocation_counter_overflow;
   881   Label Lcontinue;
   882   if (inc_counter) {
   883     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   885   }
   886   __ bind(Lcontinue);
   888   bang_stack_shadow_pages(true);
   890   // reset the _do_not_unlock_if_synchronized flag
   891   __ stbool(G0, do_not_unlock_if_synchronized);
   893   // check for synchronized methods
   894   // Must happen AFTER invocation_counter check and stack overflow check,
   895   // so method is not locked if overflows.
   897   if (synchronized) {
   898     lock_method();
   899   } else {
   900 #ifdef ASSERT
   901     { Label ok;
   902       __ ld(Laccess_flags, O0);
   903       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   904       __ br( Assembler::zero, false, Assembler::pt, ok);
   905       __ delayed()->nop();
   906       __ stop("method needs synchronization");
   907       __ bind(ok);
   908     }
   909 #endif // ASSERT
   910   }
   913   // start execution
   914   __ verify_thread();
   916   // JVMTI support
   917   __ notify_method_entry();
   919   // native call
   921   // (note that O0 is never an oop--at most it is a handle)
   922   // It is important not to smash any handles created by this call,
   923   // until any oop handle in O0 is dereferenced.
   925   // (note that the space for outgoing params is preallocated)
   927   // get signature handler
   928   { Label L;
   929     Address signature_handler(Lmethod, Method::signature_handler_offset());
   930     __ ld_ptr(signature_handler, G3_scratch);
   931     __ br_notnull_short(G3_scratch, Assembler::pt, L);
   932     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
   933     __ ld_ptr(signature_handler, G3_scratch);
   934     __ bind(L);
   935   }
   937   // Push a new frame so that the args will really be stored in
   938   // Copy a few locals across so the new frame has the variables
   939   // we need but these values will be dead at the jni call and
   940   // therefore not gc volatile like the values in the current
   941   // frame (Lmethod in particular)
   943   // Flush the method pointer to the register save area
   944   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   945   __ mov(Llocals, O1);
   947   // calculate where the mirror handle body is allocated in the interpreter frame:
   948   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
   950   // Calculate current frame size
   951   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   952   __ save(SP, O3, SP);        // Allocate an identical sized frame
   954   // Note I7 has leftover trash. Slow signature handler will fill it in
   955   // should we get there. Normal jni call will set reasonable last_Java_pc
   956   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   957   // in it).
   959   // Load interpreter frame's Lmethod into same register here
   961   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   963   __ mov(I1, Llocals);
   964   __ mov(I2, Lscratch2);     // save the address of the mirror
   967   // ONLY Lmethod and Llocals are valid here!
   969   // call signature handler, It will move the arg properly since Llocals in current frame
   970   // matches that in outer frame
   972   __ callr(G3_scratch, 0);
   973   __ delayed()->nop();
   975   // Result handler is in Lscratch
   977   // Reload interpreter frame's Lmethod since slow signature handler may block
   978   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   980   { Label not_static;
   982     __ ld(Laccess_flags, O0);
   983     __ btst(JVM_ACC_STATIC, O0);
   984     __ br( Assembler::zero, false, Assembler::pt, not_static);
   985     // get native function entry point(O0 is a good temp until the very end)
   986     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
   987     // for static methods insert the mirror argument
   988     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   990     __ ld_ptr(Lmethod, Method:: const_offset(), O1);
   991     __ ld_ptr(O1, ConstMethod::constants_offset(), O1);
   992     __ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
   993     __ ld_ptr(O1, mirror_offset, O1);
   994 #ifdef ASSERT
   995     if (!PrintSignatureHandlers)  // do not dirty the output with this
   996     { Label L;
   997       __ br_notnull_short(O1, Assembler::pt, L);
   998       __ stop("mirror is missing");
   999       __ bind(L);
  1001 #endif // ASSERT
  1002     __ st_ptr(O1, Lscratch2, 0);
  1003     __ mov(Lscratch2, O1);
  1004     __ bind(not_static);
  1007   // At this point, arguments have been copied off of stack into
  1008   // their JNI positions, which are O1..O5 and SP[68..].
  1009   // Oops are boxed in-place on the stack, with handles copied to arguments.
  1010   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
  1012 #ifdef ASSERT
  1013   { Label L;
  1014     __ br_notnull_short(O0, Assembler::pt, L);
  1015     __ stop("native entry point is missing");
  1016     __ bind(L);
  1018 #endif // ASSERT
  1020   //
  1021   // setup the frame anchor
  1022   //
  1023   // The scavenge function only needs to know that the PC of this frame is
  1024   // in the interpreter method entry code, it doesn't need to know the exact
  1025   // PC and hence we can use O7 which points to the return address from the
  1026   // previous call in the code stream (signature handler function)
  1027   //
  1028   // The other trick is we set last_Java_sp to FP instead of the usual SP because
  1029   // we have pushed the extra frame in order to protect the volatile register(s)
  1030   // in that frame when we return from the jni call
  1031   //
  1033   __ set_last_Java_frame(FP, O7);
  1034   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
  1035                    // not meaningless information that'll confuse me.
  1037   // flush the windows now. We don't care about the current (protection) frame
  1038   // only the outer frames
  1040   __ flushw();
  1042   // mark windows as flushed
  1043   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1044   __ set(JavaFrameAnchor::flushed, G3_scratch);
  1045   __ st(G3_scratch, flags);
  1047   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
  1049   Address thread_state(G2_thread, JavaThread::thread_state_offset());
  1050 #ifdef ASSERT
  1051   { Label L;
  1052     __ ld(thread_state, G3_scratch);
  1053     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
  1054     __ stop("Wrong thread state in native stub");
  1055     __ bind(L);
  1057 #endif // ASSERT
  1058   __ set(_thread_in_native, G3_scratch);
  1059   __ st(G3_scratch, thread_state);
  1061   // Call the jni method, using the delay slot to set the JNIEnv* argument.
  1062   __ save_thread(L7_thread_cache); // save Gthread
  1063   __ callr(O0, 0);
  1064   __ delayed()->
  1065      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
  1067   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
  1069   __ restore_thread(L7_thread_cache); // restore G2_thread
  1070   __ reinit_heapbase();
  1072   // must we block?
  1074   // Block, if necessary, before resuming in _thread_in_Java state.
  1075   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  1076   { Label no_block;
  1077     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  1079     // Switch thread to "native transition" state before reading the synchronization state.
  1080     // This additional state is necessary because reading and testing the synchronization
  1081     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1082     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1083     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1084     //     Thread A is resumed to finish this native method, but doesn't block here since it
  1085     //     didn't see any synchronization is progress, and escapes.
  1086     __ set(_thread_in_native_trans, G3_scratch);
  1087     __ st(G3_scratch, thread_state);
  1088     if(os::is_MP()) {
  1089       if (UseMembar) {
  1090         // Force this write out before the read below
  1091         __ membar(Assembler::StoreLoad);
  1092       } else {
  1093         // Write serialization page so VM thread can do a pseudo remote membar.
  1094         // We use the current thread pointer to calculate a thread specific
  1095         // offset to write to within the page. This minimizes bus traffic
  1096         // due to cache line collision.
  1097         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  1100     __ load_contents(sync_state, G3_scratch);
  1101     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  1103     Label L;
  1104     __ br(Assembler::notEqual, false, Assembler::pn, L);
  1105     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
  1106     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  1107     __ bind(L);
  1109     // Block.  Save any potential method result value before the operation and
  1110     // use a leaf call to leave the last_Java_frame setup undisturbed.
  1111     save_native_result();
  1112     __ call_VM_leaf(L7_thread_cache,
  1113                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1114                     G2_thread);
  1116     // Restore any method result value
  1117     restore_native_result();
  1118     __ bind(no_block);
  1121   // Clear the frame anchor now
  1123   __ reset_last_Java_frame();
  1125   // Move the result handler address
  1126   __ mov(Lscratch, G3_scratch);
  1127   // return possible result to the outer frame
  1128 #ifndef __LP64
  1129   __ mov(O0, I0);
  1130   __ restore(O1, G0, O1);
  1131 #else
  1132   __ restore(O0, G0, O0);
  1133 #endif /* __LP64 */
  1135   // Move result handler to expected register
  1136   __ mov(G3_scratch, Lscratch);
  1138   // Back in normal (native) interpreter frame. State is thread_in_native_trans
  1139   // switch to thread_in_Java.
  1141   __ set(_thread_in_Java, G3_scratch);
  1142   __ st(G3_scratch, thread_state);
  1144   // reset handle block
  1145   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
  1146   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
  1148   // If we have an oop result store it where it will be safe for any further gc
  1149   // until we return now that we've released the handle it might be protected by
  1152     Label no_oop, store_result;
  1154     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
  1155     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
  1156     __ addcc(G0, O0, O0);
  1157     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
  1158     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
  1159     __ mov(G0, O0);
  1161     __ bind(store_result);
  1162     // Store it where gc will look for it and result handler expects it.
  1163     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
  1165     __ bind(no_oop);
  1170   // handle exceptions (exception handling will handle unlocking!)
  1171   { Label L;
  1172     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1173     __ ld_ptr(exception_addr, Gtemp);
  1174     __ br_null_short(Gtemp, Assembler::pt, L);
  1175     // Note: This could be handled more efficiently since we know that the native
  1176     //       method doesn't have an exception handler. We could directly return
  1177     //       to the exception handler for the caller.
  1178     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1179     __ should_not_reach_here();
  1180     __ bind(L);
  1183   // JVMTI support (preserves thread register)
  1184   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
  1186   if (synchronized) {
  1187     // save and restore any potential method result value around the unlocking operation
  1188     save_native_result();
  1190     __ add( __ top_most_monitor(), O1);
  1191     __ unlock_object(O1);
  1193     restore_native_result();
  1196 #if defined(COMPILER2) && !defined(_LP64)
  1198   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1199   // or compiled so just be safe.
  1201   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1202   __ srl (O1, 0, O1);           // Zero extend O1
  1203   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1205 #endif /* COMPILER2 && !_LP64 */
  1207   // dispose of return address and remove activation
  1208 #ifdef ASSERT
  1210     Label ok;
  1211     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
  1212     __ stop("bad I5_savedSP value");
  1213     __ should_not_reach_here();
  1214     __ bind(ok);
  1216 #endif
  1217   if (TraceJumps) {
  1218     // Move target to register that is recordable
  1219     __ mov(Lscratch, G3_scratch);
  1220     __ JMP(G3_scratch, 0);
  1221   } else {
  1222     __ jmp(Lscratch, 0);
  1224   __ delayed()->nop();
  1227   if (inc_counter) {
  1228     // handle invocation counter overflow
  1229     __ bind(invocation_counter_overflow);
  1230     generate_counter_overflow(Lcontinue);
  1235   return entry;
  1239 // Generic method entry to (asm) interpreter
  1240 //------------------------------------------------------------------------------------------------------------------------
  1241 //
  1242 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1243   address entry = __ pc();
  1245   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1247   // the following temporary registers are used during frame creation
  1248   const Register Gtmp1 = G3_scratch ;
  1249   const Register Gtmp2 = G1_scratch;
  1251   // make sure registers are different!
  1252   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
  1254   const Address constMethod       (G5_method, Method::const_offset());
  1255   // Seems like G5_method is live at the point this is used. So we could make this look consistent
  1256   // and use in the asserts.
  1257   const Address access_flags      (Lmethod,   Method::access_flags_offset());
  1259   const Register Glocals_size = G3;
  1260   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
  1262   // make sure method is not native & not abstract
  1263   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
  1264 #ifdef ASSERT
  1265   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
  1267     Label L;
  1268     __ btst(JVM_ACC_NATIVE, Gtmp1);
  1269     __ br(Assembler::zero, false, Assembler::pt, L);
  1270     __ delayed()->nop();
  1271     __ stop("tried to execute native method as non-native");
  1272     __ bind(L);
  1274   { Label L;
  1275     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
  1276     __ br(Assembler::zero, false, Assembler::pt, L);
  1277     __ delayed()->nop();
  1278     __ stop("tried to execute abstract method as non-abstract");
  1279     __ bind(L);
  1281 #endif // ASSERT
  1283   // generate the code to allocate the interpreter stack frame
  1285   generate_fixed_frame(false);
  1287 #ifdef FAST_DISPATCH
  1288   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1289                                           // set bytecode dispatch table base
  1290 #endif
  1292   //
  1293   // Code to initialize the extra (i.e. non-parm) locals
  1294   //
  1295   Register init_value = noreg;    // will be G0 if we must clear locals
  1296   // The way the code was setup before zerolocals was always true for vanilla java entries.
  1297   // It could only be false for the specialized entries like accessor or empty which have
  1298   // no extra locals so the testing was a waste of time and the extra locals were always
  1299   // initialized. We removed this extra complication to already over complicated code.
  1301   init_value = G0;
  1302   Label clear_loop;
  1304   const Register RconstMethod = O1;
  1305   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
  1306   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
  1308   // NOTE: If you change the frame layout, this code will need to
  1309   // be updated!
  1310   __ ld_ptr( constMethod, RconstMethod );
  1311   __ lduh( size_of_locals, O2 );
  1312   __ lduh( size_of_parameters, O1 );
  1313   __ sll( O2, Interpreter::logStackElementSize, O2);
  1314   __ sll( O1, Interpreter::logStackElementSize, O1 );
  1315   __ sub( Llocals, O2, O2 );
  1316   __ sub( Llocals, O1, O1 );
  1318   __ bind( clear_loop );
  1319   __ inc( O2, wordSize );
  1321   __ cmp( O2, O1 );
  1322   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1323   __ delayed()->st_ptr( init_value, O2, 0 );
  1325   const Address do_not_unlock_if_synchronized(G2_thread,
  1326     JavaThread::do_not_unlock_if_synchronized_offset());
  1327   // Since at this point in the method invocation the exception handler
  1328   // would try to exit the monitor of synchronized methods which hasn't
  1329   // been entered yet, we set the thread local variable
  1330   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1331   // runtime, exception handling i.e. unlock_if_synchronized_method will
  1332   // check this thread local flag.
  1333   __ movbool(true, G3_scratch);
  1334   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
  1336   // increment invocation counter and check for overflow
  1337   //
  1338   // Note: checking for negative value instead of overflow
  1339   //       so we have a 'sticky' overflow test (may be of
  1340   //       importance as soon as we have true MT/MP)
  1341   Label invocation_counter_overflow;
  1342   Label profile_method;
  1343   Label profile_method_continue;
  1344   Label Lcontinue;
  1345   if (inc_counter) {
  1346     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1347     if (ProfileInterpreter) {
  1348       __ bind(profile_method_continue);
  1351   __ bind(Lcontinue);
  1353   bang_stack_shadow_pages(false);
  1355   // reset the _do_not_unlock_if_synchronized flag
  1356   __ stbool(G0, do_not_unlock_if_synchronized);
  1358   // check for synchronized methods
  1359   // Must happen AFTER invocation_counter check and stack overflow check,
  1360   // so method is not locked if overflows.
  1362   if (synchronized) {
  1363     lock_method();
  1364   } else {
  1365 #ifdef ASSERT
  1366     { Label ok;
  1367       __ ld(access_flags, O0);
  1368       __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1369       __ br( Assembler::zero, false, Assembler::pt, ok);
  1370       __ delayed()->nop();
  1371       __ stop("method needs synchronization");
  1372       __ bind(ok);
  1374 #endif // ASSERT
  1377   // start execution
  1379   __ verify_thread();
  1381   // jvmti support
  1382   __ notify_method_entry();
  1384   // start executing instructions
  1385   __ dispatch_next(vtos);
  1388   if (inc_counter) {
  1389     if (ProfileInterpreter) {
  1390       // We have decided to profile this method in the interpreter
  1391       __ bind(profile_method);
  1393       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1394       __ set_method_data_pointer_for_bcp();
  1395       __ ba_short(profile_method_continue);
  1398     // handle invocation counter overflow
  1399     __ bind(invocation_counter_overflow);
  1400     generate_counter_overflow(Lcontinue);
  1404   return entry;
  1408 //----------------------------------------------------------------------------------------------------
  1409 // Entry points & stack frame layout
  1410 //
  1411 // Here we generate the various kind of entries into the interpreter.
  1412 // The two main entry type are generic bytecode methods and native call method.
  1413 // These both come in synchronized and non-synchronized versions but the
  1414 // frame layout they create is very similar. The other method entry
  1415 // types are really just special purpose entries that are really entry
  1416 // and interpretation all in one. These are for trivial methods like
  1417 // accessor, empty, or special math methods.
  1418 //
  1419 // When control flow reaches any of the entry types for the interpreter
  1420 // the following holds ->
  1421 //
  1422 // C2 Calling Conventions:
  1423 //
  1424 // The entry code below assumes that the following registers are set
  1425 // when coming in:
  1426 //    G5_method: holds the Method* of the method to call
  1427 //    Lesp:    points to the TOS of the callers expression stack
  1428 //             after having pushed all the parameters
  1429 //
  1430 // The entry code does the following to setup an interpreter frame
  1431 //   pop parameters from the callers stack by adjusting Lesp
  1432 //   set O0 to Lesp
  1433 //   compute X = (max_locals - num_parameters)
  1434 //   bump SP up by X to accomadate the extra locals
  1435 //   compute X = max_expression_stack
  1436 //               + vm_local_words
  1437 //               + 16 words of register save area
  1438 //   save frame doing a save sp, -X, sp growing towards lower addresses
  1439 //   set Lbcp, Lmethod, LcpoolCache
  1440 //   set Llocals to i0
  1441 //   set Lmonitors to FP - rounded_vm_local_words
  1442 //   set Lesp to Lmonitors - 4
  1443 //
  1444 //  The frame has now been setup to do the rest of the entry code
  1446 // Try this optimization:  Most method entries could live in a
  1447 // "one size fits all" stack frame without all the dynamic size
  1448 // calculations.  It might be profitable to do all this calculation
  1449 // statically and approximately for "small enough" methods.
  1451 //-----------------------------------------------------------------------------------------------
  1453 // C1 Calling conventions
  1454 //
  1455 // Upon method entry, the following registers are setup:
  1456 //
  1457 // g2 G2_thread: current thread
  1458 // g5 G5_method: method to activate
  1459 // g4 Gargs  : pointer to last argument
  1460 //
  1461 //
  1462 // Stack:
  1463 //
  1464 // +---------------+ <--- sp
  1465 // |               |
  1466 // : reg save area :
  1467 // |               |
  1468 // +---------------+ <--- sp + 0x40
  1469 // |               |
  1470 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1471 // |               |
  1472 // +---------------+ <--- sp + 0x5c
  1473 // |               |
  1474 // :     free      :
  1475 // |               |
  1476 // +---------------+ <--- Gargs
  1477 // |               |
  1478 // :   arguments   :
  1479 // |               |
  1480 // +---------------+
  1481 // |               |
  1482 //
  1483 //
  1484 //
  1485 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
  1486 //
  1487 // +---------------+ <--- sp
  1488 // |               |
  1489 // : reg save area :
  1490 // |               |
  1491 // +---------------+ <--- sp + 0x40
  1492 // |               |
  1493 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1494 // |               |
  1495 // +---------------+ <--- sp + 0x5c
  1496 // |               |
  1497 // :               :
  1498 // |               | <--- Lesp
  1499 // +---------------+ <--- Lmonitors (fp - 0x18)
  1500 // |   VM locals   |
  1501 // +---------------+ <--- fp
  1502 // |               |
  1503 // : reg save area :
  1504 // |               |
  1505 // +---------------+ <--- fp + 0x40
  1506 // |               |
  1507 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1508 // |               |
  1509 // +---------------+ <--- fp + 0x5c
  1510 // |               |
  1511 // :     free      :
  1512 // |               |
  1513 // +---------------+
  1514 // |               |
  1515 // : nonarg locals :
  1516 // |               |
  1517 // +---------------+
  1518 // |               |
  1519 // :   arguments   :
  1520 // |               | <--- Llocals
  1521 // +---------------+ <--- Gargs
  1522 // |               |
  1524 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  1526   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  1527   // expression stack, the callee will have callee_extra_locals (so we can account for
  1528   // frame extension) and monitor_size for monitors. Basically we need to calculate
  1529   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  1530   //
  1531   //
  1532   // The big complicating thing here is that we must ensure that the stack stays properly
  1533   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  1534   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  1535   // the caller so we must ensure that it is properly aligned for our callee.
  1536   //
  1537   const int rounded_vm_local_words =
  1538        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1539   // callee_locals and max_stack are counts, not the size in frame.
  1540   const int locals_size =
  1541        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  1542   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  1543   return (round_to((max_stack_words
  1544                    + rounded_vm_local_words
  1545                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  1546                    // already rounded
  1547                    + locals_size + monitor_size);
  1550 // How much stack a method top interpreter activation needs in words.
  1551 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1553   // See call_stub code
  1554   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  1555                                  WordsPerLong);    // 7 + register save area
  1557   // Save space for one monitor to get into the interpreted method in case
  1558   // the method is synchronized
  1559   int monitor_size    = method->is_synchronized() ?
  1560                                 1*frame::interpreter_frame_monitor_size() : 0;
  1561   return size_activation_helper(method->max_locals(), method->max_stack(),
  1562                                  monitor_size) + call_stub_size;
  1565 int AbstractInterpreter::layout_activation(Method* method,
  1566                                            int tempcount,
  1567                                            int popframe_extra_args,
  1568                                            int moncount,
  1569                                            int caller_actual_parameters,
  1570                                            int callee_param_count,
  1571                                            int callee_local_count,
  1572                                            frame* caller,
  1573                                            frame* interpreter_frame,
  1574                                            bool is_top_frame,
  1575                                            bool is_bottom_frame) {
  1576   // Note: This calculation must exactly parallel the frame setup
  1577   // in InterpreterGenerator::generate_fixed_frame.
  1578   // If f!=NULL, set up the following variables:
  1579   //   - Lmethod
  1580   //   - Llocals
  1581   //   - Lmonitors (to the indicated number of monitors)
  1582   //   - Lesp (to the indicated number of temps)
  1583   // The frame f (if not NULL) on entry is a description of the caller of the frame
  1584   // we are about to layout. We are guaranteed that we will be able to fill in a
  1585   // new interpreter frame as its callee (i.e. the stack space is allocated and
  1586   // the amount was determined by an earlier call to this method with f == NULL).
  1587   // On return f (if not NULL) while describe the interpreter frame we just layed out.
  1589   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
  1590   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1592   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1593   //
  1594   // Note: if you look closely this appears to be doing something much different
  1595   // than generate_fixed_frame. What is happening is this. On sparc we have to do
  1596   // this dance with interpreter_sp_adjustment because the window save area would
  1597   // appear just below the bottom (tos) of the caller's java expression stack. Because
  1598   // the interpreter want to have the locals completely contiguous generate_fixed_frame
  1599   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
  1600   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
  1601   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
  1602   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
  1603   // because the oldest frame would have adjust its callers frame and yet that frame
  1604   // already exists and isn't part of this array of frames we are unpacking. So at first
  1605   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
  1606   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
  1607   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
  1608   // add up. It does seem like it simpler to account for the adjustment here (and remove the
  1609   // callee... parameters here). However this would mean that this routine would have to take
  1610   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
  1611   // and run the calling loop in the reverse order. This would also would appear to mean making
  1612   // this code aware of what the interactions are when that initial caller fram was an osr or
  1613   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
  1614   // there is no sense in messing working code.
  1615   //
  1617   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
  1618   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
  1620   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
  1621                                               monitor_size);
  1623   if (interpreter_frame != NULL) {
  1624     // The skeleton frame must already look like an interpreter frame
  1625     // even if not fully filled out.
  1626     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
  1628     intptr_t* fp = interpreter_frame->fp();
  1630     JavaThread* thread = JavaThread::current();
  1631     RegisterMap map(thread, false);
  1632     // More verification that skeleton frame is properly walkable
  1633     assert(fp == caller->sp(), "fp must match");
  1635     intptr_t* montop     = fp - rounded_vm_local_words;
  1637     // preallocate monitors (cf. __ add_monitor_to_stack)
  1638     intptr_t* monitors = montop - monitor_size;
  1640     // preallocate stack space
  1641     intptr_t*  esp = monitors - 1 -
  1642                      (tempcount * Interpreter::stackElementWords) -
  1643                      popframe_extra_args;
  1645     int local_words = method->max_locals() * Interpreter::stackElementWords;
  1646     NEEDS_CLEANUP;
  1647     intptr_t* locals;
  1648     if (caller->is_interpreted_frame()) {
  1649       // Can force the locals area to end up properly overlapping the top of the expression stack.
  1650       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
  1651       // Note that this computation means we replace size_of_parameters() values from the caller
  1652       // interpreter frame's expression stack with our argument locals
  1653       int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
  1654       locals = Lesp_ptr + parm_words;
  1655       int delta = local_words - parm_words;
  1656       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
  1657       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
  1658       if (!is_bottom_frame) {
  1659         // Llast_SP is set below for the current frame to SP (with the
  1660         // extra space for the callee's locals). Here we adjust
  1661         // Llast_SP for the caller's frame, removing the extra space
  1662         // for the current method's locals.
  1663         *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
  1664       } else {
  1665         assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
  1667     } else {
  1668       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
  1669       // Don't have Lesp available; lay out locals block in the caller
  1670       // adjacent to the register window save area.
  1671       //
  1672       // Compiled frames do not allocate a varargs area which is why this if
  1673       // statement is needed.
  1674       //
  1675       if (caller->is_compiled_frame()) {
  1676         locals = fp + frame::register_save_words + local_words - 1;
  1677       } else {
  1678         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  1680       if (!caller->is_entry_frame()) {
  1681         // Caller wants his own SP back
  1682         int caller_frame_size = caller->cb()->frame_size();
  1683         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
  1686     if (TraceDeoptimization) {
  1687       if (caller->is_entry_frame()) {
  1688         // make sure I5_savedSP and the entry frames notion of saved SP
  1689         // agree.  This assertion duplicate a check in entry frame code
  1690         // but catches the failure earlier.
  1691         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
  1692                "would change callers SP");
  1694       if (caller->is_entry_frame()) {
  1695         tty->print("entry ");
  1697       if (caller->is_compiled_frame()) {
  1698         tty->print("compiled ");
  1699         if (caller->is_deoptimized_frame()) {
  1700           tty->print("(deopt) ");
  1703       if (caller->is_interpreted_frame()) {
  1704         tty->print("interpreted ");
  1706       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
  1707       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
  1708       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
  1709       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
  1710       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
  1711       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
  1712       tty->print_cr("Llocals = 0x%x", locals);
  1713       tty->print_cr("Lesp = 0x%x", esp);
  1714       tty->print_cr("Lmonitors = 0x%x", monitors);
  1717     if (method->max_locals() > 0) {
  1718       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
  1719       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
  1720       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
  1721       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
  1723 #ifdef _LP64
  1724     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
  1725 #endif
  1727     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
  1728     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
  1729     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
  1730     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
  1731     // Llast_SP will be same as SP as there is no adapter space
  1732     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
  1733     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
  1734 #ifdef FAST_DISPATCH
  1735     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
  1736 #endif
  1739 #ifdef ASSERT
  1740     BasicObjectLock* mp = (BasicObjectLock*)monitors;
  1742     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
  1743     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
  1744     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
  1745     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
  1746     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
  1748     // check bounds
  1749     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
  1750     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
  1751     assert(lo < monitors && montop <= hi, "monitors in bounds");
  1752     assert(lo <= esp && esp < monitors, "esp in bounds");
  1753 #endif // ASSERT
  1756   return raw_frame_size;
  1759 //----------------------------------------------------------------------------------------------------
  1760 // Exceptions
  1761 void TemplateInterpreterGenerator::generate_throw_exception() {
  1763   // Entry point in previous activation (i.e., if the caller was interpreted)
  1764   Interpreter::_rethrow_exception_entry = __ pc();
  1765   // O0: exception
  1767   // entry point for exceptions thrown within interpreter code
  1768   Interpreter::_throw_exception_entry = __ pc();
  1769   __ verify_thread();
  1770   // expression stack is undefined here
  1771   // O0: exception, i.e. Oexception
  1772   // Lbcp: exception bcx
  1773   __ verify_oop(Oexception);
  1776   // expression stack must be empty before entering the VM in case of an exception
  1777   __ empty_expression_stack();
  1778   // find exception handler address and preserve exception oop
  1779   // call C routine to find handler and jump to it
  1780   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
  1781   __ push_ptr(O1); // push exception for exception handler bytecodes
  1783   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
  1784   __ delayed()->nop();
  1787   // if the exception is not handled in the current frame
  1788   // the frame is removed and the exception is rethrown
  1789   // (i.e. exception continuation is _rethrow_exception)
  1790   //
  1791   // Note: At this point the bci is still the bxi for the instruction which caused
  1792   //       the exception and the expression stack is empty. Thus, for any VM calls
  1793   //       at this point, GC will find a legal oop map (with empty expression stack).
  1795   // in current activation
  1796   // tos: exception
  1797   // Lbcp: exception bcp
  1799   //
  1800   // JVMTI PopFrame support
  1801   //
  1803   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1804   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1805   // Set the popframe_processing bit in popframe_condition indicating that we are
  1806   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1807   // popframe handling cycles.
  1809   __ ld(popframe_condition_addr, G3_scratch);
  1810   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
  1811   __ stw(G3_scratch, popframe_condition_addr);
  1813   // Empty the expression stack, as in normal exception handling
  1814   __ empty_expression_stack();
  1815   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1818     // Check to see whether we are returning to a deoptimized frame.
  1819     // (The PopFrame call ensures that the caller of the popped frame is
  1820     // either interpreted or compiled and deoptimizes it if compiled.)
  1821     // In this case, we can't call dispatch_next() after the frame is
  1822     // popped, but instead must save the incoming arguments and restore
  1823     // them after deoptimization has occurred.
  1824     //
  1825     // Note that we don't compare the return PC against the
  1826     // deoptimization blob's unpack entry because of the presence of
  1827     // adapter frames in C2.
  1828     Label caller_not_deoptimized;
  1829     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
  1830     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
  1832     const Register Gtmp1 = G3_scratch;
  1833     const Register Gtmp2 = G1_scratch;
  1834     const Register RconstMethod = Gtmp1;
  1835     const Address constMethod(Lmethod, Method::const_offset());
  1836     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
  1838     // Compute size of arguments for saving when returning to deoptimized caller
  1839     __ ld_ptr(constMethod, RconstMethod);
  1840     __ lduh(size_of_parameters, Gtmp1);
  1841     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
  1842     __ sub(Llocals, Gtmp1, Gtmp2);
  1843     __ add(Gtmp2, wordSize, Gtmp2);
  1844     // Save these arguments
  1845     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
  1846     // Inform deoptimization that it is responsible for restoring these arguments
  1847     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
  1848     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1849     __ st(Gtmp1, popframe_condition_addr);
  1851     // Return from the current method
  1852     // The caller's SP was adjusted upon method entry to accomodate
  1853     // the callee's non-argument locals. Undo that adjustment.
  1854     __ ret();
  1855     __ delayed()->restore(I5_savedSP, G0, SP);
  1857     __ bind(caller_not_deoptimized);
  1860   // Clear the popframe condition flag
  1861   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
  1863   // Get out of the current method (how this is done depends on the particular compiler calling
  1864   // convention that the interpreter currently follows)
  1865   // The caller's SP was adjusted upon method entry to accomodate
  1866   // the callee's non-argument locals. Undo that adjustment.
  1867   __ restore(I5_savedSP, G0, SP);
  1868   // The method data pointer was incremented already during
  1869   // call profiling. We have to restore the mdp for the current bcp.
  1870   if (ProfileInterpreter) {
  1871     __ set_method_data_pointer_for_bcp();
  1874 #if INCLUDE_JVMTI
  1875   if (EnableInvokeDynamic) {
  1876     Label L_done;
  1878     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
  1879     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
  1881     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1882     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1884     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
  1886     __ br_null(G1_scratch, false, Assembler::pn, L_done);
  1887     __ delayed()->nop();
  1889     __ st_ptr(G1_scratch, Lesp, wordSize);
  1890     __ bind(L_done);
  1892 #endif // INCLUDE_JVMTI
  1894   // Resume bytecode interpretation at the current bcp
  1895   __ dispatch_next(vtos);
  1896   // end of JVMTI PopFrame support
  1898   Interpreter::_remove_activation_entry = __ pc();
  1900   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
  1901   __ pop_ptr(Oexception);                                  // get exception
  1903   // Intel has the following comment:
  1904   //// remove the activation (without doing throws on illegalMonitorExceptions)
  1905   // They remove the activation without checking for bad monitor state.
  1906   // %%% We should make sure this is the right semantics before implementing.
  1908   __ set_vm_result(Oexception);
  1909   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
  1911   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
  1913   __ get_vm_result(Oexception);
  1914   __ verify_oop(Oexception);
  1916     const int return_reg_adjustment = frame::pc_return_offset;
  1917   Address issuing_pc_addr(I7, return_reg_adjustment);
  1919   // We are done with this activation frame; find out where to go next.
  1920   // The continuation point will be an exception handler, which expects
  1921   // the following registers set up:
  1922   //
  1923   // Oexception: exception
  1924   // Oissuing_pc: the local call that threw exception
  1925   // Other On: garbage
  1926   // In/Ln:  the contents of the caller's register window
  1927   //
  1928   // We do the required restore at the last possible moment, because we
  1929   // need to preserve some state across a runtime call.
  1930   // (Remember that the caller activation is unknown--it might not be
  1931   // interpreted, so things like Lscratch are useless in the caller.)
  1933   // Although the Intel version uses call_C, we can use the more
  1934   // compact call_VM.  (The only real difference on SPARC is a
  1935   // harmlessly ignored [re]set_last_Java_frame, compared with
  1936   // the Intel code which lacks this.)
  1937   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  1938   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  1939   __ super_call_VM_leaf(L7_thread_cache,
  1940                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1941                         G2_thread, Oissuing_pc->after_save());
  1943   // The caller's SP was adjusted upon method entry to accomodate
  1944   // the callee's non-argument locals. Undo that adjustment.
  1945   __ JMP(O0, 0);                         // return exception handler in caller
  1946   __ delayed()->restore(I5_savedSP, G0, SP);
  1948   // (same old exception object is already in Oexception; see above)
  1949   // Note that an "issuing PC" is actually the next PC after the call
  1953 //
  1954 // JVMTI ForceEarlyReturn support
  1955 //
  1957 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1958   address entry = __ pc();
  1960   __ empty_expression_stack();
  1961   __ load_earlyret_value(state);
  1963   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
  1964   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
  1966   // Clear the earlyret state
  1967   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
  1969   __ remove_activation(state,
  1970                        /* throw_monitor_exception */ false,
  1971                        /* install_monitor_exception */ false);
  1973   // The caller's SP was adjusted upon method entry to accomodate
  1974   // the callee's non-argument locals. Undo that adjustment.
  1975   __ ret();                             // return to caller
  1976   __ delayed()->restore(I5_savedSP, G0, SP);
  1978   return entry;
  1979 } // end of JVMTI ForceEarlyReturn support
  1982 //------------------------------------------------------------------------------------------------------------------------
  1983 // Helper for vtos entry point generation
  1985 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1986   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1987   Label L;
  1988   aep = __ pc(); __ push_ptr(); __ ba_short(L);
  1989   fep = __ pc(); __ push_f();   __ ba_short(L);
  1990   dep = __ pc(); __ push_d();   __ ba_short(L);
  1991   lep = __ pc(); __ push_l();   __ ba_short(L);
  1992   iep = __ pc(); __ push_i();
  1993   bep = cep = sep = iep;                        // there aren't any
  1994   vep = __ pc(); __ bind(L);                    // fall through
  1995   generate_and_dispatch(t);
  1998 // --------------------------------------------------------------------------------
  2001 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2002  : TemplateInterpreterGenerator(code) {
  2003    generate_all(); // down here so it can be "virtual"
  2006 // --------------------------------------------------------------------------------
  2008 // Non-product code
  2009 #ifndef PRODUCT
  2010 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  2011   address entry = __ pc();
  2013   __ push(state);
  2014   __ mov(O7, Lscratch); // protect return address within interpreter
  2016   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
  2017   __ mov( Otos_l2, G3_scratch );
  2018   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
  2019   __ mov(Lscratch, O7); // restore return address
  2020   __ pop(state);
  2021   __ retl();
  2022   __ delayed()->nop();
  2024   return entry;
  2028 // helpers for generate_and_dispatch
  2030 void TemplateInterpreterGenerator::count_bytecode() {
  2031   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
  2035 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  2036   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
  2040 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2041   AddressLiteral index   (&BytecodePairHistogram::_index);
  2042   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
  2044   // get index, shift out old bytecode, bring in new bytecode, and store it
  2045   // _index = (_index >> log2_number_of_codes) |
  2046   //          (bytecode << log2_number_of_codes);
  2048   __ load_contents(index, G4_scratch);
  2049   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
  2050   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
  2051   __ or3( G3_scratch,  G4_scratch, G4_scratch );
  2052   __ store_contents(G4_scratch, index, G3_scratch);
  2054   // bump bucket contents
  2055   // _counters[_index] ++;
  2057   __ set(counters, G3_scratch);                       // loads into G3_scratch
  2058   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
  2059   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
  2060   __ ld (G3_scratch, 0, G4_scratch);
  2061   __ inc (G4_scratch);
  2062   __ st (G4_scratch, 0, G3_scratch);
  2066 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2067   // Call a little run-time stub to avoid blow-up for each bytecode.
  2068   // The run-time runtime saves the right registers, depending on
  2069   // the tosca in-state for the given template.
  2070   address entry = Interpreter::trace_code(t->tos_in());
  2071   guarantee(entry != NULL, "entry must have been generated");
  2072   __ call(entry, relocInfo::none);
  2073   __ delayed()->nop();
  2077 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2078   AddressLiteral counter(&BytecodeCounter::_counter_value);
  2079   __ load_contents(counter, G3_scratch);
  2080   AddressLiteral stop_at(&StopInterpreterAt);
  2081   __ load_ptr_contents(stop_at, G4_scratch);
  2082   __ cmp(G3_scratch, G4_scratch);
  2083   __ breakpoint_trap(Assembler::equal, Assembler::icc);
  2085 #endif // not PRODUCT
  2086 #endif // !CC_INTERP

mercurial