src/cpu/sparc/vm/sparc.ad

Tue, 24 Dec 2013 11:48:39 -0800

author
mikael
date
Tue, 24 Dec 2013 11:48:39 -0800
changeset 6198
55fb97c4c58d
parent 6184
9ecf408d4568
child 6287
f970454708b8
child 6312
04d32e7fad07
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Summary: Copyright year updated for files modified during 2013
Reviewed-by: twisti, iveresov

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedClassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   563     } else {
   564       klass_load_size = 1*BytesPerInstWord;
   565     }
   566     if (Assembler::is_simm13(v_off)) {
   567       return klass_load_size +
   568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   569              NativeCall::instruction_size);  // call; delay slot
   570     } else {
   571       return klass_load_size +
   572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   573              NativeCall::instruction_size);  // call; delay slot
   574     }
   575   }
   576 }
   578 int MachCallRuntimeNode::ret_addr_offset() {
   579 #ifdef _LP64
   580   if (MacroAssembler::is_far_target(entry_point())) {
   581     return NativeFarCall::instruction_size;
   582   } else {
   583     return NativeCall::instruction_size;
   584   }
   585 #else
   586   return NativeCall::instruction_size;  // call; delay slot
   587 #endif
   588 }
   590 // Indicate if the safepoint node needs the polling page as an input.
   591 // Since Sparc does not have absolute addressing, it does.
   592 bool SafePointNode::needs_polling_address_input() {
   593   return true;
   594 }
   596 // emit an interrupt that is caught by the debugger (for debugging compiler)
   597 void emit_break(CodeBuffer &cbuf) {
   598   MacroAssembler _masm(&cbuf);
   599   __ breakpoint_trap();
   600 }
   602 #ifndef PRODUCT
   603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   604   st->print("TA");
   605 }
   606 #endif
   608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   609   emit_break(cbuf);
   610 }
   612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   613   return MachNode::size(ra_);
   614 }
   616 // Traceable jump
   617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   618   MacroAssembler _masm(&cbuf);
   619   Register rdest = reg_to_register_object(jump_target);
   620   __ JMP(rdest, 0);
   621   __ delayed()->nop();
   622 }
   624 // Traceable jump and set exception pc
   625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   626   MacroAssembler _masm(&cbuf);
   627   Register rdest = reg_to_register_object(jump_target);
   628   __ JMP(rdest, 0);
   629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   630 }
   632 void emit_nop(CodeBuffer &cbuf) {
   633   MacroAssembler _masm(&cbuf);
   634   __ nop();
   635 }
   637 void emit_illtrap(CodeBuffer &cbuf) {
   638   MacroAssembler _masm(&cbuf);
   639   __ illtrap(0);
   640 }
   643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   644   assert(n->rule() != loadUB_rule, "");
   646   intptr_t offset = 0;
   647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   648   const Node* addr = n->get_base_and_disp(offset, adr_type);
   649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   652   atype = atype->add_offset(offset);
   653   assert(disp32 == offset, "wrong disp32");
   654   return atype->_offset;
   655 }
   658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   659   assert(n->rule() != loadUB_rule, "");
   661   intptr_t offset = 0;
   662   Node* addr = n->in(2);
   663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   665     Node* a = addr->in(2/*AddPNode::Address*/);
   666     Node* o = addr->in(3/*AddPNode::Offset*/);
   667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   669     assert(atype->isa_oop_ptr(), "still an oop");
   670   }
   671   offset = atype->is_ptr()->_offset;
   672   if (offset != Type::OffsetBot)  offset += disp32;
   673   return offset;
   674 }
   676 static inline jdouble replicate_immI(int con, int count, int width) {
   677   // Load a constant replicated "count" times with width "width"
   678   assert(count*width == 8 && width <= 4, "sanity");
   679   int bit_width = width * 8;
   680   jlong val = con;
   681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   682   for (int i = 0; i < count - 1; i++) {
   683     val |= (val << bit_width);
   684   }
   685   jdouble dval = *((jdouble*) &val);  // coerce to double type
   686   return dval;
   687 }
   689 static inline jdouble replicate_immF(float con) {
   690   // Replicate float con 2 times and pack into vector.
   691   int val = *((int*)&con);
   692   jlong lval = val;
   693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   695   return dval;
   696 }
   698 // Standard Sparc opcode form2 field breakdown
   699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   701   int op = (f30 << 30) |
   702            (f29 << 29) |
   703            (f25 << 25) |
   704            (f22 << 22) |
   705            (f20 << 20) |
   706            (f19 << 19) |
   707            (f0  <<  0);
   708   cbuf.insts()->emit_int32(op);
   709 }
   711 // Standard Sparc opcode form2 field breakdown
   712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   713   f0 >>= 10;           // Drop 10 bits
   714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   715   int op = (f30 << 30) |
   716            (f25 << 25) |
   717            (f22 << 22) |
   718            (f0  <<  0);
   719   cbuf.insts()->emit_int32(op);
   720 }
   722 // Standard Sparc opcode form3 field breakdown
   723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   724   int op = (f30 << 30) |
   725            (f25 << 25) |
   726            (f19 << 19) |
   727            (f14 << 14) |
   728            (f5  <<  5) |
   729            (f0  <<  0);
   730   cbuf.insts()->emit_int32(op);
   731 }
   733 // Standard Sparc opcode form3 field breakdown
   734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   735   simm13 &= (1<<13)-1; // Mask to 13 bits
   736   int op = (f30 << 30) |
   737            (f25 << 25) |
   738            (f19 << 19) |
   739            (f14 << 14) |
   740            (1   << 13) | // bit to indicate immediate-mode
   741            (simm13<<0);
   742   cbuf.insts()->emit_int32(op);
   743 }
   745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   746   simm10 &= (1<<10)-1; // Mask to 10 bits
   747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   748 }
   750 #ifdef ASSERT
   751 // Helper function for VerifyOops in emit_form3_mem_reg
   752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   753   warning("VerifyOops encountered unexpected instruction:");
   754   n->dump(2);
   755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   756 }
   757 #endif
   760 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
   761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   763 #ifdef ASSERT
   764   // The following code implements the +VerifyOops feature.
   765   // It verifies oop values which are loaded into or stored out of
   766   // the current method activation.  +VerifyOops complements techniques
   767   // like ScavengeALot, because it eagerly inspects oops in transit,
   768   // as they enter or leave the stack, as opposed to ScavengeALot,
   769   // which inspects oops "at rest", in the stack or heap, at safepoints.
   770   // For this reason, +VerifyOops can sometimes detect bugs very close
   771   // to their point of creation.  It can also serve as a cross-check
   772   // on the validity of oop maps, when used toegether with ScavengeALot.
   774   // It would be good to verify oops at other points, especially
   775   // when an oop is used as a base pointer for a load or store.
   776   // This is presently difficult, because it is hard to know when
   777   // a base address is biased or not.  (If we had such information,
   778   // it would be easy and useful to make a two-argument version of
   779   // verify_oop which unbiases the base, and performs verification.)
   781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   782   bool is_verified_oop_base  = false;
   783   bool is_verified_oop_load  = false;
   784   bool is_verified_oop_store = false;
   785   int tmp_enc = -1;
   786   if (VerifyOops && src1_enc != R_SP_enc) {
   787     // classify the op, mainly for an assert check
   788     int st_op = 0, ld_op = 0;
   789     switch (primary) {
   790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   794     case Assembler::std_op3:  st_op = Op_StoreL; break;
   795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   810     default: ShouldNotReachHere();
   811     }
   812     if (tertiary == REGP_OP) {
   813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   815       else                          ShouldNotReachHere();
   816       if (st_op) {
   817         // a store
   818         // inputs are (0:control, 1:memory, 2:address, 3:value)
   819         Node* n2 = n->in(3);
   820         if (n2 != NULL) {
   821           const Type* t = n2->bottom_type();
   822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823         }
   824       } else {
   825         // a load
   826         const Type* t = n->bottom_type();
   827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   828       }
   829     }
   831     if (ld_op) {
   832       // a Load
   833       // inputs are (0:control, 1:memory, 2:address)
   834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   849           !(n->rule() == loadUB_rule)) {
   850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   851       }
   852     } else if (st_op) {
   853       // a Store
   854       // inputs are (0:control, 1:memory, 2:address, 3:value)
   855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   863       }
   864     }
   866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   867       Node* addr = n->in(2);
   868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   870         if (atype != NULL) {
   871           intptr_t offset = get_offset_from_base(n, atype, disp32);
   872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   873           if (offset != offset_2) {
   874             get_offset_from_base(n, atype, disp32);
   875             get_offset_from_base_2(n, atype, disp32);
   876           }
   877           assert(offset == offset_2, "different offsets");
   878           if (offset == disp32) {
   879             // we now know that src1 is a true oop pointer
   880             is_verified_oop_base = true;
   881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   882               if( primary == Assembler::ldd_op3 ) {
   883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   884               } else {
   885                 tmp_enc = dst_enc;
   886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   887                 assert(src1_enc != dst_enc, "");
   888               }
   889             }
   890           }
   891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   892                        || offset == oopDesc::mark_offset_in_bytes())) {
   893                       // loading the mark should not be allowed either, but
   894                       // we don't check this since it conflicts with InlineObjectHash
   895                       // usage of LoadINode to get the mark. We could keep the
   896                       // check if we create a new LoadMarkNode
   897             // but do not verify the object before its header is initialized
   898             ShouldNotReachHere();
   899           }
   900         }
   901       }
   902     }
   903   }
   904 #endif
   906   uint instr;
   907   instr = (Assembler::ldst_op << 30)
   908         | (dst_enc        << 25)
   909         | (primary        << 19)
   910         | (src1_enc       << 14);
   912   uint index = src2_enc;
   913   int disp = disp32;
   915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
   916     disp += STACK_BIAS;
   917     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
   918     if (!Assembler::is_simm13(disp)) {
   919       ra->C->record_method_not_compilable("unable to handle large constant offsets");
   920       return;
   921     }
   922   }
   924   // We should have a compiler bailout here rather than a guarantee.
   925   // Better yet would be some mechanism to handle variable-size matches correctly.
   926   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   928   if( disp == 0 ) {
   929     // use reg-reg form
   930     // bit 13 is already zero
   931     instr |= index;
   932   } else {
   933     // use reg-imm form
   934     instr |= 0x00002000;          // set bit 13 to one
   935     instr |= disp & 0x1FFF;
   936   }
   938   cbuf.insts()->emit_int32(instr);
   940 #ifdef ASSERT
   941   {
   942     MacroAssembler _masm(&cbuf);
   943     if (is_verified_oop_base) {
   944       __ verify_oop(reg_to_register_object(src1_enc));
   945     }
   946     if (is_verified_oop_store) {
   947       __ verify_oop(reg_to_register_object(dst_enc));
   948     }
   949     if (tmp_enc != -1) {
   950       __ mov(O7, reg_to_register_object(tmp_enc));
   951     }
   952     if (is_verified_oop_load) {
   953       __ verify_oop(reg_to_register_object(dst_enc));
   954     }
   955   }
   956 #endif
   957 }
   959 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   960   // The method which records debug information at every safepoint
   961   // expects the call to be the first instruction in the snippet as
   962   // it creates a PcDesc structure which tracks the offset of a call
   963   // from the start of the codeBlob. This offset is computed as
   964   // code_end() - code_begin() of the code which has been emitted
   965   // so far.
   966   // In this particular case we have skirted around the problem by
   967   // putting the "mov" instruction in the delay slot but the problem
   968   // may bite us again at some other point and a cleaner/generic
   969   // solution using relocations would be needed.
   970   MacroAssembler _masm(&cbuf);
   971   __ set_inst_mark();
   973   // We flush the current window just so that there is a valid stack copy
   974   // the fact that the current window becomes active again instantly is
   975   // not a problem there is nothing live in it.
   977 #ifdef ASSERT
   978   int startpos = __ offset();
   979 #endif /* ASSERT */
   981   __ call((address)entry_point, rtype);
   983   if (preserve_g2)   __ delayed()->mov(G2, L7);
   984   else __ delayed()->nop();
   986   if (preserve_g2)   __ mov(L7, G2);
   988 #ifdef ASSERT
   989   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   990 #ifdef _LP64
   991     // Trash argument dump slots.
   992     __ set(0xb0b8ac0db0b8ac0d, G1);
   993     __ mov(G1, G5);
   994     __ stx(G1, SP, STACK_BIAS + 0x80);
   995     __ stx(G1, SP, STACK_BIAS + 0x88);
   996     __ stx(G1, SP, STACK_BIAS + 0x90);
   997     __ stx(G1, SP, STACK_BIAS + 0x98);
   998     __ stx(G1, SP, STACK_BIAS + 0xA0);
   999     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1000 #else // _LP64
  1001     // this is also a native call, so smash the first 7 stack locations,
  1002     // and the various registers
  1004     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1005     // while [SP+0x44..0x58] are the argument dump slots.
  1006     __ set((intptr_t)0xbaadf00d, G1);
  1007     __ mov(G1, G5);
  1008     __ sllx(G1, 32, G1);
  1009     __ or3(G1, G5, G1);
  1010     __ mov(G1, G5);
  1011     __ stx(G1, SP, 0x40);
  1012     __ stx(G1, SP, 0x48);
  1013     __ stx(G1, SP, 0x50);
  1014     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1015 #endif // _LP64
  1017 #endif /*ASSERT*/
  1020 //=============================================================================
  1021 // REQUIRED FUNCTIONALITY for encoding
  1022 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1023 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1026 //=============================================================================
  1027 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1029 int Compile::ConstantTable::calculate_table_base_offset() const {
  1030   if (UseRDPCForConstantTableBase) {
  1031     // The table base offset might be less but then it fits into
  1032     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1033     return Assembler::min_simm13();
  1034   } else {
  1035     int offset = -(size() / 2);
  1036     if (!Assembler::is_simm13(offset)) {
  1037       offset = Assembler::min_simm13();
  1039     return offset;
  1043 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1044   Compile* C = ra_->C;
  1045   Compile::ConstantTable& constant_table = C->constant_table();
  1046   MacroAssembler _masm(&cbuf);
  1048   Register r = as_Register(ra_->get_encode(this));
  1049   CodeSection* consts_section = __ code()->consts();
  1050   int consts_size = consts_section->align_at_start(consts_section->size());
  1051   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1053   if (UseRDPCForConstantTableBase) {
  1054     // For the following RDPC logic to work correctly the consts
  1055     // section must be allocated right before the insts section.  This
  1056     // assert checks for that.  The layout and the SECT_* constants
  1057     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1058     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1059     int insts_offset = __ offset();
  1061     // Layout:
  1062     //
  1063     // |----------- consts section ------------|----------- insts section -----------...
  1064     // |------ constant table -----|- padding -|------------------x----
  1065     //                                                            \ current PC (RDPC instruction)
  1066     // |<------------- consts_size ----------->|<- insts_offset ->|
  1067     //                                                            \ table base
  1068     // The table base offset is later added to the load displacement
  1069     // so it has to be negative.
  1070     int table_base_offset = -(consts_size + insts_offset);
  1071     int disp;
  1073     // If the displacement from the current PC to the constant table
  1074     // base fits into simm13 we set the constant table base to the
  1075     // current PC.
  1076     if (Assembler::is_simm13(table_base_offset)) {
  1077       constant_table.set_table_base_offset(table_base_offset);
  1078       disp = 0;
  1079     } else {
  1080       // Otherwise we set the constant table base offset to the
  1081       // maximum negative displacement of load instructions to keep
  1082       // the disp as small as possible:
  1083       //
  1084       // |<------------- consts_size ----------->|<- insts_offset ->|
  1085       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1086       //                                  \ table base
  1087       table_base_offset = Assembler::min_simm13();
  1088       constant_table.set_table_base_offset(table_base_offset);
  1089       disp = (consts_size + insts_offset) + table_base_offset;
  1092     __ rdpc(r);
  1094     if (disp != 0) {
  1095       assert(r != O7, "need temporary");
  1096       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1099   else {
  1100     // Materialize the constant table base.
  1101     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1102     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1103     AddressLiteral base(baseaddr, rspec);
  1104     __ set(base, r);
  1108 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1109   if (UseRDPCForConstantTableBase) {
  1110     // This is really the worst case but generally it's only 1 instruction.
  1111     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1112   } else {
  1113     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1117 #ifndef PRODUCT
  1118 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1119   char reg[128];
  1120   ra_->dump_register(this, reg);
  1121   if (UseRDPCForConstantTableBase) {
  1122     st->print("RDPC   %s\t! constant table base", reg);
  1123   } else {
  1124     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1127 #endif
  1130 //=============================================================================
  1132 #ifndef PRODUCT
  1133 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1134   Compile* C = ra_->C;
  1136   for (int i = 0; i < OptoPrologueNops; i++) {
  1137     st->print_cr("NOP"); st->print("\t");
  1140   if( VerifyThread ) {
  1141     st->print_cr("Verify_Thread"); st->print("\t");
  1144   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1146   // Calls to C2R adapters often do not accept exceptional returns.
  1147   // We require that their callers must bang for them.  But be careful, because
  1148   // some VM calls (such as call site linkage) can use several kilobytes of
  1149   // stack.  But the stack safety zone should account for that.
  1150   // See bugs 4446381, 4468289, 4497237.
  1151   if (C->need_stack_bang(framesize)) {
  1152     st->print_cr("! stack bang"); st->print("\t");
  1155   if (Assembler::is_simm13(-framesize)) {
  1156     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1157   } else {
  1158     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1159     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1160     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1164 #endif
  1166 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1167   Compile* C = ra_->C;
  1168   MacroAssembler _masm(&cbuf);
  1170   for (int i = 0; i < OptoPrologueNops; i++) {
  1171     __ nop();
  1174   __ verify_thread();
  1176   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1177   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1178   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1180   // Calls to C2R adapters often do not accept exceptional returns.
  1181   // We require that their callers must bang for them.  But be careful, because
  1182   // some VM calls (such as call site linkage) can use several kilobytes of
  1183   // stack.  But the stack safety zone should account for that.
  1184   // See bugs 4446381, 4468289, 4497237.
  1185   if (C->need_stack_bang(framesize)) {
  1186     __ generate_stack_overflow_check(framesize);
  1189   if (Assembler::is_simm13(-framesize)) {
  1190     __ save(SP, -framesize, SP);
  1191   } else {
  1192     __ sethi(-framesize & ~0x3ff, G3);
  1193     __ add(G3, -framesize & 0x3ff, G3);
  1194     __ save(SP, G3, SP);
  1196   C->set_frame_complete( __ offset() );
  1198   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1199     // NOTE: We set the table base offset here because users might be
  1200     // emitted before MachConstantBaseNode.
  1201     Compile::ConstantTable& constant_table = C->constant_table();
  1202     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1206 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1207   return MachNode::size(ra_);
  1210 int MachPrologNode::reloc() const {
  1211   return 10; // a large enough number
  1214 //=============================================================================
  1215 #ifndef PRODUCT
  1216 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1217   Compile* C = ra_->C;
  1219   if( do_polling() && ra_->C->is_method_compilation() ) {
  1220     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1221 #ifdef _LP64
  1222     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1223 #else
  1224     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1225 #endif
  1228   if( do_polling() )
  1229     st->print("RET\n\t");
  1231   st->print("RESTORE");
  1233 #endif
  1235 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1236   MacroAssembler _masm(&cbuf);
  1237   Compile* C = ra_->C;
  1239   __ verify_thread();
  1241   // If this does safepoint polling, then do it here
  1242   if( do_polling() && ra_->C->is_method_compilation() ) {
  1243     AddressLiteral polling_page(os::get_polling_page());
  1244     __ sethi(polling_page, L0);
  1245     __ relocate(relocInfo::poll_return_type);
  1246     __ ld_ptr( L0, 0, G0 );
  1249   // If this is a return, then stuff the restore in the delay slot
  1250   if( do_polling() ) {
  1251     __ ret();
  1252     __ delayed()->restore();
  1253   } else {
  1254     __ restore();
  1258 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1259   return MachNode::size(ra_);
  1262 int MachEpilogNode::reloc() const {
  1263   return 16; // a large enough number
  1266 const Pipeline * MachEpilogNode::pipeline() const {
  1267   return MachNode::pipeline_class();
  1270 int MachEpilogNode::safepoint_offset() const {
  1271   assert( do_polling(), "no return for this epilog node");
  1272   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1275 //=============================================================================
  1277 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1278 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1279 static enum RC rc_class( OptoReg::Name reg ) {
  1280   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1281   if (OptoReg::is_stack(reg)) return rc_stack;
  1282   VMReg r = OptoReg::as_VMReg(reg);
  1283   if (r->is_Register()) return rc_int;
  1284   assert(r->is_FloatRegister(), "must be");
  1285   return rc_float;
  1288 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1289   if (cbuf) {
  1290     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1292 #ifndef PRODUCT
  1293   else if (!do_size) {
  1294     if (size != 0) st->print("\n\t");
  1295     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1296     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1298 #endif
  1299   return size+4;
  1302 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1303   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1304 #ifndef PRODUCT
  1305   else if( !do_size ) {
  1306     if( size != 0 ) st->print("\n\t");
  1307     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1309 #endif
  1310   return size+4;
  1313 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1314                                         PhaseRegAlloc *ra_,
  1315                                         bool do_size,
  1316                                         outputStream* st ) const {
  1317   // Get registers to move
  1318   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1319   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1320   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1321   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1323   enum RC src_second_rc = rc_class(src_second);
  1324   enum RC src_first_rc = rc_class(src_first);
  1325   enum RC dst_second_rc = rc_class(dst_second);
  1326   enum RC dst_first_rc = rc_class(dst_first);
  1328   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1330   // Generate spill code!
  1331   int size = 0;
  1333   if( src_first == dst_first && src_second == dst_second )
  1334     return size;            // Self copy, no move
  1336   // --------------------------------------
  1337   // Check for mem-mem move.  Load into unused float registers and fall into
  1338   // the float-store case.
  1339   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1340     int offset = ra_->reg2offset(src_first);
  1341     // Further check for aligned-adjacent pair, so we can use a double load
  1342     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1343       src_second    = OptoReg::Name(R_F31_num);
  1344       src_second_rc = rc_float;
  1345       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1346     } else {
  1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1349     src_first    = OptoReg::Name(R_F30_num);
  1350     src_first_rc = rc_float;
  1353   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1354     int offset = ra_->reg2offset(src_second);
  1355     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1356     src_second    = OptoReg::Name(R_F31_num);
  1357     src_second_rc = rc_float;
  1360   // --------------------------------------
  1361   // Check for float->int copy; requires a trip through memory
  1362   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1363     int offset = frame::register_save_words*wordSize;
  1364     if (cbuf) {
  1365       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1366       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1367       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1368       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1370 #ifndef PRODUCT
  1371     else if (!do_size) {
  1372       if (size != 0) st->print("\n\t");
  1373       st->print(  "SUB    R_SP,16,R_SP\n");
  1374       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1375       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1376       st->print("\tADD    R_SP,16,R_SP\n");
  1378 #endif
  1379     size += 16;
  1382   // Check for float->int copy on T4
  1383   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1384     // Further check for aligned-adjacent pair, so we can use a double move
  1385     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1386       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1387     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1389   // Check for int->float copy on T4
  1390   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1391     // Further check for aligned-adjacent pair, so we can use a double move
  1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1397   // --------------------------------------
  1398   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1399   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1400   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1401   // there.  Misaligned sources only come from native-long-returns (handled
  1402   // special below).
  1403 #ifndef _LP64
  1404   if( src_first_rc == rc_int &&     // source is already big-endian
  1405       src_second_rc != rc_bad &&    // 64-bit move
  1406       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1407     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1408     // Do the big-endian flop.
  1409     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1410     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1412 #endif
  1414   // --------------------------------------
  1415   // Check for integer reg-reg copy
  1416   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1417 #ifndef _LP64
  1418     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1419       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1420       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1421       //       operand contains the least significant word of the 64-bit value and vice versa.
  1422       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1423       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1424       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1425       if( cbuf ) {
  1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1427         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1428         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1429 #ifndef PRODUCT
  1430       } else if( !do_size ) {
  1431         if( size != 0 ) st->print("\n\t");
  1432         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1433         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1434         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1435 #endif
  1437       return size+12;
  1439     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1440       // returning a long value in I0/I1
  1441       // a SpillCopy must be able to target a return instruction's reg_class
  1442       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1443       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1444       //       operand contains the least significant word of the 64-bit value and vice versa.
  1445       OptoReg::Name tdest = dst_first;
  1447       if (src_first == dst_first) {
  1448         tdest = OptoReg::Name(R_O7_num);
  1449         size += 4;
  1452       if( cbuf ) {
  1453         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1454         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1455         // ShrL_reg_imm6
  1456         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1457         // ShrR_reg_imm6  src, 0, dst
  1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1459         if (tdest != dst_first) {
  1460           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1463 #ifndef PRODUCT
  1464       else if( !do_size ) {
  1465         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1466         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1467         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1468         if (tdest != dst_first) {
  1469           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1472 #endif // PRODUCT
  1473       return size+8;
  1475 #endif // !_LP64
  1476     // Else normal reg-reg copy
  1477     assert( src_second != dst_first, "smashed second before evacuating it" );
  1478     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1479     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1480     // This moves an aligned adjacent pair.
  1481     // See if we are done.
  1482     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1483       return size;
  1486   // Check for integer store
  1487   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1488     int offset = ra_->reg2offset(dst_first);
  1489     // Further check for aligned-adjacent pair, so we can use a double store
  1490     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1491       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1492     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1495   // Check for integer load
  1496   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1497     int offset = ra_->reg2offset(src_first);
  1498     // Further check for aligned-adjacent pair, so we can use a double load
  1499     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1500       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1501     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1504   // Check for float reg-reg copy
  1505   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1506     // Further check for aligned-adjacent pair, so we can use a double move
  1507     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1508       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1509     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1512   // Check for float store
  1513   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1514     int offset = ra_->reg2offset(dst_first);
  1515     // Further check for aligned-adjacent pair, so we can use a double store
  1516     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1517       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1518     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1521   // Check for float load
  1522   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1523     int offset = ra_->reg2offset(src_first);
  1524     // Further check for aligned-adjacent pair, so we can use a double load
  1525     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1526       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1527     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1530   // --------------------------------------------------------------------
  1531   // Check for hi bits still needing moving.  Only happens for misaligned
  1532   // arguments to native calls.
  1533   if( src_second == dst_second )
  1534     return size;               // Self copy; no move
  1535   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1537 #ifndef _LP64
  1538   // In the LP64 build, all registers can be moved as aligned/adjacent
  1539   // pairs, so there's never any need to move the high bits separately.
  1540   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1541   // all sorts of silly alignment problems.
  1543   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1544   // 32-bits of a 64-bit register, but are needed in low bits of another
  1545   // register (else it's a hi-bits-to-hi-bits copy which should have
  1546   // happened already as part of a 64-bit move)
  1547   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1548     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1549     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1550     // Shift src_second down to dst_second's low bits.
  1551     if( cbuf ) {
  1552       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1553 #ifndef PRODUCT
  1554     } else if( !do_size ) {
  1555       if( size != 0 ) st->print("\n\t");
  1556       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1557 #endif
  1559     return size+4;
  1562   // Check for high word integer store.  Must down-shift the hi bits
  1563   // into a temp register, then fall into the case of storing int bits.
  1564   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1565     // Shift src_second down to dst_second's low bits.
  1566     if( cbuf ) {
  1567       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1568 #ifndef PRODUCT
  1569     } else if( !do_size ) {
  1570       if( size != 0 ) st->print("\n\t");
  1571       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1572 #endif
  1574     size+=4;
  1575     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1578   // Check for high word integer load
  1579   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1580     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1582   // Check for high word integer store
  1583   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1584     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1586   // Check for high word float store
  1587   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1588     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1590 #endif // !_LP64
  1592   Unimplemented();
  1595 #ifndef PRODUCT
  1596 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1597   implementation( NULL, ra_, false, st );
  1599 #endif
  1601 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1602   implementation( &cbuf, ra_, false, NULL );
  1605 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1606   return implementation( NULL, ra_, true, NULL );
  1609 //=============================================================================
  1610 #ifndef PRODUCT
  1611 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1612   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1614 #endif
  1616 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1617   MacroAssembler _masm(&cbuf);
  1618   for(int i = 0; i < _count; i += 1) {
  1619     __ nop();
  1623 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1624   return 4 * _count;
  1628 //=============================================================================
  1629 #ifndef PRODUCT
  1630 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1631   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1632   int reg = ra_->get_reg_first(this);
  1633   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1635 #endif
  1637 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1638   MacroAssembler _masm(&cbuf);
  1639   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1640   int reg = ra_->get_encode(this);
  1642   if (Assembler::is_simm13(offset)) {
  1643      __ add(SP, offset, reg_to_register_object(reg));
  1644   } else {
  1645      __ set(offset, O7);
  1646      __ add(SP, O7, reg_to_register_object(reg));
  1650 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1651   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1652   assert(ra_ == ra_->C->regalloc(), "sanity");
  1653   return ra_->C->scratch_emit_size(this);
  1656 //=============================================================================
  1657 #ifndef PRODUCT
  1658 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1659   st->print_cr("\nUEP:");
  1660 #ifdef    _LP64
  1661   if (UseCompressedClassPointers) {
  1662     assert(Universe::heap() != NULL, "java heap should be initialized");
  1663     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1664     if (Universe::narrow_klass_base() != 0) {
  1665       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1666       if (Universe::narrow_klass_shift() != 0) {
  1667         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1669       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1670       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1671     } else {
  1672       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1674   } else {
  1675     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1677   st->print_cr("\tCMP    R_G5,R_G3" );
  1678   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1679 #else  // _LP64
  1680   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1681   st->print_cr("\tCMP    R_G5,R_G3" );
  1682   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1683 #endif // _LP64
  1685 #endif
  1687 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1688   MacroAssembler _masm(&cbuf);
  1689   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1690   Register temp_reg   = G3;
  1691   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1693   // Load klass from receiver
  1694   __ load_klass(O0, temp_reg);
  1695   // Compare against expected klass
  1696   __ cmp(temp_reg, G5_ic_reg);
  1697   // Branch to miss code, checks xcc or icc depending
  1698   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1701 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1702   return MachNode::size(ra_);
  1706 //=============================================================================
  1708 uint size_exception_handler() {
  1709   if (TraceJumps) {
  1710     return (400); // just a guess
  1712   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1715 uint size_deopt_handler() {
  1716   if (TraceJumps) {
  1717     return (400); // just a guess
  1719   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1722 // Emit exception handler code.
  1723 int emit_exception_handler(CodeBuffer& cbuf) {
  1724   Register temp_reg = G3;
  1725   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1726   MacroAssembler _masm(&cbuf);
  1728   address base =
  1729   __ start_a_stub(size_exception_handler());
  1730   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1732   int offset = __ offset();
  1734   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1735   __ delayed()->nop();
  1737   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1739   __ end_a_stub();
  1741   return offset;
  1744 int emit_deopt_handler(CodeBuffer& cbuf) {
  1745   // Can't use any of the current frame's registers as we may have deopted
  1746   // at a poll and everything (including G3) can be live.
  1747   Register temp_reg = L0;
  1748   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1749   MacroAssembler _masm(&cbuf);
  1751   address base =
  1752   __ start_a_stub(size_deopt_handler());
  1753   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1755   int offset = __ offset();
  1756   __ save_frame(0);
  1757   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1758   __ delayed()->restore();
  1760   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1762   __ end_a_stub();
  1763   return offset;
  1767 // Given a register encoding, produce a Integer Register object
  1768 static Register reg_to_register_object(int register_encoding) {
  1769   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1770   return as_Register(register_encoding);
  1773 // Given a register encoding, produce a single-precision Float Register object
  1774 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1775   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1776   return as_SingleFloatRegister(register_encoding);
  1779 // Given a register encoding, produce a double-precision Float Register object
  1780 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1781   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1782   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1783   return as_DoubleFloatRegister(register_encoding);
  1786 const bool Matcher::match_rule_supported(int opcode) {
  1787   if (!has_match_rule(opcode))
  1788     return false;
  1790   switch (opcode) {
  1791   case Op_CountLeadingZerosI:
  1792   case Op_CountLeadingZerosL:
  1793   case Op_CountTrailingZerosI:
  1794   case Op_CountTrailingZerosL:
  1795   case Op_PopCountI:
  1796   case Op_PopCountL:
  1797     if (!UsePopCountInstruction)
  1798       return false;
  1799   case Op_CompareAndSwapL:
  1800 #ifdef _LP64
  1801   case Op_CompareAndSwapP:
  1802 #endif
  1803     if (!VM_Version::supports_cx8())
  1804       return false;
  1805     break;
  1808   return true;  // Per default match rules are supported.
  1811 int Matcher::regnum_to_fpu_offset(int regnum) {
  1812   return regnum - 32; // The FP registers are in the second chunk
  1815 #ifdef ASSERT
  1816 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1817 #endif
  1819 // Vector width in bytes
  1820 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1821   assert(MaxVectorSize == 8, "");
  1822   return 8;
  1825 // Vector ideal reg
  1826 const int Matcher::vector_ideal_reg(int size) {
  1827   assert(MaxVectorSize == 8, "");
  1828   return Op_RegD;
  1831 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1832   fatal("vector shift is not supported");
  1833   return Node::NotAMachineReg;
  1836 // Limits on vector size (number of elements) loaded into vector.
  1837 const int Matcher::max_vector_size(const BasicType bt) {
  1838   assert(is_java_primitive(bt), "only primitive type vectors");
  1839   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1842 const int Matcher::min_vector_size(const BasicType bt) {
  1843   return max_vector_size(bt); // Same as max.
  1846 // SPARC doesn't support misaligned vectors store/load.
  1847 const bool Matcher::misaligned_vectors_ok() {
  1848   return false;
  1851 // USII supports fxtof through the whole range of number, USIII doesn't
  1852 const bool Matcher::convL2FSupported(void) {
  1853   return VM_Version::has_fast_fxtof();
  1856 // Is this branch offset short enough that a short branch can be used?
  1857 //
  1858 // NOTE: If the platform does not provide any short branch variants, then
  1859 //       this method should return false for offset 0.
  1860 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1861   // The passed offset is relative to address of the branch.
  1862   // Don't need to adjust the offset.
  1863   return UseCBCond && Assembler::is_simm12(offset);
  1866 const bool Matcher::isSimpleConstant64(jlong value) {
  1867   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1868   // Depends on optimizations in MacroAssembler::setx.
  1869   int hi = (int)(value >> 32);
  1870   int lo = (int)(value & ~0);
  1871   return (hi == 0) || (hi == -1) || (lo == 0);
  1874 // No scaling for the parameter the ClearArray node.
  1875 const bool Matcher::init_array_count_is_in_bytes = true;
  1877 // Threshold size for cleararray.
  1878 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1880 // No additional cost for CMOVL.
  1881 const int Matcher::long_cmove_cost() { return 0; }
  1883 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1884 const int Matcher::float_cmove_cost() {
  1885   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1888 // Should the Matcher clone shifts on addressing modes, expecting them to
  1889 // be subsumed into complex addressing expressions or compute them into
  1890 // registers?  True for Intel but false for most RISCs
  1891 const bool Matcher::clone_shift_expressions = false;
  1893 // Do we need to mask the count passed to shift instructions or does
  1894 // the cpu only look at the lower 5/6 bits anyway?
  1895 const bool Matcher::need_masked_shift_count = false;
  1897 bool Matcher::narrow_oop_use_complex_address() {
  1898   NOT_LP64(ShouldNotCallThis());
  1899   assert(UseCompressedOops, "only for compressed oops code");
  1900   return false;
  1903 bool Matcher::narrow_klass_use_complex_address() {
  1904   NOT_LP64(ShouldNotCallThis());
  1905   assert(UseCompressedClassPointers, "only for compressed klass code");
  1906   return false;
  1909 // Is it better to copy float constants, or load them directly from memory?
  1910 // Intel can load a float constant from a direct address, requiring no
  1911 // extra registers.  Most RISCs will have to materialize an address into a
  1912 // register first, so they would do better to copy the constant from stack.
  1913 const bool Matcher::rematerialize_float_constants = false;
  1915 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1916 // needed.  Else we split the double into 2 integer pieces and move it
  1917 // piece-by-piece.  Only happens when passing doubles into C code as the
  1918 // Java calling convention forces doubles to be aligned.
  1919 #ifdef _LP64
  1920 const bool Matcher::misaligned_doubles_ok = true;
  1921 #else
  1922 const bool Matcher::misaligned_doubles_ok = false;
  1923 #endif
  1925 // No-op on SPARC.
  1926 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1929 // Advertise here if the CPU requires explicit rounding operations
  1930 // to implement the UseStrictFP mode.
  1931 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1933 // Are floats conerted to double when stored to stack during deoptimization?
  1934 // Sparc does not handle callee-save floats.
  1935 bool Matcher::float_in_double() { return false; }
  1937 // Do ints take an entire long register or just half?
  1938 // Note that we if-def off of _LP64.
  1939 // The relevant question is how the int is callee-saved.  In _LP64
  1940 // the whole long is written but de-opt'ing will have to extract
  1941 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1942 #ifdef _LP64
  1943 const bool Matcher::int_in_long = true;
  1944 #else
  1945 const bool Matcher::int_in_long = false;
  1946 #endif
  1948 // Return whether or not this register is ever used as an argument.  This
  1949 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1950 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1951 // arguments in those registers not be available to the callee.
  1952 bool Matcher::can_be_java_arg( int reg ) {
  1953   // Standard sparc 6 args in registers
  1954   if( reg == R_I0_num ||
  1955       reg == R_I1_num ||
  1956       reg == R_I2_num ||
  1957       reg == R_I3_num ||
  1958       reg == R_I4_num ||
  1959       reg == R_I5_num ) return true;
  1960 #ifdef _LP64
  1961   // 64-bit builds can pass 64-bit pointers and longs in
  1962   // the high I registers
  1963   if( reg == R_I0H_num ||
  1964       reg == R_I1H_num ||
  1965       reg == R_I2H_num ||
  1966       reg == R_I3H_num ||
  1967       reg == R_I4H_num ||
  1968       reg == R_I5H_num ) return true;
  1970   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1971     return true;
  1974 #else
  1975   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1976   // Longs cannot be passed in O regs, because O regs become I regs
  1977   // after a 'save' and I regs get their high bits chopped off on
  1978   // interrupt.
  1979   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1980   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1981 #endif
  1982   // A few float args in registers
  1983   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1985   return false;
  1988 bool Matcher::is_spillable_arg( int reg ) {
  1989   return can_be_java_arg(reg);
  1992 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1993   // Use hardware SDIVX instruction when it is
  1994   // faster than a code which use multiply.
  1995   return VM_Version::has_fast_idiv();
  1998 // Register for DIVI projection of divmodI
  1999 RegMask Matcher::divI_proj_mask() {
  2000   ShouldNotReachHere();
  2001   return RegMask();
  2004 // Register for MODI projection of divmodI
  2005 RegMask Matcher::modI_proj_mask() {
  2006   ShouldNotReachHere();
  2007   return RegMask();
  2010 // Register for DIVL projection of divmodL
  2011 RegMask Matcher::divL_proj_mask() {
  2012   ShouldNotReachHere();
  2013   return RegMask();
  2016 // Register for MODL projection of divmodL
  2017 RegMask Matcher::modL_proj_mask() {
  2018   ShouldNotReachHere();
  2019   return RegMask();
  2022 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2023   return L7_REGP_mask();
  2026 const RegMask Matcher::mathExactI_result_proj_mask() {
  2027   return G1_REGI_mask();
  2030 const RegMask Matcher::mathExactL_result_proj_mask() {
  2031   return G1_REGL_mask();
  2034 const RegMask Matcher::mathExactI_flags_proj_mask() {
  2035   return INT_FLAGS_mask();
  2039 %}
  2042 // The intptr_t operand types, defined by textual substitution.
  2043 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2044 #ifdef _LP64
  2045 #define immX      immL
  2046 #define immX13    immL13
  2047 #define immX13m7  immL13m7
  2048 #define iRegX     iRegL
  2049 #define g1RegX    g1RegL
  2050 #else
  2051 #define immX      immI
  2052 #define immX13    immI13
  2053 #define immX13m7  immI13m7
  2054 #define iRegX     iRegI
  2055 #define g1RegX    g1RegI
  2056 #endif
  2058 //----------ENCODING BLOCK-----------------------------------------------------
  2059 // This block specifies the encoding classes used by the compiler to output
  2060 // byte streams.  Encoding classes are parameterized macros used by
  2061 // Machine Instruction Nodes in order to generate the bit encoding of the
  2062 // instruction.  Operands specify their base encoding interface with the
  2063 // interface keyword.  There are currently supported four interfaces,
  2064 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2065 // operand to generate a function which returns its register number when
  2066 // queried.   CONST_INTER causes an operand to generate a function which
  2067 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2068 // operand to generate four functions which return the Base Register, the
  2069 // Index Register, the Scale Value, and the Offset Value of the operand when
  2070 // queried.  COND_INTER causes an operand to generate six functions which
  2071 // return the encoding code (ie - encoding bits for the instruction)
  2072 // associated with each basic boolean condition for a conditional instruction.
  2073 //
  2074 // Instructions specify two basic values for encoding.  Again, a function
  2075 // is available to check if the constant displacement is an oop. They use the
  2076 // ins_encode keyword to specify their encoding classes (which must be
  2077 // a sequence of enc_class names, and their parameters, specified in
  2078 // the encoding block), and they use the
  2079 // opcode keyword to specify, in order, their primary, secondary, and
  2080 // tertiary opcode.  Only the opcode sections which a particular instruction
  2081 // needs for encoding need to be specified.
  2082 encode %{
  2083   enc_class enc_untested %{
  2084 #ifdef ASSERT
  2085     MacroAssembler _masm(&cbuf);
  2086     __ untested("encoding");
  2087 #endif
  2088   %}
  2090   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2091     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
  2092                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2093   %}
  2095   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2096     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2097                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2098   %}
  2100   enc_class form3_mem_prefetch_read( memory mem ) %{
  2101     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2102                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2103   %}
  2105   enc_class form3_mem_prefetch_write( memory mem ) %{
  2106     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2107                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2108   %}
  2110   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2111     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2112     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2113     guarantee($mem$$index == R_G0_enc, "double index?");
  2114     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2115     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2116     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2117     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2118   %}
  2120   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2121     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2122     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2123     guarantee($mem$$index == R_G0_enc, "double index?");
  2124     // Load long with 2 instructions
  2125     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2126     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2127   %}
  2129   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2130   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2131     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2132     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2133   %}
  2135   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2136     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2137     if( $rs2$$reg != $rd$$reg )
  2138       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2139   %}
  2141   // Target lo half of long
  2142   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2143     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2144     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2145       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2146   %}
  2148   // Source lo half of long
  2149   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2150     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2151     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2152       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2153   %}
  2155   // Target hi half of long
  2156   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2157     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2158   %}
  2160   // Source lo half of long, and leave it sign extended.
  2161   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2162     // Sign extend low half
  2163     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2164   %}
  2166   // Source hi half of long, and leave it sign extended.
  2167   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2168     // Shift high half to low half
  2169     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2170   %}
  2172   // Source hi half of long
  2173   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2174     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2175     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2176       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2177   %}
  2179   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2180     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2181   %}
  2183   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2184     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2185     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2186   %}
  2188   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2189     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2190     // clear if nothing else is happening
  2191     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2192     // blt,a,pn done
  2193     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2194     // mov dst,-1 in delay slot
  2195     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2196   %}
  2198   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2199     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2200   %}
  2202   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2203     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2204   %}
  2206   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2207     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2208   %}
  2210   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2211     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2212   %}
  2214   enc_class move_return_pc_to_o1() %{
  2215     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2216   %}
  2218 #ifdef _LP64
  2219   /* %%% merge with enc_to_bool */
  2220   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2221     MacroAssembler _masm(&cbuf);
  2223     Register   src_reg = reg_to_register_object($src$$reg);
  2224     Register   dst_reg = reg_to_register_object($dst$$reg);
  2225     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2226   %}
  2227 #endif
  2229   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2230     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2231     MacroAssembler _masm(&cbuf);
  2233     Register   p_reg = reg_to_register_object($p$$reg);
  2234     Register   q_reg = reg_to_register_object($q$$reg);
  2235     Register   y_reg = reg_to_register_object($y$$reg);
  2236     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2238     __ subcc( p_reg, q_reg,   p_reg );
  2239     __ add  ( p_reg, y_reg, tmp_reg );
  2240     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2241   %}
  2243   enc_class form_d2i_helper(regD src, regF dst) %{
  2244     // fcmp %fcc0,$src,$src
  2245     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2246     // branch %fcc0 not-nan, predict taken
  2247     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2248     // fdtoi $src,$dst
  2249     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2250     // fitos $dst,$dst (if nan)
  2251     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2252     // clear $dst (if nan)
  2253     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2254     // carry on here...
  2255   %}
  2257   enc_class form_d2l_helper(regD src, regD dst) %{
  2258     // fcmp %fcc0,$src,$src  check for NAN
  2259     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2260     // branch %fcc0 not-nan, predict taken
  2261     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2262     // fdtox $src,$dst   convert in delay slot
  2263     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2264     // fxtod $dst,$dst  (if nan)
  2265     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2266     // clear $dst (if nan)
  2267     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2268     // carry on here...
  2269   %}
  2271   enc_class form_f2i_helper(regF src, regF dst) %{
  2272     // fcmps %fcc0,$src,$src
  2273     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2274     // branch %fcc0 not-nan, predict taken
  2275     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2276     // fstoi $src,$dst
  2277     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2278     // fitos $dst,$dst (if nan)
  2279     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2280     // clear $dst (if nan)
  2281     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2282     // carry on here...
  2283   %}
  2285   enc_class form_f2l_helper(regF src, regD dst) %{
  2286     // fcmps %fcc0,$src,$src
  2287     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2288     // branch %fcc0 not-nan, predict taken
  2289     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2290     // fstox $src,$dst
  2291     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2292     // fxtod $dst,$dst (if nan)
  2293     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2294     // clear $dst (if nan)
  2295     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2296     // carry on here...
  2297   %}
  2299   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2300   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2301   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2302   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2304   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2306   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2307   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2309   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2310     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2311   %}
  2313   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2314     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2315   %}
  2317   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2318     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2319   %}
  2321   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2322     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2323   %}
  2325   enc_class form3_convI2F(regF rs2, regF rd) %{
  2326     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2327   %}
  2329   // Encloding class for traceable jumps
  2330   enc_class form_jmpl(g3RegP dest) %{
  2331     emit_jmpl(cbuf, $dest$$reg);
  2332   %}
  2334   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2335     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2336   %}
  2338   enc_class form2_nop() %{
  2339     emit_nop(cbuf);
  2340   %}
  2342   enc_class form2_illtrap() %{
  2343     emit_illtrap(cbuf);
  2344   %}
  2347   // Compare longs and convert into -1, 0, 1.
  2348   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2349     // CMP $src1,$src2
  2350     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2351     // blt,a,pn done
  2352     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2353     // mov dst,-1 in delay slot
  2354     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2355     // bgt,a,pn done
  2356     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2357     // mov dst,1 in delay slot
  2358     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2359     // CLR    $dst
  2360     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2361   %}
  2363   enc_class enc_PartialSubtypeCheck() %{
  2364     MacroAssembler _masm(&cbuf);
  2365     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2366     __ delayed()->nop();
  2367   %}
  2369   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2370     MacroAssembler _masm(&cbuf);
  2371     Label* L = $labl$$label;
  2372     Assembler::Predict predict_taken =
  2373       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2375     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2376     __ delayed()->nop();
  2377   %}
  2379   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2380     MacroAssembler _masm(&cbuf);
  2381     Label* L = $labl$$label;
  2382     Assembler::Predict predict_taken =
  2383       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2385     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2386     __ delayed()->nop();
  2387   %}
  2389   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2390     int op = (Assembler::arith_op << 30) |
  2391              ($dst$$reg << 25) |
  2392              (Assembler::movcc_op3 << 19) |
  2393              (1 << 18) |                    // cc2 bit for 'icc'
  2394              ($cmp$$cmpcode << 14) |
  2395              (0 << 13) |                    // select register move
  2396              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2397              ($src$$reg << 0);
  2398     cbuf.insts()->emit_int32(op);
  2399   %}
  2401   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2402     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2403     int op = (Assembler::arith_op << 30) |
  2404              ($dst$$reg << 25) |
  2405              (Assembler::movcc_op3 << 19) |
  2406              (1 << 18) |                    // cc2 bit for 'icc'
  2407              ($cmp$$cmpcode << 14) |
  2408              (1 << 13) |                    // select immediate move
  2409              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2410              (simm11 << 0);
  2411     cbuf.insts()->emit_int32(op);
  2412   %}
  2414   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2415     int op = (Assembler::arith_op << 30) |
  2416              ($dst$$reg << 25) |
  2417              (Assembler::movcc_op3 << 19) |
  2418              (0 << 18) |                    // cc2 bit for 'fccX'
  2419              ($cmp$$cmpcode << 14) |
  2420              (0 << 13) |                    // select register move
  2421              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2422              ($src$$reg << 0);
  2423     cbuf.insts()->emit_int32(op);
  2424   %}
  2426   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2427     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2428     int op = (Assembler::arith_op << 30) |
  2429              ($dst$$reg << 25) |
  2430              (Assembler::movcc_op3 << 19) |
  2431              (0 << 18) |                    // cc2 bit for 'fccX'
  2432              ($cmp$$cmpcode << 14) |
  2433              (1 << 13) |                    // select immediate move
  2434              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2435              (simm11 << 0);
  2436     cbuf.insts()->emit_int32(op);
  2437   %}
  2439   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2440     int op = (Assembler::arith_op << 30) |
  2441              ($dst$$reg << 25) |
  2442              (Assembler::fpop2_op3 << 19) |
  2443              (0 << 18) |
  2444              ($cmp$$cmpcode << 14) |
  2445              (1 << 13) |                    // select register move
  2446              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2447              ($primary << 5) |              // select single, double or quad
  2448              ($src$$reg << 0);
  2449     cbuf.insts()->emit_int32(op);
  2450   %}
  2452   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2453     int op = (Assembler::arith_op << 30) |
  2454              ($dst$$reg << 25) |
  2455              (Assembler::fpop2_op3 << 19) |
  2456              (0 << 18) |
  2457              ($cmp$$cmpcode << 14) |
  2458              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2459              ($primary << 5) |              // select single, double or quad
  2460              ($src$$reg << 0);
  2461     cbuf.insts()->emit_int32(op);
  2462   %}
  2464   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2465   // the condition comes from opcode-field instead of an argument.
  2466   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2467     int op = (Assembler::arith_op << 30) |
  2468              ($dst$$reg << 25) |
  2469              (Assembler::movcc_op3 << 19) |
  2470              (1 << 18) |                    // cc2 bit for 'icc'
  2471              ($primary << 14) |
  2472              (0 << 13) |                    // select register move
  2473              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2474              ($src$$reg << 0);
  2475     cbuf.insts()->emit_int32(op);
  2476   %}
  2478   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2479     int op = (Assembler::arith_op << 30) |
  2480              ($dst$$reg << 25) |
  2481              (Assembler::movcc_op3 << 19) |
  2482              (6 << 16) |                    // cc2 bit for 'xcc'
  2483              ($primary << 14) |
  2484              (0 << 13) |                    // select register move
  2485              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2486              ($src$$reg << 0);
  2487     cbuf.insts()->emit_int32(op);
  2488   %}
  2490   enc_class Set13( immI13 src, iRegI rd ) %{
  2491     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2492   %}
  2494   enc_class SetHi22( immI src, iRegI rd ) %{
  2495     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2496   %}
  2498   enc_class Set32( immI src, iRegI rd ) %{
  2499     MacroAssembler _masm(&cbuf);
  2500     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2501   %}
  2503   enc_class call_epilog %{
  2504     if( VerifyStackAtCalls ) {
  2505       MacroAssembler _masm(&cbuf);
  2506       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2507       Register temp_reg = G3;
  2508       __ add(SP, framesize, temp_reg);
  2509       __ cmp(temp_reg, FP);
  2510       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2512   %}
  2514   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2515   // to G1 so the register allocator will not have to deal with the misaligned register
  2516   // pair.
  2517   enc_class adjust_long_from_native_call %{
  2518 #ifndef _LP64
  2519     if (returns_long()) {
  2520       //    sllx  O0,32,O0
  2521       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2522       //    srl   O1,0,O1
  2523       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2524       //    or    O0,O1,G1
  2525       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2527 #endif
  2528   %}
  2530   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2531     // CALL directly to the runtime
  2532     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2533     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2534                     /*preserve_g2=*/true);
  2535   %}
  2537   enc_class preserve_SP %{
  2538     MacroAssembler _masm(&cbuf);
  2539     __ mov(SP, L7_mh_SP_save);
  2540   %}
  2542   enc_class restore_SP %{
  2543     MacroAssembler _masm(&cbuf);
  2544     __ mov(L7_mh_SP_save, SP);
  2545   %}
  2547   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2548     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2549     // who we intended to call.
  2550     if (!_method) {
  2551       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2552     } else if (_optimized_virtual) {
  2553       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2554     } else {
  2555       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2557     if (_method) {  // Emit stub for static call.
  2558       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2560   %}
  2562   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2563     MacroAssembler _masm(&cbuf);
  2564     __ set_inst_mark();
  2565     int vtable_index = this->_vtable_index;
  2566     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2567     if (vtable_index < 0) {
  2568       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2569       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2570       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2571       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2572       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2573       __ ic_call((address)$meth$$method);
  2574     } else {
  2575       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2576       // Just go thru the vtable
  2577       // get receiver klass (receiver already checked for non-null)
  2578       // If we end up going thru a c2i adapter interpreter expects method in G5
  2579       int off = __ offset();
  2580       __ load_klass(O0, G3_scratch);
  2581       int klass_load_size;
  2582       if (UseCompressedClassPointers) {
  2583         assert(Universe::heap() != NULL, "java heap should be initialized");
  2584         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2585       } else {
  2586         klass_load_size = 1*BytesPerInstWord;
  2588       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2589       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2590       if (Assembler::is_simm13(v_off)) {
  2591         __ ld_ptr(G3, v_off, G5_method);
  2592       } else {
  2593         // Generate 2 instructions
  2594         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2595         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2596         // ld_ptr, set_hi, set
  2597         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2598                "Unexpected instruction size(s)");
  2599         __ ld_ptr(G3, G5_method, G5_method);
  2601       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2602       // However it may very well end up in handle_wrong_method if the
  2603       // method is abstract for the particular class.
  2604       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2605       // jump to target (either compiled code or c2iadapter)
  2606       __ jmpl(G3_scratch, G0, O7);
  2607       __ delayed()->nop();
  2609   %}
  2611   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2612     MacroAssembler _masm(&cbuf);
  2614     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2615     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2616                               // we might be calling a C2I adapter which needs it.
  2618     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2619     // Load nmethod
  2620     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2622     // CALL to compiled java, indirect the contents of G3
  2623     __ set_inst_mark();
  2624     __ callr(temp_reg, G0);
  2625     __ delayed()->nop();
  2626   %}
  2628 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2629     MacroAssembler _masm(&cbuf);
  2630     Register Rdividend = reg_to_register_object($src1$$reg);
  2631     Register Rdivisor = reg_to_register_object($src2$$reg);
  2632     Register Rresult = reg_to_register_object($dst$$reg);
  2634     __ sra(Rdivisor, 0, Rdivisor);
  2635     __ sra(Rdividend, 0, Rdividend);
  2636     __ sdivx(Rdividend, Rdivisor, Rresult);
  2637 %}
  2639 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2640     MacroAssembler _masm(&cbuf);
  2642     Register Rdividend = reg_to_register_object($src1$$reg);
  2643     int divisor = $imm$$constant;
  2644     Register Rresult = reg_to_register_object($dst$$reg);
  2646     __ sra(Rdividend, 0, Rdividend);
  2647     __ sdivx(Rdividend, divisor, Rresult);
  2648 %}
  2650 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2651     MacroAssembler _masm(&cbuf);
  2652     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2653     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2654     Register Rdst  = reg_to_register_object($dst$$reg);
  2656     __ sra( Rsrc1, 0, Rsrc1 );
  2657     __ sra( Rsrc2, 0, Rsrc2 );
  2658     __ mulx( Rsrc1, Rsrc2, Rdst );
  2659     __ srlx( Rdst, 32, Rdst );
  2660 %}
  2662 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2663     MacroAssembler _masm(&cbuf);
  2664     Register Rdividend = reg_to_register_object($src1$$reg);
  2665     Register Rdivisor = reg_to_register_object($src2$$reg);
  2666     Register Rresult = reg_to_register_object($dst$$reg);
  2667     Register Rscratch = reg_to_register_object($scratch$$reg);
  2669     assert(Rdividend != Rscratch, "");
  2670     assert(Rdivisor  != Rscratch, "");
  2672     __ sra(Rdividend, 0, Rdividend);
  2673     __ sra(Rdivisor, 0, Rdivisor);
  2674     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2675     __ mulx(Rscratch, Rdivisor, Rscratch);
  2676     __ sub(Rdividend, Rscratch, Rresult);
  2677 %}
  2679 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2680     MacroAssembler _masm(&cbuf);
  2682     Register Rdividend = reg_to_register_object($src1$$reg);
  2683     int divisor = $imm$$constant;
  2684     Register Rresult = reg_to_register_object($dst$$reg);
  2685     Register Rscratch = reg_to_register_object($scratch$$reg);
  2687     assert(Rdividend != Rscratch, "");
  2689     __ sra(Rdividend, 0, Rdividend);
  2690     __ sdivx(Rdividend, divisor, Rscratch);
  2691     __ mulx(Rscratch, divisor, Rscratch);
  2692     __ sub(Rdividend, Rscratch, Rresult);
  2693 %}
  2695 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2696     MacroAssembler _masm(&cbuf);
  2698     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2699     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2701     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2702 %}
  2704 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2705     MacroAssembler _masm(&cbuf);
  2707     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2708     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2710     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2711 %}
  2713 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2714     MacroAssembler _masm(&cbuf);
  2716     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2717     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2719     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2720 %}
  2722 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2723     MacroAssembler _masm(&cbuf);
  2725     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2726     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2728     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2729 %}
  2731 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2732     MacroAssembler _masm(&cbuf);
  2734     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2735     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2737     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2738 %}
  2740 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2741     MacroAssembler _masm(&cbuf);
  2743     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2744     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2746     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2747 %}
  2749 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2750     MacroAssembler _masm(&cbuf);
  2752     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2753     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2755     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2756 %}
  2758 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2759     MacroAssembler _masm(&cbuf);
  2761     Register Roop  = reg_to_register_object($oop$$reg);
  2762     Register Rbox  = reg_to_register_object($box$$reg);
  2763     Register Rscratch = reg_to_register_object($scratch$$reg);
  2764     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2766     assert(Roop  != Rscratch, "");
  2767     assert(Roop  != Rmark, "");
  2768     assert(Rbox  != Rscratch, "");
  2769     assert(Rbox  != Rmark, "");
  2771     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2772 %}
  2774 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2775     MacroAssembler _masm(&cbuf);
  2777     Register Roop  = reg_to_register_object($oop$$reg);
  2778     Register Rbox  = reg_to_register_object($box$$reg);
  2779     Register Rscratch = reg_to_register_object($scratch$$reg);
  2780     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2782     assert(Roop  != Rscratch, "");
  2783     assert(Roop  != Rmark, "");
  2784     assert(Rbox  != Rscratch, "");
  2785     assert(Rbox  != Rmark, "");
  2787     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2788   %}
  2790   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2791     MacroAssembler _masm(&cbuf);
  2792     Register Rmem = reg_to_register_object($mem$$reg);
  2793     Register Rold = reg_to_register_object($old$$reg);
  2794     Register Rnew = reg_to_register_object($new$$reg);
  2796     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2797     __ cmp( Rold, Rnew );
  2798   %}
  2800   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2801     Register Rmem = reg_to_register_object($mem$$reg);
  2802     Register Rold = reg_to_register_object($old$$reg);
  2803     Register Rnew = reg_to_register_object($new$$reg);
  2805     MacroAssembler _masm(&cbuf);
  2806     __ mov(Rnew, O7);
  2807     __ casx(Rmem, Rold, O7);
  2808     __ cmp( Rold, O7 );
  2809   %}
  2811   // raw int cas, used for compareAndSwap
  2812   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2813     Register Rmem = reg_to_register_object($mem$$reg);
  2814     Register Rold = reg_to_register_object($old$$reg);
  2815     Register Rnew = reg_to_register_object($new$$reg);
  2817     MacroAssembler _masm(&cbuf);
  2818     __ mov(Rnew, O7);
  2819     __ cas(Rmem, Rold, O7);
  2820     __ cmp( Rold, O7 );
  2821   %}
  2823   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2824     Register Rres = reg_to_register_object($res$$reg);
  2826     MacroAssembler _masm(&cbuf);
  2827     __ mov(1, Rres);
  2828     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2829   %}
  2831   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2832     Register Rres = reg_to_register_object($res$$reg);
  2834     MacroAssembler _masm(&cbuf);
  2835     __ mov(1, Rres);
  2836     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2837   %}
  2839   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2840     MacroAssembler _masm(&cbuf);
  2841     Register Rdst = reg_to_register_object($dst$$reg);
  2842     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2843                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2844     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2845                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2847     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2848     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2849   %}
  2852   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2853     Label Ldone, Lloop;
  2854     MacroAssembler _masm(&cbuf);
  2856     Register   str1_reg = reg_to_register_object($str1$$reg);
  2857     Register   str2_reg = reg_to_register_object($str2$$reg);
  2858     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2859     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2860     Register result_reg = reg_to_register_object($result$$reg);
  2862     assert(result_reg != str1_reg &&
  2863            result_reg != str2_reg &&
  2864            result_reg != cnt1_reg &&
  2865            result_reg != cnt2_reg ,
  2866            "need different registers");
  2868     // Compute the minimum of the string lengths(str1_reg) and the
  2869     // difference of the string lengths (stack)
  2871     // See if the lengths are different, and calculate min in str1_reg.
  2872     // Stash diff in O7 in case we need it for a tie-breaker.
  2873     Label Lskip;
  2874     __ subcc(cnt1_reg, cnt2_reg, O7);
  2875     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2876     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2877     // cnt2 is shorter, so use its count:
  2878     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2879     __ bind(Lskip);
  2881     // reallocate cnt1_reg, cnt2_reg, result_reg
  2882     // Note:  limit_reg holds the string length pre-scaled by 2
  2883     Register limit_reg =   cnt1_reg;
  2884     Register  chr2_reg =   cnt2_reg;
  2885     Register  chr1_reg = result_reg;
  2886     // str{12} are the base pointers
  2888     // Is the minimum length zero?
  2889     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2890     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2891     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2893     // Load first characters
  2894     __ lduh(str1_reg, 0, chr1_reg);
  2895     __ lduh(str2_reg, 0, chr2_reg);
  2897     // Compare first characters
  2898     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2899     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2900     assert(chr1_reg == result_reg, "result must be pre-placed");
  2901     __ delayed()->nop();
  2904       // Check after comparing first character to see if strings are equivalent
  2905       Label LSkip2;
  2906       // Check if the strings start at same location
  2907       __ cmp(str1_reg, str2_reg);
  2908       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2909       __ delayed()->nop();
  2911       // Check if the length difference is zero (in O7)
  2912       __ cmp(G0, O7);
  2913       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2914       __ delayed()->mov(G0, result_reg);  // result is zero
  2916       // Strings might not be equal
  2917       __ bind(LSkip2);
  2920     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2921     __ signx(limit_reg);
  2923     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2924     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2925     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2927     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2928     __ add(str1_reg, limit_reg, str1_reg);
  2929     __ add(str2_reg, limit_reg, str2_reg);
  2930     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2932     // Compare the rest of the characters
  2933     __ lduh(str1_reg, limit_reg, chr1_reg);
  2934     __ bind(Lloop);
  2935     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2936     __ lduh(str2_reg, limit_reg, chr2_reg);
  2937     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2938     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2939     assert(chr1_reg == result_reg, "result must be pre-placed");
  2940     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2941     // annul LDUH if branch is not taken to prevent access past end of string
  2942     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2943     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2945     // If strings are equal up to min length, return the length difference.
  2946     __ mov(O7, result_reg);
  2948     // Otherwise, return the difference between the first mismatched chars.
  2949     __ bind(Ldone);
  2950   %}
  2952 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2953     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2954     MacroAssembler _masm(&cbuf);
  2956     Register   str1_reg = reg_to_register_object($str1$$reg);
  2957     Register   str2_reg = reg_to_register_object($str2$$reg);
  2958     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2959     Register   tmp1_reg = O7;
  2960     Register result_reg = reg_to_register_object($result$$reg);
  2962     assert(result_reg != str1_reg &&
  2963            result_reg != str2_reg &&
  2964            result_reg !=  cnt_reg &&
  2965            result_reg != tmp1_reg ,
  2966            "need different registers");
  2968     __ cmp(str1_reg, str2_reg); //same char[] ?
  2969     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2970     __ delayed()->add(G0, 1, result_reg);
  2972     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2973     __ delayed()->add(G0, 1, result_reg); // count == 0
  2975     //rename registers
  2976     Register limit_reg =    cnt_reg;
  2977     Register  chr1_reg = result_reg;
  2978     Register  chr2_reg =   tmp1_reg;
  2980     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2981     __ signx(limit_reg);
  2983     //check for alignment and position the pointers to the ends
  2984     __ or3(str1_reg, str2_reg, chr1_reg);
  2985     __ andcc(chr1_reg, 0x3, chr1_reg);
  2986     // notZero means at least one not 4-byte aligned.
  2987     // We could optimize the case when both arrays are not aligned
  2988     // but it is not frequent case and it requires additional checks.
  2989     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2990     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2992     // Compare char[] arrays aligned to 4 bytes.
  2993     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2994                           chr1_reg, chr2_reg, Ldone);
  2995     __ ba(Ldone);
  2996     __ delayed()->add(G0, 1, result_reg);
  2998     // char by char compare
  2999     __ bind(Lchar);
  3000     __ add(str1_reg, limit_reg, str1_reg);
  3001     __ add(str2_reg, limit_reg, str2_reg);
  3002     __ neg(limit_reg); //negate count
  3004     __ lduh(str1_reg, limit_reg, chr1_reg);
  3005     // Lchar_loop
  3006     __ bind(Lchar_loop);
  3007     __ lduh(str2_reg, limit_reg, chr2_reg);
  3008     __ cmp(chr1_reg, chr2_reg);
  3009     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3010     __ delayed()->mov(G0, result_reg); //not equal
  3011     __ inccc(limit_reg, sizeof(jchar));
  3012     // annul LDUH if branch is not taken to prevent access past end of string
  3013     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3014     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3016     __ add(G0, 1, result_reg);  //equal
  3018     __ bind(Ldone);
  3019   %}
  3021 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3022     Label Lvector, Ldone, Lloop;
  3023     MacroAssembler _masm(&cbuf);
  3025     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3026     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3027     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3028     Register   tmp2_reg = O7;
  3029     Register result_reg = reg_to_register_object($result$$reg);
  3031     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3032     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3034     // return true if the same array
  3035     __ cmp(ary1_reg, ary2_reg);
  3036     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3037     __ delayed()->add(G0, 1, result_reg); // equal
  3039     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3040     __ delayed()->mov(G0, result_reg);    // not equal
  3042     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3043     __ delayed()->mov(G0, result_reg);    // not equal
  3045     //load the lengths of arrays
  3046     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3047     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3049     // return false if the two arrays are not equal length
  3050     __ cmp(tmp1_reg, tmp2_reg);
  3051     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3052     __ delayed()->mov(G0, result_reg);     // not equal
  3054     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3055     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3057     // load array addresses
  3058     __ add(ary1_reg, base_offset, ary1_reg);
  3059     __ add(ary2_reg, base_offset, ary2_reg);
  3061     // renaming registers
  3062     Register chr1_reg  =  result_reg; // for characters in ary1
  3063     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3064     Register limit_reg =  tmp1_reg;   // length
  3066     // set byte count
  3067     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3069     // Compare char[] arrays aligned to 4 bytes.
  3070     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3071                           chr1_reg, chr2_reg, Ldone);
  3072     __ add(G0, 1, result_reg); // equals
  3074     __ bind(Ldone);
  3075   %}
  3077   enc_class enc_rethrow() %{
  3078     cbuf.set_insts_mark();
  3079     Register temp_reg = G3;
  3080     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3081     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3082     MacroAssembler _masm(&cbuf);
  3083 #ifdef ASSERT
  3084     __ save_frame(0);
  3085     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3086     __ sethi(last_rethrow_addrlit, L1);
  3087     Address addr(L1, last_rethrow_addrlit.low10());
  3088     __ rdpc(L2);
  3089     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3090     __ st_ptr(L2, addr);
  3091     __ restore();
  3092 #endif
  3093     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3094     __ delayed()->nop();
  3095   %}
  3097   enc_class emit_mem_nop() %{
  3098     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3099     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3100   %}
  3102   enc_class emit_fadd_nop() %{
  3103     // Generates the instruction FMOVS f31,f31
  3104     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3105   %}
  3107   enc_class emit_br_nop() %{
  3108     // Generates the instruction BPN,PN .
  3109     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3110   %}
  3112   enc_class enc_membar_acquire %{
  3113     MacroAssembler _masm(&cbuf);
  3114     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3115   %}
  3117   enc_class enc_membar_release %{
  3118     MacroAssembler _masm(&cbuf);
  3119     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3120   %}
  3122   enc_class enc_membar_volatile %{
  3123     MacroAssembler _masm(&cbuf);
  3124     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3125   %}
  3127 %}
  3129 //----------FRAME--------------------------------------------------------------
  3130 // Definition of frame structure and management information.
  3131 //
  3132 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3133 //                             |   (to get allocators register number
  3134 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3135 //  r   CALLER     |        |
  3136 //  o     |        +--------+      pad to even-align allocators stack-slot
  3137 //  w     V        |  pad0  |        numbers; owned by CALLER
  3138 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3139 //  h     ^        |   in   |  5
  3140 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3141 //  |     |        |        |  3
  3142 //  |     |        +--------+
  3143 //  V     |        | old out|      Empty on Intel, window on Sparc
  3144 //        |    old |preserve|      Must be even aligned.
  3145 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3146 //        |        |   in   |  3   area for Intel ret address
  3147 //     Owned by    |preserve|      Empty on Sparc.
  3148 //       SELF      +--------+
  3149 //        |        |  pad2  |  2   pad to align old SP
  3150 //        |        +--------+  1
  3151 //        |        | locks  |  0
  3152 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3153 //        |        |  pad1  | 11   pad to align new SP
  3154 //        |        +--------+
  3155 //        |        |        | 10
  3156 //        |        | spills |  9   spills
  3157 //        V        |        |  8   (pad0 slot for callee)
  3158 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3159 //        ^        |  out   |  7
  3160 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3161 //     Owned by    +--------+
  3162 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3163 //        |    new |preserve|      Must be even-aligned.
  3164 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3165 //        |        |        |
  3166 //
  3167 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3168 //         known from SELF's arguments and the Java calling convention.
  3169 //         Region 6-7 is determined per call site.
  3170 // Note 2: If the calling convention leaves holes in the incoming argument
  3171 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3172 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3173 //         incoming area, as the Java calling convention is completely under
  3174 //         the control of the AD file.  Doubles can be sorted and packed to
  3175 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3176 //         varargs C calling conventions.
  3177 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3178 //         even aligned with pad0 as needed.
  3179 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3180 //         region 6-11 is even aligned; it may be padded out more so that
  3181 //         the region from SP to FP meets the minimum stack alignment.
  3183 frame %{
  3184   // What direction does stack grow in (assumed to be same for native & Java)
  3185   stack_direction(TOWARDS_LOW);
  3187   // These two registers define part of the calling convention
  3188   // between compiled code and the interpreter.
  3189   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3190   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3192   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3193   cisc_spilling_operand_name(indOffset);
  3195   // Number of stack slots consumed by a Monitor enter
  3196 #ifdef _LP64
  3197   sync_stack_slots(2);
  3198 #else
  3199   sync_stack_slots(1);
  3200 #endif
  3202   // Compiled code's Frame Pointer
  3203   frame_pointer(R_SP);
  3205   // Stack alignment requirement
  3206   stack_alignment(StackAlignmentInBytes);
  3207   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3208   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3210   // Number of stack slots between incoming argument block and the start of
  3211   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3212   // EPILOG must remove this many slots.
  3213   in_preserve_stack_slots(0);
  3215   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3216   // for calls to C.  Supports the var-args backing area for register parms.
  3217   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3218 #ifdef _LP64
  3219   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3220   varargs_C_out_slots_killed(12);
  3221 #else
  3222   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3223   varargs_C_out_slots_killed( 7);
  3224 #endif
  3226   // The after-PROLOG location of the return address.  Location of
  3227   // return address specifies a type (REG or STACK) and a number
  3228   // representing the register number (i.e. - use a register name) or
  3229   // stack slot.
  3230   return_addr(REG R_I7);          // Ret Addr is in register I7
  3232   // Body of function which returns an OptoRegs array locating
  3233   // arguments either in registers or in stack slots for calling
  3234   // java
  3235   calling_convention %{
  3236     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3238   %}
  3240   // Body of function which returns an OptoRegs array locating
  3241   // arguments either in registers or in stack slots for callin
  3242   // C.
  3243   c_calling_convention %{
  3244     // This is obviously always outgoing
  3245     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3246   %}
  3248   // Location of native (C/C++) and interpreter return values.  This is specified to
  3249   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3250   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3251   // to and from the register pairs is done by the appropriate call and epilog
  3252   // opcodes.  This simplifies the register allocator.
  3253   c_return_value %{
  3254     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3255 #ifdef     _LP64
  3256     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3257     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3258     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3259     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3260 #else  // !_LP64
  3261     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3262     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3263     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3264     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3265 #endif
  3266     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3267                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3268   %}
  3270   // Location of compiled Java return values.  Same as C
  3271   return_value %{
  3272     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3273 #ifdef     _LP64
  3274     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3275     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3276     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3277     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3278 #else  // !_LP64
  3279     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3280     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3281     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3282     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3283 #endif
  3284     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3285                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3286   %}
  3288 %}
  3291 //----------ATTRIBUTES---------------------------------------------------------
  3292 //----------Operand Attributes-------------------------------------------------
  3293 op_attrib op_cost(1);          // Required cost attribute
  3295 //----------Instruction Attributes---------------------------------------------
  3296 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3297 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3298 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3299 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3300                                    // non-matching short branch variant of some
  3301                                                             // long branch?
  3303 //----------OPERANDS-----------------------------------------------------------
  3304 // Operand definitions must precede instruction definitions for correct parsing
  3305 // in the ADLC because operands constitute user defined types which are used in
  3306 // instruction definitions.
  3308 //----------Simple Operands----------------------------------------------------
  3309 // Immediate Operands
  3310 // Integer Immediate: 32-bit
  3311 operand immI() %{
  3312   match(ConI);
  3314   op_cost(0);
  3315   // formats are generated automatically for constants and base registers
  3316   format %{ %}
  3317   interface(CONST_INTER);
  3318 %}
  3320 // Integer Immediate: 8-bit
  3321 operand immI8() %{
  3322   predicate(Assembler::is_simm8(n->get_int()));
  3323   match(ConI);
  3324   op_cost(0);
  3325   format %{ %}
  3326   interface(CONST_INTER);
  3327 %}
  3329 // Integer Immediate: 13-bit
  3330 operand immI13() %{
  3331   predicate(Assembler::is_simm13(n->get_int()));
  3332   match(ConI);
  3333   op_cost(0);
  3335   format %{ %}
  3336   interface(CONST_INTER);
  3337 %}
  3339 // Integer Immediate: 13-bit minus 7
  3340 operand immI13m7() %{
  3341   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3342   match(ConI);
  3343   op_cost(0);
  3345   format %{ %}
  3346   interface(CONST_INTER);
  3347 %}
  3349 // Integer Immediate: 16-bit
  3350 operand immI16() %{
  3351   predicate(Assembler::is_simm16(n->get_int()));
  3352   match(ConI);
  3353   op_cost(0);
  3354   format %{ %}
  3355   interface(CONST_INTER);
  3356 %}
  3358 // Unsigned (positive) Integer Immediate: 13-bit
  3359 operand immU13() %{
  3360   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3361   match(ConI);
  3362   op_cost(0);
  3364   format %{ %}
  3365   interface(CONST_INTER);
  3366 %}
  3368 // Integer Immediate: 6-bit
  3369 operand immU6() %{
  3370   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3371   match(ConI);
  3372   op_cost(0);
  3373   format %{ %}
  3374   interface(CONST_INTER);
  3375 %}
  3377 // Integer Immediate: 11-bit
  3378 operand immI11() %{
  3379   predicate(Assembler::is_simm11(n->get_int()));
  3380   match(ConI);
  3381   op_cost(0);
  3382   format %{ %}
  3383   interface(CONST_INTER);
  3384 %}
  3386 // Integer Immediate: 5-bit
  3387 operand immI5() %{
  3388   predicate(Assembler::is_simm5(n->get_int()));
  3389   match(ConI);
  3390   op_cost(0);
  3391   format %{ %}
  3392   interface(CONST_INTER);
  3393 %}
  3395 // Integer Immediate: 0-bit
  3396 operand immI0() %{
  3397   predicate(n->get_int() == 0);
  3398   match(ConI);
  3399   op_cost(0);
  3401   format %{ %}
  3402   interface(CONST_INTER);
  3403 %}
  3405 // Integer Immediate: the value 10
  3406 operand immI10() %{
  3407   predicate(n->get_int() == 10);
  3408   match(ConI);
  3409   op_cost(0);
  3411   format %{ %}
  3412   interface(CONST_INTER);
  3413 %}
  3415 // Integer Immediate: the values 0-31
  3416 operand immU5() %{
  3417   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3418   match(ConI);
  3419   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 // Integer Immediate: the values 1-31
  3426 operand immI_1_31() %{
  3427   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3428   match(ConI);
  3429   op_cost(0);
  3431   format %{ %}
  3432   interface(CONST_INTER);
  3433 %}
  3435 // Integer Immediate: the values 32-63
  3436 operand immI_32_63() %{
  3437   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3438   match(ConI);
  3439   op_cost(0);
  3441   format %{ %}
  3442   interface(CONST_INTER);
  3443 %}
  3445 // Immediates for special shifts (sign extend)
  3447 // Integer Immediate: the value 16
  3448 operand immI_16() %{
  3449   predicate(n->get_int() == 16);
  3450   match(ConI);
  3451   op_cost(0);
  3453   format %{ %}
  3454   interface(CONST_INTER);
  3455 %}
  3457 // Integer Immediate: the value 24
  3458 operand immI_24() %{
  3459   predicate(n->get_int() == 24);
  3460   match(ConI);
  3461   op_cost(0);
  3463   format %{ %}
  3464   interface(CONST_INTER);
  3465 %}
  3467 // Integer Immediate: the value 255
  3468 operand immI_255() %{
  3469   predicate( n->get_int() == 255 );
  3470   match(ConI);
  3471   op_cost(0);
  3473   format %{ %}
  3474   interface(CONST_INTER);
  3475 %}
  3477 // Integer Immediate: the value 65535
  3478 operand immI_65535() %{
  3479   predicate(n->get_int() == 65535);
  3480   match(ConI);
  3481   op_cost(0);
  3483   format %{ %}
  3484   interface(CONST_INTER);
  3485 %}
  3487 // Long Immediate: the value FF
  3488 operand immL_FF() %{
  3489   predicate( n->get_long() == 0xFFL );
  3490   match(ConL);
  3491   op_cost(0);
  3493   format %{ %}
  3494   interface(CONST_INTER);
  3495 %}
  3497 // Long Immediate: the value FFFF
  3498 operand immL_FFFF() %{
  3499   predicate( n->get_long() == 0xFFFFL );
  3500   match(ConL);
  3501   op_cost(0);
  3503   format %{ %}
  3504   interface(CONST_INTER);
  3505 %}
  3507 // Pointer Immediate: 32 or 64-bit
  3508 operand immP() %{
  3509   match(ConP);
  3511   op_cost(5);
  3512   // formats are generated automatically for constants and base registers
  3513   format %{ %}
  3514   interface(CONST_INTER);
  3515 %}
  3517 #ifdef _LP64
  3518 // Pointer Immediate: 64-bit
  3519 operand immP_set() %{
  3520   predicate(!VM_Version::is_niagara_plus());
  3521   match(ConP);
  3523   op_cost(5);
  3524   // formats are generated automatically for constants and base registers
  3525   format %{ %}
  3526   interface(CONST_INTER);
  3527 %}
  3529 // Pointer Immediate: 64-bit
  3530 // From Niagara2 processors on a load should be better than materializing.
  3531 operand immP_load() %{
  3532   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3533   match(ConP);
  3535   op_cost(5);
  3536   // formats are generated automatically for constants and base registers
  3537   format %{ %}
  3538   interface(CONST_INTER);
  3539 %}
  3541 // Pointer Immediate: 64-bit
  3542 operand immP_no_oop_cheap() %{
  3543   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3544   match(ConP);
  3546   op_cost(5);
  3547   // formats are generated automatically for constants and base registers
  3548   format %{ %}
  3549   interface(CONST_INTER);
  3550 %}
  3551 #endif
  3553 operand immP13() %{
  3554   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3555   match(ConP);
  3556   op_cost(0);
  3558   format %{ %}
  3559   interface(CONST_INTER);
  3560 %}
  3562 operand immP0() %{
  3563   predicate(n->get_ptr() == 0);
  3564   match(ConP);
  3565   op_cost(0);
  3567   format %{ %}
  3568   interface(CONST_INTER);
  3569 %}
  3571 operand immP_poll() %{
  3572   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3573   match(ConP);
  3575   // formats are generated automatically for constants and base registers
  3576   format %{ %}
  3577   interface(CONST_INTER);
  3578 %}
  3580 // Pointer Immediate
  3581 operand immN()
  3582 %{
  3583   match(ConN);
  3585   op_cost(10);
  3586   format %{ %}
  3587   interface(CONST_INTER);
  3588 %}
  3590 operand immNKlass()
  3591 %{
  3592   match(ConNKlass);
  3594   op_cost(10);
  3595   format %{ %}
  3596   interface(CONST_INTER);
  3597 %}
  3599 // NULL Pointer Immediate
  3600 operand immN0()
  3601 %{
  3602   predicate(n->get_narrowcon() == 0);
  3603   match(ConN);
  3605   op_cost(0);
  3606   format %{ %}
  3607   interface(CONST_INTER);
  3608 %}
  3610 operand immL() %{
  3611   match(ConL);
  3612   op_cost(40);
  3613   // formats are generated automatically for constants and base registers
  3614   format %{ %}
  3615   interface(CONST_INTER);
  3616 %}
  3618 operand immL0() %{
  3619   predicate(n->get_long() == 0L);
  3620   match(ConL);
  3621   op_cost(0);
  3622   // formats are generated automatically for constants and base registers
  3623   format %{ %}
  3624   interface(CONST_INTER);
  3625 %}
  3627 // Integer Immediate: 5-bit
  3628 operand immL5() %{
  3629   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3630   match(ConL);
  3631   op_cost(0);
  3632   format %{ %}
  3633   interface(CONST_INTER);
  3634 %}
  3636 // Long Immediate: 13-bit
  3637 operand immL13() %{
  3638   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3639   match(ConL);
  3640   op_cost(0);
  3642   format %{ %}
  3643   interface(CONST_INTER);
  3644 %}
  3646 // Long Immediate: 13-bit minus 7
  3647 operand immL13m7() %{
  3648   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3649   match(ConL);
  3650   op_cost(0);
  3652   format %{ %}
  3653   interface(CONST_INTER);
  3654 %}
  3656 // Long Immediate: low 32-bit mask
  3657 operand immL_32bits() %{
  3658   predicate(n->get_long() == 0xFFFFFFFFL);
  3659   match(ConL);
  3660   op_cost(0);
  3662   format %{ %}
  3663   interface(CONST_INTER);
  3664 %}
  3666 // Long Immediate: cheap (materialize in <= 3 instructions)
  3667 operand immL_cheap() %{
  3668   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3669   match(ConL);
  3670   op_cost(0);
  3672   format %{ %}
  3673   interface(CONST_INTER);
  3674 %}
  3676 // Long Immediate: expensive (materialize in > 3 instructions)
  3677 operand immL_expensive() %{
  3678   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3679   match(ConL);
  3680   op_cost(0);
  3682   format %{ %}
  3683   interface(CONST_INTER);
  3684 %}
  3686 // Double Immediate
  3687 operand immD() %{
  3688   match(ConD);
  3690   op_cost(40);
  3691   format %{ %}
  3692   interface(CONST_INTER);
  3693 %}
  3695 operand immD0() %{
  3696 #ifdef _LP64
  3697   // on 64-bit architectures this comparision is faster
  3698   predicate(jlong_cast(n->getd()) == 0);
  3699 #else
  3700   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3701 #endif
  3702   match(ConD);
  3704   op_cost(0);
  3705   format %{ %}
  3706   interface(CONST_INTER);
  3707 %}
  3709 // Float Immediate
  3710 operand immF() %{
  3711   match(ConF);
  3713   op_cost(20);
  3714   format %{ %}
  3715   interface(CONST_INTER);
  3716 %}
  3718 // Float Immediate: 0
  3719 operand immF0() %{
  3720   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3721   match(ConF);
  3723   op_cost(0);
  3724   format %{ %}
  3725   interface(CONST_INTER);
  3726 %}
  3728 // Integer Register Operands
  3729 // Integer Register
  3730 operand iRegI() %{
  3731   constraint(ALLOC_IN_RC(int_reg));
  3732   match(RegI);
  3734   match(notemp_iRegI);
  3735   match(g1RegI);
  3736   match(o0RegI);
  3737   match(iRegIsafe);
  3739   format %{ %}
  3740   interface(REG_INTER);
  3741 %}
  3743 operand notemp_iRegI() %{
  3744   constraint(ALLOC_IN_RC(notemp_int_reg));
  3745   match(RegI);
  3747   match(o0RegI);
  3749   format %{ %}
  3750   interface(REG_INTER);
  3751 %}
  3753 operand o0RegI() %{
  3754   constraint(ALLOC_IN_RC(o0_regI));
  3755   match(iRegI);
  3757   format %{ %}
  3758   interface(REG_INTER);
  3759 %}
  3761 // Pointer Register
  3762 operand iRegP() %{
  3763   constraint(ALLOC_IN_RC(ptr_reg));
  3764   match(RegP);
  3766   match(lock_ptr_RegP);
  3767   match(g1RegP);
  3768   match(g2RegP);
  3769   match(g3RegP);
  3770   match(g4RegP);
  3771   match(i0RegP);
  3772   match(o0RegP);
  3773   match(o1RegP);
  3774   match(l7RegP);
  3776   format %{ %}
  3777   interface(REG_INTER);
  3778 %}
  3780 operand sp_ptr_RegP() %{
  3781   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3782   match(RegP);
  3783   match(iRegP);
  3785   format %{ %}
  3786   interface(REG_INTER);
  3787 %}
  3789 operand lock_ptr_RegP() %{
  3790   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3791   match(RegP);
  3792   match(i0RegP);
  3793   match(o0RegP);
  3794   match(o1RegP);
  3795   match(l7RegP);
  3797   format %{ %}
  3798   interface(REG_INTER);
  3799 %}
  3801 operand g1RegP() %{
  3802   constraint(ALLOC_IN_RC(g1_regP));
  3803   match(iRegP);
  3805   format %{ %}
  3806   interface(REG_INTER);
  3807 %}
  3809 operand g2RegP() %{
  3810   constraint(ALLOC_IN_RC(g2_regP));
  3811   match(iRegP);
  3813   format %{ %}
  3814   interface(REG_INTER);
  3815 %}
  3817 operand g3RegP() %{
  3818   constraint(ALLOC_IN_RC(g3_regP));
  3819   match(iRegP);
  3821   format %{ %}
  3822   interface(REG_INTER);
  3823 %}
  3825 operand g1RegI() %{
  3826   constraint(ALLOC_IN_RC(g1_regI));
  3827   match(iRegI);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand g3RegI() %{
  3834   constraint(ALLOC_IN_RC(g3_regI));
  3835   match(iRegI);
  3837   format %{ %}
  3838   interface(REG_INTER);
  3839 %}
  3841 operand g4RegI() %{
  3842   constraint(ALLOC_IN_RC(g4_regI));
  3843   match(iRegI);
  3845   format %{ %}
  3846   interface(REG_INTER);
  3847 %}
  3849 operand g4RegP() %{
  3850   constraint(ALLOC_IN_RC(g4_regP));
  3851   match(iRegP);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand i0RegP() %{
  3858   constraint(ALLOC_IN_RC(i0_regP));
  3859   match(iRegP);
  3861   format %{ %}
  3862   interface(REG_INTER);
  3863 %}
  3865 operand o0RegP() %{
  3866   constraint(ALLOC_IN_RC(o0_regP));
  3867   match(iRegP);
  3869   format %{ %}
  3870   interface(REG_INTER);
  3871 %}
  3873 operand o1RegP() %{
  3874   constraint(ALLOC_IN_RC(o1_regP));
  3875   match(iRegP);
  3877   format %{ %}
  3878   interface(REG_INTER);
  3879 %}
  3881 operand o2RegP() %{
  3882   constraint(ALLOC_IN_RC(o2_regP));
  3883   match(iRegP);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 operand o7RegP() %{
  3890   constraint(ALLOC_IN_RC(o7_regP));
  3891   match(iRegP);
  3893   format %{ %}
  3894   interface(REG_INTER);
  3895 %}
  3897 operand l7RegP() %{
  3898   constraint(ALLOC_IN_RC(l7_regP));
  3899   match(iRegP);
  3901   format %{ %}
  3902   interface(REG_INTER);
  3903 %}
  3905 operand o7RegI() %{
  3906   constraint(ALLOC_IN_RC(o7_regI));
  3907   match(iRegI);
  3909   format %{ %}
  3910   interface(REG_INTER);
  3911 %}
  3913 operand iRegN() %{
  3914   constraint(ALLOC_IN_RC(int_reg));
  3915   match(RegN);
  3917   format %{ %}
  3918   interface(REG_INTER);
  3919 %}
  3921 // Long Register
  3922 operand iRegL() %{
  3923   constraint(ALLOC_IN_RC(long_reg));
  3924   match(RegL);
  3926   format %{ %}
  3927   interface(REG_INTER);
  3928 %}
  3930 operand o2RegL() %{
  3931   constraint(ALLOC_IN_RC(o2_regL));
  3932   match(iRegL);
  3934   format %{ %}
  3935   interface(REG_INTER);
  3936 %}
  3938 operand o7RegL() %{
  3939   constraint(ALLOC_IN_RC(o7_regL));
  3940   match(iRegL);
  3942   format %{ %}
  3943   interface(REG_INTER);
  3944 %}
  3946 operand g1RegL() %{
  3947   constraint(ALLOC_IN_RC(g1_regL));
  3948   match(iRegL);
  3950   format %{ %}
  3951   interface(REG_INTER);
  3952 %}
  3954 operand g3RegL() %{
  3955   constraint(ALLOC_IN_RC(g3_regL));
  3956   match(iRegL);
  3958   format %{ %}
  3959   interface(REG_INTER);
  3960 %}
  3962 // Int Register safe
  3963 // This is 64bit safe
  3964 operand iRegIsafe() %{
  3965   constraint(ALLOC_IN_RC(long_reg));
  3967   match(iRegI);
  3969   format %{ %}
  3970   interface(REG_INTER);
  3971 %}
  3973 // Condition Code Flag Register
  3974 operand flagsReg() %{
  3975   constraint(ALLOC_IN_RC(int_flags));
  3976   match(RegFlags);
  3978   format %{ "ccr" %} // both ICC and XCC
  3979   interface(REG_INTER);
  3980 %}
  3982 // Condition Code Register, unsigned comparisons.
  3983 operand flagsRegU() %{
  3984   constraint(ALLOC_IN_RC(int_flags));
  3985   match(RegFlags);
  3987   format %{ "icc_U" %}
  3988   interface(REG_INTER);
  3989 %}
  3991 // Condition Code Register, pointer comparisons.
  3992 operand flagsRegP() %{
  3993   constraint(ALLOC_IN_RC(int_flags));
  3994   match(RegFlags);
  3996 #ifdef _LP64
  3997   format %{ "xcc_P" %}
  3998 #else
  3999   format %{ "icc_P" %}
  4000 #endif
  4001   interface(REG_INTER);
  4002 %}
  4004 // Condition Code Register, long comparisons.
  4005 operand flagsRegL() %{
  4006   constraint(ALLOC_IN_RC(int_flags));
  4007   match(RegFlags);
  4009   format %{ "xcc_L" %}
  4010   interface(REG_INTER);
  4011 %}
  4013 // Condition Code Register, floating comparisons, unordered same as "less".
  4014 operand flagsRegF() %{
  4015   constraint(ALLOC_IN_RC(float_flags));
  4016   match(RegFlags);
  4017   match(flagsRegF0);
  4019   format %{ %}
  4020   interface(REG_INTER);
  4021 %}
  4023 operand flagsRegF0() %{
  4024   constraint(ALLOC_IN_RC(float_flag0));
  4025   match(RegFlags);
  4027   format %{ %}
  4028   interface(REG_INTER);
  4029 %}
  4032 // Condition Code Flag Register used by long compare
  4033 operand flagsReg_long_LTGE() %{
  4034   constraint(ALLOC_IN_RC(int_flags));
  4035   match(RegFlags);
  4036   format %{ "icc_LTGE" %}
  4037   interface(REG_INTER);
  4038 %}
  4039 operand flagsReg_long_EQNE() %{
  4040   constraint(ALLOC_IN_RC(int_flags));
  4041   match(RegFlags);
  4042   format %{ "icc_EQNE" %}
  4043   interface(REG_INTER);
  4044 %}
  4045 operand flagsReg_long_LEGT() %{
  4046   constraint(ALLOC_IN_RC(int_flags));
  4047   match(RegFlags);
  4048   format %{ "icc_LEGT" %}
  4049   interface(REG_INTER);
  4050 %}
  4053 operand regD() %{
  4054   constraint(ALLOC_IN_RC(dflt_reg));
  4055   match(RegD);
  4057   match(regD_low);
  4059   format %{ %}
  4060   interface(REG_INTER);
  4061 %}
  4063 operand regF() %{
  4064   constraint(ALLOC_IN_RC(sflt_reg));
  4065   match(RegF);
  4067   format %{ %}
  4068   interface(REG_INTER);
  4069 %}
  4071 operand regD_low() %{
  4072   constraint(ALLOC_IN_RC(dflt_low_reg));
  4073   match(regD);
  4075   format %{ %}
  4076   interface(REG_INTER);
  4077 %}
  4079 // Special Registers
  4081 // Method Register
  4082 operand inline_cache_regP(iRegP reg) %{
  4083   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4084   match(reg);
  4085   format %{ %}
  4086   interface(REG_INTER);
  4087 %}
  4089 operand interpreter_method_oop_regP(iRegP reg) %{
  4090   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4091   match(reg);
  4092   format %{ %}
  4093   interface(REG_INTER);
  4094 %}
  4097 //----------Complex Operands---------------------------------------------------
  4098 // Indirect Memory Reference
  4099 operand indirect(sp_ptr_RegP reg) %{
  4100   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4101   match(reg);
  4103   op_cost(100);
  4104   format %{ "[$reg]" %}
  4105   interface(MEMORY_INTER) %{
  4106     base($reg);
  4107     index(0x0);
  4108     scale(0x0);
  4109     disp(0x0);
  4110   %}
  4111 %}
  4113 // Indirect with simm13 Offset
  4114 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4115   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4116   match(AddP reg offset);
  4118   op_cost(100);
  4119   format %{ "[$reg + $offset]" %}
  4120   interface(MEMORY_INTER) %{
  4121     base($reg);
  4122     index(0x0);
  4123     scale(0x0);
  4124     disp($offset);
  4125   %}
  4126 %}
  4128 // Indirect with simm13 Offset minus 7
  4129 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4130   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4131   match(AddP reg offset);
  4133   op_cost(100);
  4134   format %{ "[$reg + $offset]" %}
  4135   interface(MEMORY_INTER) %{
  4136     base($reg);
  4137     index(0x0);
  4138     scale(0x0);
  4139     disp($offset);
  4140   %}
  4141 %}
  4143 // Note:  Intel has a swapped version also, like this:
  4144 //operand indOffsetX(iRegI reg, immP offset) %{
  4145 //  constraint(ALLOC_IN_RC(int_reg));
  4146 //  match(AddP offset reg);
  4147 //
  4148 //  op_cost(100);
  4149 //  format %{ "[$reg + $offset]" %}
  4150 //  interface(MEMORY_INTER) %{
  4151 //    base($reg);
  4152 //    index(0x0);
  4153 //    scale(0x0);
  4154 //    disp($offset);
  4155 //  %}
  4156 //%}
  4157 //// However, it doesn't make sense for SPARC, since
  4158 // we have no particularly good way to embed oops in
  4159 // single instructions.
  4161 // Indirect with Register Index
  4162 operand indIndex(iRegP addr, iRegX index) %{
  4163   constraint(ALLOC_IN_RC(ptr_reg));
  4164   match(AddP addr index);
  4166   op_cost(100);
  4167   format %{ "[$addr + $index]" %}
  4168   interface(MEMORY_INTER) %{
  4169     base($addr);
  4170     index($index);
  4171     scale(0x0);
  4172     disp(0x0);
  4173   %}
  4174 %}
  4176 //----------Special Memory Operands--------------------------------------------
  4177 // Stack Slot Operand - This operand is used for loading and storing temporary
  4178 //                      values on the stack where a match requires a value to
  4179 //                      flow through memory.
  4180 operand stackSlotI(sRegI reg) %{
  4181   constraint(ALLOC_IN_RC(stack_slots));
  4182   op_cost(100);
  4183   //match(RegI);
  4184   format %{ "[$reg]" %}
  4185   interface(MEMORY_INTER) %{
  4186     base(0xE);   // R_SP
  4187     index(0x0);
  4188     scale(0x0);
  4189     disp($reg);  // Stack Offset
  4190   %}
  4191 %}
  4193 operand stackSlotP(sRegP reg) %{
  4194   constraint(ALLOC_IN_RC(stack_slots));
  4195   op_cost(100);
  4196   //match(RegP);
  4197   format %{ "[$reg]" %}
  4198   interface(MEMORY_INTER) %{
  4199     base(0xE);   // R_SP
  4200     index(0x0);
  4201     scale(0x0);
  4202     disp($reg);  // Stack Offset
  4203   %}
  4204 %}
  4206 operand stackSlotF(sRegF reg) %{
  4207   constraint(ALLOC_IN_RC(stack_slots));
  4208   op_cost(100);
  4209   //match(RegF);
  4210   format %{ "[$reg]" %}
  4211   interface(MEMORY_INTER) %{
  4212     base(0xE);   // R_SP
  4213     index(0x0);
  4214     scale(0x0);
  4215     disp($reg);  // Stack Offset
  4216   %}
  4217 %}
  4218 operand stackSlotD(sRegD reg) %{
  4219   constraint(ALLOC_IN_RC(stack_slots));
  4220   op_cost(100);
  4221   //match(RegD);
  4222   format %{ "[$reg]" %}
  4223   interface(MEMORY_INTER) %{
  4224     base(0xE);   // R_SP
  4225     index(0x0);
  4226     scale(0x0);
  4227     disp($reg);  // Stack Offset
  4228   %}
  4229 %}
  4230 operand stackSlotL(sRegL reg) %{
  4231   constraint(ALLOC_IN_RC(stack_slots));
  4232   op_cost(100);
  4233   //match(RegL);
  4234   format %{ "[$reg]" %}
  4235   interface(MEMORY_INTER) %{
  4236     base(0xE);   // R_SP
  4237     index(0x0);
  4238     scale(0x0);
  4239     disp($reg);  // Stack Offset
  4240   %}
  4241 %}
  4243 // Operands for expressing Control Flow
  4244 // NOTE:  Label is a predefined operand which should not be redefined in
  4245 //        the AD file.  It is generically handled within the ADLC.
  4247 //----------Conditional Branch Operands----------------------------------------
  4248 // Comparison Op  - This is the operation of the comparison, and is limited to
  4249 //                  the following set of codes:
  4250 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4251 //
  4252 // Other attributes of the comparison, such as unsignedness, are specified
  4253 // by the comparison instruction that sets a condition code flags register.
  4254 // That result is represented by a flags operand whose subtype is appropriate
  4255 // to the unsignedness (etc.) of the comparison.
  4256 //
  4257 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4258 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4259 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4261 operand cmpOp() %{
  4262   match(Bool);
  4264   format %{ "" %}
  4265   interface(COND_INTER) %{
  4266     equal(0x1);
  4267     not_equal(0x9);
  4268     less(0x3);
  4269     greater_equal(0xB);
  4270     less_equal(0x2);
  4271     greater(0xA);
  4272     overflow(0x7);
  4273     no_overflow(0xF);
  4274   %}
  4275 %}
  4277 // Comparison Op, unsigned
  4278 operand cmpOpU() %{
  4279   match(Bool);
  4280   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4281             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4283   format %{ "u" %}
  4284   interface(COND_INTER) %{
  4285     equal(0x1);
  4286     not_equal(0x9);
  4287     less(0x5);
  4288     greater_equal(0xD);
  4289     less_equal(0x4);
  4290     greater(0xC);
  4291     overflow(0x7);
  4292     no_overflow(0xF);
  4293   %}
  4294 %}
  4296 // Comparison Op, pointer (same as unsigned)
  4297 operand cmpOpP() %{
  4298   match(Bool);
  4299   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4300             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4302   format %{ "p" %}
  4303   interface(COND_INTER) %{
  4304     equal(0x1);
  4305     not_equal(0x9);
  4306     less(0x5);
  4307     greater_equal(0xD);
  4308     less_equal(0x4);
  4309     greater(0xC);
  4310     overflow(0x7);
  4311     no_overflow(0xF);
  4312   %}
  4313 %}
  4315 // Comparison Op, branch-register encoding
  4316 operand cmpOp_reg() %{
  4317   match(Bool);
  4318   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4319             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4321   format %{ "" %}
  4322   interface(COND_INTER) %{
  4323     equal        (0x1);
  4324     not_equal    (0x5);
  4325     less         (0x3);
  4326     greater_equal(0x7);
  4327     less_equal   (0x2);
  4328     greater      (0x6);
  4329     overflow(0x7); // not supported
  4330     no_overflow(0xF); // not supported
  4331   %}
  4332 %}
  4334 // Comparison Code, floating, unordered same as less
  4335 operand cmpOpF() %{
  4336   match(Bool);
  4337   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4338             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4340   format %{ "fl" %}
  4341   interface(COND_INTER) %{
  4342     equal(0x9);
  4343     not_equal(0x1);
  4344     less(0x3);
  4345     greater_equal(0xB);
  4346     less_equal(0xE);
  4347     greater(0x6);
  4349     overflow(0x7); // not supported
  4350     no_overflow(0xF); // not supported
  4351   %}
  4352 %}
  4354 // Used by long compare
  4355 operand cmpOp_commute() %{
  4356   match(Bool);
  4357   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4358             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4360   format %{ "" %}
  4361   interface(COND_INTER) %{
  4362     equal(0x1);
  4363     not_equal(0x9);
  4364     less(0xA);
  4365     greater_equal(0x2);
  4366     less_equal(0xB);
  4367     greater(0x3);
  4368     overflow(0x7);
  4369     no_overflow(0xF);
  4370   %}
  4371 %}
  4373 //----------OPERAND CLASSES----------------------------------------------------
  4374 // Operand Classes are groups of operands that are used to simplify
  4375 // instruction definitions by not requiring the AD writer to specify separate
  4376 // instructions for every form of operand when the instruction accepts
  4377 // multiple operand types with the same basic encoding and format.  The classic
  4378 // case of this is memory operands.
  4379 opclass memory( indirect, indOffset13, indIndex );
  4380 opclass indIndexMemory( indIndex );
  4382 //----------PIPELINE-----------------------------------------------------------
  4383 pipeline %{
  4385 //----------ATTRIBUTES---------------------------------------------------------
  4386 attributes %{
  4387   fixed_size_instructions;           // Fixed size instructions
  4388   branch_has_delay_slot;             // Branch has delay slot following
  4389   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4390   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4391   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4392   instruction_fetch_units = 1;       // of 16 bytes
  4394   // List of nop instructions
  4395   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4396 %}
  4398 //----------RESOURCES----------------------------------------------------------
  4399 // Resources are the functional units available to the machine
  4400 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4402 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4403 // Pipeline Description specifies the stages in the machine's pipeline
  4405 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4407 //----------PIPELINE CLASSES---------------------------------------------------
  4408 // Pipeline Classes describe the stages in which input and output are
  4409 // referenced by the hardware pipeline.
  4411 // Integer ALU reg-reg operation
  4412 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4413     single_instruction;
  4414     dst   : E(write);
  4415     src1  : R(read);
  4416     src2  : R(read);
  4417     IALU  : R;
  4418 %}
  4420 // Integer ALU reg-reg long operation
  4421 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4422     instruction_count(2);
  4423     dst   : E(write);
  4424     src1  : R(read);
  4425     src2  : R(read);
  4426     IALU  : R;
  4427     IALU  : R;
  4428 %}
  4430 // Integer ALU reg-reg long dependent operation
  4431 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4432     instruction_count(1); multiple_bundles;
  4433     dst   : E(write);
  4434     src1  : R(read);
  4435     src2  : R(read);
  4436     cr    : E(write);
  4437     IALU  : R(2);
  4438 %}
  4440 // Integer ALU reg-imm operaion
  4441 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4442     single_instruction;
  4443     dst   : E(write);
  4444     src1  : R(read);
  4445     IALU  : R;
  4446 %}
  4448 // Integer ALU reg-reg operation with condition code
  4449 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4450     single_instruction;
  4451     dst   : E(write);
  4452     cr    : E(write);
  4453     src1  : R(read);
  4454     src2  : R(read);
  4455     IALU  : R;
  4456 %}
  4458 // Integer ALU reg-imm operation with condition code
  4459 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4460     single_instruction;
  4461     dst   : E(write);
  4462     cr    : E(write);
  4463     src1  : R(read);
  4464     IALU  : R;
  4465 %}
  4467 // Integer ALU zero-reg operation
  4468 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4469     single_instruction;
  4470     dst   : E(write);
  4471     src2  : R(read);
  4472     IALU  : R;
  4473 %}
  4475 // Integer ALU zero-reg operation with condition code only
  4476 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4477     single_instruction;
  4478     cr    : E(write);
  4479     src   : R(read);
  4480     IALU  : R;
  4481 %}
  4483 // Integer ALU reg-reg operation with condition code only
  4484 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4485     single_instruction;
  4486     cr    : E(write);
  4487     src1  : R(read);
  4488     src2  : R(read);
  4489     IALU  : R;
  4490 %}
  4492 // Integer ALU reg-imm operation with condition code only
  4493 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4494     single_instruction;
  4495     cr    : E(write);
  4496     src1  : R(read);
  4497     IALU  : R;
  4498 %}
  4500 // Integer ALU reg-reg-zero operation with condition code only
  4501 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4502     single_instruction;
  4503     cr    : E(write);
  4504     src1  : R(read);
  4505     src2  : R(read);
  4506     IALU  : R;
  4507 %}
  4509 // Integer ALU reg-imm-zero operation with condition code only
  4510 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4511     single_instruction;
  4512     cr    : E(write);
  4513     src1  : R(read);
  4514     IALU  : R;
  4515 %}
  4517 // Integer ALU reg-reg operation with condition code, src1 modified
  4518 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4519     single_instruction;
  4520     cr    : E(write);
  4521     src1  : E(write);
  4522     src1  : R(read);
  4523     src2  : R(read);
  4524     IALU  : R;
  4525 %}
  4527 // Integer ALU reg-imm operation with condition code, src1 modified
  4528 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4529     single_instruction;
  4530     cr    : E(write);
  4531     src1  : E(write);
  4532     src1  : R(read);
  4533     IALU  : R;
  4534 %}
  4536 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4537     multiple_bundles;
  4538     dst   : E(write)+4;
  4539     cr    : E(write);
  4540     src1  : R(read);
  4541     src2  : R(read);
  4542     IALU  : R(3);
  4543     BR    : R(2);
  4544 %}
  4546 // Integer ALU operation
  4547 pipe_class ialu_none(iRegI dst) %{
  4548     single_instruction;
  4549     dst   : E(write);
  4550     IALU  : R;
  4551 %}
  4553 // Integer ALU reg operation
  4554 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4555     single_instruction; may_have_no_code;
  4556     dst   : E(write);
  4557     src   : R(read);
  4558     IALU  : R;
  4559 %}
  4561 // Integer ALU reg conditional operation
  4562 // This instruction has a 1 cycle stall, and cannot execute
  4563 // in the same cycle as the instruction setting the condition
  4564 // code. We kludge this by pretending to read the condition code
  4565 // 1 cycle earlier, and by marking the functional units as busy
  4566 // for 2 cycles with the result available 1 cycle later than
  4567 // is really the case.
  4568 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4569     single_instruction;
  4570     op2_out : C(write);
  4571     op1     : R(read);
  4572     cr      : R(read);       // This is really E, with a 1 cycle stall
  4573     BR      : R(2);
  4574     MS      : R(2);
  4575 %}
  4577 #ifdef _LP64
  4578 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4579     instruction_count(1); multiple_bundles;
  4580     dst     : C(write)+1;
  4581     src     : R(read)+1;
  4582     IALU    : R(1);
  4583     BR      : E(2);
  4584     MS      : E(2);
  4585 %}
  4586 #endif
  4588 // Integer ALU reg operation
  4589 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4590     single_instruction; may_have_no_code;
  4591     dst   : E(write);
  4592     src   : R(read);
  4593     IALU  : R;
  4594 %}
  4595 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4596     single_instruction; may_have_no_code;
  4597     dst   : E(write);
  4598     src   : R(read);
  4599     IALU  : R;
  4600 %}
  4602 // Two integer ALU reg operations
  4603 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4604     instruction_count(2);
  4605     dst   : E(write);
  4606     src   : R(read);
  4607     A0    : R;
  4608     A1    : R;
  4609 %}
  4611 // Two integer ALU reg operations
  4612 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4613     instruction_count(2); may_have_no_code;
  4614     dst   : E(write);
  4615     src   : R(read);
  4616     A0    : R;
  4617     A1    : R;
  4618 %}
  4620 // Integer ALU imm operation
  4621 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4622     single_instruction;
  4623     dst   : E(write);
  4624     IALU  : R;
  4625 %}
  4627 // Integer ALU reg-reg with carry operation
  4628 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4629     single_instruction;
  4630     dst   : E(write);
  4631     src1  : R(read);
  4632     src2  : R(read);
  4633     IALU  : R;
  4634 %}
  4636 // Integer ALU cc operation
  4637 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4638     single_instruction;
  4639     dst   : E(write);
  4640     cc    : R(read);
  4641     IALU  : R;
  4642 %}
  4644 // Integer ALU cc / second IALU operation
  4645 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4646     instruction_count(1); multiple_bundles;
  4647     dst   : E(write)+1;
  4648     src   : R(read);
  4649     IALU  : R;
  4650 %}
  4652 // Integer ALU cc / second IALU operation
  4653 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4654     instruction_count(1); multiple_bundles;
  4655     dst   : E(write)+1;
  4656     p     : R(read);
  4657     q     : R(read);
  4658     IALU  : R;
  4659 %}
  4661 // Integer ALU hi-lo-reg operation
  4662 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4663     instruction_count(1); multiple_bundles;
  4664     dst   : E(write)+1;
  4665     IALU  : R(2);
  4666 %}
  4668 // Float ALU hi-lo-reg operation (with temp)
  4669 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4670     instruction_count(1); multiple_bundles;
  4671     dst   : E(write)+1;
  4672     IALU  : R(2);
  4673 %}
  4675 // Long Constant
  4676 pipe_class loadConL( iRegL dst, immL src ) %{
  4677     instruction_count(2); multiple_bundles;
  4678     dst   : E(write)+1;
  4679     IALU  : R(2);
  4680     IALU  : R(2);
  4681 %}
  4683 // Pointer Constant
  4684 pipe_class loadConP( iRegP dst, immP src ) %{
  4685     instruction_count(0); multiple_bundles;
  4686     fixed_latency(6);
  4687 %}
  4689 // Polling Address
  4690 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4691 #ifdef _LP64
  4692     instruction_count(0); multiple_bundles;
  4693     fixed_latency(6);
  4694 #else
  4695     dst   : E(write);
  4696     IALU  : R;
  4697 #endif
  4698 %}
  4700 // Long Constant small
  4701 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4702     instruction_count(2);
  4703     dst   : E(write);
  4704     IALU  : R;
  4705     IALU  : R;
  4706 %}
  4708 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4709 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4710     instruction_count(1); multiple_bundles;
  4711     src   : R(read);
  4712     dst   : M(write)+1;
  4713     IALU  : R;
  4714     MS    : E;
  4715 %}
  4717 // Integer ALU nop operation
  4718 pipe_class ialu_nop() %{
  4719     single_instruction;
  4720     IALU  : R;
  4721 %}
  4723 // Integer ALU nop operation
  4724 pipe_class ialu_nop_A0() %{
  4725     single_instruction;
  4726     A0    : R;
  4727 %}
  4729 // Integer ALU nop operation
  4730 pipe_class ialu_nop_A1() %{
  4731     single_instruction;
  4732     A1    : R;
  4733 %}
  4735 // Integer Multiply reg-reg operation
  4736 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4737     single_instruction;
  4738     dst   : E(write);
  4739     src1  : R(read);
  4740     src2  : R(read);
  4741     MS    : R(5);
  4742 %}
  4744 // Integer Multiply reg-imm operation
  4745 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4746     single_instruction;
  4747     dst   : E(write);
  4748     src1  : R(read);
  4749     MS    : R(5);
  4750 %}
  4752 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4753     single_instruction;
  4754     dst   : E(write)+4;
  4755     src1  : R(read);
  4756     src2  : R(read);
  4757     MS    : R(6);
  4758 %}
  4760 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4761     single_instruction;
  4762     dst   : E(write)+4;
  4763     src1  : R(read);
  4764     MS    : R(6);
  4765 %}
  4767 // Integer Divide reg-reg
  4768 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4769     instruction_count(1); multiple_bundles;
  4770     dst   : E(write);
  4771     temp  : E(write);
  4772     src1  : R(read);
  4773     src2  : R(read);
  4774     temp  : R(read);
  4775     MS    : R(38);
  4776 %}
  4778 // Integer Divide reg-imm
  4779 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4780     instruction_count(1); multiple_bundles;
  4781     dst   : E(write);
  4782     temp  : E(write);
  4783     src1  : R(read);
  4784     temp  : R(read);
  4785     MS    : R(38);
  4786 %}
  4788 // Long Divide
  4789 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4790     dst  : E(write)+71;
  4791     src1 : R(read);
  4792     src2 : R(read)+1;
  4793     MS   : R(70);
  4794 %}
  4796 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4797     dst  : E(write)+71;
  4798     src1 : R(read);
  4799     MS   : R(70);
  4800 %}
  4802 // Floating Point Add Float
  4803 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4804     single_instruction;
  4805     dst   : X(write);
  4806     src1  : E(read);
  4807     src2  : E(read);
  4808     FA    : R;
  4809 %}
  4811 // Floating Point Add Double
  4812 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4813     single_instruction;
  4814     dst   : X(write);
  4815     src1  : E(read);
  4816     src2  : E(read);
  4817     FA    : R;
  4818 %}
  4820 // Floating Point Conditional Move based on integer flags
  4821 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4822     single_instruction;
  4823     dst   : X(write);
  4824     src   : E(read);
  4825     cr    : R(read);
  4826     FA    : R(2);
  4827     BR    : R(2);
  4828 %}
  4830 // Floating Point Conditional Move based on integer flags
  4831 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4832     single_instruction;
  4833     dst   : X(write);
  4834     src   : E(read);
  4835     cr    : R(read);
  4836     FA    : R(2);
  4837     BR    : R(2);
  4838 %}
  4840 // Floating Point Multiply Float
  4841 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4842     single_instruction;
  4843     dst   : X(write);
  4844     src1  : E(read);
  4845     src2  : E(read);
  4846     FM    : R;
  4847 %}
  4849 // Floating Point Multiply Double
  4850 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4851     single_instruction;
  4852     dst   : X(write);
  4853     src1  : E(read);
  4854     src2  : E(read);
  4855     FM    : R;
  4856 %}
  4858 // Floating Point Divide Float
  4859 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4860     single_instruction;
  4861     dst   : X(write);
  4862     src1  : E(read);
  4863     src2  : E(read);
  4864     FM    : R;
  4865     FDIV  : C(14);
  4866 %}
  4868 // Floating Point Divide Double
  4869 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4870     single_instruction;
  4871     dst   : X(write);
  4872     src1  : E(read);
  4873     src2  : E(read);
  4874     FM    : R;
  4875     FDIV  : C(17);
  4876 %}
  4878 // Floating Point Move/Negate/Abs Float
  4879 pipe_class faddF_reg(regF dst, regF src) %{
  4880     single_instruction;
  4881     dst   : W(write);
  4882     src   : E(read);
  4883     FA    : R(1);
  4884 %}
  4886 // Floating Point Move/Negate/Abs Double
  4887 pipe_class faddD_reg(regD dst, regD src) %{
  4888     single_instruction;
  4889     dst   : W(write);
  4890     src   : E(read);
  4891     FA    : R;
  4892 %}
  4894 // Floating Point Convert F->D
  4895 pipe_class fcvtF2D(regD dst, regF src) %{
  4896     single_instruction;
  4897     dst   : X(write);
  4898     src   : E(read);
  4899     FA    : R;
  4900 %}
  4902 // Floating Point Convert I->D
  4903 pipe_class fcvtI2D(regD dst, regF src) %{
  4904     single_instruction;
  4905     dst   : X(write);
  4906     src   : E(read);
  4907     FA    : R;
  4908 %}
  4910 // Floating Point Convert LHi->D
  4911 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4912     single_instruction;
  4913     dst   : X(write);
  4914     src   : E(read);
  4915     FA    : R;
  4916 %}
  4918 // Floating Point Convert L->D
  4919 pipe_class fcvtL2D(regD dst, regF src) %{
  4920     single_instruction;
  4921     dst   : X(write);
  4922     src   : E(read);
  4923     FA    : R;
  4924 %}
  4926 // Floating Point Convert L->F
  4927 pipe_class fcvtL2F(regD dst, regF src) %{
  4928     single_instruction;
  4929     dst   : X(write);
  4930     src   : E(read);
  4931     FA    : R;
  4932 %}
  4934 // Floating Point Convert D->F
  4935 pipe_class fcvtD2F(regD dst, regF src) %{
  4936     single_instruction;
  4937     dst   : X(write);
  4938     src   : E(read);
  4939     FA    : R;
  4940 %}
  4942 // Floating Point Convert I->L
  4943 pipe_class fcvtI2L(regD dst, regF src) %{
  4944     single_instruction;
  4945     dst   : X(write);
  4946     src   : E(read);
  4947     FA    : R;
  4948 %}
  4950 // Floating Point Convert D->F
  4951 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4952     instruction_count(1); multiple_bundles;
  4953     dst   : X(write)+6;
  4954     src   : E(read);
  4955     FA    : R;
  4956 %}
  4958 // Floating Point Convert D->L
  4959 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4960     instruction_count(1); multiple_bundles;
  4961     dst   : X(write)+6;
  4962     src   : E(read);
  4963     FA    : R;
  4964 %}
  4966 // Floating Point Convert F->I
  4967 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4968     instruction_count(1); multiple_bundles;
  4969     dst   : X(write)+6;
  4970     src   : E(read);
  4971     FA    : R;
  4972 %}
  4974 // Floating Point Convert F->L
  4975 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4976     instruction_count(1); multiple_bundles;
  4977     dst   : X(write)+6;
  4978     src   : E(read);
  4979     FA    : R;
  4980 %}
  4982 // Floating Point Convert I->F
  4983 pipe_class fcvtI2F(regF dst, regF src) %{
  4984     single_instruction;
  4985     dst   : X(write);
  4986     src   : E(read);
  4987     FA    : R;
  4988 %}
  4990 // Floating Point Compare
  4991 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4992     single_instruction;
  4993     cr    : X(write);
  4994     src1  : E(read);
  4995     src2  : E(read);
  4996     FA    : R;
  4997 %}
  4999 // Floating Point Compare
  5000 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5001     single_instruction;
  5002     cr    : X(write);
  5003     src1  : E(read);
  5004     src2  : E(read);
  5005     FA    : R;
  5006 %}
  5008 // Floating Add Nop
  5009 pipe_class fadd_nop() %{
  5010     single_instruction;
  5011     FA  : R;
  5012 %}
  5014 // Integer Store to Memory
  5015 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5016     single_instruction;
  5017     mem   : R(read);
  5018     src   : C(read);
  5019     MS    : R;
  5020 %}
  5022 // Integer Store to Memory
  5023 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5024     single_instruction;
  5025     mem   : R(read);
  5026     src   : C(read);
  5027     MS    : R;
  5028 %}
  5030 // Integer Store Zero to Memory
  5031 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5032     single_instruction;
  5033     mem   : R(read);
  5034     MS    : R;
  5035 %}
  5037 // Special Stack Slot Store
  5038 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5039     single_instruction;
  5040     stkSlot : R(read);
  5041     src     : C(read);
  5042     MS      : R;
  5043 %}
  5045 // Special Stack Slot Store
  5046 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5047     instruction_count(2); multiple_bundles;
  5048     stkSlot : R(read);
  5049     src     : C(read);
  5050     MS      : R(2);
  5051 %}
  5053 // Float Store
  5054 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5055     single_instruction;
  5056     mem : R(read);
  5057     src : C(read);
  5058     MS  : R;
  5059 %}
  5061 // Float Store
  5062 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5063     single_instruction;
  5064     mem : R(read);
  5065     MS  : R;
  5066 %}
  5068 // Double Store
  5069 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5070     instruction_count(1);
  5071     mem : R(read);
  5072     src : C(read);
  5073     MS  : R;
  5074 %}
  5076 // Double Store
  5077 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5078     single_instruction;
  5079     mem : R(read);
  5080     MS  : R;
  5081 %}
  5083 // Special Stack Slot Float Store
  5084 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5085     single_instruction;
  5086     stkSlot : R(read);
  5087     src     : C(read);
  5088     MS      : R;
  5089 %}
  5091 // Special Stack Slot Double Store
  5092 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5093     single_instruction;
  5094     stkSlot : R(read);
  5095     src     : C(read);
  5096     MS      : R;
  5097 %}
  5099 // Integer Load (when sign bit propagation not needed)
  5100 pipe_class iload_mem(iRegI dst, memory mem) %{
  5101     single_instruction;
  5102     mem : R(read);
  5103     dst : C(write);
  5104     MS  : R;
  5105 %}
  5107 // Integer Load from stack operand
  5108 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5109     single_instruction;
  5110     mem : R(read);
  5111     dst : C(write);
  5112     MS  : R;
  5113 %}
  5115 // Integer Load (when sign bit propagation or masking is needed)
  5116 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5117     single_instruction;
  5118     mem : R(read);
  5119     dst : M(write);
  5120     MS  : R;
  5121 %}
  5123 // Float Load
  5124 pipe_class floadF_mem(regF dst, memory mem) %{
  5125     single_instruction;
  5126     mem : R(read);
  5127     dst : M(write);
  5128     MS  : R;
  5129 %}
  5131 // Float Load
  5132 pipe_class floadD_mem(regD dst, memory mem) %{
  5133     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5134     mem : R(read);
  5135     dst : M(write);
  5136     MS  : R;
  5137 %}
  5139 // Float Load
  5140 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5141     single_instruction;
  5142     stkSlot : R(read);
  5143     dst : M(write);
  5144     MS  : R;
  5145 %}
  5147 // Float Load
  5148 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5149     single_instruction;
  5150     stkSlot : R(read);
  5151     dst : M(write);
  5152     MS  : R;
  5153 %}
  5155 // Memory Nop
  5156 pipe_class mem_nop() %{
  5157     single_instruction;
  5158     MS  : R;
  5159 %}
  5161 pipe_class sethi(iRegP dst, immI src) %{
  5162     single_instruction;
  5163     dst  : E(write);
  5164     IALU : R;
  5165 %}
  5167 pipe_class loadPollP(iRegP poll) %{
  5168     single_instruction;
  5169     poll : R(read);
  5170     MS   : R;
  5171 %}
  5173 pipe_class br(Universe br, label labl) %{
  5174     single_instruction_with_delay_slot;
  5175     BR  : R;
  5176 %}
  5178 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5179     single_instruction_with_delay_slot;
  5180     cr    : E(read);
  5181     BR    : R;
  5182 %}
  5184 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5185     single_instruction_with_delay_slot;
  5186     op1 : E(read);
  5187     BR  : R;
  5188     MS  : R;
  5189 %}
  5191 // Compare and branch
  5192 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5193     instruction_count(2); has_delay_slot;
  5194     cr    : E(write);
  5195     src1  : R(read);
  5196     src2  : R(read);
  5197     IALU  : R;
  5198     BR    : R;
  5199 %}
  5201 // Compare and branch
  5202 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5203     instruction_count(2); has_delay_slot;
  5204     cr    : E(write);
  5205     src1  : R(read);
  5206     IALU  : R;
  5207     BR    : R;
  5208 %}
  5210 // Compare and branch using cbcond
  5211 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5212     single_instruction;
  5213     src1  : E(read);
  5214     src2  : E(read);
  5215     IALU  : R;
  5216     BR    : R;
  5217 %}
  5219 // Compare and branch using cbcond
  5220 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5221     single_instruction;
  5222     src1  : E(read);
  5223     IALU  : R;
  5224     BR    : R;
  5225 %}
  5227 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5228     single_instruction_with_delay_slot;
  5229     cr    : E(read);
  5230     BR    : R;
  5231 %}
  5233 pipe_class br_nop() %{
  5234     single_instruction;
  5235     BR  : R;
  5236 %}
  5238 pipe_class simple_call(method meth) %{
  5239     instruction_count(2); multiple_bundles; force_serialization;
  5240     fixed_latency(100);
  5241     BR  : R(1);
  5242     MS  : R(1);
  5243     A0  : R(1);
  5244 %}
  5246 pipe_class compiled_call(method meth) %{
  5247     instruction_count(1); multiple_bundles; force_serialization;
  5248     fixed_latency(100);
  5249     MS  : R(1);
  5250 %}
  5252 pipe_class call(method meth) %{
  5253     instruction_count(0); multiple_bundles; force_serialization;
  5254     fixed_latency(100);
  5255 %}
  5257 pipe_class tail_call(Universe ignore, label labl) %{
  5258     single_instruction; has_delay_slot;
  5259     fixed_latency(100);
  5260     BR  : R(1);
  5261     MS  : R(1);
  5262 %}
  5264 pipe_class ret(Universe ignore) %{
  5265     single_instruction; has_delay_slot;
  5266     BR  : R(1);
  5267     MS  : R(1);
  5268 %}
  5270 pipe_class ret_poll(g3RegP poll) %{
  5271     instruction_count(3); has_delay_slot;
  5272     poll : E(read);
  5273     MS   : R;
  5274 %}
  5276 // The real do-nothing guy
  5277 pipe_class empty( ) %{
  5278     instruction_count(0);
  5279 %}
  5281 pipe_class long_memory_op() %{
  5282     instruction_count(0); multiple_bundles; force_serialization;
  5283     fixed_latency(25);
  5284     MS  : R(1);
  5285 %}
  5287 // Check-cast
  5288 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5289     array : R(read);
  5290     match  : R(read);
  5291     IALU   : R(2);
  5292     BR     : R(2);
  5293     MS     : R;
  5294 %}
  5296 // Convert FPU flags into +1,0,-1
  5297 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5298     src1  : E(read);
  5299     src2  : E(read);
  5300     dst   : E(write);
  5301     FA    : R;
  5302     MS    : R(2);
  5303     BR    : R(2);
  5304 %}
  5306 // Compare for p < q, and conditionally add y
  5307 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5308     p     : E(read);
  5309     q     : E(read);
  5310     y     : E(read);
  5311     IALU  : R(3)
  5312 %}
  5314 // Perform a compare, then move conditionally in a branch delay slot.
  5315 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5316     src2   : E(read);
  5317     srcdst : E(read);
  5318     IALU   : R;
  5319     BR     : R;
  5320 %}
  5322 // Define the class for the Nop node
  5323 define %{
  5324    MachNop = ialu_nop;
  5325 %}
  5327 %}
  5329 //----------INSTRUCTIONS-------------------------------------------------------
  5331 //------------Special Stack Slot instructions - no match rules-----------------
  5332 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5333   // No match rule to avoid chain rule match.
  5334   effect(DEF dst, USE src);
  5335   ins_cost(MEMORY_REF_COST);
  5336   size(4);
  5337   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5338   opcode(Assembler::ldf_op3);
  5339   ins_encode(simple_form3_mem_reg(src, dst));
  5340   ins_pipe(floadF_stk);
  5341 %}
  5343 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5344   // No match rule to avoid chain rule match.
  5345   effect(DEF dst, USE src);
  5346   ins_cost(MEMORY_REF_COST);
  5347   size(4);
  5348   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5349   opcode(Assembler::lddf_op3);
  5350   ins_encode(simple_form3_mem_reg(src, dst));
  5351   ins_pipe(floadD_stk);
  5352 %}
  5354 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5355   // No match rule to avoid chain rule match.
  5356   effect(DEF dst, USE src);
  5357   ins_cost(MEMORY_REF_COST);
  5358   size(4);
  5359   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5360   opcode(Assembler::stf_op3);
  5361   ins_encode(simple_form3_mem_reg(dst, src));
  5362   ins_pipe(fstoreF_stk_reg);
  5363 %}
  5365 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5366   // No match rule to avoid chain rule match.
  5367   effect(DEF dst, USE src);
  5368   ins_cost(MEMORY_REF_COST);
  5369   size(4);
  5370   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5371   opcode(Assembler::stdf_op3);
  5372   ins_encode(simple_form3_mem_reg(dst, src));
  5373   ins_pipe(fstoreD_stk_reg);
  5374 %}
  5376 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5377   effect(DEF dst, USE src);
  5378   ins_cost(MEMORY_REF_COST*2);
  5379   size(8);
  5380   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5381             "STW    R_G0,$dst.lo" %}
  5382   opcode(Assembler::stw_op3);
  5383   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5384   ins_pipe(lstoreI_stk_reg);
  5385 %}
  5387 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5388   // No match rule to avoid chain rule match.
  5389   effect(DEF dst, USE src);
  5390   ins_cost(MEMORY_REF_COST);
  5391   size(4);
  5392   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5393   opcode(Assembler::stx_op3);
  5394   ins_encode(simple_form3_mem_reg( dst, src ) );
  5395   ins_pipe(istore_stk_reg);
  5396 %}
  5398 //---------- Chain stack slots between similar types --------
  5400 // Load integer from stack slot
  5401 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5402   match(Set dst src);
  5403   ins_cost(MEMORY_REF_COST);
  5405   size(4);
  5406   format %{ "LDUW   $src,$dst\t!stk" %}
  5407   opcode(Assembler::lduw_op3);
  5408   ins_encode(simple_form3_mem_reg( src, dst ) );
  5409   ins_pipe(iload_mem);
  5410 %}
  5412 // Store integer to stack slot
  5413 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5414   match(Set dst src);
  5415   ins_cost(MEMORY_REF_COST);
  5417   size(4);
  5418   format %{ "STW    $src,$dst\t!stk" %}
  5419   opcode(Assembler::stw_op3);
  5420   ins_encode(simple_form3_mem_reg( dst, src ) );
  5421   ins_pipe(istore_mem_reg);
  5422 %}
  5424 // Load long from stack slot
  5425 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5426   match(Set dst src);
  5428   ins_cost(MEMORY_REF_COST);
  5429   size(4);
  5430   format %{ "LDX    $src,$dst\t! long" %}
  5431   opcode(Assembler::ldx_op3);
  5432   ins_encode(simple_form3_mem_reg( src, dst ) );
  5433   ins_pipe(iload_mem);
  5434 %}
  5436 // Store long to stack slot
  5437 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5438   match(Set dst src);
  5440   ins_cost(MEMORY_REF_COST);
  5441   size(4);
  5442   format %{ "STX    $src,$dst\t! long" %}
  5443   opcode(Assembler::stx_op3);
  5444   ins_encode(simple_form3_mem_reg( dst, src ) );
  5445   ins_pipe(istore_mem_reg);
  5446 %}
  5448 #ifdef _LP64
  5449 // Load pointer from stack slot, 64-bit encoding
  5450 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5451   match(Set dst src);
  5452   ins_cost(MEMORY_REF_COST);
  5453   size(4);
  5454   format %{ "LDX    $src,$dst\t!ptr" %}
  5455   opcode(Assembler::ldx_op3);
  5456   ins_encode(simple_form3_mem_reg( src, dst ) );
  5457   ins_pipe(iload_mem);
  5458 %}
  5460 // Store pointer to stack slot
  5461 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5462   match(Set dst src);
  5463   ins_cost(MEMORY_REF_COST);
  5464   size(4);
  5465   format %{ "STX    $src,$dst\t!ptr" %}
  5466   opcode(Assembler::stx_op3);
  5467   ins_encode(simple_form3_mem_reg( dst, src ) );
  5468   ins_pipe(istore_mem_reg);
  5469 %}
  5470 #else // _LP64
  5471 // Load pointer from stack slot, 32-bit encoding
  5472 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5473   match(Set dst src);
  5474   ins_cost(MEMORY_REF_COST);
  5475   format %{ "LDUW   $src,$dst\t!ptr" %}
  5476   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5477   ins_encode(simple_form3_mem_reg( src, dst ) );
  5478   ins_pipe(iload_mem);
  5479 %}
  5481 // Store pointer to stack slot
  5482 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5483   match(Set dst src);
  5484   ins_cost(MEMORY_REF_COST);
  5485   format %{ "STW    $src,$dst\t!ptr" %}
  5486   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5487   ins_encode(simple_form3_mem_reg( dst, src ) );
  5488   ins_pipe(istore_mem_reg);
  5489 %}
  5490 #endif // _LP64
  5492 //------------Special Nop instructions for bundling - no match rules-----------
  5493 // Nop using the A0 functional unit
  5494 instruct Nop_A0() %{
  5495   ins_cost(0);
  5497   format %{ "NOP    ! Alu Pipeline" %}
  5498   opcode(Assembler::or_op3, Assembler::arith_op);
  5499   ins_encode( form2_nop() );
  5500   ins_pipe(ialu_nop_A0);
  5501 %}
  5503 // Nop using the A1 functional unit
  5504 instruct Nop_A1( ) %{
  5505   ins_cost(0);
  5507   format %{ "NOP    ! Alu Pipeline" %}
  5508   opcode(Assembler::or_op3, Assembler::arith_op);
  5509   ins_encode( form2_nop() );
  5510   ins_pipe(ialu_nop_A1);
  5511 %}
  5513 // Nop using the memory functional unit
  5514 instruct Nop_MS( ) %{
  5515   ins_cost(0);
  5517   format %{ "NOP    ! Memory Pipeline" %}
  5518   ins_encode( emit_mem_nop );
  5519   ins_pipe(mem_nop);
  5520 %}
  5522 // Nop using the floating add functional unit
  5523 instruct Nop_FA( ) %{
  5524   ins_cost(0);
  5526   format %{ "NOP    ! Floating Add Pipeline" %}
  5527   ins_encode( emit_fadd_nop );
  5528   ins_pipe(fadd_nop);
  5529 %}
  5531 // Nop using the branch functional unit
  5532 instruct Nop_BR( ) %{
  5533   ins_cost(0);
  5535   format %{ "NOP    ! Branch Pipeline" %}
  5536   ins_encode( emit_br_nop );
  5537   ins_pipe(br_nop);
  5538 %}
  5540 //----------Load/Store/Move Instructions---------------------------------------
  5541 //----------Load Instructions--------------------------------------------------
  5542 // Load Byte (8bit signed)
  5543 instruct loadB(iRegI dst, memory mem) %{
  5544   match(Set dst (LoadB mem));
  5545   ins_cost(MEMORY_REF_COST);
  5547   size(4);
  5548   format %{ "LDSB   $mem,$dst\t! byte" %}
  5549   ins_encode %{
  5550     __ ldsb($mem$$Address, $dst$$Register);
  5551   %}
  5552   ins_pipe(iload_mask_mem);
  5553 %}
  5555 // Load Byte (8bit signed) into a Long Register
  5556 instruct loadB2L(iRegL dst, memory mem) %{
  5557   match(Set dst (ConvI2L (LoadB mem)));
  5558   ins_cost(MEMORY_REF_COST);
  5560   size(4);
  5561   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5562   ins_encode %{
  5563     __ ldsb($mem$$Address, $dst$$Register);
  5564   %}
  5565   ins_pipe(iload_mask_mem);
  5566 %}
  5568 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5569 instruct loadUB(iRegI dst, memory mem) %{
  5570   match(Set dst (LoadUB mem));
  5571   ins_cost(MEMORY_REF_COST);
  5573   size(4);
  5574   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5575   ins_encode %{
  5576     __ ldub($mem$$Address, $dst$$Register);
  5577   %}
  5578   ins_pipe(iload_mem);
  5579 %}
  5581 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5582 instruct loadUB2L(iRegL dst, memory mem) %{
  5583   match(Set dst (ConvI2L (LoadUB mem)));
  5584   ins_cost(MEMORY_REF_COST);
  5586   size(4);
  5587   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5588   ins_encode %{
  5589     __ ldub($mem$$Address, $dst$$Register);
  5590   %}
  5591   ins_pipe(iload_mem);
  5592 %}
  5594 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5595 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5596   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5597   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5599   size(2*4);
  5600   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5601             "AND    $dst,$mask,$dst" %}
  5602   ins_encode %{
  5603     __ ldub($mem$$Address, $dst$$Register);
  5604     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5605   %}
  5606   ins_pipe(iload_mem);
  5607 %}
  5609 // Load Short (16bit signed)
  5610 instruct loadS(iRegI dst, memory mem) %{
  5611   match(Set dst (LoadS mem));
  5612   ins_cost(MEMORY_REF_COST);
  5614   size(4);
  5615   format %{ "LDSH   $mem,$dst\t! short" %}
  5616   ins_encode %{
  5617     __ ldsh($mem$$Address, $dst$$Register);
  5618   %}
  5619   ins_pipe(iload_mask_mem);
  5620 %}
  5622 // Load Short (16 bit signed) to Byte (8 bit signed)
  5623 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5624   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5625   ins_cost(MEMORY_REF_COST);
  5627   size(4);
  5629   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5630   ins_encode %{
  5631     __ ldsb($mem$$Address, $dst$$Register, 1);
  5632   %}
  5633   ins_pipe(iload_mask_mem);
  5634 %}
  5636 // Load Short (16bit signed) into a Long Register
  5637 instruct loadS2L(iRegL dst, memory mem) %{
  5638   match(Set dst (ConvI2L (LoadS mem)));
  5639   ins_cost(MEMORY_REF_COST);
  5641   size(4);
  5642   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5643   ins_encode %{
  5644     __ ldsh($mem$$Address, $dst$$Register);
  5645   %}
  5646   ins_pipe(iload_mask_mem);
  5647 %}
  5649 // Load Unsigned Short/Char (16bit UNsigned)
  5650 instruct loadUS(iRegI dst, memory mem) %{
  5651   match(Set dst (LoadUS mem));
  5652   ins_cost(MEMORY_REF_COST);
  5654   size(4);
  5655   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5656   ins_encode %{
  5657     __ lduh($mem$$Address, $dst$$Register);
  5658   %}
  5659   ins_pipe(iload_mem);
  5660 %}
  5662 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5663 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5664   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5665   ins_cost(MEMORY_REF_COST);
  5667   size(4);
  5668   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5669   ins_encode %{
  5670     __ ldsb($mem$$Address, $dst$$Register, 1);
  5671   %}
  5672   ins_pipe(iload_mask_mem);
  5673 %}
  5675 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5676 instruct loadUS2L(iRegL dst, memory mem) %{
  5677   match(Set dst (ConvI2L (LoadUS mem)));
  5678   ins_cost(MEMORY_REF_COST);
  5680   size(4);
  5681   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5682   ins_encode %{
  5683     __ lduh($mem$$Address, $dst$$Register);
  5684   %}
  5685   ins_pipe(iload_mem);
  5686 %}
  5688 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5689 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5690   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5691   ins_cost(MEMORY_REF_COST);
  5693   size(4);
  5694   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5695   ins_encode %{
  5696     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5697   %}
  5698   ins_pipe(iload_mem);
  5699 %}
  5701 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5702 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5703   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5704   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5706   size(2*4);
  5707   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5708             "AND    $dst,$mask,$dst" %}
  5709   ins_encode %{
  5710     Register Rdst = $dst$$Register;
  5711     __ lduh($mem$$Address, Rdst);
  5712     __ and3(Rdst, $mask$$constant, Rdst);
  5713   %}
  5714   ins_pipe(iload_mem);
  5715 %}
  5717 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5718 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5719   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5720   effect(TEMP dst, TEMP tmp);
  5721   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5723   size((3+1)*4);  // set may use two instructions.
  5724   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5725             "SET    $mask,$tmp\n\t"
  5726             "AND    $dst,$tmp,$dst" %}
  5727   ins_encode %{
  5728     Register Rdst = $dst$$Register;
  5729     Register Rtmp = $tmp$$Register;
  5730     __ lduh($mem$$Address, Rdst);
  5731     __ set($mask$$constant, Rtmp);
  5732     __ and3(Rdst, Rtmp, Rdst);
  5733   %}
  5734   ins_pipe(iload_mem);
  5735 %}
  5737 // Load Integer
  5738 instruct loadI(iRegI dst, memory mem) %{
  5739   match(Set dst (LoadI mem));
  5740   ins_cost(MEMORY_REF_COST);
  5742   size(4);
  5743   format %{ "LDUW   $mem,$dst\t! int" %}
  5744   ins_encode %{
  5745     __ lduw($mem$$Address, $dst$$Register);
  5746   %}
  5747   ins_pipe(iload_mem);
  5748 %}
  5750 // Load Integer to Byte (8 bit signed)
  5751 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5752   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5753   ins_cost(MEMORY_REF_COST);
  5755   size(4);
  5757   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5758   ins_encode %{
  5759     __ ldsb($mem$$Address, $dst$$Register, 3);
  5760   %}
  5761   ins_pipe(iload_mask_mem);
  5762 %}
  5764 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5765 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5766   match(Set dst (AndI (LoadI mem) mask));
  5767   ins_cost(MEMORY_REF_COST);
  5769   size(4);
  5771   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5772   ins_encode %{
  5773     __ ldub($mem$$Address, $dst$$Register, 3);
  5774   %}
  5775   ins_pipe(iload_mask_mem);
  5776 %}
  5778 // Load Integer to Short (16 bit signed)
  5779 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5780   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5781   ins_cost(MEMORY_REF_COST);
  5783   size(4);
  5785   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5786   ins_encode %{
  5787     __ ldsh($mem$$Address, $dst$$Register, 2);
  5788   %}
  5789   ins_pipe(iload_mask_mem);
  5790 %}
  5792 // Load Integer to Unsigned Short (16 bit UNsigned)
  5793 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5794   match(Set dst (AndI (LoadI mem) mask));
  5795   ins_cost(MEMORY_REF_COST);
  5797   size(4);
  5799   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5800   ins_encode %{
  5801     __ lduh($mem$$Address, $dst$$Register, 2);
  5802   %}
  5803   ins_pipe(iload_mask_mem);
  5804 %}
  5806 // Load Integer into a Long Register
  5807 instruct loadI2L(iRegL dst, memory mem) %{
  5808   match(Set dst (ConvI2L (LoadI mem)));
  5809   ins_cost(MEMORY_REF_COST);
  5811   size(4);
  5812   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5813   ins_encode %{
  5814     __ ldsw($mem$$Address, $dst$$Register);
  5815   %}
  5816   ins_pipe(iload_mask_mem);
  5817 %}
  5819 // Load Integer with mask 0xFF into a Long Register
  5820 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5821   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5822   ins_cost(MEMORY_REF_COST);
  5824   size(4);
  5825   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5826   ins_encode %{
  5827     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5828   %}
  5829   ins_pipe(iload_mem);
  5830 %}
  5832 // Load Integer with mask 0xFFFF into a Long Register
  5833 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5834   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5835   ins_cost(MEMORY_REF_COST);
  5837   size(4);
  5838   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5839   ins_encode %{
  5840     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5841   %}
  5842   ins_pipe(iload_mem);
  5843 %}
  5845 // Load Integer with a 13-bit mask into a Long Register
  5846 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5847   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5848   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5850   size(2*4);
  5851   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5852             "AND    $dst,$mask,$dst" %}
  5853   ins_encode %{
  5854     Register Rdst = $dst$$Register;
  5855     __ lduw($mem$$Address, Rdst);
  5856     __ and3(Rdst, $mask$$constant, Rdst);
  5857   %}
  5858   ins_pipe(iload_mem);
  5859 %}
  5861 // Load Integer with a 32-bit mask into a Long Register
  5862 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5863   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5864   effect(TEMP dst, TEMP tmp);
  5865   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5867   size((3+1)*4);  // set may use two instructions.
  5868   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5869             "SET    $mask,$tmp\n\t"
  5870             "AND    $dst,$tmp,$dst" %}
  5871   ins_encode %{
  5872     Register Rdst = $dst$$Register;
  5873     Register Rtmp = $tmp$$Register;
  5874     __ lduw($mem$$Address, Rdst);
  5875     __ set($mask$$constant, Rtmp);
  5876     __ and3(Rdst, Rtmp, Rdst);
  5877   %}
  5878   ins_pipe(iload_mem);
  5879 %}
  5881 // Load Unsigned Integer into a Long Register
  5882 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5883   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5884   ins_cost(MEMORY_REF_COST);
  5886   size(4);
  5887   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5888   ins_encode %{
  5889     __ lduw($mem$$Address, $dst$$Register);
  5890   %}
  5891   ins_pipe(iload_mem);
  5892 %}
  5894 // Load Long - aligned
  5895 instruct loadL(iRegL dst, memory mem ) %{
  5896   match(Set dst (LoadL mem));
  5897   ins_cost(MEMORY_REF_COST);
  5899   size(4);
  5900   format %{ "LDX    $mem,$dst\t! long" %}
  5901   ins_encode %{
  5902     __ ldx($mem$$Address, $dst$$Register);
  5903   %}
  5904   ins_pipe(iload_mem);
  5905 %}
  5907 // Load Long - UNaligned
  5908 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5909   match(Set dst (LoadL_unaligned mem));
  5910   effect(KILL tmp);
  5911   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5912   size(16);
  5913   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5914           "\tLDUW   $mem  ,$dst\n"
  5915           "\tSLLX   #32, $dst, $dst\n"
  5916           "\tOR     $dst, R_O7, $dst" %}
  5917   opcode(Assembler::lduw_op3);
  5918   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5919   ins_pipe(iload_mem);
  5920 %}
  5922 // Load Range
  5923 instruct loadRange(iRegI dst, memory mem) %{
  5924   match(Set dst (LoadRange mem));
  5925   ins_cost(MEMORY_REF_COST);
  5927   size(4);
  5928   format %{ "LDUW   $mem,$dst\t! range" %}
  5929   opcode(Assembler::lduw_op3);
  5930   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5931   ins_pipe(iload_mem);
  5932 %}
  5934 // Load Integer into %f register (for fitos/fitod)
  5935 instruct loadI_freg(regF dst, memory mem) %{
  5936   match(Set dst (LoadI mem));
  5937   ins_cost(MEMORY_REF_COST);
  5938   size(4);
  5940   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5941   opcode(Assembler::ldf_op3);
  5942   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5943   ins_pipe(floadF_mem);
  5944 %}
  5946 // Load Pointer
  5947 instruct loadP(iRegP dst, memory mem) %{
  5948   match(Set dst (LoadP mem));
  5949   ins_cost(MEMORY_REF_COST);
  5950   size(4);
  5952 #ifndef _LP64
  5953   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5954   ins_encode %{
  5955     __ lduw($mem$$Address, $dst$$Register);
  5956   %}
  5957 #else
  5958   format %{ "LDX    $mem,$dst\t! ptr" %}
  5959   ins_encode %{
  5960     __ ldx($mem$$Address, $dst$$Register);
  5961   %}
  5962 #endif
  5963   ins_pipe(iload_mem);
  5964 %}
  5966 // Load Compressed Pointer
  5967 instruct loadN(iRegN dst, memory mem) %{
  5968   match(Set dst (LoadN mem));
  5969   ins_cost(MEMORY_REF_COST);
  5970   size(4);
  5972   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5973   ins_encode %{
  5974     __ lduw($mem$$Address, $dst$$Register);
  5975   %}
  5976   ins_pipe(iload_mem);
  5977 %}
  5979 // Load Klass Pointer
  5980 instruct loadKlass(iRegP dst, memory mem) %{
  5981   match(Set dst (LoadKlass mem));
  5982   ins_cost(MEMORY_REF_COST);
  5983   size(4);
  5985 #ifndef _LP64
  5986   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5987   ins_encode %{
  5988     __ lduw($mem$$Address, $dst$$Register);
  5989   %}
  5990 #else
  5991   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5992   ins_encode %{
  5993     __ ldx($mem$$Address, $dst$$Register);
  5994   %}
  5995 #endif
  5996   ins_pipe(iload_mem);
  5997 %}
  5999 // Load narrow Klass Pointer
  6000 instruct loadNKlass(iRegN dst, memory mem) %{
  6001   match(Set dst (LoadNKlass mem));
  6002   ins_cost(MEMORY_REF_COST);
  6003   size(4);
  6005   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6006   ins_encode %{
  6007     __ lduw($mem$$Address, $dst$$Register);
  6008   %}
  6009   ins_pipe(iload_mem);
  6010 %}
  6012 // Load Double
  6013 instruct loadD(regD dst, memory mem) %{
  6014   match(Set dst (LoadD mem));
  6015   ins_cost(MEMORY_REF_COST);
  6017   size(4);
  6018   format %{ "LDDF   $mem,$dst" %}
  6019   opcode(Assembler::lddf_op3);
  6020   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6021   ins_pipe(floadD_mem);
  6022 %}
  6024 // Load Double - UNaligned
  6025 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6026   match(Set dst (LoadD_unaligned mem));
  6027   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6028   size(8);
  6029   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6030           "\tLDF    $mem+4,$dst.lo\t!" %}
  6031   opcode(Assembler::ldf_op3);
  6032   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6033   ins_pipe(iload_mem);
  6034 %}
  6036 // Load Float
  6037 instruct loadF(regF dst, memory mem) %{
  6038   match(Set dst (LoadF mem));
  6039   ins_cost(MEMORY_REF_COST);
  6041   size(4);
  6042   format %{ "LDF    $mem,$dst" %}
  6043   opcode(Assembler::ldf_op3);
  6044   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6045   ins_pipe(floadF_mem);
  6046 %}
  6048 // Load Constant
  6049 instruct loadConI( iRegI dst, immI src ) %{
  6050   match(Set dst src);
  6051   ins_cost(DEFAULT_COST * 3/2);
  6052   format %{ "SET    $src,$dst" %}
  6053   ins_encode( Set32(src, dst) );
  6054   ins_pipe(ialu_hi_lo_reg);
  6055 %}
  6057 instruct loadConI13( iRegI dst, immI13 src ) %{
  6058   match(Set dst src);
  6060   size(4);
  6061   format %{ "MOV    $src,$dst" %}
  6062   ins_encode( Set13( src, dst ) );
  6063   ins_pipe(ialu_imm);
  6064 %}
  6066 #ifndef _LP64
  6067 instruct loadConP(iRegP dst, immP con) %{
  6068   match(Set dst con);
  6069   ins_cost(DEFAULT_COST * 3/2);
  6070   format %{ "SET    $con,$dst\t!ptr" %}
  6071   ins_encode %{
  6072     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6073       intptr_t val = $con$$constant;
  6074     if (constant_reloc == relocInfo::oop_type) {
  6075       __ set_oop_constant((jobject) val, $dst$$Register);
  6076     } else if (constant_reloc == relocInfo::metadata_type) {
  6077       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6078     } else {          // non-oop pointers, e.g. card mark base, heap top
  6079       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6080       __ set(val, $dst$$Register);
  6082   %}
  6083   ins_pipe(loadConP);
  6084 %}
  6085 #else
  6086 instruct loadConP_set(iRegP dst, immP_set con) %{
  6087   match(Set dst con);
  6088   ins_cost(DEFAULT_COST * 3/2);
  6089   format %{ "SET    $con,$dst\t! ptr" %}
  6090   ins_encode %{
  6091     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6092       intptr_t val = $con$$constant;
  6093     if (constant_reloc == relocInfo::oop_type) {
  6094       __ set_oop_constant((jobject) val, $dst$$Register);
  6095     } else if (constant_reloc == relocInfo::metadata_type) {
  6096       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6097     } else {          // non-oop pointers, e.g. card mark base, heap top
  6098       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6099       __ set(val, $dst$$Register);
  6101   %}
  6102   ins_pipe(loadConP);
  6103 %}
  6105 instruct loadConP_load(iRegP dst, immP_load con) %{
  6106   match(Set dst con);
  6107   ins_cost(MEMORY_REF_COST);
  6108   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6109   ins_encode %{
  6110     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6111     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6112   %}
  6113   ins_pipe(loadConP);
  6114 %}
  6116 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6117   match(Set dst con);
  6118   ins_cost(DEFAULT_COST * 3/2);
  6119   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6120   ins_encode %{
  6121     __ set($con$$constant, $dst$$Register);
  6122   %}
  6123   ins_pipe(loadConP);
  6124 %}
  6125 #endif // _LP64
  6127 instruct loadConP0(iRegP dst, immP0 src) %{
  6128   match(Set dst src);
  6130   size(4);
  6131   format %{ "CLR    $dst\t!ptr" %}
  6132   ins_encode %{
  6133     __ clr($dst$$Register);
  6134   %}
  6135   ins_pipe(ialu_imm);
  6136 %}
  6138 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6139   match(Set dst src);
  6140   ins_cost(DEFAULT_COST);
  6141   format %{ "SET    $src,$dst\t!ptr" %}
  6142   ins_encode %{
  6143     AddressLiteral polling_page(os::get_polling_page());
  6144     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6145   %}
  6146   ins_pipe(loadConP_poll);
  6147 %}
  6149 instruct loadConN0(iRegN dst, immN0 src) %{
  6150   match(Set dst src);
  6152   size(4);
  6153   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6154   ins_encode %{
  6155     __ clr($dst$$Register);
  6156   %}
  6157   ins_pipe(ialu_imm);
  6158 %}
  6160 instruct loadConN(iRegN dst, immN src) %{
  6161   match(Set dst src);
  6162   ins_cost(DEFAULT_COST * 3/2);
  6163   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6164   ins_encode %{
  6165     Register dst = $dst$$Register;
  6166     __ set_narrow_oop((jobject)$src$$constant, dst);
  6167   %}
  6168   ins_pipe(ialu_hi_lo_reg);
  6169 %}
  6171 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6172   match(Set dst src);
  6173   ins_cost(DEFAULT_COST * 3/2);
  6174   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6175   ins_encode %{
  6176     Register dst = $dst$$Register;
  6177     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6178   %}
  6179   ins_pipe(ialu_hi_lo_reg);
  6180 %}
  6182 // Materialize long value (predicated by immL_cheap).
  6183 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6184   match(Set dst con);
  6185   effect(KILL tmp);
  6186   ins_cost(DEFAULT_COST * 3);
  6187   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6188   ins_encode %{
  6189     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6190   %}
  6191   ins_pipe(loadConL);
  6192 %}
  6194 // Load long value from constant table (predicated by immL_expensive).
  6195 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6196   match(Set dst con);
  6197   ins_cost(MEMORY_REF_COST);
  6198   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6199   ins_encode %{
  6200       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6201     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6202   %}
  6203   ins_pipe(loadConL);
  6204 %}
  6206 instruct loadConL0( iRegL dst, immL0 src ) %{
  6207   match(Set dst src);
  6208   ins_cost(DEFAULT_COST);
  6209   size(4);
  6210   format %{ "CLR    $dst\t! long" %}
  6211   ins_encode( Set13( src, dst ) );
  6212   ins_pipe(ialu_imm);
  6213 %}
  6215 instruct loadConL13( iRegL dst, immL13 src ) %{
  6216   match(Set dst src);
  6217   ins_cost(DEFAULT_COST * 2);
  6219   size(4);
  6220   format %{ "MOV    $src,$dst\t! long" %}
  6221   ins_encode( Set13( src, dst ) );
  6222   ins_pipe(ialu_imm);
  6223 %}
  6225 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6226   match(Set dst con);
  6227   effect(KILL tmp);
  6228   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6229   ins_encode %{
  6230       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6231     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6232   %}
  6233   ins_pipe(loadConFD);
  6234 %}
  6236 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6237   match(Set dst con);
  6238   effect(KILL tmp);
  6239   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6240   ins_encode %{
  6241     // XXX This is a quick fix for 6833573.
  6242     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6243     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6244     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6245   %}
  6246   ins_pipe(loadConFD);
  6247 %}
  6249 // Prefetch instructions.
  6250 // Must be safe to execute with invalid address (cannot fault).
  6252 instruct prefetchr( memory mem ) %{
  6253   match( PrefetchRead mem );
  6254   ins_cost(MEMORY_REF_COST);
  6255   size(4);
  6257   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6258   opcode(Assembler::prefetch_op3);
  6259   ins_encode( form3_mem_prefetch_read( mem ) );
  6260   ins_pipe(iload_mem);
  6261 %}
  6263 instruct prefetchw( memory mem ) %{
  6264   match( PrefetchWrite mem );
  6265   ins_cost(MEMORY_REF_COST);
  6266   size(4);
  6268   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6269   opcode(Assembler::prefetch_op3);
  6270   ins_encode( form3_mem_prefetch_write( mem ) );
  6271   ins_pipe(iload_mem);
  6272 %}
  6274 // Prefetch instructions for allocation.
  6276 instruct prefetchAlloc( memory mem ) %{
  6277   predicate(AllocatePrefetchInstr == 0);
  6278   match( PrefetchAllocation mem );
  6279   ins_cost(MEMORY_REF_COST);
  6280   size(4);
  6282   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6283   opcode(Assembler::prefetch_op3);
  6284   ins_encode( form3_mem_prefetch_write( mem ) );
  6285   ins_pipe(iload_mem);
  6286 %}
  6288 // Use BIS instruction to prefetch for allocation.
  6289 // Could fault, need space at the end of TLAB.
  6290 instruct prefetchAlloc_bis( iRegP dst ) %{
  6291   predicate(AllocatePrefetchInstr == 1);
  6292   match( PrefetchAllocation dst );
  6293   ins_cost(MEMORY_REF_COST);
  6294   size(4);
  6296   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6297   ins_encode %{
  6298     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6299   %}
  6300   ins_pipe(istore_mem_reg);
  6301 %}
  6303 // Next code is used for finding next cache line address to prefetch.
  6304 #ifndef _LP64
  6305 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6306   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6307   ins_cost(DEFAULT_COST);
  6308   size(4);
  6310   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6311   ins_encode %{
  6312     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6313   %}
  6314   ins_pipe(ialu_reg_imm);
  6315 %}
  6316 #else
  6317 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6318   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6319   ins_cost(DEFAULT_COST);
  6320   size(4);
  6322   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6323   ins_encode %{
  6324     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6325   %}
  6326   ins_pipe(ialu_reg_imm);
  6327 %}
  6328 #endif
  6330 //----------Store Instructions-------------------------------------------------
  6331 // Store Byte
  6332 instruct storeB(memory mem, iRegI src) %{
  6333   match(Set mem (StoreB mem src));
  6334   ins_cost(MEMORY_REF_COST);
  6336   size(4);
  6337   format %{ "STB    $src,$mem\t! byte" %}
  6338   opcode(Assembler::stb_op3);
  6339   ins_encode(simple_form3_mem_reg( mem, src ) );
  6340   ins_pipe(istore_mem_reg);
  6341 %}
  6343 instruct storeB0(memory mem, immI0 src) %{
  6344   match(Set mem (StoreB mem src));
  6345   ins_cost(MEMORY_REF_COST);
  6347   size(4);
  6348   format %{ "STB    $src,$mem\t! byte" %}
  6349   opcode(Assembler::stb_op3);
  6350   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6351   ins_pipe(istore_mem_zero);
  6352 %}
  6354 instruct storeCM0(memory mem, immI0 src) %{
  6355   match(Set mem (StoreCM mem src));
  6356   ins_cost(MEMORY_REF_COST);
  6358   size(4);
  6359   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6360   opcode(Assembler::stb_op3);
  6361   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6362   ins_pipe(istore_mem_zero);
  6363 %}
  6365 // Store Char/Short
  6366 instruct storeC(memory mem, iRegI src) %{
  6367   match(Set mem (StoreC mem src));
  6368   ins_cost(MEMORY_REF_COST);
  6370   size(4);
  6371   format %{ "STH    $src,$mem\t! short" %}
  6372   opcode(Assembler::sth_op3);
  6373   ins_encode(simple_form3_mem_reg( mem, src ) );
  6374   ins_pipe(istore_mem_reg);
  6375 %}
  6377 instruct storeC0(memory mem, immI0 src) %{
  6378   match(Set mem (StoreC mem src));
  6379   ins_cost(MEMORY_REF_COST);
  6381   size(4);
  6382   format %{ "STH    $src,$mem\t! short" %}
  6383   opcode(Assembler::sth_op3);
  6384   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6385   ins_pipe(istore_mem_zero);
  6386 %}
  6388 // Store Integer
  6389 instruct storeI(memory mem, iRegI src) %{
  6390   match(Set mem (StoreI mem src));
  6391   ins_cost(MEMORY_REF_COST);
  6393   size(4);
  6394   format %{ "STW    $src,$mem" %}
  6395   opcode(Assembler::stw_op3);
  6396   ins_encode(simple_form3_mem_reg( mem, src ) );
  6397   ins_pipe(istore_mem_reg);
  6398 %}
  6400 // Store Long
  6401 instruct storeL(memory mem, iRegL src) %{
  6402   match(Set mem (StoreL mem src));
  6403   ins_cost(MEMORY_REF_COST);
  6404   size(4);
  6405   format %{ "STX    $src,$mem\t! long" %}
  6406   opcode(Assembler::stx_op3);
  6407   ins_encode(simple_form3_mem_reg( mem, src ) );
  6408   ins_pipe(istore_mem_reg);
  6409 %}
  6411 instruct storeI0(memory mem, immI0 src) %{
  6412   match(Set mem (StoreI mem src));
  6413   ins_cost(MEMORY_REF_COST);
  6415   size(4);
  6416   format %{ "STW    $src,$mem" %}
  6417   opcode(Assembler::stw_op3);
  6418   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6419   ins_pipe(istore_mem_zero);
  6420 %}
  6422 instruct storeL0(memory mem, immL0 src) %{
  6423   match(Set mem (StoreL mem src));
  6424   ins_cost(MEMORY_REF_COST);
  6426   size(4);
  6427   format %{ "STX    $src,$mem" %}
  6428   opcode(Assembler::stx_op3);
  6429   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6430   ins_pipe(istore_mem_zero);
  6431 %}
  6433 // Store Integer from float register (used after fstoi)
  6434 instruct storeI_Freg(memory mem, regF src) %{
  6435   match(Set mem (StoreI mem src));
  6436   ins_cost(MEMORY_REF_COST);
  6438   size(4);
  6439   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6440   opcode(Assembler::stf_op3);
  6441   ins_encode(simple_form3_mem_reg( mem, src ) );
  6442   ins_pipe(fstoreF_mem_reg);
  6443 %}
  6445 // Store Pointer
  6446 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6447   match(Set dst (StoreP dst src));
  6448   ins_cost(MEMORY_REF_COST);
  6449   size(4);
  6451 #ifndef _LP64
  6452   format %{ "STW    $src,$dst\t! ptr" %}
  6453   opcode(Assembler::stw_op3, 0, REGP_OP);
  6454 #else
  6455   format %{ "STX    $src,$dst\t! ptr" %}
  6456   opcode(Assembler::stx_op3, 0, REGP_OP);
  6457 #endif
  6458   ins_encode( form3_mem_reg( dst, src ) );
  6459   ins_pipe(istore_mem_spORreg);
  6460 %}
  6462 instruct storeP0(memory dst, immP0 src) %{
  6463   match(Set dst (StoreP dst src));
  6464   ins_cost(MEMORY_REF_COST);
  6465   size(4);
  6467 #ifndef _LP64
  6468   format %{ "STW    $src,$dst\t! ptr" %}
  6469   opcode(Assembler::stw_op3, 0, REGP_OP);
  6470 #else
  6471   format %{ "STX    $src,$dst\t! ptr" %}
  6472   opcode(Assembler::stx_op3, 0, REGP_OP);
  6473 #endif
  6474   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6475   ins_pipe(istore_mem_zero);
  6476 %}
  6478 // Store Compressed Pointer
  6479 instruct storeN(memory dst, iRegN src) %{
  6480    match(Set dst (StoreN dst src));
  6481    ins_cost(MEMORY_REF_COST);
  6482    size(4);
  6484    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6485    ins_encode %{
  6486      Register base = as_Register($dst$$base);
  6487      Register index = as_Register($dst$$index);
  6488      Register src = $src$$Register;
  6489      if (index != G0) {
  6490        __ stw(src, base, index);
  6491      } else {
  6492        __ stw(src, base, $dst$$disp);
  6494    %}
  6495    ins_pipe(istore_mem_spORreg);
  6496 %}
  6498 instruct storeNKlass(memory dst, iRegN src) %{
  6499    match(Set dst (StoreNKlass dst src));
  6500    ins_cost(MEMORY_REF_COST);
  6501    size(4);
  6503    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6504    ins_encode %{
  6505      Register base = as_Register($dst$$base);
  6506      Register index = as_Register($dst$$index);
  6507      Register src = $src$$Register;
  6508      if (index != G0) {
  6509        __ stw(src, base, index);
  6510      } else {
  6511        __ stw(src, base, $dst$$disp);
  6513    %}
  6514    ins_pipe(istore_mem_spORreg);
  6515 %}
  6517 instruct storeN0(memory dst, immN0 src) %{
  6518    match(Set dst (StoreN dst src));
  6519    ins_cost(MEMORY_REF_COST);
  6520    size(4);
  6522    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6523    ins_encode %{
  6524      Register base = as_Register($dst$$base);
  6525      Register index = as_Register($dst$$index);
  6526      if (index != G0) {
  6527        __ stw(0, base, index);
  6528      } else {
  6529        __ stw(0, base, $dst$$disp);
  6531    %}
  6532    ins_pipe(istore_mem_zero);
  6533 %}
  6535 // Store Double
  6536 instruct storeD( memory mem, regD src) %{
  6537   match(Set mem (StoreD mem src));
  6538   ins_cost(MEMORY_REF_COST);
  6540   size(4);
  6541   format %{ "STDF   $src,$mem" %}
  6542   opcode(Assembler::stdf_op3);
  6543   ins_encode(simple_form3_mem_reg( mem, src ) );
  6544   ins_pipe(fstoreD_mem_reg);
  6545 %}
  6547 instruct storeD0( memory mem, immD0 src) %{
  6548   match(Set mem (StoreD mem src));
  6549   ins_cost(MEMORY_REF_COST);
  6551   size(4);
  6552   format %{ "STX    $src,$mem" %}
  6553   opcode(Assembler::stx_op3);
  6554   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6555   ins_pipe(fstoreD_mem_zero);
  6556 %}
  6558 // Store Float
  6559 instruct storeF( memory mem, regF src) %{
  6560   match(Set mem (StoreF mem src));
  6561   ins_cost(MEMORY_REF_COST);
  6563   size(4);
  6564   format %{ "STF    $src,$mem" %}
  6565   opcode(Assembler::stf_op3);
  6566   ins_encode(simple_form3_mem_reg( mem, src ) );
  6567   ins_pipe(fstoreF_mem_reg);
  6568 %}
  6570 instruct storeF0( memory mem, immF0 src) %{
  6571   match(Set mem (StoreF mem src));
  6572   ins_cost(MEMORY_REF_COST);
  6574   size(4);
  6575   format %{ "STW    $src,$mem\t! storeF0" %}
  6576   opcode(Assembler::stw_op3);
  6577   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6578   ins_pipe(fstoreF_mem_zero);
  6579 %}
  6581 // Convert oop pointer into compressed form
  6582 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6583   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6584   match(Set dst (EncodeP src));
  6585   format %{ "encode_heap_oop $src, $dst" %}
  6586   ins_encode %{
  6587     __ encode_heap_oop($src$$Register, $dst$$Register);
  6588   %}
  6589   ins_pipe(ialu_reg);
  6590 %}
  6592 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6593   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6594   match(Set dst (EncodeP src));
  6595   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6596   ins_encode %{
  6597     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6598   %}
  6599   ins_pipe(ialu_reg);
  6600 %}
  6602 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6603   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6604             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6605   match(Set dst (DecodeN src));
  6606   format %{ "decode_heap_oop $src, $dst" %}
  6607   ins_encode %{
  6608     __ decode_heap_oop($src$$Register, $dst$$Register);
  6609   %}
  6610   ins_pipe(ialu_reg);
  6611 %}
  6613 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6614   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6615             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6616   match(Set dst (DecodeN src));
  6617   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6618   ins_encode %{
  6619     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6620   %}
  6621   ins_pipe(ialu_reg);
  6622 %}
  6624 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6625   match(Set dst (EncodePKlass src));
  6626   format %{ "encode_klass_not_null $src, $dst" %}
  6627   ins_encode %{
  6628     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6629   %}
  6630   ins_pipe(ialu_reg);
  6631 %}
  6633 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6634   match(Set dst (DecodeNKlass src));
  6635   format %{ "decode_klass_not_null $src, $dst" %}
  6636   ins_encode %{
  6637     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6638   %}
  6639   ins_pipe(ialu_reg);
  6640 %}
  6642 //----------MemBar Instructions-----------------------------------------------
  6643 // Memory barrier flavors
  6645 instruct membar_acquire() %{
  6646   match(MemBarAcquire);
  6647   ins_cost(4*MEMORY_REF_COST);
  6649   size(0);
  6650   format %{ "MEMBAR-acquire" %}
  6651   ins_encode( enc_membar_acquire );
  6652   ins_pipe(long_memory_op);
  6653 %}
  6655 instruct membar_acquire_lock() %{
  6656   match(MemBarAcquireLock);
  6657   ins_cost(0);
  6659   size(0);
  6660   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6661   ins_encode( );
  6662   ins_pipe(empty);
  6663 %}
  6665 instruct membar_release() %{
  6666   match(MemBarRelease);
  6667   ins_cost(4*MEMORY_REF_COST);
  6669   size(0);
  6670   format %{ "MEMBAR-release" %}
  6671   ins_encode( enc_membar_release );
  6672   ins_pipe(long_memory_op);
  6673 %}
  6675 instruct membar_release_lock() %{
  6676   match(MemBarReleaseLock);
  6677   ins_cost(0);
  6679   size(0);
  6680   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6681   ins_encode( );
  6682   ins_pipe(empty);
  6683 %}
  6685 instruct membar_volatile() %{
  6686   match(MemBarVolatile);
  6687   ins_cost(4*MEMORY_REF_COST);
  6689   size(4);
  6690   format %{ "MEMBAR-volatile" %}
  6691   ins_encode( enc_membar_volatile );
  6692   ins_pipe(long_memory_op);
  6693 %}
  6695 instruct unnecessary_membar_volatile() %{
  6696   match(MemBarVolatile);
  6697   predicate(Matcher::post_store_load_barrier(n));
  6698   ins_cost(0);
  6700   size(0);
  6701   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6702   ins_encode( );
  6703   ins_pipe(empty);
  6704 %}
  6706 instruct membar_storestore() %{
  6707   match(MemBarStoreStore);
  6708   ins_cost(0);
  6710   size(0);
  6711   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6712   ins_encode( );
  6713   ins_pipe(empty);
  6714 %}
  6716 //----------Register Move Instructions-----------------------------------------
  6717 instruct roundDouble_nop(regD dst) %{
  6718   match(Set dst (RoundDouble dst));
  6719   ins_cost(0);
  6720   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6721   ins_encode( );
  6722   ins_pipe(empty);
  6723 %}
  6726 instruct roundFloat_nop(regF dst) %{
  6727   match(Set dst (RoundFloat dst));
  6728   ins_cost(0);
  6729   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6730   ins_encode( );
  6731   ins_pipe(empty);
  6732 %}
  6735 // Cast Index to Pointer for unsafe natives
  6736 instruct castX2P(iRegX src, iRegP dst) %{
  6737   match(Set dst (CastX2P src));
  6739   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6740   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6741   ins_pipe(ialu_reg);
  6742 %}
  6744 // Cast Pointer to Index for unsafe natives
  6745 instruct castP2X(iRegP src, iRegX dst) %{
  6746   match(Set dst (CastP2X src));
  6748   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6749   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6750   ins_pipe(ialu_reg);
  6751 %}
  6753 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6754   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6755   match(Set stkSlot src);   // chain rule
  6756   ins_cost(MEMORY_REF_COST);
  6757   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6758   opcode(Assembler::stdf_op3);
  6759   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6760   ins_pipe(fstoreD_stk_reg);
  6761 %}
  6763 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6764   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6765   match(Set dst stkSlot);   // chain rule
  6766   ins_cost(MEMORY_REF_COST);
  6767   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6768   opcode(Assembler::lddf_op3);
  6769   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6770   ins_pipe(floadD_stk);
  6771 %}
  6773 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6774   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6775   match(Set stkSlot src);   // chain rule
  6776   ins_cost(MEMORY_REF_COST);
  6777   format %{ "STF   $src,$stkSlot\t!stk" %}
  6778   opcode(Assembler::stf_op3);
  6779   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6780   ins_pipe(fstoreF_stk_reg);
  6781 %}
  6783 //----------Conditional Move---------------------------------------------------
  6784 // Conditional move
  6785 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6786   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6787   ins_cost(150);
  6788   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6789   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6790   ins_pipe(ialu_reg);
  6791 %}
  6793 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6794   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6795   ins_cost(140);
  6796   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6797   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6798   ins_pipe(ialu_imm);
  6799 %}
  6801 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6802   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6803   ins_cost(150);
  6804   size(4);
  6805   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6806   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6807   ins_pipe(ialu_reg);
  6808 %}
  6810 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6811   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6812   ins_cost(140);
  6813   size(4);
  6814   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6815   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6816   ins_pipe(ialu_imm);
  6817 %}
  6819 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6820   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6821   ins_cost(150);
  6822   size(4);
  6823   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6824   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6825   ins_pipe(ialu_reg);
  6826 %}
  6828 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6829   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6830   ins_cost(140);
  6831   size(4);
  6832   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6833   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6834   ins_pipe(ialu_imm);
  6835 %}
  6837 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6838   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6839   ins_cost(150);
  6840   size(4);
  6841   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6842   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6843   ins_pipe(ialu_reg);
  6844 %}
  6846 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6847   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6848   ins_cost(140);
  6849   size(4);
  6850   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6851   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6852   ins_pipe(ialu_imm);
  6853 %}
  6855 // Conditional move for RegN. Only cmov(reg,reg).
  6856 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6857   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6858   ins_cost(150);
  6859   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6860   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6861   ins_pipe(ialu_reg);
  6862 %}
  6864 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6865 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6866   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6867   ins_cost(150);
  6868   size(4);
  6869   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6870   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6871   ins_pipe(ialu_reg);
  6872 %}
  6874 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6875 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6876   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6877   ins_cost(150);
  6878   size(4);
  6879   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6880   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6881   ins_pipe(ialu_reg);
  6882 %}
  6884 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6885   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6886   ins_cost(150);
  6887   size(4);
  6888   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6889   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6890   ins_pipe(ialu_reg);
  6891 %}
  6893 // Conditional move
  6894 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6895   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6896   ins_cost(150);
  6897   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6898   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6899   ins_pipe(ialu_reg);
  6900 %}
  6902 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6903   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6904   ins_cost(140);
  6905   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6906   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6907   ins_pipe(ialu_imm);
  6908 %}
  6910 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6911 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6912   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6913   ins_cost(150);
  6915   size(4);
  6916   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6917   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6918   ins_pipe(ialu_reg);
  6919 %}
  6921 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6922   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6923   ins_cost(150);
  6925   size(4);
  6926   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6927   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6928   ins_pipe(ialu_reg);
  6929 %}
  6931 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6932   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6933   ins_cost(140);
  6935   size(4);
  6936   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6937   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6938   ins_pipe(ialu_imm);
  6939 %}
  6941 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6942   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6943   ins_cost(140);
  6945   size(4);
  6946   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6947   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6948   ins_pipe(ialu_imm);
  6949 %}
  6951 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6952   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6953   ins_cost(150);
  6954   size(4);
  6955   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6956   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6957   ins_pipe(ialu_imm);
  6958 %}
  6960 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6961   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6962   ins_cost(140);
  6963   size(4);
  6964   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6965   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6966   ins_pipe(ialu_imm);
  6967 %}
  6969 // Conditional move
  6970 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6971   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6972   ins_cost(150);
  6973   opcode(0x101);
  6974   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6975   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6976   ins_pipe(int_conditional_float_move);
  6977 %}
  6979 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6980   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6981   ins_cost(150);
  6983   size(4);
  6984   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6985   opcode(0x101);
  6986   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6987   ins_pipe(int_conditional_float_move);
  6988 %}
  6990 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6991   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6992   ins_cost(150);
  6994   size(4);
  6995   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6996   opcode(0x101);
  6997   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6998   ins_pipe(int_conditional_float_move);
  6999 %}
  7001 // Conditional move,
  7002 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7003   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7004   ins_cost(150);
  7005   size(4);
  7006   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7007   opcode(0x1);
  7008   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7009   ins_pipe(int_conditional_double_move);
  7010 %}
  7012 // Conditional move
  7013 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7014   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7015   ins_cost(150);
  7016   size(4);
  7017   opcode(0x102);
  7018   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7019   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7020   ins_pipe(int_conditional_double_move);
  7021 %}
  7023 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7024   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7025   ins_cost(150);
  7027   size(4);
  7028   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7029   opcode(0x102);
  7030   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7031   ins_pipe(int_conditional_double_move);
  7032 %}
  7034 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7035   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7036   ins_cost(150);
  7038   size(4);
  7039   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7040   opcode(0x102);
  7041   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7042   ins_pipe(int_conditional_double_move);
  7043 %}
  7045 // Conditional move,
  7046 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7047   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7048   ins_cost(150);
  7049   size(4);
  7050   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7051   opcode(0x2);
  7052   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7053   ins_pipe(int_conditional_double_move);
  7054 %}
  7056 // Conditional move
  7057 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7058   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7059   ins_cost(150);
  7060   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7061   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7062   ins_pipe(ialu_reg);
  7063 %}
  7065 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7066   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7067   ins_cost(140);
  7068   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7069   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7070   ins_pipe(ialu_imm);
  7071 %}
  7073 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7074   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7075   ins_cost(150);
  7077   size(4);
  7078   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7079   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7080   ins_pipe(ialu_reg);
  7081 %}
  7084 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7085   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7086   ins_cost(150);
  7088   size(4);
  7089   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7090   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7091   ins_pipe(ialu_reg);
  7092 %}
  7095 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7096   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7097   ins_cost(150);
  7099   size(4);
  7100   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7101   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7102   ins_pipe(ialu_reg);
  7103 %}
  7107 //----------OS and Locking Instructions----------------------------------------
  7109 // This name is KNOWN by the ADLC and cannot be changed.
  7110 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7111 // for this guy.
  7112 instruct tlsLoadP(g2RegP dst) %{
  7113   match(Set dst (ThreadLocal));
  7115   size(0);
  7116   ins_cost(0);
  7117   format %{ "# TLS is in G2" %}
  7118   ins_encode( /*empty encoding*/ );
  7119   ins_pipe(ialu_none);
  7120 %}
  7122 instruct checkCastPP( iRegP dst ) %{
  7123   match(Set dst (CheckCastPP dst));
  7125   size(0);
  7126   format %{ "# checkcastPP of $dst" %}
  7127   ins_encode( /*empty encoding*/ );
  7128   ins_pipe(empty);
  7129 %}
  7132 instruct castPP( iRegP dst ) %{
  7133   match(Set dst (CastPP dst));
  7134   format %{ "# castPP of $dst" %}
  7135   ins_encode( /*empty encoding*/ );
  7136   ins_pipe(empty);
  7137 %}
  7139 instruct castII( iRegI dst ) %{
  7140   match(Set dst (CastII dst));
  7141   format %{ "# castII of $dst" %}
  7142   ins_encode( /*empty encoding*/ );
  7143   ins_cost(0);
  7144   ins_pipe(empty);
  7145 %}
  7147 //----------Arithmetic Instructions--------------------------------------------
  7148 // Addition Instructions
  7149 // Register Addition
  7150 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7151   match(Set dst (AddI src1 src2));
  7153   size(4);
  7154   format %{ "ADD    $src1,$src2,$dst" %}
  7155   ins_encode %{
  7156     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7157   %}
  7158   ins_pipe(ialu_reg_reg);
  7159 %}
  7161 // Immediate Addition
  7162 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7163   match(Set dst (AddI src1 src2));
  7165   size(4);
  7166   format %{ "ADD    $src1,$src2,$dst" %}
  7167   opcode(Assembler::add_op3, Assembler::arith_op);
  7168   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7169   ins_pipe(ialu_reg_imm);
  7170 %}
  7172 // Pointer Register Addition
  7173 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7174   match(Set dst (AddP src1 src2));
  7176   size(4);
  7177   format %{ "ADD    $src1,$src2,$dst" %}
  7178   opcode(Assembler::add_op3, Assembler::arith_op);
  7179   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7180   ins_pipe(ialu_reg_reg);
  7181 %}
  7183 // Pointer Immediate Addition
  7184 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7185   match(Set dst (AddP src1 src2));
  7187   size(4);
  7188   format %{ "ADD    $src1,$src2,$dst" %}
  7189   opcode(Assembler::add_op3, Assembler::arith_op);
  7190   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7191   ins_pipe(ialu_reg_imm);
  7192 %}
  7194 // Long Addition
  7195 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7196   match(Set dst (AddL src1 src2));
  7198   size(4);
  7199   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7200   opcode(Assembler::add_op3, Assembler::arith_op);
  7201   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7202   ins_pipe(ialu_reg_reg);
  7203 %}
  7205 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7206   match(Set dst (AddL src1 con));
  7208   size(4);
  7209   format %{ "ADD    $src1,$con,$dst" %}
  7210   opcode(Assembler::add_op3, Assembler::arith_op);
  7211   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7212   ins_pipe(ialu_reg_imm);
  7213 %}
  7215 //----------Conditional_store--------------------------------------------------
  7216 // Conditional-store of the updated heap-top.
  7217 // Used during allocation of the shared heap.
  7218 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7220 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7221 instruct loadPLocked(iRegP dst, memory mem) %{
  7222   match(Set dst (LoadPLocked mem));
  7223   ins_cost(MEMORY_REF_COST);
  7225 #ifndef _LP64
  7226   size(4);
  7227   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7228   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7229 #else
  7230   format %{ "LDX    $mem,$dst\t! ptr" %}
  7231   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7232 #endif
  7233   ins_encode( form3_mem_reg( mem, dst ) );
  7234   ins_pipe(iload_mem);
  7235 %}
  7237 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7238   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7239   effect( KILL newval );
  7240   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7241             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7242   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7243   ins_pipe( long_memory_op );
  7244 %}
  7246 // Conditional-store of an int value.
  7247 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7248   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7249   effect( KILL newval );
  7250   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7251             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7252   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7253   ins_pipe( long_memory_op );
  7254 %}
  7256 // Conditional-store of a long value.
  7257 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7258   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7259   effect( KILL newval );
  7260   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7261             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7262   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7263   ins_pipe( long_memory_op );
  7264 %}
  7266 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7268 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7269   predicate(VM_Version::supports_cx8());
  7270   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7271   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7272   format %{
  7273             "MOV    $newval,O7\n\t"
  7274             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7275             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7276             "MOV    1,$res\n\t"
  7277             "MOVne  xcc,R_G0,$res"
  7278   %}
  7279   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7280               enc_lflags_ne_to_boolean(res) );
  7281   ins_pipe( long_memory_op );
  7282 %}
  7285 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7286   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7287   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7288   format %{
  7289             "MOV    $newval,O7\n\t"
  7290             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7291             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7292             "MOV    1,$res\n\t"
  7293             "MOVne  icc,R_G0,$res"
  7294   %}
  7295   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7296               enc_iflags_ne_to_boolean(res) );
  7297   ins_pipe( long_memory_op );
  7298 %}
  7300 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7301 #ifdef _LP64
  7302   predicate(VM_Version::supports_cx8());
  7303 #endif
  7304   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7305   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7306   format %{
  7307             "MOV    $newval,O7\n\t"
  7308             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7309             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7310             "MOV    1,$res\n\t"
  7311             "MOVne  xcc,R_G0,$res"
  7312   %}
  7313 #ifdef _LP64
  7314   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7315               enc_lflags_ne_to_boolean(res) );
  7316 #else
  7317   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7318               enc_iflags_ne_to_boolean(res) );
  7319 #endif
  7320   ins_pipe( long_memory_op );
  7321 %}
  7323 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7324   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7325   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7326   format %{
  7327             "MOV    $newval,O7\n\t"
  7328             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7329             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7330             "MOV    1,$res\n\t"
  7331             "MOVne  icc,R_G0,$res"
  7332   %}
  7333   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7334               enc_iflags_ne_to_boolean(res) );
  7335   ins_pipe( long_memory_op );
  7336 %}
  7338 instruct xchgI( memory mem, iRegI newval) %{
  7339   match(Set newval (GetAndSetI mem newval));
  7340   format %{ "SWAP  [$mem],$newval" %}
  7341   size(4);
  7342   ins_encode %{
  7343     __ swap($mem$$Address, $newval$$Register);
  7344   %}
  7345   ins_pipe( long_memory_op );
  7346 %}
  7348 #ifndef _LP64
  7349 instruct xchgP( memory mem, iRegP newval) %{
  7350   match(Set newval (GetAndSetP mem newval));
  7351   format %{ "SWAP  [$mem],$newval" %}
  7352   size(4);
  7353   ins_encode %{
  7354     __ swap($mem$$Address, $newval$$Register);
  7355   %}
  7356   ins_pipe( long_memory_op );
  7357 %}
  7358 #endif
  7360 instruct xchgN( memory mem, iRegN newval) %{
  7361   match(Set newval (GetAndSetN mem newval));
  7362   format %{ "SWAP  [$mem],$newval" %}
  7363   size(4);
  7364   ins_encode %{
  7365     __ swap($mem$$Address, $newval$$Register);
  7366   %}
  7367   ins_pipe( long_memory_op );
  7368 %}
  7370 //---------------------
  7371 // Subtraction Instructions
  7372 // Register Subtraction
  7373 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7374   match(Set dst (SubI src1 src2));
  7376   size(4);
  7377   format %{ "SUB    $src1,$src2,$dst" %}
  7378   opcode(Assembler::sub_op3, Assembler::arith_op);
  7379   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7380   ins_pipe(ialu_reg_reg);
  7381 %}
  7383 // Immediate Subtraction
  7384 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7385   match(Set dst (SubI src1 src2));
  7387   size(4);
  7388   format %{ "SUB    $src1,$src2,$dst" %}
  7389   opcode(Assembler::sub_op3, Assembler::arith_op);
  7390   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7391   ins_pipe(ialu_reg_imm);
  7392 %}
  7394 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7395   match(Set dst (SubI zero src2));
  7397   size(4);
  7398   format %{ "NEG    $src2,$dst" %}
  7399   opcode(Assembler::sub_op3, Assembler::arith_op);
  7400   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7401   ins_pipe(ialu_zero_reg);
  7402 %}
  7404 // Long subtraction
  7405 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7406   match(Set dst (SubL src1 src2));
  7408   size(4);
  7409   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7410   opcode(Assembler::sub_op3, Assembler::arith_op);
  7411   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7412   ins_pipe(ialu_reg_reg);
  7413 %}
  7415 // Immediate Subtraction
  7416 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7417   match(Set dst (SubL src1 con));
  7419   size(4);
  7420   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7421   opcode(Assembler::sub_op3, Assembler::arith_op);
  7422   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7423   ins_pipe(ialu_reg_imm);
  7424 %}
  7426 // Long negation
  7427 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7428   match(Set dst (SubL zero src2));
  7430   size(4);
  7431   format %{ "NEG    $src2,$dst\t! long" %}
  7432   opcode(Assembler::sub_op3, Assembler::arith_op);
  7433   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7434   ins_pipe(ialu_zero_reg);
  7435 %}
  7437 // Multiplication Instructions
  7438 // Integer Multiplication
  7439 // Register Multiplication
  7440 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7441   match(Set dst (MulI src1 src2));
  7443   size(4);
  7444   format %{ "MULX   $src1,$src2,$dst" %}
  7445   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7446   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7447   ins_pipe(imul_reg_reg);
  7448 %}
  7450 // Immediate Multiplication
  7451 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7452   match(Set dst (MulI src1 src2));
  7454   size(4);
  7455   format %{ "MULX   $src1,$src2,$dst" %}
  7456   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7457   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7458   ins_pipe(imul_reg_imm);
  7459 %}
  7461 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7462   match(Set dst (MulL src1 src2));
  7463   ins_cost(DEFAULT_COST * 5);
  7464   size(4);
  7465   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7466   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7467   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7468   ins_pipe(mulL_reg_reg);
  7469 %}
  7471 // Immediate Multiplication
  7472 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7473   match(Set dst (MulL src1 src2));
  7474   ins_cost(DEFAULT_COST * 5);
  7475   size(4);
  7476   format %{ "MULX   $src1,$src2,$dst" %}
  7477   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7478   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7479   ins_pipe(mulL_reg_imm);
  7480 %}
  7482 // Integer Division
  7483 // Register Division
  7484 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7485   match(Set dst (DivI src1 src2));
  7486   ins_cost((2+71)*DEFAULT_COST);
  7488   format %{ "SRA     $src2,0,$src2\n\t"
  7489             "SRA     $src1,0,$src1\n\t"
  7490             "SDIVX   $src1,$src2,$dst" %}
  7491   ins_encode( idiv_reg( src1, src2, dst ) );
  7492   ins_pipe(sdiv_reg_reg);
  7493 %}
  7495 // Immediate Division
  7496 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7497   match(Set dst (DivI src1 src2));
  7498   ins_cost((2+71)*DEFAULT_COST);
  7500   format %{ "SRA     $src1,0,$src1\n\t"
  7501             "SDIVX   $src1,$src2,$dst" %}
  7502   ins_encode( idiv_imm( src1, src2, dst ) );
  7503   ins_pipe(sdiv_reg_imm);
  7504 %}
  7506 //----------Div-By-10-Expansion------------------------------------------------
  7507 // Extract hi bits of a 32x32->64 bit multiply.
  7508 // Expand rule only, not matched
  7509 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7510   effect( DEF dst, USE src1, USE src2 );
  7511   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7512             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7513   ins_encode( enc_mul_hi(dst,src1,src2));
  7514   ins_pipe(sdiv_reg_reg);
  7515 %}
  7517 // Magic constant, reciprocal of 10
  7518 instruct loadConI_x66666667(iRegIsafe dst) %{
  7519   effect( DEF dst );
  7521   size(8);
  7522   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7523   ins_encode( Set32(0x66666667, dst) );
  7524   ins_pipe(ialu_hi_lo_reg);
  7525 %}
  7527 // Register Shift Right Arithmetic Long by 32-63
  7528 instruct sra_31( iRegI dst, iRegI src ) %{
  7529   effect( DEF dst, USE src );
  7530   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7531   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7532   ins_pipe(ialu_reg_reg);
  7533 %}
  7535 // Arithmetic Shift Right by 8-bit immediate
  7536 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7537   effect( DEF dst, USE src );
  7538   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7539   opcode(Assembler::sra_op3, Assembler::arith_op);
  7540   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7541   ins_pipe(ialu_reg_imm);
  7542 %}
  7544 // Integer DIV with 10
  7545 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7546   match(Set dst (DivI src div));
  7547   ins_cost((6+6)*DEFAULT_COST);
  7548   expand %{
  7549     iRegIsafe tmp1;               // Killed temps;
  7550     iRegIsafe tmp2;               // Killed temps;
  7551     iRegI tmp3;                   // Killed temps;
  7552     iRegI tmp4;                   // Killed temps;
  7553     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7554     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7555     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7556     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7557     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7558   %}
  7559 %}
  7561 // Register Long Division
  7562 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7563   match(Set dst (DivL src1 src2));
  7564   ins_cost(DEFAULT_COST*71);
  7565   size(4);
  7566   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7567   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7568   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7569   ins_pipe(divL_reg_reg);
  7570 %}
  7572 // Register Long Division
  7573 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7574   match(Set dst (DivL src1 src2));
  7575   ins_cost(DEFAULT_COST*71);
  7576   size(4);
  7577   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7578   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7579   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7580   ins_pipe(divL_reg_imm);
  7581 %}
  7583 // Integer Remainder
  7584 // Register Remainder
  7585 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7586   match(Set dst (ModI src1 src2));
  7587   effect( KILL ccr, KILL temp);
  7589   format %{ "SREM   $src1,$src2,$dst" %}
  7590   ins_encode( irem_reg(src1, src2, dst, temp) );
  7591   ins_pipe(sdiv_reg_reg);
  7592 %}
  7594 // Immediate Remainder
  7595 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7596   match(Set dst (ModI src1 src2));
  7597   effect( KILL ccr, KILL temp);
  7599   format %{ "SREM   $src1,$src2,$dst" %}
  7600   ins_encode( irem_imm(src1, src2, dst, temp) );
  7601   ins_pipe(sdiv_reg_imm);
  7602 %}
  7604 // Register Long Remainder
  7605 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7606   effect(DEF dst, USE src1, USE src2);
  7607   size(4);
  7608   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7609   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7610   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7611   ins_pipe(divL_reg_reg);
  7612 %}
  7614 // Register Long Division
  7615 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7616   effect(DEF dst, USE src1, USE src2);
  7617   size(4);
  7618   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7619   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7620   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7621   ins_pipe(divL_reg_imm);
  7622 %}
  7624 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7625   effect(DEF dst, USE src1, USE src2);
  7626   size(4);
  7627   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7628   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7629   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7630   ins_pipe(mulL_reg_reg);
  7631 %}
  7633 // Immediate Multiplication
  7634 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7635   effect(DEF dst, USE src1, USE src2);
  7636   size(4);
  7637   format %{ "MULX   $src1,$src2,$dst" %}
  7638   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7639   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7640   ins_pipe(mulL_reg_imm);
  7641 %}
  7643 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7644   effect(DEF dst, USE src1, USE src2);
  7645   size(4);
  7646   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7647   opcode(Assembler::sub_op3, Assembler::arith_op);
  7648   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7649   ins_pipe(ialu_reg_reg);
  7650 %}
  7652 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7653   effect(DEF dst, USE src1, USE src2);
  7654   size(4);
  7655   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7656   opcode(Assembler::sub_op3, Assembler::arith_op);
  7657   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7658   ins_pipe(ialu_reg_reg);
  7659 %}
  7661 // Register Long Remainder
  7662 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7663   match(Set dst (ModL src1 src2));
  7664   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7665   expand %{
  7666     iRegL tmp1;
  7667     iRegL tmp2;
  7668     divL_reg_reg_1(tmp1, src1, src2);
  7669     mulL_reg_reg_1(tmp2, tmp1, src2);
  7670     subL_reg_reg_1(dst,  src1, tmp2);
  7671   %}
  7672 %}
  7674 // Register Long Remainder
  7675 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7676   match(Set dst (ModL src1 src2));
  7677   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7678   expand %{
  7679     iRegL tmp1;
  7680     iRegL tmp2;
  7681     divL_reg_imm13_1(tmp1, src1, src2);
  7682     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7683     subL_reg_reg_2  (dst,  src1, tmp2);
  7684   %}
  7685 %}
  7687 // Integer Shift Instructions
  7688 // Register Shift Left
  7689 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7690   match(Set dst (LShiftI src1 src2));
  7692   size(4);
  7693   format %{ "SLL    $src1,$src2,$dst" %}
  7694   opcode(Assembler::sll_op3, Assembler::arith_op);
  7695   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7696   ins_pipe(ialu_reg_reg);
  7697 %}
  7699 // Register Shift Left Immediate
  7700 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7701   match(Set dst (LShiftI src1 src2));
  7703   size(4);
  7704   format %{ "SLL    $src1,$src2,$dst" %}
  7705   opcode(Assembler::sll_op3, Assembler::arith_op);
  7706   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7707   ins_pipe(ialu_reg_imm);
  7708 %}
  7710 // Register Shift Left
  7711 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7712   match(Set dst (LShiftL src1 src2));
  7714   size(4);
  7715   format %{ "SLLX   $src1,$src2,$dst" %}
  7716   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7717   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7718   ins_pipe(ialu_reg_reg);
  7719 %}
  7721 // Register Shift Left Immediate
  7722 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7723   match(Set dst (LShiftL src1 src2));
  7725   size(4);
  7726   format %{ "SLLX   $src1,$src2,$dst" %}
  7727   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7728   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7729   ins_pipe(ialu_reg_imm);
  7730 %}
  7732 // Register Arithmetic Shift Right
  7733 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7734   match(Set dst (RShiftI src1 src2));
  7735   size(4);
  7736   format %{ "SRA    $src1,$src2,$dst" %}
  7737   opcode(Assembler::sra_op3, Assembler::arith_op);
  7738   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7739   ins_pipe(ialu_reg_reg);
  7740 %}
  7742 // Register Arithmetic Shift Right Immediate
  7743 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7744   match(Set dst (RShiftI src1 src2));
  7746   size(4);
  7747   format %{ "SRA    $src1,$src2,$dst" %}
  7748   opcode(Assembler::sra_op3, Assembler::arith_op);
  7749   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7750   ins_pipe(ialu_reg_imm);
  7751 %}
  7753 // Register Shift Right Arithmatic Long
  7754 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7755   match(Set dst (RShiftL src1 src2));
  7757   size(4);
  7758   format %{ "SRAX   $src1,$src2,$dst" %}
  7759   opcode(Assembler::srax_op3, Assembler::arith_op);
  7760   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7761   ins_pipe(ialu_reg_reg);
  7762 %}
  7764 // Register Shift Left Immediate
  7765 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7766   match(Set dst (RShiftL src1 src2));
  7768   size(4);
  7769   format %{ "SRAX   $src1,$src2,$dst" %}
  7770   opcode(Assembler::srax_op3, Assembler::arith_op);
  7771   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7772   ins_pipe(ialu_reg_imm);
  7773 %}
  7775 // Register Shift Right
  7776 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7777   match(Set dst (URShiftI src1 src2));
  7779   size(4);
  7780   format %{ "SRL    $src1,$src2,$dst" %}
  7781   opcode(Assembler::srl_op3, Assembler::arith_op);
  7782   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7783   ins_pipe(ialu_reg_reg);
  7784 %}
  7786 // Register Shift Right Immediate
  7787 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7788   match(Set dst (URShiftI src1 src2));
  7790   size(4);
  7791   format %{ "SRL    $src1,$src2,$dst" %}
  7792   opcode(Assembler::srl_op3, Assembler::arith_op);
  7793   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7794   ins_pipe(ialu_reg_imm);
  7795 %}
  7797 // Register Shift Right
  7798 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7799   match(Set dst (URShiftL src1 src2));
  7801   size(4);
  7802   format %{ "SRLX   $src1,$src2,$dst" %}
  7803   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7804   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7805   ins_pipe(ialu_reg_reg);
  7806 %}
  7808 // Register Shift Right Immediate
  7809 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7810   match(Set dst (URShiftL src1 src2));
  7812   size(4);
  7813   format %{ "SRLX   $src1,$src2,$dst" %}
  7814   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7815   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7816   ins_pipe(ialu_reg_imm);
  7817 %}
  7819 // Register Shift Right Immediate with a CastP2X
  7820 #ifdef _LP64
  7821 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7822   match(Set dst (URShiftL (CastP2X src1) src2));
  7823   size(4);
  7824   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7825   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7826   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7827   ins_pipe(ialu_reg_imm);
  7828 %}
  7829 #else
  7830 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7831   match(Set dst (URShiftI (CastP2X src1) src2));
  7832   size(4);
  7833   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7834   opcode(Assembler::srl_op3, Assembler::arith_op);
  7835   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7836   ins_pipe(ialu_reg_imm);
  7837 %}
  7838 #endif
  7841 //----------Floating Point Arithmetic Instructions-----------------------------
  7843 //  Add float single precision
  7844 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7845   match(Set dst (AddF src1 src2));
  7847   size(4);
  7848   format %{ "FADDS  $src1,$src2,$dst" %}
  7849   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7850   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7851   ins_pipe(faddF_reg_reg);
  7852 %}
  7854 //  Add float double precision
  7855 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7856   match(Set dst (AddD src1 src2));
  7858   size(4);
  7859   format %{ "FADDD  $src1,$src2,$dst" %}
  7860   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7861   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7862   ins_pipe(faddD_reg_reg);
  7863 %}
  7865 //  Sub float single precision
  7866 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7867   match(Set dst (SubF src1 src2));
  7869   size(4);
  7870   format %{ "FSUBS  $src1,$src2,$dst" %}
  7871   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7872   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7873   ins_pipe(faddF_reg_reg);
  7874 %}
  7876 //  Sub float double precision
  7877 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7878   match(Set dst (SubD src1 src2));
  7880   size(4);
  7881   format %{ "FSUBD  $src1,$src2,$dst" %}
  7882   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7883   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7884   ins_pipe(faddD_reg_reg);
  7885 %}
  7887 //  Mul float single precision
  7888 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7889   match(Set dst (MulF src1 src2));
  7891   size(4);
  7892   format %{ "FMULS  $src1,$src2,$dst" %}
  7893   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7894   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7895   ins_pipe(fmulF_reg_reg);
  7896 %}
  7898 //  Mul float double precision
  7899 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7900   match(Set dst (MulD src1 src2));
  7902   size(4);
  7903   format %{ "FMULD  $src1,$src2,$dst" %}
  7904   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7905   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7906   ins_pipe(fmulD_reg_reg);
  7907 %}
  7909 //  Div float single precision
  7910 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7911   match(Set dst (DivF src1 src2));
  7913   size(4);
  7914   format %{ "FDIVS  $src1,$src2,$dst" %}
  7915   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7916   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7917   ins_pipe(fdivF_reg_reg);
  7918 %}
  7920 //  Div float double precision
  7921 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7922   match(Set dst (DivD src1 src2));
  7924   size(4);
  7925   format %{ "FDIVD  $src1,$src2,$dst" %}
  7926   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7927   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7928   ins_pipe(fdivD_reg_reg);
  7929 %}
  7931 //  Absolute float double precision
  7932 instruct absD_reg(regD dst, regD src) %{
  7933   match(Set dst (AbsD src));
  7935   format %{ "FABSd  $src,$dst" %}
  7936   ins_encode(fabsd(dst, src));
  7937   ins_pipe(faddD_reg);
  7938 %}
  7940 //  Absolute float single precision
  7941 instruct absF_reg(regF dst, regF src) %{
  7942   match(Set dst (AbsF src));
  7944   format %{ "FABSs  $src,$dst" %}
  7945   ins_encode(fabss(dst, src));
  7946   ins_pipe(faddF_reg);
  7947 %}
  7949 instruct negF_reg(regF dst, regF src) %{
  7950   match(Set dst (NegF src));
  7952   size(4);
  7953   format %{ "FNEGs  $src,$dst" %}
  7954   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7955   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7956   ins_pipe(faddF_reg);
  7957 %}
  7959 instruct negD_reg(regD dst, regD src) %{
  7960   match(Set dst (NegD src));
  7962   format %{ "FNEGd  $src,$dst" %}
  7963   ins_encode(fnegd(dst, src));
  7964   ins_pipe(faddD_reg);
  7965 %}
  7967 //  Sqrt float double precision
  7968 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7969   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7971   size(4);
  7972   format %{ "FSQRTS $src,$dst" %}
  7973   ins_encode(fsqrts(dst, src));
  7974   ins_pipe(fdivF_reg_reg);
  7975 %}
  7977 //  Sqrt float double precision
  7978 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7979   match(Set dst (SqrtD src));
  7981   size(4);
  7982   format %{ "FSQRTD $src,$dst" %}
  7983   ins_encode(fsqrtd(dst, src));
  7984   ins_pipe(fdivD_reg_reg);
  7985 %}
  7987 //----------Logical Instructions-----------------------------------------------
  7988 // And Instructions
  7989 // Register And
  7990 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7991   match(Set dst (AndI src1 src2));
  7993   size(4);
  7994   format %{ "AND    $src1,$src2,$dst" %}
  7995   opcode(Assembler::and_op3, Assembler::arith_op);
  7996   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7997   ins_pipe(ialu_reg_reg);
  7998 %}
  8000 // Immediate And
  8001 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8002   match(Set dst (AndI src1 src2));
  8004   size(4);
  8005   format %{ "AND    $src1,$src2,$dst" %}
  8006   opcode(Assembler::and_op3, Assembler::arith_op);
  8007   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8008   ins_pipe(ialu_reg_imm);
  8009 %}
  8011 // Register And Long
  8012 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8013   match(Set dst (AndL src1 src2));
  8015   ins_cost(DEFAULT_COST);
  8016   size(4);
  8017   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8018   opcode(Assembler::and_op3, Assembler::arith_op);
  8019   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8020   ins_pipe(ialu_reg_reg);
  8021 %}
  8023 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8024   match(Set dst (AndL src1 con));
  8026   ins_cost(DEFAULT_COST);
  8027   size(4);
  8028   format %{ "AND    $src1,$con,$dst\t! long" %}
  8029   opcode(Assembler::and_op3, Assembler::arith_op);
  8030   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8031   ins_pipe(ialu_reg_imm);
  8032 %}
  8034 // Or Instructions
  8035 // Register Or
  8036 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8037   match(Set dst (OrI src1 src2));
  8039   size(4);
  8040   format %{ "OR     $src1,$src2,$dst" %}
  8041   opcode(Assembler::or_op3, Assembler::arith_op);
  8042   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8043   ins_pipe(ialu_reg_reg);
  8044 %}
  8046 // Immediate Or
  8047 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8048   match(Set dst (OrI src1 src2));
  8050   size(4);
  8051   format %{ "OR     $src1,$src2,$dst" %}
  8052   opcode(Assembler::or_op3, Assembler::arith_op);
  8053   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8054   ins_pipe(ialu_reg_imm);
  8055 %}
  8057 // Register Or Long
  8058 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8059   match(Set dst (OrL src1 src2));
  8061   ins_cost(DEFAULT_COST);
  8062   size(4);
  8063   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8064   opcode(Assembler::or_op3, Assembler::arith_op);
  8065   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8066   ins_pipe(ialu_reg_reg);
  8067 %}
  8069 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8070   match(Set dst (OrL src1 con));
  8071   ins_cost(DEFAULT_COST*2);
  8073   ins_cost(DEFAULT_COST);
  8074   size(4);
  8075   format %{ "OR     $src1,$con,$dst\t! long" %}
  8076   opcode(Assembler::or_op3, Assembler::arith_op);
  8077   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8078   ins_pipe(ialu_reg_imm);
  8079 %}
  8081 #ifndef _LP64
  8083 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8084 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8085   match(Set dst (OrI src1 (CastP2X src2)));
  8087   size(4);
  8088   format %{ "OR     $src1,$src2,$dst" %}
  8089   opcode(Assembler::or_op3, Assembler::arith_op);
  8090   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8091   ins_pipe(ialu_reg_reg);
  8092 %}
  8094 #else
  8096 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8097   match(Set dst (OrL src1 (CastP2X src2)));
  8099   ins_cost(DEFAULT_COST);
  8100   size(4);
  8101   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8102   opcode(Assembler::or_op3, Assembler::arith_op);
  8103   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8104   ins_pipe(ialu_reg_reg);
  8105 %}
  8107 #endif
  8109 // Xor Instructions
  8110 // Register Xor
  8111 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8112   match(Set dst (XorI src1 src2));
  8114   size(4);
  8115   format %{ "XOR    $src1,$src2,$dst" %}
  8116   opcode(Assembler::xor_op3, Assembler::arith_op);
  8117   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8118   ins_pipe(ialu_reg_reg);
  8119 %}
  8121 // Immediate Xor
  8122 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8123   match(Set dst (XorI src1 src2));
  8125   size(4);
  8126   format %{ "XOR    $src1,$src2,$dst" %}
  8127   opcode(Assembler::xor_op3, Assembler::arith_op);
  8128   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8129   ins_pipe(ialu_reg_imm);
  8130 %}
  8132 // Register Xor Long
  8133 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8134   match(Set dst (XorL src1 src2));
  8136   ins_cost(DEFAULT_COST);
  8137   size(4);
  8138   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8139   opcode(Assembler::xor_op3, Assembler::arith_op);
  8140   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8141   ins_pipe(ialu_reg_reg);
  8142 %}
  8144 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8145   match(Set dst (XorL src1 con));
  8147   ins_cost(DEFAULT_COST);
  8148   size(4);
  8149   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8150   opcode(Assembler::xor_op3, Assembler::arith_op);
  8151   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8152   ins_pipe(ialu_reg_imm);
  8153 %}
  8155 //----------Convert to Boolean-------------------------------------------------
  8156 // Nice hack for 32-bit tests but doesn't work for
  8157 // 64-bit pointers.
  8158 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8159   match(Set dst (Conv2B src));
  8160   effect( KILL ccr );
  8161   ins_cost(DEFAULT_COST*2);
  8162   format %{ "CMP    R_G0,$src\n\t"
  8163             "ADDX   R_G0,0,$dst" %}
  8164   ins_encode( enc_to_bool( src, dst ) );
  8165   ins_pipe(ialu_reg_ialu);
  8166 %}
  8168 #ifndef _LP64
  8169 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8170   match(Set dst (Conv2B src));
  8171   effect( KILL ccr );
  8172   ins_cost(DEFAULT_COST*2);
  8173   format %{ "CMP    R_G0,$src\n\t"
  8174             "ADDX   R_G0,0,$dst" %}
  8175   ins_encode( enc_to_bool( src, dst ) );
  8176   ins_pipe(ialu_reg_ialu);
  8177 %}
  8178 #else
  8179 instruct convP2B( iRegI dst, iRegP src ) %{
  8180   match(Set dst (Conv2B src));
  8181   ins_cost(DEFAULT_COST*2);
  8182   format %{ "MOV    $src,$dst\n\t"
  8183             "MOVRNZ $src,1,$dst" %}
  8184   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8185   ins_pipe(ialu_clr_and_mover);
  8186 %}
  8187 #endif
  8189 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8190   match(Set dst (CmpLTMask src zero));
  8191   effect(KILL ccr);
  8192   size(4);
  8193   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8194   ins_encode %{
  8195     __ sra($src$$Register, 31, $dst$$Register);
  8196   %}
  8197   ins_pipe(ialu_reg_imm);
  8198 %}
  8200 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8201   match(Set dst (CmpLTMask p q));
  8202   effect( KILL ccr );
  8203   ins_cost(DEFAULT_COST*4);
  8204   format %{ "CMP    $p,$q\n\t"
  8205             "MOV    #0,$dst\n\t"
  8206             "BLT,a  .+8\n\t"
  8207             "MOV    #-1,$dst" %}
  8208   ins_encode( enc_ltmask(p,q,dst) );
  8209   ins_pipe(ialu_reg_reg_ialu);
  8210 %}
  8212 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8213   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8214   effect(KILL ccr, TEMP tmp);
  8215   ins_cost(DEFAULT_COST*3);
  8217   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8218             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8219             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8220   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8221   ins_pipe(cadd_cmpltmask);
  8222 %}
  8224 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8225   match(Set p (AndI (CmpLTMask p q) y));
  8226   effect(KILL ccr);
  8227   ins_cost(DEFAULT_COST*3);
  8229   format %{ "CMP  $p,$q\n\t"
  8230             "MOV  $y,$p\n\t"
  8231             "MOVge G0,$p" %}
  8232   ins_encode %{
  8233     __ cmp($p$$Register, $q$$Register);
  8234     __ mov($y$$Register, $p$$Register);
  8235     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8236   %}
  8237   ins_pipe(ialu_reg_reg_ialu);
  8238 %}
  8240 //-----------------------------------------------------------------
  8241 // Direct raw moves between float and general registers using VIS3.
  8243 //  ins_pipe(faddF_reg);
  8244 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8245   predicate(UseVIS >= 3);
  8246   match(Set dst (MoveF2I src));
  8248   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8249   ins_encode %{
  8250     __ movstouw($src$$FloatRegister, $dst$$Register);
  8251   %}
  8252   ins_pipe(ialu_reg_reg);
  8253 %}
  8255 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8256   predicate(UseVIS >= 3);
  8257   match(Set dst (MoveI2F src));
  8259   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8260   ins_encode %{
  8261     __ movwtos($src$$Register, $dst$$FloatRegister);
  8262   %}
  8263   ins_pipe(ialu_reg_reg);
  8264 %}
  8266 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8267   predicate(UseVIS >= 3);
  8268   match(Set dst (MoveD2L src));
  8270   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8271   ins_encode %{
  8272     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8273   %}
  8274   ins_pipe(ialu_reg_reg);
  8275 %}
  8277 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8278   predicate(UseVIS >= 3);
  8279   match(Set dst (MoveL2D src));
  8281   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8282   ins_encode %{
  8283     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8284   %}
  8285   ins_pipe(ialu_reg_reg);
  8286 %}
  8289 // Raw moves between float and general registers using stack.
  8291 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8292   match(Set dst (MoveF2I src));
  8293   effect(DEF dst, USE src);
  8294   ins_cost(MEMORY_REF_COST);
  8296   size(4);
  8297   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8298   opcode(Assembler::lduw_op3);
  8299   ins_encode(simple_form3_mem_reg( src, dst ) );
  8300   ins_pipe(iload_mem);
  8301 %}
  8303 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8304   match(Set dst (MoveI2F src));
  8305   effect(DEF dst, USE src);
  8306   ins_cost(MEMORY_REF_COST);
  8308   size(4);
  8309   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8310   opcode(Assembler::ldf_op3);
  8311   ins_encode(simple_form3_mem_reg(src, dst));
  8312   ins_pipe(floadF_stk);
  8313 %}
  8315 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8316   match(Set dst (MoveD2L src));
  8317   effect(DEF dst, USE src);
  8318   ins_cost(MEMORY_REF_COST);
  8320   size(4);
  8321   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8322   opcode(Assembler::ldx_op3);
  8323   ins_encode(simple_form3_mem_reg( src, dst ) );
  8324   ins_pipe(iload_mem);
  8325 %}
  8327 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8328   match(Set dst (MoveL2D src));
  8329   effect(DEF dst, USE src);
  8330   ins_cost(MEMORY_REF_COST);
  8332   size(4);
  8333   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8334   opcode(Assembler::lddf_op3);
  8335   ins_encode(simple_form3_mem_reg(src, dst));
  8336   ins_pipe(floadD_stk);
  8337 %}
  8339 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8340   match(Set dst (MoveF2I src));
  8341   effect(DEF dst, USE src);
  8342   ins_cost(MEMORY_REF_COST);
  8344   size(4);
  8345   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8346   opcode(Assembler::stf_op3);
  8347   ins_encode(simple_form3_mem_reg(dst, src));
  8348   ins_pipe(fstoreF_stk_reg);
  8349 %}
  8351 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8352   match(Set dst (MoveI2F src));
  8353   effect(DEF dst, USE src);
  8354   ins_cost(MEMORY_REF_COST);
  8356   size(4);
  8357   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8358   opcode(Assembler::stw_op3);
  8359   ins_encode(simple_form3_mem_reg( dst, src ) );
  8360   ins_pipe(istore_mem_reg);
  8361 %}
  8363 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8364   match(Set dst (MoveD2L src));
  8365   effect(DEF dst, USE src);
  8366   ins_cost(MEMORY_REF_COST);
  8368   size(4);
  8369   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8370   opcode(Assembler::stdf_op3);
  8371   ins_encode(simple_form3_mem_reg(dst, src));
  8372   ins_pipe(fstoreD_stk_reg);
  8373 %}
  8375 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8376   match(Set dst (MoveL2D src));
  8377   effect(DEF dst, USE src);
  8378   ins_cost(MEMORY_REF_COST);
  8380   size(4);
  8381   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8382   opcode(Assembler::stx_op3);
  8383   ins_encode(simple_form3_mem_reg( dst, src ) );
  8384   ins_pipe(istore_mem_reg);
  8385 %}
  8388 //----------Arithmetic Conversion Instructions---------------------------------
  8389 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8391 instruct convD2F_reg(regF dst, regD src) %{
  8392   match(Set dst (ConvD2F src));
  8393   size(4);
  8394   format %{ "FDTOS  $src,$dst" %}
  8395   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8396   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8397   ins_pipe(fcvtD2F);
  8398 %}
  8401 // Convert a double to an int in a float register.
  8402 // If the double is a NAN, stuff a zero in instead.
  8403 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8404   effect(DEF dst, USE src, KILL fcc0);
  8405   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8406             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8407             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8408             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8409             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8410       "skip:" %}
  8411   ins_encode(form_d2i_helper(src,dst));
  8412   ins_pipe(fcvtD2I);
  8413 %}
  8415 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8416   match(Set dst (ConvD2I src));
  8417   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8418   expand %{
  8419     regF tmp;
  8420     convD2I_helper(tmp, src);
  8421     regF_to_stkI(dst, tmp);
  8422   %}
  8423 %}
  8425 instruct convD2I_reg(iRegI dst, regD src) %{
  8426   predicate(UseVIS >= 3);
  8427   match(Set dst (ConvD2I src));
  8428   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8429   expand %{
  8430     regF tmp;
  8431     convD2I_helper(tmp, src);
  8432     MoveF2I_reg_reg(dst, tmp);
  8433   %}
  8434 %}
  8437 // Convert a double to a long in a double register.
  8438 // If the double is a NAN, stuff a zero in instead.
  8439 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8440   effect(DEF dst, USE src, KILL fcc0);
  8441   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8442             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8443             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8444             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8445             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8446       "skip:" %}
  8447   ins_encode(form_d2l_helper(src,dst));
  8448   ins_pipe(fcvtD2L);
  8449 %}
  8451 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8452   match(Set dst (ConvD2L src));
  8453   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8454   expand %{
  8455     regD tmp;
  8456     convD2L_helper(tmp, src);
  8457     regD_to_stkL(dst, tmp);
  8458   %}
  8459 %}
  8461 instruct convD2L_reg(iRegL dst, regD src) %{
  8462   predicate(UseVIS >= 3);
  8463   match(Set dst (ConvD2L src));
  8464   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8465   expand %{
  8466     regD tmp;
  8467     convD2L_helper(tmp, src);
  8468     MoveD2L_reg_reg(dst, tmp);
  8469   %}
  8470 %}
  8473 instruct convF2D_reg(regD dst, regF src) %{
  8474   match(Set dst (ConvF2D src));
  8475   format %{ "FSTOD  $src,$dst" %}
  8476   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8477   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8478   ins_pipe(fcvtF2D);
  8479 %}
  8482 // Convert a float to an int in a float register.
  8483 // If the float is a NAN, stuff a zero in instead.
  8484 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8485   effect(DEF dst, USE src, KILL fcc0);
  8486   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8487             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8488             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8489             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8490             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8491       "skip:" %}
  8492   ins_encode(form_f2i_helper(src,dst));
  8493   ins_pipe(fcvtF2I);
  8494 %}
  8496 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8497   match(Set dst (ConvF2I src));
  8498   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8499   expand %{
  8500     regF tmp;
  8501     convF2I_helper(tmp, src);
  8502     regF_to_stkI(dst, tmp);
  8503   %}
  8504 %}
  8506 instruct convF2I_reg(iRegI dst, regF src) %{
  8507   predicate(UseVIS >= 3);
  8508   match(Set dst (ConvF2I src));
  8509   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8510   expand %{
  8511     regF tmp;
  8512     convF2I_helper(tmp, src);
  8513     MoveF2I_reg_reg(dst, tmp);
  8514   %}
  8515 %}
  8518 // Convert a float to a long in a float register.
  8519 // If the float is a NAN, stuff a zero in instead.
  8520 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8521   effect(DEF dst, USE src, KILL fcc0);
  8522   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8523             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8524             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8525             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8526             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8527       "skip:" %}
  8528   ins_encode(form_f2l_helper(src,dst));
  8529   ins_pipe(fcvtF2L);
  8530 %}
  8532 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8533   match(Set dst (ConvF2L src));
  8534   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8535   expand %{
  8536     regD tmp;
  8537     convF2L_helper(tmp, src);
  8538     regD_to_stkL(dst, tmp);
  8539   %}
  8540 %}
  8542 instruct convF2L_reg(iRegL dst, regF src) %{
  8543   predicate(UseVIS >= 3);
  8544   match(Set dst (ConvF2L src));
  8545   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8546   expand %{
  8547     regD tmp;
  8548     convF2L_helper(tmp, src);
  8549     MoveD2L_reg_reg(dst, tmp);
  8550   %}
  8551 %}
  8554 instruct convI2D_helper(regD dst, regF tmp) %{
  8555   effect(USE tmp, DEF dst);
  8556   format %{ "FITOD  $tmp,$dst" %}
  8557   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8558   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8559   ins_pipe(fcvtI2D);
  8560 %}
  8562 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8563   match(Set dst (ConvI2D src));
  8564   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8565   expand %{
  8566     regF tmp;
  8567     stkI_to_regF(tmp, src);
  8568     convI2D_helper(dst, tmp);
  8569   %}
  8570 %}
  8572 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8573   predicate(UseVIS >= 3);
  8574   match(Set dst (ConvI2D src));
  8575   expand %{
  8576     regF tmp;
  8577     MoveI2F_reg_reg(tmp, src);
  8578     convI2D_helper(dst, tmp);
  8579   %}
  8580 %}
  8582 instruct convI2D_mem(regD_low dst, memory mem) %{
  8583   match(Set dst (ConvI2D (LoadI mem)));
  8584   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8585   size(8);
  8586   format %{ "LDF    $mem,$dst\n\t"
  8587             "FITOD  $dst,$dst" %}
  8588   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8589   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8590   ins_pipe(floadF_mem);
  8591 %}
  8594 instruct convI2F_helper(regF dst, regF tmp) %{
  8595   effect(DEF dst, USE tmp);
  8596   format %{ "FITOS  $tmp,$dst" %}
  8597   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8598   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8599   ins_pipe(fcvtI2F);
  8600 %}
  8602 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8603   match(Set dst (ConvI2F src));
  8604   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8605   expand %{
  8606     regF tmp;
  8607     stkI_to_regF(tmp,src);
  8608     convI2F_helper(dst, tmp);
  8609   %}
  8610 %}
  8612 instruct convI2F_reg(regF dst, iRegI src) %{
  8613   predicate(UseVIS >= 3);
  8614   match(Set dst (ConvI2F src));
  8615   ins_cost(DEFAULT_COST);
  8616   expand %{
  8617     regF tmp;
  8618     MoveI2F_reg_reg(tmp, src);
  8619     convI2F_helper(dst, tmp);
  8620   %}
  8621 %}
  8623 instruct convI2F_mem( regF dst, memory mem ) %{
  8624   match(Set dst (ConvI2F (LoadI mem)));
  8625   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8626   size(8);
  8627   format %{ "LDF    $mem,$dst\n\t"
  8628             "FITOS  $dst,$dst" %}
  8629   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8630   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8631   ins_pipe(floadF_mem);
  8632 %}
  8635 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8636   match(Set dst (ConvI2L src));
  8637   size(4);
  8638   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8639   opcode(Assembler::sra_op3, Assembler::arith_op);
  8640   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8641   ins_pipe(ialu_reg_reg);
  8642 %}
  8644 // Zero-extend convert int to long
  8645 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8646   match(Set dst (AndL (ConvI2L src) mask) );
  8647   size(4);
  8648   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8649   opcode(Assembler::srl_op3, Assembler::arith_op);
  8650   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8651   ins_pipe(ialu_reg_reg);
  8652 %}
  8654 // Zero-extend long
  8655 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8656   match(Set dst (AndL src mask) );
  8657   size(4);
  8658   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8659   opcode(Assembler::srl_op3, Assembler::arith_op);
  8660   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8661   ins_pipe(ialu_reg_reg);
  8662 %}
  8665 //-----------
  8666 // Long to Double conversion using V8 opcodes.
  8667 // Still useful because cheetah traps and becomes
  8668 // amazingly slow for some common numbers.
  8670 // Magic constant, 0x43300000
  8671 instruct loadConI_x43300000(iRegI dst) %{
  8672   effect(DEF dst);
  8673   size(4);
  8674   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8675   ins_encode(SetHi22(0x43300000, dst));
  8676   ins_pipe(ialu_none);
  8677 %}
  8679 // Magic constant, 0x41f00000
  8680 instruct loadConI_x41f00000(iRegI dst) %{
  8681   effect(DEF dst);
  8682   size(4);
  8683   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8684   ins_encode(SetHi22(0x41f00000, dst));
  8685   ins_pipe(ialu_none);
  8686 %}
  8688 // Construct a double from two float halves
  8689 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8690   effect(DEF dst, USE src1, USE src2);
  8691   size(8);
  8692   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8693             "FMOVS  $src2.lo,$dst.lo" %}
  8694   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8695   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8696   ins_pipe(faddD_reg_reg);
  8697 %}
  8699 // Convert integer in high half of a double register (in the lower half of
  8700 // the double register file) to double
  8701 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8702   effect(DEF dst, USE src);
  8703   size(4);
  8704   format %{ "FITOD  $src,$dst" %}
  8705   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8706   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8707   ins_pipe(fcvtLHi2D);
  8708 %}
  8710 // Add float double precision
  8711 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8712   effect(DEF dst, USE src1, USE src2);
  8713   size(4);
  8714   format %{ "FADDD  $src1,$src2,$dst" %}
  8715   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8716   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8717   ins_pipe(faddD_reg_reg);
  8718 %}
  8720 // Sub float double precision
  8721 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8722   effect(DEF dst, USE src1, USE src2);
  8723   size(4);
  8724   format %{ "FSUBD  $src1,$src2,$dst" %}
  8725   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8726   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8727   ins_pipe(faddD_reg_reg);
  8728 %}
  8730 // Mul float double precision
  8731 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8732   effect(DEF dst, USE src1, USE src2);
  8733   size(4);
  8734   format %{ "FMULD  $src1,$src2,$dst" %}
  8735   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8736   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8737   ins_pipe(fmulD_reg_reg);
  8738 %}
  8740 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8741   match(Set dst (ConvL2D src));
  8742   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8744   expand %{
  8745     regD_low   tmpsrc;
  8746     iRegI      ix43300000;
  8747     iRegI      ix41f00000;
  8748     stackSlotL lx43300000;
  8749     stackSlotL lx41f00000;
  8750     regD_low   dx43300000;
  8751     regD       dx41f00000;
  8752     regD       tmp1;
  8753     regD_low   tmp2;
  8754     regD       tmp3;
  8755     regD       tmp4;
  8757     stkL_to_regD(tmpsrc, src);
  8759     loadConI_x43300000(ix43300000);
  8760     loadConI_x41f00000(ix41f00000);
  8761     regI_to_stkLHi(lx43300000, ix43300000);
  8762     regI_to_stkLHi(lx41f00000, ix41f00000);
  8763     stkL_to_regD(dx43300000, lx43300000);
  8764     stkL_to_regD(dx41f00000, lx41f00000);
  8766     convI2D_regDHi_regD(tmp1, tmpsrc);
  8767     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8768     subD_regD_regD(tmp3, tmp2, dx43300000);
  8769     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8770     addD_regD_regD(dst, tmp3, tmp4);
  8771   %}
  8772 %}
  8774 // Long to Double conversion using fast fxtof
  8775 instruct convL2D_helper(regD dst, regD tmp) %{
  8776   effect(DEF dst, USE tmp);
  8777   size(4);
  8778   format %{ "FXTOD  $tmp,$dst" %}
  8779   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8780   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8781   ins_pipe(fcvtL2D);
  8782 %}
  8784 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8785   predicate(VM_Version::has_fast_fxtof());
  8786   match(Set dst (ConvL2D src));
  8787   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8788   expand %{
  8789     regD tmp;
  8790     stkL_to_regD(tmp, src);
  8791     convL2D_helper(dst, tmp);
  8792   %}
  8793 %}
  8795 instruct convL2D_reg(regD dst, iRegL src) %{
  8796   predicate(UseVIS >= 3);
  8797   match(Set dst (ConvL2D src));
  8798   expand %{
  8799     regD tmp;
  8800     MoveL2D_reg_reg(tmp, src);
  8801     convL2D_helper(dst, tmp);
  8802   %}
  8803 %}
  8805 // Long to Float conversion using fast fxtof
  8806 instruct convL2F_helper(regF dst, regD tmp) %{
  8807   effect(DEF dst, USE tmp);
  8808   size(4);
  8809   format %{ "FXTOS  $tmp,$dst" %}
  8810   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8811   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8812   ins_pipe(fcvtL2F);
  8813 %}
  8815 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8816   match(Set dst (ConvL2F src));
  8817   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8818   expand %{
  8819     regD tmp;
  8820     stkL_to_regD(tmp, src);
  8821     convL2F_helper(dst, tmp);
  8822   %}
  8823 %}
  8825 instruct convL2F_reg(regF dst, iRegL src) %{
  8826   predicate(UseVIS >= 3);
  8827   match(Set dst (ConvL2F src));
  8828   ins_cost(DEFAULT_COST);
  8829   expand %{
  8830     regD tmp;
  8831     MoveL2D_reg_reg(tmp, src);
  8832     convL2F_helper(dst, tmp);
  8833   %}
  8834 %}
  8836 //-----------
  8838 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8839   match(Set dst (ConvL2I src));
  8840 #ifndef _LP64
  8841   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8842   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8843   ins_pipe(ialu_move_reg_I_to_L);
  8844 #else
  8845   size(4);
  8846   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8847   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8848   ins_pipe(ialu_reg);
  8849 #endif
  8850 %}
  8852 // Register Shift Right Immediate
  8853 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8854   match(Set dst (ConvL2I (RShiftL src cnt)));
  8856   size(4);
  8857   format %{ "SRAX   $src,$cnt,$dst" %}
  8858   opcode(Assembler::srax_op3, Assembler::arith_op);
  8859   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8860   ins_pipe(ialu_reg_imm);
  8861 %}
  8863 //----------Control Flow Instructions------------------------------------------
  8864 // Compare Instructions
  8865 // Compare Integers
  8866 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8867   match(Set icc (CmpI op1 op2));
  8868   effect( DEF icc, USE op1, USE op2 );
  8870   size(4);
  8871   format %{ "CMP    $op1,$op2" %}
  8872   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8873   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8874   ins_pipe(ialu_cconly_reg_reg);
  8875 %}
  8877 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8878   match(Set icc (CmpU op1 op2));
  8880   size(4);
  8881   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8882   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8883   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8884   ins_pipe(ialu_cconly_reg_reg);
  8885 %}
  8887 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8888   match(Set icc (CmpI op1 op2));
  8889   effect( DEF icc, USE op1 );
  8891   size(4);
  8892   format %{ "CMP    $op1,$op2" %}
  8893   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8894   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8895   ins_pipe(ialu_cconly_reg_imm);
  8896 %}
  8898 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8899   match(Set icc (CmpI (AndI op1 op2) zero));
  8901   size(4);
  8902   format %{ "BTST   $op2,$op1" %}
  8903   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8904   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8905   ins_pipe(ialu_cconly_reg_reg_zero);
  8906 %}
  8908 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8909   match(Set icc (CmpI (AndI op1 op2) zero));
  8911   size(4);
  8912   format %{ "BTST   $op2,$op1" %}
  8913   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8914   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8915   ins_pipe(ialu_cconly_reg_imm_zero);
  8916 %}
  8918 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8919   match(Set xcc (CmpL op1 op2));
  8920   effect( DEF xcc, USE op1, USE op2 );
  8922   size(4);
  8923   format %{ "CMP    $op1,$op2\t\t! long" %}
  8924   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8925   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8926   ins_pipe(ialu_cconly_reg_reg);
  8927 %}
  8929 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8930   match(Set xcc (CmpL op1 con));
  8931   effect( DEF xcc, USE op1, USE con );
  8933   size(4);
  8934   format %{ "CMP    $op1,$con\t\t! long" %}
  8935   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8936   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8937   ins_pipe(ialu_cconly_reg_reg);
  8938 %}
  8940 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8941   match(Set xcc (CmpL (AndL op1 op2) zero));
  8942   effect( DEF xcc, USE op1, USE op2 );
  8944   size(4);
  8945   format %{ "BTST   $op1,$op2\t\t! long" %}
  8946   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8947   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8948   ins_pipe(ialu_cconly_reg_reg);
  8949 %}
  8951 // useful for checking the alignment of a pointer:
  8952 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8953   match(Set xcc (CmpL (AndL op1 con) zero));
  8954   effect( DEF xcc, USE op1, USE con );
  8956   size(4);
  8957   format %{ "BTST   $op1,$con\t\t! long" %}
  8958   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8959   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8960   ins_pipe(ialu_cconly_reg_reg);
  8961 %}
  8963 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8964   match(Set icc (CmpU op1 op2));
  8966   size(4);
  8967   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8968   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8969   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8970   ins_pipe(ialu_cconly_reg_imm);
  8971 %}
  8973 // Compare Pointers
  8974 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8975   match(Set pcc (CmpP op1 op2));
  8977   size(4);
  8978   format %{ "CMP    $op1,$op2\t! ptr" %}
  8979   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8980   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8981   ins_pipe(ialu_cconly_reg_reg);
  8982 %}
  8984 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8985   match(Set pcc (CmpP op1 op2));
  8987   size(4);
  8988   format %{ "CMP    $op1,$op2\t! ptr" %}
  8989   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8990   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8991   ins_pipe(ialu_cconly_reg_imm);
  8992 %}
  8994 // Compare Narrow oops
  8995 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8996   match(Set icc (CmpN op1 op2));
  8998   size(4);
  8999   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9000   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9001   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9002   ins_pipe(ialu_cconly_reg_reg);
  9003 %}
  9005 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9006   match(Set icc (CmpN op1 op2));
  9008   size(4);
  9009   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9010   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9011   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9012   ins_pipe(ialu_cconly_reg_imm);
  9013 %}
  9015 //----------Max and Min--------------------------------------------------------
  9016 // Min Instructions
  9017 // Conditional move for min
  9018 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9019   effect( USE_DEF op2, USE op1, USE icc );
  9021   size(4);
  9022   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9023   opcode(Assembler::less);
  9024   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9025   ins_pipe(ialu_reg_flags);
  9026 %}
  9028 // Min Register with Register.
  9029 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9030   match(Set op2 (MinI op1 op2));
  9031   ins_cost(DEFAULT_COST*2);
  9032   expand %{
  9033     flagsReg icc;
  9034     compI_iReg(icc,op1,op2);
  9035     cmovI_reg_lt(op2,op1,icc);
  9036   %}
  9037 %}
  9039 // Max Instructions
  9040 // Conditional move for max
  9041 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9042   effect( USE_DEF op2, USE op1, USE icc );
  9043   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9044   opcode(Assembler::greater);
  9045   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9046   ins_pipe(ialu_reg_flags);
  9047 %}
  9049 // Max Register with Register
  9050 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9051   match(Set op2 (MaxI op1 op2));
  9052   ins_cost(DEFAULT_COST*2);
  9053   expand %{
  9054     flagsReg icc;
  9055     compI_iReg(icc,op1,op2);
  9056     cmovI_reg_gt(op2,op1,icc);
  9057   %}
  9058 %}
  9061 //----------Float Compares----------------------------------------------------
  9062 // Compare floating, generate condition code
  9063 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9064   match(Set fcc (CmpF src1 src2));
  9066   size(4);
  9067   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9068   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9069   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9070   ins_pipe(faddF_fcc_reg_reg_zero);
  9071 %}
  9073 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9074   match(Set fcc (CmpD src1 src2));
  9076   size(4);
  9077   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9078   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9079   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9080   ins_pipe(faddD_fcc_reg_reg_zero);
  9081 %}
  9084 // Compare floating, generate -1,0,1
  9085 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9086   match(Set dst (CmpF3 src1 src2));
  9087   effect(KILL fcc0);
  9088   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9089   format %{ "fcmpl  $dst,$src1,$src2" %}
  9090   // Primary = float
  9091   opcode( true );
  9092   ins_encode( floating_cmp( dst, src1, src2 ) );
  9093   ins_pipe( floating_cmp );
  9094 %}
  9096 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9097   match(Set dst (CmpD3 src1 src2));
  9098   effect(KILL fcc0);
  9099   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9100   format %{ "dcmpl  $dst,$src1,$src2" %}
  9101   // Primary = double (not float)
  9102   opcode( false );
  9103   ins_encode( floating_cmp( dst, src1, src2 ) );
  9104   ins_pipe( floating_cmp );
  9105 %}
  9107 //----------Branches---------------------------------------------------------
  9108 // Jump
  9109 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9110 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9111   match(Jump switch_val);
  9112   effect(TEMP table);
  9114   ins_cost(350);
  9116   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9117              "LD     [O7 + $switch_val], O7\n\t"
  9118              "JUMP   O7" %}
  9119   ins_encode %{
  9120     // Calculate table address into a register.
  9121     Register table_reg;
  9122     Register label_reg = O7;
  9123     // If we are calculating the size of this instruction don't trust
  9124     // zero offsets because they might change when
  9125     // MachConstantBaseNode decides to optimize the constant table
  9126     // base.
  9127     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9128       table_reg = $constanttablebase;
  9129     } else {
  9130       table_reg = O7;
  9131       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9132       __ add($constanttablebase, con_offset, table_reg);
  9135     // Jump to base address + switch value
  9136     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9137     __ jmp(label_reg, G0);
  9138     __ delayed()->nop();
  9139   %}
  9140   ins_pipe(ialu_reg_reg);
  9141 %}
  9143 // Direct Branch.  Use V8 version with longer range.
  9144 instruct branch(label labl) %{
  9145   match(Goto);
  9146   effect(USE labl);
  9148   size(8);
  9149   ins_cost(BRANCH_COST);
  9150   format %{ "BA     $labl" %}
  9151   ins_encode %{
  9152     Label* L = $labl$$label;
  9153     __ ba(*L);
  9154     __ delayed()->nop();
  9155   %}
  9156   ins_pipe(br);
  9157 %}
  9159 // Direct Branch, short with no delay slot
  9160 instruct branch_short(label labl) %{
  9161   match(Goto);
  9162   predicate(UseCBCond);
  9163   effect(USE labl);
  9165   size(4);
  9166   ins_cost(BRANCH_COST);
  9167   format %{ "BA     $labl\t! short branch" %}
  9168   ins_encode %{ 
  9169     Label* L = $labl$$label;
  9170     assert(__ use_cbcond(*L), "back to back cbcond");
  9171     __ ba_short(*L);
  9172   %}
  9173   ins_short_branch(1);
  9174   ins_avoid_back_to_back(1);
  9175   ins_pipe(cbcond_reg_imm);
  9176 %}
  9178 // Conditional Direct Branch
  9179 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9180   match(If cmp icc);
  9181   effect(USE labl);
  9183   size(8);
  9184   ins_cost(BRANCH_COST);
  9185   format %{ "BP$cmp   $icc,$labl" %}
  9186   // Prim = bits 24-22, Secnd = bits 31-30
  9187   ins_encode( enc_bp( labl, cmp, icc ) );
  9188   ins_pipe(br_cc);
  9189 %}
  9191 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9192   match(If cmp icc);
  9193   effect(USE labl);
  9195   ins_cost(BRANCH_COST);
  9196   format %{ "BP$cmp  $icc,$labl" %}
  9197   // Prim = bits 24-22, Secnd = bits 31-30
  9198   ins_encode( enc_bp( labl, cmp, icc ) );
  9199   ins_pipe(br_cc);
  9200 %}
  9202 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9203   match(If cmp pcc);
  9204   effect(USE labl);
  9206   size(8);
  9207   ins_cost(BRANCH_COST);
  9208   format %{ "BP$cmp  $pcc,$labl" %}
  9209   ins_encode %{
  9210     Label* L = $labl$$label;
  9211     Assembler::Predict predict_taken =
  9212       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9214     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9215     __ delayed()->nop();
  9216   %}
  9217   ins_pipe(br_cc);
  9218 %}
  9220 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9221   match(If cmp fcc);
  9222   effect(USE labl);
  9224   size(8);
  9225   ins_cost(BRANCH_COST);
  9226   format %{ "FBP$cmp $fcc,$labl" %}
  9227   ins_encode %{
  9228     Label* L = $labl$$label;
  9229     Assembler::Predict predict_taken =
  9230       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9232     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9233     __ delayed()->nop();
  9234   %}
  9235   ins_pipe(br_fcc);
  9236 %}
  9238 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9239   match(CountedLoopEnd cmp icc);
  9240   effect(USE labl);
  9242   size(8);
  9243   ins_cost(BRANCH_COST);
  9244   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9245   // Prim = bits 24-22, Secnd = bits 31-30
  9246   ins_encode( enc_bp( labl, cmp, icc ) );
  9247   ins_pipe(br_cc);
  9248 %}
  9250 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9251   match(CountedLoopEnd cmp icc);
  9252   effect(USE labl);
  9254   size(8);
  9255   ins_cost(BRANCH_COST);
  9256   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9257   // Prim = bits 24-22, Secnd = bits 31-30
  9258   ins_encode( enc_bp( labl, cmp, icc ) );
  9259   ins_pipe(br_cc);
  9260 %}
  9262 // Compare and branch instructions
  9263 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9264   match(If cmp (CmpI op1 op2));
  9265   effect(USE labl, KILL icc);
  9267   size(12);
  9268   ins_cost(BRANCH_COST);
  9269   format %{ "CMP    $op1,$op2\t! int\n\t"
  9270             "BP$cmp   $labl" %}
  9271   ins_encode %{
  9272     Label* L = $labl$$label;
  9273     Assembler::Predict predict_taken =
  9274       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9275     __ cmp($op1$$Register, $op2$$Register);
  9276     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9277     __ delayed()->nop();
  9278   %}
  9279   ins_pipe(cmp_br_reg_reg);
  9280 %}
  9282 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9283   match(If cmp (CmpI op1 op2));
  9284   effect(USE labl, KILL icc);
  9286   size(12);
  9287   ins_cost(BRANCH_COST);
  9288   format %{ "CMP    $op1,$op2\t! int\n\t"
  9289             "BP$cmp   $labl" %}
  9290   ins_encode %{
  9291     Label* L = $labl$$label;
  9292     Assembler::Predict predict_taken =
  9293       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9294     __ cmp($op1$$Register, $op2$$constant);
  9295     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9296     __ delayed()->nop();
  9297   %}
  9298   ins_pipe(cmp_br_reg_imm);
  9299 %}
  9301 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9302   match(If cmp (CmpU op1 op2));
  9303   effect(USE labl, KILL icc);
  9305   size(12);
  9306   ins_cost(BRANCH_COST);
  9307   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9308             "BP$cmp  $labl" %}
  9309   ins_encode %{
  9310     Label* L = $labl$$label;
  9311     Assembler::Predict predict_taken =
  9312       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9313     __ cmp($op1$$Register, $op2$$Register);
  9314     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9315     __ delayed()->nop();
  9316   %}
  9317   ins_pipe(cmp_br_reg_reg);
  9318 %}
  9320 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9321   match(If cmp (CmpU op1 op2));
  9322   effect(USE labl, KILL icc);
  9324   size(12);
  9325   ins_cost(BRANCH_COST);
  9326   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9327             "BP$cmp  $labl" %}
  9328   ins_encode %{
  9329     Label* L = $labl$$label;
  9330     Assembler::Predict predict_taken =
  9331       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9332     __ cmp($op1$$Register, $op2$$constant);
  9333     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9334     __ delayed()->nop();
  9335   %}
  9336   ins_pipe(cmp_br_reg_imm);
  9337 %}
  9339 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9340   match(If cmp (CmpL op1 op2));
  9341   effect(USE labl, KILL xcc);
  9343   size(12);
  9344   ins_cost(BRANCH_COST);
  9345   format %{ "CMP    $op1,$op2\t! long\n\t"
  9346             "BP$cmp   $labl" %}
  9347   ins_encode %{
  9348     Label* L = $labl$$label;
  9349     Assembler::Predict predict_taken =
  9350       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9351     __ cmp($op1$$Register, $op2$$Register);
  9352     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9353     __ delayed()->nop();
  9354   %}
  9355   ins_pipe(cmp_br_reg_reg);
  9356 %}
  9358 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9359   match(If cmp (CmpL op1 op2));
  9360   effect(USE labl, KILL xcc);
  9362   size(12);
  9363   ins_cost(BRANCH_COST);
  9364   format %{ "CMP    $op1,$op2\t! long\n\t"
  9365             "BP$cmp   $labl" %}
  9366   ins_encode %{
  9367     Label* L = $labl$$label;
  9368     Assembler::Predict predict_taken =
  9369       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9370     __ cmp($op1$$Register, $op2$$constant);
  9371     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9372     __ delayed()->nop();
  9373   %}
  9374   ins_pipe(cmp_br_reg_imm);
  9375 %}
  9377 // Compare Pointers and branch
  9378 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9379   match(If cmp (CmpP op1 op2));
  9380   effect(USE labl, KILL pcc);
  9382   size(12);
  9383   ins_cost(BRANCH_COST);
  9384   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9385             "B$cmp   $labl" %}
  9386   ins_encode %{
  9387     Label* L = $labl$$label;
  9388     Assembler::Predict predict_taken =
  9389       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9390     __ cmp($op1$$Register, $op2$$Register);
  9391     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9392     __ delayed()->nop();
  9393   %}
  9394   ins_pipe(cmp_br_reg_reg);
  9395 %}
  9397 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9398   match(If cmp (CmpP op1 null));
  9399   effect(USE labl, KILL pcc);
  9401   size(12);
  9402   ins_cost(BRANCH_COST);
  9403   format %{ "CMP    $op1,0\t! ptr\n\t"
  9404             "B$cmp   $labl" %}
  9405   ins_encode %{
  9406     Label* L = $labl$$label;
  9407     Assembler::Predict predict_taken =
  9408       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9409     __ cmp($op1$$Register, G0);
  9410     // bpr() is not used here since it has shorter distance.
  9411     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9412     __ delayed()->nop();
  9413   %}
  9414   ins_pipe(cmp_br_reg_reg);
  9415 %}
  9417 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9418   match(If cmp (CmpN op1 op2));
  9419   effect(USE labl, KILL icc);
  9421   size(12);
  9422   ins_cost(BRANCH_COST);
  9423   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9424             "BP$cmp   $labl" %}
  9425   ins_encode %{
  9426     Label* L = $labl$$label;
  9427     Assembler::Predict predict_taken =
  9428       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9429     __ cmp($op1$$Register, $op2$$Register);
  9430     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9431     __ delayed()->nop();
  9432   %}
  9433   ins_pipe(cmp_br_reg_reg);
  9434 %}
  9436 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9437   match(If cmp (CmpN op1 null));
  9438   effect(USE labl, KILL icc);
  9440   size(12);
  9441   ins_cost(BRANCH_COST);
  9442   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9443             "BP$cmp   $labl" %}
  9444   ins_encode %{
  9445     Label* L = $labl$$label;
  9446     Assembler::Predict predict_taken =
  9447       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9448     __ cmp($op1$$Register, G0);
  9449     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9450     __ delayed()->nop();
  9451   %}
  9452   ins_pipe(cmp_br_reg_reg);
  9453 %}
  9455 // Loop back branch
  9456 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9457   match(CountedLoopEnd cmp (CmpI op1 op2));
  9458   effect(USE labl, KILL icc);
  9460   size(12);
  9461   ins_cost(BRANCH_COST);
  9462   format %{ "CMP    $op1,$op2\t! int\n\t"
  9463             "BP$cmp   $labl\t! Loop end" %}
  9464   ins_encode %{
  9465     Label* L = $labl$$label;
  9466     Assembler::Predict predict_taken =
  9467       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9468     __ cmp($op1$$Register, $op2$$Register);
  9469     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9470     __ delayed()->nop();
  9471   %}
  9472   ins_pipe(cmp_br_reg_reg);
  9473 %}
  9475 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9476   match(CountedLoopEnd cmp (CmpI op1 op2));
  9477   effect(USE labl, KILL icc);
  9479   size(12);
  9480   ins_cost(BRANCH_COST);
  9481   format %{ "CMP    $op1,$op2\t! int\n\t"
  9482             "BP$cmp   $labl\t! Loop end" %}
  9483   ins_encode %{
  9484     Label* L = $labl$$label;
  9485     Assembler::Predict predict_taken =
  9486       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9487     __ cmp($op1$$Register, $op2$$constant);
  9488     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9489     __ delayed()->nop();
  9490   %}
  9491   ins_pipe(cmp_br_reg_imm);
  9492 %}
  9494 // Short compare and branch instructions
  9495 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9496   match(If cmp (CmpI op1 op2));
  9497   predicate(UseCBCond);
  9498   effect(USE labl, KILL icc);
  9500   size(4);
  9501   ins_cost(BRANCH_COST);
  9502   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9503   ins_encode %{
  9504     Label* L = $labl$$label;
  9505     assert(__ use_cbcond(*L), "back to back cbcond");
  9506     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9507   %}
  9508   ins_short_branch(1);
  9509   ins_avoid_back_to_back(1);
  9510   ins_pipe(cbcond_reg_reg);
  9511 %}
  9513 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9514   match(If cmp (CmpI op1 op2));
  9515   predicate(UseCBCond);
  9516   effect(USE labl, KILL icc);
  9518   size(4);
  9519   ins_cost(BRANCH_COST);
  9520   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9521   ins_encode %{
  9522     Label* L = $labl$$label;
  9523     assert(__ use_cbcond(*L), "back to back cbcond");
  9524     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9525   %}
  9526   ins_short_branch(1);
  9527   ins_avoid_back_to_back(1);
  9528   ins_pipe(cbcond_reg_imm);
  9529 %}
  9531 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9532   match(If cmp (CmpU op1 op2));
  9533   predicate(UseCBCond);
  9534   effect(USE labl, KILL icc);
  9536   size(4);
  9537   ins_cost(BRANCH_COST);
  9538   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9539   ins_encode %{
  9540     Label* L = $labl$$label;
  9541     assert(__ use_cbcond(*L), "back to back cbcond");
  9542     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9543   %}
  9544   ins_short_branch(1);
  9545   ins_avoid_back_to_back(1);
  9546   ins_pipe(cbcond_reg_reg);
  9547 %}
  9549 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9550   match(If cmp (CmpU op1 op2));
  9551   predicate(UseCBCond);
  9552   effect(USE labl, KILL icc);
  9554   size(4);
  9555   ins_cost(BRANCH_COST);
  9556   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9557   ins_encode %{
  9558     Label* L = $labl$$label;
  9559     assert(__ use_cbcond(*L), "back to back cbcond");
  9560     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9561   %}
  9562   ins_short_branch(1);
  9563   ins_avoid_back_to_back(1);
  9564   ins_pipe(cbcond_reg_imm);
  9565 %}
  9567 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9568   match(If cmp (CmpL op1 op2));
  9569   predicate(UseCBCond);
  9570   effect(USE labl, KILL xcc);
  9572   size(4);
  9573   ins_cost(BRANCH_COST);
  9574   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9575   ins_encode %{
  9576     Label* L = $labl$$label;
  9577     assert(__ use_cbcond(*L), "back to back cbcond");
  9578     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9579   %}
  9580   ins_short_branch(1);
  9581   ins_avoid_back_to_back(1);
  9582   ins_pipe(cbcond_reg_reg);
  9583 %}
  9585 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9586   match(If cmp (CmpL op1 op2));
  9587   predicate(UseCBCond);
  9588   effect(USE labl, KILL xcc);
  9590   size(4);
  9591   ins_cost(BRANCH_COST);
  9592   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9593   ins_encode %{
  9594     Label* L = $labl$$label;
  9595     assert(__ use_cbcond(*L), "back to back cbcond");
  9596     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9597   %}
  9598   ins_short_branch(1);
  9599   ins_avoid_back_to_back(1);
  9600   ins_pipe(cbcond_reg_imm);
  9601 %}
  9603 // Compare Pointers and branch
  9604 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9605   match(If cmp (CmpP op1 op2));
  9606   predicate(UseCBCond);
  9607   effect(USE labl, KILL pcc);
  9609   size(4);
  9610   ins_cost(BRANCH_COST);
  9611 #ifdef _LP64
  9612   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9613 #else
  9614   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9615 #endif
  9616   ins_encode %{
  9617     Label* L = $labl$$label;
  9618     assert(__ use_cbcond(*L), "back to back cbcond");
  9619     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9620   %}
  9621   ins_short_branch(1);
  9622   ins_avoid_back_to_back(1);
  9623   ins_pipe(cbcond_reg_reg);
  9624 %}
  9626 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9627   match(If cmp (CmpP op1 null));
  9628   predicate(UseCBCond);
  9629   effect(USE labl, KILL pcc);
  9631   size(4);
  9632   ins_cost(BRANCH_COST);
  9633 #ifdef _LP64
  9634   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9635 #else
  9636   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9637 #endif
  9638   ins_encode %{
  9639     Label* L = $labl$$label;
  9640     assert(__ use_cbcond(*L), "back to back cbcond");
  9641     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9642   %}
  9643   ins_short_branch(1);
  9644   ins_avoid_back_to_back(1);
  9645   ins_pipe(cbcond_reg_reg);
  9646 %}
  9648 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9649   match(If cmp (CmpN op1 op2));
  9650   predicate(UseCBCond);
  9651   effect(USE labl, KILL icc);
  9653   size(4);
  9654   ins_cost(BRANCH_COST);
  9655   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9656   ins_encode %{
  9657     Label* L = $labl$$label;
  9658     assert(__ use_cbcond(*L), "back to back cbcond");
  9659     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9660   %}
  9661   ins_short_branch(1);
  9662   ins_avoid_back_to_back(1);
  9663   ins_pipe(cbcond_reg_reg);
  9664 %}
  9666 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9667   match(If cmp (CmpN op1 null));
  9668   predicate(UseCBCond);
  9669   effect(USE labl, KILL icc);
  9671   size(4);
  9672   ins_cost(BRANCH_COST);
  9673   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9674   ins_encode %{
  9675     Label* L = $labl$$label;
  9676     assert(__ use_cbcond(*L), "back to back cbcond");
  9677     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9678   %}
  9679   ins_short_branch(1);
  9680   ins_avoid_back_to_back(1);
  9681   ins_pipe(cbcond_reg_reg);
  9682 %}
  9684 // Loop back branch
  9685 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9686   match(CountedLoopEnd cmp (CmpI op1 op2));
  9687   predicate(UseCBCond);
  9688   effect(USE labl, KILL icc);
  9690   size(4);
  9691   ins_cost(BRANCH_COST);
  9692   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9693   ins_encode %{
  9694     Label* L = $labl$$label;
  9695     assert(__ use_cbcond(*L), "back to back cbcond");
  9696     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9697   %}
  9698   ins_short_branch(1);
  9699   ins_avoid_back_to_back(1);
  9700   ins_pipe(cbcond_reg_reg);
  9701 %}
  9703 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9704   match(CountedLoopEnd cmp (CmpI op1 op2));
  9705   predicate(UseCBCond);
  9706   effect(USE labl, KILL icc);
  9708   size(4);
  9709   ins_cost(BRANCH_COST);
  9710   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9711   ins_encode %{
  9712     Label* L = $labl$$label;
  9713     assert(__ use_cbcond(*L), "back to back cbcond");
  9714     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9715   %}
  9716   ins_short_branch(1);
  9717   ins_avoid_back_to_back(1);
  9718   ins_pipe(cbcond_reg_imm);
  9719 %}
  9721 // Branch-on-register tests all 64 bits.  We assume that values
  9722 // in 64-bit registers always remains zero or sign extended
  9723 // unless our code munges the high bits.  Interrupts can chop
  9724 // the high order bits to zero or sign at any time.
  9725 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9726   match(If cmp (CmpI op1 zero));
  9727   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9728   effect(USE labl);
  9730   size(8);
  9731   ins_cost(BRANCH_COST);
  9732   format %{ "BR$cmp   $op1,$labl" %}
  9733   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9734   ins_pipe(br_reg);
  9735 %}
  9737 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9738   match(If cmp (CmpP op1 null));
  9739   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9740   effect(USE labl);
  9742   size(8);
  9743   ins_cost(BRANCH_COST);
  9744   format %{ "BR$cmp   $op1,$labl" %}
  9745   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9746   ins_pipe(br_reg);
  9747 %}
  9749 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9750   match(If cmp (CmpL op1 zero));
  9751   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9752   effect(USE labl);
  9754   size(8);
  9755   ins_cost(BRANCH_COST);
  9756   format %{ "BR$cmp   $op1,$labl" %}
  9757   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9758   ins_pipe(br_reg);
  9759 %}
  9762 // ============================================================================
  9763 // Long Compare
  9764 //
  9765 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9766 // is tricky.  The flavor of compare used depends on whether we are testing
  9767 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9768 // The GE test is the negated LT test.  The LE test can be had by commuting
  9769 // the operands (yielding a GE test) and then negating; negate again for the
  9770 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9771 // NE test is negated from that.
  9773 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9774 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9775 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9776 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9777 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9778 // foo match ends up with the wrong leaf.  One fix is to not match both
  9779 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9780 // both forms beat the trinary form of long-compare and both are very useful
  9781 // on Intel which has so few registers.
  9783 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9784   match(If cmp xcc);
  9785   effect(USE labl);
  9787   size(8);
  9788   ins_cost(BRANCH_COST);
  9789   format %{ "BP$cmp   $xcc,$labl" %}
  9790   ins_encode %{
  9791     Label* L = $labl$$label;
  9792     Assembler::Predict predict_taken =
  9793       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9795     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9796     __ delayed()->nop();
  9797   %}
  9798   ins_pipe(br_cc);
  9799 %}
  9801 // Manifest a CmpL3 result in an integer register.  Very painful.
  9802 // This is the test to avoid.
  9803 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9804   match(Set dst (CmpL3 src1 src2) );
  9805   effect( KILL ccr );
  9806   ins_cost(6*DEFAULT_COST);
  9807   size(24);
  9808   format %{ "CMP    $src1,$src2\t\t! long\n"
  9809           "\tBLT,a,pn done\n"
  9810           "\tMOV    -1,$dst\t! delay slot\n"
  9811           "\tBGT,a,pn done\n"
  9812           "\tMOV    1,$dst\t! delay slot\n"
  9813           "\tCLR    $dst\n"
  9814     "done:"     %}
  9815   ins_encode( cmpl_flag(src1,src2,dst) );
  9816   ins_pipe(cmpL_reg);
  9817 %}
  9819 // Conditional move
  9820 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9821   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9822   ins_cost(150);
  9823   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9824   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9825   ins_pipe(ialu_reg);
  9826 %}
  9828 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9829   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9830   ins_cost(140);
  9831   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9832   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9833   ins_pipe(ialu_imm);
  9834 %}
  9836 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9837   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9838   ins_cost(150);
  9839   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9840   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9841   ins_pipe(ialu_reg);
  9842 %}
  9844 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9845   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9846   ins_cost(140);
  9847   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9848   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9849   ins_pipe(ialu_imm);
  9850 %}
  9852 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9853   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9854   ins_cost(150);
  9855   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9856   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9857   ins_pipe(ialu_reg);
  9858 %}
  9860 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9861   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9862   ins_cost(150);
  9863   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9864   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9865   ins_pipe(ialu_reg);
  9866 %}
  9868 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9869   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9870   ins_cost(140);
  9871   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9872   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9873   ins_pipe(ialu_imm);
  9874 %}
  9876 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9877   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9878   ins_cost(150);
  9879   opcode(0x101);
  9880   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9881   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9882   ins_pipe(int_conditional_float_move);
  9883 %}
  9885 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9886   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9887   ins_cost(150);
  9888   opcode(0x102);
  9889   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9890   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9891   ins_pipe(int_conditional_float_move);
  9892 %}
  9894 // ============================================================================
  9895 // Safepoint Instruction
  9896 instruct safePoint_poll(iRegP poll) %{
  9897   match(SafePoint poll);
  9898   effect(USE poll);
  9900   size(4);
  9901 #ifdef _LP64
  9902   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9903 #else
  9904   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9905 #endif
  9906   ins_encode %{
  9907     __ relocate(relocInfo::poll_type);
  9908     __ ld_ptr($poll$$Register, 0, G0);
  9909   %}
  9910   ins_pipe(loadPollP);
  9911 %}
  9913 // ============================================================================
  9914 // Call Instructions
  9915 // Call Java Static Instruction
  9916 instruct CallStaticJavaDirect( method meth ) %{
  9917   match(CallStaticJava);
  9918   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9919   effect(USE meth);
  9921   size(8);
  9922   ins_cost(CALL_COST);
  9923   format %{ "CALL,static  ; NOP ==> " %}
  9924   ins_encode( Java_Static_Call( meth ), call_epilog );
  9925   ins_pipe(simple_call);
  9926 %}
  9928 // Call Java Static Instruction (method handle version)
  9929 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9930   match(CallStaticJava);
  9931   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9932   effect(USE meth, KILL l7_mh_SP_save);
  9934   size(16);
  9935   ins_cost(CALL_COST);
  9936   format %{ "CALL,static/MethodHandle" %}
  9937   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9938   ins_pipe(simple_call);
  9939 %}
  9941 // Call Java Dynamic Instruction
  9942 instruct CallDynamicJavaDirect( method meth ) %{
  9943   match(CallDynamicJava);
  9944   effect(USE meth);
  9946   ins_cost(CALL_COST);
  9947   format %{ "SET    (empty),R_G5\n\t"
  9948             "CALL,dynamic  ; NOP ==> " %}
  9949   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9950   ins_pipe(call);
  9951 %}
  9953 // Call Runtime Instruction
  9954 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9955   match(CallRuntime);
  9956   effect(USE meth, KILL l7);
  9957   ins_cost(CALL_COST);
  9958   format %{ "CALL,runtime" %}
  9959   ins_encode( Java_To_Runtime( meth ),
  9960               call_epilog, adjust_long_from_native_call );
  9961   ins_pipe(simple_call);
  9962 %}
  9964 // Call runtime without safepoint - same as CallRuntime
  9965 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9966   match(CallLeaf);
  9967   effect(USE meth, KILL l7);
  9968   ins_cost(CALL_COST);
  9969   format %{ "CALL,runtime leaf" %}
  9970   ins_encode( Java_To_Runtime( meth ),
  9971               call_epilog,
  9972               adjust_long_from_native_call );
  9973   ins_pipe(simple_call);
  9974 %}
  9976 // Call runtime without safepoint - same as CallLeaf
  9977 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9978   match(CallLeafNoFP);
  9979   effect(USE meth, KILL l7);
  9980   ins_cost(CALL_COST);
  9981   format %{ "CALL,runtime leaf nofp" %}
  9982   ins_encode( Java_To_Runtime( meth ),
  9983               call_epilog,
  9984               adjust_long_from_native_call );
  9985   ins_pipe(simple_call);
  9986 %}
  9988 // Tail Call; Jump from runtime stub to Java code.
  9989 // Also known as an 'interprocedural jump'.
  9990 // Target of jump will eventually return to caller.
  9991 // TailJump below removes the return address.
  9992 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9993   match(TailCall jump_target method_oop );
  9995   ins_cost(CALL_COST);
  9996   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9997   ins_encode(form_jmpl(jump_target));
  9998   ins_pipe(tail_call);
  9999 %}
 10002 // Return Instruction
 10003 instruct Ret() %{
 10004   match(Return);
 10006   // The epilogue node did the ret already.
 10007   size(0);
 10008   format %{ "! return" %}
 10009   ins_encode();
 10010   ins_pipe(empty);
 10011 %}
 10014 // Tail Jump; remove the return address; jump to target.
 10015 // TailCall above leaves the return address around.
 10016 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10017 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10018 // "restore" before this instruction (in Epilogue), we need to materialize it
 10019 // in %i0.
 10020 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10021   match( TailJump jump_target ex_oop );
 10022   ins_cost(CALL_COST);
 10023   format %{ "! discard R_O7\n\t"
 10024             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10025   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10026   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10027   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10028   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10029   ins_pipe(tail_call);
 10030 %}
 10032 // Create exception oop: created by stack-crawling runtime code.
 10033 // Created exception is now available to this handler, and is setup
 10034 // just prior to jumping to this handler.  No code emitted.
 10035 instruct CreateException( o0RegP ex_oop )
 10036 %{
 10037   match(Set ex_oop (CreateEx));
 10038   ins_cost(0);
 10040   size(0);
 10041   // use the following format syntax
 10042   format %{ "! exception oop is in R_O0; no code emitted" %}
 10043   ins_encode();
 10044   ins_pipe(empty);
 10045 %}
 10048 // Rethrow exception:
 10049 // The exception oop will come in the first argument position.
 10050 // Then JUMP (not call) to the rethrow stub code.
 10051 instruct RethrowException()
 10052 %{
 10053   match(Rethrow);
 10054   ins_cost(CALL_COST);
 10056   // use the following format syntax
 10057   format %{ "Jmp    rethrow_stub" %}
 10058   ins_encode(enc_rethrow);
 10059   ins_pipe(tail_call);
 10060 %}
 10063 // Die now
 10064 instruct ShouldNotReachHere( )
 10065 %{
 10066   match(Halt);
 10067   ins_cost(CALL_COST);
 10069   size(4);
 10070   // Use the following format syntax
 10071   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10072   ins_encode( form2_illtrap() );
 10073   ins_pipe(tail_call);
 10074 %}
 10076 // ============================================================================
 10077 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10078 // array for an instance of the superklass.  Set a hidden internal cache on a
 10079 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10080 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10081 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10082   match(Set index (PartialSubtypeCheck sub super));
 10083   effect( KILL pcc, KILL o7 );
 10084   ins_cost(DEFAULT_COST*10);
 10085   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10086   ins_encode( enc_PartialSubtypeCheck() );
 10087   ins_pipe(partial_subtype_check_pipe);
 10088 %}
 10090 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10091   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10092   effect( KILL idx, KILL o7 );
 10093   ins_cost(DEFAULT_COST*10);
 10094   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10095   ins_encode( enc_PartialSubtypeCheck() );
 10096   ins_pipe(partial_subtype_check_pipe);
 10097 %}
 10100 // ============================================================================
 10101 // inlined locking and unlocking
 10103 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10104   match(Set pcc (FastLock object box));
 10106   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10107   ins_cost(100);
 10109   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10110   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10111   ins_pipe(long_memory_op);
 10112 %}
 10115 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10116   match(Set pcc (FastUnlock object box));
 10117   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10118   ins_cost(100);
 10120   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10121   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10122   ins_pipe(long_memory_op);
 10123 %}
 10125 // The encodings are generic.
 10126 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10127   predicate(!use_block_zeroing(n->in(2)) );
 10128   match(Set dummy (ClearArray cnt base));
 10129   effect(TEMP temp, KILL ccr);
 10130   ins_cost(300);
 10131   format %{ "MOV    $cnt,$temp\n"
 10132     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10133     "        BRge   loop\t\t! Clearing loop\n"
 10134     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10136   ins_encode %{
 10137     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10138     Register nof_bytes_arg    = $cnt$$Register;
 10139     Register nof_bytes_tmp    = $temp$$Register;
 10140     Register base_pointer_arg = $base$$Register;
 10142     Label loop;
 10143     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10145     // Loop and clear, walking backwards through the array.
 10146     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10147     __ bind(loop);
 10148     __ deccc(nof_bytes_tmp, 8);
 10149     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10150     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10151     // %%%% this mini-loop must not cross a cache boundary!
 10152   %}
 10153   ins_pipe(long_memory_op);
 10154 %}
 10156 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10157   predicate(use_block_zeroing(n->in(2)));
 10158   match(Set dummy (ClearArray cnt base));
 10159   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10160   ins_cost(300);
 10161   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10163   ins_encode %{
 10165     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10166     Register to    = $base$$Register;
 10167     Register count = $cnt$$Register;
 10169     Label Ldone;
 10170     __ nop(); // Separate short branches
 10171     // Use BIS for zeroing (temp is not used).
 10172     __ bis_zeroing(to, count, G0, Ldone);
 10173     __ bind(Ldone);
 10175   %}
 10176   ins_pipe(long_memory_op);
 10177 %}
 10179 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10180   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10181   match(Set dummy (ClearArray cnt base));
 10182   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10183   ins_cost(300);
 10184   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10186   ins_encode %{
 10188     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10189     Register to    = $base$$Register;
 10190     Register count = $cnt$$Register;
 10191     Register temp  = $tmp$$Register;
 10193     Label Ldone;
 10194     __ nop(); // Separate short branches
 10195     // Use BIS for zeroing
 10196     __ bis_zeroing(to, count, temp, Ldone);
 10197     __ bind(Ldone);
 10199   %}
 10200   ins_pipe(long_memory_op);
 10201 %}
 10203 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10204                         o7RegI tmp, flagsReg ccr) %{
 10205   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10206   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10207   ins_cost(300);
 10208   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10209   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10210   ins_pipe(long_memory_op);
 10211 %}
 10213 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10214                        o7RegI tmp, flagsReg ccr) %{
 10215   match(Set result (StrEquals (Binary str1 str2) cnt));
 10216   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10217   ins_cost(300);
 10218   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10219   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10220   ins_pipe(long_memory_op);
 10221 %}
 10223 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10224                       o7RegI tmp2, flagsReg ccr) %{
 10225   match(Set result (AryEq ary1 ary2));
 10226   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10227   ins_cost(300);
 10228   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10229   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10230   ins_pipe(long_memory_op);
 10231 %}
 10234 //---------- Zeros Count Instructions ------------------------------------------
 10236 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10237   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10238   match(Set dst (CountLeadingZerosI src));
 10239   effect(TEMP dst, TEMP tmp, KILL cr);
 10241   // x |= (x >> 1);
 10242   // x |= (x >> 2);
 10243   // x |= (x >> 4);
 10244   // x |= (x >> 8);
 10245   // x |= (x >> 16);
 10246   // return (WORDBITS - popc(x));
 10247   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10248             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10249             "OR      $dst,$tmp,$dst\n\t"
 10250             "SRL     $dst,2,$tmp\n\t"
 10251             "OR      $dst,$tmp,$dst\n\t"
 10252             "SRL     $dst,4,$tmp\n\t"
 10253             "OR      $dst,$tmp,$dst\n\t"
 10254             "SRL     $dst,8,$tmp\n\t"
 10255             "OR      $dst,$tmp,$dst\n\t"
 10256             "SRL     $dst,16,$tmp\n\t"
 10257             "OR      $dst,$tmp,$dst\n\t"
 10258             "POPC    $dst,$dst\n\t"
 10259             "MOV     32,$tmp\n\t"
 10260             "SUB     $tmp,$dst,$dst" %}
 10261   ins_encode %{
 10262     Register Rdst = $dst$$Register;
 10263     Register Rsrc = $src$$Register;
 10264     Register Rtmp = $tmp$$Register;
 10265     __ srl(Rsrc, 1,    Rtmp);
 10266     __ srl(Rsrc, 0,    Rdst);
 10267     __ or3(Rdst, Rtmp, Rdst);
 10268     __ srl(Rdst, 2,    Rtmp);
 10269     __ or3(Rdst, Rtmp, Rdst);
 10270     __ srl(Rdst, 4,    Rtmp);
 10271     __ or3(Rdst, Rtmp, Rdst);
 10272     __ srl(Rdst, 8,    Rtmp);
 10273     __ or3(Rdst, Rtmp, Rdst);
 10274     __ srl(Rdst, 16,   Rtmp);
 10275     __ or3(Rdst, Rtmp, Rdst);
 10276     __ popc(Rdst, Rdst);
 10277     __ mov(BitsPerInt, Rtmp);
 10278     __ sub(Rtmp, Rdst, Rdst);
 10279   %}
 10280   ins_pipe(ialu_reg);
 10281 %}
 10283 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10284   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10285   match(Set dst (CountLeadingZerosL src));
 10286   effect(TEMP dst, TEMP tmp, KILL cr);
 10288   // x |= (x >> 1);
 10289   // x |= (x >> 2);
 10290   // x |= (x >> 4);
 10291   // x |= (x >> 8);
 10292   // x |= (x >> 16);
 10293   // x |= (x >> 32);
 10294   // return (WORDBITS - popc(x));
 10295   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10296             "OR      $src,$tmp,$dst\n\t"
 10297             "SRLX    $dst,2,$tmp\n\t"
 10298             "OR      $dst,$tmp,$dst\n\t"
 10299             "SRLX    $dst,4,$tmp\n\t"
 10300             "OR      $dst,$tmp,$dst\n\t"
 10301             "SRLX    $dst,8,$tmp\n\t"
 10302             "OR      $dst,$tmp,$dst\n\t"
 10303             "SRLX    $dst,16,$tmp\n\t"
 10304             "OR      $dst,$tmp,$dst\n\t"
 10305             "SRLX    $dst,32,$tmp\n\t"
 10306             "OR      $dst,$tmp,$dst\n\t"
 10307             "POPC    $dst,$dst\n\t"
 10308             "MOV     64,$tmp\n\t"
 10309             "SUB     $tmp,$dst,$dst" %}
 10310   ins_encode %{
 10311     Register Rdst = $dst$$Register;
 10312     Register Rsrc = $src$$Register;
 10313     Register Rtmp = $tmp$$Register;
 10314     __ srlx(Rsrc, 1,    Rtmp);
 10315     __ or3( Rsrc, Rtmp, Rdst);
 10316     __ srlx(Rdst, 2,    Rtmp);
 10317     __ or3( Rdst, Rtmp, Rdst);
 10318     __ srlx(Rdst, 4,    Rtmp);
 10319     __ or3( Rdst, Rtmp, Rdst);
 10320     __ srlx(Rdst, 8,    Rtmp);
 10321     __ or3( Rdst, Rtmp, Rdst);
 10322     __ srlx(Rdst, 16,   Rtmp);
 10323     __ or3( Rdst, Rtmp, Rdst);
 10324     __ srlx(Rdst, 32,   Rtmp);
 10325     __ or3( Rdst, Rtmp, Rdst);
 10326     __ popc(Rdst, Rdst);
 10327     __ mov(BitsPerLong, Rtmp);
 10328     __ sub(Rtmp, Rdst, Rdst);
 10329   %}
 10330   ins_pipe(ialu_reg);
 10331 %}
 10333 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10334   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10335   match(Set dst (CountTrailingZerosI src));
 10336   effect(TEMP dst, KILL cr);
 10338   // return popc(~x & (x - 1));
 10339   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10340             "ANDN    $dst,$src,$dst\n\t"
 10341             "SRL     $dst,R_G0,$dst\n\t"
 10342             "POPC    $dst,$dst" %}
 10343   ins_encode %{
 10344     Register Rdst = $dst$$Register;
 10345     Register Rsrc = $src$$Register;
 10346     __ sub(Rsrc, 1, Rdst);
 10347     __ andn(Rdst, Rsrc, Rdst);
 10348     __ srl(Rdst, G0, Rdst);
 10349     __ popc(Rdst, Rdst);
 10350   %}
 10351   ins_pipe(ialu_reg);
 10352 %}
 10354 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10355   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10356   match(Set dst (CountTrailingZerosL src));
 10357   effect(TEMP dst, KILL cr);
 10359   // return popc(~x & (x - 1));
 10360   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10361             "ANDN    $dst,$src,$dst\n\t"
 10362             "POPC    $dst,$dst" %}
 10363   ins_encode %{
 10364     Register Rdst = $dst$$Register;
 10365     Register Rsrc = $src$$Register;
 10366     __ sub(Rsrc, 1, Rdst);
 10367     __ andn(Rdst, Rsrc, Rdst);
 10368     __ popc(Rdst, Rdst);
 10369   %}
 10370   ins_pipe(ialu_reg);
 10371 %}
 10374 //---------- Population Count Instructions -------------------------------------
 10376 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10377   predicate(UsePopCountInstruction);
 10378   match(Set dst (PopCountI src));
 10380   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10381             "POPC   $dst, $dst" %}
 10382   ins_encode %{
 10383     __ srl($src$$Register, G0, $dst$$Register);
 10384     __ popc($dst$$Register, $dst$$Register);
 10385   %}
 10386   ins_pipe(ialu_reg);
 10387 %}
 10389 // Note: Long.bitCount(long) returns an int.
 10390 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10391   predicate(UsePopCountInstruction);
 10392   match(Set dst (PopCountL src));
 10394   format %{ "POPC   $src, $dst" %}
 10395   ins_encode %{
 10396     __ popc($src$$Register, $dst$$Register);
 10397   %}
 10398   ins_pipe(ialu_reg);
 10399 %}
 10402 // ============================================================================
 10403 //------------Bytes reverse--------------------------------------------------
 10405 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10406   match(Set dst (ReverseBytesI src));
 10408   // Op cost is artificially doubled to make sure that load or store
 10409   // instructions are preferred over this one which requires a spill
 10410   // onto a stack slot.
 10411   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10412   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10414   ins_encode %{
 10415     __ set($src$$disp + STACK_BIAS, O7);
 10416     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10417   %}
 10418   ins_pipe( iload_mem );
 10419 %}
 10421 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10422   match(Set dst (ReverseBytesL src));
 10424   // Op cost is artificially doubled to make sure that load or store
 10425   // instructions are preferred over this one which requires a spill
 10426   // onto a stack slot.
 10427   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10428   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10430   ins_encode %{
 10431     __ set($src$$disp + STACK_BIAS, O7);
 10432     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10433   %}
 10434   ins_pipe( iload_mem );
 10435 %}
 10437 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10438   match(Set dst (ReverseBytesUS src));
 10440   // Op cost is artificially doubled to make sure that load or store
 10441   // instructions are preferred over this one which requires a spill
 10442   // onto a stack slot.
 10443   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10444   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10446   ins_encode %{
 10447     // the value was spilled as an int so bias the load
 10448     __ set($src$$disp + STACK_BIAS + 2, O7);
 10449     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10450   %}
 10451   ins_pipe( iload_mem );
 10452 %}
 10454 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10455   match(Set dst (ReverseBytesS src));
 10457   // Op cost is artificially doubled to make sure that load or store
 10458   // instructions are preferred over this one which requires a spill
 10459   // onto a stack slot.
 10460   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10461   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10463   ins_encode %{
 10464     // the value was spilled as an int so bias the load
 10465     __ set($src$$disp + STACK_BIAS + 2, O7);
 10466     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10467   %}
 10468   ins_pipe( iload_mem );
 10469 %}
 10471 // Load Integer reversed byte order
 10472 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10473   match(Set dst (ReverseBytesI (LoadI src)));
 10475   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10476   size(4);
 10477   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10479   ins_encode %{
 10480     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10481   %}
 10482   ins_pipe(iload_mem);
 10483 %}
 10485 // Load Long - aligned and reversed
 10486 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10487   match(Set dst (ReverseBytesL (LoadL src)));
 10489   ins_cost(MEMORY_REF_COST);
 10490   size(4);
 10491   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10493   ins_encode %{
 10494     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10495   %}
 10496   ins_pipe(iload_mem);
 10497 %}
 10499 // Load unsigned short / char reversed byte order
 10500 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10501   match(Set dst (ReverseBytesUS (LoadUS src)));
 10503   ins_cost(MEMORY_REF_COST);
 10504   size(4);
 10505   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10507   ins_encode %{
 10508     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10509   %}
 10510   ins_pipe(iload_mem);
 10511 %}
 10513 // Load short reversed byte order
 10514 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10515   match(Set dst (ReverseBytesS (LoadS src)));
 10517   ins_cost(MEMORY_REF_COST);
 10518   size(4);
 10519   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10521   ins_encode %{
 10522     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10523   %}
 10524   ins_pipe(iload_mem);
 10525 %}
 10527 // Store Integer reversed byte order
 10528 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10529   match(Set dst (StoreI dst (ReverseBytesI src)));
 10531   ins_cost(MEMORY_REF_COST);
 10532   size(4);
 10533   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10535   ins_encode %{
 10536     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10537   %}
 10538   ins_pipe(istore_mem_reg);
 10539 %}
 10541 // Store Long reversed byte order
 10542 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10543   match(Set dst (StoreL dst (ReverseBytesL src)));
 10545   ins_cost(MEMORY_REF_COST);
 10546   size(4);
 10547   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10549   ins_encode %{
 10550     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10551   %}
 10552   ins_pipe(istore_mem_reg);
 10553 %}
 10555 // Store unsighed short/char reversed byte order
 10556 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10557   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10559   ins_cost(MEMORY_REF_COST);
 10560   size(4);
 10561   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10563   ins_encode %{
 10564     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10565   %}
 10566   ins_pipe(istore_mem_reg);
 10567 %}
 10569 // Store short reversed byte order
 10570 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10571   match(Set dst (StoreC dst (ReverseBytesS src)));
 10573   ins_cost(MEMORY_REF_COST);
 10574   size(4);
 10575   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10577   ins_encode %{
 10578     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10579   %}
 10580   ins_pipe(istore_mem_reg);
 10581 %}
 10583 // ====================VECTOR INSTRUCTIONS=====================================
 10585 // Load Aligned Packed values into a Double Register
 10586 instruct loadV8(regD dst, memory mem) %{
 10587   predicate(n->as_LoadVector()->memory_size() == 8);
 10588   match(Set dst (LoadVector mem));
 10589   ins_cost(MEMORY_REF_COST);
 10590   size(4);
 10591   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10592   ins_encode %{
 10593     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10594   %}
 10595   ins_pipe(floadD_mem);
 10596 %}
 10598 // Store Vector in Double register to memory
 10599 instruct storeV8(memory mem, regD src) %{
 10600   predicate(n->as_StoreVector()->memory_size() == 8);
 10601   match(Set mem (StoreVector mem src));
 10602   ins_cost(MEMORY_REF_COST);
 10603   size(4);
 10604   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10605   ins_encode %{
 10606     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10607   %}
 10608   ins_pipe(fstoreD_mem_reg);
 10609 %}
 10611 // Store Zero into vector in memory
 10612 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10613   predicate(n->as_StoreVector()->memory_size() == 8);
 10614   match(Set mem (StoreVector mem (ReplicateB zero)));
 10615   ins_cost(MEMORY_REF_COST);
 10616   size(4);
 10617   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10618   ins_encode %{
 10619     __ stx(G0, $mem$$Address);
 10620   %}
 10621   ins_pipe(fstoreD_mem_zero);
 10622 %}
 10624 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10625   predicate(n->as_StoreVector()->memory_size() == 8);
 10626   match(Set mem (StoreVector mem (ReplicateS zero)));
 10627   ins_cost(MEMORY_REF_COST);
 10628   size(4);
 10629   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10630   ins_encode %{
 10631     __ stx(G0, $mem$$Address);
 10632   %}
 10633   ins_pipe(fstoreD_mem_zero);
 10634 %}
 10636 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10637   predicate(n->as_StoreVector()->memory_size() == 8);
 10638   match(Set mem (StoreVector mem (ReplicateI zero)));
 10639   ins_cost(MEMORY_REF_COST);
 10640   size(4);
 10641   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10642   ins_encode %{
 10643     __ stx(G0, $mem$$Address);
 10644   %}
 10645   ins_pipe(fstoreD_mem_zero);
 10646 %}
 10648 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10649   predicate(n->as_StoreVector()->memory_size() == 8);
 10650   match(Set mem (StoreVector mem (ReplicateF zero)));
 10651   ins_cost(MEMORY_REF_COST);
 10652   size(4);
 10653   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10654   ins_encode %{
 10655     __ stx(G0, $mem$$Address);
 10656   %}
 10657   ins_pipe(fstoreD_mem_zero);
 10658 %}
 10660 // Replicate scalar to packed byte values into Double register
 10661 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10662   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10663   match(Set dst (ReplicateB src));
 10664   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10665   format %{ "SLLX  $src,56,$tmp\n\t"
 10666             "SRLX  $tmp, 8,$tmp2\n\t"
 10667             "OR    $tmp,$tmp2,$tmp\n\t"
 10668             "SRLX  $tmp,16,$tmp2\n\t"
 10669             "OR    $tmp,$tmp2,$tmp\n\t"
 10670             "SRLX  $tmp,32,$tmp2\n\t"
 10671             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10672             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10673   ins_encode %{
 10674     Register Rsrc = $src$$Register;
 10675     Register Rtmp = $tmp$$Register;
 10676     Register Rtmp2 = $tmp2$$Register;
 10677     __ sllx(Rsrc,    56, Rtmp);
 10678     __ srlx(Rtmp,     8, Rtmp2);
 10679     __ or3 (Rtmp, Rtmp2, Rtmp);
 10680     __ srlx(Rtmp,    16, Rtmp2);
 10681     __ or3 (Rtmp, Rtmp2, Rtmp);
 10682     __ srlx(Rtmp,    32, Rtmp2);
 10683     __ or3 (Rtmp, Rtmp2, Rtmp);
 10684     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10685   %}
 10686   ins_pipe(ialu_reg);
 10687 %}
 10689 // Replicate scalar to packed byte values into Double stack
 10690 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10691   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10692   match(Set dst (ReplicateB src));
 10693   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10694   format %{ "SLLX  $src,56,$tmp\n\t"
 10695             "SRLX  $tmp, 8,$tmp2\n\t"
 10696             "OR    $tmp,$tmp2,$tmp\n\t"
 10697             "SRLX  $tmp,16,$tmp2\n\t"
 10698             "OR    $tmp,$tmp2,$tmp\n\t"
 10699             "SRLX  $tmp,32,$tmp2\n\t"
 10700             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10701             "STX   $tmp,$dst\t! regL to stkD" %}
 10702   ins_encode %{
 10703     Register Rsrc = $src$$Register;
 10704     Register Rtmp = $tmp$$Register;
 10705     Register Rtmp2 = $tmp2$$Register;
 10706     __ sllx(Rsrc,    56, Rtmp);
 10707     __ srlx(Rtmp,     8, Rtmp2);
 10708     __ or3 (Rtmp, Rtmp2, Rtmp);
 10709     __ srlx(Rtmp,    16, Rtmp2);
 10710     __ or3 (Rtmp, Rtmp2, Rtmp);
 10711     __ srlx(Rtmp,    32, Rtmp2);
 10712     __ or3 (Rtmp, Rtmp2, Rtmp);
 10713     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10714     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10715   %}
 10716   ins_pipe(ialu_reg);
 10717 %}
 10719 // Replicate scalar constant to packed byte values in Double register
 10720 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10721   predicate(n->as_Vector()->length() == 8);
 10722   match(Set dst (ReplicateB con));
 10723   effect(KILL tmp);
 10724   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10725   ins_encode %{
 10726     // XXX This is a quick fix for 6833573.
 10727     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10728     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10729     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10730   %}
 10731   ins_pipe(loadConFD);
 10732 %}
 10734 // Replicate scalar to packed char/short values into Double register
 10735 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10736   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10737   match(Set dst (ReplicateS src));
 10738   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10739   format %{ "SLLX  $src,48,$tmp\n\t"
 10740             "SRLX  $tmp,16,$tmp2\n\t"
 10741             "OR    $tmp,$tmp2,$tmp\n\t"
 10742             "SRLX  $tmp,32,$tmp2\n\t"
 10743             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10744             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10745   ins_encode %{
 10746     Register Rsrc = $src$$Register;
 10747     Register Rtmp = $tmp$$Register;
 10748     Register Rtmp2 = $tmp2$$Register;
 10749     __ sllx(Rsrc,    48, Rtmp);
 10750     __ srlx(Rtmp,    16, Rtmp2);
 10751     __ or3 (Rtmp, Rtmp2, Rtmp);
 10752     __ srlx(Rtmp,    32, Rtmp2);
 10753     __ or3 (Rtmp, Rtmp2, Rtmp);
 10754     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10755   %}
 10756   ins_pipe(ialu_reg);
 10757 %}
 10759 // Replicate scalar to packed char/short values into Double stack
 10760 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10761   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10762   match(Set dst (ReplicateS src));
 10763   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10764   format %{ "SLLX  $src,48,$tmp\n\t"
 10765             "SRLX  $tmp,16,$tmp2\n\t"
 10766             "OR    $tmp,$tmp2,$tmp\n\t"
 10767             "SRLX  $tmp,32,$tmp2\n\t"
 10768             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10769             "STX   $tmp,$dst\t! regL to stkD" %}
 10770   ins_encode %{
 10771     Register Rsrc = $src$$Register;
 10772     Register Rtmp = $tmp$$Register;
 10773     Register Rtmp2 = $tmp2$$Register;
 10774     __ sllx(Rsrc,    48, Rtmp);
 10775     __ srlx(Rtmp,    16, Rtmp2);
 10776     __ or3 (Rtmp, Rtmp2, Rtmp);
 10777     __ srlx(Rtmp,    32, Rtmp2);
 10778     __ or3 (Rtmp, Rtmp2, Rtmp);
 10779     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10780     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10781   %}
 10782   ins_pipe(ialu_reg);
 10783 %}
 10785 // Replicate scalar constant to packed char/short values in Double register
 10786 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10787   predicate(n->as_Vector()->length() == 4);
 10788   match(Set dst (ReplicateS con));
 10789   effect(KILL tmp);
 10790   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10791   ins_encode %{
 10792     // XXX This is a quick fix for 6833573.
 10793     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10794     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10795     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10796   %}
 10797   ins_pipe(loadConFD);
 10798 %}
 10800 // Replicate scalar to packed int values into Double register
 10801 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10802   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10803   match(Set dst (ReplicateI src));
 10804   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10805   format %{ "SLLX  $src,32,$tmp\n\t"
 10806             "SRLX  $tmp,32,$tmp2\n\t"
 10807             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10808             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10809   ins_encode %{
 10810     Register Rsrc = $src$$Register;
 10811     Register Rtmp = $tmp$$Register;
 10812     Register Rtmp2 = $tmp2$$Register;
 10813     __ sllx(Rsrc,    32, Rtmp);
 10814     __ srlx(Rtmp,    32, Rtmp2);
 10815     __ or3 (Rtmp, Rtmp2, Rtmp);
 10816     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10817   %}
 10818   ins_pipe(ialu_reg);
 10819 %}
 10821 // Replicate scalar to packed int values into Double stack
 10822 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10823   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10824   match(Set dst (ReplicateI src));
 10825   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10826   format %{ "SLLX  $src,32,$tmp\n\t"
 10827             "SRLX  $tmp,32,$tmp2\n\t"
 10828             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10829             "STX   $tmp,$dst\t! regL to stkD" %}
 10830   ins_encode %{
 10831     Register Rsrc = $src$$Register;
 10832     Register Rtmp = $tmp$$Register;
 10833     Register Rtmp2 = $tmp2$$Register;
 10834     __ sllx(Rsrc,    32, Rtmp);
 10835     __ srlx(Rtmp,    32, Rtmp2);
 10836     __ or3 (Rtmp, Rtmp2, Rtmp);
 10837     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10838     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10839   %}
 10840   ins_pipe(ialu_reg);
 10841 %}
 10843 // Replicate scalar zero constant to packed int values in Double register
 10844 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10845   predicate(n->as_Vector()->length() == 2);
 10846   match(Set dst (ReplicateI con));
 10847   effect(KILL tmp);
 10848   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10849   ins_encode %{
 10850     // XXX This is a quick fix for 6833573.
 10851     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10852     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10853     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10854   %}
 10855   ins_pipe(loadConFD);
 10856 %}
 10858 // Replicate scalar to packed float values into Double stack
 10859 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10860   predicate(n->as_Vector()->length() == 2);
 10861   match(Set dst (ReplicateF src));
 10862   ins_cost(MEMORY_REF_COST*2);
 10863   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10864             "STF    $src,$dst.lo" %}
 10865   opcode(Assembler::stf_op3);
 10866   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10867   ins_pipe(fstoreF_stk_reg);
 10868 %}
 10870 // Replicate scalar zero constant to packed float values in Double register
 10871 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10872   predicate(n->as_Vector()->length() == 2);
 10873   match(Set dst (ReplicateF con));
 10874   effect(KILL tmp);
 10875   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10876   ins_encode %{
 10877     // XXX This is a quick fix for 6833573.
 10878     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10879     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10880     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10881   %}
 10882   ins_pipe(loadConFD);
 10883 %}
 10885 //----------PEEPHOLE RULES-----------------------------------------------------
 10886 // These must follow all instruction definitions as they use the names
 10887 // defined in the instructions definitions.
 10888 //
 10889 // peepmatch ( root_instr_name [preceding_instruction]* );
 10890 //
 10891 // peepconstraint %{
 10892 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10893 //  [, ...] );
 10894 // // instruction numbers are zero-based using left to right order in peepmatch
 10895 //
 10896 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10897 // // provide an instruction_number.operand_name for each operand that appears
 10898 // // in the replacement instruction's match rule
 10899 //
 10900 // ---------VM FLAGS---------------------------------------------------------
 10901 //
 10902 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10903 //
 10904 // Each peephole rule is given an identifying number starting with zero and
 10905 // increasing by one in the order seen by the parser.  An individual peephole
 10906 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10907 // on the command-line.
 10908 //
 10909 // ---------CURRENT LIMITATIONS----------------------------------------------
 10910 //
 10911 // Only match adjacent instructions in same basic block
 10912 // Only equality constraints
 10913 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10914 // Only one replacement instruction
 10915 //
 10916 // ---------EXAMPLE----------------------------------------------------------
 10917 //
 10918 // // pertinent parts of existing instructions in architecture description
 10919 // instruct movI(eRegI dst, eRegI src) %{
 10920 //   match(Set dst (CopyI src));
 10921 // %}
 10922 //
 10923 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10924 //   match(Set dst (AddI dst src));
 10925 //   effect(KILL cr);
 10926 // %}
 10927 //
 10928 // // Change (inc mov) to lea
 10929 // peephole %{
 10930 //   // increment preceeded by register-register move
 10931 //   peepmatch ( incI_eReg movI );
 10932 //   // require that the destination register of the increment
 10933 //   // match the destination register of the move
 10934 //   peepconstraint ( 0.dst == 1.dst );
 10935 //   // construct a replacement instruction that sets
 10936 //   // the destination to ( move's source register + one )
 10937 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10938 // %}
 10939 //
 10941 // // Change load of spilled value to only a spill
 10942 // instruct storeI(memory mem, eRegI src) %{
 10943 //   match(Set mem (StoreI mem src));
 10944 // %}
 10945 //
 10946 // instruct loadI(eRegI dst, memory mem) %{
 10947 //   match(Set dst (LoadI mem));
 10948 // %}
 10949 //
 10950 // peephole %{
 10951 //   peepmatch ( loadI storeI );
 10952 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10953 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10954 // %}
 10956 //----------SMARTSPILL RULES---------------------------------------------------
 10957 // These must follow all instruction definitions as they use the names
 10958 // defined in the instructions definitions.
 10959 //
 10960 // SPARC will probably not have any of these rules due to RISC instruction set.
 10962 //----------PIPELINE-----------------------------------------------------------
 10963 // Rules which define the behavior of the target architectures pipeline.

mercurial