src/cpu/sparc/vm/assembler_sparc.hpp

Tue, 24 Dec 2013 11:48:39 -0800

author
mikael
date
Tue, 24 Dec 2013 11:48:39 -0800
changeset 6198
55fb97c4c58d
parent 5283
46c544b8fbfc
child 6312
04d32e7fad07
permissions
-rw-r--r--

8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Summary: Copyright year updated for files modified during 2013
Reviewed-by: twisti, iveresov

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    28 #include "asm/register.hpp"
    30 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
    31 // level; i.e., what you write
    32 // is what you get. The Assembler is generating code into a CodeBuffer.
    34 class Assembler : public AbstractAssembler  {
    35   friend class AbstractAssembler;
    36   friend class AddressLiteral;
    38   // code patchers need various routines like inv_wdisp()
    39   friend class NativeInstruction;
    40   friend class NativeGeneralJump;
    41   friend class Relocation;
    42   friend class Label;
    44  public:
    45   // op carries format info; see page 62 & 267
    47   enum ops {
    48     call_op   = 1, // fmt 1
    49     branch_op = 0, // also sethi (fmt2)
    50     arith_op  = 2, // fmt 3, arith & misc
    51     ldst_op   = 3  // fmt 3, load/store
    52   };
    54   enum op2s {
    55     bpr_op2   = 3,
    56     fb_op2    = 6,
    57     fbp_op2   = 5,
    58     br_op2    = 2,
    59     bp_op2    = 1,
    60     sethi_op2 = 4
    61   };
    63   enum op3s {
    64     // selected op3s
    65     add_op3      = 0x00,
    66     and_op3      = 0x01,
    67     or_op3       = 0x02,
    68     xor_op3      = 0x03,
    69     sub_op3      = 0x04,
    70     andn_op3     = 0x05,
    71     orn_op3      = 0x06,
    72     xnor_op3     = 0x07,
    73     addc_op3     = 0x08,
    74     mulx_op3     = 0x09,
    75     umul_op3     = 0x0a,
    76     smul_op3     = 0x0b,
    77     subc_op3     = 0x0c,
    78     udivx_op3    = 0x0d,
    79     udiv_op3     = 0x0e,
    80     sdiv_op3     = 0x0f,
    82     addcc_op3    = 0x10,
    83     andcc_op3    = 0x11,
    84     orcc_op3     = 0x12,
    85     xorcc_op3    = 0x13,
    86     subcc_op3    = 0x14,
    87     andncc_op3   = 0x15,
    88     orncc_op3    = 0x16,
    89     xnorcc_op3   = 0x17,
    90     addccc_op3   = 0x18,
    91     umulcc_op3   = 0x1a,
    92     smulcc_op3   = 0x1b,
    93     subccc_op3   = 0x1c,
    94     udivcc_op3   = 0x1e,
    95     sdivcc_op3   = 0x1f,
    97     taddcc_op3   = 0x20,
    98     tsubcc_op3   = 0x21,
    99     taddcctv_op3 = 0x22,
   100     tsubcctv_op3 = 0x23,
   101     mulscc_op3   = 0x24,
   102     sll_op3      = 0x25,
   103     sllx_op3     = 0x25,
   104     srl_op3      = 0x26,
   105     srlx_op3     = 0x26,
   106     sra_op3      = 0x27,
   107     srax_op3     = 0x27,
   108     rdreg_op3    = 0x28,
   109     membar_op3   = 0x28,
   111     flushw_op3   = 0x2b,
   112     movcc_op3    = 0x2c,
   113     sdivx_op3    = 0x2d,
   114     popc_op3     = 0x2e,
   115     movr_op3     = 0x2f,
   117     sir_op3      = 0x30,
   118     wrreg_op3    = 0x30,
   119     saved_op3    = 0x31,
   121     fpop1_op3    = 0x34,
   122     fpop2_op3    = 0x35,
   123     impdep1_op3  = 0x36,
   124     impdep2_op3  = 0x37,
   125     jmpl_op3     = 0x38,
   126     rett_op3     = 0x39,
   127     trap_op3     = 0x3a,
   128     flush_op3    = 0x3b,
   129     save_op3     = 0x3c,
   130     restore_op3  = 0x3d,
   131     done_op3     = 0x3e,
   132     retry_op3    = 0x3e,
   134     lduw_op3     = 0x00,
   135     ldub_op3     = 0x01,
   136     lduh_op3     = 0x02,
   137     ldd_op3      = 0x03,
   138     stw_op3      = 0x04,
   139     stb_op3      = 0x05,
   140     sth_op3      = 0x06,
   141     std_op3      = 0x07,
   142     ldsw_op3     = 0x08,
   143     ldsb_op3     = 0x09,
   144     ldsh_op3     = 0x0a,
   145     ldx_op3      = 0x0b,
   147     stx_op3      = 0x0e,
   148     swap_op3     = 0x0f,
   150     stwa_op3     = 0x14,
   151     stxa_op3     = 0x1e,
   153     ldf_op3      = 0x20,
   154     ldfsr_op3    = 0x21,
   155     ldqf_op3     = 0x22,
   156     lddf_op3     = 0x23,
   157     stf_op3      = 0x24,
   158     stfsr_op3    = 0x25,
   159     stqf_op3     = 0x26,
   160     stdf_op3     = 0x27,
   162     prefetch_op3 = 0x2d,
   164     casa_op3     = 0x3c,
   165     casxa_op3    = 0x3e,
   167     mftoi_op3    = 0x36,
   169     alt_bit_op3  = 0x10,
   170      cc_bit_op3  = 0x10
   171   };
   173   enum opfs {
   174     // selected opfs
   175     fmovs_opf   = 0x01,
   176     fmovd_opf   = 0x02,
   178     fnegs_opf   = 0x05,
   179     fnegd_opf   = 0x06,
   181     fadds_opf   = 0x41,
   182     faddd_opf   = 0x42,
   183     fsubs_opf   = 0x45,
   184     fsubd_opf   = 0x46,
   186     fmuls_opf   = 0x49,
   187     fmuld_opf   = 0x4a,
   188     fdivs_opf   = 0x4d,
   189     fdivd_opf   = 0x4e,
   191     fcmps_opf   = 0x51,
   192     fcmpd_opf   = 0x52,
   194     fstox_opf   = 0x81,
   195     fdtox_opf   = 0x82,
   196     fxtos_opf   = 0x84,
   197     fxtod_opf   = 0x88,
   198     fitos_opf   = 0xc4,
   199     fdtos_opf   = 0xc6,
   200     fitod_opf   = 0xc8,
   201     fstod_opf   = 0xc9,
   202     fstoi_opf   = 0xd1,
   203     fdtoi_opf   = 0xd2,
   205     mdtox_opf   = 0x110,
   206     mstouw_opf  = 0x111,
   207     mstosw_opf  = 0x113,
   208     mxtod_opf   = 0x118,
   209     mwtos_opf   = 0x119
   210   };
   212   enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez  };
   214   enum Condition {
   215      // for FBfcc & FBPfcc instruction
   216     f_never                     = 0,
   217     f_notEqual                  = 1,
   218     f_notZero                   = 1,
   219     f_lessOrGreater             = 2,
   220     f_unorderedOrLess           = 3,
   221     f_less                      = 4,
   222     f_unorderedOrGreater        = 5,
   223     f_greater                   = 6,
   224     f_unordered                 = 7,
   225     f_always                    = 8,
   226     f_equal                     = 9,
   227     f_zero                      = 9,
   228     f_unorderedOrEqual          = 10,
   229     f_greaterOrEqual            = 11,
   230     f_unorderedOrGreaterOrEqual = 12,
   231     f_lessOrEqual               = 13,
   232     f_unorderedOrLessOrEqual    = 14,
   233     f_ordered                   = 15,
   235     // V8 coproc, pp 123 v8 manual
   237     cp_always  = 8,
   238     cp_never   = 0,
   239     cp_3       = 7,
   240     cp_2       = 6,
   241     cp_2or3    = 5,
   242     cp_1       = 4,
   243     cp_1or3    = 3,
   244     cp_1or2    = 2,
   245     cp_1or2or3 = 1,
   246     cp_0       = 9,
   247     cp_0or3    = 10,
   248     cp_0or2    = 11,
   249     cp_0or2or3 = 12,
   250     cp_0or1    = 13,
   251     cp_0or1or3 = 14,
   252     cp_0or1or2 = 15,
   255     // for integers
   257     never                 =  0,
   258     equal                 =  1,
   259     zero                  =  1,
   260     lessEqual             =  2,
   261     less                  =  3,
   262     lessEqualUnsigned     =  4,
   263     lessUnsigned          =  5,
   264     carrySet              =  5,
   265     negative              =  6,
   266     overflowSet           =  7,
   267     always                =  8,
   268     notEqual              =  9,
   269     notZero               =  9,
   270     greater               =  10,
   271     greaterEqual          =  11,
   272     greaterUnsigned       =  12,
   273     greaterEqualUnsigned  =  13,
   274     carryClear            =  13,
   275     positive              =  14,
   276     overflowClear         =  15
   277   };
   279   enum CC {
   280     icc  = 0,  xcc  = 2,
   281     // ptr_cc is the correct condition code for a pointer or intptr_t:
   282     ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
   283     fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
   284   };
   286   enum PrefetchFcn {
   287     severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
   288   };
   290  public:
   291   // Helper functions for groups of instructions
   293   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   295   enum Membar_mask_bits { // page 184, v9
   296     StoreStore = 1 << 3,
   297     LoadStore  = 1 << 2,
   298     StoreLoad  = 1 << 1,
   299     LoadLoad   = 1 << 0,
   301     Sync       = 1 << 6,
   302     MemIssue   = 1 << 5,
   303     Lookaside  = 1 << 4
   304   };
   306   static bool is_in_wdisp_range(address a, address b, int nbits) {
   307     intptr_t d = intptr_t(b) - intptr_t(a);
   308     return is_simm(d, nbits + 2);
   309   }
   311   address target_distance(Label& L) {
   312     // Assembler::target(L) should be called only when
   313     // a branch instruction is emitted since non-bound
   314     // labels record current pc() as a branch address.
   315     if (L.is_bound()) return target(L);
   316     // Return current address for non-bound labels.
   317     return pc();
   318   }
   320   // test if label is in simm16 range in words (wdisp16).
   321   bool is_in_wdisp16_range(Label& L) {
   322     return is_in_wdisp_range(target_distance(L), pc(), 16);
   323   }
   324   // test if the distance between two addresses fits in simm30 range in words
   325   static bool is_in_wdisp30_range(address a, address b) {
   326     return is_in_wdisp_range(a, b, 30);
   327   }
   329   enum ASIs { // page 72, v9
   330     ASI_PRIMARY            = 0x80,
   331     ASI_PRIMARY_NOFAULT    = 0x82,
   332     ASI_PRIMARY_LITTLE     = 0x88,
   333     // Block initializing store
   334     ASI_ST_BLKINIT_PRIMARY = 0xE2,
   335     // Most-Recently-Used (MRU) BIS variant
   336     ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
   337     // add more from book as needed
   338   };
   340  protected:
   341   // helpers
   343   // x is supposed to fit in a field "nbits" wide
   344   // and be sign-extended. Check the range.
   346   static void assert_signed_range(intptr_t x, int nbits) {
   347     assert(nbits == 32 || (-(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1)),
   348            err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
   349   }
   351   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   352     assert( (x & 3) == 0, "not word aligned");
   353     assert_signed_range(x, nbits + 2);
   354   }
   356   static void assert_unsigned_const(int x, int nbits) {
   357     assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
   358   }
   360   // fields: note bits numbered from LSB = 0,
   361   //  fields known by inclusive bit range
   363   static int fmask(juint hi_bit, juint lo_bit) {
   364     assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
   365     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   366   }
   368   // inverse of u_field
   370   static int inv_u_field(int x, int hi_bit, int lo_bit) {
   371     juint r = juint(x) >> lo_bit;
   372     r &= fmask( hi_bit, lo_bit);
   373     return int(r);
   374   }
   377   // signed version: extract from field and sign-extend
   379   static int inv_s_field(int x, int hi_bit, int lo_bit) {
   380     int sign_shift = 31 - hi_bit;
   381     return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
   382   }
   384   // given a field that ranges from hi_bit to lo_bit (inclusive,
   385   // LSB = 0), and an unsigned value for the field,
   386   // shift it into the field
   388 #ifdef ASSERT
   389   static int u_field(int x, int hi_bit, int lo_bit) {
   390     assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
   391             "value out of range");
   392     int r = x << lo_bit;
   393     assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   394     return r;
   395   }
   396 #else
   397   // make sure this is inlined as it will reduce code size significantly
   398   #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
   399 #endif
   401   static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
   402   static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
   403   static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
   404   static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
   406   static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
   408   static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
   409   static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
   410   static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
   412   static int op(       int         x)  { return  u_field(x,             31, 30); }
   413   static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
   414   static int fcn(      int         x)  { return  u_field(x,             29, 25); }
   415   static int op3(      int         x)  { return  u_field(x,             24, 19); }
   416   static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
   417   static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
   418   static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
   419   static int cond(     int         x)  { return  u_field(x,             28, 25); }
   420   static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
   421   static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
   422   static int op2(      int         x)  { return  u_field(x,             24, 22); }
   423   static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
   424   static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
   425   static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
   426   static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
   427   static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
   428   static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
   429   static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
   430   static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
   431   static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
   432   static int opf(      int         x)  { return  u_field(x,             13,  5); }
   434   static bool is_cbcond( int x ) {
   435     return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
   436             inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
   437   }
   438   static bool is_cxb( int x ) {
   439     assert(is_cbcond(x), "wrong instruction");
   440     return (x & (1<<21)) != 0;
   441   }
   442   static int cond_cbcond( int         x)  { return  u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
   443   static int inv_cond_cbcond(int      x)  {
   444     assert(is_cbcond(x), "wrong instruction");
   445     return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
   446   }
   448   static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
   449   static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
   451   static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
   452   static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
   453   static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
   455   // some float instructions use this encoding on the op3 field
   456   static int alt_op3(int op, FloatRegisterImpl::Width w) {
   457     int r;
   458     switch(w) {
   459      case FloatRegisterImpl::S: r = op + 0;  break;
   460      case FloatRegisterImpl::D: r = op + 3;  break;
   461      case FloatRegisterImpl::Q: r = op + 2;  break;
   462      default: ShouldNotReachHere(); break;
   463     }
   464     return op3(r);
   465   }
   468   // compute inverse of simm
   469   static int inv_simm(int x, int nbits) {
   470     return (int)(x << (32 - nbits)) >> (32 - nbits);
   471   }
   473   static int inv_simm13( int x ) { return inv_simm(x, 13); }
   475   // signed immediate, in low bits, nbits long
   476   static int simm(int x, int nbits) {
   477     assert_signed_range(x, nbits);
   478     return x  &  (( 1 << nbits ) - 1);
   479   }
   481   // compute inverse of wdisp16
   482   static intptr_t inv_wdisp16(int x, intptr_t pos) {
   483     int lo = x & (( 1 << 14 ) - 1);
   484     int hi = (x >> 20) & 3;
   485     if (hi >= 2) hi |= ~1;
   486     return (((hi << 14) | lo) << 2) + pos;
   487   }
   489   // word offset, 14 bits at LSend, 2 bits at B21, B20
   490   static int wdisp16(intptr_t x, intptr_t off) {
   491     intptr_t xx = x - off;
   492     assert_signed_word_disp_range(xx, 16);
   493     int r =  (xx >> 2) & ((1 << 14) - 1)
   494            |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
   495     assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
   496     return r;
   497   }
   499   // compute inverse of wdisp10
   500   static intptr_t inv_wdisp10(int x, intptr_t pos) {
   501     assert(is_cbcond(x), "wrong instruction");
   502     int lo = inv_u_field(x, 12, 5);
   503     int hi = (x >> 19) & 3;
   504     if (hi >= 2) hi |= ~1;
   505     return (((hi << 8) | lo) << 2) + pos;
   506   }
   508   // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
   509   static int wdisp10(intptr_t x, intptr_t off) {
   510     assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
   511     intptr_t xx = x - off;
   512     assert_signed_word_disp_range(xx, 10);
   513     int r =  ( ( (xx >>  2   ) & ((1 << 8) - 1) ) <<  5 )
   514            | ( ( (xx >> (2+8)) & 3              ) << 19 );
   515     // Have to fake cbcond instruction to pass assert in inv_wdisp10()
   516     assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x,  "inverse is not inverse");
   517     return r;
   518   }
   520   // word displacement in low-order nbits bits
   522   static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
   523     int pre_sign_extend = x & (( 1 << nbits ) - 1);
   524     int r =  pre_sign_extend >= ( 1 << (nbits-1) )
   525        ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
   526        :   pre_sign_extend;
   527     return (r << 2) + pos;
   528   }
   530   static int wdisp( intptr_t x, intptr_t off, int nbits ) {
   531     intptr_t xx = x - off;
   532     assert_signed_word_disp_range(xx, nbits);
   533     int r =  (xx >> 2) & (( 1 << nbits ) - 1);
   534     assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
   535     return r;
   536   }
   539   // Extract the top 32 bits in a 64 bit word
   540   static int32_t hi32( int64_t x ) {
   541     int32_t r = int32_t( (uint64_t)x >> 32 );
   542     return r;
   543   }
   545   // given a sethi instruction, extract the constant, left-justified
   546   static int inv_hi22( int x ) {
   547     return x << 10;
   548   }
   550   // create an imm22 field, given a 32-bit left-justified constant
   551   static int hi22( int x ) {
   552     int r = int( juint(x) >> 10 );
   553     assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
   554     return r;
   555   }
   557   // create a low10 __value__ (not a field) for a given a 32-bit constant
   558   static int low10( int x ) {
   559     return x & ((1 << 10) - 1);
   560   }
   562   // instruction only in VIS3
   563   static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
   565   // instruction only in v9
   566   static void v9_only() { } // do nothing
   568   // instruction deprecated in v9
   569   static void v9_dep()  { } // do nothing for now
   571   // v8 has no CC field
   572   static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
   574  protected:
   575   // Simple delay-slot scheme:
   576   // In order to check the programmer, the assembler keeps track of deley slots.
   577   // It forbids CTIs in delay slots (conservative, but should be OK).
   578   // Also, when putting an instruction into a delay slot, you must say
   579   // asm->delayed()->add(...), in order to check that you don't omit
   580   // delay-slot instructions.
   581   // To implement this, we use a simple FSA
   583 #ifdef ASSERT
   584   #define CHECK_DELAY
   585 #endif
   586 #ifdef CHECK_DELAY
   587   enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
   588 #endif
   590  public:
   591   // Tells assembler next instruction must NOT be in delay slot.
   592   // Use at start of multinstruction macros.
   593   void assert_not_delayed() {
   594     // This is a separate overloading to avoid creation of string constants
   595     // in non-asserted code--with some compilers this pollutes the object code.
   596 #ifdef CHECK_DELAY
   597     assert_not_delayed("next instruction should not be a delay slot");
   598 #endif
   599   }
   600   void assert_not_delayed(const char* msg) {
   601 #ifdef CHECK_DELAY
   602     assert(delay_state == no_delay, msg);
   603 #endif
   604   }
   606  protected:
   607   // Delay slot helpers
   608   // cti is called when emitting control-transfer instruction,
   609   // BEFORE doing the emitting.
   610   // Only effective when assertion-checking is enabled.
   611   void cti() {
   612 #ifdef CHECK_DELAY
   613     assert_not_delayed("cti should not be in delay slot");
   614 #endif
   615   }
   617   // called when emitting cti with a delay slot, AFTER emitting
   618   void has_delay_slot() {
   619 #ifdef CHECK_DELAY
   620     assert_not_delayed("just checking");
   621     delay_state = at_delay_slot;
   622 #endif
   623   }
   625   // cbcond instruction should not be generated one after an other
   626   bool cbcond_before() {
   627     if (offset() == 0) return false; // it is first instruction
   628     int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
   629     return is_cbcond(x);
   630   }
   632   void no_cbcond_before() {
   633     assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
   634   }
   636 public:
   638   bool use_cbcond(Label& L) {
   639     if (!UseCBCond || cbcond_before()) return false;
   640     intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
   641     assert( (x & 3) == 0, "not word aligned");
   642     return is_simm12(x);
   643   }
   645   // Tells assembler you know that next instruction is delayed
   646   Assembler* delayed() {
   647 #ifdef CHECK_DELAY
   648     assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
   649     delay_state = filling_delay_slot;
   650 #endif
   651     return this;
   652   }
   654   void flush() {
   655 #ifdef CHECK_DELAY
   656     assert ( delay_state == no_delay, "ending code with a delay slot");
   657 #endif
   658     AbstractAssembler::flush();
   659   }
   661   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
   662   inline void emit_data(int x) { emit_int32(x); }
   663   inline void emit_data(int, RelocationHolder const&);
   664   inline void emit_data(int, relocInfo::relocType rtype);
   665   // helper for above fcns
   666   inline void check_delay();
   669  public:
   670   // instructions, refer to page numbers in the SPARC Architecture Manual, V9
   672   // pp 135 (addc was addx in v8)
   674   inline void add(Register s1, Register s2, Register d );
   675   inline void add(Register s1, int simm13a, Register d );
   677   void addcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   678   void addcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   679   void addc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
   680   void addc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   681   void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   682   void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   685   // pp 136
   687   inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
   688   inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
   690   // compare and branch
   691   inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
   692   inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
   694  protected: // use MacroAssembler::br instead
   696   // pp 138
   698   inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   699   inline void fb( Condition c, bool a, Label& L );
   701   // pp 141
   703   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   704   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
   706   // pp 144
   708   inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   709   inline void br( Condition c, bool a, Label& L );
   711   // pp 146
   713   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   714   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
   716   // pp 149
   718   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
   719   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
   721  public:
   723   // pp 150
   725   // These instructions compare the contents of s2 with the contents of
   726   // memory at address in s1. If the values are equal, the contents of memory
   727   // at address s1 is swapped with the data in d. If the values are not equal,
   728   // the the contents of memory at s1 is loaded into d, without the swap.
   730   void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
   731   void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
   733   // pp 152
   735   void udiv(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
   736   void udiv(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   737   void sdiv(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
   738   void sdiv(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   739   void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
   740   void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   741   void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
   742   void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   744   // pp 155
   746   void done()  { v9_only();  cti();  emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
   747   void retry() { v9_only();  cti();  emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
   749   // pp 156
   751   void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
   752   void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
   754   // pp 157
   756   void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
   757   void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
   759   // pp 159
   761   void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
   762   void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
   764   // pp 160
   766   void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
   768   // pp 161
   770   void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
   771   void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
   773   // pp 162
   775   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
   777   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
   779   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
   781   // pp 163
   783   void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
   784   void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
   785   void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
   787   // pp 164
   789   void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
   791   // pp 165
   793   inline void flush( Register s1, Register s2 );
   794   inline void flush( Register s1, int simm13a);
   796   // pp 167
   798   void flushw() { v9_only();  emit_int32( op(arith_op) | op3(flushw_op3) ); }
   800   // pp 168
   802   void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
   803   // v8 unimp == illtrap(0)
   805   // pp 169
   807   void impdep1( int id1, int const19a ) { v9_only();  emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
   808   void impdep2( int id1, int const19a ) { v9_only();  emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
   810   // pp 170
   812   void jmpl( Register s1, Register s2, Register d );
   813   void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
   815   // 171
   817   inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
   818   inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
   821   inline void ldfsr(  Register s1, Register s2 );
   822   inline void ldfsr(  Register s1, int simm13a);
   823   inline void ldxfsr( Register s1, Register s2 );
   824   inline void ldxfsr( Register s1, int simm13a);
   826   // 173
   828   void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   829   void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   831   // pp 175, lduw is ld on v8
   833   inline void ldsb(  Register s1, Register s2, Register d );
   834   inline void ldsb(  Register s1, int simm13a, Register d);
   835   inline void ldsh(  Register s1, Register s2, Register d );
   836   inline void ldsh(  Register s1, int simm13a, Register d);
   837   inline void ldsw(  Register s1, Register s2, Register d );
   838   inline void ldsw(  Register s1, int simm13a, Register d);
   839   inline void ldub(  Register s1, Register s2, Register d );
   840   inline void ldub(  Register s1, int simm13a, Register d);
   841   inline void lduh(  Register s1, Register s2, Register d );
   842   inline void lduh(  Register s1, int simm13a, Register d);
   843   inline void lduw(  Register s1, Register s2, Register d );
   844   inline void lduw(  Register s1, int simm13a, Register d);
   845   inline void ldx(   Register s1, Register s2, Register d );
   846   inline void ldx(   Register s1, int simm13a, Register d);
   847   inline void ldd(   Register s1, Register s2, Register d );
   848   inline void ldd(   Register s1, int simm13a, Register d);
   850   // pp 177
   852   void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   853   void ldsba(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   854   void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   855   void ldsha(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   856   void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   857   void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   858   void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   859   void lduba(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   860   void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   861   void lduha(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   862   void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   863   void lduwa(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   864   void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   865   void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   867   // pp 181
   869   void and3(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | rs2(s2) ); }
   870   void and3(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   871   void andcc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   872   void andcc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   873   void andn(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
   874   void andn(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   875   void andncc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   876   void andncc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   877   void or3(     Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
   878   void or3(     Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   879   void orcc(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   880   void orcc(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   881   void orn(     Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
   882   void orn(     Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   883   void orncc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   884   void orncc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   885   void xor3(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
   886   void xor3(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   887   void xorcc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   888   void xorcc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   889   void xnor(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
   890   void xnor(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   891   void xnorcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   892   void xnorcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   894   // pp 183
   896   void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
   898   // pp 185
   900   void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
   902   // pp 189
   904   void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
   906   // pp 191
   908   void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
   909   void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
   911   // pp 195
   913   void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
   914   void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
   916   // pp 196
   918   void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
   919   void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   920   void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
   921   void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   922   void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
   923   void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   925   // pp 197
   927   void umul(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
   928   void umul(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   929   void smul(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
   930   void smul(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   931   void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   932   void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   933   void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   934   void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   936   // pp 201
   938   void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
   941   // pp 202
   943   void popc( Register s,  Register d) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
   944   void popc( int simm13a, Register d) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
   946   // pp 203
   948   void prefetch(   Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   949   void prefetch(   Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   951   void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   952   void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   954   // pp 208
   956   // not implementing read privileged register
   958   inline void rdy(    Register d) { v9_dep();  emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
   959   inline void rdccr(  Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
   960   inline void rdasi(  Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
   961   inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
   962   inline void rdpc(   Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
   963   inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
   965   // pp 213
   967   inline void rett( Register s1, Register s2);
   968   inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
   970   // pp 214
   972   void save(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
   973   void save(    Register s1, int simm13a, Register d ) {
   974     // make sure frame is at least large enough for the register save area
   975     assert(-simm13a >= 16 * wordSize, "frame too small");
   976     emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
   977   }
   979   void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
   980   void restore( Register s1,       int simm13a,      Register d      ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   982   // pp 216
   984   void saved()    { v9_only();  emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
   985   void restored() { v9_only();  emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
   987   // pp 217
   989   inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
   990   // pp 218
   992   void sll(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
   993   void sll(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
   994   void srl(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
   995   void srl(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
   996   void sra(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
   997   void sra(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
   999   void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1000   void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1001   void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1002   void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1003   void srax( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1004   void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1006   // pp 220
  1008   void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
  1010   // pp 221
  1012   void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
  1014   // pp 222
  1016   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
  1017   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
  1019   inline void stfsr(  Register s1, Register s2 );
  1020   inline void stfsr(  Register s1, int simm13a);
  1021   inline void stxfsr( Register s1, Register s2 );
  1022   inline void stxfsr( Register s1, int simm13a);
  1024   //  pp 224
  1026   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1027   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1029   // p 226
  1031   inline void stb(  Register d, Register s1, Register s2 );
  1032   inline void stb(  Register d, Register s1, int simm13a);
  1033   inline void sth(  Register d, Register s1, Register s2 );
  1034   inline void sth(  Register d, Register s1, int simm13a);
  1035   inline void stw(  Register d, Register s1, Register s2 );
  1036   inline void stw(  Register d, Register s1, int simm13a);
  1037   inline void stx(  Register d, Register s1, Register s2 );
  1038   inline void stx(  Register d, Register s1, int simm13a);
  1039   inline void std(  Register d, Register s1, Register s2 );
  1040   inline void std(  Register d, Register s1, int simm13a);
  1042   // pp 177
  1044   void stba(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1045   void stba(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1046   void stha(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1047   void stha(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1048   void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1049   void stwa(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1050   void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1051   void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1052   void stda(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1053   void stda(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1055   // pp 230
  1057   void sub(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
  1058   void sub(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1060   void subcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
  1061   void subcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1062   void subc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
  1063   void subc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1064   void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1065   void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1067   // pp 231
  1069   inline void swap( Register s1, Register s2, Register d );
  1070   inline void swap( Register s1, int simm13a, Register d);
  1072   // pp 232
  1074   void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1075   void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1077   // pp 234, note op in book is wrong, see pp 268
  1079   void taddcc(    Register s1, Register s2, Register d ) {            emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1080   void taddcc(    Register s1, int simm13a, Register d ) {            emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1082   // pp 235
  1084   void tsubcc(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1085   void tsubcc(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1087   // pp 237
  1089   void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
  1090   void trap( Condition c, CC cc, Register s1, int trapa   ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
  1091   // simple uncond. trap
  1092   void trap( int trapa ) { trap( always, icc, G0, trapa ); }
  1094   // pp 239 omit write priv register for now
  1096   inline void wry(    Register d) { v9_dep();  emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
  1097   inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
  1098   inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
  1099                                                                            rs1(s) |
  1100                                                                            op3(wrreg_op3) |
  1101                                                                            u_field(2, 29, 25) |
  1102                                                                            immed(true) |
  1103                                                                            simm(simm13a, 13)); }
  1104   inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
  1105   // wrasi(d, imm) stores (d xor imm) to asi
  1106   inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
  1107                                                u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
  1108   inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
  1111   // VIS3 instructions
  1113   void movstosw( FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
  1114   void movstouw( FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
  1115   void movdtox(  FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
  1117   void movwtos( Register s, FloatRegister d ) { vis3_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
  1118   void movxtod( Register s, FloatRegister d ) { vis3_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
  1120   // Creation
  1121   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1122 #ifdef CHECK_DELAY
  1123     delay_state = no_delay;
  1124 #endif
  1126 };
  1128 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial