src/share/vm/memory/collectorPolicy.cpp

Fri, 11 Feb 2011 14:15:16 +0100

author
stefank
date
Fri, 11 Feb 2011 14:15:16 +0100
changeset 2537
55cc33cf55bc
parent 2336
6cd6d394f280
child 2650
dde920245681
permissions
-rw-r--r--

7018257: jmm_DumpThreads allocates into permgen
Summary: Don't allocate in permgen
Reviewed-by: ysr, sla

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/vmThread.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifndef SERIALGC
    51 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    52 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    53 #endif
    55 // CollectorPolicy methods.
    57 void CollectorPolicy::initialize_flags() {
    58   if (PermSize > MaxPermSize) {
    59     MaxPermSize = PermSize;
    60   }
    61   PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
    62   // Don't increase Perm size limit above specified.
    63   MaxPermSize = align_size_down(MaxPermSize, max_alignment());
    64   if (PermSize > MaxPermSize) {
    65     PermSize = MaxPermSize;
    66   }
    68   MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
    69   MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
    71   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    73   SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
    74   SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
    75   SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
    77   assert(PermSize    % min_alignment() == 0, "permanent space alignment");
    78   assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
    79   assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
    80   assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
    81   assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
    82   if (PermSize < M) {
    83     vm_exit_during_initialization("Too small initial permanent heap");
    84   }
    85 }
    87 void CollectorPolicy::initialize_size_info() {
    88   // User inputs from -mx and ms are aligned
    89   set_initial_heap_byte_size(InitialHeapSize);
    90   if (initial_heap_byte_size() == 0) {
    91     set_initial_heap_byte_size(NewSize + OldSize);
    92   }
    93   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
    94                                            min_alignment()));
    96   set_min_heap_byte_size(Arguments::min_heap_size());
    97   if (min_heap_byte_size() == 0) {
    98     set_min_heap_byte_size(NewSize + OldSize);
    99   }
   100   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
   101                                        min_alignment()));
   103   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
   105   // Check heap parameter properties
   106   if (initial_heap_byte_size() < M) {
   107     vm_exit_during_initialization("Too small initial heap");
   108   }
   109   // Check heap parameter properties
   110   if (min_heap_byte_size() < M) {
   111     vm_exit_during_initialization("Too small minimum heap");
   112   }
   113   if (initial_heap_byte_size() <= NewSize) {
   114      // make sure there is at least some room in old space
   115     vm_exit_during_initialization("Too small initial heap for new size specified");
   116   }
   117   if (max_heap_byte_size() < min_heap_byte_size()) {
   118     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
   119   }
   120   if (initial_heap_byte_size() < min_heap_byte_size()) {
   121     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   122   }
   123   if (max_heap_byte_size() < initial_heap_byte_size()) {
   124     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
   125   }
   127   if (PrintGCDetails && Verbose) {
   128     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   129       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   130       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   131   }
   132 }
   134 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
   135   _permanent_generation =
   136     new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
   137                                 SharedReadOnlySize,
   138                                 SharedReadWriteSize,
   139                                 SharedMiscDataSize,
   140                                 SharedMiscCodeSize);
   141   if (_permanent_generation == NULL) {
   142     vm_exit_during_initialization("Unable to allocate gen spec");
   143   }
   144 }
   146 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   147   bool result = _should_clear_all_soft_refs;
   148   set_should_clear_all_soft_refs(false);
   149   return result;
   150 }
   152 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   153                                            int max_covered_regions) {
   154   switch (rem_set_name()) {
   155   case GenRemSet::CardTable: {
   156     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   157     return res;
   158   }
   159   default:
   160     guarantee(false, "unrecognized GenRemSet::Name");
   161     return NULL;
   162   }
   163 }
   165 void CollectorPolicy::cleared_all_soft_refs() {
   166   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   167   // have been cleared in the last collection but if the gc overhear
   168   // limit continues to be near, SoftRefs should still be cleared.
   169   if (size_policy() != NULL) {
   170     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   171   }
   172   _all_soft_refs_clear = true;
   173 }
   176 // GenCollectorPolicy methods.
   178 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   179   size_t x = base_size / (NewRatio+1);
   180   size_t new_gen_size = x > min_alignment() ?
   181                      align_size_down(x, min_alignment()) :
   182                      min_alignment();
   183   return new_gen_size;
   184 }
   186 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   187                                                  size_t maximum_size) {
   188   size_t alignment = min_alignment();
   189   size_t max_minus = maximum_size - alignment;
   190   return desired_size < max_minus ? desired_size : max_minus;
   191 }
   194 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   195                                                 size_t init_promo_size,
   196                                                 size_t init_survivor_size) {
   197   const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   198   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   199                                         init_promo_size,
   200                                         init_survivor_size,
   201                                         max_gc_minor_pause_sec,
   202                                         GCTimeRatio);
   203 }
   205 size_t GenCollectorPolicy::compute_max_alignment() {
   206   // The card marking array and the offset arrays for old generations are
   207   // committed in os pages as well. Make sure they are entirely full (to
   208   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   209   // byte entry and the os page size is 4096, the maximum heap size should
   210   // be 512*4096 = 2MB aligned.
   211   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   213   // Parallel GC does its own alignment of the generations to avoid requiring a
   214   // large page (256M on some platforms) for the permanent generation.  The
   215   // other collectors should also be updated to do their own alignment and then
   216   // this use of lcm() should be removed.
   217   if (UseLargePages && !UseParallelGC) {
   218       // in presence of large pages we have to make sure that our
   219       // alignment is large page aware
   220       alignment = lcm(os::large_page_size(), alignment);
   221   }
   223   return alignment;
   224 }
   226 void GenCollectorPolicy::initialize_flags() {
   227   // All sizes must be multiples of the generation granularity.
   228   set_min_alignment((uintx) Generation::GenGrain);
   229   set_max_alignment(compute_max_alignment());
   230   assert(max_alignment() >= min_alignment() &&
   231          max_alignment() % min_alignment() == 0,
   232          "invalid alignment constraints");
   234   CollectorPolicy::initialize_flags();
   236   // All generational heaps have a youngest gen; handle those flags here.
   238   // Adjust max size parameters
   239   if (NewSize > MaxNewSize) {
   240     MaxNewSize = NewSize;
   241   }
   242   NewSize = align_size_down(NewSize, min_alignment());
   243   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   245   // Check validity of heap flags
   246   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   247   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   249   if (NewSize < 3*min_alignment()) {
   250      // make sure there room for eden and two survivor spaces
   251     vm_exit_during_initialization("Too small new size specified");
   252   }
   253   if (SurvivorRatio < 1 || NewRatio < 1) {
   254     vm_exit_during_initialization("Invalid heap ratio specified");
   255   }
   256 }
   258 void TwoGenerationCollectorPolicy::initialize_flags() {
   259   GenCollectorPolicy::initialize_flags();
   261   OldSize = align_size_down(OldSize, min_alignment());
   262   if (NewSize + OldSize > MaxHeapSize) {
   263     MaxHeapSize = NewSize + OldSize;
   264   }
   265   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   267   always_do_update_barrier = UseConcMarkSweepGC;
   268   BlockOffsetArrayUseUnallocatedBlock =
   269       BlockOffsetArrayUseUnallocatedBlock || ParallelGCThreads > 0;
   271   // Check validity of heap flags
   272   assert(OldSize     % min_alignment() == 0, "old space alignment");
   273   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   274 }
   276 // Values set on the command line win over any ergonomically
   277 // set command line parameters.
   278 // Ergonomic choice of parameters are done before this
   279 // method is called.  Values for command line parameters such as NewSize
   280 // and MaxNewSize feed those ergonomic choices into this method.
   281 // This method makes the final generation sizings consistent with
   282 // themselves and with overall heap sizings.
   283 // In the absence of explicitly set command line flags, policies
   284 // such as the use of NewRatio are used to size the generation.
   285 void GenCollectorPolicy::initialize_size_info() {
   286   CollectorPolicy::initialize_size_info();
   288   // min_alignment() is used for alignment within a generation.
   289   // There is additional alignment done down stream for some
   290   // collectors that sometimes causes unwanted rounding up of
   291   // generations sizes.
   293   // Determine maximum size of gen0
   295   size_t max_new_size = 0;
   296   if (FLAG_IS_CMDLINE(MaxNewSize)) {
   297     if (MaxNewSize < min_alignment()) {
   298       max_new_size = min_alignment();
   299     } else if (MaxNewSize >= max_heap_byte_size()) {
   300       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   301                                      min_alignment());
   302       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   303         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   304         "new generation size of " SIZE_FORMAT "k will be used.",
   305         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   306     } else {
   307       max_new_size = align_size_down(MaxNewSize, min_alignment());
   308     }
   310   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   311   // specially at this point to just use an ergonomically set
   312   // MaxNewSize to set max_new_size.  For cases with small
   313   // heaps such a policy often did not work because the MaxNewSize
   314   // was larger than the entire heap.  The interpretation given
   315   // to ergonomically set flags is that the flags are set
   316   // by different collectors for their own special needs but
   317   // are not allowed to badly shape the heap.  This allows the
   318   // different collectors to decide what's best for themselves
   319   // without having to factor in the overall heap shape.  It
   320   // can be the case in the future that the collectors would
   321   // only make "wise" ergonomics choices and this policy could
   322   // just accept those choices.  The choices currently made are
   323   // not always "wise".
   324   } else {
   325     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   326     // Bound the maximum size by NewSize below (since it historically
   327     // would have been NewSize and because the NewRatio calculation could
   328     // yield a size that is too small) and bound it by MaxNewSize above.
   329     // Ergonomics plays here by previously calculating the desired
   330     // NewSize and MaxNewSize.
   331     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   332   }
   333   assert(max_new_size > 0, "All paths should set max_new_size");
   335   // Given the maximum gen0 size, determine the initial and
   336   // minimum sizes.
   338   if (max_heap_byte_size() == min_heap_byte_size()) {
   339     // The maximum and minimum heap sizes are the same so
   340     // the generations minimum and initial must be the
   341     // same as its maximum.
   342     set_min_gen0_size(max_new_size);
   343     set_initial_gen0_size(max_new_size);
   344     set_max_gen0_size(max_new_size);
   345   } else {
   346     size_t desired_new_size = 0;
   347     if (!FLAG_IS_DEFAULT(NewSize)) {
   348       // If NewSize is set ergonomically (for example by cms), it
   349       // would make sense to use it.  If it is used, also use it
   350       // to set the initial size.  Although there is no reason
   351       // the minimum size and the initial size have to be the same,
   352       // the current implementation gets into trouble during the calculation
   353       // of the tenured generation sizes if they are different.
   354       // Note that this makes the initial size and the minimum size
   355       // generally small compared to the NewRatio calculation.
   356       _min_gen0_size = NewSize;
   357       desired_new_size = NewSize;
   358       max_new_size = MAX2(max_new_size, NewSize);
   359     } else {
   360       // For the case where NewSize is the default, use NewRatio
   361       // to size the minimum and initial generation sizes.
   362       // Use the default NewSize as the floor for these values.  If
   363       // NewRatio is overly large, the resulting sizes can be too
   364       // small.
   365       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   366                           NewSize);
   367       desired_new_size =
   368         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   369              NewSize);
   370     }
   372     assert(_min_gen0_size > 0, "Sanity check");
   373     set_initial_gen0_size(desired_new_size);
   374     set_max_gen0_size(max_new_size);
   376     // At this point the desirable initial and minimum sizes have been
   377     // determined without regard to the maximum sizes.
   379     // Bound the sizes by the corresponding overall heap sizes.
   380     set_min_gen0_size(
   381       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   382     set_initial_gen0_size(
   383       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   384     set_max_gen0_size(
   385       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   387     // At this point all three sizes have been checked against the
   388     // maximum sizes but have not been checked for consistency
   389     // among the three.
   391     // Final check min <= initial <= max
   392     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   393     set_initial_gen0_size(
   394       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   395     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   396   }
   398   if (PrintGCDetails && Verbose) {
   399     gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   400       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   401       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   402   }
   403 }
   405 // Call this method during the sizing of the gen1 to make
   406 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   407 // the most freedom in sizing because it is done before the
   408 // policy for gen1 is applied.  Once gen1 policies have been applied,
   409 // there may be conflicts in the shape of the heap and this method
   410 // is used to make the needed adjustments.  The application of the
   411 // policies could be more sophisticated (iterative for example) but
   412 // keeping it simple also seems a worthwhile goal.
   413 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   414                                                      size_t* gen1_size_ptr,
   415                                                      size_t heap_size,
   416                                                      size_t min_gen0_size) {
   417   bool result = false;
   418   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   419     if (((*gen0_size_ptr + OldSize) > heap_size) &&
   420        (heap_size - min_gen0_size) >= min_alignment()) {
   421       // Adjust gen0 down to accomodate OldSize
   422       *gen0_size_ptr = heap_size - min_gen0_size;
   423       *gen0_size_ptr =
   424         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   425              min_alignment());
   426       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   427       result = true;
   428     } else {
   429       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   430       *gen1_size_ptr =
   431         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   432                        min_alignment());
   433     }
   434   }
   435   return result;
   436 }
   438 // Minimum sizes of the generations may be different than
   439 // the initial sizes.  An inconsistently is permitted here
   440 // in the total size that can be specified explicitly by
   441 // command line specification of OldSize and NewSize and
   442 // also a command line specification of -Xms.  Issue a warning
   443 // but allow the values to pass.
   445 void TwoGenerationCollectorPolicy::initialize_size_info() {
   446   GenCollectorPolicy::initialize_size_info();
   448   // At this point the minimum, initial and maximum sizes
   449   // of the overall heap and of gen0 have been determined.
   450   // The maximum gen1 size can be determined from the maximum gen0
   451   // and maximum heap size since not explicit flags exits
   452   // for setting the gen1 maximum.
   453   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   454   _max_gen1_size =
   455     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   456          min_alignment());
   457   // If no explicit command line flag has been set for the
   458   // gen1 size, use what is left for gen1.
   459   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   460     // The user has not specified any value or ergonomics
   461     // has chosen a value (which may or may not be consistent
   462     // with the overall heap size).  In either case make
   463     // the minimum, maximum and initial sizes consistent
   464     // with the gen0 sizes and the overall heap sizes.
   465     assert(min_heap_byte_size() > _min_gen0_size,
   466       "gen0 has an unexpected minimum size");
   467     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   468     set_min_gen1_size(
   469       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   470            min_alignment()));
   471     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   472     set_initial_gen1_size(
   473       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   474            min_alignment()));
   476   } else {
   477     // It's been explicitly set on the command line.  Use the
   478     // OldSize and then determine the consequences.
   479     set_min_gen1_size(OldSize);
   480     set_initial_gen1_size(OldSize);
   482     // If the user has explicitly set an OldSize that is inconsistent
   483     // with other command line flags, issue a warning.
   484     // The generation minimums and the overall heap mimimum should
   485     // be within one heap alignment.
   486     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   487            min_heap_byte_size()) {
   488       warning("Inconsistency between minimum heap size and minimum "
   489           "generation sizes: using minimum heap = " SIZE_FORMAT,
   490           min_heap_byte_size());
   491     }
   492     if ((OldSize > _max_gen1_size)) {
   493       warning("Inconsistency between maximum heap size and maximum "
   494           "generation sizes: using maximum heap = " SIZE_FORMAT
   495           " -XX:OldSize flag is being ignored",
   496           max_heap_byte_size());
   497   }
   498     // If there is an inconsistency between the OldSize and the minimum and/or
   499     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   500     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   501                           min_heap_byte_size(), OldSize)) {
   502       if (PrintGCDetails && Verbose) {
   503         gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   504               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   505               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   506       }
   507     }
   508     // Initial size
   509     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   510                          initial_heap_byte_size(), OldSize)) {
   511       if (PrintGCDetails && Verbose) {
   512         gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   513           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   514           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   515       }
   516     }
   517   }
   518   // Enforce the maximum gen1 size.
   519   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   521   // Check that min gen1 <= initial gen1 <= max gen1
   522   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   523   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   525   if (PrintGCDetails && Verbose) {
   526     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   527       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   528       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   529   }
   530 }
   532 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   533                                         bool is_tlab,
   534                                         bool* gc_overhead_limit_was_exceeded) {
   535   GenCollectedHeap *gch = GenCollectedHeap::heap();
   537   debug_only(gch->check_for_valid_allocation_state());
   538   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   540   // In general gc_overhead_limit_was_exceeded should be false so
   541   // set it so here and reset it to true only if the gc time
   542   // limit is being exceeded as checked below.
   543   *gc_overhead_limit_was_exceeded = false;
   545   HeapWord* result = NULL;
   547   // Loop until the allocation is satisified,
   548   // or unsatisfied after GC.
   549   for (int try_count = 1; /* return or throw */; try_count += 1) {
   550     HandleMark hm; // discard any handles allocated in each iteration
   552     // First allocation attempt is lock-free.
   553     Generation *gen0 = gch->get_gen(0);
   554     assert(gen0->supports_inline_contig_alloc(),
   555       "Otherwise, must do alloc within heap lock");
   556     if (gen0->should_allocate(size, is_tlab)) {
   557       result = gen0->par_allocate(size, is_tlab);
   558       if (result != NULL) {
   559         assert(gch->is_in_reserved(result), "result not in heap");
   560         return result;
   561       }
   562     }
   563     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   564     {
   565       MutexLocker ml(Heap_lock);
   566       if (PrintGC && Verbose) {
   567         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   568                       " attempting locked slow path allocation");
   569       }
   570       // Note that only large objects get a shot at being
   571       // allocated in later generations.
   572       bool first_only = ! should_try_older_generation_allocation(size);
   574       result = gch->attempt_allocation(size, is_tlab, first_only);
   575       if (result != NULL) {
   576         assert(gch->is_in_reserved(result), "result not in heap");
   577         return result;
   578       }
   580       if (GC_locker::is_active_and_needs_gc()) {
   581         if (is_tlab) {
   582           return NULL;  // Caller will retry allocating individual object
   583         }
   584         if (!gch->is_maximal_no_gc()) {
   585           // Try and expand heap to satisfy request
   586           result = expand_heap_and_allocate(size, is_tlab);
   587           // result could be null if we are out of space
   588           if (result != NULL) {
   589             return result;
   590           }
   591         }
   593         // If this thread is not in a jni critical section, we stall
   594         // the requestor until the critical section has cleared and
   595         // GC allowed. When the critical section clears, a GC is
   596         // initiated by the last thread exiting the critical section; so
   597         // we retry the allocation sequence from the beginning of the loop,
   598         // rather than causing more, now probably unnecessary, GC attempts.
   599         JavaThread* jthr = JavaThread::current();
   600         if (!jthr->in_critical()) {
   601           MutexUnlocker mul(Heap_lock);
   602           // Wait for JNI critical section to be exited
   603           GC_locker::stall_until_clear();
   604           continue;
   605         } else {
   606           if (CheckJNICalls) {
   607             fatal("Possible deadlock due to allocating while"
   608                   " in jni critical section");
   609           }
   610           return NULL;
   611         }
   612       }
   614       // Read the gc count while the heap lock is held.
   615       gc_count_before = Universe::heap()->total_collections();
   616     }
   618     VM_GenCollectForAllocation op(size,
   619                                   is_tlab,
   620                                   gc_count_before);
   621     VMThread::execute(&op);
   622     if (op.prologue_succeeded()) {
   623       result = op.result();
   624       if (op.gc_locked()) {
   625          assert(result == NULL, "must be NULL if gc_locked() is true");
   626          continue;  // retry and/or stall as necessary
   627       }
   629       // Allocation has failed and a collection
   630       // has been done.  If the gc time limit was exceeded the
   631       // this time, return NULL so that an out-of-memory
   632       // will be thrown.  Clear gc_overhead_limit_exceeded
   633       // so that the overhead exceeded does not persist.
   635       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   636       const bool softrefs_clear = all_soft_refs_clear();
   637       assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
   638       if (limit_exceeded && softrefs_clear) {
   639         *gc_overhead_limit_was_exceeded = true;
   640         size_policy()->set_gc_overhead_limit_exceeded(false);
   641         if (op.result() != NULL) {
   642           CollectedHeap::fill_with_object(op.result(), size);
   643         }
   644         return NULL;
   645       }
   646       assert(result == NULL || gch->is_in_reserved(result),
   647              "result not in heap");
   648       return result;
   649     }
   651     // Give a warning if we seem to be looping forever.
   652     if ((QueuedAllocationWarningCount > 0) &&
   653         (try_count % QueuedAllocationWarningCount == 0)) {
   654           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   655                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   656     }
   657   }
   658 }
   660 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   661                                                        bool   is_tlab) {
   662   GenCollectedHeap *gch = GenCollectedHeap::heap();
   663   HeapWord* result = NULL;
   664   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   665     Generation *gen = gch->get_gen(i);
   666     if (gen->should_allocate(size, is_tlab)) {
   667       result = gen->expand_and_allocate(size, is_tlab);
   668     }
   669   }
   670   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   671   return result;
   672 }
   674 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   675                                                         bool   is_tlab) {
   676   GenCollectedHeap *gch = GenCollectedHeap::heap();
   677   GCCauseSetter x(gch, GCCause::_allocation_failure);
   678   HeapWord* result = NULL;
   680   assert(size != 0, "Precondition violated");
   681   if (GC_locker::is_active_and_needs_gc()) {
   682     // GC locker is active; instead of a collection we will attempt
   683     // to expand the heap, if there's room for expansion.
   684     if (!gch->is_maximal_no_gc()) {
   685       result = expand_heap_and_allocate(size, is_tlab);
   686     }
   687     return result;   // could be null if we are out of space
   688   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   689     // Do an incremental collection.
   690     gch->do_collection(false            /* full */,
   691                        false            /* clear_all_soft_refs */,
   692                        size             /* size */,
   693                        is_tlab          /* is_tlab */,
   694                        number_of_generations() - 1 /* max_level */);
   695   } else {
   696     if (Verbose && PrintGCDetails) {
   697       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   698     }
   699     // Try a full collection; see delta for bug id 6266275
   700     // for the original code and why this has been simplified
   701     // with from-space allocation criteria modified and
   702     // such allocation moved out of the safepoint path.
   703     gch->do_collection(true             /* full */,
   704                        false            /* clear_all_soft_refs */,
   705                        size             /* size */,
   706                        is_tlab          /* is_tlab */,
   707                        number_of_generations() - 1 /* max_level */);
   708   }
   710   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   712   if (result != NULL) {
   713     assert(gch->is_in_reserved(result), "result not in heap");
   714     return result;
   715   }
   717   // OK, collection failed, try expansion.
   718   result = expand_heap_and_allocate(size, is_tlab);
   719   if (result != NULL) {
   720     return result;
   721   }
   723   // If we reach this point, we're really out of memory. Try every trick
   724   // we can to reclaim memory. Force collection of soft references. Force
   725   // a complete compaction of the heap. Any additional methods for finding
   726   // free memory should be here, especially if they are expensive. If this
   727   // attempt fails, an OOM exception will be thrown.
   728   {
   729     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   731     gch->do_collection(true             /* full */,
   732                        true             /* clear_all_soft_refs */,
   733                        size             /* size */,
   734                        is_tlab          /* is_tlab */,
   735                        number_of_generations() - 1 /* max_level */);
   736   }
   738   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   739   if (result != NULL) {
   740     assert(gch->is_in_reserved(result), "result not in heap");
   741     return result;
   742   }
   744   assert(!should_clear_all_soft_refs(),
   745     "Flag should have been handled and cleared prior to this point");
   747   // What else?  We might try synchronous finalization later.  If the total
   748   // space available is large enough for the allocation, then a more
   749   // complete compaction phase than we've tried so far might be
   750   // appropriate.
   751   return NULL;
   752 }
   754 size_t GenCollectorPolicy::large_typearray_limit() {
   755   return FastAllocateSizeLimit;
   756 }
   758 // Return true if any of the following is true:
   759 // . the allocation won't fit into the current young gen heap
   760 // . gc locker is occupied (jni critical section)
   761 // . heap memory is tight -- the most recent previous collection
   762 //   was a full collection because a partial collection (would
   763 //   have) failed and is likely to fail again
   764 bool GenCollectorPolicy::should_try_older_generation_allocation(
   765         size_t word_size) const {
   766   GenCollectedHeap* gch = GenCollectedHeap::heap();
   767   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   768   return    (word_size > heap_word_size(gen0_capacity))
   769          || GC_locker::is_active_and_needs_gc()
   770          || gch->incremental_collection_failed();
   771 }
   774 //
   775 // MarkSweepPolicy methods
   776 //
   778 MarkSweepPolicy::MarkSweepPolicy() {
   779   initialize_all();
   780 }
   782 void MarkSweepPolicy::initialize_generations() {
   783   initialize_perm_generation(PermGen::MarkSweepCompact);
   784   _generations = new GenerationSpecPtr[number_of_generations()];
   785   if (_generations == NULL)
   786     vm_exit_during_initialization("Unable to allocate gen spec");
   788   if (UseParNewGC && ParallelGCThreads > 0) {
   789     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   790   } else {
   791     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   792   }
   793   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   795   if (_generations[0] == NULL || _generations[1] == NULL)
   796     vm_exit_during_initialization("Unable to allocate gen spec");
   797 }
   799 void MarkSweepPolicy::initialize_gc_policy_counters() {
   800   // initialize the policy counters - 2 collectors, 3 generations
   801   if (UseParNewGC && ParallelGCThreads > 0) {
   802     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   803   }
   804   else {
   805     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   806   }
   807 }

mercurial