src/share/vm/memory/cardTableRS.cpp

Fri, 11 Feb 2011 14:15:16 +0100

author
stefank
date
Fri, 11 Feb 2011 14:15:16 +0100
changeset 2537
55cc33cf55bc
parent 2314
f95d63e2154a
child 2710
5134fa1cfe63
permissions
-rw-r--r--

7018257: jmm_DumpThreads allocates into permgen
Summary: Don't allocate in permgen
Reviewed-by: ysr, sla

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableRS.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/generation.hpp"
    30 #include "memory/space.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/java.hpp"
    33 #include "runtime/os.hpp"
    34 #ifndef SERIALGC
    35 #include "gc_implementation/g1/concurrentMark.hpp"
    36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    37 #endif
    39 CardTableRS::CardTableRS(MemRegion whole_heap,
    40                          int max_covered_regions) :
    41   GenRemSet(),
    42   _cur_youngergen_card_val(youngergenP1_card),
    43   _regions_to_iterate(max_covered_regions - 1)
    44 {
    45 #ifndef SERIALGC
    46   if (UseG1GC) {
    47       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
    48                                                   max_covered_regions);
    49   } else {
    50     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    51   }
    52 #else
    53   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    54 #endif
    55   set_bs(_ct_bs);
    56   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
    57   if (_last_cur_val_in_gen == NULL) {
    58     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
    59   }
    60   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
    61     _last_cur_val_in_gen[i] = clean_card_val();
    62   }
    63   _ct_bs->set_CTRS(this);
    64 }
    66 void CardTableRS::resize_covered_region(MemRegion new_region) {
    67   _ct_bs->resize_covered_region(new_region);
    68 }
    70 jbyte CardTableRS::find_unused_youngergenP_card_value() {
    71   for (jbyte v = youngergenP1_card;
    72        v < cur_youngergen_and_prev_nonclean_card;
    73        v++) {
    74     bool seen = false;
    75     for (int g = 0; g < _regions_to_iterate; g++) {
    76       if (_last_cur_val_in_gen[g] == v) {
    77         seen = true;
    78         break;
    79       }
    80     }
    81     if (!seen) return v;
    82   }
    83   ShouldNotReachHere();
    84   return 0;
    85 }
    87 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
    88   // Parallel or sequential, we must always set the prev to equal the
    89   // last one written.
    90   if (parallel) {
    91     // Find a parallel value to be used next.
    92     jbyte next_val = find_unused_youngergenP_card_value();
    93     set_cur_youngergen_card_val(next_val);
    95   } else {
    96     // In an sequential traversal we will always write youngergen, so that
    97     // the inline barrier is  correct.
    98     set_cur_youngergen_card_val(youngergen_card);
    99   }
   100 }
   102 void CardTableRS::younger_refs_iterate(Generation* g,
   103                                        OopsInGenClosure* blk) {
   104   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
   105   g->younger_refs_iterate(blk);
   106 }
   108 class ClearNoncleanCardWrapper: public MemRegionClosure {
   109   MemRegionClosure* _dirty_card_closure;
   110   CardTableRS* _ct;
   111   bool _is_par;
   112 private:
   113   // Clears the given card, return true if the corresponding card should be
   114   // processed.
   115   bool clear_card(jbyte* entry) {
   116     if (_is_par) {
   117       while (true) {
   118         // In the parallel case, we may have to do this several times.
   119         jbyte entry_val = *entry;
   120         assert(entry_val != CardTableRS::clean_card_val(),
   121                "We shouldn't be looking at clean cards, and this should "
   122                "be the only place they get cleaned.");
   123         if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
   124             || _ct->is_prev_youngergen_card_val(entry_val)) {
   125           jbyte res =
   126             Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
   127           if (res == entry_val) {
   128             break;
   129           } else {
   130             assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
   131                    "The CAS above should only fail if another thread did "
   132                    "a GC write barrier.");
   133           }
   134         } else if (entry_val ==
   135                    CardTableRS::cur_youngergen_and_prev_nonclean_card) {
   136           // Parallelism shouldn't matter in this case.  Only the thread
   137           // assigned to scan the card should change this value.
   138           *entry = _ct->cur_youngergen_card_val();
   139           break;
   140         } else {
   141           assert(entry_val == _ct->cur_youngergen_card_val(),
   142                  "Should be the only possibility.");
   143           // In this case, the card was clean before, and become
   144           // cur_youngergen only because of processing of a promoted object.
   145           // We don't have to look at the card.
   146           return false;
   147         }
   148       }
   149       return true;
   150     } else {
   151       jbyte entry_val = *entry;
   152       assert(entry_val != CardTableRS::clean_card_val(),
   153              "We shouldn't be looking at clean cards, and this should "
   154              "be the only place they get cleaned.");
   155       assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
   156              "This should be possible in the sequential case.");
   157       *entry = CardTableRS::clean_card_val();
   158       return true;
   159     }
   160   }
   162 public:
   163   ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure,
   164                            CardTableRS* ct) :
   165     _dirty_card_closure(dirty_card_closure), _ct(ct) {
   166     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
   167   }
   168   void do_MemRegion(MemRegion mr) {
   169     // We start at the high end of "mr", walking backwards
   170     // while accumulating a contiguous dirty range of cards in
   171     // [start_of_non_clean, end_of_non_clean) which we then
   172     // process en masse.
   173     HeapWord* end_of_non_clean = mr.end();
   174     HeapWord* start_of_non_clean = end_of_non_clean;
   175     jbyte*       entry = _ct->byte_for(mr.last());
   176     const jbyte* first_entry = _ct->byte_for(mr.start());
   177     while (entry >= first_entry) {
   178       HeapWord* cur = _ct->addr_for(entry);
   179       if (!clear_card(entry)) {
   180         // We hit a clean card; process any non-empty
   181         // dirty range accumulated so far.
   182         if (start_of_non_clean < end_of_non_clean) {
   183           MemRegion mr2(start_of_non_clean, end_of_non_clean);
   184           _dirty_card_closure->do_MemRegion(mr2);
   185         }
   186         // Reset the dirty window while continuing to
   187         // look for the next dirty window to process.
   188         end_of_non_clean = cur;
   189         start_of_non_clean = end_of_non_clean;
   190       }
   191       // Open the left end of the window one card to the left.
   192       start_of_non_clean = cur;
   193       // Note that "entry" leads "start_of_non_clean" in
   194       // its leftward excursion after this point
   195       // in the loop and, when we hit the left end of "mr",
   196       // will point off of the left end of the card-table
   197       // for "mr".
   198       entry--;
   199     }
   200     // If the first card of "mr" was dirty, we will have
   201     // been left with a dirty window, co-initial with "mr",
   202     // which we now process.
   203     if (start_of_non_clean < end_of_non_clean) {
   204       MemRegion mr2(start_of_non_clean, end_of_non_clean);
   205       _dirty_card_closure->do_MemRegion(mr2);
   206     }
   207   }
   208 };
   209 // clean (by dirty->clean before) ==> cur_younger_gen
   210 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
   211 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
   212 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
   213 // cur-younger-gen                ==> cur_younger_gen
   214 // cur_youngergen_and_prev_nonclean_card ==> no change.
   215 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
   216   jbyte* entry = ct_bs()->byte_for(field);
   217   do {
   218     jbyte entry_val = *entry;
   219     // We put this first because it's probably the most common case.
   220     if (entry_val == clean_card_val()) {
   221       // No threat of contention with cleaning threads.
   222       *entry = cur_youngergen_card_val();
   223       return;
   224     } else if (card_is_dirty_wrt_gen_iter(entry_val)
   225                || is_prev_youngergen_card_val(entry_val)) {
   226       // Mark it as both cur and prev youngergen; card cleaning thread will
   227       // eventually remove the previous stuff.
   228       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
   229       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
   230       // Did the CAS succeed?
   231       if (res == entry_val) return;
   232       // Otherwise, retry, to see the new value.
   233       continue;
   234     } else {
   235       assert(entry_val == cur_youngergen_and_prev_nonclean_card
   236              || entry_val == cur_youngergen_card_val(),
   237              "should be only possibilities.");
   238       return;
   239     }
   240   } while (true);
   241 }
   243 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
   244                                                 OopsInGenClosure* cl) {
   245   DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, _ct_bs->precision(),
   246                                                    cl->gen_boundary());
   247   ClearNoncleanCardWrapper clear_cl(dcto_cl, this);
   249   _ct_bs->non_clean_card_iterate(sp, sp->used_region_at_save_marks(),
   250                                 dcto_cl, &clear_cl, false);
   251 }
   253 void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
   254   GenCollectedHeap* gch = GenCollectedHeap::heap();
   255   // Generations younger than gen have been evacuated. We can clear
   256   // card table entries for gen (we know that it has no pointers
   257   // to younger gens) and for those below. The card tables for
   258   // the youngest gen need never be cleared, and those for perm gen
   259   // will be cleared based on the parameter clear_perm.
   260   // There's a bit of subtlety in the clear() and invalidate()
   261   // methods that we exploit here and in invalidate_or_clear()
   262   // below to avoid missing cards at the fringes. If clear() or
   263   // invalidate() are changed in the future, this code should
   264   // be revisited. 20040107.ysr
   265   Generation* g = gen;
   266   for(Generation* prev_gen = gch->prev_gen(g);
   267       prev_gen != NULL;
   268       g = prev_gen, prev_gen = gch->prev_gen(g)) {
   269     MemRegion to_be_cleared_mr = g->prev_used_region();
   270     clear(to_be_cleared_mr);
   271   }
   272   // Clear perm gen cards if asked to do so.
   273   if (clear_perm) {
   274     MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
   275     clear(to_be_cleared_mr);
   276   }
   277 }
   279 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
   280                                       bool perm) {
   281   GenCollectedHeap* gch = GenCollectedHeap::heap();
   282   // For each generation gen (and younger and/or perm)
   283   // invalidate the cards for the currently occupied part
   284   // of that generation and clear the cards for the
   285   // unoccupied part of the generation (if any, making use
   286   // of that generation's prev_used_region to determine that
   287   // region). No need to do anything for the youngest
   288   // generation. Also see note#20040107.ysr above.
   289   Generation* g = gen;
   290   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
   291       g = prev_gen, prev_gen = gch->prev_gen(g))  {
   292     MemRegion used_mr = g->used_region();
   293     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   294     if (!to_be_cleared_mr.is_empty()) {
   295       clear(to_be_cleared_mr);
   296     }
   297     invalidate(used_mr);
   298     if (!younger) break;
   299   }
   300   // Clear perm gen cards if asked to do so.
   301   if (perm) {
   302     g = gch->perm_gen();
   303     MemRegion used_mr = g->used_region();
   304     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   305     if (!to_be_cleared_mr.is_empty()) {
   306       clear(to_be_cleared_mr);
   307     }
   308     invalidate(used_mr);
   309   }
   310 }
   313 class VerifyCleanCardClosure: public OopClosure {
   314 private:
   315   HeapWord* _boundary;
   316   HeapWord* _begin;
   317   HeapWord* _end;
   318 protected:
   319   template <class T> void do_oop_work(T* p) {
   320     HeapWord* jp = (HeapWord*)p;
   321     if (jp >= _begin && jp < _end) {
   322       oop obj = oopDesc::load_decode_heap_oop(p);
   323       guarantee(obj == NULL ||
   324                 (HeapWord*)p < _boundary ||
   325                 (HeapWord*)obj >= _boundary,
   326                 "pointer on clean card crosses boundary");
   327     }
   328   }
   329 public:
   330   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
   331     _boundary(b), _begin(begin), _end(end) {}
   332   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
   333   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
   334 };
   336 class VerifyCTSpaceClosure: public SpaceClosure {
   337 private:
   338   CardTableRS* _ct;
   339   HeapWord* _boundary;
   340 public:
   341   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
   342     _ct(ct), _boundary(boundary) {}
   343   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
   344 };
   346 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
   347   CardTableRS* _ct;
   348 public:
   349   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
   350   void do_generation(Generation* gen) {
   351     // Skip the youngest generation.
   352     if (gen->level() == 0) return;
   353     // Normally, we're interested in pointers to younger generations.
   354     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
   355     gen->space_iterate(&blk, true);
   356   }
   357 };
   359 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
   360   // We don't need to do young-gen spaces.
   361   if (s->end() <= gen_boundary) return;
   362   MemRegion used = s->used_region();
   364   jbyte* cur_entry = byte_for(used.start());
   365   jbyte* limit = byte_after(used.last());
   366   while (cur_entry < limit) {
   367     if (*cur_entry == CardTableModRefBS::clean_card) {
   368       jbyte* first_dirty = cur_entry+1;
   369       while (first_dirty < limit &&
   370              *first_dirty == CardTableModRefBS::clean_card) {
   371         first_dirty++;
   372       }
   373       // If the first object is a regular object, and it has a
   374       // young-to-old field, that would mark the previous card.
   375       HeapWord* boundary = addr_for(cur_entry);
   376       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
   377       HeapWord* boundary_block = s->block_start(boundary);
   378       HeapWord* begin = boundary;             // Until proven otherwise.
   379       HeapWord* start_block = boundary_block; // Until proven otherwise.
   380       if (boundary_block < boundary) {
   381         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
   382           oop boundary_obj = oop(boundary_block);
   383           if (!boundary_obj->is_objArray() &&
   384               !boundary_obj->is_typeArray()) {
   385             guarantee(cur_entry > byte_for(used.start()),
   386                       "else boundary would be boundary_block");
   387             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
   388               begin = boundary_block + s->block_size(boundary_block);
   389               start_block = begin;
   390             }
   391           }
   392         }
   393       }
   394       // Now traverse objects until end.
   395       HeapWord* cur = start_block;
   396       VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
   397       while (cur < end) {
   398         if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
   399           oop(cur)->oop_iterate(&verify_blk);
   400         }
   401         cur += s->block_size(cur);
   402       }
   403       cur_entry = first_dirty;
   404     } else {
   405       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
   406       // is a transient value, that cannot be in the card table
   407       // except during GC, and thus assert that:
   408       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
   409       //        "Illegal CT value");
   410       // That however, need not hold, as will become clear in the
   411       // following...
   413       // We'd normally expect that if we are in the parallel case,
   414       // we can't have left a prev value (which would be different
   415       // from the current value) in the card table, and so we'd like to
   416       // assert that:
   417       // guarantee(cur_youngergen_card_val() == youngergen_card
   418       //           || !is_prev_youngergen_card_val(*cur_entry),
   419       //           "Illegal CT value");
   420       // That, however, may not hold occasionally, because of
   421       // CMS or MSC in the old gen. To wit, consider the
   422       // following two simple illustrative scenarios:
   423       // (a) CMS: Consider the case where a large object L
   424       //     spanning several cards is allocated in the old
   425       //     gen, and has a young gen reference stored in it, dirtying
   426       //     some interior cards. A young collection scans the card,
   427       //     finds a young ref and installs a youngergenP_n value.
   428       //     L then goes dead. Now a CMS collection starts,
   429       //     finds L dead and sweeps it up. Assume that L is
   430       //     abutting _unallocated_blk, so _unallocated_blk is
   431       //     adjusted down to (below) L. Assume further that
   432       //     no young collection intervenes during this CMS cycle.
   433       //     The next young gen cycle will not get to look at this
   434       //     youngergenP_n card since it lies in the unoccupied
   435       //     part of the space.
   436       //     Some young collections later the blocks on this
   437       //     card can be re-allocated either due to direct allocation
   438       //     or due to absorbing promotions. At this time, the
   439       //     before-gc verification will fail the above assert.
   440       // (b) MSC: In this case, an object L with a young reference
   441       //     is on a card that (therefore) holds a youngergen_n value.
   442       //     Suppose also that L lies towards the end of the used
   443       //     the used space before GC. An MSC collection
   444       //     occurs that compacts to such an extent that this
   445       //     card is no longer in the occupied part of the space.
   446       //     Since current code in MSC does not always clear cards
   447       //     in the unused part of old gen, this stale youngergen_n
   448       //     value is left behind and can later be covered by
   449       //     an object when promotion or direct allocation
   450       //     re-allocates that part of the heap.
   451       //
   452       // Fortunately, the presence of such stale card values is
   453       // "only" a minor annoyance in that subsequent young collections
   454       // might needlessly scan such cards, but would still never corrupt
   455       // the heap as a result. However, it's likely not to be a significant
   456       // performance inhibitor in practice. For instance,
   457       // some recent measurements with unoccupied cards eagerly cleared
   458       // out to maintain this invariant, showed next to no
   459       // change in young collection times; of course one can construct
   460       // degenerate examples where the cost can be significant.)
   461       // Note, in particular, that if the "stale" card is modified
   462       // after re-allocation, it would be dirty, not "stale". Thus,
   463       // we can never have a younger ref in such a card and it is
   464       // safe not to scan that card in any collection. [As we see
   465       // below, we do some unnecessary scanning
   466       // in some cases in the current parallel scanning algorithm.]
   467       //
   468       // The main point below is that the parallel card scanning code
   469       // deals correctly with these stale card values. There are two main
   470       // cases to consider where we have a stale "younger gen" value and a
   471       // "derivative" case to consider, where we have a stale
   472       // "cur_younger_gen_and_prev_non_clean" value, as will become
   473       // apparent in the case analysis below.
   474       // o Case 1. If the stale value corresponds to a younger_gen_n
   475       //   value other than the cur_younger_gen value then the code
   476       //   treats this as being tantamount to a prev_younger_gen
   477       //   card. This means that the card may be unnecessarily scanned.
   478       //   There are two sub-cases to consider:
   479       //   o Case 1a. Let us say that the card is in the occupied part
   480       //     of the generation at the time the collection begins. In
   481       //     that case the card will be either cleared when it is scanned
   482       //     for young pointers, or will be set to cur_younger_gen as a
   483       //     result of promotion. (We have elided the normal case where
   484       //     the scanning thread and the promoting thread interleave
   485       //     possibly resulting in a transient
   486       //     cur_younger_gen_and_prev_non_clean value before settling
   487       //     to cur_younger_gen. [End Case 1a.]
   488       //   o Case 1b. Consider now the case when the card is in the unoccupied
   489       //     part of the space which becomes occupied because of promotions
   490       //     into it during the current young GC. In this case the card
   491       //     will never be scanned for young references. The current
   492       //     code will set the card value to either
   493       //     cur_younger_gen_and_prev_non_clean or leave
   494       //     it with its stale value -- because the promotions didn't
   495       //     result in any younger refs on that card. Of these two
   496       //     cases, the latter will be covered in Case 1a during
   497       //     a subsequent scan. To deal with the former case, we need
   498       //     to further consider how we deal with a stale value of
   499       //     cur_younger_gen_and_prev_non_clean in our case analysis
   500       //     below. This we do in Case 3 below. [End Case 1b]
   501       //   [End Case 1]
   502       // o Case 2. If the stale value corresponds to cur_younger_gen being
   503       //   a value not necessarily written by a current promotion, the
   504       //   card will not be scanned by the younger refs scanning code.
   505       //   (This is OK since as we argued above such cards cannot contain
   506       //   any younger refs.) The result is that this value will be
   507       //   treated as a prev_younger_gen value in a subsequent collection,
   508       //   which is addressed in Case 1 above. [End Case 2]
   509       // o Case 3. We here consider the "derivative" case from Case 1b. above
   510       //   because of which we may find a stale
   511       //   cur_younger_gen_and_prev_non_clean card value in the table.
   512       //   Once again, as in Case 1, we consider two subcases, depending
   513       //   on whether the card lies in the occupied or unoccupied part
   514       //   of the space at the start of the young collection.
   515       //   o Case 3a. Let us say the card is in the occupied part of
   516       //     the old gen at the start of the young collection. In that
   517       //     case, the card will be scanned by the younger refs scanning
   518       //     code which will set it to cur_younger_gen. In a subsequent
   519       //     scan, the card will be considered again and get its final
   520       //     correct value. [End Case 3a]
   521       //   o Case 3b. Now consider the case where the card is in the
   522       //     unoccupied part of the old gen, and is occupied as a result
   523       //     of promotions during thus young gc. In that case,
   524       //     the card will not be scanned for younger refs. The presence
   525       //     of newly promoted objects on the card will then result in
   526       //     its keeping the value cur_younger_gen_and_prev_non_clean
   527       //     value, which we have dealt with in Case 3 here. [End Case 3b]
   528       //   [End Case 3]
   529       //
   530       // (Please refer to the code in the helper class
   531       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
   532       //
   533       // The informal arguments above can be tightened into a formal
   534       // correctness proof and it behooves us to write up such a proof,
   535       // or to use model checking to prove that there are no lingering
   536       // concerns.
   537       //
   538       // Clearly because of Case 3b one cannot bound the time for
   539       // which a card will retain what we have called a "stale" value.
   540       // However, one can obtain a Loose upper bound on the redundant
   541       // work as a result of such stale values. Note first that any
   542       // time a stale card lies in the occupied part of the space at
   543       // the start of the collection, it is scanned by younger refs
   544       // code and we can define a rank function on card values that
   545       // declines when this is so. Note also that when a card does not
   546       // lie in the occupied part of the space at the beginning of a
   547       // young collection, its rank can either decline or stay unchanged.
   548       // In this case, no extra work is done in terms of redundant
   549       // younger refs scanning of that card.
   550       // Then, the case analysis above reveals that, in the worst case,
   551       // any such stale card will be scanned unnecessarily at most twice.
   552       //
   553       // It is nonethelss advisable to try and get rid of some of this
   554       // redundant work in a subsequent (low priority) re-design of
   555       // the card-scanning code, if only to simplify the underlying
   556       // state machine analysis/proof. ysr 1/28/2002. XXX
   557       cur_entry++;
   558     }
   559   }
   560 }
   562 void CardTableRS::verify() {
   563   // At present, we only know how to verify the card table RS for
   564   // generational heaps.
   565   VerifyCTGenClosure blk(this);
   566   CollectedHeap* ch = Universe::heap();
   567   // We will do the perm-gen portion of the card table, too.
   568   Generation* pg = SharedHeap::heap()->perm_gen();
   569   HeapWord* pg_boundary = pg->reserved().start();
   571   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
   572     GenCollectedHeap::heap()->generation_iterate(&blk, false);
   573     _ct_bs->verify();
   575     // If the old gen collections also collect perm, then we are only
   576     // interested in perm-to-young pointers, not perm-to-old pointers.
   577     GenCollectedHeap* gch = GenCollectedHeap::heap();
   578     CollectorPolicy* cp = gch->collector_policy();
   579     if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
   580       pg_boundary = gch->get_gen(1)->reserved().start();
   581     }
   582   }
   583   VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
   584   SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
   585 }
   588 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
   589   if (!mr.is_empty()) {
   590     jbyte* cur_entry = byte_for(mr.start());
   591     jbyte* limit = byte_after(mr.last());
   592     // The region mr may not start on a card boundary so
   593     // the first card may reflect a write to the space
   594     // just prior to mr.
   595     if (!is_aligned(mr.start())) {
   596       cur_entry++;
   597     }
   598     for (;cur_entry < limit; cur_entry++) {
   599       guarantee(*cur_entry == CardTableModRefBS::clean_card,
   600                 "Unexpected dirty card found");
   601     }
   602   }
   603 }

mercurial