src/share/vm/gc_implementation/shared/adaptiveSizePolicy.hpp

Tue, 26 Nov 2013 14:35:38 +0100

author
sjohanss
date
Tue, 26 Nov 2013 14:35:38 +0100
changeset 6148
55a0da3d420b
parent 4153
b9a9ed0f8eeb
child 6876
710a3c8b516e
permissions
-rw-r--r--

8027675: Full collections with Serial slower in JDK 8 compared to 7u40
Summary: Reduced the number of calls to follow_class_loader and instead marked and pushed the klass holder directly. Also removed unneeded calls to adjust_klass.
Reviewed-by: coleenp, jmasa, mgerdin, tschatzl

     1 /*
     2  * Copyright (c) 2004, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP
    28 #include "gc_implementation/shared/gcUtil.hpp"
    29 #include "gc_interface/collectedHeap.hpp"
    30 #include "gc_interface/gcCause.hpp"
    31 #include "memory/allocation.hpp"
    32 #include "memory/universe.hpp"
    34 // This class keeps statistical information and computes the
    35 // size of the heap.
    37 // Forward decls
    38 class elapsedTimer;
    39 class CollectorPolicy;
    41 class AdaptiveSizePolicy : public CHeapObj<mtGC> {
    42  friend class GCAdaptivePolicyCounters;
    43  friend class PSGCAdaptivePolicyCounters;
    44  friend class CMSGCAdaptivePolicyCounters;
    45  protected:
    47   enum GCPolicyKind {
    48     _gc_adaptive_size_policy,
    49     _gc_ps_adaptive_size_policy,
    50     _gc_cms_adaptive_size_policy
    51   };
    52   virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; }
    54   enum SizePolicyTrueValues {
    55     decrease_old_gen_for_throughput_true = -7,
    56     decrease_young_gen_for_througput_true = -6,
    58     increase_old_gen_for_min_pauses_true = -5,
    59     decrease_old_gen_for_min_pauses_true = -4,
    60     decrease_young_gen_for_maj_pauses_true = -3,
    61     increase_young_gen_for_min_pauses_true = -2,
    62     increase_old_gen_for_maj_pauses_true = -1,
    64     decrease_young_gen_for_min_pauses_true = 1,
    65     decrease_old_gen_for_maj_pauses_true = 2,
    66     increase_young_gen_for_maj_pauses_true = 3,
    68     increase_old_gen_for_throughput_true = 4,
    69     increase_young_gen_for_througput_true = 5,
    71     decrease_young_gen_for_footprint_true = 6,
    72     decrease_old_gen_for_footprint_true = 7,
    73     decide_at_full_gc_true = 8
    74   };
    76   // Goal for the fraction of the total time during which application
    77   // threads run.
    78   const double _throughput_goal;
    80   // Last calculated sizes, in bytes, and aligned
    81   size_t _eden_size;        // calculated eden free space in bytes
    82   size_t _promo_size;       // calculated cms gen free space in bytes
    84   size_t _survivor_size;    // calculated survivor size in bytes
    86   // This is a hint for the heap:  we've detected that gc times
    87   // are taking longer than GCTimeLimit allows.
    88   bool _gc_overhead_limit_exceeded;
    89   // Use for diagnostics only.  If UseGCOverheadLimit is false,
    90   // this variable is still set.
    91   bool _print_gc_overhead_limit_would_be_exceeded;
    92   // Count of consecutive GC that have exceeded the
    93   // GC time limit criterion.
    94   uint _gc_overhead_limit_count;
    95   // This flag signals that GCTimeLimit is being exceeded
    96   // but may not have done so for the required number of consequetive
    97   // collections.
    99   // Minor collection timers used to determine both
   100   // pause and interval times for collections.
   101   static elapsedTimer _minor_timer;
   103   // Major collection timers, used to determine both
   104   // pause and interval times for collections
   105   static elapsedTimer _major_timer;
   107   // Time statistics
   108   AdaptivePaddedAverage*   _avg_minor_pause;
   109   AdaptiveWeightedAverage* _avg_minor_interval;
   110   AdaptiveWeightedAverage* _avg_minor_gc_cost;
   112   AdaptiveWeightedAverage* _avg_major_interval;
   113   AdaptiveWeightedAverage* _avg_major_gc_cost;
   115   // Footprint statistics
   116   AdaptiveWeightedAverage* _avg_young_live;
   117   AdaptiveWeightedAverage* _avg_eden_live;
   118   AdaptiveWeightedAverage* _avg_old_live;
   120   // Statistics for survivor space calculation for young generation
   121   AdaptivePaddedAverage*   _avg_survived;
   123   // Objects that have been directly allocated in the old generation.
   124   AdaptivePaddedNoZeroDevAverage*   _avg_pretenured;
   126   // Variable for estimating the major and minor pause times.
   127   // These variables represent linear least-squares fits of
   128   // the data.
   129   //   minor pause time vs. old gen size
   130   LinearLeastSquareFit* _minor_pause_old_estimator;
   131   //   minor pause time vs. young gen size
   132   LinearLeastSquareFit* _minor_pause_young_estimator;
   134   // Variables for estimating the major and minor collection costs
   135   //   minor collection time vs. young gen size
   136   LinearLeastSquareFit* _minor_collection_estimator;
   137   //   major collection time vs. cms gen size
   138   LinearLeastSquareFit* _major_collection_estimator;
   140   // These record the most recent collection times.  They
   141   // are available as an alternative to using the averages
   142   // for making ergonomic decisions.
   143   double _latest_minor_mutator_interval_seconds;
   145   // Allowed difference between major and minor gc times, used
   146   // for computing tenuring_threshold.
   147   const double _threshold_tolerance_percent;
   149   const double _gc_pause_goal_sec; // goal for maximum gc pause
   151   // Flag indicating that the adaptive policy is ready to use
   152   bool _young_gen_policy_is_ready;
   154   // decrease/increase the young generation for minor pause time
   155   int _change_young_gen_for_min_pauses;
   157   // decrease/increase the old generation for major pause time
   158   int _change_old_gen_for_maj_pauses;
   160   //   change old geneneration for throughput
   161   int _change_old_gen_for_throughput;
   163   //   change young generation for throughput
   164   int _change_young_gen_for_throughput;
   166   // Flag indicating that the policy would
   167   //   increase the tenuring threshold because of the total major gc cost
   168   //   is greater than the total minor gc cost
   169   bool _increment_tenuring_threshold_for_gc_cost;
   170   //   decrease the tenuring threshold because of the the total minor gc
   171   //   cost is greater than the total major gc cost
   172   bool _decrement_tenuring_threshold_for_gc_cost;
   173   //   decrease due to survivor size limit
   174   bool _decrement_tenuring_threshold_for_survivor_limit;
   176   //   decrease generation sizes for footprint
   177   int _decrease_for_footprint;
   179   // Set if the ergonomic decisions were made at a full GC.
   180   int _decide_at_full_gc;
   182   // Changing the generation sizing depends on the data that is
   183   // gathered about the effects of changes on the pause times and
   184   // throughput.  These variable count the number of data points
   185   // gathered.  The policy may use these counters as a threshhold
   186   // for reliable data.
   187   julong _young_gen_change_for_minor_throughput;
   188   julong _old_gen_change_for_major_throughput;
   190   static const uint GCWorkersPerJavaThread  = 2;
   192   // Accessors
   194   double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
   195   // The value returned is unitless:  it's the proportion of time
   196   // spent in a particular collection type.
   197   // An interval time will be 0.0 if a collection type hasn't occurred yet.
   198   // The 1.4.2 implementation put a floor on the values of major_gc_cost
   199   // and minor_gc_cost.  This was useful because of the way major_gc_cost
   200   // and minor_gc_cost was used in calculating the sizes of the generations.
   201   // Do not use a floor in this implementation because any finite value
   202   // will put a limit on the throughput that can be achieved and any
   203   // throughput goal above that limit will drive the generations sizes
   204   // to extremes.
   205   double major_gc_cost() const {
   206     return MAX2(0.0F, _avg_major_gc_cost->average());
   207   }
   209   // The value returned is unitless:  it's the proportion of time
   210   // spent in a particular collection type.
   211   // An interval time will be 0.0 if a collection type hasn't occurred yet.
   212   // The 1.4.2 implementation put a floor on the values of major_gc_cost
   213   // and minor_gc_cost.  This was useful because of the way major_gc_cost
   214   // and minor_gc_cost was used in calculating the sizes of the generations.
   215   // Do not use a floor in this implementation because any finite value
   216   // will put a limit on the throughput that can be achieved and any
   217   // throughput goal above that limit will drive the generations sizes
   218   // to extremes.
   220   double minor_gc_cost() const {
   221     return MAX2(0.0F, _avg_minor_gc_cost->average());
   222   }
   224   // Because we're dealing with averages, gc_cost() can be
   225   // larger than 1.0 if just the sum of the minor cost the
   226   // the major cost is used.  Worse than that is the
   227   // fact that the minor cost and the major cost each
   228   // tend toward 1.0 in the extreme of high gc costs.
   229   // Limit the value of gc_cost to 1.0 so that the mutator
   230   // cost stays non-negative.
   231   virtual double gc_cost() const {
   232     double result = MIN2(1.0, minor_gc_cost() + major_gc_cost());
   233     assert(result >= 0.0, "Both minor and major costs are non-negative");
   234     return result;
   235   }
   237   // Elapsed time since the last major collection.
   238   virtual double time_since_major_gc() const;
   240   // Average interval between major collections to be used
   241   // in calculating the decaying major gc cost.  An overestimate
   242   // of this time would be a conservative estimate because
   243   // this time is used to decide if the major GC cost
   244   // should be decayed (i.e., if the time since the last
   245   // major gc is long compared to the time returned here,
   246   // then the major GC cost will be decayed).  See the
   247   // implementations for the specifics.
   248   virtual double major_gc_interval_average_for_decay() const {
   249     return _avg_major_interval->average();
   250   }
   252   // Return the cost of the GC where the major gc cost
   253   // has been decayed based on the time since the last
   254   // major collection.
   255   double decaying_gc_cost() const;
   257   // Decay the major gc cost.  Use this only for decisions on
   258   // whether to adjust, not to determine by how much to adjust.
   259   // This approximation is crude and may not be good enough for the
   260   // latter.
   261   double decaying_major_gc_cost() const;
   263   // Return the mutator cost using the decayed
   264   // GC cost.
   265   double adjusted_mutator_cost() const {
   266     double result = 1.0 - decaying_gc_cost();
   267     assert(result >= 0.0, "adjusted mutator cost calculation is incorrect");
   268     return result;
   269   }
   271   virtual double mutator_cost() const {
   272     double result = 1.0 - gc_cost();
   273     assert(result >= 0.0, "mutator cost calculation is incorrect");
   274     return result;
   275   }
   278   bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; }
   280   void update_minor_pause_young_estimator(double minor_pause_in_ms);
   281   virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) {
   282     // This is not meaningful for all policies but needs to be present
   283     // to use minor_collection_end() in its current form.
   284   }
   286   virtual size_t eden_increment(size_t cur_eden);
   287   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
   288   virtual size_t eden_decrement(size_t cur_eden);
   289   virtual size_t promo_increment(size_t cur_eden);
   290   virtual size_t promo_increment(size_t cur_eden, uint percent_change);
   291   virtual size_t promo_decrement(size_t cur_eden);
   293   virtual void clear_generation_free_space_flags();
   295   int change_old_gen_for_throughput() const {
   296     return _change_old_gen_for_throughput;
   297   }
   298   void set_change_old_gen_for_throughput(int v) {
   299     _change_old_gen_for_throughput = v;
   300   }
   301   int change_young_gen_for_throughput() const {
   302     return _change_young_gen_for_throughput;
   303   }
   304   void set_change_young_gen_for_throughput(int v) {
   305     _change_young_gen_for_throughput = v;
   306   }
   308   int change_old_gen_for_maj_pauses() const {
   309     return _change_old_gen_for_maj_pauses;
   310   }
   311   void set_change_old_gen_for_maj_pauses(int v) {
   312     _change_old_gen_for_maj_pauses = v;
   313   }
   315   bool decrement_tenuring_threshold_for_gc_cost() const {
   316     return _decrement_tenuring_threshold_for_gc_cost;
   317   }
   318   void set_decrement_tenuring_threshold_for_gc_cost(bool v) {
   319     _decrement_tenuring_threshold_for_gc_cost = v;
   320   }
   321   bool increment_tenuring_threshold_for_gc_cost() const {
   322     return _increment_tenuring_threshold_for_gc_cost;
   323   }
   324   void set_increment_tenuring_threshold_for_gc_cost(bool v) {
   325     _increment_tenuring_threshold_for_gc_cost = v;
   326   }
   327   bool decrement_tenuring_threshold_for_survivor_limit() const {
   328     return _decrement_tenuring_threshold_for_survivor_limit;
   329   }
   330   void set_decrement_tenuring_threshold_for_survivor_limit(bool v) {
   331     _decrement_tenuring_threshold_for_survivor_limit = v;
   332   }
   333   // Return true if the policy suggested a change.
   334   bool tenuring_threshold_change() const;
   336   static bool _debug_perturbation;
   338  public:
   339   AdaptiveSizePolicy(size_t init_eden_size,
   340                      size_t init_promo_size,
   341                      size_t init_survivor_size,
   342                      double gc_pause_goal_sec,
   343                      uint gc_cost_ratio);
   345   // Return number default  GC threads to use in the next GC.
   346   static int calc_default_active_workers(uintx total_workers,
   347                                          const uintx min_workers,
   348                                          uintx active_workers,
   349                                          uintx application_workers);
   351   // Return number of GC threads to use in the next GC.
   352   // This is called sparingly so as not to change the
   353   // number of GC workers gratuitously.
   354   //   For ParNew collections
   355   //   For PS scavenge and ParOld collections
   356   //   For G1 evacuation pauses (subject to update)
   357   // Other collection phases inherit the number of
   358   // GC workers from the calls above.  For example,
   359   // a CMS parallel remark uses the same number of GC
   360   // workers as the most recent ParNew collection.
   361   static int calc_active_workers(uintx total_workers,
   362                                  uintx active_workers,
   363                                  uintx application_workers);
   365   // Return number of GC threads to use in the next concurrent GC phase.
   366   static int calc_active_conc_workers(uintx total_workers,
   367                                       uintx active_workers,
   368                                       uintx application_workers);
   370   bool is_gc_cms_adaptive_size_policy() {
   371     return kind() == _gc_cms_adaptive_size_policy;
   372   }
   373   bool is_gc_ps_adaptive_size_policy() {
   374     return kind() == _gc_ps_adaptive_size_policy;
   375   }
   377   AdaptivePaddedAverage*   avg_minor_pause() const { return _avg_minor_pause; }
   378   AdaptiveWeightedAverage* avg_minor_interval() const {
   379     return _avg_minor_interval;
   380   }
   381   AdaptiveWeightedAverage* avg_minor_gc_cost() const {
   382     return _avg_minor_gc_cost;
   383   }
   385   AdaptiveWeightedAverage* avg_major_gc_cost() const {
   386     return _avg_major_gc_cost;
   387   }
   389   AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; }
   390   AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; }
   391   AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; }
   393   AdaptivePaddedAverage*  avg_survived() const { return _avg_survived; }
   394   AdaptivePaddedNoZeroDevAverage*  avg_pretenured() { return _avg_pretenured; }
   396   // Methods indicating events of interest to the adaptive size policy,
   397   // called by GC algorithms. It is the responsibility of users of this
   398   // policy to call these methods at the correct times!
   399   virtual void minor_collection_begin();
   400   virtual void minor_collection_end(GCCause::Cause gc_cause);
   401   virtual LinearLeastSquareFit* minor_pause_old_estimator() const {
   402     return _minor_pause_old_estimator;
   403   }
   405   LinearLeastSquareFit* minor_pause_young_estimator() {
   406     return _minor_pause_young_estimator;
   407   }
   408   LinearLeastSquareFit* minor_collection_estimator() {
   409     return _minor_collection_estimator;
   410   }
   412   LinearLeastSquareFit* major_collection_estimator() {
   413     return _major_collection_estimator;
   414   }
   416   float minor_pause_young_slope() {
   417     return _minor_pause_young_estimator->slope();
   418   }
   420   float minor_collection_slope() { return _minor_collection_estimator->slope();}
   421   float major_collection_slope() { return _major_collection_estimator->slope();}
   423   float minor_pause_old_slope() {
   424     return _minor_pause_old_estimator->slope();
   425   }
   427   void set_eden_size(size_t new_size) {
   428     _eden_size = new_size;
   429   }
   430   void set_survivor_size(size_t new_size) {
   431     _survivor_size = new_size;
   432   }
   434   size_t calculated_eden_size_in_bytes() const {
   435     return _eden_size;
   436   }
   438   size_t calculated_promo_size_in_bytes() const {
   439     return _promo_size;
   440   }
   442   size_t calculated_survivor_size_in_bytes() const {
   443     return _survivor_size;
   444   }
   446   // This is a hint for the heap:  we've detected that gc times
   447   // are taking longer than GCTimeLimit allows.
   448   // Most heaps will choose to throw an OutOfMemoryError when
   449   // this occurs but it is up to the heap to request this information
   450   // of the policy
   451   bool gc_overhead_limit_exceeded() {
   452     return _gc_overhead_limit_exceeded;
   453   }
   454   void set_gc_overhead_limit_exceeded(bool v) {
   455     _gc_overhead_limit_exceeded = v;
   456   }
   458   // Tests conditions indicate the GC overhead limit is being approached.
   459   bool gc_overhead_limit_near() {
   460     return gc_overhead_limit_count() >=
   461         (AdaptiveSizePolicyGCTimeLimitThreshold - 1);
   462   }
   463   uint gc_overhead_limit_count() { return _gc_overhead_limit_count; }
   464   void reset_gc_overhead_limit_count() { _gc_overhead_limit_count = 0; }
   465   void inc_gc_overhead_limit_count() { _gc_overhead_limit_count++; }
   466   // accessors for flags recording the decisions to resize the
   467   // generations to meet the pause goal.
   469   int change_young_gen_for_min_pauses() const {
   470     return _change_young_gen_for_min_pauses;
   471   }
   472   void set_change_young_gen_for_min_pauses(int v) {
   473     _change_young_gen_for_min_pauses = v;
   474   }
   475   void set_decrease_for_footprint(int v) { _decrease_for_footprint = v; }
   476   int decrease_for_footprint() const { return _decrease_for_footprint; }
   477   int decide_at_full_gc() { return _decide_at_full_gc; }
   478   void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
   480   // Check the conditions for an out-of-memory due to excessive GC time.
   481   // Set _gc_overhead_limit_exceeded if all the conditions have been met.
   482   void check_gc_overhead_limit(size_t young_live,
   483                                size_t eden_live,
   484                                size_t max_old_gen_size,
   485                                size_t max_eden_size,
   486                                bool   is_full_gc,
   487                                GCCause::Cause gc_cause,
   488                                CollectorPolicy* collector_policy);
   490   // Printing support
   491   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
   492   bool print_adaptive_size_policy_on(outputStream* st,
   493                                      uint tenuring_threshold) const;
   494 };
   496 // Class that can be used to print information about the
   497 // adaptive size policy at intervals specified by
   498 // AdaptiveSizePolicyOutputInterval.  Only print information
   499 // if an adaptive size policy is in use.
   500 class AdaptiveSizePolicyOutput : StackObj {
   501   AdaptiveSizePolicy* _size_policy;
   502   bool _do_print;
   503   bool print_test(uint count) {
   504     // A count of zero is a special value that indicates that the
   505     // interval test should be ignored.  An interval is of zero is
   506     // a special value that indicates that the interval test should
   507     // always fail (never do the print based on the interval test).
   508     return PrintGCDetails &&
   509            UseAdaptiveSizePolicy &&
   510            (UseParallelGC || UseConcMarkSweepGC) &&
   511            (AdaptiveSizePolicyOutputInterval > 0) &&
   512            ((count == 0) ||
   513              ((count % AdaptiveSizePolicyOutputInterval) == 0));
   514   }
   515  public:
   516   // The special value of a zero count can be used to ignore
   517   // the count test.
   518   AdaptiveSizePolicyOutput(uint count) {
   519     if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
   520       CollectedHeap* heap = Universe::heap();
   521       _size_policy = heap->size_policy();
   522       _do_print = print_test(count);
   523     } else {
   524       _size_policy = NULL;
   525       _do_print = false;
   526     }
   527   }
   528   AdaptiveSizePolicyOutput(AdaptiveSizePolicy* size_policy,
   529                            uint count) :
   530     _size_policy(size_policy) {
   531     if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
   532       _do_print = print_test(count);
   533     } else {
   534       _do_print = false;
   535     }
   536   }
   537   ~AdaptiveSizePolicyOutput() {
   538     if (_do_print) {
   539       assert(UseAdaptiveSizePolicy, "Should not be in use");
   540       _size_policy->print_adaptive_size_policy_on(gclog_or_tty);
   541     }
   542   }
   543 };
   545 #endif // SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP

mercurial