src/cpu/sparc/vm/assembler_sparc.cpp

Tue, 11 Jan 2011 17:33:21 -0500

author
phh
date
Tue, 11 Jan 2011 17:33:21 -0500
changeset 2447
5577848f5923
parent 2425
84f36150fcc3
child 2565
28bf941f445e
permissions
-rw-r--r--

7011463: Sparc MacroAssembler::incr_allocated_bytes() needs a RegisterOrConstant argument
Summary: Replaced incr_allocated_bytes() formals var_size_in_bytes and con_size_in_bytes with a single RegisterOrConstant formal.
Reviewed-by: twisti, jcoomes

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #ifndef SERIALGC
    40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    42 #include "gc_implementation/g1/heapRegion.hpp"
    43 #endif
    45 // Convert the raw encoding form into the form expected by the
    46 // constructor for Address.
    47 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
    48   assert(scale == 0, "not supported");
    49   RelocationHolder rspec;
    50   if (disp_is_oop) {
    51     rspec = Relocation::spec_simple(relocInfo::oop_type);
    52   }
    54   Register rindex = as_Register(index);
    55   if (rindex != G0) {
    56     Address madr(as_Register(base), rindex);
    57     madr._rspec = rspec;
    58     return madr;
    59   } else {
    60     Address madr(as_Register(base), disp);
    61     madr._rspec = rspec;
    62     return madr;
    63   }
    64 }
    66 Address Argument::address_in_frame() const {
    67   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    68   //          op codes such as ld or ldx, only access disp() to get
    69   //          their simm13 argument.
    70   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    71   if (is_in())
    72     return Address(FP, disp); // In argument.
    73   else
    74     return Address(SP, disp); // Out argument.
    75 }
    77 static const char* argumentNames[][2] = {
    78   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    79   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    80   {"A(n>9)","P(n>9)"}
    81 };
    83 const char* Argument::name() const {
    84   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    85   int num = number();
    86   if (num >= nofArgs)  num = nofArgs - 1;
    87   return argumentNames[num][is_in() ? 1 : 0];
    88 }
    90 void Assembler::print_instruction(int inst) {
    91   const char* s;
    92   switch (inv_op(inst)) {
    93   default:         s = "????"; break;
    94   case call_op:    s = "call"; break;
    95   case branch_op:
    96     switch (inv_op2(inst)) {
    97       case bpr_op2:    s = "bpr";  break;
    98       case fb_op2:     s = "fb";   break;
    99       case fbp_op2:    s = "fbp";  break;
   100       case br_op2:     s = "br";   break;
   101       case bp_op2:     s = "bp";   break;
   102       case cb_op2:     s = "cb";   break;
   103       default:         s = "????"; break;
   104     }
   105   }
   106   ::tty->print("%s", s);
   107 }
   110 // Patch instruction inst at offset inst_pos to refer to dest_pos
   111 // and return the resulting instruction.
   112 // We should have pcs, not offsets, but since all is relative, it will work out
   113 // OK.
   114 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
   116   int m; // mask for displacement field
   117   int v; // new value for displacement field
   118   const int word_aligned_ones = -4;
   119   switch (inv_op(inst)) {
   120   default: ShouldNotReachHere();
   121   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   122   case branch_op:
   123     switch (inv_op2(inst)) {
   124       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
   125       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   126       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   127       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   128       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   129       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   130       default: ShouldNotReachHere();
   131     }
   132   }
   133   return  inst & ~m  |  v;
   134 }
   136 // Return the offset of the branch destionation of instruction inst
   137 // at offset pos.
   138 // Should have pcs, but since all is relative, it works out.
   139 int Assembler::branch_destination(int inst, int pos) {
   140   int r;
   141   switch (inv_op(inst)) {
   142   default: ShouldNotReachHere();
   143   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   144   case branch_op:
   145     switch (inv_op2(inst)) {
   146       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
   147       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   148       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   149       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   150       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   151       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   152       default: ShouldNotReachHere();
   153     }
   154   }
   155   return r;
   156 }
   158 int AbstractAssembler::code_fill_byte() {
   159   return 0x00;                  // illegal instruction 0x00000000
   160 }
   162 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   163   switch (in) {
   164   case rc_z:   return equal;
   165   case rc_lez: return lessEqual;
   166   case rc_lz:  return less;
   167   case rc_nz:  return notEqual;
   168   case rc_gz:  return greater;
   169   case rc_gez: return greaterEqual;
   170   default:
   171     ShouldNotReachHere();
   172   }
   173   return equal;
   174 }
   176 // Generate a bunch 'o stuff (including v9's
   177 #ifndef PRODUCT
   178 void Assembler::test_v9() {
   179   add(    G0, G1, G2 );
   180   add(    G3,  0, G4 );
   182   addcc(  G5, G6, G7 );
   183   addcc(  I0,  1, I1 );
   184   addc(   I2, I3, I4 );
   185   addc(   I5, -1, I6 );
   186   addccc( I7, L0, L1 );
   187   addccc( L2, (1 << 12) - 2, L3 );
   189   Label lbl1, lbl2, lbl3;
   191   bind(lbl1);
   193   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   194   delayed()->nop();
   195   bpr( rc_lez, false, pt, L5, lbl1);
   196   delayed()->nop();
   198   fb( f_never,     true, pc() + 4,  relocInfo::none);
   199   delayed()->nop();
   200   fb( f_notEqual, false, lbl2 );
   201   delayed()->nop();
   203   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   204   delayed()->nop();
   205   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   206   delayed()->nop();
   208   br( equal,  true, pc() + 1024, relocInfo::none);
   209   delayed()->nop();
   210   br( lessEqual, false, lbl1 );
   211   delayed()->nop();
   212   br( never, false, lbl1 );
   213   delayed()->nop();
   215   bp( less,               true, icc, pn, pc(), relocInfo::none);
   216   delayed()->nop();
   217   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   218   delayed()->nop();
   220   call( pc(), relocInfo::none);
   221   delayed()->nop();
   222   call( lbl3 );
   223   delayed()->nop();
   226   casa(  L6, L7, O0 );
   227   casxa( O1, O2, O3, 0 );
   229   udiv(   O4, O5, O7 );
   230   udiv(   G0, (1 << 12) - 1, G1 );
   231   sdiv(   G1, G2, G3 );
   232   sdiv(   G4, -((1 << 12) - 1), G5 );
   233   udivcc( G6, G7, I0 );
   234   udivcc( I1, -((1 << 12) - 2), I2 );
   235   sdivcc( I3, I4, I5 );
   236   sdivcc( I6, -((1 << 12) - 0), I7 );
   238   done();
   239   retry();
   241   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   242   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   244   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   245   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   247   ftox( FloatRegisterImpl::D, F2, F4 );
   248   ftoi( FloatRegisterImpl::Q, F4, F8 );
   250   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   252   fxtof( FloatRegisterImpl::S, F4, F5 );
   253   fitof( FloatRegisterImpl::D, F6, F8 );
   255   fmov( FloatRegisterImpl::Q, F16, F20 );
   256   fneg( FloatRegisterImpl::S, F6, F7 );
   257   fabs( FloatRegisterImpl::D, F10, F12 );
   259   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   260   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   261   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   263   fsqrt( FloatRegisterImpl::S, F13, F14 );
   265   flush( L0, L1 );
   266   flush( L2, -1 );
   268   flushw();
   270   illtrap( (1 << 22) - 2);
   272   impdep1( 17, (1 << 19) - 1 );
   273   impdep2( 3,  0 );
   275   jmpl( L3, L4, L5 );
   276   delayed()->nop();
   277   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   278   delayed()->nop();
   281   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   282   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   285   ldfsr(  O3, O4 );
   286   ldfsr(  O5, -1 );
   287   ldxfsr( O6, O7 );
   288   ldxfsr( I0, -1 );
   290   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   291   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   293   ldsb(  I4, I5, I6 );
   294   ldsb(  I7, -1, G0 );
   295   ldsh(  G1, G3, G4 );
   296   ldsh(  G5, -1, G6 );
   297   ldsw(  G7, L0, L1 );
   298   ldsw(  L2, -1, L3 );
   299   ldub(  L4, L5, L6 );
   300   ldub(  L7, -1, O0 );
   301   lduh(  O1, O2, O3 );
   302   lduh(  O4, -1, O5 );
   303   lduw(  O6, O7, G0 );
   304   lduw(  G1, -1, G2 );
   305   ldx(   G3, G4, G5 );
   306   ldx(   G6, -1, G7 );
   307   ldd(   I0, I1, I2 );
   308   ldd(   I3, -1, I4 );
   310   ldsba(  I5, I6, 2, I7 );
   311   ldsba(  L0, -1, L1 );
   312   ldsha(  L2, L3, 3, L4 );
   313   ldsha(  L5, -1, L6 );
   314   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   315   ldswa(  O2, -1, O3 );
   316   lduba(  O4, O5, 0, O6 );
   317   lduba(  O7, -1, I0 );
   318   lduha(  I1, I2, 1, I3 );
   319   lduha(  I4, -1, I5 );
   320   lduwa(  I6, I7, 2, L0 );
   321   lduwa(  L1, -1, L2 );
   322   ldxa(   L3, L4, 3, L5 );
   323   ldxa(   L6, -1, L7 );
   324   ldda(   G0, G1, 4, G2 );
   325   ldda(   G3, -1, G4 );
   327   ldstub(  G5, G6, G7 );
   328   ldstub(  O0, -1, O1 );
   330   ldstuba( O2, O3, 5, O4 );
   331   ldstuba( O5, -1, O6 );
   333   and3(    I0, L0, O0 );
   334   and3(    G7, -1, O7 );
   335   andcc(   L2, I2, G2 );
   336   andcc(   L4, -1, G4 );
   337   andn(    I5, I6, I7 );
   338   andn(    I6, -1, I7 );
   339   andncc(  I5, I6, I7 );
   340   andncc(  I7, -1, I6 );
   341   or3(     I5, I6, I7 );
   342   or3(     I7, -1, I6 );
   343   orcc(    I5, I6, I7 );
   344   orcc(    I7, -1, I6 );
   345   orn(     I5, I6, I7 );
   346   orn(     I7, -1, I6 );
   347   orncc(   I5, I6, I7 );
   348   orncc(   I7, -1, I6 );
   349   xor3(    I5, I6, I7 );
   350   xor3(    I7, -1, I6 );
   351   xorcc(   I5, I6, I7 );
   352   xorcc(   I7, -1, I6 );
   353   xnor(    I5, I6, I7 );
   354   xnor(    I7, -1, I6 );
   355   xnorcc(  I5, I6, I7 );
   356   xnorcc(  I7, -1, I6 );
   358   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   359   membar( StoreStore );
   360   membar( LoadStore );
   361   membar( StoreLoad );
   362   membar( LoadLoad );
   363   membar( Sync );
   364   membar( MemIssue );
   365   membar( Lookaside );
   367   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   368   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   370   movcc( overflowClear,  false, icc, I6, L4 );
   371   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   373   movr( rc_nz, I5, I6, I7 );
   374   movr( rc_gz, L1, -1,  L2 );
   376   mulx(  I5, I6, I7 );
   377   mulx(  I7, -1, I6 );
   378   sdivx( I5, I6, I7 );
   379   sdivx( I7, -1, I6 );
   380   udivx( I5, I6, I7 );
   381   udivx( I7, -1, I6 );
   383   umul(   I5, I6, I7 );
   384   umul(   I7, -1, I6 );
   385   smul(   I5, I6, I7 );
   386   smul(   I7, -1, I6 );
   387   umulcc( I5, I6, I7 );
   388   umulcc( I7, -1, I6 );
   389   smulcc( I5, I6, I7 );
   390   smulcc( I7, -1, I6 );
   392   mulscc(   I5, I6, I7 );
   393   mulscc(   I7, -1, I6 );
   395   nop();
   398   popc( G0,  G1);
   399   popc( -1, G2);
   401   prefetch(   L1, L2,    severalReads );
   402   prefetch(   L3, -1,    oneRead );
   403   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   404   prefetcha(  G2, -1,    oneWrite );
   406   rett( I7, I7);
   407   delayed()->nop();
   408   rett( G0, -1, relocInfo::none);
   409   delayed()->nop();
   411   save(    I5, I6, I7 );
   412   save(    I7, -1, I6 );
   413   restore( I5, I6, I7 );
   414   restore( I7, -1, I6 );
   416   saved();
   417   restored();
   419   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   421   sll(  I5, I6, I7 );
   422   sll(  I7, 31, I6 );
   423   srl(  I5, I6, I7 );
   424   srl(  I7,  0, I6 );
   425   sra(  I5, I6, I7 );
   426   sra(  I7, 30, I6 );
   427   sllx( I5, I6, I7 );
   428   sllx( I7, 63, I6 );
   429   srlx( I5, I6, I7 );
   430   srlx( I7,  0, I6 );
   431   srax( I5, I6, I7 );
   432   srax( I7, 62, I6 );
   434   sir( -1 );
   436   stbar();
   438   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   439   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   441   stfsr(  L1, L2 );
   442   stfsr(  I7, -1 );
   443   stxfsr( I6, I5 );
   444   stxfsr( L4, -1 );
   446   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   447   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   449   stb(  L5, O2, I7 );
   450   stb(  I7, I6, -1 );
   451   sth(  L5, O2, I7 );
   452   sth(  I7, I6, -1 );
   453   stw(  L5, O2, I7 );
   454   stw(  I7, I6, -1 );
   455   stx(  L5, O2, I7 );
   456   stx(  I7, I6, -1 );
   457   std(  L5, O2, I7 );
   458   std(  I7, I6, -1 );
   460   stba(  L5, O2, I7, 8 );
   461   stba(  I7, I6, -1    );
   462   stha(  L5, O2, I7, 9 );
   463   stha(  I7, I6, -1    );
   464   stwa(  L5, O2, I7, 0 );
   465   stwa(  I7, I6, -1    );
   466   stxa(  L5, O2, I7, 11 );
   467   stxa(  I7, I6, -1     );
   468   stda(  L5, O2, I7, 12 );
   469   stda(  I7, I6, -1     );
   471   sub(    I5, I6, I7 );
   472   sub(    I7, -1, I6 );
   473   subcc(  I5, I6, I7 );
   474   subcc(  I7, -1, I6 );
   475   subc(   I5, I6, I7 );
   476   subc(   I7, -1, I6 );
   477   subccc( I5, I6, I7 );
   478   subccc( I7, -1, I6 );
   480   swap( I5, I6, I7 );
   481   swap( I7, -1, I6 );
   483   swapa(   G0, G1, 13, G2 );
   484   swapa(   I7, -1,     I6 );
   486   taddcc(    I5, I6, I7 );
   487   taddcc(    I7, -1, I6 );
   488   taddcctv(  I5, I6, I7 );
   489   taddcctv(  I7, -1, I6 );
   491   tsubcc(    I5, I6, I7 );
   492   tsubcc(    I7, -1, I6 );
   493   tsubcctv(  I5, I6, I7 );
   494   tsubcctv(  I7, -1, I6 );
   496   trap( overflowClear, xcc, G0, G1 );
   497   trap( lessEqual,     icc, I7, 17 );
   499   bind(lbl2);
   500   bind(lbl3);
   502   code()->decode();
   503 }
   505 // Generate a bunch 'o stuff unique to V8
   506 void Assembler::test_v8_onlys() {
   507   Label lbl1;
   509   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   510   delayed()->nop();
   511   cb( cp_never,    true, lbl1);
   512   delayed()->nop();
   514   cpop1(1, 2, 3, 4);
   515   cpop2(5, 6, 7, 8);
   517   ldc( I0, I1, 31);
   518   ldc( I2, -1,  0);
   520   lddc( I4, I4, 30);
   521   lddc( I6,  0, 1 );
   523   ldcsr( L0, L1, 0);
   524   ldcsr( L1, (1 << 12) - 1, 17 );
   526   stc( 31, L4, L5);
   527   stc( 30, L6, -(1 << 12) );
   529   stdc( 0, L7, G0);
   530   stdc( 1, G1, 0 );
   532   stcsr( 16, G2, G3);
   533   stcsr( 17, G4, 1 );
   535   stdcq( 4, G5, G6);
   536   stdcq( 5, G7, -1 );
   538   bind(lbl1);
   540   code()->decode();
   541 }
   542 #endif
   544 // Implementation of MacroAssembler
   546 void MacroAssembler::null_check(Register reg, int offset) {
   547   if (needs_explicit_null_check((intptr_t)offset)) {
   548     // provoke OS NULL exception if reg = NULL by
   549     // accessing M[reg] w/o changing any registers
   550     ld_ptr(reg, 0, G0);
   551   }
   552   else {
   553     // nothing to do, (later) access of M[reg + offset]
   554     // will provoke OS NULL exception if reg = NULL
   555   }
   556 }
   558 // Ring buffer jumps
   560 #ifndef PRODUCT
   561 void MacroAssembler::ret(  bool trace )   { if (trace) {
   562                                                     mov(I7, O7); // traceable register
   563                                                     JMP(O7, 2 * BytesPerInstWord);
   564                                                   } else {
   565                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   566                                                   }
   567                                                 }
   569 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   570                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   571 #endif /* PRODUCT */
   574 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   575   assert_not_delayed();
   576   // This can only be traceable if r1 & r2 are visible after a window save
   577   if (TraceJumps) {
   578 #ifndef PRODUCT
   579     save_frame(0);
   580     verify_thread();
   581     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   582     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   583     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   584     add(O2, O1, O1);
   586     add(r1->after_save(), r2->after_save(), O2);
   587     set((intptr_t)file, O3);
   588     set(line, O4);
   589     Label L;
   590     // get nearby pc, store jmp target
   591     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   592     delayed()->st(O2, O1, 0);
   593     bind(L);
   595     // store nearby pc
   596     st(O7, O1, sizeof(intptr_t));
   597     // store file
   598     st(O3, O1, 2*sizeof(intptr_t));
   599     // store line
   600     st(O4, O1, 3*sizeof(intptr_t));
   601     add(O0, 1, O0);
   602     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   603     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   604     restore();
   605 #endif /* PRODUCT */
   606   }
   607   jmpl(r1, r2, G0);
   608 }
   609 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   610   assert_not_delayed();
   611   // This can only be traceable if r1 is visible after a window save
   612   if (TraceJumps) {
   613 #ifndef PRODUCT
   614     save_frame(0);
   615     verify_thread();
   616     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   617     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   618     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   619     add(O2, O1, O1);
   621     add(r1->after_save(), offset, O2);
   622     set((intptr_t)file, O3);
   623     set(line, O4);
   624     Label L;
   625     // get nearby pc, store jmp target
   626     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   627     delayed()->st(O2, O1, 0);
   628     bind(L);
   630     // store nearby pc
   631     st(O7, O1, sizeof(intptr_t));
   632     // store file
   633     st(O3, O1, 2*sizeof(intptr_t));
   634     // store line
   635     st(O4, O1, 3*sizeof(intptr_t));
   636     add(O0, 1, O0);
   637     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   638     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   639     restore();
   640 #endif /* PRODUCT */
   641   }
   642   jmp(r1, offset);
   643 }
   645 // This code sequence is relocatable to any address, even on LP64.
   646 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   647   assert_not_delayed();
   648   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   649   // variable length instruction streams.
   650   patchable_sethi(addrlit, temp);
   651   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   652   if (TraceJumps) {
   653 #ifndef PRODUCT
   654     // Must do the add here so relocation can find the remainder of the
   655     // value to be relocated.
   656     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   657     save_frame(0);
   658     verify_thread();
   659     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   660     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   661     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   662     add(O2, O1, O1);
   664     set((intptr_t)file, O3);
   665     set(line, O4);
   666     Label L;
   668     // get nearby pc, store jmp target
   669     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   670     delayed()->st(a.base()->after_save(), O1, 0);
   671     bind(L);
   673     // store nearby pc
   674     st(O7, O1, sizeof(intptr_t));
   675     // store file
   676     st(O3, O1, 2*sizeof(intptr_t));
   677     // store line
   678     st(O4, O1, 3*sizeof(intptr_t));
   679     add(O0, 1, O0);
   680     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   681     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   682     restore();
   683     jmpl(a.base(), G0, d);
   684 #else
   685     jmpl(a.base(), a.disp(), d);
   686 #endif /* PRODUCT */
   687   } else {
   688     jmpl(a.base(), a.disp(), d);
   689   }
   690 }
   692 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   693   jumpl(addrlit, temp, G0, offset, file, line);
   694 }
   697 // Convert to C varargs format
   698 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   699   // spill register-resident args to their memory slots
   700   // (SPARC calling convention requires callers to have already preallocated these)
   701   // Note that the inArg might in fact be an outgoing argument,
   702   // if a leaf routine or stub does some tricky argument shuffling.
   703   // This routine must work even though one of the saved arguments
   704   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   705   for (Argument savePtr = inArg;
   706        savePtr.is_register();
   707        savePtr = savePtr.successor()) {
   708     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   709   }
   710   // return the address of the first memory slot
   711   Address a = inArg.address_in_frame();
   712   add(a.base(), a.disp(), d);
   713 }
   715 // Conditional breakpoint (for assertion checks in assembly code)
   716 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   717   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   718 }
   720 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   721 void MacroAssembler::breakpoint_trap() {
   722   trap(ST_RESERVED_FOR_USER_0);
   723 }
   725 // flush windows (except current) using flushw instruction if avail.
   726 void MacroAssembler::flush_windows() {
   727   if (VM_Version::v9_instructions_work())  flushw();
   728   else                                     flush_windows_trap();
   729 }
   731 // Write serialization page so VM thread can do a pseudo remote membar
   732 // We use the current thread pointer to calculate a thread specific
   733 // offset to write to within the page. This minimizes bus traffic
   734 // due to cache line collision.
   735 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   736   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   737   if (Assembler::is_simm13(os::vm_page_size())) {
   738     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   739   }
   740   else {
   741     set((os::vm_page_size() - sizeof(int)), tmp1);
   742     and3(tmp2, tmp1, tmp2);
   743   }
   744   set(os::get_memory_serialize_page(), tmp1);
   745   st(G0, tmp1, tmp2);
   746 }
   750 void MacroAssembler::enter() {
   751   Unimplemented();
   752 }
   754 void MacroAssembler::leave() {
   755   Unimplemented();
   756 }
   758 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   759   if(VM_Version::v9_instructions_work()) {
   760     mulx (s1, s2, d);
   761   } else {
   762     smul (s1, s2, d);
   763   }
   764 }
   766 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   767   if(VM_Version::v9_instructions_work()) {
   768     mulx (s1, simm13a, d);
   769   } else {
   770     smul (s1, simm13a, d);
   771   }
   772 }
   775 #ifdef ASSERT
   776 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   777   const Register s1 = G3_scratch;
   778   const Register s2 = G4_scratch;
   779   Label get_psr_test;
   780   // Get the condition codes the V8 way.
   781   read_ccr_trap(s1);
   782   mov(ccr_save, s2);
   783   // This is a test of V8 which has icc but not xcc
   784   // so mask off the xcc bits
   785   and3(s2, 0xf, s2);
   786   // Compare condition codes from the V8 and V9 ways.
   787   subcc(s2, s1, G0);
   788   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   789   delayed()->breakpoint_trap();
   790   bind(get_psr_test);
   791 }
   793 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   794   const Register s1 = G3_scratch;
   795   const Register s2 = G4_scratch;
   796   Label set_psr_test;
   797   // Write out the saved condition codes the V8 way
   798   write_ccr_trap(ccr_save, s1, s2);
   799   // Read back the condition codes using the V9 instruction
   800   rdccr(s1);
   801   mov(ccr_save, s2);
   802   // This is a test of V8 which has icc but not xcc
   803   // so mask off the xcc bits
   804   and3(s2, 0xf, s2);
   805   and3(s1, 0xf, s1);
   806   // Compare the V8 way with the V9 way.
   807   subcc(s2, s1, G0);
   808   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   809   delayed()->breakpoint_trap();
   810   bind(set_psr_test);
   811 }
   812 #else
   813 #define read_ccr_v8_assert(x)
   814 #define write_ccr_v8_assert(x)
   815 #endif // ASSERT
   817 void MacroAssembler::read_ccr(Register ccr_save) {
   818   if (VM_Version::v9_instructions_work()) {
   819     rdccr(ccr_save);
   820     // Test code sequence used on V8.  Do not move above rdccr.
   821     read_ccr_v8_assert(ccr_save);
   822   } else {
   823     read_ccr_trap(ccr_save);
   824   }
   825 }
   827 void MacroAssembler::write_ccr(Register ccr_save) {
   828   if (VM_Version::v9_instructions_work()) {
   829     // Test code sequence used on V8.  Do not move below wrccr.
   830     write_ccr_v8_assert(ccr_save);
   831     wrccr(ccr_save);
   832   } else {
   833     const Register temp_reg1 = G3_scratch;
   834     const Register temp_reg2 = G4_scratch;
   835     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   836   }
   837 }
   840 // Calls to C land
   842 #ifdef ASSERT
   843 // a hook for debugging
   844 static Thread* reinitialize_thread() {
   845   return ThreadLocalStorage::thread();
   846 }
   847 #else
   848 #define reinitialize_thread ThreadLocalStorage::thread
   849 #endif
   851 #ifdef ASSERT
   852 address last_get_thread = NULL;
   853 #endif
   855 // call this when G2_thread is not known to be valid
   856 void MacroAssembler::get_thread() {
   857   save_frame(0);                // to avoid clobbering O0
   858   mov(G1, L0);                  // avoid clobbering G1
   859   mov(G5_method, L1);           // avoid clobbering G5
   860   mov(G3, L2);                  // avoid clobbering G3 also
   861   mov(G4, L5);                  // avoid clobbering G4
   862 #ifdef ASSERT
   863   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   864   set(last_get_thread_addrlit, L3);
   865   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   866   st_ptr(L4, L3, 0);
   867 #endif
   868   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   869   delayed()->nop();
   870   mov(L0, G1);
   871   mov(L1, G5_method);
   872   mov(L2, G3);
   873   mov(L5, G4);
   874   restore(O0, 0, G2_thread);
   875 }
   877 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   878   Thread* correct_value = ThreadLocalStorage::thread();
   879   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   880   return correct_value;
   881 }
   883 void MacroAssembler::verify_thread() {
   884   if (VerifyThread) {
   885     // NOTE: this chops off the heads of the 64-bit O registers.
   886 #ifdef CC_INTERP
   887     save_frame(0);
   888 #else
   889     // make sure G2_thread contains the right value
   890     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   891     mov(G1, L1);                // avoid clobbering G1
   892     // G2 saved below
   893     mov(G3, L3);                // avoid clobbering G3
   894     mov(G4, L4);                // avoid clobbering G4
   895     mov(G5_method, L5);         // avoid clobbering G5_method
   896 #endif /* CC_INTERP */
   897 #if defined(COMPILER2) && !defined(_LP64)
   898     // Save & restore possible 64-bit Long arguments in G-regs
   899     srlx(G1,32,L0);
   900     srlx(G4,32,L6);
   901 #endif
   902     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   903     delayed()->mov(G2_thread, O0);
   905     mov(L1, G1);                // Restore G1
   906     // G2 restored below
   907     mov(L3, G3);                // restore G3
   908     mov(L4, G4);                // restore G4
   909     mov(L5, G5_method);         // restore G5_method
   910 #if defined(COMPILER2) && !defined(_LP64)
   911     // Save & restore possible 64-bit Long arguments in G-regs
   912     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   913     srl(G1, 0,G1);              // Clear current high G1 bits
   914     or3 (G1,G2,G1);             // Recover 64-bit G1
   915     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   916     srl(G4, 0,G4);              // Clear current high G4 bits
   917     or3 (G4,G2,G4);             // Recover 64-bit G4
   918 #endif
   919     restore(O0, 0, G2_thread);
   920   }
   921 }
   924 void MacroAssembler::save_thread(const Register thread_cache) {
   925   verify_thread();
   926   if (thread_cache->is_valid()) {
   927     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   928     mov(G2_thread, thread_cache);
   929   }
   930   if (VerifyThread) {
   931     // smash G2_thread, as if the VM were about to anyway
   932     set(0x67676767, G2_thread);
   933   }
   934 }
   937 void MacroAssembler::restore_thread(const Register thread_cache) {
   938   if (thread_cache->is_valid()) {
   939     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   940     mov(thread_cache, G2_thread);
   941     verify_thread();
   942   } else {
   943     // do it the slow way
   944     get_thread();
   945   }
   946 }
   949 // %%% maybe get rid of [re]set_last_Java_frame
   950 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   951   assert_not_delayed();
   952   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   953                            JavaFrameAnchor::flags_offset());
   954   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   956   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   957   // has_last_Java_frame is true and users will look at the rest of the fields.
   958   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   960 #ifdef ASSERT
   961   // Verify that flags was zeroed on return to Java
   962   Label PcOk;
   963   save_frame(0);                // to avoid clobbering O0
   964   ld_ptr(pc_addr, L0);
   965   tst(L0);
   966 #ifdef _LP64
   967   brx(Assembler::zero, false, Assembler::pt, PcOk);
   968 #else
   969   br(Assembler::zero, false, Assembler::pt, PcOk);
   970 #endif // _LP64
   971   delayed() -> nop();
   972   stop("last_Java_pc not zeroed before leaving Java");
   973   bind(PcOk);
   975   // Verify that flags was zeroed on return to Java
   976   Label FlagsOk;
   977   ld(flags, L0);
   978   tst(L0);
   979   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   980   delayed() -> restore();
   981   stop("flags not zeroed before leaving Java");
   982   bind(FlagsOk);
   983 #endif /* ASSERT */
   984   //
   985   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   986   // will always be set to NULL. It is set here so that if we are doing a call to
   987   // native (not VM) that we capture the known pc and don't have to rely on the
   988   // native call having a standard frame linkage where we can find the pc.
   990   if (last_Java_pc->is_valid()) {
   991     st_ptr(last_Java_pc, pc_addr);
   992   }
   994 #ifdef _LP64
   995 #ifdef ASSERT
   996   // Make sure that we have an odd stack
   997   Label StackOk;
   998   andcc(last_java_sp, 0x01, G0);
   999   br(Assembler::notZero, false, Assembler::pt, StackOk);
  1000   delayed() -> nop();
  1001   stop("Stack Not Biased in set_last_Java_frame");
  1002   bind(StackOk);
  1003 #endif // ASSERT
  1004   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
  1005   add( last_java_sp, STACK_BIAS, G4_scratch );
  1006   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
  1007 #else
  1008   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
  1009 #endif // _LP64
  1012 void MacroAssembler::reset_last_Java_frame(void) {
  1013   assert_not_delayed();
  1015   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
  1016   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1017   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1019 #ifdef ASSERT
  1020   // check that it WAS previously set
  1021 #ifdef CC_INTERP
  1022     save_frame(0);
  1023 #else
  1024     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1025 #endif /* CC_INTERP */
  1026     ld_ptr(sp_addr, L0);
  1027     tst(L0);
  1028     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1029     restore();
  1030 #endif // ASSERT
  1032   st_ptr(G0, sp_addr);
  1033   // Always return last_Java_pc to zero
  1034   st_ptr(G0, pc_addr);
  1035   // Always null flags after return to Java
  1036   st(G0, flags);
  1040 void MacroAssembler::call_VM_base(
  1041   Register        oop_result,
  1042   Register        thread_cache,
  1043   Register        last_java_sp,
  1044   address         entry_point,
  1045   int             number_of_arguments,
  1046   bool            check_exceptions)
  1048   assert_not_delayed();
  1050   // determine last_java_sp register
  1051   if (!last_java_sp->is_valid()) {
  1052     last_java_sp = SP;
  1054   // debugging support
  1055   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1057   // 64-bit last_java_sp is biased!
  1058   set_last_Java_frame(last_java_sp, noreg);
  1059   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1060   save_thread(thread_cache);
  1061   // do the call
  1062   call(entry_point, relocInfo::runtime_call_type);
  1063   if (!VerifyThread)
  1064     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1065   else
  1066     delayed()->nop();             // (thread already passed)
  1067   restore_thread(thread_cache);
  1068   reset_last_Java_frame();
  1070   // check for pending exceptions. use Gtemp as scratch register.
  1071   if (check_exceptions) {
  1072     check_and_forward_exception(Gtemp);
  1075   // get oop result if there is one and reset the value in the thread
  1076   if (oop_result->is_valid()) {
  1077     get_vm_result(oop_result);
  1081 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1083   Label L;
  1085   check_and_handle_popframe(scratch_reg);
  1086   check_and_handle_earlyret(scratch_reg);
  1088   Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1089   ld_ptr(exception_addr, scratch_reg);
  1090   br_null(scratch_reg,false,pt,L);
  1091   delayed()->nop();
  1092   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1093   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1094   delayed()->nop();
  1095   bind(L);
  1099 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1103 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1107 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1108   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1112 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1113   // O0 is reserved for the thread
  1114   mov(arg_1, O1);
  1115   call_VM(oop_result, entry_point, 1, check_exceptions);
  1119 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1120   // O0 is reserved for the thread
  1121   mov(arg_1, O1);
  1122   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1123   call_VM(oop_result, entry_point, 2, check_exceptions);
  1127 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1128   // O0 is reserved for the thread
  1129   mov(arg_1, O1);
  1130   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1131   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1132   call_VM(oop_result, entry_point, 3, check_exceptions);
  1137 // Note: The following call_VM overloadings are useful when a "save"
  1138 // has already been performed by a stub, and the last Java frame is
  1139 // the previous one.  In that case, last_java_sp must be passed as FP
  1140 // instead of SP.
  1143 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1144   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1148 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1149   // O0 is reserved for the thread
  1150   mov(arg_1, O1);
  1151   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1155 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1156   // O0 is reserved for the thread
  1157   mov(arg_1, O1);
  1158   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1159   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1163 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1164   // O0 is reserved for the thread
  1165   mov(arg_1, O1);
  1166   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1167   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1168   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1173 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1174   assert_not_delayed();
  1175   save_thread(thread_cache);
  1176   // do the call
  1177   call(entry_point, relocInfo::runtime_call_type);
  1178   delayed()->nop();
  1179   restore_thread(thread_cache);
  1183 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1184   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1188 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1189   mov(arg_1, O0);
  1190   call_VM_leaf(thread_cache, entry_point, 1);
  1194 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1195   mov(arg_1, O0);
  1196   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1197   call_VM_leaf(thread_cache, entry_point, 2);
  1201 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1202   mov(arg_1, O0);
  1203   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1204   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1205   call_VM_leaf(thread_cache, entry_point, 3);
  1209 void MacroAssembler::get_vm_result(Register oop_result) {
  1210   verify_thread();
  1211   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1212   ld_ptr(    vm_result_addr, oop_result);
  1213   st_ptr(G0, vm_result_addr);
  1214   verify_oop(oop_result);
  1218 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1219   verify_thread();
  1220   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
  1221   ld_ptr(vm_result_addr_2, oop_result);
  1222   st_ptr(G0, vm_result_addr_2);
  1223   verify_oop(oop_result);
  1227 // We require that C code which does not return a value in vm_result will
  1228 // leave it undisturbed.
  1229 void MacroAssembler::set_vm_result(Register oop_result) {
  1230   verify_thread();
  1231   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1232   verify_oop(oop_result);
  1234 # ifdef ASSERT
  1235     // Check that we are not overwriting any other oop.
  1236 #ifdef CC_INTERP
  1237     save_frame(0);
  1238 #else
  1239     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1240 #endif /* CC_INTERP */
  1241     ld_ptr(vm_result_addr, L0);
  1242     tst(L0);
  1243     restore();
  1244     breakpoint_trap(notZero, Assembler::ptr_cc);
  1245     // }
  1246 # endif
  1248   st_ptr(oop_result, vm_result_addr);
  1252 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1253                                       Register tmp, Register obj) {
  1254 #ifdef _LP64
  1255   srlx(obj, CardTableModRefBS::card_shift, obj);
  1256 #else
  1257   srl(obj, CardTableModRefBS::card_shift, obj);
  1258 #endif
  1259   assert(tmp != obj, "need separate temp reg");
  1260   set((address) byte_map_base, tmp);
  1261   stb(G0, tmp, obj);
  1265 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1266   address save_pc;
  1267   int shiftcnt;
  1268 #ifdef _LP64
  1269 # ifdef CHECK_DELAY
  1270   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1271 # endif
  1272   v9_dep();
  1273   save_pc = pc();
  1275   int msb32 = (int) (addrlit.value() >> 32);
  1276   int lsb32 = (int) (addrlit.value());
  1278   if (msb32 == 0 && lsb32 >= 0) {
  1279     Assembler::sethi(lsb32, d, addrlit.rspec());
  1281   else if (msb32 == -1) {
  1282     Assembler::sethi(~lsb32, d, addrlit.rspec());
  1283     xor3(d, ~low10(~0), d);
  1285   else {
  1286     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
  1287     if (msb32 & 0x3ff)                            // Any bits?
  1288       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
  1289     if (lsb32 & 0xFFFFFC00) {                     // done?
  1290       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
  1291         sllx(d, 12, d);                           // Make room for next 12 bits
  1292         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
  1293         shiftcnt = 0;                             // We already shifted
  1295       else
  1296         shiftcnt = 12;
  1297       if ((lsb32 >> 10) & 0x3ff) {
  1298         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
  1299         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
  1300         shiftcnt = 0;
  1302       else
  1303         shiftcnt = 10;
  1304       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
  1306     else
  1307       sllx(d, 32, d);
  1309   // Pad out the instruction sequence so it can be patched later.
  1310   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
  1311                            addrlit.rtype() != relocInfo::runtime_call_type)) {
  1312     while (pc() < (save_pc + (7 * BytesPerInstWord)))
  1313       nop();
  1315 #else
  1316   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
  1317 #endif
  1321 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
  1322   internal_sethi(addrlit, d, false);
  1326 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
  1327   internal_sethi(addrlit, d, true);
  1331 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
  1332 #ifdef _LP64
  1333   if (worst_case)  return 7;
  1334   intptr_t iaddr = (intptr_t) a;
  1335   int msb32 = (int) (iaddr >> 32);
  1336   int lsb32 = (int) (iaddr);
  1337   int count;
  1338   if (msb32 == 0 && lsb32 >= 0)
  1339     count = 1;
  1340   else if (msb32 == -1)
  1341     count = 2;
  1342   else {
  1343     count = 2;
  1344     if (msb32 & 0x3ff)
  1345       count++;
  1346     if (lsb32 & 0xFFFFFC00 ) {
  1347       if ((lsb32 >> 20) & 0xfff)  count += 2;
  1348       if ((lsb32 >> 10) & 0x3ff)  count += 2;
  1351   return count;
  1352 #else
  1353   return 1;
  1354 #endif
  1357 int MacroAssembler::worst_case_insts_for_set() {
  1358   return insts_for_sethi(NULL, true) + 1;
  1362 // Keep in sync with MacroAssembler::insts_for_internal_set
  1363 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1364   intptr_t value = addrlit.value();
  1366   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
  1367     // can optimize
  1368     if (-4096 <= value && value <= 4095) {
  1369       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1370       return;
  1372     if (inv_hi22(hi22(value)) == value) {
  1373       sethi(addrlit, d);
  1374       return;
  1377   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1378   internal_sethi(addrlit, d, ForceRelocatable);
  1379   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
  1380     add(d, addrlit.low10(), d, addrlit.rspec());
  1384 // Keep in sync with MacroAssembler::internal_set
  1385 int MacroAssembler::insts_for_internal_set(intptr_t value) {
  1386   // can optimize
  1387   if (-4096 <= value && value <= 4095) {
  1388     return 1;
  1390   if (inv_hi22(hi22(value)) == value) {
  1391     return insts_for_sethi((address) value);
  1393   int count = insts_for_sethi((address) value);
  1394   AddressLiteral al(value);
  1395   if (al.low10() != 0) {
  1396     count++;
  1398   return count;
  1401 void MacroAssembler::set(const AddressLiteral& al, Register d) {
  1402   internal_set(al, d, false);
  1405 void MacroAssembler::set(intptr_t value, Register d) {
  1406   AddressLiteral al(value);
  1407   internal_set(al, d, false);
  1410 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  1411   AddressLiteral al(addr, rspec);
  1412   internal_set(al, d, false);
  1415 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  1416   internal_set(al, d, true);
  1419 void MacroAssembler::patchable_set(intptr_t value, Register d) {
  1420   AddressLiteral al(value);
  1421   internal_set(al, d, true);
  1425 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1426   assert_not_delayed();
  1427   v9_dep();
  1429   int hi = (int)(value >> 32);
  1430   int lo = (int)(value & ~0);
  1431   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1432   if (Assembler::is_simm13(lo) && value == lo) {
  1433     or3(G0, lo, d);
  1434   } else if (hi == 0) {
  1435     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1436     if (low10(lo) != 0)
  1437       or3(d, low10(lo), d);
  1439   else if (hi == -1) {
  1440     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1441     xor3(d, low10(lo) ^ ~low10(~0), d);
  1443   else if (lo == 0) {
  1444     if (Assembler::is_simm13(hi)) {
  1445       or3(G0, hi, d);
  1446     } else {
  1447       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1448       if (low10(hi) != 0)
  1449         or3(d, low10(hi), d);
  1451     sllx(d, 32, d);
  1453   else {
  1454     Assembler::sethi(hi, tmp);
  1455     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1456     if (low10(hi) != 0)
  1457       or3 (tmp, low10(hi), tmp);
  1458     if (low10(lo) != 0)
  1459       or3 (  d, low10(lo),   d);
  1460     sllx(tmp, 32, tmp);
  1461     or3 (d, tmp, d);
  1465 int MacroAssembler::insts_for_set64(jlong value) {
  1466   v9_dep();
  1468   int hi = (int) (value >> 32);
  1469   int lo = (int) (value & ~0);
  1470   int count = 0;
  1472   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1473   if (Assembler::is_simm13(lo) && value == lo) {
  1474     count++;
  1475   } else if (hi == 0) {
  1476     count++;
  1477     if (low10(lo) != 0)
  1478       count++;
  1480   else if (hi == -1) {
  1481     count += 2;
  1483   else if (lo == 0) {
  1484     if (Assembler::is_simm13(hi)) {
  1485       count++;
  1486     } else {
  1487       count++;
  1488       if (low10(hi) != 0)
  1489         count++;
  1491     count++;
  1493   else {
  1494     count += 2;
  1495     if (low10(hi) != 0)
  1496       count++;
  1497     if (low10(lo) != 0)
  1498       count++;
  1499     count += 2;
  1501   return count;
  1504 // compute size in bytes of sparc frame, given
  1505 // number of extraWords
  1506 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1508   int nWords = frame::memory_parameter_word_sp_offset;
  1510   nWords += extraWords;
  1512   if (nWords & 1) ++nWords; // round up to double-word
  1514   return nWords * BytesPerWord;
  1518 // save_frame: given number of "extra" words in frame,
  1519 // issue approp. save instruction (p 200, v8 manual)
  1521 void MacroAssembler::save_frame(int extraWords = 0) {
  1522   int delta = -total_frame_size_in_bytes(extraWords);
  1523   if (is_simm13(delta)) {
  1524     save(SP, delta, SP);
  1525   } else {
  1526     set(delta, G3_scratch);
  1527     save(SP, G3_scratch, SP);
  1532 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1533   if (is_simm13(-size_in_bytes)) {
  1534     save(SP, -size_in_bytes, SP);
  1535   } else {
  1536     set(-size_in_bytes, G3_scratch);
  1537     save(SP, G3_scratch, SP);
  1542 void MacroAssembler::save_frame_and_mov(int extraWords,
  1543                                         Register s1, Register d1,
  1544                                         Register s2, Register d2) {
  1545   assert_not_delayed();
  1547   // The trick here is to use precisely the same memory word
  1548   // that trap handlers also use to save the register.
  1549   // This word cannot be used for any other purpose, but
  1550   // it works fine to save the register's value, whether or not
  1551   // an interrupt flushes register windows at any given moment!
  1552   Address s1_addr;
  1553   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1554     s1_addr = s1->address_in_saved_window();
  1555     st_ptr(s1, s1_addr);
  1558   Address s2_addr;
  1559   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1560     s2_addr = s2->address_in_saved_window();
  1561     st_ptr(s2, s2_addr);
  1564   save_frame(extraWords);
  1566   if (s1_addr.base() == SP) {
  1567     ld_ptr(s1_addr.after_save(), d1);
  1568   } else if (s1->is_valid()) {
  1569     mov(s1->after_save(), d1);
  1572   if (s2_addr.base() == SP) {
  1573     ld_ptr(s2_addr.after_save(), d2);
  1574   } else if (s2->is_valid()) {
  1575     mov(s2->after_save(), d2);
  1580 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
  1581   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1582   int oop_index = oop_recorder()->allocate_index(obj);
  1583   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1587 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1588   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1589   int oop_index = oop_recorder()->find_index(obj);
  1590   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1593 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1594   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1595   int oop_index = oop_recorder()->find_index(obj);
  1596   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1598   assert_not_delayed();
  1599   // Relocation with special format (see relocInfo_sparc.hpp).
  1600   relocate(rspec, 1);
  1601   // Assembler::sethi(0x3fffff, d);
  1602   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1603   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1604   add(d, 0x3ff, d);
  1609 void MacroAssembler::align(int modulus) {
  1610   while (offset() % modulus != 0) nop();
  1614 void MacroAssembler::safepoint() {
  1615   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1619 void RegistersForDebugging::print(outputStream* s) {
  1620   int j;
  1621   for ( j = 0;  j < 8;  ++j )
  1622     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1623     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1624   s->cr();
  1626   for ( j = 0;  j < 8;  ++j )
  1627     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1628   s->cr();
  1630   for ( j = 0;  j < 8;  ++j )
  1631     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1632     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1633   s->cr();
  1635   for ( j = 0;  j < 8;  ++j )
  1636     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1637   s->cr();
  1639   // print out floats with compression
  1640   for (j = 0; j < 32; ) {
  1641     jfloat val = f[j];
  1642     int last = j;
  1643     for ( ;  last+1 < 32;  ++last ) {
  1644       char b1[1024], b2[1024];
  1645       sprintf(b1, "%f", val);
  1646       sprintf(b2, "%f", f[last+1]);
  1647       if (strcmp(b1, b2))
  1648         break;
  1650     s->print("f%d", j);
  1651     if ( j != last )  s->print(" - f%d", last);
  1652     s->print(" = %f", val);
  1653     s->fill_to(25);
  1654     s->print_cr(" (0x%x)", val);
  1655     j = last + 1;
  1657   s->cr();
  1659   // and doubles (evens only)
  1660   for (j = 0; j < 32; ) {
  1661     jdouble val = d[j];
  1662     int last = j;
  1663     for ( ;  last+1 < 32;  ++last ) {
  1664       char b1[1024], b2[1024];
  1665       sprintf(b1, "%f", val);
  1666       sprintf(b2, "%f", d[last+1]);
  1667       if (strcmp(b1, b2))
  1668         break;
  1670     s->print("d%d", 2 * j);
  1671     if ( j != last )  s->print(" - d%d", last);
  1672     s->print(" = %f", val);
  1673     s->fill_to(30);
  1674     s->print("(0x%x)", *(int*)&val);
  1675     s->fill_to(42);
  1676     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1677     j = last + 1;
  1679   s->cr();
  1682 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1683   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1684   a->flush_windows();
  1685   int i;
  1686   for (i = 0; i < 8; ++i) {
  1687     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1688     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1689     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1690     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1692   for (i = 0;  i < 32; ++i) {
  1693     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1695   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1696     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1700 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1701   for (int i = 1; i < 8;  ++i) {
  1702     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1704   for (int j = 0; j < 32; ++j) {
  1705     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1707   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1708     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1713 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1714 void MacroAssembler::push_fTOS() {
  1715   // %%%%%% need to implement this
  1718 // pops double TOS element from CPU stack and pushes on FPU stack
  1719 void MacroAssembler::pop_fTOS() {
  1720   // %%%%%% need to implement this
  1723 void MacroAssembler::empty_FPU_stack() {
  1724   // %%%%%% need to implement this
  1727 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1728   // plausibility check for oops
  1729   if (!VerifyOops) return;
  1731   if (reg == G0)  return;       // always NULL, which is always an oop
  1733   char buffer[64];
  1734 #ifdef COMPILER1
  1735   if (CommentedAssembly) {
  1736     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1737     block_comment(buffer);
  1739 #endif
  1741   int len = strlen(file) + strlen(msg) + 1 + 4;
  1742   sprintf(buffer, "%d", line);
  1743   len += strlen(buffer);
  1744   sprintf(buffer, " at offset %d ", offset());
  1745   len += strlen(buffer);
  1746   char * real_msg = new char[len];
  1747   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1749   // Call indirectly to solve generation ordering problem
  1750   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1752   // Make some space on stack above the current register window.
  1753   // Enough to hold 8 64-bit registers.
  1754   add(SP,-8*8,SP);
  1756   // Save some 64-bit registers; a normal 'save' chops the heads off
  1757   // of 64-bit longs in the 32-bit build.
  1758   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1759   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1760   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1761   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1763   set((intptr_t)real_msg, O1);
  1764   // Load address to call to into O7
  1765   load_ptr_contents(a, O7);
  1766   // Register call to verify_oop_subroutine
  1767   callr(O7, G0);
  1768   delayed()->nop();
  1769   // recover frame size
  1770   add(SP, 8*8,SP);
  1773 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1774   // plausibility check for oops
  1775   if (!VerifyOops) return;
  1777   char buffer[64];
  1778   sprintf(buffer, "%d", line);
  1779   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1780   sprintf(buffer, " at SP+%d ", addr.disp());
  1781   len += strlen(buffer);
  1782   char * real_msg = new char[len];
  1783   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1785   // Call indirectly to solve generation ordering problem
  1786   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1788   // Make some space on stack above the current register window.
  1789   // Enough to hold 8 64-bit registers.
  1790   add(SP,-8*8,SP);
  1792   // Save some 64-bit registers; a normal 'save' chops the heads off
  1793   // of 64-bit longs in the 32-bit build.
  1794   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1795   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1796   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1797   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1799   set((intptr_t)real_msg, O1);
  1800   // Load address to call to into O7
  1801   load_ptr_contents(a, O7);
  1802   // Register call to verify_oop_subroutine
  1803   callr(O7, G0);
  1804   delayed()->nop();
  1805   // recover frame size
  1806   add(SP, 8*8,SP);
  1809 // side-door communication with signalHandler in os_solaris.cpp
  1810 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1812 // This macro is expanded just once; it creates shared code.  Contract:
  1813 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1814 // registers, including flags.  May not use a register 'save', as this blows
  1815 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1816 // call.
  1817 void MacroAssembler::verify_oop_subroutine() {
  1818   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1820   // Leaf call; no frame.
  1821   Label succeed, fail, null_or_fail;
  1823   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1824   // O0 is now the oop to be checked.  O7 is the return address.
  1825   Register O0_obj = O0;
  1827   // Save some more registers for temps.
  1828   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1829   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1830   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1831   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1833   // Save flags
  1834   Register O5_save_flags = O5;
  1835   rdccr( O5_save_flags );
  1837   { // count number of verifies
  1838     Register O2_adr   = O2;
  1839     Register O3_accum = O3;
  1840     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1843   Register O2_mask = O2;
  1844   Register O3_bits = O3;
  1845   Register O4_temp = O4;
  1847   // mark lower end of faulting range
  1848   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1849   _verify_oop_implicit_branch[0] = pc();
  1851   // We can't check the mark oop because it could be in the process of
  1852   // locking or unlocking while this is running.
  1853   set(Universe::verify_oop_mask (), O2_mask);
  1854   set(Universe::verify_oop_bits (), O3_bits);
  1856   // assert((obj & oop_mask) == oop_bits);
  1857   and3(O0_obj, O2_mask, O4_temp);
  1858   cmp(O4_temp, O3_bits);
  1859   brx(notEqual, false, pn, null_or_fail);
  1860   delayed()->nop();
  1862   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1863     // the null_or_fail case is useless; must test for null separately
  1864     br_null(O0_obj, false, pn, succeed);
  1865     delayed()->nop();
  1868   // Check the klassOop of this object for being in the right area of memory.
  1869   // Cannot do the load in the delay above slot in case O0 is null
  1870   load_klass(O0_obj, O0_obj);
  1871   // assert((klass & klass_mask) == klass_bits);
  1872   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1873     set(Universe::verify_klass_mask(), O2_mask);
  1874   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1875     set(Universe::verify_klass_bits(), O3_bits);
  1876   and3(O0_obj, O2_mask, O4_temp);
  1877   cmp(O4_temp, O3_bits);
  1878   brx(notEqual, false, pn, fail);
  1879   delayed()->nop();
  1880   // Check the klass's klass
  1881   load_klass(O0_obj, O0_obj);
  1882   and3(O0_obj, O2_mask, O4_temp);
  1883   cmp(O4_temp, O3_bits);
  1884   brx(notEqual, false, pn, fail);
  1885   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1887   // mark upper end of faulting range
  1888   _verify_oop_implicit_branch[1] = pc();
  1890   //-----------------------
  1891   // all tests pass
  1892   bind(succeed);
  1894   // Restore prior 64-bit registers
  1895   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1896   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1897   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1898   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1899   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1900   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1902   retl();                       // Leaf return; restore prior O7 in delay slot
  1903   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1905   //-----------------------
  1906   bind(null_or_fail);           // nulls are less common but OK
  1907   br_null(O0_obj, false, pt, succeed);
  1908   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1910   //-----------------------
  1911   // report failure:
  1912   bind(fail);
  1913   _verify_oop_implicit_branch[2] = pc();
  1915   wrccr( O5_save_flags ); // Restore CCR's
  1917   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1919   // stop_subroutine expects message pointer in I1.
  1920   mov(I1, O1);
  1922   // Restore prior 64-bit registers
  1923   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1924   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1925   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1926   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1927   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1928   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1930   // factor long stop-sequence into subroutine to save space
  1931   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1933   // call indirectly to solve generation ordering problem
  1934   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1935   load_ptr_contents(al, O5);
  1936   jmpl(O5, 0, O7);
  1937   delayed()->nop();
  1941 void MacroAssembler::stop(const char* msg) {
  1942   // save frame first to get O7 for return address
  1943   // add one word to size in case struct is odd number of words long
  1944   // It must be doubleword-aligned for storing doubles into it.
  1946     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1948     // stop_subroutine expects message pointer in I1.
  1949     set((intptr_t)msg, O1);
  1951     // factor long stop-sequence into subroutine to save space
  1952     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1954     // call indirectly to solve generation ordering problem
  1955     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  1956     load_ptr_contents(a, O5);
  1957     jmpl(O5, 0, O7);
  1958     delayed()->nop();
  1960     breakpoint_trap();   // make stop actually stop rather than writing
  1961                          // unnoticeable results in the output files.
  1963     // restore(); done in callee to save space!
  1967 void MacroAssembler::warn(const char* msg) {
  1968   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1969   RegistersForDebugging::save_registers(this);
  1970   mov(O0, L0);
  1971   set((intptr_t)msg, O0);
  1972   call( CAST_FROM_FN_PTR(address, warning) );
  1973   delayed()->nop();
  1974 //  ret();
  1975 //  delayed()->restore();
  1976   RegistersForDebugging::restore_registers(this, L0);
  1977   restore();
  1981 void MacroAssembler::untested(const char* what) {
  1982   // We must be able to turn interactive prompting off
  1983   // in order to run automated test scripts on the VM
  1984   // Use the flag ShowMessageBoxOnError
  1986   char* b = new char[1024];
  1987   sprintf(b, "untested: %s", what);
  1989   if ( ShowMessageBoxOnError )   stop(b);
  1990   else                           warn(b);
  1994 void MacroAssembler::stop_subroutine() {
  1995   RegistersForDebugging::save_registers(this);
  1997   // for the sake of the debugger, stick a PC on the current frame
  1998   // (this assumes that the caller has performed an extra "save")
  1999   mov(I7, L7);
  2000   add(O7, -7 * BytesPerInt, I7);
  2002   save_frame(); // one more save to free up another O7 register
  2003   mov(I0, O1); // addr of reg save area
  2005   // We expect pointer to message in I1. Caller must set it up in O1
  2006   mov(I1, O0); // get msg
  2007   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2008   delayed()->nop();
  2010   restore();
  2012   RegistersForDebugging::restore_registers(this, O0);
  2014   save_frame(0);
  2015   call(CAST_FROM_FN_PTR(address,breakpoint));
  2016   delayed()->nop();
  2017   restore();
  2019   mov(L7, I7);
  2020   retl();
  2021   delayed()->restore(); // see stop above
  2025 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  2026   if ( ShowMessageBoxOnError ) {
  2027       JavaThreadState saved_state = JavaThread::current()->thread_state();
  2028       JavaThread::current()->set_thread_state(_thread_in_vm);
  2030         // In order to get locks work, we need to fake a in_VM state
  2031         ttyLocker ttyl;
  2032         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  2033         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  2034           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  2036         if (os::message_box(msg, "Execution stopped, print registers?"))
  2037           regs->print(::tty);
  2039       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  2041   else
  2042      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  2043   assert(false, "error");
  2047 #ifndef PRODUCT
  2048 void MacroAssembler::test() {
  2049   ResourceMark rm;
  2051   CodeBuffer cb("test", 10000, 10000);
  2052   MacroAssembler* a = new MacroAssembler(&cb);
  2053   VM_Version::allow_all();
  2054   a->test_v9();
  2055   a->test_v8_onlys();
  2056   VM_Version::revert();
  2058   StubRoutines::Sparc::test_stop_entry()();
  2060 #endif
  2063 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  2064   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  2065   Label no_extras;
  2066   br( negative, true, pt, no_extras ); // if neg, clear reg
  2067   delayed()->set(0, Rresult);          // annuled, so only if taken
  2068   bind( no_extras );
  2072 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  2073 #ifdef _LP64
  2074   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2075 #else
  2076   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2077 #endif
  2078   bclr(1, Rresult);
  2079   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2083 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2084   calc_frame_size(Rextra_words, Rresult);
  2085   neg(Rresult);
  2086   save(SP, Rresult, SP);
  2090 // ---------------------------------------------------------
  2091 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2092   switch (c) {
  2093     /*case zero: */
  2094     case Assembler::equal:        return Assembler::rc_z;
  2095     case Assembler::lessEqual:    return Assembler::rc_lez;
  2096     case Assembler::less:         return Assembler::rc_lz;
  2097     /*case notZero:*/
  2098     case Assembler::notEqual:     return Assembler::rc_nz;
  2099     case Assembler::greater:      return Assembler::rc_gz;
  2100     case Assembler::greaterEqual: return Assembler::rc_gez;
  2102   ShouldNotReachHere();
  2103   return Assembler::rc_z;
  2106 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2107 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  2108   tst(s1);
  2109   br (c, a, p, L);
  2113 // Compares a pointer register with zero and branches on null.
  2114 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2115 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2116   assert_not_delayed();
  2117 #ifdef _LP64
  2118   bpr( rc_z, a, p, s1, L );
  2119 #else
  2120   tst(s1);
  2121   br ( zero, a, p, L );
  2122 #endif
  2125 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2126   assert_not_delayed();
  2127 #ifdef _LP64
  2128   bpr( rc_nz, a, p, s1, L );
  2129 #else
  2130   tst(s1);
  2131   br ( notZero, a, p, L );
  2132 #endif
  2135 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2136                                      Register s1, address d,
  2137                                      relocInfo::relocType rt ) {
  2138   if (VM_Version::v9_instructions_work()) {
  2139     bpr(rc, a, p, s1, d, rt);
  2140   } else {
  2141     tst(s1);
  2142     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
  2146 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2147                                      Register s1, Label& L ) {
  2148   if (VM_Version::v9_instructions_work()) {
  2149     bpr(rc, a, p, s1, L);
  2150   } else {
  2151     tst(s1);
  2152     br(reg_cond_to_cc_cond(rc), a, p, L);
  2157 // instruction sequences factored across compiler & interpreter
  2160 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2161                            Register Rb_hi, Register Rb_low,
  2162                            Register Rresult) {
  2164   Label check_low_parts, done;
  2166   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2167   br(equal, true, pt, check_low_parts);
  2168   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2170   // And, with an unsigned comparison, it does not matter if the numbers
  2171   // are negative or not.
  2172   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2173   // The second one is bigger (unsignedly).
  2175   // Other notes:  The first move in each triplet can be unconditional
  2176   // (and therefore probably prefetchable).
  2177   // And the equals case for the high part does not need testing,
  2178   // since that triplet is reached only after finding the high halves differ.
  2180   if (VM_Version::v9_instructions_work()) {
  2182                                     mov  (                     -1, Rresult);
  2183     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2185   else {
  2186     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2187     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2190   bind( check_low_parts );
  2192   if (VM_Version::v9_instructions_work()) {
  2193     mov(                               -1, Rresult);
  2194     movcc(equal,           false, icc,  0, Rresult);
  2195     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2197   else {
  2198                                                     set(-1, Rresult);
  2199     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2200     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2202   bind( done );
  2205 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2206   subcc(  G0, Rlow, Rlow );
  2207   subc(   G0, Rhi,  Rhi  );
  2210 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2211                            Register Rcount,
  2212                            Register Rout_high, Register Rout_low,
  2213                            Register Rtemp ) {
  2216   Register Ralt_count = Rtemp;
  2217   Register Rxfer_bits = Rtemp;
  2219   assert( Ralt_count != Rin_high
  2220       &&  Ralt_count != Rin_low
  2221       &&  Ralt_count != Rcount
  2222       &&  Rxfer_bits != Rin_low
  2223       &&  Rxfer_bits != Rin_high
  2224       &&  Rxfer_bits != Rcount
  2225       &&  Rxfer_bits != Rout_low
  2226       &&  Rout_low   != Rin_high,
  2227         "register alias checks");
  2229   Label big_shift, done;
  2231   // This code can be optimized to use the 64 bit shifts in V9.
  2232   // Here we use the 32 bit shifts.
  2234   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2235   subcc(Rcount,         31,             Ralt_count);
  2236   br(greater, true, pn, big_shift);
  2237   delayed()->
  2238   dec(Ralt_count);
  2240   // shift < 32 bits, Ralt_count = Rcount-31
  2242   // We get the transfer bits by shifting right by 32-count the low
  2243   // register. This is done by shifting right by 31-count and then by one
  2244   // more to take care of the special (rare) case where count is zero
  2245   // (shifting by 32 would not work).
  2247   neg(  Ralt_count                                 );
  2249   // The order of the next two instructions is critical in the case where
  2250   // Rin and Rout are the same and should not be reversed.
  2252   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  2253   if (Rcount != Rout_low) {
  2254     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2256   sll(  Rin_high,       Rcount,         Rout_high  );
  2257   if (Rcount == Rout_low) {
  2258     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2260   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  2261   ba (false, done);
  2262   delayed()->
  2263   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2265   // shift >= 32 bits, Ralt_count = Rcount-32
  2266   bind(big_shift);
  2267   sll(  Rin_low,        Ralt_count,     Rout_high  );
  2268   clr(  Rout_low                                   );
  2270   bind(done);
  2274 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2275                            Register Rcount,
  2276                            Register Rout_high, Register Rout_low,
  2277                            Register Rtemp ) {
  2279   Register Ralt_count = Rtemp;
  2280   Register Rxfer_bits = Rtemp;
  2282   assert( Ralt_count != Rin_high
  2283       &&  Ralt_count != Rin_low
  2284       &&  Ralt_count != Rcount
  2285       &&  Rxfer_bits != Rin_low
  2286       &&  Rxfer_bits != Rin_high
  2287       &&  Rxfer_bits != Rcount
  2288       &&  Rxfer_bits != Rout_high
  2289       &&  Rout_high  != Rin_low,
  2290         "register alias checks");
  2292   Label big_shift, done;
  2294   // This code can be optimized to use the 64 bit shifts in V9.
  2295   // Here we use the 32 bit shifts.
  2297   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2298   subcc(Rcount,         31,             Ralt_count);
  2299   br(greater, true, pn, big_shift);
  2300   delayed()->dec(Ralt_count);
  2302   // shift < 32 bits, Ralt_count = Rcount-31
  2304   // We get the transfer bits by shifting left by 32-count the high
  2305   // register. This is done by shifting left by 31-count and then by one
  2306   // more to take care of the special (rare) case where count is zero
  2307   // (shifting by 32 would not work).
  2309   neg(  Ralt_count                                  );
  2310   if (Rcount != Rout_low) {
  2311     srl(        Rin_low,        Rcount,         Rout_low    );
  2314   // The order of the next two instructions is critical in the case where
  2315   // Rin and Rout are the same and should not be reversed.
  2317   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2318   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  2319   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2320   if (Rcount == Rout_low) {
  2321     srl(        Rin_low,        Rcount,         Rout_low    );
  2323   ba (false, done);
  2324   delayed()->
  2325   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2327   // shift >= 32 bits, Ralt_count = Rcount-32
  2328   bind(big_shift);
  2330   sra(  Rin_high,       Ralt_count,     Rout_low    );
  2331   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
  2333   bind( done );
  2338 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2339                             Register Rcount,
  2340                             Register Rout_high, Register Rout_low,
  2341                             Register Rtemp ) {
  2343   Register Ralt_count = Rtemp;
  2344   Register Rxfer_bits = Rtemp;
  2346   assert( Ralt_count != Rin_high
  2347       &&  Ralt_count != Rin_low
  2348       &&  Ralt_count != Rcount
  2349       &&  Rxfer_bits != Rin_low
  2350       &&  Rxfer_bits != Rin_high
  2351       &&  Rxfer_bits != Rcount
  2352       &&  Rxfer_bits != Rout_high
  2353       &&  Rout_high  != Rin_low,
  2354         "register alias checks");
  2356   Label big_shift, done;
  2358   // This code can be optimized to use the 64 bit shifts in V9.
  2359   // Here we use the 32 bit shifts.
  2361   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2362   subcc(Rcount,         31,             Ralt_count);
  2363   br(greater, true, pn, big_shift);
  2364   delayed()->dec(Ralt_count);
  2366   // shift < 32 bits, Ralt_count = Rcount-31
  2368   // We get the transfer bits by shifting left by 32-count the high
  2369   // register. This is done by shifting left by 31-count and then by one
  2370   // more to take care of the special (rare) case where count is zero
  2371   // (shifting by 32 would not work).
  2373   neg(  Ralt_count                                  );
  2374   if (Rcount != Rout_low) {
  2375     srl(        Rin_low,        Rcount,         Rout_low    );
  2378   // The order of the next two instructions is critical in the case where
  2379   // Rin and Rout are the same and should not be reversed.
  2381   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2382   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  2383   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2384   if (Rcount == Rout_low) {
  2385     srl(        Rin_low,        Rcount,         Rout_low    );
  2387   ba (false, done);
  2388   delayed()->
  2389   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2391   // shift >= 32 bits, Ralt_count = Rcount-32
  2392   bind(big_shift);
  2394   srl(  Rin_high,       Ralt_count,     Rout_low    );
  2395   clr(  Rout_high                                   );
  2397   bind( done );
  2400 #ifdef _LP64
  2401 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2402   cmp(Ra, Rb);
  2403   mov(                       -1, Rresult);
  2404   movcc(equal,   false, xcc,  0, Rresult);
  2405   movcc(greater, false, xcc,  1, Rresult);
  2407 #endif
  2410 void MacroAssembler::load_sized_value(Address src, Register dst,
  2411                                       size_t size_in_bytes, bool is_signed) {
  2412   switch (size_in_bytes) {
  2413   case  8: ldx(src, dst); break;
  2414   case  4: ld( src, dst); break;
  2415   case  2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  2416   case  1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  2417   default: ShouldNotReachHere();
  2422 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2423                                 FloatRegister Fa, FloatRegister Fb,
  2424                                 Register Rresult) {
  2426   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2428   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2429   Condition eq =                          f_equal;
  2430   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2432   if (VM_Version::v9_instructions_work()) {
  2434     mov(                   -1, Rresult );
  2435     movcc( eq, true, fcc0,  0, Rresult );
  2436     movcc( gt, true, fcc0,  1, Rresult );
  2438   } else {
  2439     Label done;
  2441                                          set( -1, Rresult );
  2442     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2443     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2444     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2446     bind (done);
  2451 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2453   if (VM_Version::v9_instructions_work()) {
  2454     Assembler::fneg(w, s, d);
  2455   } else {
  2456     if (w == FloatRegisterImpl::S) {
  2457       Assembler::fneg(w, s, d);
  2458     } else if (w == FloatRegisterImpl::D) {
  2459       // number() does a sanity check on the alignment.
  2460       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2461         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2463       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2464       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2465     } else {
  2466       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2468       // number() does a sanity check on the alignment.
  2469       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2470         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2472       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2473       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2474       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2475       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2480 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2482   if (VM_Version::v9_instructions_work()) {
  2483     Assembler::fmov(w, s, d);
  2484   } else {
  2485     if (w == FloatRegisterImpl::S) {
  2486       Assembler::fmov(w, s, d);
  2487     } else if (w == FloatRegisterImpl::D) {
  2488       // number() does a sanity check on the alignment.
  2489       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2490         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2492       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2493       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2494     } else {
  2495       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2497       // number() does a sanity check on the alignment.
  2498       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2499         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2501       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2502       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2503       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2504       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2509 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2511   if (VM_Version::v9_instructions_work()) {
  2512     Assembler::fabs(w, s, d);
  2513   } else {
  2514     if (w == FloatRegisterImpl::S) {
  2515       Assembler::fabs(w, s, d);
  2516     } else if (w == FloatRegisterImpl::D) {
  2517       // number() does a sanity check on the alignment.
  2518       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2519         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2521       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2522       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2523     } else {
  2524       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2526       // number() does a sanity check on the alignment.
  2527       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2528        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2530       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2531       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2532       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2533       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2538 void MacroAssembler::save_all_globals_into_locals() {
  2539   mov(G1,L1);
  2540   mov(G2,L2);
  2541   mov(G3,L3);
  2542   mov(G4,L4);
  2543   mov(G5,L5);
  2544   mov(G6,L6);
  2545   mov(G7,L7);
  2548 void MacroAssembler::restore_globals_from_locals() {
  2549   mov(L1,G1);
  2550   mov(L2,G2);
  2551   mov(L3,G3);
  2552   mov(L4,G4);
  2553   mov(L5,G5);
  2554   mov(L6,G6);
  2555   mov(L7,G7);
  2558 // Use for 64 bit operation.
  2559 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2561   // store ptr_reg as the new top value
  2562 #ifdef _LP64
  2563   casx(top_ptr_reg, top_reg, ptr_reg);
  2564 #else
  2565   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2566 #endif // _LP64
  2569 // [RGV] This routine does not handle 64 bit operations.
  2570 //       use casx_under_lock() or casx directly!!!
  2571 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2573   // store ptr_reg as the new top value
  2574   if (VM_Version::v9_instructions_work()) {
  2575     cas(top_ptr_reg, top_reg, ptr_reg);
  2576   } else {
  2578     // If the register is not an out nor global, it is not visible
  2579     // after the save.  Allocate a register for it, save its
  2580     // value in the register save area (the save may not flush
  2581     // registers to the save area).
  2583     Register top_ptr_reg_after_save;
  2584     Register top_reg_after_save;
  2585     Register ptr_reg_after_save;
  2587     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2588       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2589     } else {
  2590       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2591       top_ptr_reg_after_save = L0;
  2592       st(top_ptr_reg, reg_save_addr);
  2595     if (top_reg->is_out() || top_reg->is_global()) {
  2596       top_reg_after_save = top_reg->after_save();
  2597     } else {
  2598       Address reg_save_addr = top_reg->address_in_saved_window();
  2599       top_reg_after_save = L1;
  2600       st(top_reg, reg_save_addr);
  2603     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2604       ptr_reg_after_save = ptr_reg->after_save();
  2605     } else {
  2606       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2607       ptr_reg_after_save = L2;
  2608       st(ptr_reg, reg_save_addr);
  2611     const Register& lock_reg = L3;
  2612     const Register& lock_ptr_reg = L4;
  2613     const Register& value_reg = L5;
  2614     const Register& yield_reg = L6;
  2615     const Register& yieldall_reg = L7;
  2617     save_frame();
  2619     if (top_ptr_reg_after_save == L0) {
  2620       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2623     if (top_reg_after_save == L1) {
  2624       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2627     if (ptr_reg_after_save == L2) {
  2628       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2631     Label(retry_get_lock);
  2632     Label(not_same);
  2633     Label(dont_yield);
  2635     assert(lock_addr, "lock_address should be non null for v8");
  2636     set((intptr_t)lock_addr, lock_ptr_reg);
  2637     // Initialize yield counter
  2638     mov(G0,yield_reg);
  2639     mov(G0, yieldall_reg);
  2640     set(StubRoutines::Sparc::locked, lock_reg);
  2642     bind(retry_get_lock);
  2643     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
  2644     br(Assembler::less, false, Assembler::pt, dont_yield);
  2645     delayed()->nop();
  2647     if(use_call_vm) {
  2648       Untested("Need to verify global reg consistancy");
  2649       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2650     } else {
  2651       // Save the regs and make space for a C call
  2652       save(SP, -96, SP);
  2653       save_all_globals_into_locals();
  2654       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2655       delayed()->mov(yieldall_reg, O0);
  2656       restore_globals_from_locals();
  2657       restore();
  2660     // reset the counter
  2661     mov(G0,yield_reg);
  2662     add(yieldall_reg, 1, yieldall_reg);
  2664     bind(dont_yield);
  2665     // try to get lock
  2666     swap(lock_ptr_reg, 0, lock_reg);
  2668     // did we get the lock?
  2669     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2670     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2671     delayed()->add(yield_reg,1,yield_reg);
  2673     // yes, got lock.  do we have the same top?
  2674     ld(top_ptr_reg_after_save, 0, value_reg);
  2675     cmp(value_reg, top_reg_after_save);
  2676     br(Assembler::notEqual, false, Assembler::pn, not_same);
  2677     delayed()->nop();
  2679     // yes, same top.
  2680     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2681     membar(Assembler::StoreStore);
  2683     bind(not_same);
  2684     mov(value_reg, ptr_reg_after_save);
  2685     st(lock_reg, lock_ptr_reg, 0); // unlock
  2687     restore();
  2691 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2692                                                       Register tmp,
  2693                                                       int offset) {
  2694   intptr_t value = *delayed_value_addr;
  2695   if (value != 0)
  2696     return RegisterOrConstant(value + offset);
  2698   // load indirectly to solve generation ordering problem
  2699   AddressLiteral a(delayed_value_addr);
  2700   load_ptr_contents(a, tmp);
  2702 #ifdef ASSERT
  2703   tst(tmp);
  2704   breakpoint_trap(zero, xcc);
  2705 #endif
  2707   if (offset != 0)
  2708     add(tmp, offset, tmp);
  2710   return RegisterOrConstant(tmp);
  2714 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2715   assert(d.register_or_noreg() != G0, "lost side effect");
  2716   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2717       (s2.is_register() && s2.as_register() == G0)) {
  2718     // Do nothing, just move value.
  2719     if (s1.is_register()) {
  2720       if (d.is_constant())  d = temp;
  2721       mov(s1.as_register(), d.as_register());
  2722       return d;
  2723     } else {
  2724       return s1;
  2728   if (s1.is_register()) {
  2729     assert_different_registers(s1.as_register(), temp);
  2730     if (d.is_constant())  d = temp;
  2731     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2732     return d;
  2733   } else {
  2734     if (s2.is_register()) {
  2735       assert_different_registers(s2.as_register(), temp);
  2736       if (d.is_constant())  d = temp;
  2737       set(s1.as_constant(), temp);
  2738       andn(temp, s2.as_register(), d.as_register());
  2739       return d;
  2740     } else {
  2741       intptr_t res = s1.as_constant() & ~s2.as_constant();
  2742       return res;
  2747 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2748   assert(d.register_or_noreg() != G0, "lost side effect");
  2749   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2750       (s2.is_register() && s2.as_register() == G0)) {
  2751     // Do nothing, just move value.
  2752     if (s1.is_register()) {
  2753       if (d.is_constant())  d = temp;
  2754       mov(s1.as_register(), d.as_register());
  2755       return d;
  2756     } else {
  2757       return s1;
  2761   if (s1.is_register()) {
  2762     assert_different_registers(s1.as_register(), temp);
  2763     if (d.is_constant())  d = temp;
  2764     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2765     return d;
  2766   } else {
  2767     if (s2.is_register()) {
  2768       assert_different_registers(s2.as_register(), temp);
  2769       if (d.is_constant())  d = temp;
  2770       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
  2771       return d;
  2772     } else {
  2773       intptr_t res = s1.as_constant() + s2.as_constant();
  2774       return res;
  2779 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2780   assert(d.register_or_noreg() != G0, "lost side effect");
  2781   if (!is_simm13(s2.constant_or_zero()))
  2782     s2 = (s2.as_constant() & 0xFF);
  2783   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2784       (s2.is_register() && s2.as_register() == G0)) {
  2785     // Do nothing, just move value.
  2786     if (s1.is_register()) {
  2787       if (d.is_constant())  d = temp;
  2788       mov(s1.as_register(), d.as_register());
  2789       return d;
  2790     } else {
  2791       return s1;
  2795   if (s1.is_register()) {
  2796     assert_different_registers(s1.as_register(), temp);
  2797     if (d.is_constant())  d = temp;
  2798     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2799     return d;
  2800   } else {
  2801     if (s2.is_register()) {
  2802       assert_different_registers(s2.as_register(), temp);
  2803       if (d.is_constant())  d = temp;
  2804       set(s1.as_constant(), temp);
  2805       sll_ptr(temp, s2.as_register(), d.as_register());
  2806       return d;
  2807     } else {
  2808       intptr_t res = s1.as_constant() << s2.as_constant();
  2809       return res;
  2815 // Look up the method for a megamorphic invokeinterface call.
  2816 // The target method is determined by <intf_klass, itable_index>.
  2817 // The receiver klass is in recv_klass.
  2818 // On success, the result will be in method_result, and execution falls through.
  2819 // On failure, execution transfers to the given label.
  2820 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2821                                              Register intf_klass,
  2822                                              RegisterOrConstant itable_index,
  2823                                              Register method_result,
  2824                                              Register scan_temp,
  2825                                              Register sethi_temp,
  2826                                              Label& L_no_such_interface) {
  2827   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2828   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2829          "caller must use same register for non-constant itable index as for method");
  2831   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2832   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  2833   int scan_step   = itableOffsetEntry::size() * wordSize;
  2834   int vte_size    = vtableEntry::size() * wordSize;
  2836   lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2837   // %%% We should store the aligned, prescaled offset in the klassoop.
  2838   // Then the next several instructions would fold away.
  2840   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2841   int itb_offset = vtable_base;
  2842   if (round_to_unit != 0) {
  2843     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2844     itb_offset += round_to_unit - wordSize;
  2846   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2847   sll(scan_temp, itb_scale,  scan_temp);
  2848   add(scan_temp, itb_offset, scan_temp);
  2849   if (round_to_unit != 0) {
  2850     // Round up to align_object_offset boundary
  2851     // see code for instanceKlass::start_of_itable!
  2852     // Was: round_to(scan_temp, BytesPerLong);
  2853     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2854     and3(scan_temp, -round_to_unit, scan_temp);
  2856   add(recv_klass, scan_temp, scan_temp);
  2858   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2859   RegisterOrConstant itable_offset = itable_index;
  2860   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  2861   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
  2862   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
  2864   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2865   //   if (scan->interface() == intf) {
  2866   //     result = (klass + scan->offset() + itable_index);
  2867   //   }
  2868   // }
  2869   Label search, found_method;
  2871   for (int peel = 1; peel >= 0; peel--) {
  2872     // %%%% Could load both offset and interface in one ldx, if they were
  2873     // in the opposite order.  This would save a load.
  2874     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2876     // Check that this entry is non-null.  A null entry means that
  2877     // the receiver class doesn't implement the interface, and wasn't the
  2878     // same as when the caller was compiled.
  2879     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
  2880     delayed()->cmp(method_result, intf_klass);
  2882     if (peel) {
  2883       brx(Assembler::equal,    false, Assembler::pt, found_method);
  2884     } else {
  2885       brx(Assembler::notEqual, false, Assembler::pn, search);
  2886       // (invert the test to fall through to found_method...)
  2888     delayed()->add(scan_temp, scan_step, scan_temp);
  2890     if (!peel)  break;
  2892     bind(search);
  2895   bind(found_method);
  2897   // Got a hit.
  2898   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  2899   // scan_temp[-scan_step] points to the vtable offset we need
  2900   ito_offset -= scan_step;
  2901   lduw(scan_temp, ito_offset, scan_temp);
  2902   ld_ptr(recv_klass, scan_temp, method_result);
  2906 void MacroAssembler::check_klass_subtype(Register sub_klass,
  2907                                          Register super_klass,
  2908                                          Register temp_reg,
  2909                                          Register temp2_reg,
  2910                                          Label& L_success) {
  2911   Label L_failure, L_pop_to_failure;
  2912   check_klass_subtype_fast_path(sub_klass, super_klass,
  2913                                 temp_reg, temp2_reg,
  2914                                 &L_success, &L_failure, NULL);
  2915   Register sub_2 = sub_klass;
  2916   Register sup_2 = super_klass;
  2917   if (!sub_2->is_global())  sub_2 = L0;
  2918   if (!sup_2->is_global())  sup_2 = L1;
  2920   save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  2921   check_klass_subtype_slow_path(sub_2, sup_2,
  2922                                 L2, L3, L4, L5,
  2923                                 NULL, &L_pop_to_failure);
  2925   // on success:
  2926   restore();
  2927   ba(false, L_success);
  2928   delayed()->nop();
  2930   // on failure:
  2931   bind(L_pop_to_failure);
  2932   restore();
  2933   bind(L_failure);
  2937 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  2938                                                    Register super_klass,
  2939                                                    Register temp_reg,
  2940                                                    Register temp2_reg,
  2941                                                    Label* L_success,
  2942                                                    Label* L_failure,
  2943                                                    Label* L_slow_path,
  2944                                         RegisterOrConstant super_check_offset,
  2945                                         Register instanceof_hack) {
  2946   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  2947                    Klass::secondary_super_cache_offset_in_bytes());
  2948   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2949                     Klass::super_check_offset_offset_in_bytes());
  2951   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  2952   bool need_slow_path = (must_load_sco ||
  2953                          super_check_offset.constant_or_zero() == sco_offset);
  2955   assert_different_registers(sub_klass, super_klass, temp_reg);
  2956   if (super_check_offset.is_register()) {
  2957     assert_different_registers(sub_klass, super_klass, temp_reg,
  2958                                super_check_offset.as_register());
  2959   } else if (must_load_sco) {
  2960     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  2963   Label L_fallthrough;
  2964   int label_nulls = 0;
  2965   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2966   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2967   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  2968   assert(label_nulls <= 1 || instanceof_hack != noreg ||
  2969          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  2970          "at most one NULL in the batch, usually");
  2972   // Support for the instanceof hack, which uses delay slots to
  2973   // set a destination register to zero or one.
  2974   bool do_bool_sets = (instanceof_hack != noreg);
  2975 #define BOOL_SET(bool_value)                            \
  2976   if (do_bool_sets && bool_value >= 0)                  \
  2977     set(bool_value, instanceof_hack)
  2978 #define DELAYED_BOOL_SET(bool_value)                    \
  2979   if (do_bool_sets && bool_value >= 0)                  \
  2980     delayed()->set(bool_value, instanceof_hack);        \
  2981   else delayed()->nop()
  2982   // Hacked ba(), which may only be used just before L_fallthrough.
  2983 #define FINAL_JUMP(label, bool_value)                   \
  2984   if (&(label) == &L_fallthrough) {                     \
  2985     BOOL_SET(bool_value);                               \
  2986   } else {                                              \
  2987     ba((do_bool_sets && bool_value >= 0), label);       \
  2988     DELAYED_BOOL_SET(bool_value);                       \
  2991   // If the pointers are equal, we are done (e.g., String[] elements).
  2992   // This self-check enables sharing of secondary supertype arrays among
  2993   // non-primary types such as array-of-interface.  Otherwise, each such
  2994   // type would need its own customized SSA.
  2995   // We move this check to the front of the fast path because many
  2996   // type checks are in fact trivially successful in this manner,
  2997   // so we get a nicely predicted branch right at the start of the check.
  2998   cmp(super_klass, sub_klass);
  2999   brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
  3000   DELAYED_BOOL_SET(1);
  3002   // Check the supertype display:
  3003   if (must_load_sco) {
  3004     // The super check offset is always positive...
  3005     lduw(super_klass, sco_offset, temp2_reg);
  3006     super_check_offset = RegisterOrConstant(temp2_reg);
  3007     // super_check_offset is register.
  3008     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
  3010   ld_ptr(sub_klass, super_check_offset, temp_reg);
  3011   cmp(super_klass, temp_reg);
  3013   // This check has worked decisively for primary supers.
  3014   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3015   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3016   // This works in the same check above because of a tricky aliasing
  3017   // between the super_cache and the primary super display elements.
  3018   // (The 'super_check_addr' can address either, as the case requires.)
  3019   // Note that the cache is updated below if it does not help us find
  3020   // what we need immediately.
  3021   // So if it was a primary super, we can just fail immediately.
  3022   // Otherwise, it's the slow path for us (no success at this point).
  3024   if (super_check_offset.is_register()) {
  3025     brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
  3026     delayed(); if (do_bool_sets)  BOOL_SET(1);
  3027     // if !do_bool_sets, sneak the next cmp into the delay slot:
  3028     cmp(super_check_offset.as_register(), sc_offset);
  3030     if (L_failure == &L_fallthrough) {
  3031       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
  3032       delayed()->nop();
  3033       BOOL_SET(0);  // fallthrough on failure
  3034     } else {
  3035       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
  3036       DELAYED_BOOL_SET(0);
  3037       FINAL_JUMP(*L_slow_path, -1);  // -1 => vanilla delay slot
  3039   } else if (super_check_offset.as_constant() == sc_offset) {
  3040     // Need a slow path; fast failure is impossible.
  3041     if (L_slow_path == &L_fallthrough) {
  3042       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
  3043       DELAYED_BOOL_SET(1);
  3044     } else {
  3045       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  3046       delayed()->nop();
  3047       FINAL_JUMP(*L_success, 1);
  3049   } else {
  3050     // No slow path; it's a fast decision.
  3051     if (L_failure == &L_fallthrough) {
  3052       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
  3053       DELAYED_BOOL_SET(1);
  3054       BOOL_SET(0);
  3055     } else {
  3056       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
  3057       DELAYED_BOOL_SET(0);
  3058       FINAL_JUMP(*L_success, 1);
  3062   bind(L_fallthrough);
  3064 #undef final_jump
  3065 #undef bool_set
  3066 #undef DELAYED_BOOL_SET
  3067 #undef final_jump
  3071 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3072                                                    Register super_klass,
  3073                                                    Register count_temp,
  3074                                                    Register scan_temp,
  3075                                                    Register scratch_reg,
  3076                                                    Register coop_reg,
  3077                                                    Label* L_success,
  3078                                                    Label* L_failure) {
  3079   assert_different_registers(sub_klass, super_klass,
  3080                              count_temp, scan_temp, scratch_reg, coop_reg);
  3082   Label L_fallthrough, L_loop;
  3083   int label_nulls = 0;
  3084   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3085   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3086   assert(label_nulls <= 1, "at most one NULL in the batch");
  3088   // a couple of useful fields in sub_klass:
  3089   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  3090                    Klass::secondary_supers_offset_in_bytes());
  3091   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  3092                    Klass::secondary_super_cache_offset_in_bytes());
  3094   // Do a linear scan of the secondary super-klass chain.
  3095   // This code is rarely used, so simplicity is a virtue here.
  3097 #ifndef PRODUCT
  3098   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3099   inc_counter((address) pst_counter, count_temp, scan_temp);
  3100 #endif
  3102   // We will consult the secondary-super array.
  3103   ld_ptr(sub_klass, ss_offset, scan_temp);
  3105   // Compress superclass if necessary.
  3106   Register search_key = super_klass;
  3107   bool decode_super_klass = false;
  3108   if (UseCompressedOops) {
  3109     if (coop_reg != noreg) {
  3110       encode_heap_oop_not_null(super_klass, coop_reg);
  3111       search_key = coop_reg;
  3112     } else {
  3113       encode_heap_oop_not_null(super_klass);
  3114       decode_super_klass = true; // scarce temps!
  3116     // The superclass is never null; it would be a basic system error if a null
  3117     // pointer were to sneak in here.  Note that we have already loaded the
  3118     // Klass::super_check_offset from the super_klass in the fast path,
  3119     // so if there is a null in that register, we are already in the afterlife.
  3122   // Load the array length.  (Positive movl does right thing on LP64.)
  3123   lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
  3125   // Check for empty secondary super list
  3126   tst(count_temp);
  3128   // Top of search loop
  3129   bind(L_loop);
  3130   br(Assembler::equal, false, Assembler::pn, *L_failure);
  3131   delayed()->add(scan_temp, heapOopSize, scan_temp);
  3132   assert(heapOopSize != 0, "heapOopSize should be initialized");
  3134   // Skip the array header in all array accesses.
  3135   int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
  3136   elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
  3138   // Load next super to check
  3139   if (UseCompressedOops) {
  3140     // Don't use load_heap_oop; we don't want to decode the element.
  3141     lduw(   scan_temp, elem_offset, scratch_reg );
  3142   } else {
  3143     ld_ptr( scan_temp, elem_offset, scratch_reg );
  3146   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  3147   cmp(scratch_reg, search_key);
  3149   // A miss means we are NOT a subtype and need to keep looping
  3150   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  3151   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  3153   // Falling out the bottom means we found a hit; we ARE a subtype
  3154   if (decode_super_klass) decode_heap_oop(super_klass);
  3156   // Success.  Cache the super we found and proceed in triumph.
  3157   st_ptr(super_klass, sub_klass, sc_offset);
  3159   if (L_success != &L_fallthrough) {
  3160     ba(false, *L_success);
  3161     delayed()->nop();
  3164   bind(L_fallthrough);
  3168 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  3169                                               Register temp_reg,
  3170                                               Label& wrong_method_type) {
  3171   assert_different_registers(mtype_reg, mh_reg, temp_reg);
  3172   // compare method type against that of the receiver
  3173   RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
  3174   load_heap_oop(mh_reg, mhtype_offset, temp_reg);
  3175   cmp(temp_reg, mtype_reg);
  3176   br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
  3177   delayed()->nop();
  3181 // A method handle has a "vmslots" field which gives the size of its
  3182 // argument list in JVM stack slots.  This field is either located directly
  3183 // in every method handle, or else is indirectly accessed through the
  3184 // method handle's MethodType.  This macro hides the distinction.
  3185 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  3186                                                 Register temp_reg) {
  3187   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  3188   // load mh.type.form.vmslots
  3189   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
  3190     // hoist vmslots into every mh to avoid dependent load chain
  3191     ld(           Address(mh_reg,    delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)),   vmslots_reg);
  3192   } else {
  3193     Register temp2_reg = vmslots_reg;
  3194     load_heap_oop(Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)),      temp2_reg);
  3195     load_heap_oop(Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)),        temp2_reg);
  3196     ld(           Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
  3201 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
  3202   assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
  3203   assert_different_registers(mh_reg, temp_reg);
  3205   // pick out the interpreted side of the handler
  3206   // NOTE: vmentry is not an oop!
  3207   ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
  3209   // off we go...
  3210   ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
  3211   jmp(temp_reg, 0);
  3213   // for the various stubs which take control at this point,
  3214   // see MethodHandles::generate_method_handle_stub
  3216   // Some callers can fill the delay slot.
  3217   if (emit_delayed_nop) {
  3218     delayed()->nop();
  3223 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  3224                                                    int extra_slot_offset) {
  3225   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3226   int stackElementSize = Interpreter::stackElementSize;
  3227   int offset = extra_slot_offset * stackElementSize;
  3228   if (arg_slot.is_constant()) {
  3229     offset += arg_slot.as_constant() * stackElementSize;
  3230     return offset;
  3231   } else {
  3232     Register temp = arg_slot.as_register();
  3233     sll_ptr(temp, exact_log2(stackElementSize), temp);
  3234     if (offset != 0)
  3235       add(temp, offset, temp);
  3236     return temp;
  3241 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3242                                          int extra_slot_offset) {
  3243   return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
  3247 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  3248                                           Register temp_reg,
  3249                                           Label& done, Label* slow_case,
  3250                                           BiasedLockingCounters* counters) {
  3251   assert(UseBiasedLocking, "why call this otherwise?");
  3253   if (PrintBiasedLockingStatistics) {
  3254     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  3255     if (counters == NULL)
  3256       counters = BiasedLocking::counters();
  3259   Label cas_label;
  3261   // Biased locking
  3262   // See whether the lock is currently biased toward our thread and
  3263   // whether the epoch is still valid
  3264   // Note that the runtime guarantees sufficient alignment of JavaThread
  3265   // pointers to allow age to be placed into low bits
  3266   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  3267   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3268   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3269   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
  3270   delayed()->nop();
  3272   load_klass(obj_reg, temp_reg);
  3273   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3274   or3(G2_thread, temp_reg, temp_reg);
  3275   xor3(mark_reg, temp_reg, temp_reg);
  3276   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  3277   if (counters != NULL) {
  3278     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3279     // Reload mark_reg as we may need it later
  3280     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  3282   brx(Assembler::equal, true, Assembler::pt, done);
  3283   delayed()->nop();
  3285   Label try_revoke_bias;
  3286   Label try_rebias;
  3287   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  3288   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3290   // At this point we know that the header has the bias pattern and
  3291   // that we are not the bias owner in the current epoch. We need to
  3292   // figure out more details about the state of the header in order to
  3293   // know what operations can be legally performed on the object's
  3294   // header.
  3296   // If the low three bits in the xor result aren't clear, that means
  3297   // the prototype header is no longer biased and we have to revoke
  3298   // the bias on this object.
  3299   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  3300   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  3302   // Biasing is still enabled for this data type. See whether the
  3303   // epoch of the current bias is still valid, meaning that the epoch
  3304   // bits of the mark word are equal to the epoch bits of the
  3305   // prototype header. (Note that the prototype header's epoch bits
  3306   // only change at a safepoint.) If not, attempt to rebias the object
  3307   // toward the current thread. Note that we must be absolutely sure
  3308   // that the current epoch is invalid in order to do this because
  3309   // otherwise the manipulations it performs on the mark word are
  3310   // illegal.
  3311   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  3312   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  3314   // The epoch of the current bias is still valid but we know nothing
  3315   // about the owner; it might be set or it might be clear. Try to
  3316   // acquire the bias of the object using an atomic operation. If this
  3317   // fails we will go in to the runtime to revoke the object's bias.
  3318   // Note that we first construct the presumed unbiased header so we
  3319   // don't accidentally blow away another thread's valid bias.
  3320   delayed()->and3(mark_reg,
  3321                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  3322                   mark_reg);
  3323   or3(G2_thread, mark_reg, temp_reg);
  3324   casn(mark_addr.base(), mark_reg, temp_reg);
  3325   // If the biasing toward our thread failed, this means that
  3326   // another thread succeeded in biasing it toward itself and we
  3327   // need to revoke that bias. The revocation will occur in the
  3328   // interpreter runtime in the slow case.
  3329   cmp(mark_reg, temp_reg);
  3330   if (counters != NULL) {
  3331     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3333   if (slow_case != NULL) {
  3334     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3335     delayed()->nop();
  3337   br(Assembler::always, false, Assembler::pt, done);
  3338   delayed()->nop();
  3340   bind(try_rebias);
  3341   // At this point we know the epoch has expired, meaning that the
  3342   // current "bias owner", if any, is actually invalid. Under these
  3343   // circumstances _only_, we are allowed to use the current header's
  3344   // value as the comparison value when doing the cas to acquire the
  3345   // bias in the current epoch. In other words, we allow transfer of
  3346   // the bias from one thread to another directly in this situation.
  3347   //
  3348   // FIXME: due to a lack of registers we currently blow away the age
  3349   // bits in this situation. Should attempt to preserve them.
  3350   load_klass(obj_reg, temp_reg);
  3351   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3352   or3(G2_thread, temp_reg, temp_reg);
  3353   casn(mark_addr.base(), mark_reg, temp_reg);
  3354   // If the biasing toward our thread failed, this means that
  3355   // another thread succeeded in biasing it toward itself and we
  3356   // need to revoke that bias. The revocation will occur in the
  3357   // interpreter runtime in the slow case.
  3358   cmp(mark_reg, temp_reg);
  3359   if (counters != NULL) {
  3360     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  3362   if (slow_case != NULL) {
  3363     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3364     delayed()->nop();
  3366   br(Assembler::always, false, Assembler::pt, done);
  3367   delayed()->nop();
  3369   bind(try_revoke_bias);
  3370   // The prototype mark in the klass doesn't have the bias bit set any
  3371   // more, indicating that objects of this data type are not supposed
  3372   // to be biased any more. We are going to try to reset the mark of
  3373   // this object to the prototype value and fall through to the
  3374   // CAS-based locking scheme. Note that if our CAS fails, it means
  3375   // that another thread raced us for the privilege of revoking the
  3376   // bias of this particular object, so it's okay to continue in the
  3377   // normal locking code.
  3378   //
  3379   // FIXME: due to a lack of registers we currently blow away the age
  3380   // bits in this situation. Should attempt to preserve them.
  3381   load_klass(obj_reg, temp_reg);
  3382   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3383   casn(mark_addr.base(), mark_reg, temp_reg);
  3384   // Fall through to the normal CAS-based lock, because no matter what
  3385   // the result of the above CAS, some thread must have succeeded in
  3386   // removing the bias bit from the object's header.
  3387   if (counters != NULL) {
  3388     cmp(mark_reg, temp_reg);
  3389     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  3392   bind(cas_label);
  3395 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  3396                                           bool allow_delay_slot_filling) {
  3397   // Check for biased locking unlock case, which is a no-op
  3398   // Note: we do not have to check the thread ID for two reasons.
  3399   // First, the interpreter checks for IllegalMonitorStateException at
  3400   // a higher level. Second, if the bias was revoked while we held the
  3401   // lock, the object could not be rebiased toward another thread, so
  3402   // the bias bit would be clear.
  3403   ld_ptr(mark_addr, temp_reg);
  3404   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3405   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3406   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  3407   delayed();
  3408   if (!allow_delay_slot_filling) {
  3409     nop();
  3414 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  3415 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  3417 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  3418   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
  3423 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  3424 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  3425 // The code could be tightened up considerably.
  3426 //
  3427 // box->dhw disposition - post-conditions at DONE_LABEL.
  3428 // -   Successful inflated lock:  box->dhw != 0.
  3429 //     Any non-zero value suffices.
  3430 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  3431 // -   Successful Stack-lock: box->dhw == mark.
  3432 //     box->dhw must contain the displaced mark word value
  3433 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  3434 //     The slow-path fast_enter() and slow_enter() operators
  3435 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  3436 // -   Biased: box->dhw is undefined
  3437 //
  3438 // SPARC refworkload performance - specifically jetstream and scimark - are
  3439 // extremely sensitive to the size of the code emitted by compiler_lock_object
  3440 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  3441 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  3442 // effect).
  3445 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  3446                                           Register Rbox, Register Rscratch,
  3447                                           BiasedLockingCounters* counters,
  3448                                           bool try_bias) {
  3449    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3451    verify_oop(Roop);
  3452    Label done ;
  3454    if (counters != NULL) {
  3455      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  3458    if (EmitSync & 1) {
  3459      mov    (3, Rscratch) ;
  3460      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3461      cmp    (SP, G0) ;
  3462      return ;
  3465    if (EmitSync & 2) {
  3467      // Fetch object's markword
  3468      ld_ptr(mark_addr, Rmark);
  3470      if (try_bias) {
  3471         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3474      // Save Rbox in Rscratch to be used for the cas operation
  3475      mov(Rbox, Rscratch);
  3477      // set Rmark to markOop | markOopDesc::unlocked_value
  3478      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3480      // Initialize the box.  (Must happen before we update the object mark!)
  3481      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3483      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  3484      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3485      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  3486         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3488      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  3489      // hence we are done
  3490      cmp(Rmark, Rscratch);
  3491 #ifdef _LP64
  3492      sub(Rscratch, STACK_BIAS, Rscratch);
  3493 #endif
  3494      brx(Assembler::equal, false, Assembler::pt, done);
  3495      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  3497      // we did not find an unlocked object so see if this is a recursive case
  3498      // sub(Rscratch, SP, Rscratch);
  3499      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3500      andcc(Rscratch, 0xfffff003, Rscratch);
  3501      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3502      bind (done) ;
  3503      return ;
  3506    Label Egress ;
  3508    if (EmitSync & 256) {
  3509       Label IsInflated ;
  3511       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  3512       // Triage: biased, stack-locked, neutral, inflated
  3513       if (try_bias) {
  3514         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3515         // Invariant: if control reaches this point in the emitted stream
  3516         // then Rmark has not been modified.
  3519       // Store mark into displaced mark field in the on-stack basic-lock "box"
  3520       // Critically, this must happen before the CAS
  3521       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  3522       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3523       andcc  (Rmark, 2, G0) ;
  3524       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  3525       delayed() ->
  3527       // Try stack-lock acquisition.
  3528       // Beware: the 1st instruction is in a delay slot
  3529       mov    (Rbox,  Rscratch);
  3530       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  3531       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  3532       casn   (mark_addr.base(), Rmark, Rscratch) ;
  3533       cmp    (Rmark, Rscratch);
  3534       brx    (Assembler::equal, false, Assembler::pt, done);
  3535       delayed()->sub(Rscratch, SP, Rscratch);
  3537       // Stack-lock attempt failed - check for recursive stack-lock.
  3538       // See the comments below about how we might remove this case.
  3539 #ifdef _LP64
  3540       sub    (Rscratch, STACK_BIAS, Rscratch);
  3541 #endif
  3542       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3543       andcc  (Rscratch, 0xfffff003, Rscratch);
  3544       br     (Assembler::always, false, Assembler::pt, done) ;
  3545       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3547       bind   (IsInflated) ;
  3548       if (EmitSync & 64) {
  3549          // If m->owner != null goto IsLocked
  3550          // Pessimistic form: Test-and-CAS vs CAS
  3551          // The optimistic form avoids RTS->RTO cache line upgrades.
  3552          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3553          andcc  (Rscratch, Rscratch, G0) ;
  3554          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3555          delayed()->nop() ;
  3556          // m->owner == null : it's unlocked.
  3559       // Try to CAS m->owner from null to Self
  3560       // Invariant: if we acquire the lock then _recursions should be 0.
  3561       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3562       mov    (G2_thread, Rscratch) ;
  3563       casn   (Rmark, G0, Rscratch) ;
  3564       cmp    (Rscratch, G0) ;
  3565       // Intentional fall-through into done
  3566    } else {
  3567       // Aggressively avoid the Store-before-CAS penalty
  3568       // Defer the store into box->dhw until after the CAS
  3569       Label IsInflated, Recursive ;
  3571 // Anticipate CAS -- Avoid RTS->RTO upgrade
  3572 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  3574       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  3575       // Triage: biased, stack-locked, neutral, inflated
  3577       if (try_bias) {
  3578         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3579         // Invariant: if control reaches this point in the emitted stream
  3580         // then Rmark has not been modified.
  3582       andcc  (Rmark, 2, G0) ;
  3583       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  3584       delayed()->                         // Beware - dangling delay-slot
  3586       // Try stack-lock acquisition.
  3587       // Transiently install BUSY (0) encoding in the mark word.
  3588       // if the CAS of 0 into the mark was successful then we execute:
  3589       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  3590       //   ST obj->mark = box    -- overwrite transient 0 value
  3591       // This presumes TSO, of course.
  3593       mov    (0, Rscratch) ;
  3594       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  3595       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  3596       casn   (mark_addr.base(), Rmark, Rscratch) ;
  3597 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  3598       cmp    (Rscratch, Rmark) ;
  3599       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
  3600       delayed() ->
  3601         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3602       if (counters != NULL) {
  3603         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3605       br     (Assembler::always, false, Assembler::pt, done);
  3606       delayed() ->
  3607         st_ptr (Rbox, mark_addr) ;
  3609       bind   (Recursive) ;
  3610       // Stack-lock attempt failed - check for recursive stack-lock.
  3611       // Tests show that we can remove the recursive case with no impact
  3612       // on refworkload 0.83.  If we need to reduce the size of the code
  3613       // emitted by compiler_lock_object() the recursive case is perfect
  3614       // candidate.
  3615       //
  3616       // A more extreme idea is to always inflate on stack-lock recursion.
  3617       // This lets us eliminate the recursive checks in compiler_lock_object
  3618       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  3619       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  3620       // and showed a performance *increase*.  In the same experiment I eliminated
  3621       // the fast-path stack-lock code from the interpreter and always passed
  3622       // control to the "slow" operators in synchronizer.cpp.
  3624       // RScratch contains the fetched obj->mark value from the failed CASN.
  3625 #ifdef _LP64
  3626       sub    (Rscratch, STACK_BIAS, Rscratch);
  3627 #endif
  3628       sub(Rscratch, SP, Rscratch);
  3629       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3630       andcc  (Rscratch, 0xfffff003, Rscratch);
  3631       if (counters != NULL) {
  3632         // Accounting needs the Rscratch register
  3633         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3634         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3635         br     (Assembler::always, false, Assembler::pt, done) ;
  3636         delayed()->nop() ;
  3637       } else {
  3638         br     (Assembler::always, false, Assembler::pt, done) ;
  3639         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3642       bind   (IsInflated) ;
  3643       if (EmitSync & 64) {
  3644          // If m->owner != null goto IsLocked
  3645          // Test-and-CAS vs CAS
  3646          // Pessimistic form avoids futile (doomed) CAS attempts
  3647          // The optimistic form avoids RTS->RTO cache line upgrades.
  3648          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3649          andcc  (Rscratch, Rscratch, G0) ;
  3650          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3651          delayed()->nop() ;
  3652          // m->owner == null : it's unlocked.
  3655       // Try to CAS m->owner from null to Self
  3656       // Invariant: if we acquire the lock then _recursions should be 0.
  3657       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3658       mov    (G2_thread, Rscratch) ;
  3659       casn   (Rmark, G0, Rscratch) ;
  3660       cmp    (Rscratch, G0) ;
  3661       // ST box->displaced_header = NonZero.
  3662       // Any non-zero value suffices:
  3663       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3664       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3665       // Intentional fall-through into done
  3668    bind   (done) ;
  3671 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  3672                                             Register Rbox, Register Rscratch,
  3673                                             bool try_bias) {
  3674    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3676    Label done ;
  3678    if (EmitSync & 4) {
  3679      cmp  (SP, G0) ;
  3680      return ;
  3683    if (EmitSync & 8) {
  3684      if (try_bias) {
  3685         biased_locking_exit(mark_addr, Rscratch, done);
  3688      // Test first if it is a fast recursive unlock
  3689      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3690      cmp(Rmark, G0);
  3691      brx(Assembler::equal, false, Assembler::pt, done);
  3692      delayed()->nop();
  3694      // Check if it is still a light weight lock, this is is true if we see
  3695      // the stack address of the basicLock in the markOop of the object
  3696      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3697      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3698        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3699      br (Assembler::always, false, Assembler::pt, done);
  3700      delayed()->cmp(Rbox, Rmark);
  3701      bind (done) ;
  3702      return ;
  3705    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3706    // is too large performance rolls abruptly off a cliff.
  3707    // This could be related to inlining policies, code cache management, or
  3708    // I$ effects.
  3709    Label LStacked ;
  3711    if (try_bias) {
  3712       // TODO: eliminate redundant LDs of obj->mark
  3713       biased_locking_exit(mark_addr, Rscratch, done);
  3716    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
  3717    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3718    andcc  (Rscratch, Rscratch, G0);
  3719    brx    (Assembler::zero, false, Assembler::pn, done);
  3720    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
  3721    andcc  (Rmark, 2, G0) ;
  3722    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
  3723    delayed()-> nop() ;
  3725    // It's inflated
  3726    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3727    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3728    // and stores within the critical section from reordering (floating)
  3729    // past the store that releases the lock.  But TSO is a strong memory model
  3730    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3731    // Note that we use 1-0 locking by default for the inflated case.  We
  3732    // close the resultant (and rare) race by having contented threads in
  3733    // monitorenter periodically poll _owner.
  3734    ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3735    ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3736    xor3   (Rscratch, G2_thread, Rscratch) ;
  3737    orcc   (Rbox, Rscratch, Rbox) ;
  3738    brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3739    delayed()->
  3740    ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3741    ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3742    orcc   (Rbox, Rscratch, G0) ;
  3743    if (EmitSync & 65536) {
  3744       Label LSucc ;
  3745       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
  3746       delayed()->nop() ;
  3747       br     (Assembler::always, false, Assembler::pt, done) ;
  3748       delayed()->
  3749       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3751       bind   (LSucc) ;
  3752       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3753       if (os::is_MP()) { membar (StoreLoad) ; }
  3754       ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3755       andcc  (Rscratch, Rscratch, G0) ;
  3756       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3757       delayed()-> andcc (G0, G0, G0) ;
  3758       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3759       mov    (G2_thread, Rscratch) ;
  3760       casn   (Rmark, G0, Rscratch) ;
  3761       cmp    (Rscratch, G0) ;
  3762       // invert icc.zf and goto done
  3763       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3764       delayed() -> cmp (G0, G0) ;
  3765       br     (Assembler::always, false, Assembler::pt, done);
  3766       delayed() -> cmp (G0, 1) ;
  3767    } else {
  3768       brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3769       delayed()->nop() ;
  3770       br     (Assembler::always, false, Assembler::pt, done) ;
  3771       delayed()->
  3772       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3775    bind   (LStacked) ;
  3776    // Consider: we could replace the expensive CAS in the exit
  3777    // path with a simple ST of the displaced mark value fetched from
  3778    // the on-stack basiclock box.  That admits a race where a thread T2
  3779    // in the slow lock path -- inflating with monitor M -- could race a
  3780    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3781    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3782    // inflated mark value M installed by T2, resulting in an orphan
  3783    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3784    // by having T2 periodically poll the object's mark word using timed wait
  3785    // operations.  If T2 discovers that a stomp has occurred it vacates
  3786    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3787    // In addition the monitor scavenger, which performs deflation,
  3788    // would also need to check for orpan monitors and stranded threads.
  3789    //
  3790    // Finally, inflation is also used when T2 needs to assign a hashCode
  3791    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3792    // an assigned hashCode value to be lost.  We can avoid that condition
  3793    // and provide the necessary hashCode stability invariants by ensuring
  3794    // that hashCode generation is idempotent between copying GCs.
  3795    // For example we could compute the hashCode of an object O as
  3796    // O's heap address XOR some high quality RNG value that is refreshed
  3797    // at GC-time.  The monitor scavenger would install the hashCode
  3798    // found in any orphan monitors.  Again, the mechanism admits a
  3799    // lost-update "stomp" WAW race but detects and recovers as needed.
  3800    //
  3801    // A prototype implementation showed excellent results, although
  3802    // the scavenger and timeout code was rather involved.
  3804    casn   (mark_addr.base(), Rbox, Rscratch) ;
  3805    cmp    (Rbox, Rscratch);
  3806    // Intentional fall through into done ...
  3808    bind   (done) ;
  3813 void MacroAssembler::print_CPU_state() {
  3814   // %%%%% need to implement this
  3817 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3818   // %%%%% need to implement this
  3821 void MacroAssembler::push_IU_state() {
  3822   // %%%%% need to implement this
  3826 void MacroAssembler::pop_IU_state() {
  3827   // %%%%% need to implement this
  3831 void MacroAssembler::push_FPU_state() {
  3832   // %%%%% need to implement this
  3836 void MacroAssembler::pop_FPU_state() {
  3837   // %%%%% need to implement this
  3841 void MacroAssembler::push_CPU_state() {
  3842   // %%%%% need to implement this
  3846 void MacroAssembler::pop_CPU_state() {
  3847   // %%%%% need to implement this
  3852 void MacroAssembler::verify_tlab() {
  3853 #ifdef ASSERT
  3854   if (UseTLAB && VerifyOops) {
  3855     Label next, next2, ok;
  3856     Register t1 = L0;
  3857     Register t2 = L1;
  3858     Register t3 = L2;
  3860     save_frame(0);
  3861     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3862     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3863     or3(t1, t2, t3);
  3864     cmp(t1, t2);
  3865     br(Assembler::greaterEqual, false, Assembler::pn, next);
  3866     delayed()->nop();
  3867     stop("assert(top >= start)");
  3868     should_not_reach_here();
  3870     bind(next);
  3871     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3872     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3873     or3(t3, t2, t3);
  3874     cmp(t1, t2);
  3875     br(Assembler::lessEqual, false, Assembler::pn, next2);
  3876     delayed()->nop();
  3877     stop("assert(top <= end)");
  3878     should_not_reach_here();
  3880     bind(next2);
  3881     and3(t3, MinObjAlignmentInBytesMask, t3);
  3882     cmp(t3, 0);
  3883     br(Assembler::lessEqual, false, Assembler::pn, ok);
  3884     delayed()->nop();
  3885     stop("assert(aligned)");
  3886     should_not_reach_here();
  3888     bind(ok);
  3889     restore();
  3891 #endif
  3895 void MacroAssembler::eden_allocate(
  3896   Register obj,                        // result: pointer to object after successful allocation
  3897   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3898   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3899   Register t1,                         // temp register
  3900   Register t2,                         // temp register
  3901   Label&   slow_case                   // continuation point if fast allocation fails
  3902 ){
  3903   // make sure arguments make sense
  3904   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3905   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3906   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3908   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3909     // No allocation in the shared eden.
  3910     br(Assembler::always, false, Assembler::pt, slow_case);
  3911     delayed()->nop();
  3912   } else {
  3913     // get eden boundaries
  3914     // note: we need both top & top_addr!
  3915     const Register top_addr = t1;
  3916     const Register end      = t2;
  3918     CollectedHeap* ch = Universe::heap();
  3919     set((intx)ch->top_addr(), top_addr);
  3920     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3921     ld_ptr(top_addr, delta, end);
  3922     ld_ptr(top_addr, 0, obj);
  3924     // try to allocate
  3925     Label retry;
  3926     bind(retry);
  3927 #ifdef ASSERT
  3928     // make sure eden top is properly aligned
  3930       Label L;
  3931       btst(MinObjAlignmentInBytesMask, obj);
  3932       br(Assembler::zero, false, Assembler::pt, L);
  3933       delayed()->nop();
  3934       stop("eden top is not properly aligned");
  3935       bind(L);
  3937 #endif // ASSERT
  3938     const Register free = end;
  3939     sub(end, obj, free);                                   // compute amount of free space
  3940     if (var_size_in_bytes->is_valid()) {
  3941       // size is unknown at compile time
  3942       cmp(free, var_size_in_bytes);
  3943       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3944       delayed()->add(obj, var_size_in_bytes, end);
  3945     } else {
  3946       // size is known at compile time
  3947       cmp(free, con_size_in_bytes);
  3948       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3949       delayed()->add(obj, con_size_in_bytes, end);
  3951     // Compare obj with the value at top_addr; if still equal, swap the value of
  3952     // end with the value at top_addr. If not equal, read the value at top_addr
  3953     // into end.
  3954     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3955     // if someone beat us on the allocation, try again, otherwise continue
  3956     cmp(obj, end);
  3957     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3958     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3960 #ifdef ASSERT
  3961     // make sure eden top is properly aligned
  3963       Label L;
  3964       const Register top_addr = t1;
  3966       set((intx)ch->top_addr(), top_addr);
  3967       ld_ptr(top_addr, 0, top_addr);
  3968       btst(MinObjAlignmentInBytesMask, top_addr);
  3969       br(Assembler::zero, false, Assembler::pt, L);
  3970       delayed()->nop();
  3971       stop("eden top is not properly aligned");
  3972       bind(L);
  3974 #endif // ASSERT
  3979 void MacroAssembler::tlab_allocate(
  3980   Register obj,                        // result: pointer to object after successful allocation
  3981   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3982   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3983   Register t1,                         // temp register
  3984   Label&   slow_case                   // continuation point if fast allocation fails
  3985 ){
  3986   // make sure arguments make sense
  3987   assert_different_registers(obj, var_size_in_bytes, t1);
  3988   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3989   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3991   const Register free  = t1;
  3993   verify_tlab();
  3995   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3997   // calculate amount of free space
  3998   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3999   sub(free, obj, free);
  4001   Label done;
  4002   if (var_size_in_bytes == noreg) {
  4003     cmp(free, con_size_in_bytes);
  4004   } else {
  4005     cmp(free, var_size_in_bytes);
  4007   br(Assembler::less, false, Assembler::pn, slow_case);
  4008   // calculate the new top pointer
  4009   if (var_size_in_bytes == noreg) {
  4010     delayed()->add(obj, con_size_in_bytes, free);
  4011   } else {
  4012     delayed()->add(obj, var_size_in_bytes, free);
  4015   bind(done);
  4017 #ifdef ASSERT
  4018   // make sure new free pointer is properly aligned
  4020     Label L;
  4021     btst(MinObjAlignmentInBytesMask, free);
  4022     br(Assembler::zero, false, Assembler::pt, L);
  4023     delayed()->nop();
  4024     stop("updated TLAB free is not properly aligned");
  4025     bind(L);
  4027 #endif // ASSERT
  4029   // update the tlab top pointer
  4030   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4031   verify_tlab();
  4035 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  4036   Register top = O0;
  4037   Register t1 = G1;
  4038   Register t2 = G3;
  4039   Register t3 = O1;
  4040   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  4041   Label do_refill, discard_tlab;
  4043   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4044     // No allocation in the shared eden.
  4045     br(Assembler::always, false, Assembler::pt, slow_case);
  4046     delayed()->nop();
  4049   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  4050   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  4051   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  4053   // calculate amount of free space
  4054   sub(t1, top, t1);
  4055   srl_ptr(t1, LogHeapWordSize, t1);
  4057   // Retain tlab and allocate object in shared space if
  4058   // the amount free in the tlab is too large to discard.
  4059   cmp(t1, t2);
  4060   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  4062   // increment waste limit to prevent getting stuck on this slow path
  4063   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  4064   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  4065   if (TLABStats) {
  4066     // increment number of slow_allocations
  4067     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  4068     add(t2, 1, t2);
  4069     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  4071   br(Assembler::always, false, Assembler::pt, try_eden);
  4072   delayed()->nop();
  4074   bind(discard_tlab);
  4075   if (TLABStats) {
  4076     // increment number of refills
  4077     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  4078     add(t2, 1, t2);
  4079     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  4080     // accumulate wastage
  4081     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  4082     add(t2, t1, t2);
  4083     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  4086   // if tlab is currently allocated (top or end != null) then
  4087   // fill [top, end + alignment_reserve) with array object
  4088   br_null(top, false, Assembler::pn, do_refill);
  4089   delayed()->nop();
  4091   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  4092   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  4093   // set klass to intArrayKlass
  4094   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  4095   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  4096   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  4097   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  4098   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  4099   ld_ptr(t2, 0, t2);
  4100   // store klass last.  concurrent gcs assumes klass length is valid if
  4101   // klass field is not null.
  4102   store_klass(t2, top);
  4103   verify_oop(top);
  4105   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
  4106   sub(top, t1, t1); // size of tlab's allocated portion
  4107   incr_allocated_bytes(t1, t2, t3);
  4109   // refill the tlab with an eden allocation
  4110   bind(do_refill);
  4111   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  4112   sll_ptr(t1, LogHeapWordSize, t1);
  4113   // allocate new tlab, address returned in top
  4114   eden_allocate(top, t1, 0, t2, t3, slow_case);
  4116   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  4117   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4118 #ifdef ASSERT
  4119   // check that tlab_size (t1) is still valid
  4121     Label ok;
  4122     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  4123     sll_ptr(t2, LogHeapWordSize, t2);
  4124     cmp(t1, t2);
  4125     br(Assembler::equal, false, Assembler::pt, ok);
  4126     delayed()->nop();
  4127     stop("assert(t1 == tlab_size)");
  4128     should_not_reach_here();
  4130     bind(ok);
  4132 #endif // ASSERT
  4133   add(top, t1, top); // t1 is tlab_size
  4134   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  4135   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  4136   verify_tlab();
  4137   br(Assembler::always, false, Assembler::pt, retry);
  4138   delayed()->nop();
  4141 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  4142                                           Register t1, Register t2) {
  4143   // Bump total bytes allocated by this thread
  4144   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
  4145   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
  4146   // v8 support has gone the way of the dodo
  4147   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
  4148   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
  4149   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
  4152 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  4153   switch (cond) {
  4154     // Note some conditions are synonyms for others
  4155     case Assembler::never:                return Assembler::always;
  4156     case Assembler::zero:                 return Assembler::notZero;
  4157     case Assembler::lessEqual:            return Assembler::greater;
  4158     case Assembler::less:                 return Assembler::greaterEqual;
  4159     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  4160     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  4161     case Assembler::negative:             return Assembler::positive;
  4162     case Assembler::overflowSet:          return Assembler::overflowClear;
  4163     case Assembler::always:               return Assembler::never;
  4164     case Assembler::notZero:              return Assembler::zero;
  4165     case Assembler::greater:              return Assembler::lessEqual;
  4166     case Assembler::greaterEqual:         return Assembler::less;
  4167     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  4168     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  4169     case Assembler::positive:             return Assembler::negative;
  4170     case Assembler::overflowClear:        return Assembler::overflowSet;
  4173   ShouldNotReachHere(); return Assembler::overflowClear;
  4176 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  4177                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  4178   Condition negated_cond = negate_condition(cond);
  4179   Label L;
  4180   brx(negated_cond, false, Assembler::pt, L);
  4181   delayed()->nop();
  4182   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  4183   bind(L);
  4186 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  4187   AddressLiteral addrlit(counter_addr);
  4188   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  4189   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  4190   ld(addr, Rtmp2);
  4191   inc(Rtmp2);
  4192   st(Rtmp2, addr);
  4195 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  4196   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  4199 SkipIfEqual::SkipIfEqual(
  4200     MacroAssembler* masm, Register temp, const bool* flag_addr,
  4201     Assembler::Condition condition) {
  4202   _masm = masm;
  4203   AddressLiteral flag(flag_addr);
  4204   _masm->sethi(flag, temp);
  4205   _masm->ldub(temp, flag.low10(), temp);
  4206   _masm->tst(temp);
  4207   _masm->br(condition, false, Assembler::pt, _label);
  4208   _masm->delayed()->nop();
  4211 SkipIfEqual::~SkipIfEqual() {
  4212   _masm->bind(_label);
  4216 // Writes to stack successive pages until offset reached to check for
  4217 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  4218 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  4219                                      Register Rscratch) {
  4220   // Use stack pointer in temp stack pointer
  4221   mov(SP, Rtsp);
  4223   // Bang stack for total size given plus stack shadow page size.
  4224   // Bang one page at a time because a large size can overflow yellow and
  4225   // red zones (the bang will fail but stack overflow handling can't tell that
  4226   // it was a stack overflow bang vs a regular segv).
  4227   int offset = os::vm_page_size();
  4228   Register Roffset = Rscratch;
  4230   Label loop;
  4231   bind(loop);
  4232   set((-offset)+STACK_BIAS, Rscratch);
  4233   st(G0, Rtsp, Rscratch);
  4234   set(offset, Roffset);
  4235   sub(Rsize, Roffset, Rsize);
  4236   cmp(Rsize, G0);
  4237   br(Assembler::greater, false, Assembler::pn, loop);
  4238   delayed()->sub(Rtsp, Roffset, Rtsp);
  4240   // Bang down shadow pages too.
  4241   // The -1 because we already subtracted 1 page.
  4242   for (int i = 0; i< StackShadowPages-1; i++) {
  4243     set((-i*offset)+STACK_BIAS, Rscratch);
  4244     st(G0, Rtsp, Rscratch);
  4248 ///////////////////////////////////////////////////////////////////////////////////
  4249 #ifndef SERIALGC
  4251 static uint num_stores = 0;
  4252 static uint num_null_pre_stores = 0;
  4254 static void count_null_pre_vals(void* pre_val) {
  4255   num_stores++;
  4256   if (pre_val == NULL) num_null_pre_stores++;
  4257   if ((num_stores % 1000000) == 0) {
  4258     tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
  4259                   num_stores, num_null_pre_stores,
  4260                   100.0*(float)num_null_pre_stores/(float)num_stores);
  4264 static address satb_log_enqueue_with_frame = 0;
  4265 static u_char* satb_log_enqueue_with_frame_end = 0;
  4267 static address satb_log_enqueue_frameless = 0;
  4268 static u_char* satb_log_enqueue_frameless_end = 0;
  4270 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  4272 // The calls to this don't work.  We'd need to do a fair amount of work to
  4273 // make it work.
  4274 static void check_index(int ind) {
  4275   assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
  4276          "Invariants.");
  4279 static void generate_satb_log_enqueue(bool with_frame) {
  4280   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  4281   CodeBuffer buf(bb);
  4282   MacroAssembler masm(&buf);
  4283   address start = masm.pc();
  4284   Register pre_val;
  4286   Label refill, restart;
  4287   if (with_frame) {
  4288     masm.save_frame(0);
  4289     pre_val = I0;  // Was O0 before the save.
  4290   } else {
  4291     pre_val = O0;
  4293   int satb_q_index_byte_offset =
  4294     in_bytes(JavaThread::satb_mark_queue_offset() +
  4295              PtrQueue::byte_offset_of_index());
  4296   int satb_q_buf_byte_offset =
  4297     in_bytes(JavaThread::satb_mark_queue_offset() +
  4298              PtrQueue::byte_offset_of_buf());
  4299   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  4300          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  4301          "check sizes in assembly below");
  4303   masm.bind(restart);
  4304   masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  4306   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
  4307   // If the branch is taken, no harm in executing this in the delay slot.
  4308   masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  4309   masm.sub(L0, oopSize, L0);
  4311   masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  4312   if (!with_frame) {
  4313     // Use return-from-leaf
  4314     masm.retl();
  4315     masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4316   } else {
  4317     // Not delayed.
  4318     masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4320   if (with_frame) {
  4321     masm.ret();
  4322     masm.delayed()->restore();
  4324   masm.bind(refill);
  4326   address handle_zero =
  4327     CAST_FROM_FN_PTR(address,
  4328                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  4329   // This should be rare enough that we can afford to save all the
  4330   // scratch registers that the calling context might be using.
  4331   masm.mov(G1_scratch, L0);
  4332   masm.mov(G3_scratch, L1);
  4333   masm.mov(G4, L2);
  4334   // We need the value of O0 above (for the write into the buffer), so we
  4335   // save and restore it.
  4336   masm.mov(O0, L3);
  4337   // Since the call will overwrite O7, we save and restore that, as well.
  4338   masm.mov(O7, L4);
  4339   masm.call_VM_leaf(L5, handle_zero, G2_thread);
  4340   masm.mov(L0, G1_scratch);
  4341   masm.mov(L1, G3_scratch);
  4342   masm.mov(L2, G4);
  4343   masm.mov(L3, O0);
  4344   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4345   masm.delayed()->mov(L4, O7);
  4347   if (with_frame) {
  4348     satb_log_enqueue_with_frame = start;
  4349     satb_log_enqueue_with_frame_end = masm.pc();
  4350   } else {
  4351     satb_log_enqueue_frameless = start;
  4352     satb_log_enqueue_frameless_end = masm.pc();
  4356 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  4357   if (with_frame) {
  4358     if (satb_log_enqueue_with_frame == 0) {
  4359       generate_satb_log_enqueue(with_frame);
  4360       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  4361       if (G1SATBPrintStubs) {
  4362         tty->print_cr("Generated with-frame satb enqueue:");
  4363         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  4364                              satb_log_enqueue_with_frame_end,
  4365                              tty);
  4368   } else {
  4369     if (satb_log_enqueue_frameless == 0) {
  4370       generate_satb_log_enqueue(with_frame);
  4371       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  4372       if (G1SATBPrintStubs) {
  4373         tty->print_cr("Generated frameless satb enqueue:");
  4374         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  4375                              satb_log_enqueue_frameless_end,
  4376                              tty);
  4382 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
  4383   assert(offset == 0 || index == noreg, "choose one");
  4385   if (G1DisablePreBarrier) return;
  4386   // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
  4387   Label filtered;
  4388   // satb_log_barrier_work0(tmp, filtered);
  4389   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4390     ld(G2,
  4391        in_bytes(JavaThread::satb_mark_queue_offset() +
  4392                 PtrQueue::byte_offset_of_active()),
  4393        tmp);
  4394   } else {
  4395     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  4396               "Assumption");
  4397     ldsb(G2,
  4398          in_bytes(JavaThread::satb_mark_queue_offset() +
  4399                   PtrQueue::byte_offset_of_active()),
  4400          tmp);
  4403   // Check on whether to annul.
  4404   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4405   delayed() -> nop();
  4407   // satb_log_barrier_work1(tmp, offset);
  4408   if (index == noreg) {
  4409     if (Assembler::is_simm13(offset)) {
  4410       load_heap_oop(obj, offset, tmp);
  4411     } else {
  4412       set(offset, tmp);
  4413       load_heap_oop(obj, tmp, tmp);
  4415   } else {
  4416     load_heap_oop(obj, index, tmp);
  4419   // satb_log_barrier_work2(obj, tmp, offset);
  4421   // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
  4423   const Register pre_val = tmp;
  4425   if (G1SATBBarrierPrintNullPreVals) {
  4426     save_frame(0);
  4427     mov(pre_val, O0);
  4428     // Save G-regs that target may use.
  4429     mov(G1, L1);
  4430     mov(G2, L2);
  4431     mov(G3, L3);
  4432     mov(G4, L4);
  4433     mov(G5, L5);
  4434     call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
  4435     delayed()->nop();
  4436     // Restore G-regs that target may have used.
  4437     mov(L1, G1);
  4438     mov(L2, G2);
  4439     mov(L3, G3);
  4440     mov(L4, G4);
  4441     mov(L5, G5);
  4442     restore(G0, G0, G0);
  4445   // Check on whether to annul.
  4446   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
  4447   delayed() -> nop();
  4449   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  4450   // case, pre_val will be a scratch G-reg, but there's some cases in which
  4451   // it's an O-reg.  In the first case, do a normal call.  In the latter,
  4452   // do a save here and call the frameless version.
  4454   guarantee(pre_val->is_global() || pre_val->is_out(),
  4455             "Or we need to think harder.");
  4456   if (pre_val->is_global() && !preserve_o_regs) {
  4457     generate_satb_log_enqueue_if_necessary(true); // with frame.
  4458     call(satb_log_enqueue_with_frame);
  4459     delayed()->mov(pre_val, O0);
  4460   } else {
  4461     generate_satb_log_enqueue_if_necessary(false); // with frameless.
  4462     save_frame(0);
  4463     call(satb_log_enqueue_frameless);
  4464     delayed()->mov(pre_val->after_save(), O0);
  4465     restore();
  4468   bind(filtered);
  4471 static jint num_ct_writes = 0;
  4472 static jint num_ct_writes_filtered_in_hr = 0;
  4473 static jint num_ct_writes_filtered_null = 0;
  4474 static G1CollectedHeap* g1 = NULL;
  4476 static Thread* count_ct_writes(void* filter_val, void* new_val) {
  4477   Atomic::inc(&num_ct_writes);
  4478   if (filter_val == NULL) {
  4479     Atomic::inc(&num_ct_writes_filtered_in_hr);
  4480   } else if (new_val == NULL) {
  4481     Atomic::inc(&num_ct_writes_filtered_null);
  4482   } else {
  4483     if (g1 == NULL) {
  4484       g1 = G1CollectedHeap::heap();
  4487   if ((num_ct_writes % 1000000) == 0) {
  4488     jint num_ct_writes_filtered =
  4489       num_ct_writes_filtered_in_hr +
  4490       num_ct_writes_filtered_null;
  4492     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
  4493                   "   (%5.2f%% intra-HR, %5.2f%% null).",
  4494                   num_ct_writes,
  4495                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
  4496                   100.0*(float)num_ct_writes_filtered_in_hr/
  4497                   (float)num_ct_writes,
  4498                   100.0*(float)num_ct_writes_filtered_null/
  4499                   (float)num_ct_writes);
  4501   return Thread::current();
  4504 static address dirty_card_log_enqueue = 0;
  4505 static u_char* dirty_card_log_enqueue_end = 0;
  4507 // This gets to assume that o0 contains the object address.
  4508 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  4509   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  4510   CodeBuffer buf(bb);
  4511   MacroAssembler masm(&buf);
  4512   address start = masm.pc();
  4514   Label not_already_dirty, restart, refill;
  4516 #ifdef _LP64
  4517   masm.srlx(O0, CardTableModRefBS::card_shift, O0);
  4518 #else
  4519   masm.srl(O0, CardTableModRefBS::card_shift, O0);
  4520 #endif
  4521   AddressLiteral addrlit(byte_map_base);
  4522   masm.set(addrlit, O1); // O1 := <card table base>
  4523   masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
  4525   masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
  4526                       O2, not_already_dirty);
  4527   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
  4528   // case, harmless if not.
  4529   masm.delayed()->add(O0, O1, O3);
  4531   // We didn't take the branch, so we're already dirty: return.
  4532   // Use return-from-leaf
  4533   masm.retl();
  4534   masm.delayed()->nop();
  4536   // Not dirty.
  4537   masm.bind(not_already_dirty);
  4538   // First, dirty it.
  4539   masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  4540   int dirty_card_q_index_byte_offset =
  4541     in_bytes(JavaThread::dirty_card_queue_offset() +
  4542              PtrQueue::byte_offset_of_index());
  4543   int dirty_card_q_buf_byte_offset =
  4544     in_bytes(JavaThread::dirty_card_queue_offset() +
  4545              PtrQueue::byte_offset_of_buf());
  4546   masm.bind(restart);
  4547   masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  4549   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
  4550                       L0, refill);
  4551   // If the branch is taken, no harm in executing this in the delay slot.
  4552   masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  4553   masm.sub(L0, oopSize, L0);
  4555   masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
  4556   // Use return-from-leaf
  4557   masm.retl();
  4558   masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  4560   masm.bind(refill);
  4561   address handle_zero =
  4562     CAST_FROM_FN_PTR(address,
  4563                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  4564   // This should be rare enough that we can afford to save all the
  4565   // scratch registers that the calling context might be using.
  4566   masm.mov(G1_scratch, L3);
  4567   masm.mov(G3_scratch, L5);
  4568   // We need the value of O3 above (for the write into the buffer), so we
  4569   // save and restore it.
  4570   masm.mov(O3, L6);
  4571   // Since the call will overwrite O7, we save and restore that, as well.
  4572   masm.mov(O7, L4);
  4574   masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  4575   masm.mov(L3, G1_scratch);
  4576   masm.mov(L5, G3_scratch);
  4577   masm.mov(L6, O3);
  4578   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4579   masm.delayed()->mov(L4, O7);
  4581   dirty_card_log_enqueue = start;
  4582   dirty_card_log_enqueue_end = masm.pc();
  4583   // XXX Should have a guarantee here about not going off the end!
  4584   // Does it already do so?  Do an experiment...
  4587 static inline void
  4588 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  4589   if (dirty_card_log_enqueue == 0) {
  4590     generate_dirty_card_log_enqueue(byte_map_base);
  4591     assert(dirty_card_log_enqueue != 0, "postcondition.");
  4592     if (G1SATBPrintStubs) {
  4593       tty->print_cr("Generated dirty_card enqueue:");
  4594       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  4595                            dirty_card_log_enqueue_end,
  4596                            tty);
  4602 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4604   Label filtered;
  4605   MacroAssembler* post_filter_masm = this;
  4607   if (new_val == G0) return;
  4608   if (G1DisablePostBarrier) return;
  4610   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  4611   assert(bs->kind() == BarrierSet::G1SATBCT ||
  4612          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  4613   if (G1RSBarrierRegionFilter) {
  4614     xor3(store_addr, new_val, tmp);
  4615 #ifdef _LP64
  4616     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4617 #else
  4618     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4619 #endif
  4620     if (G1PrintCTFilterStats) {
  4621       guarantee(tmp->is_global(), "Or stats won't work...");
  4622       // This is a sleazy hack: I'm temporarily hijacking G2, which I
  4623       // promise to restore.
  4624       mov(new_val, G2);
  4625       save_frame(0);
  4626       mov(tmp, O0);
  4627       mov(G2, O1);
  4628       // Save G-regs that target may use.
  4629       mov(G1, L1);
  4630       mov(G2, L2);
  4631       mov(G3, L3);
  4632       mov(G4, L4);
  4633       mov(G5, L5);
  4634       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
  4635       delayed()->nop();
  4636       mov(O0, G2);
  4637       // Restore G-regs that target may have used.
  4638       mov(L1, G1);
  4639       mov(L3, G3);
  4640       mov(L4, G4);
  4641       mov(L5, G5);
  4642       restore(G0, G0, G0);
  4644     // XXX Should I predict this taken or not?  Does it mattern?
  4645     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4646     delayed()->nop();
  4649   // If the "store_addr" register is an "in" or "local" register, move it to
  4650   // a scratch reg so we can pass it as an argument.
  4651   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4652   // Pick a scratch register different from "tmp".
  4653   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4654   // Make sure we use up the delay slot!
  4655   if (use_scr) {
  4656     post_filter_masm->mov(store_addr, scr);
  4657   } else {
  4658     post_filter_masm->nop();
  4660   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4661   save_frame(0);
  4662   call(dirty_card_log_enqueue);
  4663   if (use_scr) {
  4664     delayed()->mov(scr, O0);
  4665   } else {
  4666     delayed()->mov(store_addr->after_save(), O0);
  4668   restore();
  4670   bind(filtered);
  4674 #endif  // SERIALGC
  4675 ///////////////////////////////////////////////////////////////////////////////////
  4677 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4678   // If we're writing constant NULL, we can skip the write barrier.
  4679   if (new_val == G0) return;
  4680   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4681   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4682          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4683   card_table_write(bs->byte_map_base, tmp, store_addr);
  4686 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4687   // The number of bytes in this code is used by
  4688   // MachCallDynamicJavaNode::ret_addr_offset()
  4689   // if this changes, change that.
  4690   if (UseCompressedOops) {
  4691     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4692     decode_heap_oop_not_null(klass);
  4693   } else {
  4694     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4698 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4699   if (UseCompressedOops) {
  4700     assert(dst_oop != klass, "not enough registers");
  4701     encode_heap_oop_not_null(klass);
  4702     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4703   } else {
  4704     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4708 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4709   if (UseCompressedOops) {
  4710     assert(s != d, "not enough registers");
  4711     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4715 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  4716   if (UseCompressedOops) {
  4717     lduw(s, d);
  4718     decode_heap_oop(d);
  4719   } else {
  4720     ld_ptr(s, d);
  4724 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4725    if (UseCompressedOops) {
  4726     lduw(s1, s2, d);
  4727     decode_heap_oop(d, d);
  4728   } else {
  4729     ld_ptr(s1, s2, d);
  4733 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4734    if (UseCompressedOops) {
  4735     lduw(s1, simm13a, d);
  4736     decode_heap_oop(d, d);
  4737   } else {
  4738     ld_ptr(s1, simm13a, d);
  4742 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  4743   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  4744   else                   load_heap_oop(s1, s2.as_register(), d);
  4747 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4748   if (UseCompressedOops) {
  4749     assert(s1 != d && s2 != d, "not enough registers");
  4750     encode_heap_oop(d);
  4751     st(d, s1, s2);
  4752   } else {
  4753     st_ptr(d, s1, s2);
  4757 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4758   if (UseCompressedOops) {
  4759     assert(s1 != d, "not enough registers");
  4760     encode_heap_oop(d);
  4761     st(d, s1, simm13a);
  4762   } else {
  4763     st_ptr(d, s1, simm13a);
  4767 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4768   if (UseCompressedOops) {
  4769     assert(a.base() != d, "not enough registers");
  4770     encode_heap_oop(d);
  4771     st(d, a, offset);
  4772   } else {
  4773     st_ptr(d, a, offset);
  4778 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4779   assert (UseCompressedOops, "must be compressed");
  4780   assert (Universe::heap() != NULL, "java heap should be initialized");
  4781   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4782   verify_oop(src);
  4783   if (Universe::narrow_oop_base() == NULL) {
  4784     srlx(src, LogMinObjAlignmentInBytes, dst);
  4785     return;
  4787   Label done;
  4788   if (src == dst) {
  4789     // optimize for frequent case src == dst
  4790     bpr(rc_nz, true, Assembler::pt, src, done);
  4791     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4792     bind(done);
  4793     srlx(src, LogMinObjAlignmentInBytes, dst);
  4794   } else {
  4795     bpr(rc_z, false, Assembler::pn, src, done);
  4796     delayed() -> mov(G0, dst);
  4797     // could be moved before branch, and annulate delay,
  4798     // but may add some unneeded work decoding null
  4799     sub(src, G6_heapbase, dst);
  4800     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4801     bind(done);
  4806 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4807   assert (UseCompressedOops, "must be compressed");
  4808   assert (Universe::heap() != NULL, "java heap should be initialized");
  4809   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4810   verify_oop(r);
  4811   if (Universe::narrow_oop_base() != NULL)
  4812     sub(r, G6_heapbase, r);
  4813   srlx(r, LogMinObjAlignmentInBytes, r);
  4816 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4817   assert (UseCompressedOops, "must be compressed");
  4818   assert (Universe::heap() != NULL, "java heap should be initialized");
  4819   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4820   verify_oop(src);
  4821   if (Universe::narrow_oop_base() == NULL) {
  4822     srlx(src, LogMinObjAlignmentInBytes, dst);
  4823   } else {
  4824     sub(src, G6_heapbase, dst);
  4825     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4829 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4830 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4831   assert (UseCompressedOops, "must be compressed");
  4832   assert (Universe::heap() != NULL, "java heap should be initialized");
  4833   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4834   sllx(src, LogMinObjAlignmentInBytes, dst);
  4835   if (Universe::narrow_oop_base() != NULL) {
  4836     Label done;
  4837     bpr(rc_nz, true, Assembler::pt, dst, done);
  4838     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4839     bind(done);
  4841   verify_oop(dst);
  4844 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4845   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4846   // pd_code_size_limit.
  4847   // Also do not verify_oop as this is called by verify_oop.
  4848   assert (UseCompressedOops, "must be compressed");
  4849   assert (Universe::heap() != NULL, "java heap should be initialized");
  4850   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4851   sllx(r, LogMinObjAlignmentInBytes, r);
  4852   if (Universe::narrow_oop_base() != NULL)
  4853     add(r, G6_heapbase, r);
  4856 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4857   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4858   // pd_code_size_limit.
  4859   // Also do not verify_oop as this is called by verify_oop.
  4860   assert (UseCompressedOops, "must be compressed");
  4861   assert (Universe::heap() != NULL, "java heap should be initialized");
  4862   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4863   sllx(src, LogMinObjAlignmentInBytes, dst);
  4864   if (Universe::narrow_oop_base() != NULL)
  4865     add(dst, G6_heapbase, dst);
  4868 void MacroAssembler::reinit_heapbase() {
  4869   if (UseCompressedOops) {
  4870     // call indirectly to solve generation ordering problem
  4871     AddressLiteral base(Universe::narrow_oop_base_addr());
  4872     load_ptr_contents(base, G6_heapbase);
  4876 // Compare char[] arrays aligned to 4 bytes.
  4877 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
  4878                                         Register limit, Register result,
  4879                                         Register chr1, Register chr2, Label& Ldone) {
  4880   Label Lvector, Lloop;
  4881   assert(chr1 == result, "should be the same");
  4883   // Note: limit contains number of bytes (2*char_elements) != 0.
  4884   andcc(limit, 0x2, chr1); // trailing character ?
  4885   br(Assembler::zero, false, Assembler::pt, Lvector);
  4886   delayed()->nop();
  4888   // compare the trailing char
  4889   sub(limit, sizeof(jchar), limit);
  4890   lduh(ary1, limit, chr1);
  4891   lduh(ary2, limit, chr2);
  4892   cmp(chr1, chr2);
  4893   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4894   delayed()->mov(G0, result);     // not equal
  4896   // only one char ?
  4897   br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
  4898   delayed()->add(G0, 1, result); // zero-length arrays are equal
  4900   // word by word compare, dont't need alignment check
  4901   bind(Lvector);
  4902   // Shift ary1 and ary2 to the end of the arrays, negate limit
  4903   add(ary1, limit, ary1);
  4904   add(ary2, limit, ary2);
  4905   neg(limit, limit);
  4907   lduw(ary1, limit, chr1);
  4908   bind(Lloop);
  4909   lduw(ary2, limit, chr2);
  4910   cmp(chr1, chr2);
  4911   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4912   delayed()->mov(G0, result);     // not equal
  4913   inccc(limit, 2*sizeof(jchar));
  4914   // annul LDUW if branch is not taken to prevent access past end of array
  4915   br(Assembler::notZero, true, Assembler::pt, Lloop);
  4916   delayed()->lduw(ary1, limit, chr1); // hoisted
  4918   // Caller should set it:
  4919   // add(G0, 1, result); // equals

mercurial