src/os/windows/vm/os_windows.cpp

Sat, 11 Dec 2010 13:46:36 -0500

author
zgu
date
Sat, 11 Dec 2010 13:46:36 -0500
changeset 2365
54f5dd2aa1d9
parent 2364
2d4762ec74af
parent 2327
cb2d0a362639
child 2369
aa6e219afbf1
child 2391
1e637defdda6
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifdef _WIN64
    26 // Must be at least Windows 2000 or XP to use VectoredExceptions
    27 #define _WIN32_WINNT 0x500
    28 #endif
    30 // no precompiled headers
    31 #include "classfile/classLoader.hpp"
    32 #include "classfile/systemDictionary.hpp"
    33 #include "classfile/vmSymbols.hpp"
    34 #include "code/icBuffer.hpp"
    35 #include "code/vtableStubs.hpp"
    36 #include "compiler/compileBroker.hpp"
    37 #include "interpreter/interpreter.hpp"
    38 #include "jvm_windows.h"
    39 #include "memory/allocation.inline.hpp"
    40 #include "memory/filemap.hpp"
    41 #include "mutex_windows.inline.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "os_share_windows.hpp"
    44 #include "prims/jniFastGetField.hpp"
    45 #include "prims/jvm.h"
    46 #include "prims/jvm_misc.hpp"
    47 #include "runtime/arguments.hpp"
    48 #include "runtime/extendedPC.hpp"
    49 #include "runtime/globals.hpp"
    50 #include "runtime/interfaceSupport.hpp"
    51 #include "runtime/java.hpp"
    52 #include "runtime/javaCalls.hpp"
    53 #include "runtime/mutexLocker.hpp"
    54 #include "runtime/objectMonitor.hpp"
    55 #include "runtime/osThread.hpp"
    56 #include "runtime/perfMemory.hpp"
    57 #include "runtime/sharedRuntime.hpp"
    58 #include "runtime/statSampler.hpp"
    59 #include "runtime/stubRoutines.hpp"
    60 #include "runtime/threadCritical.hpp"
    61 #include "runtime/timer.hpp"
    62 #include "services/attachListener.hpp"
    63 #include "services/runtimeService.hpp"
    64 #include "thread_windows.inline.hpp"
    65 #include "utilities/decoder.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    70 #ifdef TARGET_ARCH_x86
    71 # include "assembler_x86.inline.hpp"
    72 # include "nativeInst_x86.hpp"
    73 #endif
    74 #ifdef COMPILER1
    75 #include "c1/c1_Runtime1.hpp"
    76 #endif
    77 #ifdef COMPILER2
    78 #include "opto/runtime.hpp"
    79 #endif
    81 #ifdef _DEBUG
    82 #include <crtdbg.h>
    83 #endif
    86 #include <windows.h>
    87 #include <sys/types.h>
    88 #include <sys/stat.h>
    89 #include <sys/timeb.h>
    90 #include <objidl.h>
    91 #include <shlobj.h>
    93 #include <malloc.h>
    94 #include <signal.h>
    95 #include <direct.h>
    96 #include <errno.h>
    97 #include <fcntl.h>
    98 #include <io.h>
    99 #include <process.h>              // For _beginthreadex(), _endthreadex()
   100 #include <imagehlp.h>             // For os::dll_address_to_function_name
   102 /* for enumerating dll libraries */
   103 #include <tlhelp32.h>
   104 #include <vdmdbg.h>
   106 // for timer info max values which include all bits
   107 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   109 // For DLL loading/load error detection
   110 // Values of PE COFF
   111 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   112 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   114 static HANDLE main_process;
   115 static HANDLE main_thread;
   116 static int    main_thread_id;
   118 static FILETIME process_creation_time;
   119 static FILETIME process_exit_time;
   120 static FILETIME process_user_time;
   121 static FILETIME process_kernel_time;
   123 #ifdef _WIN64
   124 PVOID  topLevelVectoredExceptionHandler = NULL;
   125 #endif
   127 #ifdef _M_IA64
   128 #define __CPU__ ia64
   129 #elif _M_AMD64
   130 #define __CPU__ amd64
   131 #else
   132 #define __CPU__ i486
   133 #endif
   135 // save DLL module handle, used by GetModuleFileName
   137 HINSTANCE vm_lib_handle;
   138 static int getLastErrorString(char *buf, size_t len);
   140 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   141   switch (reason) {
   142     case DLL_PROCESS_ATTACH:
   143       vm_lib_handle = hinst;
   144       if(ForceTimeHighResolution)
   145         timeBeginPeriod(1L);
   146       break;
   147     case DLL_PROCESS_DETACH:
   148       if(ForceTimeHighResolution)
   149         timeEndPeriod(1L);
   150 #ifdef _WIN64
   151       if (topLevelVectoredExceptionHandler != NULL) {
   152         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   153         topLevelVectoredExceptionHandler = NULL;
   154       }
   155 #endif
   156       break;
   157     default:
   158       break;
   159   }
   160   return true;
   161 }
   163 static inline double fileTimeAsDouble(FILETIME* time) {
   164   const double high  = (double) ((unsigned int) ~0);
   165   const double split = 10000000.0;
   166   double result = (time->dwLowDateTime / split) +
   167                    time->dwHighDateTime * (high/split);
   168   return result;
   169 }
   171 // Implementation of os
   173 bool os::getenv(const char* name, char* buffer, int len) {
   174  int result = GetEnvironmentVariable(name, buffer, len);
   175  return result > 0 && result < len;
   176 }
   179 // No setuid programs under Windows.
   180 bool os::have_special_privileges() {
   181   return false;
   182 }
   185 // This method is  a periodic task to check for misbehaving JNI applications
   186 // under CheckJNI, we can add any periodic checks here.
   187 // For Windows at the moment does nothing
   188 void os::run_periodic_checks() {
   189   return;
   190 }
   192 #ifndef _WIN64
   193 // previous UnhandledExceptionFilter, if there is one
   194 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   196 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   197 #endif
   198 void os::init_system_properties_values() {
   199   /* sysclasspath, java_home, dll_dir */
   200   {
   201       char *home_path;
   202       char *dll_path;
   203       char *pslash;
   204       char *bin = "\\bin";
   205       char home_dir[MAX_PATH];
   207       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   208           os::jvm_path(home_dir, sizeof(home_dir));
   209           // Found the full path to jvm[_g].dll.
   210           // Now cut the path to <java_home>/jre if we can.
   211           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   212           pslash = strrchr(home_dir, '\\');
   213           if (pslash != NULL) {
   214               *pslash = '\0';                 /* get rid of \{client|server} */
   215               pslash = strrchr(home_dir, '\\');
   216               if (pslash != NULL)
   217                   *pslash = '\0';             /* get rid of \bin */
   218           }
   219       }
   221       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   222       if (home_path == NULL)
   223           return;
   224       strcpy(home_path, home_dir);
   225       Arguments::set_java_home(home_path);
   227       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   228       if (dll_path == NULL)
   229           return;
   230       strcpy(dll_path, home_dir);
   231       strcat(dll_path, bin);
   232       Arguments::set_dll_dir(dll_path);
   234       if (!set_boot_path('\\', ';'))
   235           return;
   236   }
   238   /* library_path */
   239   #define EXT_DIR "\\lib\\ext"
   240   #define BIN_DIR "\\bin"
   241   #define PACKAGE_DIR "\\Sun\\Java"
   242   {
   243     /* Win32 library search order (See the documentation for LoadLibrary):
   244      *
   245      * 1. The directory from which application is loaded.
   246      * 2. The current directory
   247      * 3. The system wide Java Extensions directory (Java only)
   248      * 4. System directory (GetSystemDirectory)
   249      * 5. Windows directory (GetWindowsDirectory)
   250      * 6. The PATH environment variable
   251      */
   253     char *library_path;
   254     char tmp[MAX_PATH];
   255     char *path_str = ::getenv("PATH");
   257     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   258         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   260     library_path[0] = '\0';
   262     GetModuleFileName(NULL, tmp, sizeof(tmp));
   263     *(strrchr(tmp, '\\')) = '\0';
   264     strcat(library_path, tmp);
   266     strcat(library_path, ";.");
   268     GetWindowsDirectory(tmp, sizeof(tmp));
   269     strcat(library_path, ";");
   270     strcat(library_path, tmp);
   271     strcat(library_path, PACKAGE_DIR BIN_DIR);
   273     GetSystemDirectory(tmp, sizeof(tmp));
   274     strcat(library_path, ";");
   275     strcat(library_path, tmp);
   277     GetWindowsDirectory(tmp, sizeof(tmp));
   278     strcat(library_path, ";");
   279     strcat(library_path, tmp);
   281     if (path_str) {
   282         strcat(library_path, ";");
   283         strcat(library_path, path_str);
   284     }
   286     Arguments::set_library_path(library_path);
   287     FREE_C_HEAP_ARRAY(char, library_path);
   288   }
   290   /* Default extensions directory */
   291   {
   292     char path[MAX_PATH];
   293     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   294     GetWindowsDirectory(path, MAX_PATH);
   295     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   296         path, PACKAGE_DIR, EXT_DIR);
   297     Arguments::set_ext_dirs(buf);
   298   }
   299   #undef EXT_DIR
   300   #undef BIN_DIR
   301   #undef PACKAGE_DIR
   303   /* Default endorsed standards directory. */
   304   {
   305     #define ENDORSED_DIR "\\lib\\endorsed"
   306     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   307     char * buf = NEW_C_HEAP_ARRAY(char, len);
   308     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   309     Arguments::set_endorsed_dirs(buf);
   310     #undef ENDORSED_DIR
   311   }
   313 #ifndef _WIN64
   314   // set our UnhandledExceptionFilter and save any previous one
   315   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   316 #endif
   318   // Done
   319   return;
   320 }
   322 void os::breakpoint() {
   323   DebugBreak();
   324 }
   326 // Invoked from the BREAKPOINT Macro
   327 extern "C" void breakpoint() {
   328   os::breakpoint();
   329 }
   331 // Returns an estimate of the current stack pointer. Result must be guaranteed
   332 // to point into the calling threads stack, and be no lower than the current
   333 // stack pointer.
   335 address os::current_stack_pointer() {
   336   int dummy;
   337   address sp = (address)&dummy;
   338   return sp;
   339 }
   341 // os::current_stack_base()
   342 //
   343 //   Returns the base of the stack, which is the stack's
   344 //   starting address.  This function must be called
   345 //   while running on the stack of the thread being queried.
   347 address os::current_stack_base() {
   348   MEMORY_BASIC_INFORMATION minfo;
   349   address stack_bottom;
   350   size_t stack_size;
   352   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   353   stack_bottom =  (address)minfo.AllocationBase;
   354   stack_size = minfo.RegionSize;
   356   // Add up the sizes of all the regions with the same
   357   // AllocationBase.
   358   while( 1 )
   359   {
   360     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   361     if ( stack_bottom == (address)minfo.AllocationBase )
   362       stack_size += minfo.RegionSize;
   363     else
   364       break;
   365   }
   367 #ifdef _M_IA64
   368   // IA64 has memory and register stacks
   369   stack_size = stack_size / 2;
   370 #endif
   371   return stack_bottom + stack_size;
   372 }
   374 size_t os::current_stack_size() {
   375   size_t sz;
   376   MEMORY_BASIC_INFORMATION minfo;
   377   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   378   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   379   return sz;
   380 }
   382 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   383   const struct tm* time_struct_ptr = localtime(clock);
   384   if (time_struct_ptr != NULL) {
   385     *res = *time_struct_ptr;
   386     return res;
   387   }
   388   return NULL;
   389 }
   391 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   393 // Thread start routine for all new Java threads
   394 static unsigned __stdcall java_start(Thread* thread) {
   395   // Try to randomize the cache line index of hot stack frames.
   396   // This helps when threads of the same stack traces evict each other's
   397   // cache lines. The threads can be either from the same JVM instance, or
   398   // from different JVM instances. The benefit is especially true for
   399   // processors with hyperthreading technology.
   400   static int counter = 0;
   401   int pid = os::current_process_id();
   402   _alloca(((pid ^ counter++) & 7) * 128);
   404   OSThread* osthr = thread->osthread();
   405   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   407   if (UseNUMA) {
   408     int lgrp_id = os::numa_get_group_id();
   409     if (lgrp_id != -1) {
   410       thread->set_lgrp_id(lgrp_id);
   411     }
   412   }
   415   if (UseVectoredExceptions) {
   416     // If we are using vectored exception we don't need to set a SEH
   417     thread->run();
   418   }
   419   else {
   420     // Install a win32 structured exception handler around every thread created
   421     // by VM, so VM can genrate error dump when an exception occurred in non-
   422     // Java thread (e.g. VM thread).
   423     __try {
   424        thread->run();
   425     } __except(topLevelExceptionFilter(
   426                (_EXCEPTION_POINTERS*)_exception_info())) {
   427         // Nothing to do.
   428     }
   429   }
   431   // One less thread is executing
   432   // When the VMThread gets here, the main thread may have already exited
   433   // which frees the CodeHeap containing the Atomic::add code
   434   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   435     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   436   }
   438   return 0;
   439 }
   441 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   442   // Allocate the OSThread object
   443   OSThread* osthread = new OSThread(NULL, NULL);
   444   if (osthread == NULL) return NULL;
   446   // Initialize support for Java interrupts
   447   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   448   if (interrupt_event == NULL) {
   449     delete osthread;
   450     return NULL;
   451   }
   452   osthread->set_interrupt_event(interrupt_event);
   454   // Store info on the Win32 thread into the OSThread
   455   osthread->set_thread_handle(thread_handle);
   456   osthread->set_thread_id(thread_id);
   458   if (UseNUMA) {
   459     int lgrp_id = os::numa_get_group_id();
   460     if (lgrp_id != -1) {
   461       thread->set_lgrp_id(lgrp_id);
   462     }
   463   }
   465   // Initial thread state is INITIALIZED, not SUSPENDED
   466   osthread->set_state(INITIALIZED);
   468   return osthread;
   469 }
   472 bool os::create_attached_thread(JavaThread* thread) {
   473 #ifdef ASSERT
   474   thread->verify_not_published();
   475 #endif
   476   HANDLE thread_h;
   477   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   478                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   479     fatal("DuplicateHandle failed\n");
   480   }
   481   OSThread* osthread = create_os_thread(thread, thread_h,
   482                                         (int)current_thread_id());
   483   if (osthread == NULL) {
   484      return false;
   485   }
   487   // Initial thread state is RUNNABLE
   488   osthread->set_state(RUNNABLE);
   490   thread->set_osthread(osthread);
   491   return true;
   492 }
   494 bool os::create_main_thread(JavaThread* thread) {
   495 #ifdef ASSERT
   496   thread->verify_not_published();
   497 #endif
   498   if (_starting_thread == NULL) {
   499     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   500      if (_starting_thread == NULL) {
   501         return false;
   502      }
   503   }
   505   // The primordial thread is runnable from the start)
   506   _starting_thread->set_state(RUNNABLE);
   508   thread->set_osthread(_starting_thread);
   509   return true;
   510 }
   512 // Allocate and initialize a new OSThread
   513 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   514   unsigned thread_id;
   516   // Allocate the OSThread object
   517   OSThread* osthread = new OSThread(NULL, NULL);
   518   if (osthread == NULL) {
   519     return false;
   520   }
   522   // Initialize support for Java interrupts
   523   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   524   if (interrupt_event == NULL) {
   525     delete osthread;
   526     return NULL;
   527   }
   528   osthread->set_interrupt_event(interrupt_event);
   529   osthread->set_interrupted(false);
   531   thread->set_osthread(osthread);
   533   if (stack_size == 0) {
   534     switch (thr_type) {
   535     case os::java_thread:
   536       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   537       if (JavaThread::stack_size_at_create() > 0)
   538         stack_size = JavaThread::stack_size_at_create();
   539       break;
   540     case os::compiler_thread:
   541       if (CompilerThreadStackSize > 0) {
   542         stack_size = (size_t)(CompilerThreadStackSize * K);
   543         break;
   544       } // else fall through:
   545         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   546     case os::vm_thread:
   547     case os::pgc_thread:
   548     case os::cgc_thread:
   549     case os::watcher_thread:
   550       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   551       break;
   552     }
   553   }
   555   // Create the Win32 thread
   556   //
   557   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   558   // does not specify stack size. Instead, it specifies the size of
   559   // initially committed space. The stack size is determined by
   560   // PE header in the executable. If the committed "stack_size" is larger
   561   // than default value in the PE header, the stack is rounded up to the
   562   // nearest multiple of 1MB. For example if the launcher has default
   563   // stack size of 320k, specifying any size less than 320k does not
   564   // affect the actual stack size at all, it only affects the initial
   565   // commitment. On the other hand, specifying 'stack_size' larger than
   566   // default value may cause significant increase in memory usage, because
   567   // not only the stack space will be rounded up to MB, but also the
   568   // entire space is committed upfront.
   569   //
   570   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   571   // for CreateThread() that can treat 'stack_size' as stack size. However we
   572   // are not supposed to call CreateThread() directly according to MSDN
   573   // document because JVM uses C runtime library. The good news is that the
   574   // flag appears to work with _beginthredex() as well.
   576 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   577 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   578 #endif
   580   HANDLE thread_handle =
   581     (HANDLE)_beginthreadex(NULL,
   582                            (unsigned)stack_size,
   583                            (unsigned (__stdcall *)(void*)) java_start,
   584                            thread,
   585                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   586                            &thread_id);
   587   if (thread_handle == NULL) {
   588     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   589     // without the flag.
   590     thread_handle =
   591     (HANDLE)_beginthreadex(NULL,
   592                            (unsigned)stack_size,
   593                            (unsigned (__stdcall *)(void*)) java_start,
   594                            thread,
   595                            CREATE_SUSPENDED,
   596                            &thread_id);
   597   }
   598   if (thread_handle == NULL) {
   599     // Need to clean up stuff we've allocated so far
   600     CloseHandle(osthread->interrupt_event());
   601     thread->set_osthread(NULL);
   602     delete osthread;
   603     return NULL;
   604   }
   606   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   608   // Store info on the Win32 thread into the OSThread
   609   osthread->set_thread_handle(thread_handle);
   610   osthread->set_thread_id(thread_id);
   612   // Initial thread state is INITIALIZED, not SUSPENDED
   613   osthread->set_state(INITIALIZED);
   615   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   616   return true;
   617 }
   620 // Free Win32 resources related to the OSThread
   621 void os::free_thread(OSThread* osthread) {
   622   assert(osthread != NULL, "osthread not set");
   623   CloseHandle(osthread->thread_handle());
   624   CloseHandle(osthread->interrupt_event());
   625   delete osthread;
   626 }
   629 static int    has_performance_count = 0;
   630 static jlong first_filetime;
   631 static jlong initial_performance_count;
   632 static jlong performance_frequency;
   635 jlong as_long(LARGE_INTEGER x) {
   636   jlong result = 0; // initialization to avoid warning
   637   set_high(&result, x.HighPart);
   638   set_low(&result,  x.LowPart);
   639   return result;
   640 }
   643 jlong os::elapsed_counter() {
   644   LARGE_INTEGER count;
   645   if (has_performance_count) {
   646     QueryPerformanceCounter(&count);
   647     return as_long(count) - initial_performance_count;
   648   } else {
   649     FILETIME wt;
   650     GetSystemTimeAsFileTime(&wt);
   651     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   652   }
   653 }
   656 jlong os::elapsed_frequency() {
   657   if (has_performance_count) {
   658     return performance_frequency;
   659   } else {
   660    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   661    return 10000000;
   662   }
   663 }
   666 julong os::available_memory() {
   667   return win32::available_memory();
   668 }
   670 julong os::win32::available_memory() {
   671   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   672   // value if total memory is larger than 4GB
   673   MEMORYSTATUSEX ms;
   674   ms.dwLength = sizeof(ms);
   675   GlobalMemoryStatusEx(&ms);
   677   return (julong)ms.ullAvailPhys;
   678 }
   680 julong os::physical_memory() {
   681   return win32::physical_memory();
   682 }
   684 julong os::allocatable_physical_memory(julong size) {
   685 #ifdef _LP64
   686   return size;
   687 #else
   688   // Limit to 1400m because of the 2gb address space wall
   689   return MIN2(size, (julong)1400*M);
   690 #endif
   691 }
   693 // VC6 lacks DWORD_PTR
   694 #if _MSC_VER < 1300
   695 typedef UINT_PTR DWORD_PTR;
   696 #endif
   698 int os::active_processor_count() {
   699   DWORD_PTR lpProcessAffinityMask = 0;
   700   DWORD_PTR lpSystemAffinityMask = 0;
   701   int proc_count = processor_count();
   702   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   703       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   704     // Nof active processors is number of bits in process affinity mask
   705     int bitcount = 0;
   706     while (lpProcessAffinityMask != 0) {
   707       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   708       bitcount++;
   709     }
   710     return bitcount;
   711   } else {
   712     return proc_count;
   713   }
   714 }
   716 bool os::distribute_processes(uint length, uint* distribution) {
   717   // Not yet implemented.
   718   return false;
   719 }
   721 bool os::bind_to_processor(uint processor_id) {
   722   // Not yet implemented.
   723   return false;
   724 }
   726 static void initialize_performance_counter() {
   727   LARGE_INTEGER count;
   728   if (QueryPerformanceFrequency(&count)) {
   729     has_performance_count = 1;
   730     performance_frequency = as_long(count);
   731     QueryPerformanceCounter(&count);
   732     initial_performance_count = as_long(count);
   733   } else {
   734     has_performance_count = 0;
   735     FILETIME wt;
   736     GetSystemTimeAsFileTime(&wt);
   737     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   738   }
   739 }
   742 double os::elapsedTime() {
   743   return (double) elapsed_counter() / (double) elapsed_frequency();
   744 }
   747 // Windows format:
   748 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   749 // Java format:
   750 //   Java standards require the number of milliseconds since 1/1/1970
   752 // Constant offset - calculated using offset()
   753 static jlong  _offset   = 116444736000000000;
   754 // Fake time counter for reproducible results when debugging
   755 static jlong  fake_time = 0;
   757 #ifdef ASSERT
   758 // Just to be safe, recalculate the offset in debug mode
   759 static jlong _calculated_offset = 0;
   760 static int   _has_calculated_offset = 0;
   762 jlong offset() {
   763   if (_has_calculated_offset) return _calculated_offset;
   764   SYSTEMTIME java_origin;
   765   java_origin.wYear          = 1970;
   766   java_origin.wMonth         = 1;
   767   java_origin.wDayOfWeek     = 0; // ignored
   768   java_origin.wDay           = 1;
   769   java_origin.wHour          = 0;
   770   java_origin.wMinute        = 0;
   771   java_origin.wSecond        = 0;
   772   java_origin.wMilliseconds  = 0;
   773   FILETIME jot;
   774   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   775     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   776   }
   777   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   778   _has_calculated_offset = 1;
   779   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   780   return _calculated_offset;
   781 }
   782 #else
   783 jlong offset() {
   784   return _offset;
   785 }
   786 #endif
   788 jlong windows_to_java_time(FILETIME wt) {
   789   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   790   return (a - offset()) / 10000;
   791 }
   793 FILETIME java_to_windows_time(jlong l) {
   794   jlong a = (l * 10000) + offset();
   795   FILETIME result;
   796   result.dwHighDateTime = high(a);
   797   result.dwLowDateTime  = low(a);
   798   return result;
   799 }
   801 // For now, we say that Windows does not support vtime.  I have no idea
   802 // whether it can actually be made to (DLD, 9/13/05).
   804 bool os::supports_vtime() { return false; }
   805 bool os::enable_vtime() { return false; }
   806 bool os::vtime_enabled() { return false; }
   807 double os::elapsedVTime() {
   808   // better than nothing, but not much
   809   return elapsedTime();
   810 }
   812 jlong os::javaTimeMillis() {
   813   if (UseFakeTimers) {
   814     return fake_time++;
   815   } else {
   816     FILETIME wt;
   817     GetSystemTimeAsFileTime(&wt);
   818     return windows_to_java_time(wt);
   819   }
   820 }
   822 #define NANOS_PER_SEC         CONST64(1000000000)
   823 #define NANOS_PER_MILLISEC    1000000
   824 jlong os::javaTimeNanos() {
   825   if (!has_performance_count) {
   826     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
   827   } else {
   828     LARGE_INTEGER current_count;
   829     QueryPerformanceCounter(&current_count);
   830     double current = as_long(current_count);
   831     double freq = performance_frequency;
   832     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
   833     return time;
   834   }
   835 }
   837 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   838   if (!has_performance_count) {
   839     // javaTimeMillis() doesn't have much percision,
   840     // but it is not going to wrap -- so all 64 bits
   841     info_ptr->max_value = ALL_64_BITS;
   843     // this is a wall clock timer, so may skip
   844     info_ptr->may_skip_backward = true;
   845     info_ptr->may_skip_forward = true;
   846   } else {
   847     jlong freq = performance_frequency;
   848     if (freq < NANOS_PER_SEC) {
   849       // the performance counter is 64 bits and we will
   850       // be multiplying it -- so no wrap in 64 bits
   851       info_ptr->max_value = ALL_64_BITS;
   852     } else if (freq > NANOS_PER_SEC) {
   853       // use the max value the counter can reach to
   854       // determine the max value which could be returned
   855       julong max_counter = (julong)ALL_64_BITS;
   856       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
   857     } else {
   858       // the performance counter is 64 bits and we will
   859       // be using it directly -- so no wrap in 64 bits
   860       info_ptr->max_value = ALL_64_BITS;
   861     }
   863     // using a counter, so no skipping
   864     info_ptr->may_skip_backward = false;
   865     info_ptr->may_skip_forward = false;
   866   }
   867   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   868 }
   870 char* os::local_time_string(char *buf, size_t buflen) {
   871   SYSTEMTIME st;
   872   GetLocalTime(&st);
   873   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   874                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   875   return buf;
   876 }
   878 bool os::getTimesSecs(double* process_real_time,
   879                      double* process_user_time,
   880                      double* process_system_time) {
   881   HANDLE h_process = GetCurrentProcess();
   882   FILETIME create_time, exit_time, kernel_time, user_time;
   883   BOOL result = GetProcessTimes(h_process,
   884                                &create_time,
   885                                &exit_time,
   886                                &kernel_time,
   887                                &user_time);
   888   if (result != 0) {
   889     FILETIME wt;
   890     GetSystemTimeAsFileTime(&wt);
   891     jlong rtc_millis = windows_to_java_time(wt);
   892     jlong user_millis = windows_to_java_time(user_time);
   893     jlong system_millis = windows_to_java_time(kernel_time);
   894     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   895     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   896     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   897     return true;
   898   } else {
   899     return false;
   900   }
   901 }
   903 void os::shutdown() {
   905   // allow PerfMemory to attempt cleanup of any persistent resources
   906   perfMemory_exit();
   908   // flush buffered output, finish log files
   909   ostream_abort();
   911   // Check for abort hook
   912   abort_hook_t abort_hook = Arguments::abort_hook();
   913   if (abort_hook != NULL) {
   914     abort_hook();
   915   }
   916 }
   918 void os::abort(bool dump_core)
   919 {
   920   os::shutdown();
   921   // no core dump on Windows
   922   ::exit(1);
   923 }
   925 // Die immediately, no exit hook, no abort hook, no cleanup.
   926 void os::die() {
   927   _exit(-1);
   928 }
   930 // Directory routines copied from src/win32/native/java/io/dirent_md.c
   931 //  * dirent_md.c       1.15 00/02/02
   932 //
   933 // The declarations for DIR and struct dirent are in jvm_win32.h.
   935 /* Caller must have already run dirname through JVM_NativePath, which removes
   936    duplicate slashes and converts all instances of '/' into '\\'. */
   938 DIR *
   939 os::opendir(const char *dirname)
   940 {
   941     assert(dirname != NULL, "just checking");   // hotspot change
   942     DIR *dirp = (DIR *)malloc(sizeof(DIR));
   943     DWORD fattr;                                // hotspot change
   944     char alt_dirname[4] = { 0, 0, 0, 0 };
   946     if (dirp == 0) {
   947         errno = ENOMEM;
   948         return 0;
   949     }
   951     /*
   952      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
   953      * as a directory in FindFirstFile().  We detect this case here and
   954      * prepend the current drive name.
   955      */
   956     if (dirname[1] == '\0' && dirname[0] == '\\') {
   957         alt_dirname[0] = _getdrive() + 'A' - 1;
   958         alt_dirname[1] = ':';
   959         alt_dirname[2] = '\\';
   960         alt_dirname[3] = '\0';
   961         dirname = alt_dirname;
   962     }
   964     dirp->path = (char *)malloc(strlen(dirname) + 5);
   965     if (dirp->path == 0) {
   966         free(dirp);
   967         errno = ENOMEM;
   968         return 0;
   969     }
   970     strcpy(dirp->path, dirname);
   972     fattr = GetFileAttributes(dirp->path);
   973     if (fattr == 0xffffffff) {
   974         free(dirp->path);
   975         free(dirp);
   976         errno = ENOENT;
   977         return 0;
   978     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
   979         free(dirp->path);
   980         free(dirp);
   981         errno = ENOTDIR;
   982         return 0;
   983     }
   985     /* Append "*.*", or possibly "\\*.*", to path */
   986     if (dirp->path[1] == ':'
   987         && (dirp->path[2] == '\0'
   988             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
   989         /* No '\\' needed for cases like "Z:" or "Z:\" */
   990         strcat(dirp->path, "*.*");
   991     } else {
   992         strcat(dirp->path, "\\*.*");
   993     }
   995     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
   996     if (dirp->handle == INVALID_HANDLE_VALUE) {
   997         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
   998             free(dirp->path);
   999             free(dirp);
  1000             errno = EACCES;
  1001             return 0;
  1004     return dirp;
  1007 /* parameter dbuf unused on Windows */
  1009 struct dirent *
  1010 os::readdir(DIR *dirp, dirent *dbuf)
  1012     assert(dirp != NULL, "just checking");      // hotspot change
  1013     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1014         return 0;
  1017     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1019     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1020         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1021             errno = EBADF;
  1022             return 0;
  1024         FindClose(dirp->handle);
  1025         dirp->handle = INVALID_HANDLE_VALUE;
  1028     return &dirp->dirent;
  1031 int
  1032 os::closedir(DIR *dirp)
  1034     assert(dirp != NULL, "just checking");      // hotspot change
  1035     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1036         if (!FindClose(dirp->handle)) {
  1037             errno = EBADF;
  1038             return -1;
  1040         dirp->handle = INVALID_HANDLE_VALUE;
  1042     free(dirp->path);
  1043     free(dirp);
  1044     return 0;
  1047 const char* os::get_temp_directory() {
  1048   const char *prop = Arguments::get_property("java.io.tmpdir");
  1049   if (prop != 0) return prop;
  1050   static char path_buf[MAX_PATH];
  1051   if (GetTempPath(MAX_PATH, path_buf)>0)
  1052     return path_buf;
  1053   else{
  1054     path_buf[0]='\0';
  1055     return path_buf;
  1059 static bool file_exists(const char* filename) {
  1060   if (filename == NULL || strlen(filename) == 0) {
  1061     return false;
  1063   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1066 void os::dll_build_name(char *buffer, size_t buflen,
  1067                         const char* pname, const char* fname) {
  1068   const size_t pnamelen = pname ? strlen(pname) : 0;
  1069   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1071   // Quietly truncates on buffer overflow. Should be an error.
  1072   if (pnamelen + strlen(fname) + 10 > buflen) {
  1073     *buffer = '\0';
  1074     return;
  1077   if (pnamelen == 0) {
  1078     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1079   } else if (c == ':' || c == '\\') {
  1080     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1081   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1082     int n;
  1083     char** pelements = split_path(pname, &n);
  1084     for (int i = 0 ; i < n ; i++) {
  1085       char* path = pelements[i];
  1086       // Really shouldn't be NULL, but check can't hurt
  1087       size_t plen = (path == NULL) ? 0 : strlen(path);
  1088       if (plen == 0) {
  1089         continue; // skip the empty path values
  1091       const char lastchar = path[plen - 1];
  1092       if (lastchar == ':' || lastchar == '\\') {
  1093         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1094       } else {
  1095         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1097       if (file_exists(buffer)) {
  1098         break;
  1101     // release the storage
  1102     for (int i = 0 ; i < n ; i++) {
  1103       if (pelements[i] != NULL) {
  1104         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1107     if (pelements != NULL) {
  1108       FREE_C_HEAP_ARRAY(char*, pelements);
  1110   } else {
  1111     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1115 // Needs to be in os specific directory because windows requires another
  1116 // header file <direct.h>
  1117 const char* os::get_current_directory(char *buf, int buflen) {
  1118   return _getcwd(buf, buflen);
  1121 //-----------------------------------------------------------
  1122 // Helper functions for fatal error handler
  1124 // The following library functions are resolved dynamically at runtime:
  1126 // PSAPI functions, for Windows NT, 2000, XP
  1128 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
  1129 // SDK from Microsoft.  Here are the definitions copied from psapi.h
  1130 typedef struct _MODULEINFO {
  1131     LPVOID lpBaseOfDll;
  1132     DWORD SizeOfImage;
  1133     LPVOID EntryPoint;
  1134 } MODULEINFO, *LPMODULEINFO;
  1136 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
  1137 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
  1138 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
  1140 // ToolHelp Functions, for Windows 95, 98 and ME
  1142 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
  1143 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
  1144 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
  1146 bool _has_psapi;
  1147 bool _psapi_init = false;
  1148 bool _has_toolhelp;
  1150 static bool _init_psapi() {
  1151   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
  1152   if( psapi == NULL ) return false ;
  1154   _EnumProcessModules = CAST_TO_FN_PTR(
  1155       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
  1156       GetProcAddress(psapi, "EnumProcessModules")) ;
  1157   _GetModuleFileNameEx = CAST_TO_FN_PTR(
  1158       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
  1159       GetProcAddress(psapi, "GetModuleFileNameExA"));
  1160   _GetModuleInformation = CAST_TO_FN_PTR(
  1161       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
  1162       GetProcAddress(psapi, "GetModuleInformation"));
  1164   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
  1165   _psapi_init = true;
  1166   return _has_psapi;
  1169 static bool _init_toolhelp() {
  1170   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
  1171   if (kernel32 == NULL) return false ;
  1173   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
  1174       HANDLE(WINAPI *)(DWORD,DWORD),
  1175       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
  1176   _Module32First = CAST_TO_FN_PTR(
  1177       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1178       GetProcAddress(kernel32, "Module32First" ));
  1179   _Module32Next = CAST_TO_FN_PTR(
  1180       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1181       GetProcAddress(kernel32, "Module32Next" ));
  1183   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
  1184   return _has_toolhelp;
  1187 #ifdef _WIN64
  1188 // Helper routine which returns true if address in
  1189 // within the NTDLL address space.
  1190 //
  1191 static bool _addr_in_ntdll( address addr )
  1193   HMODULE hmod;
  1194   MODULEINFO minfo;
  1196   hmod = GetModuleHandle("NTDLL.DLL");
  1197   if ( hmod == NULL ) return false;
  1198   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
  1199                                &minfo, sizeof(MODULEINFO)) )
  1200     return false;
  1202   if ( (addr >= minfo.lpBaseOfDll) &&
  1203        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1204     return true;
  1205   else
  1206     return false;
  1208 #endif
  1211 // Enumerate all modules for a given process ID
  1212 //
  1213 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1214 // different API for doing this. We use PSAPI.DLL on NT based
  1215 // Windows and ToolHelp on 95/98/Me.
  1217 // Callback function that is called by enumerate_modules() on
  1218 // every DLL module.
  1219 // Input parameters:
  1220 //    int       pid,
  1221 //    char*     module_file_name,
  1222 //    address   module_base_addr,
  1223 //    unsigned  module_size,
  1224 //    void*     param
  1225 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1227 // enumerate_modules for Windows NT, using PSAPI
  1228 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1230   HANDLE   hProcess ;
  1232 # define MAX_NUM_MODULES 128
  1233   HMODULE     modules[MAX_NUM_MODULES];
  1234   static char filename[ MAX_PATH ];
  1235   int         result = 0;
  1237   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
  1239   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1240                          FALSE, pid ) ;
  1241   if (hProcess == NULL) return 0;
  1243   DWORD size_needed;
  1244   if (!_EnumProcessModules(hProcess, modules,
  1245                            sizeof(modules), &size_needed)) {
  1246       CloseHandle( hProcess );
  1247       return 0;
  1250   // number of modules that are currently loaded
  1251   int num_modules = size_needed / sizeof(HMODULE);
  1253   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1254     // Get Full pathname:
  1255     if(!_GetModuleFileNameEx(hProcess, modules[i],
  1256                              filename, sizeof(filename))) {
  1257         filename[0] = '\0';
  1260     MODULEINFO modinfo;
  1261     if (!_GetModuleInformation(hProcess, modules[i],
  1262                                &modinfo, sizeof(modinfo))) {
  1263         modinfo.lpBaseOfDll = NULL;
  1264         modinfo.SizeOfImage = 0;
  1267     // Invoke callback function
  1268     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1269                   modinfo.SizeOfImage, param);
  1270     if (result) break;
  1273   CloseHandle( hProcess ) ;
  1274   return result;
  1278 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1279 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1281   HANDLE                hSnapShot ;
  1282   static MODULEENTRY32  modentry ;
  1283   int                   result = 0;
  1285   if (!_has_toolhelp) return 0;
  1287   // Get a handle to a Toolhelp snapshot of the system
  1288   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1289   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1290       return FALSE ;
  1293   // iterate through all modules
  1294   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1295   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
  1297   while( not_done ) {
  1298     // invoke the callback
  1299     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1300                 modentry.modBaseSize, param);
  1301     if (result) break;
  1303     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1304     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
  1307   CloseHandle(hSnapShot);
  1308   return result;
  1311 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1313   // Get current process ID if caller doesn't provide it.
  1314   if (!pid) pid = os::current_process_id();
  1316   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1317   else                    return _enumerate_modules_windows(pid, func, param);
  1320 struct _modinfo {
  1321    address addr;
  1322    char*   full_path;   // point to a char buffer
  1323    int     buflen;      // size of the buffer
  1324    address base_addr;
  1325 };
  1327 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1328                                   unsigned size, void * param) {
  1329    struct _modinfo *pmod = (struct _modinfo *)param;
  1330    if (!pmod) return -1;
  1332    if (base_addr     <= pmod->addr &&
  1333        base_addr+size > pmod->addr) {
  1334      // if a buffer is provided, copy path name to the buffer
  1335      if (pmod->full_path) {
  1336        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1338      pmod->base_addr = base_addr;
  1339      return 1;
  1341    return 0;
  1344 bool os::dll_address_to_library_name(address addr, char* buf,
  1345                                      int buflen, int* offset) {
  1346 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1347 //       return the full path to the DLL file, sometimes it returns path
  1348 //       to the corresponding PDB file (debug info); sometimes it only
  1349 //       returns partial path, which makes life painful.
  1351    struct _modinfo mi;
  1352    mi.addr      = addr;
  1353    mi.full_path = buf;
  1354    mi.buflen    = buflen;
  1355    int pid = os::current_process_id();
  1356    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1357       // buf already contains path name
  1358       if (offset) *offset = addr - mi.base_addr;
  1359       return true;
  1360    } else {
  1361       if (buf) buf[0] = '\0';
  1362       if (offset) *offset = -1;
  1363       return false;
  1367 bool os::dll_address_to_function_name(address addr, char *buf,
  1368                                       int buflen, int *offset) {
  1369   if (Decoder::decode(addr, buf, buflen, offset) == Decoder::no_error) {
  1370     return true;
  1372   if (offset != NULL)  *offset  = -1;
  1373   if (buf != NULL) buf[0] = '\0';
  1374   return false;
  1377 // save the start and end address of jvm.dll into param[0] and param[1]
  1378 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1379                     unsigned size, void * param) {
  1380    if (!param) return -1;
  1382    if (base_addr     <= (address)_locate_jvm_dll &&
  1383        base_addr+size > (address)_locate_jvm_dll) {
  1384          ((address*)param)[0] = base_addr;
  1385          ((address*)param)[1] = base_addr + size;
  1386          return 1;
  1388    return 0;
  1391 address vm_lib_location[2];    // start and end address of jvm.dll
  1393 // check if addr is inside jvm.dll
  1394 bool os::address_is_in_vm(address addr) {
  1395   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1396     int pid = os::current_process_id();
  1397     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1398       assert(false, "Can't find jvm module.");
  1399       return false;
  1403   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1406 // print module info; param is outputStream*
  1407 static int _print_module(int pid, char* fname, address base,
  1408                          unsigned size, void* param) {
  1409    if (!param) return -1;
  1411    outputStream* st = (outputStream*)param;
  1413    address end_addr = base + size;
  1414    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1415    return 0;
  1418 // Loads .dll/.so and
  1419 // in case of error it checks if .dll/.so was built for the
  1420 // same architecture as Hotspot is running on
  1421 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1423   void * result = LoadLibrary(name);
  1424   if (result != NULL)
  1426     return result;
  1429   long errcode = GetLastError();
  1430   if (errcode == ERROR_MOD_NOT_FOUND) {
  1431     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1432     ebuf[ebuflen-1]='\0';
  1433     return NULL;
  1436   // Parsing dll below
  1437   // If we can read dll-info and find that dll was built
  1438   // for an architecture other than Hotspot is running in
  1439   // - then print to buffer "DLL was built for a different architecture"
  1440   // else call getLastErrorString to obtain system error message
  1442   // Read system error message into ebuf
  1443   // It may or may not be overwritten below (in the for loop and just above)
  1444   getLastErrorString(ebuf, (size_t) ebuflen);
  1445   ebuf[ebuflen-1]='\0';
  1446   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1447   if (file_descriptor<0)
  1449     return NULL;
  1452   uint32_t signature_offset;
  1453   uint16_t lib_arch=0;
  1454   bool failed_to_get_lib_arch=
  1456     //Go to position 3c in the dll
  1457     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1458     ||
  1459     // Read loacation of signature
  1460     (sizeof(signature_offset)!=
  1461       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1462     ||
  1463     //Go to COFF File Header in dll
  1464     //that is located after"signature" (4 bytes long)
  1465     (os::seek_to_file_offset(file_descriptor,
  1466       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1467     ||
  1468     //Read field that contains code of architecture
  1469     // that dll was build for
  1470     (sizeof(lib_arch)!=
  1471       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1472   );
  1474   ::close(file_descriptor);
  1475   if (failed_to_get_lib_arch)
  1477     // file i/o error - report getLastErrorString(...) msg
  1478     return NULL;
  1481   typedef struct
  1483     uint16_t arch_code;
  1484     char* arch_name;
  1485   } arch_t;
  1487   static const arch_t arch_array[]={
  1488     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1489     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1490     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1491   };
  1492   #if   (defined _M_IA64)
  1493     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1494   #elif (defined _M_AMD64)
  1495     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1496   #elif (defined _M_IX86)
  1497     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1498   #else
  1499     #error Method os::dll_load requires that one of following \
  1500            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1501   #endif
  1504   // Obtain a string for printf operation
  1505   // lib_arch_str shall contain string what platform this .dll was built for
  1506   // running_arch_str shall string contain what platform Hotspot was built for
  1507   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1508   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1510     if (lib_arch==arch_array[i].arch_code)
  1511       lib_arch_str=arch_array[i].arch_name;
  1512     if (running_arch==arch_array[i].arch_code)
  1513       running_arch_str=arch_array[i].arch_name;
  1516   assert(running_arch_str,
  1517     "Didn't find runing architecture code in arch_array");
  1519   // If the architure is right
  1520   // but some other error took place - report getLastErrorString(...) msg
  1521   if (lib_arch == running_arch)
  1523     return NULL;
  1526   if (lib_arch_str!=NULL)
  1528     ::_snprintf(ebuf, ebuflen-1,
  1529       "Can't load %s-bit .dll on a %s-bit platform",
  1530       lib_arch_str,running_arch_str);
  1532   else
  1534     // don't know what architecture this dll was build for
  1535     ::_snprintf(ebuf, ebuflen-1,
  1536       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1537       lib_arch,running_arch_str);
  1540   return NULL;
  1544 void os::print_dll_info(outputStream *st) {
  1545    int pid = os::current_process_id();
  1546    st->print_cr("Dynamic libraries:");
  1547    enumerate_modules(pid, _print_module, (void *)st);
  1550 // function pointer to Windows API "GetNativeSystemInfo".
  1551 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
  1552 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
  1554 void os::print_os_info(outputStream* st) {
  1555   st->print("OS:");
  1557   OSVERSIONINFOEX osvi;
  1558   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1559   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1561   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1562     st->print_cr("N/A");
  1563     return;
  1566   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1567   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1568     switch (os_vers) {
  1569     case 3051: st->print(" Windows NT 3.51"); break;
  1570     case 4000: st->print(" Windows NT 4.0"); break;
  1571     case 5000: st->print(" Windows 2000"); break;
  1572     case 5001: st->print(" Windows XP"); break;
  1573     case 5002:
  1574     case 6000:
  1575     case 6001: {
  1576       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1577       // find out whether we are running on 64 bit processor or not.
  1578       SYSTEM_INFO si;
  1579       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1580       // Check to see if _GetNativeSystemInfo has been initialized.
  1581       if (_GetNativeSystemInfo == NULL) {
  1582         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
  1583         _GetNativeSystemInfo =
  1584             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
  1585                            GetProcAddress(hKernel32,
  1586                                           "GetNativeSystemInfo"));
  1587         if (_GetNativeSystemInfo == NULL)
  1588           GetSystemInfo(&si);
  1589       } else {
  1590         _GetNativeSystemInfo(&si);
  1592       if (os_vers == 5002) {
  1593         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1594             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1595           st->print(" Windows XP x64 Edition");
  1596         else
  1597             st->print(" Windows Server 2003 family");
  1598       } else if (os_vers == 6000) {
  1599         if (osvi.wProductType == VER_NT_WORKSTATION)
  1600             st->print(" Windows Vista");
  1601         else
  1602             st->print(" Windows Server 2008");
  1603         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1604             st->print(" , 64 bit");
  1605       } else if (os_vers == 6001) {
  1606         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1607             st->print(" Windows 7");
  1608         } else {
  1609             // Unrecognized windows, print out its major and minor versions
  1610             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1612         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1613             st->print(" , 64 bit");
  1614       } else { // future os
  1615         // Unrecognized windows, print out its major and minor versions
  1616         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1617         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1618             st->print(" , 64 bit");
  1620       break;
  1622     default: // future windows, print out its major and minor versions
  1623       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1625   } else {
  1626     switch (os_vers) {
  1627     case 4000: st->print(" Windows 95"); break;
  1628     case 4010: st->print(" Windows 98"); break;
  1629     case 4090: st->print(" Windows Me"); break;
  1630     default: // future windows, print out its major and minor versions
  1631       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1634   st->print(" Build %d", osvi.dwBuildNumber);
  1635   st->print(" %s", osvi.szCSDVersion);           // service pack
  1636   st->cr();
  1639 void os::print_memory_info(outputStream* st) {
  1640   st->print("Memory:");
  1641   st->print(" %dk page", os::vm_page_size()>>10);
  1643   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1644   // value if total memory is larger than 4GB
  1645   MEMORYSTATUSEX ms;
  1646   ms.dwLength = sizeof(ms);
  1647   GlobalMemoryStatusEx(&ms);
  1649   st->print(", physical %uk", os::physical_memory() >> 10);
  1650   st->print("(%uk free)", os::available_memory() >> 10);
  1652   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1653   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1654   st->cr();
  1657 void os::print_siginfo(outputStream *st, void *siginfo) {
  1658   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1659   st->print("siginfo:");
  1660   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1662   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1663       er->NumberParameters >= 2) {
  1664       switch (er->ExceptionInformation[0]) {
  1665       case 0: st->print(", reading address"); break;
  1666       case 1: st->print(", writing address"); break;
  1667       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1668                             er->ExceptionInformation[0]);
  1670       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1671   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1672              er->NumberParameters >= 2 && UseSharedSpaces) {
  1673     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1674     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1675       st->print("\n\nError accessing class data sharing archive."       \
  1676                 " Mapped file inaccessible during execution, "          \
  1677                 " possible disk/network problem.");
  1679   } else {
  1680     int num = er->NumberParameters;
  1681     if (num > 0) {
  1682       st->print(", ExceptionInformation=");
  1683       for (int i = 0; i < num; i++) {
  1684         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1688   st->cr();
  1691 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1692   // do nothing
  1695 static char saved_jvm_path[MAX_PATH] = {0};
  1697 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1698 void os::jvm_path(char *buf, jint buflen) {
  1699   // Error checking.
  1700   if (buflen < MAX_PATH) {
  1701     assert(false, "must use a large-enough buffer");
  1702     buf[0] = '\0';
  1703     return;
  1705   // Lazy resolve the path to current module.
  1706   if (saved_jvm_path[0] != 0) {
  1707     strcpy(buf, saved_jvm_path);
  1708     return;
  1711   buf[0] = '\0';
  1712   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  1713      // Support for the gamma launcher. Check for an
  1714      // ALT_JAVA_HOME or JAVA_HOME environment variable
  1715      // and fix up the path so it looks like
  1716      // libjvm.so is installed there (append a fake suffix
  1717      // hotspot/libjvm.so).
  1718      char* java_home_var = ::getenv("ALT_JAVA_HOME");
  1719      if (java_home_var == NULL) {
  1720         java_home_var = ::getenv("JAVA_HOME");
  1722      if (java_home_var != NULL && java_home_var[0] != 0) {
  1724         strncpy(buf, java_home_var, buflen);
  1726         // determine if this is a legacy image or modules image
  1727         // modules image doesn't have "jre" subdirectory
  1728         size_t len = strlen(buf);
  1729         char* jrebin_p = buf + len;
  1730         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1731         if (0 != _access(buf, 0)) {
  1732           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1734         len = strlen(buf);
  1735         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1739   if(buf[0] == '\0') {
  1740   GetModuleFileName(vm_lib_handle, buf, buflen);
  1742   strcpy(saved_jvm_path, buf);
  1746 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1747 #ifndef _WIN64
  1748   st->print("_");
  1749 #endif
  1753 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1754 #ifndef _WIN64
  1755   st->print("@%d", args_size  * sizeof(int));
  1756 #endif
  1759 // This method is a copy of JDK's sysGetLastErrorString
  1760 // from src/windows/hpi/src/system_md.c
  1762 size_t os::lasterror(char *buf, size_t len) {
  1763   long errval;
  1765   if ((errval = GetLastError()) != 0) {
  1766       /* DOS error */
  1767     int n = (int)FormatMessage(
  1768           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1769           NULL,
  1770           errval,
  1771           0,
  1772           buf,
  1773           (DWORD)len,
  1774           NULL);
  1775     if (n > 3) {
  1776       /* Drop final '.', CR, LF */
  1777       if (buf[n - 1] == '\n') n--;
  1778       if (buf[n - 1] == '\r') n--;
  1779       if (buf[n - 1] == '.') n--;
  1780       buf[n] = '\0';
  1782     return n;
  1785   if (errno != 0) {
  1786     /* C runtime error that has no corresponding DOS error code */
  1787     const char *s = strerror(errno);
  1788     size_t n = strlen(s);
  1789     if (n >= len) n = len - 1;
  1790     strncpy(buf, s, n);
  1791     buf[n] = '\0';
  1792     return n;
  1794   return 0;
  1797 // sun.misc.Signal
  1798 // NOTE that this is a workaround for an apparent kernel bug where if
  1799 // a signal handler for SIGBREAK is installed then that signal handler
  1800 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1801 // See bug 4416763.
  1802 static void (*sigbreakHandler)(int) = NULL;
  1804 static void UserHandler(int sig, void *siginfo, void *context) {
  1805   os::signal_notify(sig);
  1806   // We need to reinstate the signal handler each time...
  1807   os::signal(sig, (void*)UserHandler);
  1810 void* os::user_handler() {
  1811   return (void*) UserHandler;
  1814 void* os::signal(int signal_number, void* handler) {
  1815   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1816     void (*oldHandler)(int) = sigbreakHandler;
  1817     sigbreakHandler = (void (*)(int)) handler;
  1818     return (void*) oldHandler;
  1819   } else {
  1820     return (void*)::signal(signal_number, (void (*)(int))handler);
  1824 void os::signal_raise(int signal_number) {
  1825   raise(signal_number);
  1828 // The Win32 C runtime library maps all console control events other than ^C
  1829 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1830 // logoff, and shutdown events.  We therefore install our own console handler
  1831 // that raises SIGTERM for the latter cases.
  1832 //
  1833 static BOOL WINAPI consoleHandler(DWORD event) {
  1834   switch(event) {
  1835     case CTRL_C_EVENT:
  1836       if (is_error_reported()) {
  1837         // Ctrl-C is pressed during error reporting, likely because the error
  1838         // handler fails to abort. Let VM die immediately.
  1839         os::die();
  1842       os::signal_raise(SIGINT);
  1843       return TRUE;
  1844       break;
  1845     case CTRL_BREAK_EVENT:
  1846       if (sigbreakHandler != NULL) {
  1847         (*sigbreakHandler)(SIGBREAK);
  1849       return TRUE;
  1850       break;
  1851     case CTRL_CLOSE_EVENT:
  1852     case CTRL_LOGOFF_EVENT:
  1853     case CTRL_SHUTDOWN_EVENT:
  1854       os::signal_raise(SIGTERM);
  1855       return TRUE;
  1856       break;
  1857     default:
  1858       break;
  1860   return FALSE;
  1863 /*
  1864  * The following code is moved from os.cpp for making this
  1865  * code platform specific, which it is by its very nature.
  1866  */
  1868 // Return maximum OS signal used + 1 for internal use only
  1869 // Used as exit signal for signal_thread
  1870 int os::sigexitnum_pd(){
  1871   return NSIG;
  1874 // a counter for each possible signal value, including signal_thread exit signal
  1875 static volatile jint pending_signals[NSIG+1] = { 0 };
  1876 static HANDLE sig_sem;
  1878 void os::signal_init_pd() {
  1879   // Initialize signal structures
  1880   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1882   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1884   // Programs embedding the VM do not want it to attempt to receive
  1885   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1886   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1887   // the VM is run as part of a Windows NT service (i.e., a servlet
  1888   // engine in a web server), the correct behavior is for any console
  1889   // control handler to return FALSE, not TRUE, because the OS's
  1890   // "final" handler for such events allows the process to continue if
  1891   // it is a service (while terminating it if it is not a service).
  1892   // To make this behavior uniform and the mechanism simpler, we
  1893   // completely disable the VM's usage of these console events if -Xrs
  1894   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1895   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1896   // case.  See bugs 4323062, 4345157, and related bugs.
  1898   if (!ReduceSignalUsage) {
  1899     // Add a CTRL-C handler
  1900     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1904 void os::signal_notify(int signal_number) {
  1905   BOOL ret;
  1907   Atomic::inc(&pending_signals[signal_number]);
  1908   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1909   assert(ret != 0, "ReleaseSemaphore() failed");
  1912 static int check_pending_signals(bool wait_for_signal) {
  1913   DWORD ret;
  1914   while (true) {
  1915     for (int i = 0; i < NSIG + 1; i++) {
  1916       jint n = pending_signals[i];
  1917       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1918         return i;
  1921     if (!wait_for_signal) {
  1922       return -1;
  1925     JavaThread *thread = JavaThread::current();
  1927     ThreadBlockInVM tbivm(thread);
  1929     bool threadIsSuspended;
  1930     do {
  1931       thread->set_suspend_equivalent();
  1932       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1933       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1934       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1936       // were we externally suspended while we were waiting?
  1937       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1938       if (threadIsSuspended) {
  1939         //
  1940         // The semaphore has been incremented, but while we were waiting
  1941         // another thread suspended us. We don't want to continue running
  1942         // while suspended because that would surprise the thread that
  1943         // suspended us.
  1944         //
  1945         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1946         assert(ret != 0, "ReleaseSemaphore() failed");
  1948         thread->java_suspend_self();
  1950     } while (threadIsSuspended);
  1954 int os::signal_lookup() {
  1955   return check_pending_signals(false);
  1958 int os::signal_wait() {
  1959   return check_pending_signals(true);
  1962 // Implicit OS exception handling
  1964 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1965   JavaThread* thread = JavaThread::current();
  1966   // Save pc in thread
  1967 #ifdef _M_IA64
  1968   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1969   // Set pc to handler
  1970   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1971 #elif _M_AMD64
  1972   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1973   // Set pc to handler
  1974   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1975 #else
  1976   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  1977   // Set pc to handler
  1978   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  1979 #endif
  1981   // Continue the execution
  1982   return EXCEPTION_CONTINUE_EXECUTION;
  1986 // Used for PostMortemDump
  1987 extern "C" void safepoints();
  1988 extern "C" void find(int x);
  1989 extern "C" void events();
  1991 // According to Windows API documentation, an illegal instruction sequence should generate
  1992 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  1993 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  1994 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  1996 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  1998 // From "Execution Protection in the Windows Operating System" draft 0.35
  1999 // Once a system header becomes available, the "real" define should be
  2000 // included or copied here.
  2001 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2003 #define def_excpt(val) #val, val
  2005 struct siglabel {
  2006   char *name;
  2007   int   number;
  2008 };
  2010 struct siglabel exceptlabels[] = {
  2011     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2012     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2013     def_excpt(EXCEPTION_BREAKPOINT),
  2014     def_excpt(EXCEPTION_SINGLE_STEP),
  2015     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2016     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2017     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2018     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2019     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2020     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2021     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2022     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2023     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2024     def_excpt(EXCEPTION_INT_OVERFLOW),
  2025     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2026     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2027     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2028     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2029     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2030     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2031     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2032     def_excpt(EXCEPTION_GUARD_PAGE),
  2033     def_excpt(EXCEPTION_INVALID_HANDLE),
  2034     NULL, 0
  2035 };
  2037 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2038   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  2039     if (exceptlabels[i].number == exception_code) {
  2040        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2041        return buf;
  2045   return NULL;
  2048 //-----------------------------------------------------------------------------
  2049 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2050   // handle exception caused by idiv; should only happen for -MinInt/-1
  2051   // (division by zero is handled explicitly)
  2052 #ifdef _M_IA64
  2053   assert(0, "Fix Handle_IDiv_Exception");
  2054 #elif _M_AMD64
  2055   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2056   address pc = (address)ctx->Rip;
  2057   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  2058   assert(pc[0] == 0xF7, "not an idiv opcode");
  2059   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2060   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2061   // set correct result values and continue after idiv instruction
  2062   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2063   ctx->Rax = (DWORD)min_jint;      // result
  2064   ctx->Rdx = (DWORD)0;             // remainder
  2065   // Continue the execution
  2066 #else
  2067   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2068   address pc = (address)ctx->Eip;
  2069   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  2070   assert(pc[0] == 0xF7, "not an idiv opcode");
  2071   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2072   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2073   // set correct result values and continue after idiv instruction
  2074   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2075   ctx->Eax = (DWORD)min_jint;      // result
  2076   ctx->Edx = (DWORD)0;             // remainder
  2077   // Continue the execution
  2078 #endif
  2079   return EXCEPTION_CONTINUE_EXECUTION;
  2082 #ifndef  _WIN64
  2083 //-----------------------------------------------------------------------------
  2084 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2085   // handle exception caused by native method modifying control word
  2086   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2087   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2089   switch (exception_code) {
  2090     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2091     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2092     case EXCEPTION_FLT_INEXACT_RESULT:
  2093     case EXCEPTION_FLT_INVALID_OPERATION:
  2094     case EXCEPTION_FLT_OVERFLOW:
  2095     case EXCEPTION_FLT_STACK_CHECK:
  2096     case EXCEPTION_FLT_UNDERFLOW:
  2097       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2098       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2099         // Restore FPCW and mask out FLT exceptions
  2100         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2101         // Mask out pending FLT exceptions
  2102         ctx->FloatSave.StatusWord &=  0xffffff00;
  2103         return EXCEPTION_CONTINUE_EXECUTION;
  2107   if (prev_uef_handler != NULL) {
  2108     // We didn't handle this exception so pass it to the previous
  2109     // UnhandledExceptionFilter.
  2110     return (prev_uef_handler)(exceptionInfo);
  2113   return EXCEPTION_CONTINUE_SEARCH;
  2115 #else //_WIN64
  2116 /*
  2117   On Windows, the mxcsr control bits are non-volatile across calls
  2118   See also CR 6192333
  2119   If EXCEPTION_FLT_* happened after some native method modified
  2120   mxcsr - it is not a jvm fault.
  2121   However should we decide to restore of mxcsr after a faulty
  2122   native method we can uncomment following code
  2123       jint MxCsr = INITIAL_MXCSR;
  2124         // we can't use StubRoutines::addr_mxcsr_std()
  2125         // because in Win64 mxcsr is not saved there
  2126       if (MxCsr != ctx->MxCsr) {
  2127         ctx->MxCsr = MxCsr;
  2128         return EXCEPTION_CONTINUE_EXECUTION;
  2131 */
  2132 #endif //_WIN64
  2135 // Fatal error reporting is single threaded so we can make this a
  2136 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2137 // it.
  2138 static char saved_error_file[MAX_PATH] = {0};
  2140 void os::set_error_file(const char *logfile) {
  2141   if (strlen(logfile) <= MAX_PATH) {
  2142     strncpy(saved_error_file, logfile, MAX_PATH);
  2146 static inline void report_error(Thread* t, DWORD exception_code,
  2147                                 address addr, void* siginfo, void* context) {
  2148   VMError err(t, exception_code, addr, siginfo, context);
  2149   err.report_and_die();
  2151   // If UseOsErrorReporting, this will return here and save the error file
  2152   // somewhere where we can find it in the minidump.
  2155 //-----------------------------------------------------------------------------
  2156 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2157   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2158   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2159 #ifdef _M_IA64
  2160   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  2161 #elif _M_AMD64
  2162   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2163 #else
  2164   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2165 #endif
  2166   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2168 #ifndef _WIN64
  2169   // Execution protection violation - win32 running on AMD64 only
  2170   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2171   // This is safe to do because we have a new/unique ExceptionInformation
  2172   // code for this condition.
  2173   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2174     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2175     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2176     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2178     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2179       int page_size = os::vm_page_size();
  2181       // Make sure the pc and the faulting address are sane.
  2182       //
  2183       // If an instruction spans a page boundary, and the page containing
  2184       // the beginning of the instruction is executable but the following
  2185       // page is not, the pc and the faulting address might be slightly
  2186       // different - we still want to unguard the 2nd page in this case.
  2187       //
  2188       // 15 bytes seems to be a (very) safe value for max instruction size.
  2189       bool pc_is_near_addr =
  2190         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2191       bool instr_spans_page_boundary =
  2192         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2193                          (intptr_t) page_size) > 0);
  2195       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2196         static volatile address last_addr =
  2197           (address) os::non_memory_address_word();
  2199         // In conservative mode, don't unguard unless the address is in the VM
  2200         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2201             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2203           // Set memory to RWX and retry
  2204           address page_start =
  2205             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2206           bool res = os::protect_memory((char*) page_start, page_size,
  2207                                         os::MEM_PROT_RWX);
  2209           if (PrintMiscellaneous && Verbose) {
  2210             char buf[256];
  2211             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2212                          "at " INTPTR_FORMAT
  2213                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2214                          page_start, (res ? "success" : strerror(errno)));
  2215             tty->print_raw_cr(buf);
  2218           // Set last_addr so if we fault again at the same address, we don't
  2219           // end up in an endless loop.
  2220           //
  2221           // There are two potential complications here.  Two threads trapping
  2222           // at the same address at the same time could cause one of the
  2223           // threads to think it already unguarded, and abort the VM.  Likely
  2224           // very rare.
  2225           //
  2226           // The other race involves two threads alternately trapping at
  2227           // different addresses and failing to unguard the page, resulting in
  2228           // an endless loop.  This condition is probably even more unlikely
  2229           // than the first.
  2230           //
  2231           // Although both cases could be avoided by using locks or thread
  2232           // local last_addr, these solutions are unnecessary complication:
  2233           // this handler is a best-effort safety net, not a complete solution.
  2234           // It is disabled by default and should only be used as a workaround
  2235           // in case we missed any no-execute-unsafe VM code.
  2237           last_addr = addr;
  2239           return EXCEPTION_CONTINUE_EXECUTION;
  2243       // Last unguard failed or not unguarding
  2244       tty->print_raw_cr("Execution protection violation");
  2245       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2246                    exceptionInfo->ContextRecord);
  2247       return EXCEPTION_CONTINUE_SEARCH;
  2250 #endif // _WIN64
  2252   // Check to see if we caught the safepoint code in the
  2253   // process of write protecting the memory serialization page.
  2254   // It write enables the page immediately after protecting it
  2255   // so just return.
  2256   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2257     JavaThread* thread = (JavaThread*) t;
  2258     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2259     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2260     if ( os::is_memory_serialize_page(thread, addr) ) {
  2261       // Block current thread until the memory serialize page permission restored.
  2262       os::block_on_serialize_page_trap();
  2263       return EXCEPTION_CONTINUE_EXECUTION;
  2268   if (t != NULL && t->is_Java_thread()) {
  2269     JavaThread* thread = (JavaThread*) t;
  2270     bool in_java = thread->thread_state() == _thread_in_Java;
  2272     // Handle potential stack overflows up front.
  2273     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2274       if (os::uses_stack_guard_pages()) {
  2275 #ifdef _M_IA64
  2276         //
  2277         // If it's a legal stack address continue, Windows will map it in.
  2278         //
  2279         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2280         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2281         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2282           return EXCEPTION_CONTINUE_EXECUTION;
  2284         // The register save area is the same size as the memory stack
  2285         // and starts at the page just above the start of the memory stack.
  2286         // If we get a fault in this area, we've run out of register
  2287         // stack.  If we are in java, try throwing a stack overflow exception.
  2288         if (addr > thread->stack_base() &&
  2289                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2290           char buf[256];
  2291           jio_snprintf(buf, sizeof(buf),
  2292                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2293                        addr, thread->stack_base() );
  2294           tty->print_raw_cr(buf);
  2295           // If not in java code, return and hope for the best.
  2296           return in_java ? Handle_Exception(exceptionInfo,
  2297             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2298             :  EXCEPTION_CONTINUE_EXECUTION;
  2300 #endif
  2301         if (thread->stack_yellow_zone_enabled()) {
  2302           // Yellow zone violation.  The o/s has unprotected the first yellow
  2303           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2304           // update the enabled status, even if the zone contains only one page.
  2305           thread->disable_stack_yellow_zone();
  2306           // If not in java code, return and hope for the best.
  2307           return in_java ? Handle_Exception(exceptionInfo,
  2308             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2309             :  EXCEPTION_CONTINUE_EXECUTION;
  2310         } else {
  2311           // Fatal red zone violation.
  2312           thread->disable_stack_red_zone();
  2313           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2314           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2315                        exceptionInfo->ContextRecord);
  2316           return EXCEPTION_CONTINUE_SEARCH;
  2318       } else if (in_java) {
  2319         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2320         // a one-time-only guard page, which it has released to us.  The next
  2321         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2322         return Handle_Exception(exceptionInfo,
  2323           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2324       } else {
  2325         // Can only return and hope for the best.  Further stack growth will
  2326         // result in an ACCESS_VIOLATION.
  2327         return EXCEPTION_CONTINUE_EXECUTION;
  2329     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2330       // Either stack overflow or null pointer exception.
  2331       if (in_java) {
  2332         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2333         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2334         address stack_end = thread->stack_base() - thread->stack_size();
  2335         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2336           // Stack overflow.
  2337           assert(!os::uses_stack_guard_pages(),
  2338             "should be caught by red zone code above.");
  2339           return Handle_Exception(exceptionInfo,
  2340             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2342         //
  2343         // Check for safepoint polling and implicit null
  2344         // We only expect null pointers in the stubs (vtable)
  2345         // the rest are checked explicitly now.
  2346         //
  2347         CodeBlob* cb = CodeCache::find_blob(pc);
  2348         if (cb != NULL) {
  2349           if (os::is_poll_address(addr)) {
  2350             address stub = SharedRuntime::get_poll_stub(pc);
  2351             return Handle_Exception(exceptionInfo, stub);
  2355 #ifdef _WIN64
  2356           //
  2357           // If it's a legal stack address map the entire region in
  2358           //
  2359           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2360           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2361           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2362                   addr = (address)((uintptr_t)addr &
  2363                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2364                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2365                                     false );
  2366                   return EXCEPTION_CONTINUE_EXECUTION;
  2368           else
  2369 #endif
  2371             // Null pointer exception.
  2372 #ifdef _M_IA64
  2373             // We catch register stack overflows in compiled code by doing
  2374             // an explicit compare and executing a st8(G0, G0) if the
  2375             // BSP enters into our guard area.  We test for the overflow
  2376             // condition and fall into the normal null pointer exception
  2377             // code if BSP hasn't overflowed.
  2378             if ( in_java ) {
  2379               if(thread->register_stack_overflow()) {
  2380                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2381                                 thread->register_stack_limit(),
  2382                                "GR7 doesn't contain register_stack_limit");
  2383                 // Disable the yellow zone which sets the state that
  2384                 // we've got a stack overflow problem.
  2385                 if (thread->stack_yellow_zone_enabled()) {
  2386                   thread->disable_stack_yellow_zone();
  2388                 // Give us some room to process the exception
  2389                 thread->disable_register_stack_guard();
  2390                 // Update GR7 with the new limit so we can continue running
  2391                 // compiled code.
  2392                 exceptionInfo->ContextRecord->IntS3 =
  2393                                (ULONGLONG)thread->register_stack_limit();
  2394                 return Handle_Exception(exceptionInfo,
  2395                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2396               } else {
  2397                 //
  2398                 // Check for implicit null
  2399                 // We only expect null pointers in the stubs (vtable)
  2400                 // the rest are checked explicitly now.
  2401                 //
  2402                 if (((uintptr_t)addr) < os::vm_page_size() ) {
  2403                   // an access to the first page of VM--assume it is a null pointer
  2404                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2405                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2408             } // in_java
  2410             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2411             // get here.
  2412             tty->print_raw_cr("Access violation, possible null pointer exception");
  2413             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2414                          exceptionInfo->ContextRecord);
  2415             return EXCEPTION_CONTINUE_SEARCH;
  2416 #else /* !IA64 */
  2418             // Windows 98 reports faulting addresses incorrectly
  2419             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2420                 !os::win32::is_nt()) {
  2421               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2422               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2424             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2425                          exceptionInfo->ContextRecord);
  2426             return EXCEPTION_CONTINUE_SEARCH;
  2427 #endif
  2432 #ifdef _WIN64
  2433       // Special care for fast JNI field accessors.
  2434       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2435       // in and the heap gets shrunk before the field access.
  2436       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2437         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2438         if (addr != (address)-1) {
  2439           return Handle_Exception(exceptionInfo, addr);
  2442 #endif
  2444 #ifdef _WIN64
  2445       // Windows will sometimes generate an access violation
  2446       // when we call malloc.  Since we use VectoredExceptions
  2447       // on 64 bit platforms, we see this exception.  We must
  2448       // pass this exception on so Windows can recover.
  2449       // We check to see if the pc of the fault is in NTDLL.DLL
  2450       // if so, we pass control on to Windows for handling.
  2451       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2452 #endif
  2454       // Stack overflow or null pointer exception in native code.
  2455       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2456                    exceptionInfo->ContextRecord);
  2457       return EXCEPTION_CONTINUE_SEARCH;
  2460     if (in_java) {
  2461       switch (exception_code) {
  2462       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2463         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2465       case EXCEPTION_INT_OVERFLOW:
  2466         return Handle_IDiv_Exception(exceptionInfo);
  2468       } // switch
  2470 #ifndef _WIN64
  2471     if ((thread->thread_state() == _thread_in_Java) ||
  2472         (thread->thread_state() == _thread_in_native) )
  2474       LONG result=Handle_FLT_Exception(exceptionInfo);
  2475       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2477 #endif //_WIN64
  2480   if (exception_code != EXCEPTION_BREAKPOINT) {
  2481 #ifndef _WIN64
  2482     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2483                  exceptionInfo->ContextRecord);
  2484 #else
  2485     // Itanium Windows uses a VectoredExceptionHandler
  2486     // Which means that C++ programatic exception handlers (try/except)
  2487     // will get here.  Continue the search for the right except block if
  2488     // the exception code is not a fatal code.
  2489     switch ( exception_code ) {
  2490       case EXCEPTION_ACCESS_VIOLATION:
  2491       case EXCEPTION_STACK_OVERFLOW:
  2492       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2493       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2494       case EXCEPTION_INT_OVERFLOW:
  2495       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2496       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2497                        exceptionInfo->ContextRecord);
  2499         break;
  2500       default:
  2501         break;
  2503 #endif
  2505   return EXCEPTION_CONTINUE_SEARCH;
  2508 #ifndef _WIN64
  2509 // Special care for fast JNI accessors.
  2510 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2511 // the heap gets shrunk before the field access.
  2512 // Need to install our own structured exception handler since native code may
  2513 // install its own.
  2514 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2515   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2516   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2517     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2518     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2519     if (addr != (address)-1) {
  2520       return Handle_Exception(exceptionInfo, addr);
  2523   return EXCEPTION_CONTINUE_SEARCH;
  2526 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2527 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2528   __try { \
  2529     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2530   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2531   } \
  2532   return 0; \
  2535 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2536 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2537 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2538 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2539 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2540 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2541 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2542 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2544 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2545   switch (type) {
  2546     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2547     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2548     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2549     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2550     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2551     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2552     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2553     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2554     default:        ShouldNotReachHere();
  2556   return (address)-1;
  2558 #endif
  2560 // Virtual Memory
  2562 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2563 int os::vm_allocation_granularity() {
  2564   return os::win32::vm_allocation_granularity();
  2567 // Windows large page support is available on Windows 2003. In order to use
  2568 // large page memory, the administrator must first assign additional privilege
  2569 // to the user:
  2570 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2571 //   + select Local Policies -> User Rights Assignment
  2572 //   + double click "Lock pages in memory", add users and/or groups
  2573 //   + reboot
  2574 // Note the above steps are needed for administrator as well, as administrators
  2575 // by default do not have the privilege to lock pages in memory.
  2576 //
  2577 // Note about Windows 2003: although the API supports committing large page
  2578 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2579 // scenario, I found through experiment it only uses large page if the entire
  2580 // memory region is reserved and committed in a single VirtualAlloc() call.
  2581 // This makes Windows large page support more or less like Solaris ISM, in
  2582 // that the entire heap must be committed upfront. This probably will change
  2583 // in the future, if so the code below needs to be revisited.
  2585 #ifndef MEM_LARGE_PAGES
  2586 #define MEM_LARGE_PAGES 0x20000000
  2587 #endif
  2589 // GetLargePageMinimum is only available on Windows 2003. The other functions
  2590 // are available on NT but not on Windows 98/Me. We have to resolve them at
  2591 // runtime.
  2592 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
  2593 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
  2594              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  2595 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
  2596 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
  2598 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
  2599 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
  2600 static OpenProcessToken_func_type      _OpenProcessToken;
  2601 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
  2603 static HINSTANCE _kernel32;
  2604 static HINSTANCE _advapi32;
  2605 static HANDLE    _hProcess;
  2606 static HANDLE    _hToken;
  2608 static size_t _large_page_size = 0;
  2610 static bool resolve_functions_for_large_page_init() {
  2611   _kernel32 = LoadLibrary("kernel32.dll");
  2612   if (_kernel32 == NULL) return false;
  2614   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
  2615                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
  2616   if (_GetLargePageMinimum == NULL) return false;
  2618   _advapi32 = LoadLibrary("advapi32.dll");
  2619   if (_advapi32 == NULL) return false;
  2621   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
  2622                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
  2623   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
  2624                             GetProcAddress(_advapi32, "OpenProcessToken"));
  2625   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
  2626                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
  2627   return _AdjustTokenPrivileges != NULL &&
  2628          _OpenProcessToken      != NULL &&
  2629          _LookupPrivilegeValue  != NULL;
  2632 static bool request_lock_memory_privilege() {
  2633   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2634                                 os::current_process_id());
  2636   LUID luid;
  2637   if (_hProcess != NULL &&
  2638       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2639       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2641     TOKEN_PRIVILEGES tp;
  2642     tp.PrivilegeCount = 1;
  2643     tp.Privileges[0].Luid = luid;
  2644     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2646     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2647     // privilege. Check GetLastError() too. See MSDN document.
  2648     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2649         (GetLastError() == ERROR_SUCCESS)) {
  2650       return true;
  2654   return false;
  2657 static void cleanup_after_large_page_init() {
  2658   _GetLargePageMinimum = NULL;
  2659   _AdjustTokenPrivileges = NULL;
  2660   _OpenProcessToken = NULL;
  2661   _LookupPrivilegeValue = NULL;
  2662   if (_kernel32) FreeLibrary(_kernel32);
  2663   _kernel32 = NULL;
  2664   if (_advapi32) FreeLibrary(_advapi32);
  2665   _advapi32 = NULL;
  2666   if (_hProcess) CloseHandle(_hProcess);
  2667   _hProcess = NULL;
  2668   if (_hToken) CloseHandle(_hToken);
  2669   _hToken = NULL;
  2672 bool os::large_page_init() {
  2673   if (!UseLargePages) return false;
  2675   // print a warning if any large page related flag is specified on command line
  2676   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2677                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2678   bool success = false;
  2680 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2681   if (resolve_functions_for_large_page_init()) {
  2682     if (request_lock_memory_privilege()) {
  2683       size_t s = _GetLargePageMinimum();
  2684       if (s) {
  2685 #if defined(IA32) || defined(AMD64)
  2686         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2687           WARN("JVM cannot use large pages bigger than 4mb.");
  2688         } else {
  2689 #endif
  2690           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2691             _large_page_size = LargePageSizeInBytes;
  2692           } else {
  2693             _large_page_size = s;
  2695           success = true;
  2696 #if defined(IA32) || defined(AMD64)
  2698 #endif
  2699       } else {
  2700         WARN("Large page is not supported by the processor.");
  2702     } else {
  2703       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2705   } else {
  2706     WARN("Large page is not supported by the operating system.");
  2708 #undef WARN
  2710   const size_t default_page_size = (size_t) vm_page_size();
  2711   if (success && _large_page_size > default_page_size) {
  2712     _page_sizes[0] = _large_page_size;
  2713     _page_sizes[1] = default_page_size;
  2714     _page_sizes[2] = 0;
  2717   cleanup_after_large_page_init();
  2718   return success;
  2721 // On win32, one cannot release just a part of reserved memory, it's an
  2722 // all or nothing deal.  When we split a reservation, we must break the
  2723 // reservation into two reservations.
  2724 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2725                               bool realloc) {
  2726   if (size > 0) {
  2727     release_memory(base, size);
  2728     if (realloc) {
  2729       reserve_memory(split, base);
  2731     if (size != split) {
  2732       reserve_memory(size - split, base + split);
  2737 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2738   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2739          "reserve alignment");
  2740   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2741   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  2742   assert(res == NULL || addr == NULL || addr == res,
  2743          "Unexpected address from reserve.");
  2744   return res;
  2747 // Reserve memory at an arbitrary address, only if that area is
  2748 // available (and not reserved for something else).
  2749 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2750   // Windows os::reserve_memory() fails of the requested address range is
  2751   // not avilable.
  2752   return reserve_memory(bytes, requested_addr);
  2755 size_t os::large_page_size() {
  2756   return _large_page_size;
  2759 bool os::can_commit_large_page_memory() {
  2760   // Windows only uses large page memory when the entire region is reserved
  2761   // and committed in a single VirtualAlloc() call. This may change in the
  2762   // future, but with Windows 2003 it's not possible to commit on demand.
  2763   return false;
  2766 bool os::can_execute_large_page_memory() {
  2767   return true;
  2770 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  2772   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  2774   if (UseLargePagesIndividualAllocation) {
  2775     if (TracePageSizes && Verbose) {
  2776        tty->print_cr("Reserving large pages individually.");
  2778     char * p_buf;
  2779     // first reserve enough address space in advance since we want to be
  2780     // able to break a single contiguous virtual address range into multiple
  2781     // large page commits but WS2003 does not allow reserving large page space
  2782     // so we just use 4K pages for reserve, this gives us a legal contiguous
  2783     // address space. then we will deallocate that reservation, and re alloc
  2784     // using large pages
  2785     const size_t size_of_reserve = bytes + _large_page_size;
  2786     if (bytes > size_of_reserve) {
  2787       // Overflowed.
  2788       warning("Individually allocated large pages failed, "
  2789         "use -XX:-UseLargePagesIndividualAllocation to turn off");
  2790       return NULL;
  2792     p_buf = (char *) VirtualAlloc(addr,
  2793                                  size_of_reserve,  // size of Reserve
  2794                                  MEM_RESERVE,
  2795                                  PAGE_READWRITE);
  2796     // If reservation failed, return NULL
  2797     if (p_buf == NULL) return NULL;
  2799     release_memory(p_buf, bytes + _large_page_size);
  2800     // round up to page boundary.  If the size_of_reserve did not
  2801     // overflow and the reservation did not fail, this align up
  2802     // should not overflow.
  2803     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
  2805     // now go through and allocate one page at a time until all bytes are
  2806     // allocated
  2807     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
  2808     // An overflow of align_size_up() would have been caught above
  2809     // in the calculation of size_of_reserve.
  2810     char * next_alloc_addr = p_buf;
  2812 #ifdef ASSERT
  2813     // Variable for the failure injection
  2814     long ran_num = os::random();
  2815     size_t fail_after = ran_num % bytes;
  2816 #endif
  2818     while (bytes_remaining) {
  2819       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
  2820       // Note allocate and commit
  2821       char * p_new;
  2823 #ifdef ASSERT
  2824       bool inject_error = LargePagesIndividualAllocationInjectError &&
  2825           (bytes_remaining <= fail_after);
  2826 #else
  2827       const bool inject_error = false;
  2828 #endif
  2830       if (inject_error) {
  2831         p_new = NULL;
  2832       } else {
  2833         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2834                                     bytes_to_rq,
  2835                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
  2836                                     prot);
  2839       if (p_new == NULL) {
  2840         // Free any allocated pages
  2841         if (next_alloc_addr > p_buf) {
  2842           // Some memory was committed so release it.
  2843           size_t bytes_to_release = bytes - bytes_remaining;
  2844           release_memory(p_buf, bytes_to_release);
  2846 #ifdef ASSERT
  2847         if (UseLargePagesIndividualAllocation &&
  2848             LargePagesIndividualAllocationInjectError) {
  2849           if (TracePageSizes && Verbose) {
  2850              tty->print_cr("Reserving large pages individually failed.");
  2853 #endif
  2854         return NULL;
  2856       bytes_remaining -= bytes_to_rq;
  2857       next_alloc_addr += bytes_to_rq;
  2860     return p_buf;
  2862   } else {
  2863     // normal policy just allocate it all at once
  2864     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2865     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  2866     return res;
  2870 bool os::release_memory_special(char* base, size_t bytes) {
  2871   return release_memory(base, bytes);
  2874 void os::print_statistics() {
  2877 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2878   if (bytes == 0) {
  2879     // Don't bother the OS with noops.
  2880     return true;
  2882   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  2883   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  2884   // Don't attempt to print anything if the OS call fails. We're
  2885   // probably low on resources, so the print itself may cause crashes.
  2886   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
  2887   if (result != NULL && exec) {
  2888     DWORD oldprot;
  2889     // Windows doc says to use VirtualProtect to get execute permissions
  2890     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
  2891   } else {
  2892     return result;
  2896 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2897                        bool exec) {
  2898   return commit_memory(addr, size, exec);
  2901 bool os::uncommit_memory(char* addr, size_t bytes) {
  2902   if (bytes == 0) {
  2903     // Don't bother the OS with noops.
  2904     return true;
  2906   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  2907   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  2908   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  2911 bool os::release_memory(char* addr, size_t bytes) {
  2912   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  2915 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2916   return os::commit_memory(addr, size);
  2919 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2920   return os::uncommit_memory(addr, size);
  2923 // Set protections specified
  2924 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2925                         bool is_committed) {
  2926   unsigned int p = 0;
  2927   switch (prot) {
  2928   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  2929   case MEM_PROT_READ: p = PAGE_READONLY; break;
  2930   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  2931   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  2932   default:
  2933     ShouldNotReachHere();
  2936   DWORD old_status;
  2938   // Strange enough, but on Win32 one can change protection only for committed
  2939   // memory, not a big deal anyway, as bytes less or equal than 64K
  2940   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
  2941     fatal("cannot commit protection page");
  2943   // One cannot use os::guard_memory() here, as on Win32 guard page
  2944   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  2945   //
  2946   // Pages in the region become guard pages. Any attempt to access a guard page
  2947   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  2948   // the guard page status. Guard pages thus act as a one-time access alarm.
  2949   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  2952 bool os::guard_memory(char* addr, size_t bytes) {
  2953   DWORD old_status;
  2954   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  2957 bool os::unguard_memory(char* addr, size_t bytes) {
  2958   DWORD old_status;
  2959   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  2962 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2963 void os::free_memory(char *addr, size_t bytes)         { }
  2964 void os::numa_make_global(char *addr, size_t bytes)    { }
  2965 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  2966 bool os::numa_topology_changed()                       { return false; }
  2967 size_t os::numa_get_groups_num()                       { return 1; }
  2968 int os::numa_get_group_id()                            { return 0; }
  2969 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2970   if (size > 0) {
  2971     ids[0] = 0;
  2972     return 1;
  2974   return 0;
  2977 bool os::get_page_info(char *start, page_info* info) {
  2978   return false;
  2981 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2982   return end;
  2985 char* os::non_memory_address_word() {
  2986   // Must never look like an address returned by reserve_memory,
  2987   // even in its subfields (as defined by the CPU immediate fields,
  2988   // if the CPU splits constants across multiple instructions).
  2989   return (char*)-1;
  2992 #define MAX_ERROR_COUNT 100
  2993 #define SYS_THREAD_ERROR 0xffffffffUL
  2995 void os::pd_start_thread(Thread* thread) {
  2996   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  2997   // Returns previous suspend state:
  2998   // 0:  Thread was not suspended
  2999   // 1:  Thread is running now
  3000   // >1: Thread is still suspended.
  3001   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3004 class HighResolutionInterval {
  3005   // The default timer resolution seems to be 10 milliseconds.
  3006   // (Where is this written down?)
  3007   // If someone wants to sleep for only a fraction of the default,
  3008   // then we set the timer resolution down to 1 millisecond for
  3009   // the duration of their interval.
  3010   // We carefully set the resolution back, since otherwise we
  3011   // seem to incur an overhead (3%?) that we don't need.
  3012   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3013   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3014   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3015   // timeBeginPeriod() if the relative error exceeded some threshold.
  3016   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3017   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3018   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3019   // resolution timers running.
  3020 private:
  3021     jlong resolution;
  3022 public:
  3023   HighResolutionInterval(jlong ms) {
  3024     resolution = ms % 10L;
  3025     if (resolution != 0) {
  3026       MMRESULT result = timeBeginPeriod(1L);
  3029   ~HighResolutionInterval() {
  3030     if (resolution != 0) {
  3031       MMRESULT result = timeEndPeriod(1L);
  3033     resolution = 0L;
  3035 };
  3037 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3038   jlong limit = (jlong) MAXDWORD;
  3040   while(ms > limit) {
  3041     int res;
  3042     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3043       return res;
  3044     ms -= limit;
  3047   assert(thread == Thread::current(),  "thread consistency check");
  3048   OSThread* osthread = thread->osthread();
  3049   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3050   int result;
  3051   if (interruptable) {
  3052     assert(thread->is_Java_thread(), "must be java thread");
  3053     JavaThread *jt = (JavaThread *) thread;
  3054     ThreadBlockInVM tbivm(jt);
  3056     jt->set_suspend_equivalent();
  3057     // cleared by handle_special_suspend_equivalent_condition() or
  3058     // java_suspend_self() via check_and_wait_while_suspended()
  3060     HANDLE events[1];
  3061     events[0] = osthread->interrupt_event();
  3062     HighResolutionInterval *phri=NULL;
  3063     if(!ForceTimeHighResolution)
  3064       phri = new HighResolutionInterval( ms );
  3065     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3066       result = OS_TIMEOUT;
  3067     } else {
  3068       ResetEvent(osthread->interrupt_event());
  3069       osthread->set_interrupted(false);
  3070       result = OS_INTRPT;
  3072     delete phri; //if it is NULL, harmless
  3074     // were we externally suspended while we were waiting?
  3075     jt->check_and_wait_while_suspended();
  3076   } else {
  3077     assert(!thread->is_Java_thread(), "must not be java thread");
  3078     Sleep((long) ms);
  3079     result = OS_TIMEOUT;
  3081   return result;
  3084 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3085 void os::infinite_sleep() {
  3086   while (true) {    // sleep forever ...
  3087     Sleep(100000);  // ... 100 seconds at a time
  3091 typedef BOOL (WINAPI * STTSignature)(void) ;
  3093 os::YieldResult os::NakedYield() {
  3094   // Use either SwitchToThread() or Sleep(0)
  3095   // Consider passing back the return value from SwitchToThread().
  3096   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
  3097   // In that case we revert to Sleep(0).
  3098   static volatile STTSignature stt = (STTSignature) 1 ;
  3100   if (stt == ((STTSignature) 1)) {
  3101     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
  3102     // It's OK if threads race during initialization as the operation above is idempotent.
  3104   if (stt != NULL) {
  3105     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3106   } else {
  3107     Sleep (0) ;
  3109   return os::YIELD_UNKNOWN ;
  3112 void os::yield() {  os::NakedYield(); }
  3114 void os::yield_all(int attempts) {
  3115   // Yields to all threads, including threads with lower priorities
  3116   Sleep(1);
  3119 // Win32 only gives you access to seven real priorities at a time,
  3120 // so we compress Java's ten down to seven.  It would be better
  3121 // if we dynamically adjusted relative priorities.
  3123 int os::java_to_os_priority[MaxPriority + 1] = {
  3124   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3125   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3126   THREAD_PRIORITY_LOWEST,                       // 2
  3127   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3128   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3129   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3130   THREAD_PRIORITY_NORMAL,                       // 6
  3131   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3132   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3133   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3134   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
  3135 };
  3137 int prio_policy1[MaxPriority + 1] = {
  3138   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3139   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3140   THREAD_PRIORITY_LOWEST,                       // 2
  3141   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3142   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3143   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3144   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3145   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3146   THREAD_PRIORITY_HIGHEST,                      // 8
  3147   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3148   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
  3149 };
  3151 static int prio_init() {
  3152   // If ThreadPriorityPolicy is 1, switch tables
  3153   if (ThreadPriorityPolicy == 1) {
  3154     int i;
  3155     for (i = 0; i < MaxPriority + 1; i++) {
  3156       os::java_to_os_priority[i] = prio_policy1[i];
  3159   return 0;
  3162 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3163   if (!UseThreadPriorities) return OS_OK;
  3164   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3165   return ret ? OS_OK : OS_ERR;
  3168 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3169   if ( !UseThreadPriorities ) {
  3170     *priority_ptr = java_to_os_priority[NormPriority];
  3171     return OS_OK;
  3173   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3174   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3175     assert(false, "GetThreadPriority failed");
  3176     return OS_ERR;
  3178   *priority_ptr = os_prio;
  3179   return OS_OK;
  3183 // Hint to the underlying OS that a task switch would not be good.
  3184 // Void return because it's a hint and can fail.
  3185 void os::hint_no_preempt() {}
  3187 void os::interrupt(Thread* thread) {
  3188   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3189          "possibility of dangling Thread pointer");
  3191   OSThread* osthread = thread->osthread();
  3192   osthread->set_interrupted(true);
  3193   // More than one thread can get here with the same value of osthread,
  3194   // resulting in multiple notifications.  We do, however, want the store
  3195   // to interrupted() to be visible to other threads before we post
  3196   // the interrupt event.
  3197   OrderAccess::release();
  3198   SetEvent(osthread->interrupt_event());
  3199   // For JSR166:  unpark after setting status
  3200   if (thread->is_Java_thread())
  3201     ((JavaThread*)thread)->parker()->unpark();
  3203   ParkEvent * ev = thread->_ParkEvent ;
  3204   if (ev != NULL) ev->unpark() ;
  3209 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3210   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3211          "possibility of dangling Thread pointer");
  3213   OSThread* osthread = thread->osthread();
  3214   bool interrupted;
  3215   interrupted = osthread->interrupted();
  3216   if (clear_interrupted == true) {
  3217     osthread->set_interrupted(false);
  3218     ResetEvent(osthread->interrupt_event());
  3219   } // Otherwise leave the interrupted state alone
  3221   return interrupted;
  3224 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3225 ExtendedPC os::get_thread_pc(Thread* thread) {
  3226   CONTEXT context;
  3227   context.ContextFlags = CONTEXT_CONTROL;
  3228   HANDLE handle = thread->osthread()->thread_handle();
  3229 #ifdef _M_IA64
  3230   assert(0, "Fix get_thread_pc");
  3231   return ExtendedPC(NULL);
  3232 #else
  3233   if (GetThreadContext(handle, &context)) {
  3234 #ifdef _M_AMD64
  3235     return ExtendedPC((address) context.Rip);
  3236 #else
  3237     return ExtendedPC((address) context.Eip);
  3238 #endif
  3239   } else {
  3240     return ExtendedPC(NULL);
  3242 #endif
  3245 // GetCurrentThreadId() returns DWORD
  3246 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3248 static int _initial_pid = 0;
  3250 int os::current_process_id()
  3252   return (_initial_pid ? _initial_pid : _getpid());
  3255 int    os::win32::_vm_page_size       = 0;
  3256 int    os::win32::_vm_allocation_granularity = 0;
  3257 int    os::win32::_processor_type     = 0;
  3258 // Processor level is not available on non-NT systems, use vm_version instead
  3259 int    os::win32::_processor_level    = 0;
  3260 julong os::win32::_physical_memory    = 0;
  3261 size_t os::win32::_default_stack_size = 0;
  3263          intx os::win32::_os_thread_limit    = 0;
  3264 volatile intx os::win32::_os_thread_count    = 0;
  3266 bool   os::win32::_is_nt              = false;
  3267 bool   os::win32::_is_windows_2003    = false;
  3270 void os::win32::initialize_system_info() {
  3271   SYSTEM_INFO si;
  3272   GetSystemInfo(&si);
  3273   _vm_page_size    = si.dwPageSize;
  3274   _vm_allocation_granularity = si.dwAllocationGranularity;
  3275   _processor_type  = si.dwProcessorType;
  3276   _processor_level = si.wProcessorLevel;
  3277   set_processor_count(si.dwNumberOfProcessors);
  3279   MEMORYSTATUSEX ms;
  3280   ms.dwLength = sizeof(ms);
  3282   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3283   // dwMemoryLoad (% of memory in use)
  3284   GlobalMemoryStatusEx(&ms);
  3285   _physical_memory = ms.ullTotalPhys;
  3287   OSVERSIONINFO oi;
  3288   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
  3289   GetVersionEx(&oi);
  3290   switch(oi.dwPlatformId) {
  3291     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3292     case VER_PLATFORM_WIN32_NT:
  3293       _is_nt = true;
  3295         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3296         if (os_vers == 5002) {
  3297           _is_windows_2003 = true;
  3300       break;
  3301     default: fatal("Unknown platform");
  3304   _default_stack_size = os::current_stack_size();
  3305   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3306   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3307     "stack size not a multiple of page size");
  3309   initialize_performance_counter();
  3311   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3312   // known to deadlock the system, if the VM issues to thread operations with
  3313   // a too high frequency, e.g., such as changing the priorities.
  3314   // The 6000 seems to work well - no deadlocks has been notices on the test
  3315   // programs that we have seen experience this problem.
  3316   if (!os::win32::is_nt()) {
  3317     StarvationMonitorInterval = 6000;
  3322 void os::win32::setmode_streams() {
  3323   _setmode(_fileno(stdin), _O_BINARY);
  3324   _setmode(_fileno(stdout), _O_BINARY);
  3325   _setmode(_fileno(stderr), _O_BINARY);
  3329 int os::message_box(const char* title, const char* message) {
  3330   int result = MessageBox(NULL, message, title,
  3331                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3332   return result == IDYES;
  3335 int os::allocate_thread_local_storage() {
  3336   return TlsAlloc();
  3340 void os::free_thread_local_storage(int index) {
  3341   TlsFree(index);
  3345 void os::thread_local_storage_at_put(int index, void* value) {
  3346   TlsSetValue(index, value);
  3347   assert(thread_local_storage_at(index) == value, "Just checking");
  3351 void* os::thread_local_storage_at(int index) {
  3352   return TlsGetValue(index);
  3356 #ifndef PRODUCT
  3357 #ifndef _WIN64
  3358 // Helpers to check whether NX protection is enabled
  3359 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3360   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3361       pex->ExceptionRecord->NumberParameters > 0 &&
  3362       pex->ExceptionRecord->ExceptionInformation[0] ==
  3363       EXCEPTION_INFO_EXEC_VIOLATION) {
  3364     return EXCEPTION_EXECUTE_HANDLER;
  3366   return EXCEPTION_CONTINUE_SEARCH;
  3369 void nx_check_protection() {
  3370   // If NX is enabled we'll get an exception calling into code on the stack
  3371   char code[] = { (char)0xC3 }; // ret
  3372   void *code_ptr = (void *)code;
  3373   __try {
  3374     __asm call code_ptr
  3375   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3376     tty->print_raw_cr("NX protection detected.");
  3379 #endif // _WIN64
  3380 #endif // PRODUCT
  3382 // this is called _before_ the global arguments have been parsed
  3383 void os::init(void) {
  3384   _initial_pid = _getpid();
  3386   init_random(1234567);
  3388   win32::initialize_system_info();
  3389   win32::setmode_streams();
  3390   init_page_sizes((size_t) win32::vm_page_size());
  3392   // For better scalability on MP systems (must be called after initialize_system_info)
  3393 #ifndef PRODUCT
  3394   if (is_MP()) {
  3395     NoYieldsInMicrolock = true;
  3397 #endif
  3398   // This may be overridden later when argument processing is done.
  3399   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3400     os::win32::is_windows_2003());
  3402   // Initialize main_process and main_thread
  3403   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3404  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3405                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3406     fatal("DuplicateHandle failed\n");
  3408   main_thread_id = (int) GetCurrentThreadId();
  3411 // To install functions for atexit processing
  3412 extern "C" {
  3413   static void perfMemory_exit_helper() {
  3414     perfMemory_exit();
  3418 // this is called _after_ the global arguments have been parsed
  3419 jint os::init_2(void) {
  3420   // Allocate a single page and mark it as readable for safepoint polling
  3421   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3422   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3424   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3425   guarantee( return_page != NULL, "Commit Failed for polling page");
  3427   os::set_polling_page( polling_page );
  3429 #ifndef PRODUCT
  3430   if( Verbose && PrintMiscellaneous )
  3431     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3432 #endif
  3434   if (!UseMembar) {
  3435     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3436     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3438     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3439     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3441     os::set_memory_serialize_page( mem_serialize_page );
  3443 #ifndef PRODUCT
  3444     if(Verbose && PrintMiscellaneous)
  3445       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3446 #endif
  3449   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3451   // Setup Windows Exceptions
  3453   // On Itanium systems, Structured Exception Handling does not
  3454   // work since stack frames must be walkable by the OS.  Since
  3455   // much of our code is dynamically generated, and we do not have
  3456   // proper unwind .xdata sections, the system simply exits
  3457   // rather than delivering the exception.  To work around
  3458   // this we use VectorExceptions instead.
  3459 #ifdef _WIN64
  3460   if (UseVectoredExceptions) {
  3461     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3463 #endif
  3465   // for debugging float code generation bugs
  3466   if (ForceFloatExceptions) {
  3467 #ifndef  _WIN64
  3468     static long fp_control_word = 0;
  3469     __asm { fstcw fp_control_word }
  3470     // see Intel PPro Manual, Vol. 2, p 7-16
  3471     const long precision = 0x20;
  3472     const long underflow = 0x10;
  3473     const long overflow  = 0x08;
  3474     const long zero_div  = 0x04;
  3475     const long denorm    = 0x02;
  3476     const long invalid   = 0x01;
  3477     fp_control_word |= invalid;
  3478     __asm { fldcw fp_control_word }
  3479 #endif
  3482   // If stack_commit_size is 0, windows will reserve the default size,
  3483   // but only commit a small portion of it.
  3484   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3485   size_t default_reserve_size = os::win32::default_stack_size();
  3486   size_t actual_reserve_size = stack_commit_size;
  3487   if (stack_commit_size < default_reserve_size) {
  3488     // If stack_commit_size == 0, we want this too
  3489     actual_reserve_size = default_reserve_size;
  3492   // Check minimum allowable stack size for thread creation and to initialize
  3493   // the java system classes, including StackOverflowError - depends on page
  3494   // size.  Add a page for compiler2 recursion in main thread.
  3495   // Add in 2*BytesPerWord times page size to account for VM stack during
  3496   // class initialization depending on 32 or 64 bit VM.
  3497   size_t min_stack_allowed =
  3498             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3499             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  3500   if (actual_reserve_size < min_stack_allowed) {
  3501     tty->print_cr("\nThe stack size specified is too small, "
  3502                   "Specify at least %dk",
  3503                   min_stack_allowed / K);
  3504     return JNI_ERR;
  3507   JavaThread::set_stack_size_at_create(stack_commit_size);
  3509   // Calculate theoretical max. size of Threads to guard gainst artifical
  3510   // out-of-memory situations, where all available address-space has been
  3511   // reserved by thread stacks.
  3512   assert(actual_reserve_size != 0, "Must have a stack");
  3514   // Calculate the thread limit when we should start doing Virtual Memory
  3515   // banging. Currently when the threads will have used all but 200Mb of space.
  3516   //
  3517   // TODO: consider performing a similar calculation for commit size instead
  3518   // as reserve size, since on a 64-bit platform we'll run into that more
  3519   // often than running out of virtual memory space.  We can use the
  3520   // lower value of the two calculations as the os_thread_limit.
  3521   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3522   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3524   // at exit methods are called in the reverse order of their registration.
  3525   // there is no limit to the number of functions registered. atexit does
  3526   // not set errno.
  3528   if (PerfAllowAtExitRegistration) {
  3529     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3530     // atexit functions can be delayed until process exit time, which
  3531     // can be problematic for embedded VM situations. Embedded VMs should
  3532     // call DestroyJavaVM() to assure that VM resources are released.
  3534     // note: perfMemory_exit_helper atexit function may be removed in
  3535     // the future if the appropriate cleanup code can be added to the
  3536     // VM_Exit VMOperation's doit method.
  3537     if (atexit(perfMemory_exit_helper) != 0) {
  3538       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3542   // initialize PSAPI or ToolHelp for fatal error handler
  3543   if (win32::is_nt()) _init_psapi();
  3544   else _init_toolhelp();
  3546 #ifndef _WIN64
  3547   // Print something if NX is enabled (win32 on AMD64)
  3548   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3549 #endif
  3551   // initialize thread priority policy
  3552   prio_init();
  3554   if (UseNUMA && !ForceNUMA) {
  3555     UseNUMA = false; // Currently unsupported.
  3558   return JNI_OK;
  3561 void os::init_3(void) {
  3562   return;
  3565 // Mark the polling page as unreadable
  3566 void os::make_polling_page_unreadable(void) {
  3567   DWORD old_status;
  3568   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3569     fatal("Could not disable polling page");
  3570 };
  3572 // Mark the polling page as readable
  3573 void os::make_polling_page_readable(void) {
  3574   DWORD old_status;
  3575   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3576     fatal("Could not enable polling page");
  3577 };
  3580 int os::stat(const char *path, struct stat *sbuf) {
  3581   char pathbuf[MAX_PATH];
  3582   if (strlen(path) > MAX_PATH - 1) {
  3583     errno = ENAMETOOLONG;
  3584     return -1;
  3586   os::native_path(strcpy(pathbuf, path));
  3587   int ret = ::stat(pathbuf, sbuf);
  3588   if (sbuf != NULL && UseUTCFileTimestamp) {
  3589     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3590     // the system timezone and so can return different values for the
  3591     // same file if/when daylight savings time changes.  This adjustment
  3592     // makes sure the same timestamp is returned regardless of the TZ.
  3593     //
  3594     // See:
  3595     // http://msdn.microsoft.com/library/
  3596     //   default.asp?url=/library/en-us/sysinfo/base/
  3597     //   time_zone_information_str.asp
  3598     // and
  3599     // http://msdn.microsoft.com/library/default.asp?url=
  3600     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3601     //
  3602     // NOTE: there is a insidious bug here:  If the timezone is changed
  3603     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3604     // the adjustment we do here will be wrong and we'll return the wrong
  3605     // value (which will likely end up creating an invalid class data
  3606     // archive).  Absent a better API for this, or some time zone locking
  3607     // mechanism, we'll have to live with this risk.
  3608     TIME_ZONE_INFORMATION tz;
  3609     DWORD tzid = GetTimeZoneInformation(&tz);
  3610     int daylightBias =
  3611       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3612     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3614   return ret;
  3618 #define FT2INT64(ft) \
  3619   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3622 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3623 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3624 // of a thread.
  3625 //
  3626 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3627 // the fast estimate available on the platform.
  3629 // current_thread_cpu_time() is not optimized for Windows yet
  3630 jlong os::current_thread_cpu_time() {
  3631   // return user + sys since the cost is the same
  3632   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3635 jlong os::thread_cpu_time(Thread* thread) {
  3636   // consistent with what current_thread_cpu_time() returns.
  3637   return os::thread_cpu_time(thread, true /* user+sys */);
  3640 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3641   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3644 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3645   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3646   // If this function changes, os::is_thread_cpu_time_supported() should too
  3647   if (os::win32::is_nt()) {
  3648     FILETIME CreationTime;
  3649     FILETIME ExitTime;
  3650     FILETIME KernelTime;
  3651     FILETIME UserTime;
  3653     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3654                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3655       return -1;
  3656     else
  3657       if (user_sys_cpu_time) {
  3658         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3659       } else {
  3660         return FT2INT64(UserTime) * 100;
  3662   } else {
  3663     return (jlong) timeGetTime() * 1000000;
  3667 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3668   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3669   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3670   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3671   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3674 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3675   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3676   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3677   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3678   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3681 bool os::is_thread_cpu_time_supported() {
  3682   // see os::thread_cpu_time
  3683   if (os::win32::is_nt()) {
  3684     FILETIME CreationTime;
  3685     FILETIME ExitTime;
  3686     FILETIME KernelTime;
  3687     FILETIME UserTime;
  3689     if ( GetThreadTimes(GetCurrentThread(),
  3690                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3691       return false;
  3692     else
  3693       return true;
  3694   } else {
  3695     return false;
  3699 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3700 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3701 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3702 // If we wanted to implement loadavg on Windows, we have a few options:
  3703 //
  3704 // a) Query CPU usage and run queue length and "fake" an answer by
  3705 //    returning the CPU usage if it's under 100%, and the run queue
  3706 //    length otherwise.  It turns out that querying is pretty slow
  3707 //    on Windows, on the order of 200 microseconds on a fast machine.
  3708 //    Note that on the Windows the CPU usage value is the % usage
  3709 //    since the last time the API was called (and the first call
  3710 //    returns 100%), so we'd have to deal with that as well.
  3711 //
  3712 // b) Sample the "fake" answer using a sampling thread and store
  3713 //    the answer in a global variable.  The call to loadavg would
  3714 //    just return the value of the global, avoiding the slow query.
  3715 //
  3716 // c) Sample a better answer using exponential decay to smooth the
  3717 //    value.  This is basically the algorithm used by UNIX kernels.
  3718 //
  3719 // Note that sampling thread starvation could affect both (b) and (c).
  3720 int os::loadavg(double loadavg[], int nelem) {
  3721   return -1;
  3725 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3726 bool os::dont_yield() {
  3727   return DontYieldALot;
  3730 // This method is a slightly reworked copy of JDK's sysOpen
  3731 // from src/windows/hpi/src/sys_api_md.c
  3733 int os::open(const char *path, int oflag, int mode) {
  3734   char pathbuf[MAX_PATH];
  3736   if (strlen(path) > MAX_PATH - 1) {
  3737     errno = ENAMETOOLONG;
  3738           return -1;
  3740   os::native_path(strcpy(pathbuf, path));
  3741   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  3744 // Is a (classpath) directory empty?
  3745 bool os::dir_is_empty(const char* path) {
  3746   WIN32_FIND_DATA fd;
  3747   HANDLE f = FindFirstFile(path, &fd);
  3748   if (f == INVALID_HANDLE_VALUE) {
  3749     return true;
  3751   FindClose(f);
  3752   return false;
  3755 // create binary file, rewriting existing file if required
  3756 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3757   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3758   if (!rewrite_existing) {
  3759     oflags |= _O_EXCL;
  3761   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  3764 // return current position of file pointer
  3765 jlong os::current_file_offset(int fd) {
  3766   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  3769 // move file pointer to the specified offset
  3770 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3771   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  3775 jlong os::lseek(int fd, jlong offset, int whence) {
  3776   return (jlong) ::_lseeki64(fd, offset, whence);
  3779 // This method is a slightly reworked copy of JDK's sysNativePath
  3780 // from src/windows/hpi/src/path_md.c
  3782 /* Convert a pathname to native format.  On win32, this involves forcing all
  3783    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  3784    sometimes rejects '/') and removing redundant separators.  The input path is
  3785    assumed to have been converted into the character encoding used by the local
  3786    system.  Because this might be a double-byte encoding, care is taken to
  3787    treat double-byte lead characters correctly.
  3789    This procedure modifies the given path in place, as the result is never
  3790    longer than the original.  There is no error return; this operation always
  3791    succeeds. */
  3792 char * os::native_path(char *path) {
  3793   char *src = path, *dst = path, *end = path;
  3794   char *colon = NULL;           /* If a drive specifier is found, this will
  3795                                         point to the colon following the drive
  3796                                         letter */
  3798   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  3799   assert(((!::IsDBCSLeadByte('/'))
  3800     && (!::IsDBCSLeadByte('\\'))
  3801     && (!::IsDBCSLeadByte(':'))),
  3802     "Illegal lead byte");
  3804   /* Check for leading separators */
  3805 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  3806   while (isfilesep(*src)) {
  3807     src++;
  3810   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  3811     /* Remove leading separators if followed by drive specifier.  This
  3812       hack is necessary to support file URLs containing drive
  3813       specifiers (e.g., "file://c:/path").  As a side effect,
  3814       "/c:/path" can be used as an alternative to "c:/path". */
  3815     *dst++ = *src++;
  3816     colon = dst;
  3817     *dst++ = ':';
  3818     src++;
  3819   } else {
  3820     src = path;
  3821     if (isfilesep(src[0]) && isfilesep(src[1])) {
  3822       /* UNC pathname: Retain first separator; leave src pointed at
  3823          second separator so that further separators will be collapsed
  3824          into the second separator.  The result will be a pathname
  3825          beginning with "\\\\" followed (most likely) by a host name. */
  3826       src = dst = path + 1;
  3827       path[0] = '\\';     /* Force first separator to '\\' */
  3831   end = dst;
  3833   /* Remove redundant separators from remainder of path, forcing all
  3834       separators to be '\\' rather than '/'. Also, single byte space
  3835       characters are removed from the end of the path because those
  3836       are not legal ending characters on this operating system.
  3837   */
  3838   while (*src != '\0') {
  3839     if (isfilesep(*src)) {
  3840       *dst++ = '\\'; src++;
  3841       while (isfilesep(*src)) src++;
  3842       if (*src == '\0') {
  3843         /* Check for trailing separator */
  3844         end = dst;
  3845         if (colon == dst - 2) break;                      /* "z:\\" */
  3846         if (dst == path + 1) break;                       /* "\\" */
  3847         if (dst == path + 2 && isfilesep(path[0])) {
  3848           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  3849             beginning of a UNC pathname.  Even though it is not, by
  3850             itself, a valid UNC pathname, we leave it as is in order
  3851             to be consistent with the path canonicalizer as well
  3852             as the win32 APIs, which treat this case as an invalid
  3853             UNC pathname rather than as an alias for the root
  3854             directory of the current drive. */
  3855           break;
  3857         end = --dst;  /* Path does not denote a root directory, so
  3858                                     remove trailing separator */
  3859         break;
  3861       end = dst;
  3862     } else {
  3863       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  3864         *dst++ = *src++;
  3865         if (*src) *dst++ = *src++;
  3866         end = dst;
  3867       } else {         /* Copy a single-byte character */
  3868         char c = *src++;
  3869         *dst++ = c;
  3870         /* Space is not a legal ending character */
  3871         if (c != ' ') end = dst;
  3876   *end = '\0';
  3878   /* For "z:", add "." to work around a bug in the C runtime library */
  3879   if (colon == dst - 1) {
  3880           path[2] = '.';
  3881           path[3] = '\0';
  3884   #ifdef DEBUG
  3885     jio_fprintf(stderr, "sysNativePath: %s\n", path);
  3886   #endif DEBUG
  3887   return path;
  3890 // This code is a copy of JDK's sysSetLength
  3891 // from src/windows/hpi/src/sys_api_md.c
  3893 int os::ftruncate(int fd, jlong length) {
  3894   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  3895   long high = (long)(length >> 32);
  3896   DWORD ret;
  3898   if (h == (HANDLE)(-1)) {
  3899     return -1;
  3902   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  3903   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  3904       return -1;
  3907   if (::SetEndOfFile(h) == FALSE) {
  3908     return -1;
  3911   return 0;
  3915 // This code is a copy of JDK's sysSync
  3916 // from src/windows/hpi/src/sys_api_md.c
  3917 // except for the legacy workaround for a bug in Win 98
  3919 int os::fsync(int fd) {
  3920   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  3922   if ( (!::FlushFileBuffers(handle)) &&
  3923          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  3924     /* from winerror.h */
  3925     return -1;
  3927   return 0;
  3930 static int nonSeekAvailable(int, long *);
  3931 static int stdinAvailable(int, long *);
  3933 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  3934 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  3936 // This code is a copy of JDK's sysAvailable
  3937 // from src/windows/hpi/src/sys_api_md.c
  3939 int os::available(int fd, jlong *bytes) {
  3940   jlong cur, end;
  3941   struct _stati64 stbuf64;
  3943   if (::_fstati64(fd, &stbuf64) >= 0) {
  3944     int mode = stbuf64.st_mode;
  3945     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  3946       int ret;
  3947       long lpbytes;
  3948       if (fd == 0) {
  3949         ret = stdinAvailable(fd, &lpbytes);
  3950       } else {
  3951         ret = nonSeekAvailable(fd, &lpbytes);
  3953       (*bytes) = (jlong)(lpbytes);
  3954       return ret;
  3956     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  3957       return FALSE;
  3958     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  3959       return FALSE;
  3960     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  3961       return FALSE;
  3963     *bytes = end - cur;
  3964     return TRUE;
  3965   } else {
  3966     return FALSE;
  3970 // This code is a copy of JDK's nonSeekAvailable
  3971 // from src/windows/hpi/src/sys_api_md.c
  3973 static int nonSeekAvailable(int fd, long *pbytes) {
  3974   /* This is used for available on non-seekable devices
  3975     * (like both named and anonymous pipes, such as pipes
  3976     *  connected to an exec'd process).
  3977     * Standard Input is a special case.
  3979     */
  3980   HANDLE han;
  3982   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  3983     return FALSE;
  3986   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  3987         /* PeekNamedPipe fails when at EOF.  In that case we
  3988          * simply make *pbytes = 0 which is consistent with the
  3989          * behavior we get on Solaris when an fd is at EOF.
  3990          * The only alternative is to raise an Exception,
  3991          * which isn't really warranted.
  3992          */
  3993     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  3994       return FALSE;
  3996     *pbytes = 0;
  3998   return TRUE;
  4001 #define MAX_INPUT_EVENTS 2000
  4003 // This code is a copy of JDK's stdinAvailable
  4004 // from src/windows/hpi/src/sys_api_md.c
  4006 static int stdinAvailable(int fd, long *pbytes) {
  4007   HANDLE han;
  4008   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4009   DWORD numEvents = 0;  /* Number of events in buffer */
  4010   DWORD i = 0;          /* Loop index */
  4011   DWORD curLength = 0;  /* Position marker */
  4012   DWORD actualLength = 0;       /* Number of bytes readable */
  4013   BOOL error = FALSE;         /* Error holder */
  4014   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4016   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4017         return FALSE;
  4020   /* Construct an array of input records in the console buffer */
  4021   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4022   if (error == 0) {
  4023     return nonSeekAvailable(fd, pbytes);
  4026   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4027   if (numEvents > MAX_INPUT_EVENTS) {
  4028     numEvents = MAX_INPUT_EVENTS;
  4031   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD));
  4032   if (lpBuffer == NULL) {
  4033     return FALSE;
  4036   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4037   if (error == 0) {
  4038     os::free(lpBuffer);
  4039     return FALSE;
  4042   /* Examine input records for the number of bytes available */
  4043   for(i=0; i<numEvents; i++) {
  4044     if (lpBuffer[i].EventType == KEY_EVENT) {
  4046       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4047                                       &(lpBuffer[i].Event);
  4048       if (keyRecord->bKeyDown == TRUE) {
  4049         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4050         curLength++;
  4051         if (*keyPressed == '\r') {
  4052           actualLength = curLength;
  4058   if(lpBuffer != NULL) {
  4059     os::free(lpBuffer);
  4062   *pbytes = (long) actualLength;
  4063   return TRUE;
  4066 // Map a block of memory.
  4067 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4068                      char *addr, size_t bytes, bool read_only,
  4069                      bool allow_exec) {
  4070   HANDLE hFile;
  4071   char* base;
  4073   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4074                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4075   if (hFile == NULL) {
  4076     if (PrintMiscellaneous && Verbose) {
  4077       DWORD err = GetLastError();
  4078       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  4080     return NULL;
  4083   if (allow_exec) {
  4084     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4085     // unless it comes from a PE image (which the shared archive is not.)
  4086     // Even VirtualProtect refuses to give execute access to mapped memory
  4087     // that was not previously executable.
  4088     //
  4089     // Instead, stick the executable region in anonymous memory.  Yuck.
  4090     // Penalty is that ~4 pages will not be shareable - in the future
  4091     // we might consider DLLizing the shared archive with a proper PE
  4092     // header so that mapping executable + sharing is possible.
  4094     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4095                                 PAGE_READWRITE);
  4096     if (base == NULL) {
  4097       if (PrintMiscellaneous && Verbose) {
  4098         DWORD err = GetLastError();
  4099         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4101       CloseHandle(hFile);
  4102       return NULL;
  4105     DWORD bytes_read;
  4106     OVERLAPPED overlapped;
  4107     overlapped.Offset = (DWORD)file_offset;
  4108     overlapped.OffsetHigh = 0;
  4109     overlapped.hEvent = NULL;
  4110     // ReadFile guarantees that if the return value is true, the requested
  4111     // number of bytes were read before returning.
  4112     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4113     if (!res) {
  4114       if (PrintMiscellaneous && Verbose) {
  4115         DWORD err = GetLastError();
  4116         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4118       release_memory(base, bytes);
  4119       CloseHandle(hFile);
  4120       return NULL;
  4122   } else {
  4123     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4124                                     NULL /*file_name*/);
  4125     if (hMap == NULL) {
  4126       if (PrintMiscellaneous && Verbose) {
  4127         DWORD err = GetLastError();
  4128         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  4130       CloseHandle(hFile);
  4131       return NULL;
  4134     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4135     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4136                                   (DWORD)bytes, addr);
  4137     if (base == NULL) {
  4138       if (PrintMiscellaneous && Verbose) {
  4139         DWORD err = GetLastError();
  4140         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4142       CloseHandle(hMap);
  4143       CloseHandle(hFile);
  4144       return NULL;
  4147     if (CloseHandle(hMap) == 0) {
  4148       if (PrintMiscellaneous && Verbose) {
  4149         DWORD err = GetLastError();
  4150         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4152       CloseHandle(hFile);
  4153       return base;
  4157   if (allow_exec) {
  4158     DWORD old_protect;
  4159     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4160     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4162     if (!res) {
  4163       if (PrintMiscellaneous && Verbose) {
  4164         DWORD err = GetLastError();
  4165         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4167       // Don't consider this a hard error, on IA32 even if the
  4168       // VirtualProtect fails, we should still be able to execute
  4169       CloseHandle(hFile);
  4170       return base;
  4174   if (CloseHandle(hFile) == 0) {
  4175     if (PrintMiscellaneous && Verbose) {
  4176       DWORD err = GetLastError();
  4177       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4179     return base;
  4182   return base;
  4186 // Remap a block of memory.
  4187 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4188                        char *addr, size_t bytes, bool read_only,
  4189                        bool allow_exec) {
  4190   // This OS does not allow existing memory maps to be remapped so we
  4191   // have to unmap the memory before we remap it.
  4192   if (!os::unmap_memory(addr, bytes)) {
  4193     return NULL;
  4196   // There is a very small theoretical window between the unmap_memory()
  4197   // call above and the map_memory() call below where a thread in native
  4198   // code may be able to access an address that is no longer mapped.
  4200   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4201                         allow_exec);
  4205 // Unmap a block of memory.
  4206 // Returns true=success, otherwise false.
  4208 bool os::unmap_memory(char* addr, size_t bytes) {
  4209   BOOL result = UnmapViewOfFile(addr);
  4210   if (result == 0) {
  4211     if (PrintMiscellaneous && Verbose) {
  4212       DWORD err = GetLastError();
  4213       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4215     return false;
  4217   return true;
  4220 void os::pause() {
  4221   char filename[MAX_PATH];
  4222   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4223     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4224   } else {
  4225     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4228   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4229   if (fd != -1) {
  4230     struct stat buf;
  4231     ::close(fd);
  4232     while (::stat(filename, &buf) == 0) {
  4233       Sleep(100);
  4235   } else {
  4236     jio_fprintf(stderr,
  4237       "Could not open pause file '%s', continuing immediately.\n", filename);
  4241 // An Event wraps a win32 "CreateEvent" kernel handle.
  4242 //
  4243 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4244 //
  4245 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4246 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4247 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4248 //     In addition, an unpark() operation might fetch the handle field, but the
  4249 //     event could recycle between the fetch and the SetEvent() operation.
  4250 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4251 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4252 //     on an stale but recycled handle would be harmless, but in practice this might
  4253 //     confuse other non-Sun code, so it's not a viable approach.
  4254 //
  4255 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4256 //     with the Event.  The event handle is never closed.  This could be construed
  4257 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4258 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4259 //     permit a process to have hundreds of thousands of open handles.
  4260 //
  4261 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4262 //     and release unused handles.
  4263 //
  4264 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4265 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4266 //
  4267 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4268 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4269 //
  4270 // We use (2).
  4271 //
  4272 // TODO-FIXME:
  4273 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4274 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4275 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4276 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4277 //     into a single win32 CreateEvent() handle.
  4278 //
  4279 // _Event transitions in park()
  4280 //   -1 => -1 : illegal
  4281 //    1 =>  0 : pass - return immediately
  4282 //    0 => -1 : block
  4283 //
  4284 // _Event serves as a restricted-range semaphore :
  4285 //    -1 : thread is blocked
  4286 //     0 : neutral  - thread is running or ready
  4287 //     1 : signaled - thread is running or ready
  4288 //
  4289 // Another possible encoding of _Event would be
  4290 // with explicit "PARKED" and "SIGNALED" bits.
  4292 int os::PlatformEvent::park (jlong Millis) {
  4293     guarantee (_ParkHandle != NULL , "Invariant") ;
  4294     guarantee (Millis > 0          , "Invariant") ;
  4295     int v ;
  4297     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4298     // the initial park() operation.
  4300     for (;;) {
  4301         v = _Event ;
  4302         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4304     guarantee ((v == 0) || (v == 1), "invariant") ;
  4305     if (v != 0) return OS_OK ;
  4307     // Do this the hard way by blocking ...
  4308     // TODO: consider a brief spin here, gated on the success of recent
  4309     // spin attempts by this thread.
  4310     //
  4311     // We decompose long timeouts into series of shorter timed waits.
  4312     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4313     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4314     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4315     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4316     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4317     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4318     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4319     // for the already waited time.  This policy does not admit any new outcomes.
  4320     // In the future, however, we might want to track the accumulated wait time and
  4321     // adjust Millis accordingly if we encounter a spurious wakeup.
  4323     const int MAXTIMEOUT = 0x10000000 ;
  4324     DWORD rv = WAIT_TIMEOUT ;
  4325     while (_Event < 0 && Millis > 0) {
  4326        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4327        if (Millis > MAXTIMEOUT) {
  4328           prd = MAXTIMEOUT ;
  4330        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4331        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4332        if (rv == WAIT_TIMEOUT) {
  4333            Millis -= prd ;
  4336     v = _Event ;
  4337     _Event = 0 ;
  4338     OrderAccess::fence() ;
  4339     // If we encounter a nearly simultanous timeout expiry and unpark()
  4340     // we return OS_OK indicating we awoke via unpark().
  4341     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4342     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4345 void os::PlatformEvent::park () {
  4346     guarantee (_ParkHandle != NULL, "Invariant") ;
  4347     // Invariant: Only the thread associated with the Event/PlatformEvent
  4348     // may call park().
  4349     int v ;
  4350     for (;;) {
  4351         v = _Event ;
  4352         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4354     guarantee ((v == 0) || (v == 1), "invariant") ;
  4355     if (v != 0) return ;
  4357     // Do this the hard way by blocking ...
  4358     // TODO: consider a brief spin here, gated on the success of recent
  4359     // spin attempts by this thread.
  4360     while (_Event < 0) {
  4361        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4362        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4365     // Usually we'll find _Event == 0 at this point, but as
  4366     // an optional optimization we clear it, just in case can
  4367     // multiple unpark() operations drove _Event up to 1.
  4368     _Event = 0 ;
  4369     OrderAccess::fence() ;
  4370     guarantee (_Event >= 0, "invariant") ;
  4373 void os::PlatformEvent::unpark() {
  4374   guarantee (_ParkHandle != NULL, "Invariant") ;
  4375   int v ;
  4376   for (;;) {
  4377       v = _Event ;      // Increment _Event if it's < 1.
  4378       if (v > 0) {
  4379          // If it's already signaled just return.
  4380          // The LD of _Event could have reordered or be satisfied
  4381          // by a read-aside from this processor's write buffer.
  4382          // To avoid problems execute a barrier and then
  4383          // ratify the value.  A degenerate CAS() would also work.
  4384          // Viz., CAS (v+0, &_Event, v) == v).
  4385          OrderAccess::fence() ;
  4386          if (_Event == v) return ;
  4387          continue ;
  4389       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4391   if (v < 0) {
  4392      ::SetEvent (_ParkHandle) ;
  4397 // JSR166
  4398 // -------------------------------------------------------
  4400 /*
  4401  * The Windows implementation of Park is very straightforward: Basic
  4402  * operations on Win32 Events turn out to have the right semantics to
  4403  * use them directly. We opportunistically resuse the event inherited
  4404  * from Monitor.
  4405  */
  4408 void Parker::park(bool isAbsolute, jlong time) {
  4409   guarantee (_ParkEvent != NULL, "invariant") ;
  4410   // First, demultiplex/decode time arguments
  4411   if (time < 0) { // don't wait
  4412     return;
  4414   else if (time == 0 && !isAbsolute) {
  4415     time = INFINITE;
  4417   else if  (isAbsolute) {
  4418     time -= os::javaTimeMillis(); // convert to relative time
  4419     if (time <= 0) // already elapsed
  4420       return;
  4422   else { // relative
  4423     time /= 1000000; // Must coarsen from nanos to millis
  4424     if (time == 0)   // Wait for the minimal time unit if zero
  4425       time = 1;
  4428   JavaThread* thread = (JavaThread*)(Thread::current());
  4429   assert(thread->is_Java_thread(), "Must be JavaThread");
  4430   JavaThread *jt = (JavaThread *)thread;
  4432   // Don't wait if interrupted or already triggered
  4433   if (Thread::is_interrupted(thread, false) ||
  4434     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4435     ResetEvent(_ParkEvent);
  4436     return;
  4438   else {
  4439     ThreadBlockInVM tbivm(jt);
  4440     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4441     jt->set_suspend_equivalent();
  4443     WaitForSingleObject(_ParkEvent,  time);
  4444     ResetEvent(_ParkEvent);
  4446     // If externally suspended while waiting, re-suspend
  4447     if (jt->handle_special_suspend_equivalent_condition()) {
  4448       jt->java_suspend_self();
  4453 void Parker::unpark() {
  4454   guarantee (_ParkEvent != NULL, "invariant") ;
  4455   SetEvent(_ParkEvent);
  4458 // Run the specified command in a separate process. Return its exit value,
  4459 // or -1 on failure (e.g. can't create a new process).
  4460 int os::fork_and_exec(char* cmd) {
  4461   STARTUPINFO si;
  4462   PROCESS_INFORMATION pi;
  4464   memset(&si, 0, sizeof(si));
  4465   si.cb = sizeof(si);
  4466   memset(&pi, 0, sizeof(pi));
  4467   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4468                             cmd,    // command line
  4469                             NULL,   // process security attribute
  4470                             NULL,   // thread security attribute
  4471                             TRUE,   // inherits system handles
  4472                             0,      // no creation flags
  4473                             NULL,   // use parent's environment block
  4474                             NULL,   // use parent's starting directory
  4475                             &si,    // (in) startup information
  4476                             &pi);   // (out) process information
  4478   if (rslt) {
  4479     // Wait until child process exits.
  4480     WaitForSingleObject(pi.hProcess, INFINITE);
  4482     DWORD exit_code;
  4483     GetExitCodeProcess(pi.hProcess, &exit_code);
  4485     // Close process and thread handles.
  4486     CloseHandle(pi.hProcess);
  4487     CloseHandle(pi.hThread);
  4489     return (int)exit_code;
  4490   } else {
  4491     return -1;
  4495 //--------------------------------------------------------------------------------------------------
  4496 // Non-product code
  4498 static int mallocDebugIntervalCounter = 0;
  4499 static int mallocDebugCounter = 0;
  4500 bool os::check_heap(bool force) {
  4501   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4502   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4503     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4504     // wrong; at these points, eax contains the address of the offending block (I think).
  4505     // To get to the exlicit error message(s) below, just continue twice.
  4506     HANDLE heap = GetProcessHeap();
  4507     { HeapLock(heap);
  4508       PROCESS_HEAP_ENTRY phe;
  4509       phe.lpData = NULL;
  4510       while (HeapWalk(heap, &phe) != 0) {
  4511         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4512             !HeapValidate(heap, 0, phe.lpData)) {
  4513           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4514           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4515           fatal("corrupted C heap");
  4518       int err = GetLastError();
  4519       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4520         fatal(err_msg("heap walk aborted with error %d", err));
  4522       HeapUnlock(heap);
  4524     mallocDebugIntervalCounter = 0;
  4526   return true;
  4530 bool os::find(address addr, outputStream* st) {
  4531   // Nothing yet
  4532   return false;
  4535 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4536   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4538   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4539     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4540     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4541     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4543     if (os::is_memory_serialize_page(thread, addr))
  4544       return EXCEPTION_CONTINUE_EXECUTION;
  4547   return EXCEPTION_CONTINUE_SEARCH;
  4550 static int getLastErrorString(char *buf, size_t len)
  4552     long errval;
  4554     if ((errval = GetLastError()) != 0)
  4556       /* DOS error */
  4557       size_t n = (size_t)FormatMessage(
  4558             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  4559             NULL,
  4560             errval,
  4561             0,
  4562             buf,
  4563             (DWORD)len,
  4564             NULL);
  4565       if (n > 3) {
  4566         /* Drop final '.', CR, LF */
  4567         if (buf[n - 1] == '\n') n--;
  4568         if (buf[n - 1] == '\r') n--;
  4569         if (buf[n - 1] == '.') n--;
  4570         buf[n] = '\0';
  4572       return (int)n;
  4575     if (errno != 0)
  4577       /* C runtime error that has no corresponding DOS error code */
  4578       const char *s = strerror(errno);
  4579       size_t n = strlen(s);
  4580       if (n >= len) n = len - 1;
  4581       strncpy(buf, s, n);
  4582       buf[n] = '\0';
  4583       return (int)n;
  4585     return 0;
  4589 // We don't build a headless jre for Windows
  4590 bool os::is_headless_jre() { return false; }
  4592 // OS_SocketInterface
  4593 // Not used on Windows
  4595 // OS_SocketInterface
  4596 typedef struct hostent * (PASCAL FAR *ws2_ifn_ptr_t)(...);
  4597 ws2_ifn_ptr_t *get_host_by_name_fn = NULL;
  4599 typedef CRITICAL_SECTION mutex_t;
  4600 #define mutexInit(m)    InitializeCriticalSection(m)
  4601 #define mutexDestroy(m) DeleteCriticalSection(m)
  4602 #define mutexLock(m)    EnterCriticalSection(m)
  4603 #define mutexUnlock(m)  LeaveCriticalSection(m)
  4605 static bool sockfnptrs_initialized = FALSE;
  4606 static mutex_t sockFnTableMutex;
  4608 /* is Winsock2 loaded? better to be explicit than to rely on sockfnptrs */
  4609 static bool winsock2Available = FALSE;
  4612 static void initSockFnTable() {
  4613   int (PASCAL FAR* WSAStartupPtr)(WORD, LPWSADATA);
  4614   WSADATA wsadata;
  4616   ::mutexInit(&sockFnTableMutex);
  4617   ::mutexLock(&sockFnTableMutex);
  4619   if (sockfnptrs_initialized == FALSE) {
  4620         HMODULE hWinsock;
  4622           /* try to load Winsock2, and if that fails, load Winsock */
  4623     hWinsock = ::LoadLibrary("ws2_32.dll");
  4625     if (hWinsock == NULL) {
  4626       jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
  4627       ::GetLastError());
  4628       return;
  4631     /* If we loaded a DLL, then we might as well initialize it.  */
  4632     WSAStartupPtr = (int (PASCAL FAR *)(WORD, LPWSADATA))
  4633     ::GetProcAddress(hWinsock, "WSAStartup");
  4635     if (WSAStartupPtr(MAKEWORD(1,1), &wsadata) != 0) {
  4636         jio_fprintf(stderr, "Could not initialize Winsock\n");
  4639     get_host_by_name_fn
  4640         = (ws2_ifn_ptr_t*) GetProcAddress(hWinsock, "gethostbyname");
  4643   assert(get_host_by_name_fn != NULL,
  4644     "gethostbyname function not found");
  4645   sockfnptrs_initialized = TRUE;
  4646   ::mutexUnlock(&sockFnTableMutex);
  4649 struct hostent*  os::get_host_by_name(char* name) {
  4650   if (!sockfnptrs_initialized) {
  4651     initSockFnTable();
  4654   assert(sockfnptrs_initialized == TRUE && get_host_by_name_fn != NULL,
  4655     "sockfnptrs is not initialized or pointer to gethostbyname function is NULL");
  4656   return (*get_host_by_name_fn)(name);
  4660 int os::socket_close(int fd) {
  4661   ShouldNotReachHere();
  4662   return 0;
  4665 int os::socket_available(int fd, jint *pbytes) {
  4666   ShouldNotReachHere();
  4667   return 0;
  4670 int os::socket(int domain, int type, int protocol) {
  4671   ShouldNotReachHere();
  4672   return 0;
  4675 int os::listen(int fd, int count) {
  4676   ShouldNotReachHere();
  4677   return 0;
  4680 int os::connect(int fd, struct sockaddr *him, int len) {
  4681   ShouldNotReachHere();
  4682   return 0;
  4685 int os::accept(int fd, struct sockaddr *him, int *len) {
  4686   ShouldNotReachHere();
  4687   return 0;
  4690 int os::sendto(int fd, char *buf, int len, int flags,
  4691                         struct sockaddr *to, int tolen) {
  4692   ShouldNotReachHere();
  4693   return 0;
  4696 int os::recvfrom(int fd, char *buf, int nBytes, int flags,
  4697                          sockaddr *from, int *fromlen) {
  4698   ShouldNotReachHere();
  4699   return 0;
  4702 int os::recv(int fd, char *buf, int nBytes, int flags) {
  4703   ShouldNotReachHere();
  4704   return 0;
  4707 int os::send(int fd, char *buf, int nBytes, int flags) {
  4708   ShouldNotReachHere();
  4709   return 0;
  4712 int os::raw_send(int fd, char *buf, int nBytes, int flags) {
  4713   ShouldNotReachHere();
  4714   return 0;
  4717 int os::timeout(int fd, long timeout) {
  4718   ShouldNotReachHere();
  4719   return 0;
  4722 int os::get_host_name(char* name, int namelen) {
  4723   ShouldNotReachHere();
  4724   return 0;
  4727 int os::socket_shutdown(int fd, int howto) {
  4728   ShouldNotReachHere();
  4729   return 0;
  4732 int os::bind(int fd, struct sockaddr *him, int len) {
  4733   ShouldNotReachHere();
  4734   return 0;
  4737 int os::get_sock_name(int fd, struct sockaddr *him, int *len) {
  4738   ShouldNotReachHere();
  4739   return 0;
  4742 int os::get_sock_opt(int fd, int level, int optname,
  4743                              char *optval, int* optlen) {
  4744   ShouldNotReachHere();
  4745   return 0;
  4748 int os::set_sock_opt(int fd, int level, int optname,
  4749                              const char *optval, int optlen) {
  4750   ShouldNotReachHere();
  4751   return 0;

mercurial