src/share/vm/gc_interface/collectedHeap.hpp

Wed, 23 Sep 2009 23:56:15 -0700

author
jrose
date
Wed, 23 Sep 2009 23:56:15 -0700
changeset 1428
54b3b351d6f9
parent 1424
148e5441d916
parent 1376
8b46c4d82093
child 1462
39b01ab7035a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    26 // is an abstract class: there may be many different kinds of heaps.  This
    27 // class defines the functions that a heap must implement, and contains
    28 // infrastructure common to all heaps.
    30 class BarrierSet;
    31 class ThreadClosure;
    32 class AdaptiveSizePolicy;
    33 class Thread;
    35 //
    36 // CollectedHeap
    37 //   SharedHeap
    38 //     GenCollectedHeap
    39 //     G1CollectedHeap
    40 //   ParallelScavengeHeap
    41 //
    42 class CollectedHeap : public CHeapObj {
    43   friend class VMStructs;
    44   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    45   friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
    47 #ifdef ASSERT
    48   static int       _fire_out_of_memory_count;
    49 #endif
    51   // Used for filler objects (static, but initialized in ctor).
    52   static size_t _filler_array_max_size;
    54  protected:
    55   MemRegion _reserved;
    56   BarrierSet* _barrier_set;
    57   bool _is_gc_active;
    58   unsigned int _total_collections;          // ... started
    59   unsigned int _total_full_collections;     // ... started
    60   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
    61   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
    63   // Reason for current garbage collection.  Should be set to
    64   // a value reflecting no collection between collections.
    65   GCCause::Cause _gc_cause;
    66   GCCause::Cause _gc_lastcause;
    67   PerfStringVariable* _perf_gc_cause;
    68   PerfStringVariable* _perf_gc_lastcause;
    70   // Constructor
    71   CollectedHeap();
    73   // Create a new tlab
    74   virtual HeapWord* allocate_new_tlab(size_t size);
    76   // Fix up tlabs to make the heap well-formed again,
    77   // optionally retiring the tlabs.
    78   virtual void fill_all_tlabs(bool retire);
    80   // Accumulate statistics on all tlabs.
    81   virtual void accumulate_statistics_all_tlabs();
    83   // Reinitialize tlabs before resuming mutators.
    84   virtual void resize_all_tlabs();
    86  protected:
    87   // Allocate from the current thread's TLAB, with broken-out slow path.
    88   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
    89   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
    91   // Allocate an uninitialized block of the given size, or returns NULL if
    92   // this is impossible.
    93   inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
    95   // Like allocate_init, but the block returned by a successful allocation
    96   // is guaranteed initialized to zeros.
    97   inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
    99   // Same as common_mem version, except memory is allocated in the permanent area
   100   // If there is no permanent area, revert to common_mem_allocate_noinit
   101   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   103   // Same as common_mem version, except memory is allocated in the permanent area
   104   // If there is no permanent area, revert to common_mem_allocate_init
   105   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   107   // Helper functions for (VM) allocation.
   108   inline static void post_allocation_setup_common(KlassHandle klass,
   109                                                   HeapWord* obj, size_t size);
   110   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   111                                                             HeapWord* objPtr,
   112                                                             size_t size);
   114   inline static void post_allocation_setup_obj(KlassHandle klass,
   115                                                HeapWord* obj, size_t size);
   117   inline static void post_allocation_setup_array(KlassHandle klass,
   118                                                  HeapWord* obj, size_t size,
   119                                                  int length);
   121   // Clears an allocated object.
   122   inline static void init_obj(HeapWord* obj, size_t size);
   124   // Filler object utilities.
   125   static inline size_t filler_array_hdr_size();
   126   static inline size_t filler_array_min_size();
   127   static inline size_t filler_array_max_size();
   129   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   130   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words);)
   132   // Fill with a single array; caller must ensure filler_array_min_size() <=
   133   // words <= filler_array_max_size().
   134   static inline void fill_with_array(HeapWord* start, size_t words);
   136   // Fill with a single object (either an int array or a java.lang.Object).
   137   static inline void fill_with_object_impl(HeapWord* start, size_t words);
   139   // Verification functions
   140   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   141     PRODUCT_RETURN;
   142   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   143     PRODUCT_RETURN;
   144   debug_only(static void check_for_valid_allocation_state();)
   146  public:
   147   enum Name {
   148     Abstract,
   149     SharedHeap,
   150     GenCollectedHeap,
   151     ParallelScavengeHeap,
   152     G1CollectedHeap
   153   };
   155   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   157   /**
   158    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   159    * and JNI_OK on success.
   160    */
   161   virtual jint initialize() = 0;
   163   // In many heaps, there will be a need to perform some initialization activities
   164   // after the Universe is fully formed, but before general heap allocation is allowed.
   165   // This is the correct place to place such initialization methods.
   166   virtual void post_initialize() = 0;
   168   MemRegion reserved_region() const { return _reserved; }
   169   address base() const { return (address)reserved_region().start(); }
   171   // Future cleanup here. The following functions should specify bytes or
   172   // heapwords as part of their signature.
   173   virtual size_t capacity() const = 0;
   174   virtual size_t used() const = 0;
   176   // Return "true" if the part of the heap that allocates Java
   177   // objects has reached the maximal committed limit that it can
   178   // reach, without a garbage collection.
   179   virtual bool is_maximal_no_gc() const = 0;
   181   virtual size_t permanent_capacity() const = 0;
   182   virtual size_t permanent_used() const = 0;
   184   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   185   // memory that the vm could make available for storing 'normal' java objects.
   186   // This is based on the reserved address space, but should not include space
   187   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   188   // perm gen space or, in the case of the young gen, one of the survivor
   189   // spaces).
   190   virtual size_t max_capacity() const = 0;
   192   // Returns "TRUE" if "p" points into the reserved area of the heap.
   193   bool is_in_reserved(const void* p) const {
   194     return _reserved.contains(p);
   195   }
   197   bool is_in_reserved_or_null(const void* p) const {
   198     return p == NULL || is_in_reserved(p);
   199   }
   201   // Returns "TRUE" if "p" points to the head of an allocated object in the
   202   // heap. Since this method can be expensive in general, we restrict its
   203   // use to assertion checking only.
   204   virtual bool is_in(const void* p) const = 0;
   206   bool is_in_or_null(const void* p) const {
   207     return p == NULL || is_in(p);
   208   }
   210   // Let's define some terms: a "closed" subset of a heap is one that
   211   //
   212   // 1) contains all currently-allocated objects, and
   213   //
   214   // 2) is closed under reference: no object in the closed subset
   215   //    references one outside the closed subset.
   216   //
   217   // Membership in a heap's closed subset is useful for assertions.
   218   // Clearly, the entire heap is a closed subset, so the default
   219   // implementation is to use "is_in_reserved".  But this may not be too
   220   // liberal to perform useful checking.  Also, the "is_in" predicate
   221   // defines a closed subset, but may be too expensive, since "is_in"
   222   // verifies that its argument points to an object head.  The
   223   // "closed_subset" method allows a heap to define an intermediate
   224   // predicate, allowing more precise checking than "is_in_reserved" at
   225   // lower cost than "is_in."
   227   // One important case is a heap composed of disjoint contiguous spaces,
   228   // such as the Garbage-First collector.  Such heaps have a convenient
   229   // closed subset consisting of the allocated portions of those
   230   // contiguous spaces.
   232   // Return "TRUE" iff the given pointer points into the heap's defined
   233   // closed subset (which defaults to the entire heap).
   234   virtual bool is_in_closed_subset(const void* p) const {
   235     return is_in_reserved(p);
   236   }
   238   bool is_in_closed_subset_or_null(const void* p) const {
   239     return p == NULL || is_in_closed_subset(p);
   240   }
   242   // XXX is_permanent() and is_in_permanent() should be better named
   243   // to distinguish one from the other.
   245   // Returns "TRUE" if "p" is allocated as "permanent" data.
   246   // If the heap does not use "permanent" data, returns the same
   247   // value is_in_reserved() would return.
   248   // NOTE: this actually returns true if "p" is in reserved space
   249   // for the space not that it is actually allocated (i.e. in committed
   250   // space). If you need the more conservative answer use is_permanent().
   251   virtual bool is_in_permanent(const void *p) const = 0;
   253   bool is_in_permanent_or_null(const void *p) const {
   254     return p == NULL || is_in_permanent(p);
   255   }
   257   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   258   // If the heap does not use "permanent" data, returns the same
   259   // value is_in() would return.
   260   virtual bool is_permanent(const void *p) const = 0;
   262   bool is_permanent_or_null(const void *p) const {
   263     return p == NULL || is_permanent(p);
   264   }
   266   // An object is scavengable if its location may move during a scavenge.
   267   // (A scavenge is a GC which is not a full GC.)
   268   // Currently, this just means it is not perm (and not null).
   269   // This could change if we rethink what's in perm-gen.
   270   bool is_scavengable(const void *p) const {
   271     return !is_in_permanent_or_null(p);
   272   }
   274   // Returns "TRUE" if "p" is a method oop in the
   275   // current heap, with high probability. This predicate
   276   // is not stable, in general.
   277   bool is_valid_method(oop p) const;
   279   void set_gc_cause(GCCause::Cause v) {
   280      if (UsePerfData) {
   281        _gc_lastcause = _gc_cause;
   282        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   283        _perf_gc_cause->set_value(GCCause::to_string(v));
   284      }
   285     _gc_cause = v;
   286   }
   287   GCCause::Cause gc_cause() { return _gc_cause; }
   289   // Preload classes into the shared portion of the heap, and then dump
   290   // that data to a file so that it can be loaded directly by another
   291   // VM (then terminate).
   292   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   294   // General obj/array allocation facilities.
   295   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   296   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   297   inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
   299   // Special obj/array allocation facilities.
   300   // Some heaps may want to manage "permanent" data uniquely. These default
   301   // to the general routines if the heap does not support such handling.
   302   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   303   // permanent_obj_allocate_no_klass_install() does not do the installation of
   304   // the klass pointer in the newly created object (as permanent_obj_allocate()
   305   // above does).  This allows for a delay in the installation of the klass
   306   // pointer that is needed during the create of klassKlass's.  The
   307   // method post_allocation_install_obj_klass() is used to install the
   308   // klass pointer.
   309   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   310                                                             int size,
   311                                                             TRAPS);
   312   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   313                                                        oop obj,
   314                                                        int size);
   315   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   317   // Raw memory allocation facilities
   318   // The obj and array allocate methods are covers for these methods.
   319   // The permanent allocation method should default to mem_allocate if
   320   // permanent memory isn't supported.
   321   virtual HeapWord* mem_allocate(size_t size,
   322                                  bool is_noref,
   323                                  bool is_tlab,
   324                                  bool* gc_overhead_limit_was_exceeded) = 0;
   325   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   327   // The boundary between a "large" and "small" array of primitives, in words.
   328   virtual size_t large_typearray_limit() = 0;
   330   // Utilities for turning raw memory into filler objects.
   331   //
   332   // min_fill_size() is the smallest region that can be filled.
   333   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   334   // multiple objects.  fill_with_object() is for regions known to be smaller
   335   // than the largest array of integers; it uses a single object to fill the
   336   // region and has slightly less overhead.
   337   static size_t min_fill_size() {
   338     return size_t(align_object_size(oopDesc::header_size()));
   339   }
   341   static void fill_with_objects(HeapWord* start, size_t words);
   343   static void fill_with_object(HeapWord* start, size_t words);
   344   static void fill_with_object(MemRegion region) {
   345     fill_with_object(region.start(), region.word_size());
   346   }
   347   static void fill_with_object(HeapWord* start, HeapWord* end) {
   348     fill_with_object(start, pointer_delta(end, start));
   349   }
   351   // Some heaps may offer a contiguous region for shared non-blocking
   352   // allocation, via inlined code (by exporting the address of the top and
   353   // end fields defining the extent of the contiguous allocation region.)
   355   // This function returns "true" iff the heap supports this kind of
   356   // allocation.  (Default is "no".)
   357   virtual bool supports_inline_contig_alloc() const {
   358     return false;
   359   }
   360   // These functions return the addresses of the fields that define the
   361   // boundaries of the contiguous allocation area.  (These fields should be
   362   // physically near to one another.)
   363   virtual HeapWord** top_addr() const {
   364     guarantee(false, "inline contiguous allocation not supported");
   365     return NULL;
   366   }
   367   virtual HeapWord** end_addr() const {
   368     guarantee(false, "inline contiguous allocation not supported");
   369     return NULL;
   370   }
   372   // Some heaps may be in an unparseable state at certain times between
   373   // collections. This may be necessary for efficient implementation of
   374   // certain allocation-related activities. Calling this function before
   375   // attempting to parse a heap ensures that the heap is in a parsable
   376   // state (provided other concurrent activity does not introduce
   377   // unparsability). It is normally expected, therefore, that this
   378   // method is invoked with the world stopped.
   379   // NOTE: if you override this method, make sure you call
   380   // super::ensure_parsability so that the non-generational
   381   // part of the work gets done. See implementation of
   382   // CollectedHeap::ensure_parsability and, for instance,
   383   // that of GenCollectedHeap::ensure_parsability().
   384   // The argument "retire_tlabs" controls whether existing TLABs
   385   // are merely filled or also retired, thus preventing further
   386   // allocation from them and necessitating allocation of new TLABs.
   387   virtual void ensure_parsability(bool retire_tlabs);
   389   // Return an estimate of the maximum allocation that could be performed
   390   // without triggering any collection or expansion activity.  In a
   391   // generational collector, for example, this is probably the largest
   392   // allocation that could be supported (without expansion) in the youngest
   393   // generation.  It is "unsafe" because no locks are taken; the result
   394   // should be treated as an approximation, not a guarantee, for use in
   395   // heuristic resizing decisions.
   396   virtual size_t unsafe_max_alloc() = 0;
   398   // Section on thread-local allocation buffers (TLABs)
   399   // If the heap supports thread-local allocation buffers, it should override
   400   // the following methods:
   401   // Returns "true" iff the heap supports thread-local allocation buffers.
   402   // The default is "no".
   403   virtual bool supports_tlab_allocation() const {
   404     return false;
   405   }
   406   // The amount of space available for thread-local allocation buffers.
   407   virtual size_t tlab_capacity(Thread *thr) const {
   408     guarantee(false, "thread-local allocation buffers not supported");
   409     return 0;
   410   }
   411   // An estimate of the maximum allocation that could be performed
   412   // for thread-local allocation buffers without triggering any
   413   // collection or expansion activity.
   414   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   415     guarantee(false, "thread-local allocation buffers not supported");
   416     return 0;
   417   }
   418   // Can a compiler initialize a new object without store barriers?
   419   // This permission only extends from the creation of a new object
   420   // via a TLAB up to the first subsequent safepoint.
   421   virtual bool can_elide_tlab_store_barriers() const = 0;
   423   // If a compiler is eliding store barriers for TLAB-allocated objects,
   424   // there is probably a corresponding slow path which can produce
   425   // an object allocated anywhere.  The compiler's runtime support
   426   // promises to call this function on such a slow-path-allocated
   427   // object before performing initializations that have elided
   428   // store barriers.  Returns new_obj, or maybe a safer copy thereof.
   429   virtual oop new_store_barrier(oop new_obj);
   431   // Can a compiler elide a store barrier when it writes
   432   // a permanent oop into the heap?  Applies when the compiler
   433   // is storing x to the heap, where x->is_perm() is true.
   434   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
   436   // Does this heap support heap inspection (+PrintClassHistogram?)
   437   virtual bool supports_heap_inspection() const = 0;
   439   // Perform a collection of the heap; intended for use in implementing
   440   // "System.gc".  This probably implies as full a collection as the
   441   // "CollectedHeap" supports.
   442   virtual void collect(GCCause::Cause cause) = 0;
   444   // This interface assumes that it's being called by the
   445   // vm thread. It collects the heap assuming that the
   446   // heap lock is already held and that we are executing in
   447   // the context of the vm thread.
   448   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   450   // Returns the barrier set for this heap
   451   BarrierSet* barrier_set() { return _barrier_set; }
   453   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   454   // that it should answer "false" for the concurrent part of a concurrent
   455   // collector -- dld).
   456   bool is_gc_active() const { return _is_gc_active; }
   458   // Total number of GC collections (started)
   459   unsigned int total_collections() const { return _total_collections; }
   460   unsigned int total_full_collections() const { return _total_full_collections;}
   462   // Increment total number of GC collections (started)
   463   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   464   void increment_total_collections(bool full = false) {
   465     _total_collections++;
   466     if (full) {
   467       increment_total_full_collections();
   468     }
   469   }
   471   void increment_total_full_collections() { _total_full_collections++; }
   473   // Return the AdaptiveSizePolicy for the heap.
   474   virtual AdaptiveSizePolicy* size_policy() = 0;
   476   // Iterate over all the ref-containing fields of all objects, calling
   477   // "cl.do_oop" on each. This includes objects in permanent memory.
   478   virtual void oop_iterate(OopClosure* cl) = 0;
   480   // Iterate over all objects, calling "cl.do_object" on each.
   481   // This includes objects in permanent memory.
   482   virtual void object_iterate(ObjectClosure* cl) = 0;
   484   // Similar to object_iterate() except iterates only
   485   // over live objects.
   486   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   488   // Behaves the same as oop_iterate, except only traverses
   489   // interior pointers contained in permanent memory. If there
   490   // is no permanent memory, does nothing.
   491   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   493   // Behaves the same as object_iterate, except only traverses
   494   // object contained in permanent memory. If there is no
   495   // permanent memory, does nothing.
   496   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   498   // NOTE! There is no requirement that a collector implement these
   499   // functions.
   500   //
   501   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   502   // each address in the (reserved) heap is a member of exactly
   503   // one block.  The defining characteristic of a block is that it is
   504   // possible to find its size, and thus to progress forward to the next
   505   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   506   // represent Java objects, or they might be free blocks in a
   507   // free-list-based heap (or subheap), as long as the two kinds are
   508   // distinguishable and the size of each is determinable.
   510   // Returns the address of the start of the "block" that contains the
   511   // address "addr".  We say "blocks" instead of "object" since some heaps
   512   // may not pack objects densely; a chunk may either be an object or a
   513   // non-object.
   514   virtual HeapWord* block_start(const void* addr) const = 0;
   516   // Requires "addr" to be the start of a chunk, and returns its size.
   517   // "addr + size" is required to be the start of a new chunk, or the end
   518   // of the active area of the heap.
   519   virtual size_t block_size(const HeapWord* addr) const = 0;
   521   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   522   // the block is an object.
   523   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   525   // Returns the longest time (in ms) that has elapsed since the last
   526   // time that any part of the heap was examined by a garbage collection.
   527   virtual jlong millis_since_last_gc() = 0;
   529   // Perform any cleanup actions necessary before allowing a verification.
   530   virtual void prepare_for_verify() = 0;
   532   // Generate any dumps preceding or following a full gc
   533   void pre_full_gc_dump();
   534   void post_full_gc_dump();
   536   virtual void print() const = 0;
   537   virtual void print_on(outputStream* st) const = 0;
   539   // Print all GC threads (other than the VM thread)
   540   // used by this heap.
   541   virtual void print_gc_threads_on(outputStream* st) const = 0;
   542   void print_gc_threads() { print_gc_threads_on(tty); }
   543   // Iterator for all GC threads (other than VM thread)
   544   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   546   // Print any relevant tracing info that flags imply.
   547   // Default implementation does nothing.
   548   virtual void print_tracing_info() const = 0;
   550   // Heap verification
   551   virtual void verify(bool allow_dirty, bool silent, bool option) = 0;
   553   // Non product verification and debugging.
   554 #ifndef PRODUCT
   555   // Support for PromotionFailureALot.  Return true if it's time to cause a
   556   // promotion failure.  The no-argument version uses
   557   // this->_promotion_failure_alot_count as the counter.
   558   inline bool promotion_should_fail(volatile size_t* count);
   559   inline bool promotion_should_fail();
   561   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   562   // GC in which promotion failure ocurred.
   563   inline void reset_promotion_should_fail(volatile size_t* count);
   564   inline void reset_promotion_should_fail();
   565 #endif  // #ifndef PRODUCT
   567 #ifdef ASSERT
   568   static int fired_fake_oom() {
   569     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   570   }
   571 #endif
   572 };
   574 // Class to set and reset the GC cause for a CollectedHeap.
   576 class GCCauseSetter : StackObj {
   577   CollectedHeap* _heap;
   578   GCCause::Cause _previous_cause;
   579  public:
   580   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   581     assert(SafepointSynchronize::is_at_safepoint(),
   582            "This method manipulates heap state without locking");
   583     _heap = heap;
   584     _previous_cause = _heap->gc_cause();
   585     _heap->set_gc_cause(cause);
   586   }
   588   ~GCCauseSetter() {
   589     assert(SafepointSynchronize::is_at_safepoint(),
   590           "This method manipulates heap state without locking");
   591     _heap->set_gc_cause(_previous_cause);
   592   }
   593 };

mercurial