src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp

Wed, 23 Sep 2009 23:56:15 -0700

author
jrose
date
Wed, 23 Sep 2009 23:56:15 -0700
changeset 1428
54b3b351d6f9
parent 1424
148e5441d916
parent 1376
8b46c4d82093
child 1746
2a1472c30599
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_psMarkSweep.cpp.incl"
    28 elapsedTimer        PSMarkSweep::_accumulated_time;
    29 unsigned int        PSMarkSweep::_total_invocations = 0;
    30 jlong               PSMarkSweep::_time_of_last_gc   = 0;
    31 CollectorCounters*  PSMarkSweep::_counters = NULL;
    33 void PSMarkSweep::initialize() {
    34   MemRegion mr = Universe::heap()->reserved_region();
    35   _ref_processor = new ReferenceProcessor(mr,
    36                                           true,    // atomic_discovery
    37                                           false);  // mt_discovery
    38   _counters = new CollectorCounters("PSMarkSweep", 1);
    39 }
    41 // This method contains all heap specific policy for invoking mark sweep.
    42 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
    43 // the heap. It will do nothing further. If we need to bail out for policy
    44 // reasons, scavenge before full gc, or any other specialized behavior, it
    45 // needs to be added here.
    46 //
    47 // Note that this method should only be called from the vm_thread while
    48 // at a safepoint!
    49 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
    50   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
    51   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
    52   assert(!Universe::heap()->is_gc_active(), "not reentrant");
    54   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    55   GCCause::Cause gc_cause = heap->gc_cause();
    56   PSAdaptiveSizePolicy* policy = heap->size_policy();
    58   // Before each allocation/collection attempt, find out from the
    59   // policy object if GCs are, on the whole, taking too long. If so,
    60   // bail out without attempting a collection.  The exceptions are
    61   // for explicitly requested GC's.
    62   if (!policy->gc_time_limit_exceeded() ||
    63       GCCause::is_user_requested_gc(gc_cause) ||
    64       GCCause::is_serviceability_requested_gc(gc_cause)) {
    65     IsGCActiveMark mark;
    67     if (ScavengeBeforeFullGC) {
    68       PSScavenge::invoke_no_policy();
    69     }
    71     int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
    72     IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
    73     PSMarkSweep::invoke_no_policy(maximum_heap_compaction);
    74   }
    75 }
    77 // This method contains no policy. You should probably
    78 // be calling invoke() instead.
    79 void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
    80   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
    81   assert(ref_processor() != NULL, "Sanity");
    83   if (GC_locker::check_active_before_gc()) {
    84     return;
    85   }
    87   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    88   GCCause::Cause gc_cause = heap->gc_cause();
    89   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    90   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
    92   PSYoungGen* young_gen = heap->young_gen();
    93   PSOldGen* old_gen = heap->old_gen();
    94   PSPermGen* perm_gen = heap->perm_gen();
    96   // Increment the invocation count
    97   heap->increment_total_collections(true /* full */);
    99   // Save information needed to minimize mangling
   100   heap->record_gen_tops_before_GC();
   102   // We need to track unique mark sweep invocations as well.
   103   _total_invocations++;
   105   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   107   if (PrintHeapAtGC) {
   108     Universe::print_heap_before_gc();
   109   }
   111   // Fill in TLABs
   112   heap->accumulate_statistics_all_tlabs();
   113   heap->ensure_parsability(true);  // retire TLABs
   115   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   116     HandleMark hm;  // Discard invalid handles created during verification
   117     gclog_or_tty->print(" VerifyBeforeGC:");
   118     Universe::verify(true);
   119   }
   121   // Verify object start arrays
   122   if (VerifyObjectStartArray &&
   123       VerifyBeforeGC) {
   124     old_gen->verify_object_start_array();
   125     perm_gen->verify_object_start_array();
   126   }
   128   heap->pre_full_gc_dump();
   130   // Filled in below to track the state of the young gen after the collection.
   131   bool eden_empty;
   132   bool survivors_empty;
   133   bool young_gen_empty;
   135   {
   136     HandleMark hm;
   137     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
   138     // This is useful for debugging but don't change the output the
   139     // the customer sees.
   140     const char* gc_cause_str = "Full GC";
   141     if (is_system_gc && PrintGCDetails) {
   142       gc_cause_str = "Full GC (System)";
   143     }
   144     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   145     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   146     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
   147     TraceCollectorStats tcs(counters());
   148     TraceMemoryManagerStats tms(true /* Full GC */);
   150     if (TraceGen1Time) accumulated_time()->start();
   152     // Let the size policy know we're starting
   153     size_policy->major_collection_begin();
   155     // When collecting the permanent generation methodOops may be moving,
   156     // so we either have to flush all bcp data or convert it into bci.
   157     CodeCache::gc_prologue();
   158     Threads::gc_prologue();
   159     BiasedLocking::preserve_marks();
   161     // Capture heap size before collection for printing.
   162     size_t prev_used = heap->used();
   164     // Capture perm gen size before collection for sizing.
   165     size_t perm_gen_prev_used = perm_gen->used_in_bytes();
   167     // For PrintGCDetails
   168     size_t old_gen_prev_used = old_gen->used_in_bytes();
   169     size_t young_gen_prev_used = young_gen->used_in_bytes();
   171     allocate_stacks();
   173     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   174     COMPILER2_PRESENT(DerivedPointerTable::clear());
   176     ref_processor()->enable_discovery();
   177     ref_processor()->setup_policy(clear_all_softrefs);
   179     mark_sweep_phase1(clear_all_softrefs);
   181     mark_sweep_phase2();
   183     // Don't add any more derived pointers during phase3
   184     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
   185     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
   187     mark_sweep_phase3();
   189     mark_sweep_phase4();
   191     restore_marks();
   193     deallocate_stacks();
   195     if (ZapUnusedHeapArea) {
   196       // Do a complete mangle (top to end) because the usage for
   197       // scratch does not maintain a top pointer.
   198       young_gen->to_space()->mangle_unused_area_complete();
   199     }
   201     eden_empty = young_gen->eden_space()->is_empty();
   202     if (!eden_empty) {
   203       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
   204     }
   206     // Update heap occupancy information which is used as
   207     // input to soft ref clearing policy at the next gc.
   208     Universe::update_heap_info_at_gc();
   210     survivors_empty = young_gen->from_space()->is_empty() &&
   211                       young_gen->to_space()->is_empty();
   212     young_gen_empty = eden_empty && survivors_empty;
   214     BarrierSet* bs = heap->barrier_set();
   215     if (bs->is_a(BarrierSet::ModRef)) {
   216       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
   217       MemRegion old_mr = heap->old_gen()->reserved();
   218       MemRegion perm_mr = heap->perm_gen()->reserved();
   219       assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
   221       if (young_gen_empty) {
   222         modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
   223       } else {
   224         modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
   225       }
   226     }
   228     BiasedLocking::restore_marks();
   229     Threads::gc_epilogue();
   230     CodeCache::gc_epilogue();
   232     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   234     ref_processor()->enqueue_discovered_references(NULL);
   236     // Update time of last GC
   237     reset_millis_since_last_gc();
   239     // Let the size policy know we're done
   240     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
   242     if (UseAdaptiveSizePolicy) {
   244       if (PrintAdaptiveSizePolicy) {
   245         gclog_or_tty->print("AdaptiveSizeStart: ");
   246         gclog_or_tty->stamp();
   247         gclog_or_tty->print_cr(" collection: %d ",
   248                        heap->total_collections());
   249         if (Verbose) {
   250           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
   251             " perm_gen_capacity: %d ",
   252             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
   253             perm_gen->capacity_in_bytes());
   254         }
   255       }
   257       // Don't check if the size_policy is ready here.  Let
   258       // the size_policy check that internally.
   259       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
   260           ((gc_cause != GCCause::_java_lang_system_gc) ||
   261             UseAdaptiveSizePolicyWithSystemGC)) {
   262         // Calculate optimal free space amounts
   263         assert(young_gen->max_size() >
   264           young_gen->from_space()->capacity_in_bytes() +
   265           young_gen->to_space()->capacity_in_bytes(),
   266           "Sizes of space in young gen are out-of-bounds");
   267         size_t max_eden_size = young_gen->max_size() -
   268           young_gen->from_space()->capacity_in_bytes() -
   269           young_gen->to_space()->capacity_in_bytes();
   270         size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
   271                                  young_gen->eden_space()->used_in_bytes(),
   272                                  old_gen->used_in_bytes(),
   273                                  perm_gen->used_in_bytes(),
   274                                  young_gen->eden_space()->capacity_in_bytes(),
   275                                  old_gen->max_gen_size(),
   276                                  max_eden_size,
   277                                  true /* full gc*/,
   278                                  gc_cause);
   280         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
   282         // Don't resize the young generation at an major collection.  A
   283         // desired young generation size may have been calculated but
   284         // resizing the young generation complicates the code because the
   285         // resizing of the old generation may have moved the boundary
   286         // between the young generation and the old generation.  Let the
   287         // young generation resizing happen at the minor collections.
   288       }
   289       if (PrintAdaptiveSizePolicy) {
   290         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   291                        heap->total_collections());
   292       }
   293     }
   295     if (UsePerfData) {
   296       heap->gc_policy_counters()->update_counters();
   297       heap->gc_policy_counters()->update_old_capacity(
   298         old_gen->capacity_in_bytes());
   299       heap->gc_policy_counters()->update_young_capacity(
   300         young_gen->capacity_in_bytes());
   301     }
   303     heap->resize_all_tlabs();
   305     // We collected the perm gen, so we'll resize it here.
   306     perm_gen->compute_new_size(perm_gen_prev_used);
   308     if (TraceGen1Time) accumulated_time()->stop();
   310     if (PrintGC) {
   311       if (PrintGCDetails) {
   312         // Don't print a GC timestamp here.  This is after the GC so
   313         // would be confusing.
   314         young_gen->print_used_change(young_gen_prev_used);
   315         old_gen->print_used_change(old_gen_prev_used);
   316       }
   317       heap->print_heap_change(prev_used);
   318       // Do perm gen after heap becase prev_used does
   319       // not include the perm gen (done this way in the other
   320       // collectors).
   321       if (PrintGCDetails) {
   322         perm_gen->print_used_change(perm_gen_prev_used);
   323       }
   324     }
   326     // Track memory usage and detect low memory
   327     MemoryService::track_memory_usage();
   328     heap->update_counters();
   330     if (PrintGCDetails) {
   331       if (size_policy->print_gc_time_limit_would_be_exceeded()) {
   332         if (size_policy->gc_time_limit_exceeded()) {
   333           gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
   334             "of %d%%", GCTimeLimit);
   335         } else {
   336           gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
   337             "of %d%%", GCTimeLimit);
   338         }
   339       }
   340       size_policy->set_print_gc_time_limit_would_be_exceeded(false);
   341     }
   342   }
   344   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   345     HandleMark hm;  // Discard invalid handles created during verification
   346     gclog_or_tty->print(" VerifyAfterGC:");
   347     Universe::verify(false);
   348   }
   350   // Re-verify object start arrays
   351   if (VerifyObjectStartArray &&
   352       VerifyAfterGC) {
   353     old_gen->verify_object_start_array();
   354     perm_gen->verify_object_start_array();
   355   }
   357   if (ZapUnusedHeapArea) {
   358     old_gen->object_space()->check_mangled_unused_area_complete();
   359     perm_gen->object_space()->check_mangled_unused_area_complete();
   360   }
   362   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   364   if (PrintHeapAtGC) {
   365     Universe::print_heap_after_gc();
   366   }
   368   heap->post_full_gc_dump();
   370 #ifdef TRACESPINNING
   371   ParallelTaskTerminator::print_termination_counts();
   372 #endif
   373 }
   375 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
   376                                              PSYoungGen* young_gen,
   377                                              PSOldGen* old_gen) {
   378   MutableSpace* const eden_space = young_gen->eden_space();
   379   assert(!eden_space->is_empty(), "eden must be non-empty");
   380   assert(young_gen->virtual_space()->alignment() ==
   381          old_gen->virtual_space()->alignment(), "alignments do not match");
   383   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
   384     return false;
   385   }
   387   // Both generations must be completely committed.
   388   if (young_gen->virtual_space()->uncommitted_size() != 0) {
   389     return false;
   390   }
   391   if (old_gen->virtual_space()->uncommitted_size() != 0) {
   392     return false;
   393   }
   395   // Figure out how much to take from eden.  Include the average amount promoted
   396   // in the total; otherwise the next young gen GC will simply bail out to a
   397   // full GC.
   398   const size_t alignment = old_gen->virtual_space()->alignment();
   399   const size_t eden_used = eden_space->used_in_bytes();
   400   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
   401   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
   402   const size_t eden_capacity = eden_space->capacity_in_bytes();
   404   if (absorb_size >= eden_capacity) {
   405     return false; // Must leave some space in eden.
   406   }
   408   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
   409   if (new_young_size < young_gen->min_gen_size()) {
   410     return false; // Respect young gen minimum size.
   411   }
   413   if (TraceAdaptiveGCBoundary && Verbose) {
   414     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
   415                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
   416                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
   417                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
   418                         absorb_size / K,
   419                         eden_capacity / K, (eden_capacity - absorb_size) / K,
   420                         young_gen->from_space()->used_in_bytes() / K,
   421                         young_gen->to_space()->used_in_bytes() / K,
   422                         young_gen->capacity_in_bytes() / K, new_young_size / K);
   423   }
   425   // Fill the unused part of the old gen.
   426   MutableSpace* const old_space = old_gen->object_space();
   427   HeapWord* const unused_start = old_space->top();
   428   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
   430   if (unused_words > 0) {
   431     if (unused_words < CollectedHeap::min_fill_size()) {
   432       return false;  // If the old gen cannot be filled, must give up.
   433     }
   434     CollectedHeap::fill_with_objects(unused_start, unused_words);
   435   }
   437   // Take the live data from eden and set both top and end in the old gen to
   438   // eden top.  (Need to set end because reset_after_change() mangles the region
   439   // from end to virtual_space->high() in debug builds).
   440   HeapWord* const new_top = eden_space->top();
   441   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
   442                                         absorb_size);
   443   young_gen->reset_after_change();
   444   old_space->set_top(new_top);
   445   old_space->set_end(new_top);
   446   old_gen->reset_after_change();
   448   // Update the object start array for the filler object and the data from eden.
   449   ObjectStartArray* const start_array = old_gen->start_array();
   450   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
   451     start_array->allocate_block(p);
   452   }
   454   // Could update the promoted average here, but it is not typically updated at
   455   // full GCs and the value to use is unclear.  Something like
   456   //
   457   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
   459   size_policy->set_bytes_absorbed_from_eden(absorb_size);
   460   return true;
   461 }
   463 void PSMarkSweep::allocate_stacks() {
   464   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   465   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   467   PSYoungGen* young_gen = heap->young_gen();
   469   MutableSpace* to_space = young_gen->to_space();
   470   _preserved_marks = (PreservedMark*)to_space->top();
   471   _preserved_count = 0;
   473   // We want to calculate the size in bytes first.
   474   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
   475   // Now divide by the size of a PreservedMark
   476   _preserved_count_max /= sizeof(PreservedMark);
   478   _preserved_mark_stack = NULL;
   479   _preserved_oop_stack = NULL;
   481   _marking_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
   483   int size = SystemDictionary::number_of_classes() * 2;
   484   _revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
   485   // (#klass/k)^2, for k ~ 10 appears a better setting, but this will have to do for
   486   // now until we investigate a more optimal setting.
   487   _revisit_mdo_stack   = new (ResourceObj::C_HEAP) GrowableArray<DataLayout*>(size*2, true);
   488 }
   491 void PSMarkSweep::deallocate_stacks() {
   492   if (_preserved_oop_stack) {
   493     delete _preserved_mark_stack;
   494     _preserved_mark_stack = NULL;
   495     delete _preserved_oop_stack;
   496     _preserved_oop_stack = NULL;
   497   }
   499   delete _marking_stack;
   500   delete _revisit_klass_stack;
   501   delete _revisit_mdo_stack;
   502 }
   504 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
   505   // Recursively traverse all live objects and mark them
   506   EventMark m("1 mark object");
   507   TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
   508   trace(" 1");
   510   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   511   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   513   // General strong roots.
   514   {
   515     ParallelScavengeHeap::ParStrongRootsScope psrs;
   516     Universe::oops_do(mark_and_push_closure());
   517     ReferenceProcessor::oops_do(mark_and_push_closure());
   518     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
   519     CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
   520     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
   521     ObjectSynchronizer::oops_do(mark_and_push_closure());
   522     FlatProfiler::oops_do(mark_and_push_closure());
   523     Management::oops_do(mark_and_push_closure());
   524     JvmtiExport::oops_do(mark_and_push_closure());
   525     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
   526     vmSymbols::oops_do(mark_and_push_closure());
   527     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
   528     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
   529   }
   531   // Flush marking stack.
   532   follow_stack();
   534   // Process reference objects found during marking
   535   {
   536     ref_processor()->setup_policy(clear_all_softrefs);
   537     ref_processor()->process_discovered_references(
   538       is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL);
   539   }
   541   // Follow system dictionary roots and unload classes
   542   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
   544   // Follow code cache roots
   545   CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
   546                           purged_class);
   547   follow_stack(); // Flush marking stack
   549   // Update subklass/sibling/implementor links of live klasses
   550   follow_weak_klass_links();
   551   assert(_marking_stack->is_empty(), "just drained");
   553   // Visit memoized mdo's and clear unmarked weak refs
   554   follow_mdo_weak_refs();
   555   assert(_marking_stack->is_empty(), "just drained");
   557   // Visit symbol and interned string tables and delete unmarked oops
   558   SymbolTable::unlink(is_alive_closure());
   559   StringTable::unlink(is_alive_closure());
   561   assert(_marking_stack->is_empty(), "stack should be empty by now");
   562 }
   565 void PSMarkSweep::mark_sweep_phase2() {
   566   EventMark m("2 compute new addresses");
   567   TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
   568   trace("2");
   570   // Now all live objects are marked, compute the new object addresses.
   572   // It is imperative that we traverse perm_gen LAST. If dead space is
   573   // allowed a range of dead object may get overwritten by a dead int
   574   // array. If perm_gen is not traversed last a klassOop may get
   575   // overwritten. This is fine since it is dead, but if the class has dead
   576   // instances we have to skip them, and in order to find their size we
   577   // need the klassOop!
   578   //
   579   // It is not required that we traverse spaces in the same order in
   580   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
   581   // tracking expects us to do so. See comment under phase4.
   583   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   584   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   586   PSOldGen* old_gen = heap->old_gen();
   587   PSPermGen* perm_gen = heap->perm_gen();
   589   // Begin compacting into the old gen
   590   PSMarkSweepDecorator::set_destination_decorator_tenured();
   592   // This will also compact the young gen spaces.
   593   old_gen->precompact();
   595   // Compact the perm gen into the perm gen
   596   PSMarkSweepDecorator::set_destination_decorator_perm_gen();
   598   perm_gen->precompact();
   599 }
   601 // This should be moved to the shared markSweep code!
   602 class PSAlwaysTrueClosure: public BoolObjectClosure {
   603 public:
   604   void do_object(oop p) { ShouldNotReachHere(); }
   605   bool do_object_b(oop p) { return true; }
   606 };
   607 static PSAlwaysTrueClosure always_true;
   609 void PSMarkSweep::mark_sweep_phase3() {
   610   // Adjust the pointers to reflect the new locations
   611   EventMark m("3 adjust pointers");
   612   TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
   613   trace("3");
   615   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   616   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   618   PSYoungGen* young_gen = heap->young_gen();
   619   PSOldGen* old_gen = heap->old_gen();
   620   PSPermGen* perm_gen = heap->perm_gen();
   622   // General strong roots.
   623   Universe::oops_do(adjust_root_pointer_closure());
   624   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
   625   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
   626   Threads::oops_do(adjust_root_pointer_closure(), NULL);
   627   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
   628   FlatProfiler::oops_do(adjust_root_pointer_closure());
   629   Management::oops_do(adjust_root_pointer_closure());
   630   JvmtiExport::oops_do(adjust_root_pointer_closure());
   631   // SO_AllClasses
   632   SystemDictionary::oops_do(adjust_root_pointer_closure());
   633   vmSymbols::oops_do(adjust_root_pointer_closure());
   634   //CodeCache::scavenge_root_nmethods_oops_do(adjust_root_pointer_closure());
   636   // Now adjust pointers in remaining weak roots.  (All of which should
   637   // have been cleared if they pointed to non-surviving objects.)
   638   // Global (weak) JNI handles
   639   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
   641   CodeCache::oops_do(adjust_pointer_closure());
   642   SymbolTable::oops_do(adjust_root_pointer_closure());
   643   StringTable::oops_do(adjust_root_pointer_closure());
   644   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
   645   PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
   647   adjust_marks();
   649   young_gen->adjust_pointers();
   650   old_gen->adjust_pointers();
   651   perm_gen->adjust_pointers();
   652 }
   654 void PSMarkSweep::mark_sweep_phase4() {
   655   EventMark m("4 compact heap");
   656   TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
   657   trace("4");
   659   // All pointers are now adjusted, move objects accordingly
   661   // It is imperative that we traverse perm_gen first in phase4. All
   662   // classes must be allocated earlier than their instances, and traversing
   663   // perm_gen first makes sure that all klassOops have moved to their new
   664   // location before any instance does a dispatch through it's klass!
   665   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   666   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   668   PSYoungGen* young_gen = heap->young_gen();
   669   PSOldGen* old_gen = heap->old_gen();
   670   PSPermGen* perm_gen = heap->perm_gen();
   672   perm_gen->compact();
   673   old_gen->compact();
   674   young_gen->compact();
   675 }
   677 jlong PSMarkSweep::millis_since_last_gc() {
   678   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
   679   // XXX See note in genCollectedHeap::millis_since_last_gc().
   680   if (ret_val < 0) {
   681     NOT_PRODUCT(warning("time warp: %d", ret_val);)
   682     return 0;
   683   }
   684   return ret_val;
   685 }
   687 void PSMarkSweep::reset_millis_since_last_gc() {
   688   _time_of_last_gc = os::javaTimeMillis();
   689 }

mercurial