src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp

Wed, 23 Sep 2009 23:56:15 -0700

author
jrose
date
Wed, 23 Sep 2009 23:56:15 -0700
changeset 1428
54b3b351d6f9
parent 1370
05f89f00a864
child 1580
e018e6884bd8
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // ConcurrentMarkSweepGeneration is in support of a concurrent
    26 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
    27 // style. We assume, for now, that this generation is always the
    28 // seniormost generation (modulo the PermGeneration), and for simplicity
    29 // in the first implementation, that this generation is a single compactible
    30 // space. Neither of these restrictions appears essential, and will be
    31 // relaxed in the future when more time is available to implement the
    32 // greater generality (and there's a need for it).
    33 //
    34 // Concurrent mode failures are currently handled by
    35 // means of a sliding mark-compact.
    37 class CMSAdaptiveSizePolicy;
    38 class CMSConcMarkingTask;
    39 class CMSGCAdaptivePolicyCounters;
    40 class ConcurrentMarkSweepGeneration;
    41 class ConcurrentMarkSweepPolicy;
    42 class ConcurrentMarkSweepThread;
    43 class CompactibleFreeListSpace;
    44 class FreeChunk;
    45 class PromotionInfo;
    46 class ScanMarkedObjectsAgainCarefullyClosure;
    48 // A generic CMS bit map. It's the basis for both the CMS marking bit map
    49 // as well as for the mod union table (in each case only a subset of the
    50 // methods are used). This is essentially a wrapper around the BitMap class,
    51 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
    52 // we have _shifter == 0. and for the mod union table we have
    53 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
    54 // XXX 64-bit issues in BitMap?
    55 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
    56   friend class VMStructs;
    58   HeapWord* _bmStartWord;   // base address of range covered by map
    59   size_t    _bmWordSize;    // map size (in #HeapWords covered)
    60   const int _shifter;       // shifts to convert HeapWord to bit position
    61   VirtualSpace _virtual_space; // underlying the bit map
    62   BitMap    _bm;            // the bit map itself
    63  public:
    64   Mutex* const _lock;       // mutex protecting _bm;
    66  public:
    67   // constructor
    68   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
    70   // allocates the actual storage for the map
    71   bool allocate(MemRegion mr);
    72   // field getter
    73   Mutex* lock() const { return _lock; }
    74   // locking verifier convenience function
    75   void assert_locked() const PRODUCT_RETURN;
    77   // inquiries
    78   HeapWord* startWord()   const { return _bmStartWord; }
    79   size_t    sizeInWords() const { return _bmWordSize;  }
    80   size_t    sizeInBits()  const { return _bm.size();   }
    81   // the following is one past the last word in space
    82   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    84   // reading marks
    85   bool isMarked(HeapWord* addr) const;
    86   bool par_isMarked(HeapWord* addr) const; // do not lock checks
    87   bool isUnmarked(HeapWord* addr) const;
    88   bool isAllClear() const;
    90   // writing marks
    91   void mark(HeapWord* addr);
    92   // For marking by parallel GC threads;
    93   // returns true if we did, false if another thread did
    94   bool par_mark(HeapWord* addr);
    96   void mark_range(MemRegion mr);
    97   void par_mark_range(MemRegion mr);
    98   void mark_large_range(MemRegion mr);
    99   void par_mark_large_range(MemRegion mr);
   100   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
   101   void clear_range(MemRegion mr);
   102   void par_clear_range(MemRegion mr);
   103   void clear_large_range(MemRegion mr);
   104   void par_clear_large_range(MemRegion mr);
   105   void clear_all();
   106   void clear_all_incrementally();  // Not yet implemented!!
   108   NOT_PRODUCT(
   109     // checks the memory region for validity
   110     void region_invariant(MemRegion mr);
   111   )
   113   // iteration
   114   void iterate(BitMapClosure* cl) {
   115     _bm.iterate(cl);
   116   }
   117   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
   118   void dirty_range_iterate_clear(MemRegionClosure* cl);
   119   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
   121   // auxiliary support for iteration
   122   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
   123   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
   124                                             HeapWord* end_addr) const;
   125   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
   126   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
   127                                               HeapWord* end_addr) const;
   128   MemRegion getAndClearMarkedRegion(HeapWord* addr);
   129   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
   130                                            HeapWord* end_addr);
   132   // conversion utilities
   133   HeapWord* offsetToHeapWord(size_t offset) const;
   134   size_t    heapWordToOffset(HeapWord* addr) const;
   135   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
   137   // debugging
   138   // is this address range covered by the bit-map?
   139   NOT_PRODUCT(
   140     bool covers(MemRegion mr) const;
   141     bool covers(HeapWord* start, size_t size = 0) const;
   142   )
   143   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
   144 };
   146 // Represents a marking stack used by the CMS collector.
   147 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   148 class CMSMarkStack: public CHeapObj  {
   149   //
   150   friend class CMSCollector;   // to get at expasion stats further below
   151   //
   153   VirtualSpace _virtual_space;  // space for the stack
   154   oop*   _base;      // bottom of stack
   155   size_t _index;     // one more than last occupied index
   156   size_t _capacity;  // max #elements
   157   Mutex  _par_lock;  // an advisory lock used in case of parallel access
   158   NOT_PRODUCT(size_t _max_depth;)  // max depth plumbed during run
   160  protected:
   161   size_t _hit_limit;      // we hit max stack size limit
   162   size_t _failed_double;  // we failed expansion before hitting limit
   164  public:
   165   CMSMarkStack():
   166     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
   167     _hit_limit(0),
   168     _failed_double(0) {}
   170   bool allocate(size_t size);
   172   size_t capacity() const { return _capacity; }
   174   oop pop() {
   175     if (!isEmpty()) {
   176       return _base[--_index] ;
   177     }
   178     return NULL;
   179   }
   181   bool push(oop ptr) {
   182     if (isFull()) {
   183       return false;
   184     } else {
   185       _base[_index++] = ptr;
   186       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   187       return true;
   188     }
   189   }
   191   bool isEmpty() const { return _index == 0; }
   192   bool isFull()  const {
   193     assert(_index <= _capacity, "buffer overflow");
   194     return _index == _capacity;
   195   }
   197   size_t length() { return _index; }
   199   // "Parallel versions" of some of the above
   200   oop par_pop() {
   201     // lock and pop
   202     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   203     return pop();
   204   }
   206   bool par_push(oop ptr) {
   207     // lock and push
   208     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   209     return push(ptr);
   210   }
   212   // Forcibly reset the stack, losing all of its contents.
   213   void reset() {
   214     _index = 0;
   215   }
   217   // Expand the stack, typically in response to an overflow condition
   218   void expand();
   220   // Compute the least valued stack element.
   221   oop least_value(HeapWord* low) {
   222      oop least = (oop)low;
   223      for (size_t i = 0; i < _index; i++) {
   224        least = MIN2(least, _base[i]);
   225      }
   226      return least;
   227   }
   229   // Exposed here to allow stack expansion in || case
   230   Mutex* par_lock() { return &_par_lock; }
   231 };
   233 class CardTableRS;
   234 class CMSParGCThreadState;
   236 class ModUnionClosure: public MemRegionClosure {
   237  protected:
   238   CMSBitMap* _t;
   239  public:
   240   ModUnionClosure(CMSBitMap* t): _t(t) { }
   241   void do_MemRegion(MemRegion mr);
   242 };
   244 class ModUnionClosurePar: public ModUnionClosure {
   245  public:
   246   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
   247   void do_MemRegion(MemRegion mr);
   248 };
   250 // Survivor Chunk Array in support of parallelization of
   251 // Survivor Space rescan.
   252 class ChunkArray: public CHeapObj {
   253   size_t _index;
   254   size_t _capacity;
   255   HeapWord** _array;   // storage for array
   257  public:
   258   ChunkArray() : _index(0), _capacity(0), _array(NULL) {}
   259   ChunkArray(HeapWord** a, size_t c):
   260     _index(0), _capacity(c), _array(a) {}
   262   HeapWord** array() { return _array; }
   263   void set_array(HeapWord** a) { _array = a; }
   265   size_t capacity() { return _capacity; }
   266   void set_capacity(size_t c) { _capacity = c; }
   268   size_t end() {
   269     assert(_index < capacity(), "_index out of bounds");
   270     return _index;
   271   }  // exclusive
   273   HeapWord* nth(size_t n) {
   274     assert(n < end(), "Out of bounds access");
   275     return _array[n];
   276   }
   278   void reset() {
   279     _index = 0;
   280   }
   282   void record_sample(HeapWord* p, size_t sz) {
   283     // For now we do not do anything with the size
   284     if (_index < _capacity) {
   285       _array[_index++] = p;
   286     }
   287   }
   288 };
   290 //
   291 // Timing, allocation and promotion statistics for gc scheduling and incremental
   292 // mode pacing.  Most statistics are exponential averages.
   293 //
   294 class CMSStats VALUE_OBJ_CLASS_SPEC {
   295  private:
   296   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
   298   // The following are exponential averages with factor alpha:
   299   //   avg = (100 - alpha) * avg + alpha * cur_sample
   300   //
   301   //   The durations measure:  end_time[n] - start_time[n]
   302   //   The periods measure:    start_time[n] - start_time[n-1]
   303   //
   304   // The cms period and duration include only concurrent collections; time spent
   305   // in foreground cms collections due to System.gc() or because of a failure to
   306   // keep up are not included.
   307   //
   308   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
   309   // real value, but is used only after the first period.  A value of 100 is
   310   // used for the first sample so it gets the entire weight.
   311   unsigned int _saved_alpha; // 0-100
   312   unsigned int _gc0_alpha;
   313   unsigned int _cms_alpha;
   315   double _gc0_duration;
   316   double _gc0_period;
   317   size_t _gc0_promoted;         // bytes promoted per gc0
   318   double _cms_duration;
   319   double _cms_duration_pre_sweep; // time from initiation to start of sweep
   320   double _cms_duration_per_mb;
   321   double _cms_period;
   322   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
   324   // Timers.
   325   elapsedTimer _cms_timer;
   326   TimeStamp    _gc0_begin_time;
   327   TimeStamp    _cms_begin_time;
   328   TimeStamp    _cms_end_time;
   330   // Snapshots of the amount used in the CMS generation.
   331   size_t _cms_used_at_gc0_begin;
   332   size_t _cms_used_at_gc0_end;
   333   size_t _cms_used_at_cms_begin;
   335   // Used to prevent the duty cycle from being reduced in the middle of a cms
   336   // cycle.
   337   bool _allow_duty_cycle_reduction;
   339   enum {
   340     _GC0_VALID = 0x1,
   341     _CMS_VALID = 0x2,
   342     _ALL_VALID = _GC0_VALID | _CMS_VALID
   343   };
   345   unsigned int _valid_bits;
   347   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
   349  protected:
   351   // Return a duty cycle that avoids wild oscillations, by limiting the amount
   352   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
   353   // as a recommended value).
   354   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
   355                                              unsigned int new_duty_cycle);
   356   unsigned int icms_update_duty_cycle_impl();
   358  public:
   359   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
   360            unsigned int alpha = CMSExpAvgFactor);
   362   // Whether or not the statistics contain valid data; higher level statistics
   363   // cannot be called until this returns true (they require at least one young
   364   // gen and one cms cycle to have completed).
   365   bool valid() const;
   367   // Record statistics.
   368   void record_gc0_begin();
   369   void record_gc0_end(size_t cms_gen_bytes_used);
   370   void record_cms_begin();
   371   void record_cms_end();
   373   // Allow management of the cms timer, which must be stopped/started around
   374   // yield points.
   375   elapsedTimer& cms_timer()     { return _cms_timer; }
   376   void start_cms_timer()        { _cms_timer.start(); }
   377   void stop_cms_timer()         { _cms_timer.stop(); }
   379   // Basic statistics; units are seconds or bytes.
   380   double gc0_period() const     { return _gc0_period; }
   381   double gc0_duration() const   { return _gc0_duration; }
   382   size_t gc0_promoted() const   { return _gc0_promoted; }
   383   double cms_period() const          { return _cms_period; }
   384   double cms_duration() const        { return _cms_duration; }
   385   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
   386   size_t cms_allocated() const       { return _cms_allocated; }
   388   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
   390   // Seconds since the last background cms cycle began or ended.
   391   double cms_time_since_begin() const;
   392   double cms_time_since_end() const;
   394   // Higher level statistics--caller must check that valid() returns true before
   395   // calling.
   397   // Returns bytes promoted per second of wall clock time.
   398   double promotion_rate() const;
   400   // Returns bytes directly allocated per second of wall clock time.
   401   double cms_allocation_rate() const;
   403   // Rate at which space in the cms generation is being consumed (sum of the
   404   // above two).
   405   double cms_consumption_rate() const;
   407   // Returns an estimate of the number of seconds until the cms generation will
   408   // fill up, assuming no collection work is done.
   409   double time_until_cms_gen_full() const;
   411   // Returns an estimate of the number of seconds remaining until
   412   // the cms generation collection should start.
   413   double time_until_cms_start() const;
   415   // End of higher level statistics.
   417   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
   418   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
   420   // Update the duty cycle and return the new value.
   421   unsigned int icms_update_duty_cycle();
   423   // Debugging.
   424   void print_on(outputStream* st) const PRODUCT_RETURN;
   425   void print() const { print_on(gclog_or_tty); }
   426 };
   428 // A closure related to weak references processing which
   429 // we embed in the CMSCollector, since we need to pass
   430 // it to the reference processor for secondary filtering
   431 // of references based on reachability of referent;
   432 // see role of _is_alive_non_header closure in the
   433 // ReferenceProcessor class.
   434 // For objects in the CMS generation, this closure checks
   435 // if the object is "live" (reachable). Used in weak
   436 // reference processing.
   437 class CMSIsAliveClosure: public BoolObjectClosure {
   438   const MemRegion  _span;
   439   const CMSBitMap* _bit_map;
   441   friend class CMSCollector;
   442  public:
   443   CMSIsAliveClosure(MemRegion span,
   444                     CMSBitMap* bit_map):
   445     _span(span),
   446     _bit_map(bit_map) {
   447     assert(!span.is_empty(), "Empty span could spell trouble");
   448   }
   450   void do_object(oop obj) {
   451     assert(false, "not to be invoked");
   452   }
   454   bool do_object_b(oop obj);
   455 };
   458 // Implements AbstractRefProcTaskExecutor for CMS.
   459 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   460 public:
   462   CMSRefProcTaskExecutor(CMSCollector& collector)
   463     : _collector(collector)
   464   { }
   466   // Executes a task using worker threads.
   467   virtual void execute(ProcessTask& task);
   468   virtual void execute(EnqueueTask& task);
   469 private:
   470   CMSCollector& _collector;
   471 };
   474 class CMSCollector: public CHeapObj {
   475   friend class VMStructs;
   476   friend class ConcurrentMarkSweepThread;
   477   friend class ConcurrentMarkSweepGeneration;
   478   friend class CompactibleFreeListSpace;
   479   friend class CMSParRemarkTask;
   480   friend class CMSConcMarkingTask;
   481   friend class CMSRefProcTaskProxy;
   482   friend class CMSRefProcTaskExecutor;
   483   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
   484   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
   485   friend class PushOrMarkClosure;             // to access _restart_addr
   486   friend class Par_PushOrMarkClosure;             // to access _restart_addr
   487   friend class MarkFromRootsClosure;          //  -- ditto --
   488                                               // ... and for clearing cards
   489   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
   490                                               // ... and for clearing cards
   491   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
   492   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
   493   friend class PushAndMarkVerifyClosure;      //  -- ditto --
   494   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
   495   friend class PushAndMarkClosure;            //  -- ditto --
   496   friend class Par_PushAndMarkClosure;        //  -- ditto --
   497   friend class CMSKeepAliveClosure;           //  -- ditto --
   498   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
   499   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
   500   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
   501   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
   502   friend class VM_CMS_Operation;
   503   friend class VM_CMS_Initial_Mark;
   504   friend class VM_CMS_Final_Remark;
   506  private:
   507   jlong _time_of_last_gc;
   508   void update_time_of_last_gc(jlong now) {
   509     _time_of_last_gc = now;
   510   }
   512   OopTaskQueueSet* _task_queues;
   514   // Overflow list of grey objects, threaded through mark-word
   515   // Manipulated with CAS in the parallel/multi-threaded case.
   516   oop _overflow_list;
   517   // The following array-pair keeps track of mark words
   518   // displaced for accomodating overflow list above.
   519   // This code will likely be revisited under RFE#4922830.
   520   GrowableArray<oop>*     _preserved_oop_stack;
   521   GrowableArray<markOop>* _preserved_mark_stack;
   523   int*             _hash_seed;
   525   // In support of multi-threaded concurrent phases
   526   YieldingFlexibleWorkGang* _conc_workers;
   528   // Performance Counters
   529   CollectorCounters* _gc_counters;
   531   // Initialization Errors
   532   bool _completed_initialization;
   534   // In support of ExplicitGCInvokesConcurrent
   535   static   bool _full_gc_requested;
   536   unsigned int  _collection_count_start;
   538   // Should we unload classes this concurrent cycle?
   539   bool _should_unload_classes;
   540   unsigned int  _concurrent_cycles_since_last_unload;
   541   unsigned int concurrent_cycles_since_last_unload() const {
   542     return _concurrent_cycles_since_last_unload;
   543   }
   544   // Did we (allow) unload classes in the previous concurrent cycle?
   545   bool unloaded_classes_last_cycle() const {
   546     return concurrent_cycles_since_last_unload() == 0;
   547   }
   548   // Root scanning options for perm gen
   549   int _roots_scanning_options;
   550   int roots_scanning_options() const      { return _roots_scanning_options; }
   551   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
   552   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
   554   // Verification support
   555   CMSBitMap     _verification_mark_bm;
   556   void verify_after_remark_work_1();
   557   void verify_after_remark_work_2();
   559   // true if any verification flag is on.
   560   bool _verifying;
   561   bool verifying() const { return _verifying; }
   562   void set_verifying(bool v) { _verifying = v; }
   564   // Collector policy
   565   ConcurrentMarkSweepPolicy* _collector_policy;
   566   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
   568   // Check whether the gc time limit has been
   569   // exceeded and set the size policy flag
   570   // appropriately.
   571   void check_gc_time_limit();
   572   // XXX Move these to CMSStats ??? FIX ME !!!
   573   elapsedTimer _sweep_timer;
   574   AdaptivePaddedAverage _sweep_estimate;
   576  protected:
   577   ConcurrentMarkSweepGeneration* _cmsGen;  // old gen (CMS)
   578   ConcurrentMarkSweepGeneration* _permGen; // perm gen
   579   MemRegion                      _span;    // span covering above two
   580   CardTableRS*                   _ct;      // card table
   582   // CMS marking support structures
   583   CMSBitMap     _markBitMap;
   584   CMSBitMap     _modUnionTable;
   585   CMSMarkStack  _markStack;
   586   CMSMarkStack  _revisitStack;            // used to keep track of klassKlass objects
   587                                           // to revisit
   588   CMSBitMap     _perm_gen_verify_bit_map; // Mark bit map for perm gen verification support.
   590   HeapWord*     _restart_addr; // in support of marking stack overflow
   591   void          lower_restart_addr(HeapWord* low);
   593   // Counters in support of marking stack / work queue overflow handling:
   594   // a non-zero value indicates certain types of overflow events during
   595   // the current CMS cycle and could lead to stack resizing efforts at
   596   // an opportune future time.
   597   size_t        _ser_pmc_preclean_ovflw;
   598   size_t        _ser_pmc_remark_ovflw;
   599   size_t        _par_pmc_remark_ovflw;
   600   size_t        _ser_kac_preclean_ovflw;
   601   size_t        _ser_kac_ovflw;
   602   size_t        _par_kac_ovflw;
   603   NOT_PRODUCT(ssize_t _num_par_pushes;)
   605   // ("Weak") Reference processing support
   606   ReferenceProcessor*            _ref_processor;
   607   CMSIsAliveClosure              _is_alive_closure;
   608       // keep this textually after _markBitMap and _span; c'tor dependency
   610   ConcurrentMarkSweepThread*     _cmsThread;   // the thread doing the work
   611   ModUnionClosure    _modUnionClosure;
   612   ModUnionClosurePar _modUnionClosurePar;
   614   // CMS abstract state machine
   615   // initial_state: Idling
   616   // next_state(Idling)            = {Marking}
   617   // next_state(Marking)           = {Precleaning, Sweeping}
   618   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
   619   // next_state(AbortablePreclean) = {FinalMarking}
   620   // next_state(FinalMarking)      = {Sweeping}
   621   // next_state(Sweeping)          = {Resizing}
   622   // next_state(Resizing)          = {Resetting}
   623   // next_state(Resetting)         = {Idling}
   624   // The numeric values below are chosen so that:
   625   // . _collectorState <= Idling ==  post-sweep && pre-mark
   626   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
   627   //                                            precleaning || abortablePrecleanb
   628   enum CollectorState {
   629     Resizing            = 0,
   630     Resetting           = 1,
   631     Idling              = 2,
   632     InitialMarking      = 3,
   633     Marking             = 4,
   634     Precleaning         = 5,
   635     AbortablePreclean   = 6,
   636     FinalMarking        = 7,
   637     Sweeping            = 8
   638   };
   639   static CollectorState _collectorState;
   641   // State related to prologue/epilogue invocation for my generations
   642   bool _between_prologue_and_epilogue;
   644   // Signalling/State related to coordination between fore- and backgroud GC
   645   // Note: When the baton has been passed from background GC to foreground GC,
   646   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
   647   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
   648                                  // wants to go active
   649   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
   650                                  // yet passed the baton to the foreground GC
   652   // Support for CMSScheduleRemark (abortable preclean)
   653   bool _abort_preclean;
   654   bool _start_sampling;
   656   int    _numYields;
   657   size_t _numDirtyCards;
   658   uint   _sweepCount;
   659   // number of full gc's since the last concurrent gc.
   660   uint   _full_gcs_since_conc_gc;
   662   // occupancy used for bootstrapping stats
   663   double _bootstrap_occupancy;
   665   // timer
   666   elapsedTimer _timer;
   668   // Timing, allocation and promotion statistics, used for scheduling.
   669   CMSStats      _stats;
   671   // Allocation limits installed in the young gen, used only in
   672   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
   673   // these limits, the cms generation is notified and the cms thread is started
   674   // or stopped, respectively.
   675   HeapWord*     _icms_start_limit;
   676   HeapWord*     _icms_stop_limit;
   678   enum CMS_op_type {
   679     CMS_op_checkpointRootsInitial,
   680     CMS_op_checkpointRootsFinal
   681   };
   683   void do_CMS_operation(CMS_op_type op);
   684   bool stop_world_and_do(CMS_op_type op);
   686   OopTaskQueueSet* task_queues() { return _task_queues; }
   687   int*             hash_seed(int i) { return &_hash_seed[i]; }
   688   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
   690   // Support for parallelizing Eden rescan in CMS remark phase
   691   void sample_eden(); // ... sample Eden space top
   693  private:
   694   // Support for parallelizing young gen rescan in CMS remark phase
   695   Generation* _young_gen;  // the younger gen
   696   HeapWord** _top_addr;    // ... Top of Eden
   697   HeapWord** _end_addr;    // ... End of Eden
   698   HeapWord** _eden_chunk_array; // ... Eden partitioning array
   699   size_t     _eden_chunk_index; // ... top (exclusive) of array
   700   size_t     _eden_chunk_capacity;  // ... max entries in array
   702   // Support for parallelizing survivor space rescan
   703   HeapWord** _survivor_chunk_array;
   704   size_t     _survivor_chunk_index;
   705   size_t     _survivor_chunk_capacity;
   706   size_t*    _cursor;
   707   ChunkArray* _survivor_plab_array;
   709   // Support for marking stack overflow handling
   710   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
   711   bool par_take_from_overflow_list(size_t num, OopTaskQueue* to_work_q);
   712   void push_on_overflow_list(oop p);
   713   void par_push_on_overflow_list(oop p);
   714   // the following is, obviously, not, in general, "MT-stable"
   715   bool overflow_list_is_empty() const;
   717   void preserve_mark_if_necessary(oop p);
   718   void par_preserve_mark_if_necessary(oop p);
   719   void preserve_mark_work(oop p, markOop m);
   720   void restore_preserved_marks_if_any();
   721   NOT_PRODUCT(bool no_preserved_marks() const;)
   722   // in support of testing overflow code
   723   NOT_PRODUCT(int _overflow_counter;)
   724   NOT_PRODUCT(bool simulate_overflow();)       // sequential
   725   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
   727   // CMS work methods
   728   void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
   730   // a return value of false indicates failure due to stack overflow
   731   bool markFromRootsWork(bool asynch);  // concurrent marking work
   733  public:   // FIX ME!!! only for testing
   734   bool do_marking_st(bool asynch);      // single-threaded marking
   735   bool do_marking_mt(bool asynch);      // multi-threaded  marking
   737  private:
   739   // concurrent precleaning work
   740   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
   741                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
   742   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
   743                              ScanMarkedObjectsAgainCarefullyClosure* cl);
   744   // Does precleaning work, returning a quantity indicative of
   745   // the amount of "useful work" done.
   746   size_t preclean_work(bool clean_refs, bool clean_survivors);
   747   void abortable_preclean(); // Preclean while looking for possible abort
   748   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
   749   // Helper function for above; merge-sorts the per-thread plab samples
   750   void merge_survivor_plab_arrays(ContiguousSpace* surv);
   751   // Resets (i.e. clears) the per-thread plab sample vectors
   752   void reset_survivor_plab_arrays();
   754   // final (second) checkpoint work
   755   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
   756                                 bool init_mark_was_synchronous);
   757   // work routine for parallel version of remark
   758   void do_remark_parallel();
   759   // work routine for non-parallel version of remark
   760   void do_remark_non_parallel();
   761   // reference processing work routine (during second checkpoint)
   762   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
   764   // concurrent sweeping work
   765   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
   767   // (concurrent) resetting of support data structures
   768   void reset(bool asynch);
   770   // Clear _expansion_cause fields of constituent generations
   771   void clear_expansion_cause();
   773   // An auxilliary method used to record the ends of
   774   // used regions of each generation to limit the extent of sweep
   775   void save_sweep_limits();
   777   // Resize the generations included in the collector.
   778   void compute_new_size();
   780   // A work method used by foreground collection to determine
   781   // what type of collection (compacting or not, continuing or fresh)
   782   // it should do.
   783   void decide_foreground_collection_type(bool clear_all_soft_refs,
   784     bool* should_compact, bool* should_start_over);
   786   // A work method used by the foreground collector to do
   787   // a mark-sweep-compact.
   788   void do_compaction_work(bool clear_all_soft_refs);
   790   // A work method used by the foreground collector to do
   791   // a mark-sweep, after taking over from a possibly on-going
   792   // concurrent mark-sweep collection.
   793   void do_mark_sweep_work(bool clear_all_soft_refs,
   794     CollectorState first_state, bool should_start_over);
   796   // If the backgrould GC is active, acquire control from the background
   797   // GC and do the collection.
   798   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
   800   // For synchronizing passing of control from background to foreground
   801   // GC.  waitForForegroundGC() is called by the background
   802   // collector.  It if had to wait for a foreground collection,
   803   // it returns true and the background collection should assume
   804   // that the collection was finished by the foreground
   805   // collector.
   806   bool waitForForegroundGC();
   808   // Incremental mode triggering:  recompute the icms duty cycle and set the
   809   // allocation limits in the young gen.
   810   void icms_update_allocation_limits();
   812   size_t block_size_using_printezis_bits(HeapWord* addr) const;
   813   size_t block_size_if_printezis_bits(HeapWord* addr) const;
   814   HeapWord* next_card_start_after_block(HeapWord* addr) const;
   816   void setup_cms_unloading_and_verification_state();
   817  public:
   818   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   819                ConcurrentMarkSweepGeneration* permGen,
   820                CardTableRS*                   ct,
   821                ConcurrentMarkSweepPolicy*     cp);
   822   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
   824   ReferenceProcessor* ref_processor() { return _ref_processor; }
   825   void ref_processor_init();
   827   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
   828   static CollectorState abstract_state() { return _collectorState;  }
   830   bool should_abort_preclean() const; // Whether preclean should be aborted.
   831   size_t get_eden_used() const;
   832   size_t get_eden_capacity() const;
   834   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
   836   // locking checks
   837   NOT_PRODUCT(static bool have_cms_token();)
   839   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
   840   bool shouldConcurrentCollect();
   842   void collect(bool   full,
   843                bool   clear_all_soft_refs,
   844                size_t size,
   845                bool   tlab);
   846   void collect_in_background(bool clear_all_soft_refs);
   847   void collect_in_foreground(bool clear_all_soft_refs);
   849   // In support of ExplicitGCInvokesConcurrent
   850   static void request_full_gc(unsigned int full_gc_count);
   851   // Should we unload classes in a particular concurrent cycle?
   852   bool should_unload_classes() const {
   853     return _should_unload_classes;
   854   }
   855   bool update_should_unload_classes();
   857   void direct_allocated(HeapWord* start, size_t size);
   859   // Object is dead if not marked and current phase is sweeping.
   860   bool is_dead_obj(oop obj) const;
   862   // After a promotion (of "start"), do any necessary marking.
   863   // If "par", then it's being done by a parallel GC thread.
   864   // The last two args indicate if we need precise marking
   865   // and if so the size of the object so it can be dirtied
   866   // in its entirety.
   867   void promoted(bool par, HeapWord* start,
   868                 bool is_obj_array, size_t obj_size);
   870   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   871                                      size_t word_size);
   873   void getFreelistLocks() const;
   874   void releaseFreelistLocks() const;
   875   bool haveFreelistLocks() const;
   877   // GC prologue and epilogue
   878   void gc_prologue(bool full);
   879   void gc_epilogue(bool full);
   881   jlong time_of_last_gc(jlong now) {
   882     if (_collectorState <= Idling) {
   883       // gc not in progress
   884       return _time_of_last_gc;
   885     } else {
   886       // collection in progress
   887       return now;
   888     }
   889   }
   891   // Support for parallel remark of survivor space
   892   void* get_data_recorder(int thr_num);
   894   CMSBitMap* markBitMap()  { return &_markBitMap; }
   895   void directAllocated(HeapWord* start, size_t size);
   897   // main CMS steps and related support
   898   void checkpointRootsInitial(bool asynch);
   899   bool markFromRoots(bool asynch);  // a return value of false indicates failure
   900                                     // due to stack overflow
   901   void preclean();
   902   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
   903                             bool init_mark_was_synchronous);
   904   void sweep(bool asynch);
   906   // Check that the currently executing thread is the expected
   907   // one (foreground collector or background collector).
   908   void check_correct_thread_executing()        PRODUCT_RETURN;
   909   // XXXPERM void print_statistics()           PRODUCT_RETURN;
   911   bool is_cms_reachable(HeapWord* addr);
   913   // Performance Counter Support
   914   CollectorCounters* counters()    { return _gc_counters; }
   916   // timer stuff
   917   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
   918   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
   919   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
   920   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
   922   int  yields()          { return _numYields; }
   923   void resetYields()     { _numYields = 0;    }
   924   void incrementYields() { _numYields++;      }
   925   void resetNumDirtyCards()               { _numDirtyCards = 0; }
   926   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
   927   size_t  numDirtyCards()                 { return _numDirtyCards; }
   929   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
   930   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
   931   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
   932   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
   933   uint  sweepCount() const             { return _sweepCount; }
   934   void incrementSweepCount()           { _sweepCount++; }
   936   // Timers/stats for gc scheduling and incremental mode pacing.
   937   CMSStats& stats() { return _stats; }
   939   // Convenience methods that check whether CMSIncrementalMode is enabled and
   940   // forward to the corresponding methods in ConcurrentMarkSweepThread.
   941   static void start_icms();
   942   static void stop_icms();    // Called at the end of the cms cycle.
   943   static void disable_icms(); // Called before a foreground collection.
   944   static void enable_icms();  // Called after a foreground collection.
   945   void icms_wait();          // Called at yield points.
   947   // Adaptive size policy
   948   CMSAdaptiveSizePolicy* size_policy();
   949   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
   951   // debugging
   952   void verify(bool);
   953   bool verify_after_remark();
   954   void verify_ok_to_terminate() const PRODUCT_RETURN;
   955   void verify_work_stacks_empty() const PRODUCT_RETURN;
   956   void verify_overflow_empty() const PRODUCT_RETURN;
   958   // convenience methods in support of debugging
   959   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
   960   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
   962   // accessors
   963   CMSMarkStack* verification_mark_stack() { return &_markStack; }
   964   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
   966   // Get the bit map with a perm gen "deadness" information.
   967   CMSBitMap* perm_gen_verify_bit_map()       { return &_perm_gen_verify_bit_map; }
   969   // Initialization errors
   970   bool completed_initialization() { return _completed_initialization; }
   971 };
   973 class CMSExpansionCause : public AllStatic  {
   974  public:
   975   enum Cause {
   976     _no_expansion,
   977     _satisfy_free_ratio,
   978     _satisfy_promotion,
   979     _satisfy_allocation,
   980     _allocate_par_lab,
   981     _allocate_par_spooling_space,
   982     _adaptive_size_policy
   983   };
   984   // Return a string describing the cause of the expansion.
   985   static const char* to_string(CMSExpansionCause::Cause cause);
   986 };
   988 class ConcurrentMarkSweepGeneration: public CardGeneration {
   989   friend class VMStructs;
   990   friend class ConcurrentMarkSweepThread;
   991   friend class ConcurrentMarkSweep;
   992   friend class CMSCollector;
   993  protected:
   994   static CMSCollector*       _collector; // the collector that collects us
   995   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
   997   // Performance Counters
   998   GenerationCounters*      _gen_counters;
   999   GSpaceCounters*          _space_counters;
  1001   // Words directly allocated, used by CMSStats.
  1002   size_t _direct_allocated_words;
  1004   // Non-product stat counters
  1005   NOT_PRODUCT(
  1006     int _numObjectsPromoted;
  1007     int _numWordsPromoted;
  1008     int _numObjectsAllocated;
  1009     int _numWordsAllocated;
  1012   // Used for sizing decisions
  1013   bool _incremental_collection_failed;
  1014   bool incremental_collection_failed() {
  1015     return _incremental_collection_failed;
  1017   void set_incremental_collection_failed() {
  1018     _incremental_collection_failed = true;
  1020   void clear_incremental_collection_failed() {
  1021     _incremental_collection_failed = false;
  1024   // accessors
  1025   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
  1026   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
  1028  private:
  1029   // For parallel young-gen GC support.
  1030   CMSParGCThreadState** _par_gc_thread_states;
  1032   // Reason generation was expanded
  1033   CMSExpansionCause::Cause _expansion_cause;
  1035   // In support of MinChunkSize being larger than min object size
  1036   const double _dilatation_factor;
  1038   enum CollectionTypes {
  1039     Concurrent_collection_type          = 0,
  1040     MS_foreground_collection_type       = 1,
  1041     MSC_foreground_collection_type      = 2,
  1042     Unknown_collection_type             = 3
  1043   };
  1045   CollectionTypes _debug_collection_type;
  1047   // Fraction of current occupancy at which to start a CMS collection which
  1048   // will collect this generation (at least).
  1049   double _initiating_occupancy;
  1051  protected:
  1052   // Shrink generation by specified size (returns false if unable to shrink)
  1053   virtual void shrink_by(size_t bytes);
  1055   // Update statistics for GC
  1056   virtual void update_gc_stats(int level, bool full);
  1058   // Maximum available space in the generation (including uncommitted)
  1059   // space.
  1060   size_t max_available() const;
  1062   // getter and initializer for _initiating_occupancy field.
  1063   double initiating_occupancy() const { return _initiating_occupancy; }
  1064   void   init_initiating_occupancy(intx io, intx tr);
  1066  public:
  1067   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1068                                 int level, CardTableRS* ct,
  1069                                 bool use_adaptive_freelists,
  1070                                 FreeBlockDictionary::DictionaryChoice);
  1072   // Accessors
  1073   CMSCollector* collector() const { return _collector; }
  1074   static void set_collector(CMSCollector* collector) {
  1075     assert(_collector == NULL, "already set");
  1076     _collector = collector;
  1078   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
  1080   Mutex* freelistLock() const;
  1082   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
  1084   // Adaptive size policy
  1085   CMSAdaptiveSizePolicy* size_policy();
  1087   bool refs_discovery_is_atomic() const { return false; }
  1088   bool refs_discovery_is_mt()     const {
  1089     // Note: CMS does MT-discovery during the parallel-remark
  1090     // phases. Use ReferenceProcessorMTMutator to make refs
  1091     // discovery MT-safe during such phases or other parallel
  1092     // discovery phases in the future. This may all go away
  1093     // if/when we decide that refs discovery is sufficiently
  1094     // rare that the cost of the CAS's involved is in the
  1095     // noise. That's a measurement that should be done, and
  1096     // the code simplified if that turns out to be the case.
  1097     return false;
  1100   // Override
  1101   virtual void ref_processor_init();
  1103   // Grow generation by specified size (returns false if unable to grow)
  1104   bool grow_by(size_t bytes);
  1105   // Grow generation to reserved size.
  1106   bool grow_to_reserved();
  1108   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
  1110   // Space enquiries
  1111   size_t capacity() const;
  1112   size_t used() const;
  1113   size_t free() const;
  1114   double occupancy() const { return ((double)used())/((double)capacity()); }
  1115   size_t contiguous_available() const;
  1116   size_t unsafe_max_alloc_nogc() const;
  1118   // over-rides
  1119   MemRegion used_region() const;
  1120   MemRegion used_region_at_save_marks() const;
  1122   // Does a "full" (forced) collection invoked on this generation collect
  1123   // all younger generations as well? Note that the second conjunct is a
  1124   // hack to allow the collection of the younger gen first if the flag is
  1125   // set. This is better than using th policy's should_collect_gen0_first()
  1126   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
  1127   virtual bool full_collects_younger_generations() const {
  1128     return UseCMSCompactAtFullCollection && !CollectGen0First;
  1131   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
  1133   // Support for compaction
  1134   CompactibleSpace* first_compaction_space() const;
  1135   // Adjust quantites in the generation affected by
  1136   // the compaction.
  1137   void reset_after_compaction();
  1139   // Allocation support
  1140   HeapWord* allocate(size_t size, bool tlab);
  1141   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
  1142   oop       promote(oop obj, size_t obj_size);
  1143   HeapWord* par_allocate(size_t size, bool tlab) {
  1144     return allocate(size, tlab);
  1147   // Incremental mode triggering.
  1148   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
  1149                                      size_t word_size);
  1151   // Used by CMSStats to track direct allocation.  The value is sampled and
  1152   // reset after each young gen collection.
  1153   size_t direct_allocated_words() const { return _direct_allocated_words; }
  1154   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
  1156   // Overrides for parallel promotion.
  1157   virtual oop par_promote(int thread_num,
  1158                           oop obj, markOop m, size_t word_sz);
  1159   // This one should not be called for CMS.
  1160   virtual void par_promote_alloc_undo(int thread_num,
  1161                                       HeapWord* obj, size_t word_sz);
  1162   virtual void par_promote_alloc_done(int thread_num);
  1163   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
  1165   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
  1166     bool younger_handles_promotion_failure) const;
  1168   bool should_collect(bool full, size_t size, bool tlab);
  1169   virtual bool should_concurrent_collect() const;
  1170   virtual bool is_too_full() const;
  1171   void collect(bool   full,
  1172                bool   clear_all_soft_refs,
  1173                size_t size,
  1174                bool   tlab);
  1176   HeapWord* expand_and_allocate(size_t word_size,
  1177                                 bool tlab,
  1178                                 bool parallel = false);
  1180   // GC prologue and epilogue
  1181   void gc_prologue(bool full);
  1182   void gc_prologue_work(bool full, bool registerClosure,
  1183                         ModUnionClosure* modUnionClosure);
  1184   void gc_epilogue(bool full);
  1185   void gc_epilogue_work(bool full);
  1187   // Time since last GC of this generation
  1188   jlong time_of_last_gc(jlong now) {
  1189     return collector()->time_of_last_gc(now);
  1191   void update_time_of_last_gc(jlong now) {
  1192     collector()-> update_time_of_last_gc(now);
  1195   // Allocation failure
  1196   void expand(size_t bytes, size_t expand_bytes,
  1197     CMSExpansionCause::Cause cause);
  1198   virtual bool expand(size_t bytes, size_t expand_bytes);
  1199   void shrink(size_t bytes);
  1200   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
  1201   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
  1203   // Iteration support and related enquiries
  1204   void save_marks();
  1205   bool no_allocs_since_save_marks();
  1206   void object_iterate_since_last_GC(ObjectClosure* cl);
  1207   void younger_refs_iterate(OopsInGenClosure* cl);
  1209   // Iteration support specific to CMS generations
  1210   void save_sweep_limit();
  1212   // More iteration support
  1213   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
  1214   virtual void oop_iterate(OopClosure* cl);
  1215   virtual void safe_object_iterate(ObjectClosure* cl);
  1216   virtual void object_iterate(ObjectClosure* cl);
  1218   // Need to declare the full complement of closures, whether we'll
  1219   // override them or not, or get message from the compiler:
  1220   //   oop_since_save_marks_iterate_nv hides virtual function...
  1221   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
  1222     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  1223   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
  1225   // Smart allocation  XXX -- move to CFLSpace?
  1226   void setNearLargestChunk();
  1227   bool isNearLargestChunk(HeapWord* addr);
  1229   // Get the chunk at the end of the space.  Delagates to
  1230   // the space.
  1231   FreeChunk* find_chunk_at_end();
  1233   // Overriding of unused functionality (sharing not yet supported with CMS)
  1234   void pre_adjust_pointers();
  1235   void post_compact();
  1237   // Debugging
  1238   void prepare_for_verify();
  1239   void verify(bool allow_dirty);
  1240   void print_statistics()               PRODUCT_RETURN;
  1242   // Performance Counters support
  1243   virtual void update_counters();
  1244   virtual void update_counters(size_t used);
  1245   void initialize_performance_counters();
  1246   CollectorCounters* counters()  { return collector()->counters(); }
  1248   // Support for parallel remark of survivor space
  1249   void* get_data_recorder(int thr_num) {
  1250     //Delegate to collector
  1251     return collector()->get_data_recorder(thr_num);
  1254   // Printing
  1255   const char* name() const;
  1256   virtual const char* short_name() const { return "CMS"; }
  1257   void        print() const;
  1258   void printOccupancy(const char* s);
  1259   bool must_be_youngest() const { return false; }
  1260   bool must_be_oldest()   const { return true; }
  1262   void compute_new_size();
  1264   CollectionTypes debug_collection_type() { return _debug_collection_type; }
  1265   void rotate_debug_collection_type();
  1266 };
  1268 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
  1270   // Return the size policy from the heap's collector
  1271   // policy casted to CMSAdaptiveSizePolicy*.
  1272   CMSAdaptiveSizePolicy* cms_size_policy() const;
  1274   // Resize the generation based on the adaptive size
  1275   // policy.
  1276   void resize(size_t cur_promo, size_t desired_promo);
  1278   // Return the GC counters from the collector policy
  1279   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
  1281   virtual void shrink_by(size_t bytes);
  1283  public:
  1284   virtual void compute_new_size();
  1285   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1286                                   int level, CardTableRS* ct,
  1287                                   bool use_adaptive_freelists,
  1288                                   FreeBlockDictionary::DictionaryChoice
  1289                                     dictionaryChoice) :
  1290     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
  1291       use_adaptive_freelists, dictionaryChoice) {}
  1293   virtual const char* short_name() const { return "ASCMS"; }
  1294   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
  1296   virtual void update_counters();
  1297   virtual void update_counters(size_t used);
  1298 };
  1300 //
  1301 // Closures of various sorts used by CMS to accomplish its work
  1302 //
  1304 // This closure is used to check that a certain set of oops is empty.
  1305 class FalseClosure: public OopClosure {
  1306  public:
  1307   void do_oop(oop* p)       { guarantee(false, "Should be an empty set"); }
  1308   void do_oop(narrowOop* p) { guarantee(false, "Should be an empty set"); }
  1309 };
  1311 // This closure is used to do concurrent marking from the roots
  1312 // following the first checkpoint.
  1313 class MarkFromRootsClosure: public BitMapClosure {
  1314   CMSCollector*  _collector;
  1315   MemRegion      _span;
  1316   CMSBitMap*     _bitMap;
  1317   CMSBitMap*     _mut;
  1318   CMSMarkStack*  _markStack;
  1319   CMSMarkStack*  _revisitStack;
  1320   bool           _yield;
  1321   int            _skipBits;
  1322   HeapWord*      _finger;
  1323   HeapWord*      _threshold;
  1324   DEBUG_ONLY(bool _verifying;)
  1326  public:
  1327   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
  1328                        CMSBitMap* bitMap,
  1329                        CMSMarkStack*  markStack,
  1330                        CMSMarkStack*  revisitStack,
  1331                        bool should_yield, bool verifying = false);
  1332   bool do_bit(size_t offset);
  1333   void reset(HeapWord* addr);
  1334   inline void do_yield_check();
  1336  private:
  1337   void scanOopsInOop(HeapWord* ptr);
  1338   void do_yield_work();
  1339 };
  1341 // This closure is used to do concurrent multi-threaded
  1342 // marking from the roots following the first checkpoint.
  1343 // XXX This should really be a subclass of The serial version
  1344 // above, but i have not had the time to refactor things cleanly.
  1345 // That willbe done for Dolphin.
  1346 class Par_MarkFromRootsClosure: public BitMapClosure {
  1347   CMSCollector*  _collector;
  1348   MemRegion      _whole_span;
  1349   MemRegion      _span;
  1350   CMSBitMap*     _bit_map;
  1351   CMSBitMap*     _mut;
  1352   OopTaskQueue*  _work_queue;
  1353   CMSMarkStack*  _overflow_stack;
  1354   CMSMarkStack*  _revisit_stack;
  1355   bool           _yield;
  1356   int            _skip_bits;
  1357   HeapWord*      _finger;
  1358   HeapWord*      _threshold;
  1359   CMSConcMarkingTask* _task;
  1360  public:
  1361   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
  1362                        MemRegion span,
  1363                        CMSBitMap* bit_map,
  1364                        OopTaskQueue* work_queue,
  1365                        CMSMarkStack*  overflow_stack,
  1366                        CMSMarkStack*  revisit_stack,
  1367                        bool should_yield);
  1368   bool do_bit(size_t offset);
  1369   inline void do_yield_check();
  1371  private:
  1372   void scan_oops_in_oop(HeapWord* ptr);
  1373   void do_yield_work();
  1374   bool get_work_from_overflow_stack();
  1375 };
  1377 // The following closures are used to do certain kinds of verification of
  1378 // CMS marking.
  1379 class PushAndMarkVerifyClosure: public OopClosure {
  1380   CMSCollector*    _collector;
  1381   MemRegion        _span;
  1382   CMSBitMap*       _verification_bm;
  1383   CMSBitMap*       _cms_bm;
  1384   CMSMarkStack*    _mark_stack;
  1385  protected:
  1386   void do_oop(oop p);
  1387   template <class T> inline void do_oop_work(T *p) {
  1388     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
  1389     do_oop(obj);
  1391  public:
  1392   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
  1393                            MemRegion span,
  1394                            CMSBitMap* verification_bm,
  1395                            CMSBitMap* cms_bm,
  1396                            CMSMarkStack*  mark_stack);
  1397   void do_oop(oop* p);
  1398   void do_oop(narrowOop* p);
  1399   // Deal with a stack overflow condition
  1400   void handle_stack_overflow(HeapWord* lost);
  1401 };
  1403 class MarkFromRootsVerifyClosure: public BitMapClosure {
  1404   CMSCollector*  _collector;
  1405   MemRegion      _span;
  1406   CMSBitMap*     _verification_bm;
  1407   CMSBitMap*     _cms_bm;
  1408   CMSMarkStack*  _mark_stack;
  1409   HeapWord*      _finger;
  1410   PushAndMarkVerifyClosure _pam_verify_closure;
  1411  public:
  1412   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
  1413                              CMSBitMap* verification_bm,
  1414                              CMSBitMap* cms_bm,
  1415                              CMSMarkStack*  mark_stack);
  1416   bool do_bit(size_t offset);
  1417   void reset(HeapWord* addr);
  1418 };
  1421 // This closure is used to check that a certain set of bits is
  1422 // "empty" (i.e. the bit vector doesn't have any 1-bits).
  1423 class FalseBitMapClosure: public BitMapClosure {
  1424  public:
  1425   bool do_bit(size_t offset) {
  1426     guarantee(false, "Should not have a 1 bit");
  1427     return true;
  1429 };
  1431 // This closure is used during the second checkpointing phase
  1432 // to rescan the marked objects on the dirty cards in the mod
  1433 // union table and the card table proper. It's invoked via
  1434 // MarkFromDirtyCardsClosure below. It uses either
  1435 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
  1436 // declared in genOopClosures.hpp to accomplish some of its work.
  1437 // In the parallel case the bitMap is shared, so access to
  1438 // it needs to be suitably synchronized for updates by embedded
  1439 // closures that update it; however, this closure itself only
  1440 // reads the bit_map and because it is idempotent, is immune to
  1441 // reading stale values.
  1442 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
  1443   #ifdef ASSERT
  1444     CMSCollector*          _collector;
  1445     MemRegion              _span;
  1446     union {
  1447       CMSMarkStack*        _mark_stack;
  1448       OopTaskQueue*        _work_queue;
  1449     };
  1450   #endif // ASSERT
  1451   bool                       _parallel;
  1452   CMSBitMap*                 _bit_map;
  1453   union {
  1454     MarkRefsIntoAndScanClosure*     _scan_closure;
  1455     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
  1456   };
  1458  public:
  1459   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1460                                 MemRegion span,
  1461                                 ReferenceProcessor* rp,
  1462                                 CMSBitMap* bit_map,
  1463                                 CMSMarkStack*  mark_stack,
  1464                                 CMSMarkStack*  revisit_stack,
  1465                                 MarkRefsIntoAndScanClosure* cl):
  1466     #ifdef ASSERT
  1467       _collector(collector),
  1468       _span(span),
  1469       _mark_stack(mark_stack),
  1470     #endif // ASSERT
  1471     _parallel(false),
  1472     _bit_map(bit_map),
  1473     _scan_closure(cl) { }
  1475   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1476                                 MemRegion span,
  1477                                 ReferenceProcessor* rp,
  1478                                 CMSBitMap* bit_map,
  1479                                 OopTaskQueue* work_queue,
  1480                                 CMSMarkStack* revisit_stack,
  1481                                 Par_MarkRefsIntoAndScanClosure* cl):
  1482     #ifdef ASSERT
  1483       _collector(collector),
  1484       _span(span),
  1485       _work_queue(work_queue),
  1486     #endif // ASSERT
  1487     _parallel(true),
  1488     _bit_map(bit_map),
  1489     _par_scan_closure(cl) { }
  1491   void do_object(oop obj) {
  1492     guarantee(false, "Call do_object_b(oop, MemRegion) instead");
  1494   bool do_object_b(oop obj) {
  1495     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
  1496     return false;
  1498   bool do_object_bm(oop p, MemRegion mr);
  1499 };
  1501 // This closure is used during the second checkpointing phase
  1502 // to rescan the marked objects on the dirty cards in the mod
  1503 // union table and the card table proper. It invokes
  1504 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
  1505 // In the parallel case, the bit map is shared and requires
  1506 // synchronized access.
  1507 class MarkFromDirtyCardsClosure: public MemRegionClosure {
  1508   CompactibleFreeListSpace*      _space;
  1509   ScanMarkedObjectsAgainClosure  _scan_cl;
  1510   size_t                         _num_dirty_cards;
  1512  public:
  1513   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1514                             MemRegion span,
  1515                             CompactibleFreeListSpace* space,
  1516                             CMSBitMap* bit_map,
  1517                             CMSMarkStack* mark_stack,
  1518                             CMSMarkStack* revisit_stack,
  1519                             MarkRefsIntoAndScanClosure* cl):
  1520     _space(space),
  1521     _num_dirty_cards(0),
  1522     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1523                  mark_stack, revisit_stack, cl) { }
  1525   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1526                             MemRegion span,
  1527                             CompactibleFreeListSpace* space,
  1528                             CMSBitMap* bit_map,
  1529                             OopTaskQueue* work_queue,
  1530                             CMSMarkStack* revisit_stack,
  1531                             Par_MarkRefsIntoAndScanClosure* cl):
  1532     _space(space),
  1533     _num_dirty_cards(0),
  1534     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1535              work_queue, revisit_stack, cl) { }
  1537   void do_MemRegion(MemRegion mr);
  1538   void set_space(CompactibleFreeListSpace* space) { _space = space; }
  1539   size_t num_dirty_cards() { return _num_dirty_cards; }
  1540 };
  1542 // This closure is used in the non-product build to check
  1543 // that there are no MemRegions with a certain property.
  1544 class FalseMemRegionClosure: public MemRegionClosure {
  1545   void do_MemRegion(MemRegion mr) {
  1546     guarantee(!mr.is_empty(), "Shouldn't be empty");
  1547     guarantee(false, "Should never be here");
  1549 };
  1551 // This closure is used during the precleaning phase
  1552 // to "carefully" rescan marked objects on dirty cards.
  1553 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
  1554 // to accomplish some of its work.
  1555 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
  1556   CMSCollector*                  _collector;
  1557   MemRegion                      _span;
  1558   bool                           _yield;
  1559   Mutex*                         _freelistLock;
  1560   CMSBitMap*                     _bitMap;
  1561   CMSMarkStack*                  _markStack;
  1562   MarkRefsIntoAndScanClosure*    _scanningClosure;
  1564  public:
  1565   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
  1566                                          MemRegion     span,
  1567                                          CMSBitMap* bitMap,
  1568                                          CMSMarkStack*  markStack,
  1569                                          CMSMarkStack*  revisitStack,
  1570                                          MarkRefsIntoAndScanClosure* cl,
  1571                                          bool should_yield):
  1572     _collector(collector),
  1573     _span(span),
  1574     _yield(should_yield),
  1575     _bitMap(bitMap),
  1576     _markStack(markStack),
  1577     _scanningClosure(cl) {
  1580   void do_object(oop p) {
  1581     guarantee(false, "call do_object_careful instead");
  1584   size_t      do_object_careful(oop p) {
  1585     guarantee(false, "Unexpected caller");
  1586     return 0;
  1589   size_t      do_object_careful_m(oop p, MemRegion mr);
  1591   void setFreelistLock(Mutex* m) {
  1592     _freelistLock = m;
  1593     _scanningClosure->set_freelistLock(m);
  1596  private:
  1597   inline bool do_yield_check();
  1599   void do_yield_work();
  1600 };
  1602 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
  1603   CMSCollector*                  _collector;
  1604   MemRegion                      _span;
  1605   bool                           _yield;
  1606   CMSBitMap*                     _bit_map;
  1607   CMSMarkStack*                  _mark_stack;
  1608   PushAndMarkClosure*            _scanning_closure;
  1609   unsigned int                   _before_count;
  1611  public:
  1612   SurvivorSpacePrecleanClosure(CMSCollector* collector,
  1613                                MemRegion     span,
  1614                                CMSBitMap*    bit_map,
  1615                                CMSMarkStack* mark_stack,
  1616                                PushAndMarkClosure* cl,
  1617                                unsigned int  before_count,
  1618                                bool          should_yield):
  1619     _collector(collector),
  1620     _span(span),
  1621     _yield(should_yield),
  1622     _bit_map(bit_map),
  1623     _mark_stack(mark_stack),
  1624     _scanning_closure(cl),
  1625     _before_count(before_count)
  1626   { }
  1628   void do_object(oop p) {
  1629     guarantee(false, "call do_object_careful instead");
  1632   size_t      do_object_careful(oop p);
  1634   size_t      do_object_careful_m(oop p, MemRegion mr) {
  1635     guarantee(false, "Unexpected caller");
  1636     return 0;
  1639  private:
  1640   inline void do_yield_check();
  1641   void do_yield_work();
  1642 };
  1644 // This closure is used to accomplish the sweeping work
  1645 // after the second checkpoint but before the concurrent reset
  1646 // phase.
  1647 //
  1648 // Terminology
  1649 //   left hand chunk (LHC) - block of one or more chunks currently being
  1650 //     coalesced.  The LHC is available for coalescing with a new chunk.
  1651 //   right hand chunk (RHC) - block that is currently being swept that is
  1652 //     free or garbage that can be coalesced with the LHC.
  1653 // _inFreeRange is true if there is currently a LHC
  1654 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
  1655 // _freeRangeInFreeLists is true if the LHC is in the free lists.
  1656 // _freeFinger is the address of the current LHC
  1657 class SweepClosure: public BlkClosureCareful {
  1658   CMSCollector*                  _collector;  // collector doing the work
  1659   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
  1660   CompactibleFreeListSpace*      _sp;   // Space being swept
  1661   HeapWord*                      _limit;
  1662   Mutex*                         _freelistLock; // Free list lock (in space)
  1663   CMSBitMap*                     _bitMap;       // Marking bit map (in
  1664                                                 // generation)
  1665   bool                           _inFreeRange;  // Indicates if we are in the
  1666                                                 // midst of a free run
  1667   bool                           _freeRangeInFreeLists;
  1668                                         // Often, we have just found
  1669                                         // a free chunk and started
  1670                                         // a new free range; we do not
  1671                                         // eagerly remove this chunk from
  1672                                         // the free lists unless there is
  1673                                         // a possibility of coalescing.
  1674                                         // When true, this flag indicates
  1675                                         // that the _freeFinger below
  1676                                         // points to a potentially free chunk
  1677                                         // that may still be in the free lists
  1678   bool                           _lastFreeRangeCoalesced;
  1679                                         // free range contains chunks
  1680                                         // coalesced
  1681   bool                           _yield;
  1682                                         // Whether sweeping should be
  1683                                         // done with yields. For instance
  1684                                         // when done by the foreground
  1685                                         // collector we shouldn't yield.
  1686   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
  1687                                                 // pointer to the "left hand
  1688                                                 // chunk"
  1689   size_t                         _freeRangeSize;
  1690                                         // When _inFreeRange is set, this
  1691                                         // indicates the accumulated size
  1692                                         // of the "left hand chunk"
  1693   NOT_PRODUCT(
  1694     size_t                       _numObjectsFreed;
  1695     size_t                       _numWordsFreed;
  1696     size_t                       _numObjectsLive;
  1697     size_t                       _numWordsLive;
  1698     size_t                       _numObjectsAlreadyFree;
  1699     size_t                       _numWordsAlreadyFree;
  1700     FreeChunk*                   _last_fc;
  1702  private:
  1703   // Code that is common to a free chunk or garbage when
  1704   // encountered during sweeping.
  1705   void doPostIsFreeOrGarbageChunk(FreeChunk *fc,
  1706                                   size_t chunkSize);
  1707   // Process a free chunk during sweeping.
  1708   void doAlreadyFreeChunk(FreeChunk *fc);
  1709   // Process a garbage chunk during sweeping.
  1710   size_t doGarbageChunk(FreeChunk *fc);
  1711   // Process a live chunk during sweeping.
  1712   size_t doLiveChunk(FreeChunk* fc);
  1714   // Accessors.
  1715   HeapWord* freeFinger() const          { return _freeFinger; }
  1716   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
  1717   size_t freeRangeSize() const          { return _freeRangeSize; }
  1718   void set_freeRangeSize(size_t v)      { _freeRangeSize = v; }
  1719   bool inFreeRange()    const           { return _inFreeRange; }
  1720   void set_inFreeRange(bool v)          { _inFreeRange = v; }
  1721   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
  1722   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
  1723   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
  1724   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
  1726   // Initialize a free range.
  1727   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
  1728   // Return this chunk to the free lists.
  1729   void flushCurFreeChunk(HeapWord* chunk, size_t size);
  1731   // Check if we should yield and do so when necessary.
  1732   inline void do_yield_check(HeapWord* addr);
  1734   // Yield
  1735   void do_yield_work(HeapWord* addr);
  1737   // Debugging/Printing
  1738   void record_free_block_coalesced(FreeChunk* fc) const PRODUCT_RETURN;
  1740  public:
  1741   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
  1742                CMSBitMap* bitMap, bool should_yield);
  1743   ~SweepClosure();
  1745   size_t       do_blk_careful(HeapWord* addr);
  1746 };
  1748 // Closures related to weak references processing
  1750 // During CMS' weak reference processing, this is a
  1751 // work-routine/closure used to complete transitive
  1752 // marking of objects as live after a certain point
  1753 // in which an initial set has been completely accumulated.
  1754 // This closure is currently used both during the final
  1755 // remark stop-world phase, as well as during the concurrent
  1756 // precleaning of the discovered reference lists.
  1757 class CMSDrainMarkingStackClosure: public VoidClosure {
  1758   CMSCollector*        _collector;
  1759   MemRegion            _span;
  1760   CMSMarkStack*        _mark_stack;
  1761   CMSBitMap*           _bit_map;
  1762   CMSKeepAliveClosure* _keep_alive;
  1763   bool                 _concurrent_precleaning;
  1764  public:
  1765   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
  1766                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  1767                       CMSKeepAliveClosure* keep_alive,
  1768                       bool cpc):
  1769     _collector(collector),
  1770     _span(span),
  1771     _bit_map(bit_map),
  1772     _mark_stack(mark_stack),
  1773     _keep_alive(keep_alive),
  1774     _concurrent_precleaning(cpc) {
  1775     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
  1776            "Mismatch");
  1779   void do_void();
  1780 };
  1782 // A parallel version of CMSDrainMarkingStackClosure above.
  1783 class CMSParDrainMarkingStackClosure: public VoidClosure {
  1784   CMSCollector*           _collector;
  1785   MemRegion               _span;
  1786   OopTaskQueue*           _work_queue;
  1787   CMSBitMap*              _bit_map;
  1788   CMSInnerParMarkAndPushClosure _mark_and_push;
  1790  public:
  1791   CMSParDrainMarkingStackClosure(CMSCollector* collector,
  1792                                  MemRegion span, CMSBitMap* bit_map,
  1793                                  CMSMarkStack* revisit_stack,
  1794                                  OopTaskQueue* work_queue):
  1795     _collector(collector),
  1796     _span(span),
  1797     _bit_map(bit_map),
  1798     _work_queue(work_queue),
  1799     _mark_and_push(collector, span, bit_map, revisit_stack, work_queue) { }
  1801  public:
  1802   void trim_queue(uint max);
  1803   void do_void();
  1804 };
  1806 // Allow yielding or short-circuiting of reference list
  1807 // prelceaning work.
  1808 class CMSPrecleanRefsYieldClosure: public YieldClosure {
  1809   CMSCollector* _collector;
  1810   void do_yield_work();
  1811  public:
  1812   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
  1813     _collector(collector) {}
  1814   virtual bool should_return();
  1815 };
  1818 // Convenience class that locks free list locks for given CMS collector
  1819 class FreelistLocker: public StackObj {
  1820  private:
  1821   CMSCollector* _collector;
  1822  public:
  1823   FreelistLocker(CMSCollector* collector):
  1824     _collector(collector) {
  1825     _collector->getFreelistLocks();
  1828   ~FreelistLocker() {
  1829     _collector->releaseFreelistLocks();
  1831 };
  1833 // Mark all dead objects in a given space.
  1834 class MarkDeadObjectsClosure: public BlkClosure {
  1835   const CMSCollector*             _collector;
  1836   const CompactibleFreeListSpace* _sp;
  1837   CMSBitMap*                      _live_bit_map;
  1838   CMSBitMap*                      _dead_bit_map;
  1839 public:
  1840   MarkDeadObjectsClosure(const CMSCollector* collector,
  1841                          const CompactibleFreeListSpace* sp,
  1842                          CMSBitMap *live_bit_map,
  1843                          CMSBitMap *dead_bit_map) :
  1844     _collector(collector),
  1845     _sp(sp),
  1846     _live_bit_map(live_bit_map),
  1847     _dead_bit_map(dead_bit_map) {}
  1848   size_t do_blk(HeapWord* addr);
  1849 };

mercurial