src/share/vm/opto/matcher.cpp

Fri, 28 Feb 2014 08:43:42 -0800

author
amurillo
date
Fri, 28 Feb 2014 08:43:42 -0800
changeset 6341
54436d3b2a91
parent 6098
1dcea64e9f00
child 6375
085b304a1cc5
child 6485
da862781b584
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/idealGraphPrinter.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "opto/type.hpp"
    38 #include "opto/vectornode.hpp"
    39 #include "runtime/atomic.hpp"
    40 #include "runtime/os.hpp"
    41 #ifdef TARGET_ARCH_MODEL_x86_32
    42 # include "adfiles/ad_x86_32.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_MODEL_x86_64
    45 # include "adfiles/ad_x86_64.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_MODEL_sparc
    48 # include "adfiles/ad_sparc.hpp"
    49 #endif
    50 #ifdef TARGET_ARCH_MODEL_zero
    51 # include "adfiles/ad_zero.hpp"
    52 #endif
    53 #ifdef TARGET_ARCH_MODEL_arm
    54 # include "adfiles/ad_arm.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_MODEL_ppc
    57 # include "adfiles/ad_ppc.hpp"
    58 #endif
    60 OptoReg::Name OptoReg::c_frame_pointer;
    62 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    63 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    64 RegMask Matcher::STACK_ONLY_mask;
    65 RegMask Matcher::c_frame_ptr_mask;
    66 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    67 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    69 //---------------------------Matcher-------------------------------------------
    70 Matcher::Matcher()
    71 : PhaseTransform( Phase::Ins_Select ),
    72 #ifdef ASSERT
    73   _old2new_map(C->comp_arena()),
    74   _new2old_map(C->comp_arena()),
    75 #endif
    76   _shared_nodes(C->comp_arena()),
    77   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    78   _swallowed(swallowed),
    79   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    80   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    81   _must_clone(must_clone),
    82   _register_save_policy(register_save_policy),
    83   _c_reg_save_policy(c_reg_save_policy),
    84   _register_save_type(register_save_type),
    85   _ruleName(ruleName),
    86   _allocation_started(false),
    87   _states_arena(Chunk::medium_size),
    88   _visited(&_states_arena),
    89   _shared(&_states_arena),
    90   _dontcare(&_states_arena) {
    91   C->set_matcher(this);
    93   idealreg2spillmask  [Op_RegI] = NULL;
    94   idealreg2spillmask  [Op_RegN] = NULL;
    95   idealreg2spillmask  [Op_RegL] = NULL;
    96   idealreg2spillmask  [Op_RegF] = NULL;
    97   idealreg2spillmask  [Op_RegD] = NULL;
    98   idealreg2spillmask  [Op_RegP] = NULL;
    99   idealreg2spillmask  [Op_VecS] = NULL;
   100   idealreg2spillmask  [Op_VecD] = NULL;
   101   idealreg2spillmask  [Op_VecX] = NULL;
   102   idealreg2spillmask  [Op_VecY] = NULL;
   104   idealreg2debugmask  [Op_RegI] = NULL;
   105   idealreg2debugmask  [Op_RegN] = NULL;
   106   idealreg2debugmask  [Op_RegL] = NULL;
   107   idealreg2debugmask  [Op_RegF] = NULL;
   108   idealreg2debugmask  [Op_RegD] = NULL;
   109   idealreg2debugmask  [Op_RegP] = NULL;
   110   idealreg2debugmask  [Op_VecS] = NULL;
   111   idealreg2debugmask  [Op_VecD] = NULL;
   112   idealreg2debugmask  [Op_VecX] = NULL;
   113   idealreg2debugmask  [Op_VecY] = NULL;
   115   idealreg2mhdebugmask[Op_RegI] = NULL;
   116   idealreg2mhdebugmask[Op_RegN] = NULL;
   117   idealreg2mhdebugmask[Op_RegL] = NULL;
   118   idealreg2mhdebugmask[Op_RegF] = NULL;
   119   idealreg2mhdebugmask[Op_RegD] = NULL;
   120   idealreg2mhdebugmask[Op_RegP] = NULL;
   121   idealreg2mhdebugmask[Op_VecS] = NULL;
   122   idealreg2mhdebugmask[Op_VecD] = NULL;
   123   idealreg2mhdebugmask[Op_VecX] = NULL;
   124   idealreg2mhdebugmask[Op_VecY] = NULL;
   126   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
   127 }
   129 //------------------------------warp_incoming_stk_arg------------------------
   130 // This warps a VMReg into an OptoReg::Name
   131 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   132   OptoReg::Name warped;
   133   if( reg->is_stack() ) {  // Stack slot argument?
   134     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   135     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   136     if( warped >= _in_arg_limit )
   137       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   138     if (!RegMask::can_represent_arg(warped)) {
   139       // the compiler cannot represent this method's calling sequence
   140       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   141       return OptoReg::Bad;
   142     }
   143     return warped;
   144   }
   145   return OptoReg::as_OptoReg(reg);
   146 }
   148 //---------------------------compute_old_SP------------------------------------
   149 OptoReg::Name Compile::compute_old_SP() {
   150   int fixed    = fixed_slots();
   151   int preserve = in_preserve_stack_slots();
   152   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   153 }
   157 #ifdef ASSERT
   158 void Matcher::verify_new_nodes_only(Node* xroot) {
   159   // Make sure that the new graph only references new nodes
   160   ResourceMark rm;
   161   Unique_Node_List worklist;
   162   VectorSet visited(Thread::current()->resource_area());
   163   worklist.push(xroot);
   164   while (worklist.size() > 0) {
   165     Node* n = worklist.pop();
   166     visited <<= n->_idx;
   167     assert(C->node_arena()->contains(n), "dead node");
   168     for (uint j = 0; j < n->req(); j++) {
   169       Node* in = n->in(j);
   170       if (in != NULL) {
   171         assert(C->node_arena()->contains(in), "dead node");
   172         if (!visited.test(in->_idx)) {
   173           worklist.push(in);
   174         }
   175       }
   176     }
   177   }
   178 }
   179 #endif
   182 //---------------------------match---------------------------------------------
   183 void Matcher::match( ) {
   184   if( MaxLabelRootDepth < 100 ) { // Too small?
   185     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   186     MaxLabelRootDepth = 100;
   187   }
   188   // One-time initialization of some register masks.
   189   init_spill_mask( C->root()->in(1) );
   190   _return_addr_mask = return_addr();
   191 #ifdef _LP64
   192   // Pointers take 2 slots in 64-bit land
   193   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   194 #endif
   196   // Map a Java-signature return type into return register-value
   197   // machine registers for 0, 1 and 2 returned values.
   198   const TypeTuple *range = C->tf()->range();
   199   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   200     // Get ideal-register return type
   201     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
   202     // Get machine return register
   203     uint sop = C->start()->Opcode();
   204     OptoRegPair regs = return_value(ireg, false);
   206     // And mask for same
   207     _return_value_mask = RegMask(regs.first());
   208     if( OptoReg::is_valid(regs.second()) )
   209       _return_value_mask.Insert(regs.second());
   210   }
   212   // ---------------
   213   // Frame Layout
   215   // Need the method signature to determine the incoming argument types,
   216   // because the types determine which registers the incoming arguments are
   217   // in, and this affects the matched code.
   218   const TypeTuple *domain = C->tf()->domain();
   219   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   220   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   221   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   222   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   223   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   224   uint i;
   225   for( i = 0; i<argcnt; i++ ) {
   226     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   227   }
   229   // Pass array of ideal registers and length to USER code (from the AD file)
   230   // that will convert this to an array of register numbers.
   231   const StartNode *start = C->start();
   232   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   233 #ifdef ASSERT
   234   // Sanity check users' calling convention.  Real handy while trying to
   235   // get the initial port correct.
   236   { for (uint i = 0; i<argcnt; i++) {
   237       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   238         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   239         _parm_regs[i].set_bad();
   240         continue;
   241       }
   242       VMReg parm_reg = vm_parm_regs[i].first();
   243       assert(parm_reg->is_valid(), "invalid arg?");
   244       if (parm_reg->is_reg()) {
   245         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   246         assert(can_be_java_arg(opto_parm_reg) ||
   247                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   248                opto_parm_reg == inline_cache_reg(),
   249                "parameters in register must be preserved by runtime stubs");
   250       }
   251       for (uint j = 0; j < i; j++) {
   252         assert(parm_reg != vm_parm_regs[j].first(),
   253                "calling conv. must produce distinct regs");
   254       }
   255     }
   256   }
   257 #endif
   259   // Do some initial frame layout.
   261   // Compute the old incoming SP (may be called FP) as
   262   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   263   _old_SP = C->compute_old_SP();
   264   assert( is_even(_old_SP), "must be even" );
   266   // Compute highest incoming stack argument as
   267   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   268   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   269   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   270   for( i = 0; i < argcnt; i++ ) {
   271     // Permit args to have no register
   272     _calling_convention_mask[i].Clear();
   273     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   274       continue;
   275     }
   276     // calling_convention returns stack arguments as a count of
   277     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   278     // the allocators point of view, taking into account all the
   279     // preserve area, locks & pad2.
   281     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   282     if( OptoReg::is_valid(reg1))
   283       _calling_convention_mask[i].Insert(reg1);
   285     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   286     if( OptoReg::is_valid(reg2))
   287       _calling_convention_mask[i].Insert(reg2);
   289     // Saved biased stack-slot register number
   290     _parm_regs[i].set_pair(reg2, reg1);
   291   }
   293   // Finally, make sure the incoming arguments take up an even number of
   294   // words, in case the arguments or locals need to contain doubleword stack
   295   // slots.  The rest of the system assumes that stack slot pairs (in
   296   // particular, in the spill area) which look aligned will in fact be
   297   // aligned relative to the stack pointer in the target machine.  Double
   298   // stack slots will always be allocated aligned.
   299   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   301   // Compute highest outgoing stack argument as
   302   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   303   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   304   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   306   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
   307     // the compiler cannot represent this method's calling sequence
   308     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   309   }
   311   if (C->failing())  return;  // bailed out on incoming arg failure
   313   // ---------------
   314   // Collect roots of matcher trees.  Every node for which
   315   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   316   // can be a valid interior of some tree.
   317   find_shared( C->root() );
   318   find_shared( C->top() );
   320   C->print_method(PHASE_BEFORE_MATCHING);
   322   // Create new ideal node ConP #NULL even if it does exist in old space
   323   // to avoid false sharing if the corresponding mach node is not used.
   324   // The corresponding mach node is only used in rare cases for derived
   325   // pointers.
   326   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   328   // Swap out to old-space; emptying new-space
   329   Arena *old = C->node_arena()->move_contents(C->old_arena());
   331   // Save debug and profile information for nodes in old space:
   332   _old_node_note_array = C->node_note_array();
   333   if (_old_node_note_array != NULL) {
   334     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   335                            (C->comp_arena(), _old_node_note_array->length(),
   336                             0, NULL));
   337   }
   339   // Pre-size the new_node table to avoid the need for range checks.
   340   grow_new_node_array(C->unique());
   342   // Reset node counter so MachNodes start with _idx at 0
   343   int nodes = C->unique(); // save value
   344   C->set_unique(0);
   345   C->reset_dead_node_list();
   347   // Recursively match trees from old space into new space.
   348   // Correct leaves of new-space Nodes; they point to old-space.
   349   _visited.Clear();             // Clear visit bits for xform call
   350   C->set_cached_top_node(xform( C->top(), nodes ));
   351   if (!C->failing()) {
   352     Node* xroot =        xform( C->root(), 1 );
   353     if (xroot == NULL) {
   354       Matcher::soft_match_failure();  // recursive matching process failed
   355       C->record_method_not_compilable("instruction match failed");
   356     } else {
   357       // During matching shared constants were attached to C->root()
   358       // because xroot wasn't available yet, so transfer the uses to
   359       // the xroot.
   360       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   361         Node* n = C->root()->fast_out(j);
   362         if (C->node_arena()->contains(n)) {
   363           assert(n->in(0) == C->root(), "should be control user");
   364           n->set_req(0, xroot);
   365           --j;
   366           --jmax;
   367         }
   368       }
   370       // Generate new mach node for ConP #NULL
   371       assert(new_ideal_null != NULL, "sanity");
   372       _mach_null = match_tree(new_ideal_null);
   373       // Don't set control, it will confuse GCM since there are no uses.
   374       // The control will be set when this node is used first time
   375       // in find_base_for_derived().
   376       assert(_mach_null != NULL, "");
   378       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   380 #ifdef ASSERT
   381       verify_new_nodes_only(xroot);
   382 #endif
   383     }
   384   }
   385   if (C->top() == NULL || C->root() == NULL) {
   386     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   387   }
   388   if (C->failing()) {
   389     // delete old;
   390     old->destruct_contents();
   391     return;
   392   }
   393   assert( C->top(), "" );
   394   assert( C->root(), "" );
   395   validate_null_checks();
   397   // Now smoke old-space
   398   NOT_DEBUG( old->destruct_contents() );
   400   // ------------------------
   401   // Set up save-on-entry registers
   402   Fixup_Save_On_Entry( );
   403 }
   406 //------------------------------Fixup_Save_On_Entry----------------------------
   407 // The stated purpose of this routine is to take care of save-on-entry
   408 // registers.  However, the overall goal of the Match phase is to convert into
   409 // machine-specific instructions which have RegMasks to guide allocation.
   410 // So what this procedure really does is put a valid RegMask on each input
   411 // to the machine-specific variations of all Return, TailCall and Halt
   412 // instructions.  It also adds edgs to define the save-on-entry values (and of
   413 // course gives them a mask).
   415 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   416   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   417   // Do all the pre-defined register masks
   418   rms[TypeFunc::Control  ] = RegMask::Empty;
   419   rms[TypeFunc::I_O      ] = RegMask::Empty;
   420   rms[TypeFunc::Memory   ] = RegMask::Empty;
   421   rms[TypeFunc::ReturnAdr] = ret_adr;
   422   rms[TypeFunc::FramePtr ] = fp;
   423   return rms;
   424 }
   426 //---------------------------init_first_stack_mask-----------------------------
   427 // Create the initial stack mask used by values spilling to the stack.
   428 // Disallow any debug info in outgoing argument areas by setting the
   429 // initial mask accordingly.
   430 void Matcher::init_first_stack_mask() {
   432   // Allocate storage for spill masks as masks for the appropriate load type.
   433   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
   435   idealreg2spillmask  [Op_RegN] = &rms[0];
   436   idealreg2spillmask  [Op_RegI] = &rms[1];
   437   idealreg2spillmask  [Op_RegL] = &rms[2];
   438   idealreg2spillmask  [Op_RegF] = &rms[3];
   439   idealreg2spillmask  [Op_RegD] = &rms[4];
   440   idealreg2spillmask  [Op_RegP] = &rms[5];
   442   idealreg2debugmask  [Op_RegN] = &rms[6];
   443   idealreg2debugmask  [Op_RegI] = &rms[7];
   444   idealreg2debugmask  [Op_RegL] = &rms[8];
   445   idealreg2debugmask  [Op_RegF] = &rms[9];
   446   idealreg2debugmask  [Op_RegD] = &rms[10];
   447   idealreg2debugmask  [Op_RegP] = &rms[11];
   449   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   450   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   451   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   452   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   453   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   454   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   456   idealreg2spillmask  [Op_VecS] = &rms[18];
   457   idealreg2spillmask  [Op_VecD] = &rms[19];
   458   idealreg2spillmask  [Op_VecX] = &rms[20];
   459   idealreg2spillmask  [Op_VecY] = &rms[21];
   461   OptoReg::Name i;
   463   // At first, start with the empty mask
   464   C->FIRST_STACK_mask().Clear();
   466   // Add in the incoming argument area
   467   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   468   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
   469     C->FIRST_STACK_mask().Insert(i);
   470   }
   471   // Add in all bits past the outgoing argument area
   472   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
   473             "must be able to represent all call arguments in reg mask");
   474   OptoReg::Name init = _out_arg_limit;
   475   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
   476     C->FIRST_STACK_mask().Insert(i);
   477   }
   478   // Finally, set the "infinite stack" bit.
   479   C->FIRST_STACK_mask().set_AllStack();
   481   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   482   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
   483   // Keep spill masks aligned.
   484   aligned_stack_mask.clear_to_pairs();
   485   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   487   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   488 #ifdef _LP64
   489   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   490    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   491    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
   492 #else
   493    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   494 #endif
   495   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   496    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   497   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   498    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
   499   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   500    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   501   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   502    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
   504   if (Matcher::vector_size_supported(T_BYTE,4)) {
   505     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
   506      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
   507   }
   508   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   509     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
   510     // RA guarantees such alignment since it is needed for Double and Long values.
   511     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
   512      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
   513   }
   514   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   515     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
   516     //
   517     // RA can use input arguments stack slots for spills but until RA
   518     // we don't know frame size and offset of input arg stack slots.
   519     //
   520     // Exclude last input arg stack slots to avoid spilling vectors there
   521     // otherwise vector spills could stomp over stack slots in caller frame.
   522     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
   523     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
   524       aligned_stack_mask.Remove(in);
   525       in = OptoReg::add(in, -1);
   526     }
   527      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
   528      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   529     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
   530      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
   531   }
   532   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   533     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
   534     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
   535     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
   536       aligned_stack_mask.Remove(in);
   537       in = OptoReg::add(in, -1);
   538     }
   539      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
   540      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   541     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
   542      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
   543   }
   544    if (UseFPUForSpilling) {
   545      // This mask logic assumes that the spill operations are
   546      // symmetric and that the registers involved are the same size.
   547      // On sparc for instance we may have to use 64 bit moves will
   548      // kill 2 registers when used with F0-F31.
   549      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   550      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   551 #ifdef _LP64
   552      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   553      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   554      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   555      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   556 #else
   557      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   558 #ifdef ARM
   559      // ARM has support for moving 64bit values between a pair of
   560      // integer registers and a double register
   561      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   562      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   563 #endif
   564 #endif
   565    }
   567   // Make up debug masks.  Any spill slot plus callee-save registers.
   568   // Caller-save registers are assumed to be trashable by the various
   569   // inline-cache fixup routines.
   570   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   571   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   572   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   573   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   574   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   575   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   577   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   578   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   579   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   580   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   581   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   582   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   584   // Prevent stub compilations from attempting to reference
   585   // callee-saved registers from debug info
   586   bool exclude_soe = !Compile::current()->is_method_compilation();
   588   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   589     // registers the caller has to save do not work
   590     if( _register_save_policy[i] == 'C' ||
   591         _register_save_policy[i] == 'A' ||
   592         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   593       idealreg2debugmask  [Op_RegN]->Remove(i);
   594       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   595       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   596       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   597       idealreg2debugmask  [Op_RegD]->Remove(i);
   598       idealreg2debugmask  [Op_RegP]->Remove(i);
   600       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   601       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   602       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   603       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   604       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   605       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   606     }
   607   }
   609   // Subtract the register we use to save the SP for MethodHandle
   610   // invokes to from the debug mask.
   611   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   612   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   613   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   614   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   615   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   616   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   617   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   618 }
   620 //---------------------------is_save_on_entry----------------------------------
   621 bool Matcher::is_save_on_entry( int reg ) {
   622   return
   623     _register_save_policy[reg] == 'E' ||
   624     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   625     // Also save argument registers in the trampolining stubs
   626     (C->save_argument_registers() && is_spillable_arg(reg));
   627 }
   629 //---------------------------Fixup_Save_On_Entry-------------------------------
   630 void Matcher::Fixup_Save_On_Entry( ) {
   631   init_first_stack_mask();
   633   Node *root = C->root();       // Short name for root
   634   // Count number of save-on-entry registers.
   635   uint soe_cnt = number_of_saved_registers();
   636   uint i;
   638   // Find the procedure Start Node
   639   StartNode *start = C->start();
   640   assert( start, "Expect a start node" );
   642   // Save argument registers in the trampolining stubs
   643   if( C->save_argument_registers() )
   644     for( i = 0; i < _last_Mach_Reg; i++ )
   645       if( is_spillable_arg(i) )
   646         soe_cnt++;
   648   // Input RegMask array shared by all Returns.
   649   // The type for doubles and longs has a count of 2, but
   650   // there is only 1 returned value
   651   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   652   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   653   // Returns have 0 or 1 returned values depending on call signature.
   654   // Return register is specified by return_value in the AD file.
   655   if (ret_edge_cnt > TypeFunc::Parms)
   656     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   658   // Input RegMask array shared by all Rethrows.
   659   uint reth_edge_cnt = TypeFunc::Parms+1;
   660   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   661   // Rethrow takes exception oop only, but in the argument 0 slot.
   662   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   663 #ifdef _LP64
   664   // Need two slots for ptrs in 64-bit land
   665   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   666 #endif
   668   // Input RegMask array shared by all TailCalls
   669   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   670   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   672   // Input RegMask array shared by all TailJumps
   673   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   674   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   676   // TailCalls have 2 returned values (target & moop), whose masks come
   677   // from the usual MachNode/MachOper mechanism.  Find a sample
   678   // TailCall to extract these masks and put the correct masks into
   679   // the tail_call_rms array.
   680   for( i=1; i < root->req(); i++ ) {
   681     MachReturnNode *m = root->in(i)->as_MachReturn();
   682     if( m->ideal_Opcode() == Op_TailCall ) {
   683       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   684       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   685       break;
   686     }
   687   }
   689   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   690   // from the usual MachNode/MachOper mechanism.  Find a sample
   691   // TailJump to extract these masks and put the correct masks into
   692   // the tail_jump_rms array.
   693   for( i=1; i < root->req(); i++ ) {
   694     MachReturnNode *m = root->in(i)->as_MachReturn();
   695     if( m->ideal_Opcode() == Op_TailJump ) {
   696       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   697       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   698       break;
   699     }
   700   }
   702   // Input RegMask array shared by all Halts
   703   uint halt_edge_cnt = TypeFunc::Parms;
   704   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   706   // Capture the return input masks into each exit flavor
   707   for( i=1; i < root->req(); i++ ) {
   708     MachReturnNode *exit = root->in(i)->as_MachReturn();
   709     switch( exit->ideal_Opcode() ) {
   710       case Op_Return   : exit->_in_rms = ret_rms;  break;
   711       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   712       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   713       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   714       case Op_Halt     : exit->_in_rms = halt_rms; break;
   715       default          : ShouldNotReachHere();
   716     }
   717   }
   719   // Next unused projection number from Start.
   720   int proj_cnt = C->tf()->domain()->cnt();
   722   // Do all the save-on-entry registers.  Make projections from Start for
   723   // them, and give them a use at the exit points.  To the allocator, they
   724   // look like incoming register arguments.
   725   for( i = 0; i < _last_Mach_Reg; i++ ) {
   726     if( is_save_on_entry(i) ) {
   728       // Add the save-on-entry to the mask array
   729       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   730       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   731       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   732       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   733       // Halts need the SOE registers, but only in the stack as debug info.
   734       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   735       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   737       Node *mproj;
   739       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   740       // into a single RegD.
   741       if( (i&1) == 0 &&
   742           _register_save_type[i  ] == Op_RegF &&
   743           _register_save_type[i+1] == Op_RegF &&
   744           is_save_on_entry(i+1) ) {
   745         // Add other bit for double
   746         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   747         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   748         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   749         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   750         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   751         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   752         proj_cnt += 2;          // Skip 2 for doubles
   753       }
   754       else if( (i&1) == 1 &&    // Else check for high half of double
   755                _register_save_type[i-1] == Op_RegF &&
   756                _register_save_type[i  ] == Op_RegF &&
   757                is_save_on_entry(i-1) ) {
   758         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   759         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   760         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   761         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   762         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   763         mproj = C->top();
   764       }
   765       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   766       // into a single RegL.
   767       else if( (i&1) == 0 &&
   768           _register_save_type[i  ] == Op_RegI &&
   769           _register_save_type[i+1] == Op_RegI &&
   770         is_save_on_entry(i+1) ) {
   771         // Add other bit for long
   772         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   773         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   774         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   775         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   776         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   777         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   778         proj_cnt += 2;          // Skip 2 for longs
   779       }
   780       else if( (i&1) == 1 &&    // Else check for high half of long
   781                _register_save_type[i-1] == Op_RegI &&
   782                _register_save_type[i  ] == Op_RegI &&
   783                is_save_on_entry(i-1) ) {
   784         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   785         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   786         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   787         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   788         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   789         mproj = C->top();
   790       } else {
   791         // Make a projection for it off the Start
   792         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   793       }
   795       ret_edge_cnt ++;
   796       reth_edge_cnt ++;
   797       tail_call_edge_cnt ++;
   798       tail_jump_edge_cnt ++;
   799       halt_edge_cnt ++;
   801       // Add a use of the SOE register to all exit paths
   802       for( uint j=1; j < root->req(); j++ )
   803         root->in(j)->add_req(mproj);
   804     } // End of if a save-on-entry register
   805   } // End of for all machine registers
   806 }
   808 //------------------------------init_spill_mask--------------------------------
   809 void Matcher::init_spill_mask( Node *ret ) {
   810   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   812   OptoReg::c_frame_pointer = c_frame_pointer();
   813   c_frame_ptr_mask = c_frame_pointer();
   814 #ifdef _LP64
   815   // pointers are twice as big
   816   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   817 #endif
   819   // Start at OptoReg::stack0()
   820   STACK_ONLY_mask.Clear();
   821   OptoReg::Name init = OptoReg::stack2reg(0);
   822   // STACK_ONLY_mask is all stack bits
   823   OptoReg::Name i;
   824   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   825     STACK_ONLY_mask.Insert(i);
   826   // Also set the "infinite stack" bit.
   827   STACK_ONLY_mask.set_AllStack();
   829   // Copy the register names over into the shared world
   830   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   831     // SharedInfo::regName[i] = regName[i];
   832     // Handy RegMasks per machine register
   833     mreg2regmask[i].Insert(i);
   834   }
   836   // Grab the Frame Pointer
   837   Node *fp  = ret->in(TypeFunc::FramePtr);
   838   Node *mem = ret->in(TypeFunc::Memory);
   839   const TypePtr* atp = TypePtr::BOTTOM;
   840   // Share frame pointer while making spill ops
   841   set_shared(fp);
   843   // Compute generic short-offset Loads
   844 #ifdef _LP64
   845   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   846 #endif
   847   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
   848   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
   849   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
   850   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
   851   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   852   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   853          spillD != NULL && spillP != NULL, "");
   855   // Get the ADLC notion of the right regmask, for each basic type.
   856 #ifdef _LP64
   857   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   858 #endif
   859   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   860   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   861   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   862   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   863   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   865   // Vector regmasks.
   866   if (Matcher::vector_size_supported(T_BYTE,4)) {
   867     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
   868     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
   869     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
   870   }
   871   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   872     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
   873     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
   874   }
   875   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   876     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
   877     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
   878   }
   879   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   880     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
   881     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
   882   }
   883 }
   885 #ifdef ASSERT
   886 static void match_alias_type(Compile* C, Node* n, Node* m) {
   887   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   888   const TypePtr* nat = n->adr_type();
   889   const TypePtr* mat = m->adr_type();
   890   int nidx = C->get_alias_index(nat);
   891   int midx = C->get_alias_index(mat);
   892   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   893   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   894     for (uint i = 1; i < n->req(); i++) {
   895       Node* n1 = n->in(i);
   896       const TypePtr* n1at = n1->adr_type();
   897       if (n1at != NULL) {
   898         nat = n1at;
   899         nidx = C->get_alias_index(n1at);
   900       }
   901     }
   902   }
   903   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   904   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   905     switch (n->Opcode()) {
   906     case Op_PrefetchRead:
   907     case Op_PrefetchWrite:
   908     case Op_PrefetchAllocation:
   909       nidx = Compile::AliasIdxRaw;
   910       nat = TypeRawPtr::BOTTOM;
   911       break;
   912     }
   913   }
   914   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   915     switch (n->Opcode()) {
   916     case Op_ClearArray:
   917       midx = Compile::AliasIdxRaw;
   918       mat = TypeRawPtr::BOTTOM;
   919       break;
   920     }
   921   }
   922   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   923     switch (n->Opcode()) {
   924     case Op_Return:
   925     case Op_Rethrow:
   926     case Op_Halt:
   927     case Op_TailCall:
   928     case Op_TailJump:
   929       nidx = Compile::AliasIdxBot;
   930       nat = TypePtr::BOTTOM;
   931       break;
   932     }
   933   }
   934   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   935     switch (n->Opcode()) {
   936     case Op_StrComp:
   937     case Op_StrEquals:
   938     case Op_StrIndexOf:
   939     case Op_AryEq:
   940     case Op_MemBarVolatile:
   941     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   942     case Op_EncodeISOArray:
   943       nidx = Compile::AliasIdxTop;
   944       nat = NULL;
   945       break;
   946     }
   947   }
   948   if (nidx != midx) {
   949     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   950       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   951       n->dump();
   952       m->dump();
   953     }
   954     assert(C->subsume_loads() && C->must_alias(nat, midx),
   955            "must not lose alias info when matching");
   956   }
   957 }
   958 #endif
   961 //------------------------------MStack-----------------------------------------
   962 // State and MStack class used in xform() and find_shared() iterative methods.
   963 enum Node_State { Pre_Visit,  // node has to be pre-visited
   964                       Visit,  // visit node
   965                  Post_Visit,  // post-visit node
   966              Alt_Post_Visit   // alternative post-visit path
   967                 };
   969 class MStack: public Node_Stack {
   970   public:
   971     MStack(int size) : Node_Stack(size) { }
   973     void push(Node *n, Node_State ns) {
   974       Node_Stack::push(n, (uint)ns);
   975     }
   976     void push(Node *n, Node_State ns, Node *parent, int indx) {
   977       ++_inode_top;
   978       if ((_inode_top + 1) >= _inode_max) grow();
   979       _inode_top->node = parent;
   980       _inode_top->indx = (uint)indx;
   981       ++_inode_top;
   982       _inode_top->node = n;
   983       _inode_top->indx = (uint)ns;
   984     }
   985     Node *parent() {
   986       pop();
   987       return node();
   988     }
   989     Node_State state() const {
   990       return (Node_State)index();
   991     }
   992     void set_state(Node_State ns) {
   993       set_index((uint)ns);
   994     }
   995 };
   998 //------------------------------xform------------------------------------------
   999 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
  1000 // Node in new-space.  Given a new-space Node, recursively walk his children.
  1001 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
  1002 Node *Matcher::xform( Node *n, int max_stack ) {
  1003   // Use one stack to keep both: child's node/state and parent's node/index
  1004   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
  1005   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
  1007   while (mstack.is_nonempty()) {
  1008     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
  1009     if (C->failing()) return NULL;
  1010     n = mstack.node();          // Leave node on stack
  1011     Node_State nstate = mstack.state();
  1012     if (nstate == Visit) {
  1013       mstack.set_state(Post_Visit);
  1014       Node *oldn = n;
  1015       // Old-space or new-space check
  1016       if (!C->node_arena()->contains(n)) {
  1017         // Old space!
  1018         Node* m;
  1019         if (has_new_node(n)) {  // Not yet Label/Reduced
  1020           m = new_node(n);
  1021         } else {
  1022           if (!is_dontcare(n)) { // Matcher can match this guy
  1023             // Calls match special.  They match alone with no children.
  1024             // Their children, the incoming arguments, match normally.
  1025             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
  1026             if (C->failing())  return NULL;
  1027             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
  1028           } else {                  // Nothing the matcher cares about
  1029             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
  1030               // Convert to machine-dependent projection
  1031               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
  1032 #ifdef ASSERT
  1033               _new2old_map.map(m->_idx, n);
  1034 #endif
  1035               if (m->in(0) != NULL) // m might be top
  1036                 collect_null_checks(m, n);
  1037             } else {                // Else just a regular 'ol guy
  1038               m = n->clone();       // So just clone into new-space
  1039 #ifdef ASSERT
  1040               _new2old_map.map(m->_idx, n);
  1041 #endif
  1042               // Def-Use edges will be added incrementally as Uses
  1043               // of this node are matched.
  1044               assert(m->outcnt() == 0, "no Uses of this clone yet");
  1048           set_new_node(n, m);       // Map old to new
  1049           if (_old_node_note_array != NULL) {
  1050             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
  1051                                                   n->_idx);
  1052             C->set_node_notes_at(m->_idx, nn);
  1054           debug_only(match_alias_type(C, n, m));
  1056         n = m;    // n is now a new-space node
  1057         mstack.set_node(n);
  1060       // New space!
  1061       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
  1063       int i;
  1064       // Put precedence edges on stack first (match them last).
  1065       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
  1066         Node *m = oldn->in(i);
  1067         if (m == NULL) break;
  1068         // set -1 to call add_prec() instead of set_req() during Step1
  1069         mstack.push(m, Visit, n, -1);
  1072       // For constant debug info, I'd rather have unmatched constants.
  1073       int cnt = n->req();
  1074       JVMState* jvms = n->jvms();
  1075       int debug_cnt = jvms ? jvms->debug_start() : cnt;
  1077       // Now do only debug info.  Clone constants rather than matching.
  1078       // Constants are represented directly in the debug info without
  1079       // the need for executable machine instructions.
  1080       // Monitor boxes are also represented directly.
  1081       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
  1082         Node *m = n->in(i);          // Get input
  1083         int op = m->Opcode();
  1084         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
  1085         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
  1086             op == Op_ConF || op == Op_ConD || op == Op_ConL
  1087             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
  1088             ) {
  1089           m = m->clone();
  1090 #ifdef ASSERT
  1091           _new2old_map.map(m->_idx, n);
  1092 #endif
  1093           mstack.push(m, Post_Visit, n, i); // Don't need to visit
  1094           mstack.push(m->in(0), Visit, m, 0);
  1095         } else {
  1096           mstack.push(m, Visit, n, i);
  1100       // And now walk his children, and convert his inputs to new-space.
  1101       for( ; i >= 0; --i ) { // For all normal inputs do
  1102         Node *m = n->in(i);  // Get input
  1103         if(m != NULL)
  1104           mstack.push(m, Visit, n, i);
  1108     else if (nstate == Post_Visit) {
  1109       // Set xformed input
  1110       Node *p = mstack.parent();
  1111       if (p != NULL) { // root doesn't have parent
  1112         int i = (int)mstack.index();
  1113         if (i >= 0)
  1114           p->set_req(i, n); // required input
  1115         else if (i == -1)
  1116           p->add_prec(n);   // precedence input
  1117         else
  1118           ShouldNotReachHere();
  1120       mstack.pop(); // remove processed node from stack
  1122     else {
  1123       ShouldNotReachHere();
  1125   } // while (mstack.is_nonempty())
  1126   return n; // Return new-space Node
  1129 //------------------------------warp_outgoing_stk_arg------------------------
  1130 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1131   // Convert outgoing argument location to a pre-biased stack offset
  1132   if (reg->is_stack()) {
  1133     OptoReg::Name warped = reg->reg2stack();
  1134     // Adjust the stack slot offset to be the register number used
  1135     // by the allocator.
  1136     warped = OptoReg::add(begin_out_arg_area, warped);
  1137     // Keep track of the largest numbered stack slot used for an arg.
  1138     // Largest used slot per call-site indicates the amount of stack
  1139     // that is killed by the call.
  1140     if( warped >= out_arg_limit_per_call )
  1141       out_arg_limit_per_call = OptoReg::add(warped,1);
  1142     if (!RegMask::can_represent_arg(warped)) {
  1143       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1144       return OptoReg::Bad;
  1146     return warped;
  1148   return OptoReg::as_OptoReg(reg);
  1152 //------------------------------match_sfpt-------------------------------------
  1153 // Helper function to match call instructions.  Calls match special.
  1154 // They match alone with no children.  Their children, the incoming
  1155 // arguments, match normally.
  1156 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1157   MachSafePointNode *msfpt = NULL;
  1158   MachCallNode      *mcall = NULL;
  1159   uint               cnt;
  1160   // Split out case for SafePoint vs Call
  1161   CallNode *call;
  1162   const TypeTuple *domain;
  1163   ciMethod*        method = NULL;
  1164   bool             is_method_handle_invoke = false;  // for special kill effects
  1165   if( sfpt->is_Call() ) {
  1166     call = sfpt->as_Call();
  1167     domain = call->tf()->domain();
  1168     cnt = domain->cnt();
  1170     // Match just the call, nothing else
  1171     MachNode *m = match_tree(call);
  1172     if (C->failing())  return NULL;
  1173     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1175     // Copy data from the Ideal SafePoint to the machine version
  1176     mcall = m->as_MachCall();
  1178     mcall->set_tf(         call->tf());
  1179     mcall->set_entry_point(call->entry_point());
  1180     mcall->set_cnt(        call->cnt());
  1182     if( mcall->is_MachCallJava() ) {
  1183       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1184       const CallJavaNode *call_java =  call->as_CallJava();
  1185       method = call_java->method();
  1186       mcall_java->_method = method;
  1187       mcall_java->_bci = call_java->_bci;
  1188       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1189       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1190       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1191       if (is_method_handle_invoke) {
  1192         C->set_has_method_handle_invokes(true);
  1194       if( mcall_java->is_MachCallStaticJava() )
  1195         mcall_java->as_MachCallStaticJava()->_name =
  1196          call_java->as_CallStaticJava()->_name;
  1197       if( mcall_java->is_MachCallDynamicJava() )
  1198         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1199          call_java->as_CallDynamicJava()->_vtable_index;
  1201     else if( mcall->is_MachCallRuntime() ) {
  1202       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1204     msfpt = mcall;
  1206   // This is a non-call safepoint
  1207   else {
  1208     call = NULL;
  1209     domain = NULL;
  1210     MachNode *mn = match_tree(sfpt);
  1211     if (C->failing())  return NULL;
  1212     msfpt = mn->as_MachSafePoint();
  1213     cnt = TypeFunc::Parms;
  1216   // Advertise the correct memory effects (for anti-dependence computation).
  1217   msfpt->set_adr_type(sfpt->adr_type());
  1219   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1220   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1221   // Empty them all.
  1222   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1224   // Do all the pre-defined non-Empty register masks
  1225   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1226   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1228   // Place first outgoing argument can possibly be put.
  1229   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1230   assert( is_even(begin_out_arg_area), "" );
  1231   // Compute max outgoing register number per call site.
  1232   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1233   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1234   // These are usually backing store for register arguments for varargs.
  1235   if( call != NULL && call->is_CallRuntime() )
  1236     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1239   // Do the normal argument list (parameters) register masks
  1240   int argcnt = cnt - TypeFunc::Parms;
  1241   if( argcnt > 0 ) {          // Skip it all if we have no args
  1242     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1243     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1244     int i;
  1245     for( i = 0; i < argcnt; i++ ) {
  1246       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1248     // V-call to pick proper calling convention
  1249     call->calling_convention( sig_bt, parm_regs, argcnt );
  1251 #ifdef ASSERT
  1252     // Sanity check users' calling convention.  Really handy during
  1253     // the initial porting effort.  Fairly expensive otherwise.
  1254     { for (int i = 0; i<argcnt; i++) {
  1255       if( !parm_regs[i].first()->is_valid() &&
  1256           !parm_regs[i].second()->is_valid() ) continue;
  1257       VMReg reg1 = parm_regs[i].first();
  1258       VMReg reg2 = parm_regs[i].second();
  1259       for (int j = 0; j < i; j++) {
  1260         if( !parm_regs[j].first()->is_valid() &&
  1261             !parm_regs[j].second()->is_valid() ) continue;
  1262         VMReg reg3 = parm_regs[j].first();
  1263         VMReg reg4 = parm_regs[j].second();
  1264         if( !reg1->is_valid() ) {
  1265           assert( !reg2->is_valid(), "valid halvsies" );
  1266         } else if( !reg3->is_valid() ) {
  1267           assert( !reg4->is_valid(), "valid halvsies" );
  1268         } else {
  1269           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1270           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1271           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1272           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1273           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1274           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1279 #endif
  1281     // Visit each argument.  Compute its outgoing register mask.
  1282     // Return results now can have 2 bits returned.
  1283     // Compute max over all outgoing arguments both per call-site
  1284     // and over the entire method.
  1285     for( i = 0; i < argcnt; i++ ) {
  1286       // Address of incoming argument mask to fill in
  1287       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1288       if( !parm_regs[i].first()->is_valid() &&
  1289           !parm_regs[i].second()->is_valid() ) {
  1290         continue;               // Avoid Halves
  1292       // Grab first register, adjust stack slots and insert in mask.
  1293       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1294       if (OptoReg::is_valid(reg1))
  1295         rm->Insert( reg1 );
  1296       // Grab second register (if any), adjust stack slots and insert in mask.
  1297       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1298       if (OptoReg::is_valid(reg2))
  1299         rm->Insert( reg2 );
  1300     } // End of for all arguments
  1302     // Compute number of stack slots needed to restore stack in case of
  1303     // Pascal-style argument popping.
  1304     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1307   // Compute the max stack slot killed by any call.  These will not be
  1308   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1309   // after all call sites have been visited.
  1310   if( _out_arg_limit < out_arg_limit_per_call)
  1311     _out_arg_limit = out_arg_limit_per_call;
  1313   if (mcall) {
  1314     // Kill the outgoing argument area, including any non-argument holes and
  1315     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1316     // Since the max-per-method covers the max-per-call-site and debug info
  1317     // is excluded on the max-per-method basis, debug info cannot land in
  1318     // this killed area.
  1319     uint r_cnt = mcall->tf()->range()->cnt();
  1320     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1321     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
  1322       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1323     } else {
  1324       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1325         proj->_rout.Insert(OptoReg::Name(i));
  1327     if (proj->_rout.is_NotEmpty()) {
  1328       push_projection(proj);
  1331   // Transfer the safepoint information from the call to the mcall
  1332   // Move the JVMState list
  1333   msfpt->set_jvms(sfpt->jvms());
  1334   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1335     jvms->set_map(sfpt);
  1338   // Debug inputs begin just after the last incoming parameter
  1339   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1340           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1342   // Move the OopMap
  1343   msfpt->_oop_map = sfpt->_oop_map;
  1345   // Registers killed by the call are set in the local scheduling pass
  1346   // of Global Code Motion.
  1347   return msfpt;
  1350 //---------------------------match_tree----------------------------------------
  1351 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1352 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1353 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1354 // a Load's result RegMask for memoization in idealreg2regmask[]
  1355 MachNode *Matcher::match_tree( const Node *n ) {
  1356   assert( n->Opcode() != Op_Phi, "cannot match" );
  1357   assert( !n->is_block_start(), "cannot match" );
  1358   // Set the mark for all locally allocated State objects.
  1359   // When this call returns, the _states_arena arena will be reset
  1360   // freeing all State objects.
  1361   ResourceMark rm( &_states_arena );
  1363   LabelRootDepth = 0;
  1365   // StoreNodes require their Memory input to match any LoadNodes
  1366   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1367 #ifdef ASSERT
  1368   Node* save_mem_node = _mem_node;
  1369   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1370 #endif
  1371   // State object for root node of match tree
  1372   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1373   State *s = new (&_states_arena) State;
  1374   s->_kids[0] = NULL;
  1375   s->_kids[1] = NULL;
  1376   s->_leaf = (Node*)n;
  1377   // Label the input tree, allocating labels from top-level arena
  1378   Label_Root( n, s, n->in(0), mem );
  1379   if (C->failing())  return NULL;
  1381   // The minimum cost match for the whole tree is found at the root State
  1382   uint mincost = max_juint;
  1383   uint cost = max_juint;
  1384   uint i;
  1385   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1386     if( s->valid(i) &&                // valid entry and
  1387         s->_cost[i] < cost &&         // low cost and
  1388         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1389       cost = s->_cost[mincost=i];
  1391   if (mincost == max_juint) {
  1392 #ifndef PRODUCT
  1393     tty->print("No matching rule for:");
  1394     s->dump();
  1395 #endif
  1396     Matcher::soft_match_failure();
  1397     return NULL;
  1399   // Reduce input tree based upon the state labels to machine Nodes
  1400   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1401 #ifdef ASSERT
  1402   _old2new_map.map(n->_idx, m);
  1403   _new2old_map.map(m->_idx, (Node*)n);
  1404 #endif
  1406   // Add any Matcher-ignored edges
  1407   uint cnt = n->req();
  1408   uint start = 1;
  1409   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1410   if( n->is_AddP() ) {
  1411     assert( mem == (Node*)1, "" );
  1412     start = AddPNode::Base+1;
  1414   for( i = start; i < cnt; i++ ) {
  1415     if( !n->match_edge(i) ) {
  1416       if( i < m->req() )
  1417         m->ins_req( i, n->in(i) );
  1418       else
  1419         m->add_req( n->in(i) );
  1423   debug_only( _mem_node = save_mem_node; )
  1424   return m;
  1428 //------------------------------match_into_reg---------------------------------
  1429 // Choose to either match this Node in a register or part of the current
  1430 // match tree.  Return true for requiring a register and false for matching
  1431 // as part of the current match tree.
  1432 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1434   const Type *t = m->bottom_type();
  1436   if (t->singleton()) {
  1437     // Never force constants into registers.  Allow them to match as
  1438     // constants or registers.  Copies of the same value will share
  1439     // the same register.  See find_shared_node.
  1440     return false;
  1441   } else {                      // Not a constant
  1442     // Stop recursion if they have different Controls.
  1443     Node* m_control = m->in(0);
  1444     // Control of load's memory can post-dominates load's control.
  1445     // So use it since load can't float above its memory.
  1446     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
  1447     if (control && m_control && control != m_control && control != mem_control) {
  1449       // Actually, we can live with the most conservative control we
  1450       // find, if it post-dominates the others.  This allows us to
  1451       // pick up load/op/store trees where the load can float a little
  1452       // above the store.
  1453       Node *x = control;
  1454       const uint max_scan = 6;  // Arbitrary scan cutoff
  1455       uint j;
  1456       for (j=0; j<max_scan; j++) {
  1457         if (x->is_Region())     // Bail out at merge points
  1458           return true;
  1459         x = x->in(0);
  1460         if (x == m_control)     // Does 'control' post-dominate
  1461           break;                // m->in(0)?  If so, we can use it
  1462         if (x == mem_control)   // Does 'control' post-dominate
  1463           break;                // mem_control?  If so, we can use it
  1465       if (j == max_scan)        // No post-domination before scan end?
  1466         return true;            // Then break the match tree up
  1468     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
  1469         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
  1470       // These are commonly used in address expressions and can
  1471       // efficiently fold into them on X64 in some cases.
  1472       return false;
  1476   // Not forceable cloning.  If shared, put it into a register.
  1477   return shared;
  1481 //------------------------------Instruction Selection--------------------------
  1482 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1483 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1484 // things the Matcher does not match (e.g., Memory), and things with different
  1485 // Controls (hence forced into different blocks).  We pass in the Control
  1486 // selected for this entire State tree.
  1488 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1489 // Store and the Load must have identical Memories (as well as identical
  1490 // pointers).  Since the Matcher does not have anything for Memory (and
  1491 // does not handle DAGs), I have to match the Memory input myself.  If the
  1492 // Tree root is a Store, I require all Loads to have the identical memory.
  1493 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1494   // Since Label_Root is a recursive function, its possible that we might run
  1495   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1496   LabelRootDepth++;
  1497   if (LabelRootDepth > MaxLabelRootDepth) {
  1498     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1499     return NULL;
  1501   uint care = 0;                // Edges matcher cares about
  1502   uint cnt = n->req();
  1503   uint i = 0;
  1505   // Examine children for memory state
  1506   // Can only subsume a child into your match-tree if that child's memory state
  1507   // is not modified along the path to another input.
  1508   // It is unsafe even if the other inputs are separate roots.
  1509   Node *input_mem = NULL;
  1510   for( i = 1; i < cnt; i++ ) {
  1511     if( !n->match_edge(i) ) continue;
  1512     Node *m = n->in(i);         // Get ith input
  1513     assert( m, "expect non-null children" );
  1514     if( m->is_Load() ) {
  1515       if( input_mem == NULL ) {
  1516         input_mem = m->in(MemNode::Memory);
  1517       } else if( input_mem != m->in(MemNode::Memory) ) {
  1518         input_mem = NodeSentinel;
  1523   for( i = 1; i < cnt; i++ ){// For my children
  1524     if( !n->match_edge(i) ) continue;
  1525     Node *m = n->in(i);         // Get ith input
  1526     // Allocate states out of a private arena
  1527     State *s = new (&_states_arena) State;
  1528     svec->_kids[care++] = s;
  1529     assert( care <= 2, "binary only for now" );
  1531     // Recursively label the State tree.
  1532     s->_kids[0] = NULL;
  1533     s->_kids[1] = NULL;
  1534     s->_leaf = m;
  1536     // Check for leaves of the State Tree; things that cannot be a part of
  1537     // the current tree.  If it finds any, that value is matched as a
  1538     // register operand.  If not, then the normal matching is used.
  1539     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1540         //
  1541         // Stop recursion if this is LoadNode and the root of this tree is a
  1542         // StoreNode and the load & store have different memories.
  1543         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1544         // Can NOT include the match of a subtree when its memory state
  1545         // is used by any of the other subtrees
  1546         (input_mem == NodeSentinel) ) {
  1547 #ifndef PRODUCT
  1548       // Print when we exclude matching due to different memory states at input-loads
  1549       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1550         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1551         tty->print_cr("invalid input_mem");
  1553 #endif
  1554       // Switch to a register-only opcode; this value must be in a register
  1555       // and cannot be subsumed as part of a larger instruction.
  1556       s->DFA( m->ideal_reg(), m );
  1558     } else {
  1559       // If match tree has no control and we do, adopt it for entire tree
  1560       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1561         control = m->in(0);         // Pick up control
  1562       // Else match as a normal part of the match tree.
  1563       control = Label_Root(m,s,control,mem);
  1564       if (C->failing()) return NULL;
  1569   // Call DFA to match this node, and return
  1570   svec->DFA( n->Opcode(), n );
  1572 #ifdef ASSERT
  1573   uint x;
  1574   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1575     if( svec->valid(x) )
  1576       break;
  1578   if (x >= _LAST_MACH_OPER) {
  1579     n->dump();
  1580     svec->dump();
  1581     assert( false, "bad AD file" );
  1583 #endif
  1584   return control;
  1588 // Con nodes reduced using the same rule can share their MachNode
  1589 // which reduces the number of copies of a constant in the final
  1590 // program.  The register allocator is free to split uses later to
  1591 // split live ranges.
  1592 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1593   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
  1595   // See if this Con has already been reduced using this rule.
  1596   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1597   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1598   if (last != NULL && rule == last->rule()) {
  1599     // Don't expect control change for DecodeN
  1600     if (leaf->is_DecodeNarrowPtr())
  1601       return last;
  1602     // Get the new space root.
  1603     Node* xroot = new_node(C->root());
  1604     if (xroot == NULL) {
  1605       // This shouldn't happen give the order of matching.
  1606       return NULL;
  1609     // Shared constants need to have their control be root so they
  1610     // can be scheduled properly.
  1611     Node* control = last->in(0);
  1612     if (control != xroot) {
  1613       if (control == NULL || control == C->root()) {
  1614         last->set_req(0, xroot);
  1615       } else {
  1616         assert(false, "unexpected control");
  1617         return NULL;
  1620     return last;
  1622   return NULL;
  1626 //------------------------------ReduceInst-------------------------------------
  1627 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1628 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1629 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1630 // Each MachNode has a number of complicated MachOper operands; each
  1631 // MachOper also covers a further tree of Ideal Nodes.
  1633 // The root of the Ideal match tree is always an instruction, so we enter
  1634 // the recursion here.  After building the MachNode, we need to recurse
  1635 // the tree checking for these cases:
  1636 // (1) Child is an instruction -
  1637 //     Build the instruction (recursively), add it as an edge.
  1638 //     Build a simple operand (register) to hold the result of the instruction.
  1639 // (2) Child is an interior part of an instruction -
  1640 //     Skip over it (do nothing)
  1641 // (3) Child is the start of a operand -
  1642 //     Build the operand, place it inside the instruction
  1643 //     Call ReduceOper.
  1644 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1645   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1647   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1648   if (shared_node != NULL) {
  1649     return shared_node;
  1652   // Build the object to represent this state & prepare for recursive calls
  1653   MachNode *mach = s->MachNodeGenerator( rule, C );
  1654   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1655   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1656   Node *leaf = s->_leaf;
  1657   // Check for instruction or instruction chain rule
  1658   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1659     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1660            "duplicating node that's already been matched");
  1661     // Instruction
  1662     mach->add_req( leaf->in(0) ); // Set initial control
  1663     // Reduce interior of complex instruction
  1664     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1665   } else {
  1666     // Instruction chain rules are data-dependent on their inputs
  1667     mach->add_req(0);             // Set initial control to none
  1668     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1671   // If a Memory was used, insert a Memory edge
  1672   if( mem != (Node*)1 ) {
  1673     mach->ins_req(MemNode::Memory,mem);
  1674 #ifdef ASSERT
  1675     // Verify adr type after matching memory operation
  1676     const MachOper* oper = mach->memory_operand();
  1677     if (oper != NULL && oper != (MachOper*)-1) {
  1678       // It has a unique memory operand.  Find corresponding ideal mem node.
  1679       Node* m = NULL;
  1680       if (leaf->is_Mem()) {
  1681         m = leaf;
  1682       } else {
  1683         m = _mem_node;
  1684         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1686       const Type* mach_at = mach->adr_type();
  1687       // DecodeN node consumed by an address may have different type
  1688       // then its input. Don't compare types for such case.
  1689       if (m->adr_type() != mach_at &&
  1690           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
  1691            m->in(MemNode::Address)->is_AddP() &&
  1692            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
  1693            m->in(MemNode::Address)->is_AddP() &&
  1694            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1695            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
  1696         mach_at = m->adr_type();
  1698       if (m->adr_type() != mach_at) {
  1699         m->dump();
  1700         tty->print_cr("mach:");
  1701         mach->dump(1);
  1703       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1705 #endif
  1708   // If the _leaf is an AddP, insert the base edge
  1709   if (leaf->is_AddP()) {
  1710     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1713   uint number_of_projections_prior = number_of_projections();
  1715   // Perform any 1-to-many expansions required
  1716   MachNode *ex = mach->Expand(s, _projection_list, mem);
  1717   if (ex != mach) {
  1718     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1719     if( ex->in(1)->is_Con() )
  1720       ex->in(1)->set_req(0, C->root());
  1721     // Remove old node from the graph
  1722     for( uint i=0; i<mach->req(); i++ ) {
  1723       mach->set_req(i,NULL);
  1725 #ifdef ASSERT
  1726     _new2old_map.map(ex->_idx, s->_leaf);
  1727 #endif
  1730   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1731   // via the matcher.  By the time, nodes have been wired into the CFG,
  1732   // and any further nodes generated by expand rules will be left hanging
  1733   // in space, and will not get emitted as output code.  Catch this.
  1734   // Also, catch any new register allocation constraints ("projections")
  1735   // generated belatedly during spill code generation.
  1736   if (_allocation_started) {
  1737     guarantee(ex == mach, "no expand rules during spill generation");
  1738     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
  1741   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
  1742     // Record the con for sharing
  1743     _shared_nodes.map(leaf->_idx, ex);
  1746   return ex;
  1749 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1750   // 'op' is what I am expecting to receive
  1751   int op = _leftOp[rule];
  1752   // Operand type to catch childs result
  1753   // This is what my child will give me.
  1754   int opnd_class_instance = s->_rule[op];
  1755   // Choose between operand class or not.
  1756   // This is what I will receive.
  1757   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1758   // New rule for child.  Chase operand classes to get the actual rule.
  1759   int newrule = s->_rule[catch_op];
  1761   if( newrule < NUM_OPERANDS ) {
  1762     // Chain from operand or operand class, may be output of shared node
  1763     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1764             "Bad AD file: Instruction chain rule must chain from operand");
  1765     // Insert operand into array of operands for this instruction
  1766     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1768     ReduceOper( s, newrule, mem, mach );
  1769   } else {
  1770     // Chain from the result of an instruction
  1771     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1772     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1773     Node *mem1 = (Node*)1;
  1774     debug_only(Node *save_mem_node = _mem_node;)
  1775     mach->add_req( ReduceInst(s, newrule, mem1) );
  1776     debug_only(_mem_node = save_mem_node;)
  1778   return;
  1782 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1783   if( s->_leaf->is_Load() ) {
  1784     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1785     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1786     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1787     mem = mem2;
  1789   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1790     if( mach->in(0) == NULL )
  1791       mach->set_req(0, s->_leaf->in(0));
  1794   // Now recursively walk the state tree & add operand list.
  1795   for( uint i=0; i<2; i++ ) {   // binary tree
  1796     State *newstate = s->_kids[i];
  1797     if( newstate == NULL ) break;      // Might only have 1 child
  1798     // 'op' is what I am expecting to receive
  1799     int op;
  1800     if( i == 0 ) {
  1801       op = _leftOp[rule];
  1802     } else {
  1803       op = _rightOp[rule];
  1805     // Operand type to catch childs result
  1806     // This is what my child will give me.
  1807     int opnd_class_instance = newstate->_rule[op];
  1808     // Choose between operand class or not.
  1809     // This is what I will receive.
  1810     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1811     // New rule for child.  Chase operand classes to get the actual rule.
  1812     int newrule = newstate->_rule[catch_op];
  1814     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1815       // Operand/operandClass
  1816       // Insert operand into array of operands for this instruction
  1817       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1818       ReduceOper( newstate, newrule, mem, mach );
  1820     } else {                    // Child is internal operand or new instruction
  1821       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1822         // internal operand --> call ReduceInst_Interior
  1823         // Interior of complex instruction.  Do nothing but recurse.
  1824         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1825       } else {
  1826         // instruction --> call build operand(  ) to catch result
  1827         //             --> ReduceInst( newrule )
  1828         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1829         Node *mem1 = (Node*)1;
  1830         debug_only(Node *save_mem_node = _mem_node;)
  1831         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1832         debug_only(_mem_node = save_mem_node;)
  1835     assert( mach->_opnds[num_opnds-1], "" );
  1837   return num_opnds;
  1840 // This routine walks the interior of possible complex operands.
  1841 // At each point we check our children in the match tree:
  1842 // (1) No children -
  1843 //     We are a leaf; add _leaf field as an input to the MachNode
  1844 // (2) Child is an internal operand -
  1845 //     Skip over it ( do nothing )
  1846 // (3) Child is an instruction -
  1847 //     Call ReduceInst recursively and
  1848 //     and instruction as an input to the MachNode
  1849 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1850   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1851   State *kid = s->_kids[0];
  1852   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1854   // Leaf?  And not subsumed?
  1855   if( kid == NULL && !_swallowed[rule] ) {
  1856     mach->add_req( s->_leaf );  // Add leaf pointer
  1857     return;                     // Bail out
  1860   if( s->_leaf->is_Load() ) {
  1861     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1862     mem = s->_leaf->in(MemNode::Memory);
  1863     debug_only(_mem_node = s->_leaf;)
  1865   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1866     if( !mach->in(0) )
  1867       mach->set_req(0,s->_leaf->in(0));
  1868     else {
  1869       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1873   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1874     int newrule;
  1875     if( i == 0)
  1876       newrule = kid->_rule[_leftOp[rule]];
  1877     else
  1878       newrule = kid->_rule[_rightOp[rule]];
  1880     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1881       // Internal operand; recurse but do nothing else
  1882       ReduceOper( kid, newrule, mem, mach );
  1884     } else {                    // Child is a new instruction
  1885       // Reduce the instruction, and add a direct pointer from this
  1886       // machine instruction to the newly reduced one.
  1887       Node *mem1 = (Node*)1;
  1888       debug_only(Node *save_mem_node = _mem_node;)
  1889       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1890       debug_only(_mem_node = save_mem_node;)
  1896 // -------------------------------------------------------------------------
  1897 // Java-Java calling convention
  1898 // (what you use when Java calls Java)
  1900 //------------------------------find_receiver----------------------------------
  1901 // For a given signature, return the OptoReg for parameter 0.
  1902 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1903   VMRegPair regs;
  1904   BasicType sig_bt = T_OBJECT;
  1905   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1906   // Return argument 0 register.  In the LP64 build pointers
  1907   // take 2 registers, but the VM wants only the 'main' name.
  1908   return OptoReg::as_OptoReg(regs.first());
  1911 // A method-klass-holder may be passed in the inline_cache_reg
  1912 // and then expanded into the inline_cache_reg and a method_oop register
  1913 //   defined in ad_<arch>.cpp
  1916 //------------------------------find_shared------------------------------------
  1917 // Set bits if Node is shared or otherwise a root
  1918 void Matcher::find_shared( Node *n ) {
  1919   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1920   MStack mstack(C->unique() * 2);
  1921   // Mark nodes as address_visited if they are inputs to an address expression
  1922   VectorSet address_visited(Thread::current()->resource_area());
  1923   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1924   while (mstack.is_nonempty()) {
  1925     n = mstack.node();       // Leave node on stack
  1926     Node_State nstate = mstack.state();
  1927     uint nop = n->Opcode();
  1928     if (nstate == Pre_Visit) {
  1929       if (address_visited.test(n->_idx)) { // Visited in address already?
  1930         // Flag as visited and shared now.
  1931         set_visited(n);
  1933       if (is_visited(n)) {   // Visited already?
  1934         // Node is shared and has no reason to clone.  Flag it as shared.
  1935         // This causes it to match into a register for the sharing.
  1936         set_shared(n);       // Flag as shared and
  1937         mstack.pop();        // remove node from stack
  1938         continue;
  1940       nstate = Visit; // Not already visited; so visit now
  1942     if (nstate == Visit) {
  1943       mstack.set_state(Post_Visit);
  1944       set_visited(n);   // Flag as visited now
  1945       bool mem_op = false;
  1947       switch( nop ) {  // Handle some opcodes special
  1948       case Op_Phi:             // Treat Phis as shared roots
  1949       case Op_Parm:
  1950       case Op_Proj:            // All handled specially during matching
  1951       case Op_SafePointScalarObject:
  1952         set_shared(n);
  1953         set_dontcare(n);
  1954         break;
  1955       case Op_If:
  1956       case Op_CountedLoopEnd:
  1957         mstack.set_state(Alt_Post_Visit); // Alternative way
  1958         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1959         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1960         // Bool and CmpX side-by-side, because it can only get at constants
  1961         // that are at the leaves of Match trees, and the Bool's condition acts
  1962         // as a constant here.
  1963         mstack.push(n->in(1), Visit);         // Clone the Bool
  1964         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1965         continue; // while (mstack.is_nonempty())
  1966       case Op_ConvI2D:         // These forms efficiently match with a prior
  1967       case Op_ConvI2F:         //   Load but not a following Store
  1968         if( n->in(1)->is_Load() &&        // Prior load
  1969             n->outcnt() == 1 &&           // Not already shared
  1970             n->unique_out()->is_Store() ) // Following store
  1971           set_shared(n);       // Force it to be a root
  1972         break;
  1973       case Op_ReverseBytesI:
  1974       case Op_ReverseBytesL:
  1975         if( n->in(1)->is_Load() &&        // Prior load
  1976             n->outcnt() == 1 )            // Not already shared
  1977           set_shared(n);                  // Force it to be a root
  1978         break;
  1979       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1980       case Op_IfFalse:
  1981       case Op_IfTrue:
  1982       case Op_MachProj:
  1983       case Op_MergeMem:
  1984       case Op_Catch:
  1985       case Op_CatchProj:
  1986       case Op_CProj:
  1987       case Op_FlagsProj:
  1988       case Op_JumpProj:
  1989       case Op_JProj:
  1990       case Op_NeverBranch:
  1991         set_dontcare(n);
  1992         break;
  1993       case Op_Jump:
  1994         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
  1995         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1996         continue;                             // while (mstack.is_nonempty())
  1997       case Op_StrComp:
  1998       case Op_StrEquals:
  1999       case Op_StrIndexOf:
  2000       case Op_AryEq:
  2001       case Op_EncodeISOArray:
  2002         set_shared(n); // Force result into register (it will be anyways)
  2003         break;
  2004       case Op_ConP: {  // Convert pointers above the centerline to NUL
  2005         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  2006         const TypePtr* tp = tn->type()->is_ptr();
  2007         if (tp->_ptr == TypePtr::AnyNull) {
  2008           tn->set_type(TypePtr::NULL_PTR);
  2010         break;
  2012       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  2013         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  2014         const TypePtr* tp = tn->type()->make_ptr();
  2015         if (tp && tp->_ptr == TypePtr::AnyNull) {
  2016           tn->set_type(TypeNarrowOop::NULL_PTR);
  2018         break;
  2020       case Op_Binary:         // These are introduced in the Post_Visit state.
  2021         ShouldNotReachHere();
  2022         break;
  2023       case Op_ClearArray:
  2024       case Op_SafePoint:
  2025         mem_op = true;
  2026         break;
  2027       default:
  2028         if( n->is_Store() ) {
  2029           // Do match stores, despite no ideal reg
  2030           mem_op = true;
  2031           break;
  2033         if( n->is_Mem() ) { // Loads and LoadStores
  2034           mem_op = true;
  2035           // Loads must be root of match tree due to prior load conflict
  2036           if( C->subsume_loads() == false )
  2037             set_shared(n);
  2039         // Fall into default case
  2040         if( !n->ideal_reg() )
  2041           set_dontcare(n);  // Unmatchable Nodes
  2042       } // end_switch
  2044       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  2045         Node *m = n->in(i); // Get ith input
  2046         if (m == NULL) continue;  // Ignore NULLs
  2047         uint mop = m->Opcode();
  2049         // Must clone all producers of flags, or we will not match correctly.
  2050         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  2051         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  2052         // are also there, so we may match a float-branch to int-flags and
  2053         // expect the allocator to haul the flags from the int-side to the
  2054         // fp-side.  No can do.
  2055         if( _must_clone[mop] ) {
  2056           mstack.push(m, Visit);
  2057           continue; // for(int i = ...)
  2060         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
  2061           // Bases used in addresses must be shared but since
  2062           // they are shared through a DecodeN they may appear
  2063           // to have a single use so force sharing here.
  2064           set_shared(m->in(AddPNode::Base)->in(1));
  2067         // Clone addressing expressions as they are "free" in memory access instructions
  2068         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  2069           // Some inputs for address expression are not put on stack
  2070           // to avoid marking them as shared and forcing them into register
  2071           // if they are used only in address expressions.
  2072           // But they should be marked as shared if there are other uses
  2073           // besides address expressions.
  2075           Node *off = m->in(AddPNode::Offset);
  2076           if( off->is_Con() &&
  2077               // When there are other uses besides address expressions
  2078               // put it on stack and mark as shared.
  2079               !is_visited(m) ) {
  2080             address_visited.test_set(m->_idx); // Flag as address_visited
  2081             Node *adr = m->in(AddPNode::Address);
  2083             // Intel, ARM and friends can handle 2 adds in addressing mode
  2084             if( clone_shift_expressions && adr->is_AddP() &&
  2085                 // AtomicAdd is not an addressing expression.
  2086                 // Cheap to find it by looking for screwy base.
  2087                 !adr->in(AddPNode::Base)->is_top() &&
  2088                 // Are there other uses besides address expressions?
  2089                 !is_visited(adr) ) {
  2090               address_visited.set(adr->_idx); // Flag as address_visited
  2091               Node *shift = adr->in(AddPNode::Offset);
  2092               // Check for shift by small constant as well
  2093               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  2094                   shift->in(2)->get_int() <= 3 &&
  2095                   // Are there other uses besides address expressions?
  2096                   !is_visited(shift) ) {
  2097                 address_visited.set(shift->_idx); // Flag as address_visited
  2098                 mstack.push(shift->in(2), Visit);
  2099                 Node *conv = shift->in(1);
  2100 #ifdef _LP64
  2101                 // Allow Matcher to match the rule which bypass
  2102                 // ConvI2L operation for an array index on LP64
  2103                 // if the index value is positive.
  2104                 if( conv->Opcode() == Op_ConvI2L &&
  2105                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  2106                     // Are there other uses besides address expressions?
  2107                     !is_visited(conv) ) {
  2108                   address_visited.set(conv->_idx); // Flag as address_visited
  2109                   mstack.push(conv->in(1), Pre_Visit);
  2110                 } else
  2111 #endif
  2112                 mstack.push(conv, Pre_Visit);
  2113               } else {
  2114                 mstack.push(shift, Pre_Visit);
  2116               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  2117               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2118             } else {  // Sparc, Alpha, PPC and friends
  2119               mstack.push(adr, Pre_Visit);
  2122             // Clone X+offset as it also folds into most addressing expressions
  2123             mstack.push(off, Visit);
  2124             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2125             continue; // for(int i = ...)
  2126           } // if( off->is_Con() )
  2127         }   // if( mem_op &&
  2128         mstack.push(m, Pre_Visit);
  2129       }     // for(int i = ...)
  2131     else if (nstate == Alt_Post_Visit) {
  2132       mstack.pop(); // Remove node from stack
  2133       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2134       // shared and all users of the Bool need to move the Cmp in parallel.
  2135       // This leaves both the Bool and the If pointing at the Cmp.  To
  2136       // prevent the Matcher from trying to Match the Cmp along both paths
  2137       // BoolNode::match_edge always returns a zero.
  2139       // We reorder the Op_If in a pre-order manner, so we can visit without
  2140       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2141       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2143     else if (nstate == Post_Visit) {
  2144       mstack.pop(); // Remove node from stack
  2146       // Now hack a few special opcodes
  2147       switch( n->Opcode() ) {       // Handle some opcodes special
  2148       case Op_StorePConditional:
  2149       case Op_StoreIConditional:
  2150       case Op_StoreLConditional:
  2151       case Op_CompareAndSwapI:
  2152       case Op_CompareAndSwapL:
  2153       case Op_CompareAndSwapP:
  2154       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2155         Node *newval = n->in(MemNode::ValueIn );
  2156         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
  2157         Node *pair = new (C) BinaryNode( oldval, newval );
  2158         n->set_req(MemNode::ValueIn,pair);
  2159         n->del_req(LoadStoreConditionalNode::ExpectedIn);
  2160         break;
  2162       case Op_CMoveD:              // Convert trinary to binary-tree
  2163       case Op_CMoveF:
  2164       case Op_CMoveI:
  2165       case Op_CMoveL:
  2166       case Op_CMoveN:
  2167       case Op_CMoveP: {
  2168         // Restructure into a binary tree for Matching.  It's possible that
  2169         // we could move this code up next to the graph reshaping for IfNodes
  2170         // or vice-versa, but I do not want to debug this for Ladybird.
  2171         // 10/2/2000 CNC.
  2172         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
  2173         n->set_req(1,pair1);
  2174         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
  2175         n->set_req(2,pair2);
  2176         n->del_req(3);
  2177         break;
  2179       case Op_LoopLimit: {
  2180         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
  2181         n->set_req(1,pair1);
  2182         n->set_req(2,n->in(3));
  2183         n->del_req(3);
  2184         break;
  2186       case Op_StrEquals: {
  2187         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2188         n->set_req(2,pair1);
  2189         n->set_req(3,n->in(4));
  2190         n->del_req(4);
  2191         break;
  2193       case Op_StrComp:
  2194       case Op_StrIndexOf: {
  2195         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2196         n->set_req(2,pair1);
  2197         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
  2198         n->set_req(3,pair2);
  2199         n->del_req(5);
  2200         n->del_req(4);
  2201         break;
  2203       case Op_EncodeISOArray: {
  2204         // Restructure into a binary tree for Matching.
  2205         Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
  2206         n->set_req(3, pair);
  2207         n->del_req(4);
  2208         break;
  2210       default:
  2211         break;
  2214     else {
  2215       ShouldNotReachHere();
  2217   } // end of while (mstack.is_nonempty())
  2220 #ifdef ASSERT
  2221 // machine-independent root to machine-dependent root
  2222 void Matcher::dump_old2new_map() {
  2223   _old2new_map.dump();
  2225 #endif
  2227 //---------------------------collect_null_checks-------------------------------
  2228 // Find null checks in the ideal graph; write a machine-specific node for
  2229 // it.  Used by later implicit-null-check handling.  Actually collects
  2230 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2231 // value being tested.
  2232 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2233   Node *iff = proj->in(0);
  2234   if( iff->Opcode() == Op_If ) {
  2235     // During matching If's have Bool & Cmp side-by-side
  2236     BoolNode *b = iff->in(1)->as_Bool();
  2237     Node *cmp = iff->in(2);
  2238     int opc = cmp->Opcode();
  2239     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2241     const Type* ct = cmp->in(2)->bottom_type();
  2242     if (ct == TypePtr::NULL_PTR ||
  2243         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2245       bool push_it = false;
  2246       if( proj->Opcode() == Op_IfTrue ) {
  2247         extern int all_null_checks_found;
  2248         all_null_checks_found++;
  2249         if( b->_test._test == BoolTest::ne ) {
  2250           push_it = true;
  2252       } else {
  2253         assert( proj->Opcode() == Op_IfFalse, "" );
  2254         if( b->_test._test == BoolTest::eq ) {
  2255           push_it = true;
  2258       if( push_it ) {
  2259         _null_check_tests.push(proj);
  2260         Node* val = cmp->in(1);
  2261 #ifdef _LP64
  2262         if (val->bottom_type()->isa_narrowoop() &&
  2263             !Matcher::narrow_oop_use_complex_address()) {
  2264           //
  2265           // Look for DecodeN node which should be pinned to orig_proj.
  2266           // On platforms (Sparc) which can not handle 2 adds
  2267           // in addressing mode we have to keep a DecodeN node and
  2268           // use it to do implicit NULL check in address.
  2269           //
  2270           // DecodeN node was pinned to non-null path (orig_proj) during
  2271           // CastPP transformation in final_graph_reshaping_impl().
  2272           //
  2273           uint cnt = orig_proj->outcnt();
  2274           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2275             Node* d = orig_proj->raw_out(i);
  2276             if (d->is_DecodeN() && d->in(1) == val) {
  2277               val = d;
  2278               val->set_req(0, NULL); // Unpin now.
  2279               // Mark this as special case to distinguish from
  2280               // a regular case: CmpP(DecodeN, NULL).
  2281               val = (Node*)(((intptr_t)val) | 1);
  2282               break;
  2286 #endif
  2287         _null_check_tests.push(val);
  2293 //---------------------------validate_null_checks------------------------------
  2294 // Its possible that the value being NULL checked is not the root of a match
  2295 // tree.  If so, I cannot use the value in an implicit null check.
  2296 void Matcher::validate_null_checks( ) {
  2297   uint cnt = _null_check_tests.size();
  2298   for( uint i=0; i < cnt; i+=2 ) {
  2299     Node *test = _null_check_tests[i];
  2300     Node *val = _null_check_tests[i+1];
  2301     bool is_decoden = ((intptr_t)val) & 1;
  2302     val = (Node*)(((intptr_t)val) & ~1);
  2303     if (has_new_node(val)) {
  2304       Node* new_val = new_node(val);
  2305       if (is_decoden) {
  2306         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
  2307         // Note: new_val may have a control edge if
  2308         // the original ideal node DecodeN was matched before
  2309         // it was unpinned in Matcher::collect_null_checks().
  2310         // Unpin the mach node and mark it.
  2311         new_val->set_req(0, NULL);
  2312         new_val = (Node*)(((intptr_t)new_val) | 1);
  2314       // Is a match-tree root, so replace with the matched value
  2315       _null_check_tests.map(i+1, new_val);
  2316     } else {
  2317       // Yank from candidate list
  2318       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2319       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2320       _null_check_tests.pop();
  2321       _null_check_tests.pop();
  2322       i-=2;
  2327 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2328 // atomic instruction acting as a store_load barrier without any
  2329 // intervening volatile load, and thus we don't need a barrier here.
  2330 // We retain the Node to act as a compiler ordering barrier.
  2331 bool Matcher::post_store_load_barrier(const Node* vmb) {
  2332   Compile* C = Compile::current();
  2333   assert(vmb->is_MemBar(), "");
  2334   assert(vmb->Opcode() != Op_MemBarAcquire, "");
  2335   const MemBarNode* membar = vmb->as_MemBar();
  2337   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
  2338   Node* ctrl = NULL;
  2339   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
  2340     Node* p = membar->fast_out(i);
  2341     assert(p->is_Proj(), "only projections here");
  2342     if ((p->as_Proj()->_con == TypeFunc::Control) &&
  2343         !C->node_arena()->contains(p)) { // Unmatched old-space only
  2344       ctrl = p;
  2345       break;
  2348   assert((ctrl != NULL), "missing control projection");
  2350   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
  2351     Node *x = ctrl->fast_out(j);
  2352     int xop = x->Opcode();
  2354     // We don't need current barrier if we see another or a lock
  2355     // before seeing volatile load.
  2356     //
  2357     // Op_Fastunlock previously appeared in the Op_* list below.
  2358     // With the advent of 1-0 lock operations we're no longer guaranteed
  2359     // that a monitor exit operation contains a serializing instruction.
  2361     if (xop == Op_MemBarVolatile ||
  2362         xop == Op_CompareAndSwapL ||
  2363         xop == Op_CompareAndSwapP ||
  2364         xop == Op_CompareAndSwapN ||
  2365         xop == Op_CompareAndSwapI) {
  2366       return true;
  2369     // Op_FastLock previously appeared in the Op_* list above.
  2370     // With biased locking we're no longer guaranteed that a monitor
  2371     // enter operation contains a serializing instruction.
  2372     if ((xop == Op_FastLock) && !UseBiasedLocking) {
  2373       return true;
  2376     if (x->is_MemBar()) {
  2377       // We must retain this membar if there is an upcoming volatile
  2378       // load, which will be followed by acquire membar.
  2379       if (xop == Op_MemBarAcquire) {
  2380         return false;
  2381       } else {
  2382         // For other kinds of barriers, check by pretending we
  2383         // are them, and seeing if we can be removed.
  2384         return post_store_load_barrier(x->as_MemBar());
  2388     // probably not necessary to check for these
  2389     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
  2390       return false;
  2393   return false;
  2396 //=============================================================================
  2397 //---------------------------State---------------------------------------------
  2398 State::State(void) {
  2399 #ifdef ASSERT
  2400   _id = 0;
  2401   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2402   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2403   //memset(_cost, -1, sizeof(_cost));
  2404   //memset(_rule, -1, sizeof(_rule));
  2405 #endif
  2406   memset(_valid, 0, sizeof(_valid));
  2409 #ifdef ASSERT
  2410 State::~State() {
  2411   _id = 99;
  2412   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2413   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2414   memset(_cost, -3, sizeof(_cost));
  2415   memset(_rule, -3, sizeof(_rule));
  2417 #endif
  2419 #ifndef PRODUCT
  2420 //---------------------------dump----------------------------------------------
  2421 void State::dump() {
  2422   tty->print("\n");
  2423   dump(0);
  2426 void State::dump(int depth) {
  2427   for( int j = 0; j < depth; j++ )
  2428     tty->print("   ");
  2429   tty->print("--N: ");
  2430   _leaf->dump();
  2431   uint i;
  2432   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2433     // Check for valid entry
  2434     if( valid(i) ) {
  2435       for( int j = 0; j < depth; j++ )
  2436         tty->print("   ");
  2437         assert(_cost[i] != max_juint, "cost must be a valid value");
  2438         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2439         tty->print_cr("%s  %d  %s",
  2440                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2442   tty->print_cr("");
  2444   for( i=0; i<2; i++ )
  2445     if( _kids[i] )
  2446       _kids[i]->dump(depth+1);
  2448 #endif

mercurial