src/share/vm/opto/compile.cpp

Fri, 28 Feb 2014 08:43:42 -0800

author
amurillo
date
Fri, 28 Feb 2014 08:43:42 -0800
changeset 6341
54436d3b2a91
parent 6314
1419657ed891
child 6375
085b304a1cc5
child 6507
752ba2e5f6d0
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "ci/ciReplay.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "code/exceptionHandlerTable.hpp"
    31 #include "code/nmethod.hpp"
    32 #include "compiler/compileLog.hpp"
    33 #include "compiler/disassembler.hpp"
    34 #include "compiler/oopMap.hpp"
    35 #include "opto/addnode.hpp"
    36 #include "opto/block.hpp"
    37 #include "opto/c2compiler.hpp"
    38 #include "opto/callGenerator.hpp"
    39 #include "opto/callnode.hpp"
    40 #include "opto/cfgnode.hpp"
    41 #include "opto/chaitin.hpp"
    42 #include "opto/compile.hpp"
    43 #include "opto/connode.hpp"
    44 #include "opto/divnode.hpp"
    45 #include "opto/escape.hpp"
    46 #include "opto/idealGraphPrinter.hpp"
    47 #include "opto/loopnode.hpp"
    48 #include "opto/machnode.hpp"
    49 #include "opto/macro.hpp"
    50 #include "opto/matcher.hpp"
    51 #include "opto/mathexactnode.hpp"
    52 #include "opto/memnode.hpp"
    53 #include "opto/mulnode.hpp"
    54 #include "opto/node.hpp"
    55 #include "opto/opcodes.hpp"
    56 #include "opto/output.hpp"
    57 #include "opto/parse.hpp"
    58 #include "opto/phaseX.hpp"
    59 #include "opto/rootnode.hpp"
    60 #include "opto/runtime.hpp"
    61 #include "opto/stringopts.hpp"
    62 #include "opto/type.hpp"
    63 #include "opto/vectornode.hpp"
    64 #include "runtime/arguments.hpp"
    65 #include "runtime/signature.hpp"
    66 #include "runtime/stubRoutines.hpp"
    67 #include "runtime/timer.hpp"
    68 #include "trace/tracing.hpp"
    69 #include "utilities/copy.hpp"
    70 #ifdef TARGET_ARCH_MODEL_x86_32
    71 # include "adfiles/ad_x86_32.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_MODEL_x86_64
    74 # include "adfiles/ad_x86_64.hpp"
    75 #endif
    76 #ifdef TARGET_ARCH_MODEL_sparc
    77 # include "adfiles/ad_sparc.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_MODEL_zero
    80 # include "adfiles/ad_zero.hpp"
    81 #endif
    82 #ifdef TARGET_ARCH_MODEL_arm
    83 # include "adfiles/ad_arm.hpp"
    84 #endif
    85 #ifdef TARGET_ARCH_MODEL_ppc
    86 # include "adfiles/ad_ppc.hpp"
    87 #endif
    90 // -------------------- Compile::mach_constant_base_node -----------------------
    91 // Constant table base node singleton.
    92 MachConstantBaseNode* Compile::mach_constant_base_node() {
    93   if (_mach_constant_base_node == NULL) {
    94     _mach_constant_base_node = new (C) MachConstantBaseNode();
    95     _mach_constant_base_node->add_req(C->root());
    96   }
    97   return _mach_constant_base_node;
    98 }
   101 /// Support for intrinsics.
   103 // Return the index at which m must be inserted (or already exists).
   104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   105 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   106 #ifdef ASSERT
   107   for (int i = 1; i < _intrinsics->length(); i++) {
   108     CallGenerator* cg1 = _intrinsics->at(i-1);
   109     CallGenerator* cg2 = _intrinsics->at(i);
   110     assert(cg1->method() != cg2->method()
   111            ? cg1->method()     < cg2->method()
   112            : cg1->is_virtual() < cg2->is_virtual(),
   113            "compiler intrinsics list must stay sorted");
   114   }
   115 #endif
   116   // Binary search sorted list, in decreasing intervals [lo, hi].
   117   int lo = 0, hi = _intrinsics->length()-1;
   118   while (lo <= hi) {
   119     int mid = (uint)(hi + lo) / 2;
   120     ciMethod* mid_m = _intrinsics->at(mid)->method();
   121     if (m < mid_m) {
   122       hi = mid-1;
   123     } else if (m > mid_m) {
   124       lo = mid+1;
   125     } else {
   126       // look at minor sort key
   127       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   128       if (is_virtual < mid_virt) {
   129         hi = mid-1;
   130       } else if (is_virtual > mid_virt) {
   131         lo = mid+1;
   132       } else {
   133         return mid;  // exact match
   134       }
   135     }
   136   }
   137   return lo;  // inexact match
   138 }
   140 void Compile::register_intrinsic(CallGenerator* cg) {
   141   if (_intrinsics == NULL) {
   142     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   143   }
   144   // This code is stolen from ciObjectFactory::insert.
   145   // Really, GrowableArray should have methods for
   146   // insert_at, remove_at, and binary_search.
   147   int len = _intrinsics->length();
   148   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   149   if (index == len) {
   150     _intrinsics->append(cg);
   151   } else {
   152 #ifdef ASSERT
   153     CallGenerator* oldcg = _intrinsics->at(index);
   154     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   155 #endif
   156     _intrinsics->append(_intrinsics->at(len-1));
   157     int pos;
   158     for (pos = len-2; pos >= index; pos--) {
   159       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   160     }
   161     _intrinsics->at_put(index, cg);
   162   }
   163   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   164 }
   166 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   167   assert(m->is_loaded(), "don't try this on unloaded methods");
   168   if (_intrinsics != NULL) {
   169     int index = intrinsic_insertion_index(m, is_virtual);
   170     if (index < _intrinsics->length()
   171         && _intrinsics->at(index)->method() == m
   172         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   173       return _intrinsics->at(index);
   174     }
   175   }
   176   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   177   if (m->intrinsic_id() != vmIntrinsics::_none &&
   178       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   179     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   180     if (cg != NULL) {
   181       // Save it for next time:
   182       register_intrinsic(cg);
   183       return cg;
   184     } else {
   185       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   186     }
   187   }
   188   return NULL;
   189 }
   191 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   192 // in library_call.cpp.
   195 #ifndef PRODUCT
   196 // statistics gathering...
   198 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   199 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   201 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   202   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   203   int oflags = _intrinsic_hist_flags[id];
   204   assert(flags != 0, "what happened?");
   205   if (is_virtual) {
   206     flags |= _intrinsic_virtual;
   207   }
   208   bool changed = (flags != oflags);
   209   if ((flags & _intrinsic_worked) != 0) {
   210     juint count = (_intrinsic_hist_count[id] += 1);
   211     if (count == 1) {
   212       changed = true;           // first time
   213     }
   214     // increment the overall count also:
   215     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   216   }
   217   if (changed) {
   218     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   219       // Something changed about the intrinsic's virtuality.
   220       if ((flags & _intrinsic_virtual) != 0) {
   221         // This is the first use of this intrinsic as a virtual call.
   222         if (oflags != 0) {
   223           // We already saw it as a non-virtual, so note both cases.
   224           flags |= _intrinsic_both;
   225         }
   226       } else if ((oflags & _intrinsic_both) == 0) {
   227         // This is the first use of this intrinsic as a non-virtual
   228         flags |= _intrinsic_both;
   229       }
   230     }
   231     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   232   }
   233   // update the overall flags also:
   234   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   235   return changed;
   236 }
   238 static char* format_flags(int flags, char* buf) {
   239   buf[0] = 0;
   240   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   241   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   242   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   243   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   244   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   245   if (buf[0] == 0)  strcat(buf, ",");
   246   assert(buf[0] == ',', "must be");
   247   return &buf[1];
   248 }
   250 void Compile::print_intrinsic_statistics() {
   251   char flagsbuf[100];
   252   ttyLocker ttyl;
   253   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   254   tty->print_cr("Compiler intrinsic usage:");
   255   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   256   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   257   #define PRINT_STAT_LINE(name, c, f) \
   258     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   259   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   260     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   261     int   flags = _intrinsic_hist_flags[id];
   262     juint count = _intrinsic_hist_count[id];
   263     if ((flags | count) != 0) {
   264       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   265     }
   266   }
   267   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   268   if (xtty != NULL)  xtty->tail("statistics");
   269 }
   271 void Compile::print_statistics() {
   272   { ttyLocker ttyl;
   273     if (xtty != NULL)  xtty->head("statistics type='opto'");
   274     Parse::print_statistics();
   275     PhaseCCP::print_statistics();
   276     PhaseRegAlloc::print_statistics();
   277     Scheduling::print_statistics();
   278     PhasePeephole::print_statistics();
   279     PhaseIdealLoop::print_statistics();
   280     if (xtty != NULL)  xtty->tail("statistics");
   281   }
   282   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   283     // put this under its own <statistics> element.
   284     print_intrinsic_statistics();
   285   }
   286 }
   287 #endif //PRODUCT
   289 // Support for bundling info
   290 Bundle* Compile::node_bundling(const Node *n) {
   291   assert(valid_bundle_info(n), "oob");
   292   return &_node_bundling_base[n->_idx];
   293 }
   295 bool Compile::valid_bundle_info(const Node *n) {
   296   return (_node_bundling_limit > n->_idx);
   297 }
   300 void Compile::gvn_replace_by(Node* n, Node* nn) {
   301   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   302     Node* use = n->last_out(i);
   303     bool is_in_table = initial_gvn()->hash_delete(use);
   304     uint uses_found = 0;
   305     for (uint j = 0; j < use->len(); j++) {
   306       if (use->in(j) == n) {
   307         if (j < use->req())
   308           use->set_req(j, nn);
   309         else
   310           use->set_prec(j, nn);
   311         uses_found++;
   312       }
   313     }
   314     if (is_in_table) {
   315       // reinsert into table
   316       initial_gvn()->hash_find_insert(use);
   317     }
   318     record_for_igvn(use);
   319     i -= uses_found;    // we deleted 1 or more copies of this edge
   320   }
   321 }
   324 static inline bool not_a_node(const Node* n) {
   325   if (n == NULL)                   return true;
   326   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   327   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   328   return false;
   329 }
   331 // Identify all nodes that are reachable from below, useful.
   332 // Use breadth-first pass that records state in a Unique_Node_List,
   333 // recursive traversal is slower.
   334 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   335   int estimated_worklist_size = unique();
   336   useful.map( estimated_worklist_size, NULL );  // preallocate space
   338   // Initialize worklist
   339   if (root() != NULL)     { useful.push(root()); }
   340   // If 'top' is cached, declare it useful to preserve cached node
   341   if( cached_top_node() ) { useful.push(cached_top_node()); }
   343   // Push all useful nodes onto the list, breadthfirst
   344   for( uint next = 0; next < useful.size(); ++next ) {
   345     assert( next < unique(), "Unique useful nodes < total nodes");
   346     Node *n  = useful.at(next);
   347     uint max = n->len();
   348     for( uint i = 0; i < max; ++i ) {
   349       Node *m = n->in(i);
   350       if (not_a_node(m))  continue;
   351       useful.push(m);
   352     }
   353   }
   354 }
   356 // Update dead_node_list with any missing dead nodes using useful
   357 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   358 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   359   uint max_idx = unique();
   360   VectorSet& useful_node_set = useful.member_set();
   362   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   363     // If node with index node_idx is not in useful set,
   364     // mark it as dead in dead node list.
   365     if (! useful_node_set.test(node_idx) ) {
   366       record_dead_node(node_idx);
   367     }
   368   }
   369 }
   371 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   372   int shift = 0;
   373   for (int i = 0; i < inlines->length(); i++) {
   374     CallGenerator* cg = inlines->at(i);
   375     CallNode* call = cg->call_node();
   376     if (shift > 0) {
   377       inlines->at_put(i-shift, cg);
   378     }
   379     if (!useful.member(call)) {
   380       shift++;
   381     }
   382   }
   383   inlines->trunc_to(inlines->length()-shift);
   384 }
   386 // Disconnect all useless nodes by disconnecting those at the boundary.
   387 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   388   uint next = 0;
   389   while (next < useful.size()) {
   390     Node *n = useful.at(next++);
   391     // Use raw traversal of out edges since this code removes out edges
   392     int max = n->outcnt();
   393     for (int j = 0; j < max; ++j) {
   394       Node* child = n->raw_out(j);
   395       if (! useful.member(child)) {
   396         assert(!child->is_top() || child != top(),
   397                "If top is cached in Compile object it is in useful list");
   398         // Only need to remove this out-edge to the useless node
   399         n->raw_del_out(j);
   400         --j;
   401         --max;
   402       }
   403     }
   404     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   405       record_for_igvn(n->unique_out());
   406     }
   407   }
   408   // Remove useless macro and predicate opaq nodes
   409   for (int i = C->macro_count()-1; i >= 0; i--) {
   410     Node* n = C->macro_node(i);
   411     if (!useful.member(n)) {
   412       remove_macro_node(n);
   413     }
   414   }
   415   // Remove useless expensive node
   416   for (int i = C->expensive_count()-1; i >= 0; i--) {
   417     Node* n = C->expensive_node(i);
   418     if (!useful.member(n)) {
   419       remove_expensive_node(n);
   420     }
   421   }
   422   // clean up the late inline lists
   423   remove_useless_late_inlines(&_string_late_inlines, useful);
   424   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   425   remove_useless_late_inlines(&_late_inlines, useful);
   426   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   427 }
   429 //------------------------------frame_size_in_words-----------------------------
   430 // frame_slots in units of words
   431 int Compile::frame_size_in_words() const {
   432   // shift is 0 in LP32 and 1 in LP64
   433   const int shift = (LogBytesPerWord - LogBytesPerInt);
   434   int words = _frame_slots >> shift;
   435   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   436   return words;
   437 }
   439 // ============================================================================
   440 //------------------------------CompileWrapper---------------------------------
   441 class CompileWrapper : public StackObj {
   442   Compile *const _compile;
   443  public:
   444   CompileWrapper(Compile* compile);
   446   ~CompileWrapper();
   447 };
   449 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   450   // the Compile* pointer is stored in the current ciEnv:
   451   ciEnv* env = compile->env();
   452   assert(env == ciEnv::current(), "must already be a ciEnv active");
   453   assert(env->compiler_data() == NULL, "compile already active?");
   454   env->set_compiler_data(compile);
   455   assert(compile == Compile::current(), "sanity");
   457   compile->set_type_dict(NULL);
   458   compile->set_type_hwm(NULL);
   459   compile->set_type_last_size(0);
   460   compile->set_last_tf(NULL, NULL);
   461   compile->set_indexSet_arena(NULL);
   462   compile->set_indexSet_free_block_list(NULL);
   463   compile->init_type_arena();
   464   Type::Initialize(compile);
   465   _compile->set_scratch_buffer_blob(NULL);
   466   _compile->begin_method();
   467 }
   468 CompileWrapper::~CompileWrapper() {
   469   _compile->end_method();
   470   if (_compile->scratch_buffer_blob() != NULL)
   471     BufferBlob::free(_compile->scratch_buffer_blob());
   472   _compile->env()->set_compiler_data(NULL);
   473 }
   476 //----------------------------print_compile_messages---------------------------
   477 void Compile::print_compile_messages() {
   478 #ifndef PRODUCT
   479   // Check if recompiling
   480   if (_subsume_loads == false && PrintOpto) {
   481     // Recompiling without allowing machine instructions to subsume loads
   482     tty->print_cr("*********************************************************");
   483     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   484     tty->print_cr("*********************************************************");
   485   }
   486   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   487     // Recompiling without escape analysis
   488     tty->print_cr("*********************************************************");
   489     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   490     tty->print_cr("*********************************************************");
   491   }
   492   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   493     // Recompiling without boxing elimination
   494     tty->print_cr("*********************************************************");
   495     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   496     tty->print_cr("*********************************************************");
   497   }
   498   if (env()->break_at_compile()) {
   499     // Open the debugger when compiling this method.
   500     tty->print("### Breaking when compiling: ");
   501     method()->print_short_name();
   502     tty->cr();
   503     BREAKPOINT;
   504   }
   506   if( PrintOpto ) {
   507     if (is_osr_compilation()) {
   508       tty->print("[OSR]%3d", _compile_id);
   509     } else {
   510       tty->print("%3d", _compile_id);
   511     }
   512   }
   513 #endif
   514 }
   517 //-----------------------init_scratch_buffer_blob------------------------------
   518 // Construct a temporary BufferBlob and cache it for this compile.
   519 void Compile::init_scratch_buffer_blob(int const_size) {
   520   // If there is already a scratch buffer blob allocated and the
   521   // constant section is big enough, use it.  Otherwise free the
   522   // current and allocate a new one.
   523   BufferBlob* blob = scratch_buffer_blob();
   524   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   525     // Use the current blob.
   526   } else {
   527     if (blob != NULL) {
   528       BufferBlob::free(blob);
   529     }
   531     ResourceMark rm;
   532     _scratch_const_size = const_size;
   533     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   534     blob = BufferBlob::create("Compile::scratch_buffer", size);
   535     // Record the buffer blob for next time.
   536     set_scratch_buffer_blob(blob);
   537     // Have we run out of code space?
   538     if (scratch_buffer_blob() == NULL) {
   539       // Let CompilerBroker disable further compilations.
   540       record_failure("Not enough space for scratch buffer in CodeCache");
   541       return;
   542     }
   543   }
   545   // Initialize the relocation buffers
   546   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   547   set_scratch_locs_memory(locs_buf);
   548 }
   551 //-----------------------scratch_emit_size-------------------------------------
   552 // Helper function that computes size by emitting code
   553 uint Compile::scratch_emit_size(const Node* n) {
   554   // Start scratch_emit_size section.
   555   set_in_scratch_emit_size(true);
   557   // Emit into a trash buffer and count bytes emitted.
   558   // This is a pretty expensive way to compute a size,
   559   // but it works well enough if seldom used.
   560   // All common fixed-size instructions are given a size
   561   // method by the AD file.
   562   // Note that the scratch buffer blob and locs memory are
   563   // allocated at the beginning of the compile task, and
   564   // may be shared by several calls to scratch_emit_size.
   565   // The allocation of the scratch buffer blob is particularly
   566   // expensive, since it has to grab the code cache lock.
   567   BufferBlob* blob = this->scratch_buffer_blob();
   568   assert(blob != NULL, "Initialize BufferBlob at start");
   569   assert(blob->size() > MAX_inst_size, "sanity");
   570   relocInfo* locs_buf = scratch_locs_memory();
   571   address blob_begin = blob->content_begin();
   572   address blob_end   = (address)locs_buf;
   573   assert(blob->content_contains(blob_end), "sanity");
   574   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   575   buf.initialize_consts_size(_scratch_const_size);
   576   buf.initialize_stubs_size(MAX_stubs_size);
   577   assert(locs_buf != NULL, "sanity");
   578   int lsize = MAX_locs_size / 3;
   579   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   580   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   581   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   583   // Do the emission.
   585   Label fakeL; // Fake label for branch instructions.
   586   Label*   saveL = NULL;
   587   uint save_bnum = 0;
   588   bool is_branch = n->is_MachBranch();
   589   if (is_branch) {
   590     MacroAssembler masm(&buf);
   591     masm.bind(fakeL);
   592     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   593     n->as_MachBranch()->label_set(&fakeL, 0);
   594   }
   595   n->emit(buf, this->regalloc());
   596   if (is_branch) // Restore label.
   597     n->as_MachBranch()->label_set(saveL, save_bnum);
   599   // End scratch_emit_size section.
   600   set_in_scratch_emit_size(false);
   602   return buf.insts_size();
   603 }
   606 // ============================================================================
   607 //------------------------------Compile standard-------------------------------
   608 debug_only( int Compile::_debug_idx = 100000; )
   610 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   611 // the continuation bci for on stack replacement.
   614 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   615                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   616                 : Phase(Compiler),
   617                   _env(ci_env),
   618                   _log(ci_env->log()),
   619                   _compile_id(ci_env->compile_id()),
   620                   _save_argument_registers(false),
   621                   _stub_name(NULL),
   622                   _stub_function(NULL),
   623                   _stub_entry_point(NULL),
   624                   _method(target),
   625                   _entry_bci(osr_bci),
   626                   _initial_gvn(NULL),
   627                   _for_igvn(NULL),
   628                   _warm_calls(NULL),
   629                   _subsume_loads(subsume_loads),
   630                   _do_escape_analysis(do_escape_analysis),
   631                   _eliminate_boxing(eliminate_boxing),
   632                   _failure_reason(NULL),
   633                   _code_buffer("Compile::Fill_buffer"),
   634                   _orig_pc_slot(0),
   635                   _orig_pc_slot_offset_in_bytes(0),
   636                   _has_method_handle_invokes(false),
   637                   _mach_constant_base_node(NULL),
   638                   _node_bundling_limit(0),
   639                   _node_bundling_base(NULL),
   640                   _java_calls(0),
   641                   _inner_loops(0),
   642                   _scratch_const_size(-1),
   643                   _in_scratch_emit_size(false),
   644                   _dead_node_list(comp_arena()),
   645                   _dead_node_count(0),
   646 #ifndef PRODUCT
   647                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   648                   _printer(IdealGraphPrinter::printer()),
   649 #endif
   650                   _congraph(NULL),
   651                   _replay_inline_data(NULL),
   652                   _late_inlines(comp_arena(), 2, 0, NULL),
   653                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   654                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   655                   _late_inlines_pos(0),
   656                   _number_of_mh_late_inlines(0),
   657                   _inlining_progress(false),
   658                   _inlining_incrementally(false),
   659                   _print_inlining_list(NULL),
   660                   _print_inlining_idx(0),
   661                   _preserve_jvm_state(0) {
   662   C = this;
   664   CompileWrapper cw(this);
   665 #ifndef PRODUCT
   666   if (TimeCompiler2) {
   667     tty->print(" ");
   668     target->holder()->name()->print();
   669     tty->print(".");
   670     target->print_short_name();
   671     tty->print("  ");
   672   }
   673   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   674   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   675   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   676   if (!print_opto_assembly) {
   677     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   678     if (print_assembly && !Disassembler::can_decode()) {
   679       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   680       print_opto_assembly = true;
   681     }
   682   }
   683   set_print_assembly(print_opto_assembly);
   684   set_parsed_irreducible_loop(false);
   686   if (method()->has_option("ReplayInline")) {
   687     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
   688   }
   689 #endif
   690   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
   691   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
   693   if (ProfileTraps) {
   694     // Make sure the method being compiled gets its own MDO,
   695     // so we can at least track the decompile_count().
   696     method()->ensure_method_data();
   697   }
   699   Init(::AliasLevel);
   702   print_compile_messages();
   704   _ilt = InlineTree::build_inline_tree_root();
   706   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   707   assert(num_alias_types() >= AliasIdxRaw, "");
   709 #define MINIMUM_NODE_HASH  1023
   710   // Node list that Iterative GVN will start with
   711   Unique_Node_List for_igvn(comp_arena());
   712   set_for_igvn(&for_igvn);
   714   // GVN that will be run immediately on new nodes
   715   uint estimated_size = method()->code_size()*4+64;
   716   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   717   PhaseGVN gvn(node_arena(), estimated_size);
   718   set_initial_gvn(&gvn);
   720   if (print_inlining() || print_intrinsics()) {
   721     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   722   }
   723   { // Scope for timing the parser
   724     TracePhase t3("parse", &_t_parser, true);
   726     // Put top into the hash table ASAP.
   727     initial_gvn()->transform_no_reclaim(top());
   729     // Set up tf(), start(), and find a CallGenerator.
   730     CallGenerator* cg = NULL;
   731     if (is_osr_compilation()) {
   732       const TypeTuple *domain = StartOSRNode::osr_domain();
   733       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   734       init_tf(TypeFunc::make(domain, range));
   735       StartNode* s = new (this) StartOSRNode(root(), domain);
   736       initial_gvn()->set_type_bottom(s);
   737       init_start(s);
   738       cg = CallGenerator::for_osr(method(), entry_bci());
   739     } else {
   740       // Normal case.
   741       init_tf(TypeFunc::make(method()));
   742       StartNode* s = new (this) StartNode(root(), tf()->domain());
   743       initial_gvn()->set_type_bottom(s);
   744       init_start(s);
   745       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   746         // With java.lang.ref.reference.get() we must go through the
   747         // intrinsic when G1 is enabled - even when get() is the root
   748         // method of the compile - so that, if necessary, the value in
   749         // the referent field of the reference object gets recorded by
   750         // the pre-barrier code.
   751         // Specifically, if G1 is enabled, the value in the referent
   752         // field is recorded by the G1 SATB pre barrier. This will
   753         // result in the referent being marked live and the reference
   754         // object removed from the list of discovered references during
   755         // reference processing.
   756         cg = find_intrinsic(method(), false);
   757       }
   758       if (cg == NULL) {
   759         float past_uses = method()->interpreter_invocation_count();
   760         float expected_uses = past_uses;
   761         cg = CallGenerator::for_inline(method(), expected_uses);
   762       }
   763     }
   764     if (failing())  return;
   765     if (cg == NULL) {
   766       record_method_not_compilable_all_tiers("cannot parse method");
   767       return;
   768     }
   769     JVMState* jvms = build_start_state(start(), tf());
   770     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
   771       record_method_not_compilable("method parse failed");
   772       return;
   773     }
   774     GraphKit kit(jvms);
   776     if (!kit.stopped()) {
   777       // Accept return values, and transfer control we know not where.
   778       // This is done by a special, unique ReturnNode bound to root.
   779       return_values(kit.jvms());
   780     }
   782     if (kit.has_exceptions()) {
   783       // Any exceptions that escape from this call must be rethrown
   784       // to whatever caller is dynamically above us on the stack.
   785       // This is done by a special, unique RethrowNode bound to root.
   786       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   787     }
   789     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   791     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   792       inline_string_calls(true);
   793     }
   795     if (failing())  return;
   797     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   799     // Remove clutter produced by parsing.
   800     if (!failing()) {
   801       ResourceMark rm;
   802       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   803     }
   804   }
   806   // Note:  Large methods are capped off in do_one_bytecode().
   807   if (failing())  return;
   809   // After parsing, node notes are no longer automagic.
   810   // They must be propagated by register_new_node_with_optimizer(),
   811   // clone(), or the like.
   812   set_default_node_notes(NULL);
   814   for (;;) {
   815     int successes = Inline_Warm();
   816     if (failing())  return;
   817     if (successes == 0)  break;
   818   }
   820   // Drain the list.
   821   Finish_Warm();
   822 #ifndef PRODUCT
   823   if (_printer) {
   824     _printer->print_inlining(this);
   825   }
   826 #endif
   828   if (failing())  return;
   829   NOT_PRODUCT( verify_graph_edges(); )
   831   // Now optimize
   832   Optimize();
   833   if (failing())  return;
   834   NOT_PRODUCT( verify_graph_edges(); )
   836 #ifndef PRODUCT
   837   if (PrintIdeal) {
   838     ttyLocker ttyl;  // keep the following output all in one block
   839     // This output goes directly to the tty, not the compiler log.
   840     // To enable tools to match it up with the compilation activity,
   841     // be sure to tag this tty output with the compile ID.
   842     if (xtty != NULL) {
   843       xtty->head("ideal compile_id='%d'%s", compile_id(),
   844                  is_osr_compilation()    ? " compile_kind='osr'" :
   845                  "");
   846     }
   847     root()->dump(9999);
   848     if (xtty != NULL) {
   849       xtty->tail("ideal");
   850     }
   851   }
   852 #endif
   854   NOT_PRODUCT( verify_barriers(); )
   856   // Dump compilation data to replay it.
   857   if (method()->has_option("DumpReplay")) {
   858     env()->dump_replay_data(_compile_id);
   859   }
   860   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
   861     env()->dump_inline_data(_compile_id);
   862   }
   864   // Now that we know the size of all the monitors we can add a fixed slot
   865   // for the original deopt pc.
   867   _orig_pc_slot =  fixed_slots();
   868   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   869   set_fixed_slots(next_slot);
   871   // Now generate code
   872   Code_Gen();
   873   if (failing())  return;
   875   // Check if we want to skip execution of all compiled code.
   876   {
   877 #ifndef PRODUCT
   878     if (OptoNoExecute) {
   879       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   880       return;
   881     }
   882     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   883 #endif
   885     if (is_osr_compilation()) {
   886       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   887       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   888     } else {
   889       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   890       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   891     }
   893     env()->register_method(_method, _entry_bci,
   894                            &_code_offsets,
   895                            _orig_pc_slot_offset_in_bytes,
   896                            code_buffer(),
   897                            frame_size_in_words(), _oop_map_set,
   898                            &_handler_table, &_inc_table,
   899                            compiler,
   900                            env()->comp_level(),
   901                            has_unsafe_access(),
   902                            SharedRuntime::is_wide_vector(max_vector_size())
   903                            );
   905     if (log() != NULL) // Print code cache state into compiler log
   906       log()->code_cache_state();
   907   }
   908 }
   910 //------------------------------Compile----------------------------------------
   911 // Compile a runtime stub
   912 Compile::Compile( ciEnv* ci_env,
   913                   TypeFunc_generator generator,
   914                   address stub_function,
   915                   const char *stub_name,
   916                   int is_fancy_jump,
   917                   bool pass_tls,
   918                   bool save_arg_registers,
   919                   bool return_pc )
   920   : Phase(Compiler),
   921     _env(ci_env),
   922     _log(ci_env->log()),
   923     _compile_id(0),
   924     _save_argument_registers(save_arg_registers),
   925     _method(NULL),
   926     _stub_name(stub_name),
   927     _stub_function(stub_function),
   928     _stub_entry_point(NULL),
   929     _entry_bci(InvocationEntryBci),
   930     _initial_gvn(NULL),
   931     _for_igvn(NULL),
   932     _warm_calls(NULL),
   933     _orig_pc_slot(0),
   934     _orig_pc_slot_offset_in_bytes(0),
   935     _subsume_loads(true),
   936     _do_escape_analysis(false),
   937     _eliminate_boxing(false),
   938     _failure_reason(NULL),
   939     _code_buffer("Compile::Fill_buffer"),
   940     _has_method_handle_invokes(false),
   941     _mach_constant_base_node(NULL),
   942     _node_bundling_limit(0),
   943     _node_bundling_base(NULL),
   944     _java_calls(0),
   945     _inner_loops(0),
   946 #ifndef PRODUCT
   947     _trace_opto_output(TraceOptoOutput),
   948     _printer(NULL),
   949 #endif
   950     _dead_node_list(comp_arena()),
   951     _dead_node_count(0),
   952     _congraph(NULL),
   953     _replay_inline_data(NULL),
   954     _number_of_mh_late_inlines(0),
   955     _inlining_progress(false),
   956     _inlining_incrementally(false),
   957     _print_inlining_list(NULL),
   958     _print_inlining_idx(0),
   959     _preserve_jvm_state(0) {
   960   C = this;
   962 #ifndef PRODUCT
   963   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   964   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   965   set_print_assembly(PrintFrameConverterAssembly);
   966   set_parsed_irreducible_loop(false);
   967 #endif
   968   CompileWrapper cw(this);
   969   Init(/*AliasLevel=*/ 0);
   970   init_tf((*generator)());
   972   {
   973     // The following is a dummy for the sake of GraphKit::gen_stub
   974     Unique_Node_List for_igvn(comp_arena());
   975     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   976     PhaseGVN gvn(Thread::current()->resource_area(),255);
   977     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   978     gvn.transform_no_reclaim(top());
   980     GraphKit kit;
   981     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   982   }
   984   NOT_PRODUCT( verify_graph_edges(); )
   985   Code_Gen();
   986   if (failing())  return;
   989   // Entry point will be accessed using compile->stub_entry_point();
   990   if (code_buffer() == NULL) {
   991     Matcher::soft_match_failure();
   992   } else {
   993     if (PrintAssembly && (WizardMode || Verbose))
   994       tty->print_cr("### Stub::%s", stub_name);
   996     if (!failing()) {
   997       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   999       // Make the NMethod
  1000       // For now we mark the frame as never safe for profile stackwalking
  1001       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
  1002                                                       code_buffer(),
  1003                                                       CodeOffsets::frame_never_safe,
  1004                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
  1005                                                       frame_size_in_words(),
  1006                                                       _oop_map_set,
  1007                                                       save_arg_registers);
  1008       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
  1010       _stub_entry_point = rs->entry_point();
  1015 //------------------------------Init-------------------------------------------
  1016 // Prepare for a single compilation
  1017 void Compile::Init(int aliaslevel) {
  1018   _unique  = 0;
  1019   _regalloc = NULL;
  1021   _tf      = NULL;  // filled in later
  1022   _top     = NULL;  // cached later
  1023   _matcher = NULL;  // filled in later
  1024   _cfg     = NULL;  // filled in later
  1026   set_24_bit_selection_and_mode(Use24BitFP, false);
  1028   _node_note_array = NULL;
  1029   _default_node_notes = NULL;
  1031   _immutable_memory = NULL; // filled in at first inquiry
  1033   // Globally visible Nodes
  1034   // First set TOP to NULL to give safe behavior during creation of RootNode
  1035   set_cached_top_node(NULL);
  1036   set_root(new (this) RootNode());
  1037   // Now that you have a Root to point to, create the real TOP
  1038   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1039   set_recent_alloc(NULL, NULL);
  1041   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1042   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1043   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1044   env()->set_dependencies(new Dependencies(env()));
  1046   _fixed_slots = 0;
  1047   set_has_split_ifs(false);
  1048   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1049   set_has_stringbuilder(false);
  1050   set_has_boxed_value(false);
  1051   _trap_can_recompile = false;  // no traps emitted yet
  1052   _major_progress = true; // start out assuming good things will happen
  1053   set_has_unsafe_access(false);
  1054   set_max_vector_size(0);
  1055   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1056   set_decompile_count(0);
  1058   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1059   set_num_loop_opts(LoopOptsCount);
  1060   set_do_inlining(Inline);
  1061   set_max_inline_size(MaxInlineSize);
  1062   set_freq_inline_size(FreqInlineSize);
  1063   set_do_scheduling(OptoScheduling);
  1064   set_do_count_invocations(false);
  1065   set_do_method_data_update(false);
  1067   if (debug_info()->recording_non_safepoints()) {
  1068     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1069                         (comp_arena(), 8, 0, NULL));
  1070     set_default_node_notes(Node_Notes::make(this));
  1073   // // -- Initialize types before each compile --
  1074   // // Update cached type information
  1075   // if( _method && _method->constants() )
  1076   //   Type::update_loaded_types(_method, _method->constants());
  1078   // Init alias_type map.
  1079   if (!_do_escape_analysis && aliaslevel == 3)
  1080     aliaslevel = 2;  // No unique types without escape analysis
  1081   _AliasLevel = aliaslevel;
  1082   const int grow_ats = 16;
  1083   _max_alias_types = grow_ats;
  1084   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1085   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1086   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1088     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1090   // Initialize the first few types.
  1091   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1092   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1093   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1094   _num_alias_types = AliasIdxRaw+1;
  1095   // Zero out the alias type cache.
  1096   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1097   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1098   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1100   _intrinsics = NULL;
  1101   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1102   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1103   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1104   register_library_intrinsics();
  1107 //---------------------------init_start----------------------------------------
  1108 // Install the StartNode on this compile object.
  1109 void Compile::init_start(StartNode* s) {
  1110   if (failing())
  1111     return; // already failing
  1112   assert(s == start(), "");
  1115 StartNode* Compile::start() const {
  1116   assert(!failing(), "");
  1117   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1118     Node* start = root()->fast_out(i);
  1119     if( start->is_Start() )
  1120       return start->as_Start();
  1122   ShouldNotReachHere();
  1123   return NULL;
  1126 //-------------------------------immutable_memory-------------------------------------
  1127 // Access immutable memory
  1128 Node* Compile::immutable_memory() {
  1129   if (_immutable_memory != NULL) {
  1130     return _immutable_memory;
  1132   StartNode* s = start();
  1133   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1134     Node *p = s->fast_out(i);
  1135     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1136       _immutable_memory = p;
  1137       return _immutable_memory;
  1140   ShouldNotReachHere();
  1141   return NULL;
  1144 //----------------------set_cached_top_node------------------------------------
  1145 // Install the cached top node, and make sure Node::is_top works correctly.
  1146 void Compile::set_cached_top_node(Node* tn) {
  1147   if (tn != NULL)  verify_top(tn);
  1148   Node* old_top = _top;
  1149   _top = tn;
  1150   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1151   // their _out arrays.
  1152   if (_top != NULL)     _top->setup_is_top();
  1153   if (old_top != NULL)  old_top->setup_is_top();
  1154   assert(_top == NULL || top()->is_top(), "");
  1157 #ifdef ASSERT
  1158 uint Compile::count_live_nodes_by_graph_walk() {
  1159   Unique_Node_List useful(comp_arena());
  1160   // Get useful node list by walking the graph.
  1161   identify_useful_nodes(useful);
  1162   return useful.size();
  1165 void Compile::print_missing_nodes() {
  1167   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1168   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1169     return;
  1172   // This is an expensive function. It is executed only when the user
  1173   // specifies VerifyIdealNodeCount option or otherwise knows the
  1174   // additional work that needs to be done to identify reachable nodes
  1175   // by walking the flow graph and find the missing ones using
  1176   // _dead_node_list.
  1178   Unique_Node_List useful(comp_arena());
  1179   // Get useful node list by walking the graph.
  1180   identify_useful_nodes(useful);
  1182   uint l_nodes = C->live_nodes();
  1183   uint l_nodes_by_walk = useful.size();
  1185   if (l_nodes != l_nodes_by_walk) {
  1186     if (_log != NULL) {
  1187       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1188       _log->stamp();
  1189       _log->end_head();
  1191     VectorSet& useful_member_set = useful.member_set();
  1192     int last_idx = l_nodes_by_walk;
  1193     for (int i = 0; i < last_idx; i++) {
  1194       if (useful_member_set.test(i)) {
  1195         if (_dead_node_list.test(i)) {
  1196           if (_log != NULL) {
  1197             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1199           if (PrintIdealNodeCount) {
  1200             // Print the log message to tty
  1201               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1202               useful.at(i)->dump();
  1206       else if (! _dead_node_list.test(i)) {
  1207         if (_log != NULL) {
  1208           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1210         if (PrintIdealNodeCount) {
  1211           // Print the log message to tty
  1212           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1216     if (_log != NULL) {
  1217       _log->tail("mismatched_nodes");
  1221 #endif
  1223 #ifndef PRODUCT
  1224 void Compile::verify_top(Node* tn) const {
  1225   if (tn != NULL) {
  1226     assert(tn->is_Con(), "top node must be a constant");
  1227     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1228     assert(tn->in(0) != NULL, "must have live top node");
  1231 #endif
  1234 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1236 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1237   guarantee(arr != NULL, "");
  1238   int num_blocks = arr->length();
  1239   if (grow_by < num_blocks)  grow_by = num_blocks;
  1240   int num_notes = grow_by * _node_notes_block_size;
  1241   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1242   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1243   while (num_notes > 0) {
  1244     arr->append(notes);
  1245     notes     += _node_notes_block_size;
  1246     num_notes -= _node_notes_block_size;
  1248   assert(num_notes == 0, "exact multiple, please");
  1251 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1252   if (source == NULL || dest == NULL)  return false;
  1254   if (dest->is_Con())
  1255     return false;               // Do not push debug info onto constants.
  1257 #ifdef ASSERT
  1258   // Leave a bread crumb trail pointing to the original node:
  1259   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1260     dest->set_debug_orig(source);
  1262 #endif
  1264   if (node_note_array() == NULL)
  1265     return false;               // Not collecting any notes now.
  1267   // This is a copy onto a pre-existing node, which may already have notes.
  1268   // If both nodes have notes, do not overwrite any pre-existing notes.
  1269   Node_Notes* source_notes = node_notes_at(source->_idx);
  1270   if (source_notes == NULL || source_notes->is_clear())  return false;
  1271   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1272   if (dest_notes == NULL || dest_notes->is_clear()) {
  1273     return set_node_notes_at(dest->_idx, source_notes);
  1276   Node_Notes merged_notes = (*source_notes);
  1277   // The order of operations here ensures that dest notes will win...
  1278   merged_notes.update_from(dest_notes);
  1279   return set_node_notes_at(dest->_idx, &merged_notes);
  1283 //--------------------------allow_range_check_smearing-------------------------
  1284 // Gating condition for coalescing similar range checks.
  1285 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1286 // single covering check that is at least as strong as any of them.
  1287 // If the optimization succeeds, the simplified (strengthened) range check
  1288 // will always succeed.  If it fails, we will deopt, and then give up
  1289 // on the optimization.
  1290 bool Compile::allow_range_check_smearing() const {
  1291   // If this method has already thrown a range-check,
  1292   // assume it was because we already tried range smearing
  1293   // and it failed.
  1294   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1295   return !already_trapped;
  1299 //------------------------------flatten_alias_type-----------------------------
  1300 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1301   int offset = tj->offset();
  1302   TypePtr::PTR ptr = tj->ptr();
  1304   // Known instance (scalarizable allocation) alias only with itself.
  1305   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1306                        tj->is_oopptr()->is_known_instance();
  1308   // Process weird unsafe references.
  1309   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1310     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1311     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1312     tj = TypeOopPtr::BOTTOM;
  1313     ptr = tj->ptr();
  1314     offset = tj->offset();
  1317   // Array pointers need some flattening
  1318   const TypeAryPtr *ta = tj->isa_aryptr();
  1319   if (ta && ta->is_stable()) {
  1320     // Erase stability property for alias analysis.
  1321     tj = ta = ta->cast_to_stable(false);
  1323   if( ta && is_known_inst ) {
  1324     if ( offset != Type::OffsetBot &&
  1325          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1326       offset = Type::OffsetBot; // Flatten constant access into array body only
  1327       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1329   } else if( ta && _AliasLevel >= 2 ) {
  1330     // For arrays indexed by constant indices, we flatten the alias
  1331     // space to include all of the array body.  Only the header, klass
  1332     // and array length can be accessed un-aliased.
  1333     if( offset != Type::OffsetBot ) {
  1334       if( ta->const_oop() ) { // MethodData* or Method*
  1335         offset = Type::OffsetBot;   // Flatten constant access into array body
  1336         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1337       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1338         // range is OK as-is.
  1339         tj = ta = TypeAryPtr::RANGE;
  1340       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1341         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1342         ta = TypeAryPtr::RANGE; // generic ignored junk
  1343         ptr = TypePtr::BotPTR;
  1344       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1345         tj = TypeInstPtr::MARK;
  1346         ta = TypeAryPtr::RANGE; // generic ignored junk
  1347         ptr = TypePtr::BotPTR;
  1348       } else {                  // Random constant offset into array body
  1349         offset = Type::OffsetBot;   // Flatten constant access into array body
  1350         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1353     // Arrays of fixed size alias with arrays of unknown size.
  1354     if (ta->size() != TypeInt::POS) {
  1355       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1356       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1358     // Arrays of known objects become arrays of unknown objects.
  1359     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1360       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1361       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1363     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1364       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1365       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1367     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1368     // cannot be distinguished by bytecode alone.
  1369     if (ta->elem() == TypeInt::BOOL) {
  1370       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1371       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1372       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1374     // During the 2nd round of IterGVN, NotNull castings are removed.
  1375     // Make sure the Bottom and NotNull variants alias the same.
  1376     // Also, make sure exact and non-exact variants alias the same.
  1377     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
  1378       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1382   // Oop pointers need some flattening
  1383   const TypeInstPtr *to = tj->isa_instptr();
  1384   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1385     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1386     if( ptr == TypePtr::Constant ) {
  1387       if (to->klass() != ciEnv::current()->Class_klass() ||
  1388           offset < k->size_helper() * wordSize) {
  1389         // No constant oop pointers (such as Strings); they alias with
  1390         // unknown strings.
  1391         assert(!is_known_inst, "not scalarizable allocation");
  1392         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1394     } else if( is_known_inst ) {
  1395       tj = to; // Keep NotNull and klass_is_exact for instance type
  1396     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1397       // During the 2nd round of IterGVN, NotNull castings are removed.
  1398       // Make sure the Bottom and NotNull variants alias the same.
  1399       // Also, make sure exact and non-exact variants alias the same.
  1400       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1402     if (to->speculative() != NULL) {
  1403       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
  1405     // Canonicalize the holder of this field
  1406     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1407       // First handle header references such as a LoadKlassNode, even if the
  1408       // object's klass is unloaded at compile time (4965979).
  1409       if (!is_known_inst) { // Do it only for non-instance types
  1410         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1412     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1413       // Static fields are in the space above the normal instance
  1414       // fields in the java.lang.Class instance.
  1415       if (to->klass() != ciEnv::current()->Class_klass()) {
  1416         to = NULL;
  1417         tj = TypeOopPtr::BOTTOM;
  1418         offset = tj->offset();
  1420     } else {
  1421       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1422       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1423         if( is_known_inst ) {
  1424           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1425         } else {
  1426           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1432   // Klass pointers to object array klasses need some flattening
  1433   const TypeKlassPtr *tk = tj->isa_klassptr();
  1434   if( tk ) {
  1435     // If we are referencing a field within a Klass, we need
  1436     // to assume the worst case of an Object.  Both exact and
  1437     // inexact types must flatten to the same alias class so
  1438     // use NotNull as the PTR.
  1439     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1441       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1442                                    TypeKlassPtr::OBJECT->klass(),
  1443                                    offset);
  1446     ciKlass* klass = tk->klass();
  1447     if( klass->is_obj_array_klass() ) {
  1448       ciKlass* k = TypeAryPtr::OOPS->klass();
  1449       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1450         k = TypeInstPtr::BOTTOM->klass();
  1451       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1454     // Check for precise loads from the primary supertype array and force them
  1455     // to the supertype cache alias index.  Check for generic array loads from
  1456     // the primary supertype array and also force them to the supertype cache
  1457     // alias index.  Since the same load can reach both, we need to merge
  1458     // these 2 disparate memories into the same alias class.  Since the
  1459     // primary supertype array is read-only, there's no chance of confusion
  1460     // where we bypass an array load and an array store.
  1461     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1462     if (offset == Type::OffsetBot ||
  1463         (offset >= primary_supers_offset &&
  1464          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1465         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1466       offset = in_bytes(Klass::secondary_super_cache_offset());
  1467       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1471   // Flatten all Raw pointers together.
  1472   if (tj->base() == Type::RawPtr)
  1473     tj = TypeRawPtr::BOTTOM;
  1475   if (tj->base() == Type::AnyPtr)
  1476     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1478   // Flatten all to bottom for now
  1479   switch( _AliasLevel ) {
  1480   case 0:
  1481     tj = TypePtr::BOTTOM;
  1482     break;
  1483   case 1:                       // Flatten to: oop, static, field or array
  1484     switch (tj->base()) {
  1485     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1486     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1487     case Type::AryPtr:   // do not distinguish arrays at all
  1488     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1489     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1490     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1491     default: ShouldNotReachHere();
  1493     break;
  1494   case 2:                       // No collapsing at level 2; keep all splits
  1495   case 3:                       // No collapsing at level 3; keep all splits
  1496     break;
  1497   default:
  1498     Unimplemented();
  1501   offset = tj->offset();
  1502   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1504   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1505           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1506           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1507           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1508           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1509           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1510           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1511           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1512   assert( tj->ptr() != TypePtr::TopPTR &&
  1513           tj->ptr() != TypePtr::AnyNull &&
  1514           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1515 //    assert( tj->ptr() != TypePtr::Constant ||
  1516 //            tj->base() == Type::RawPtr ||
  1517 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1519   return tj;
  1522 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1523   _index = i;
  1524   _adr_type = at;
  1525   _field = NULL;
  1526   _element = NULL;
  1527   _is_rewritable = true; // default
  1528   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1529   if (atoop != NULL && atoop->is_known_instance()) {
  1530     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1531     _general_index = Compile::current()->get_alias_index(gt);
  1532   } else {
  1533     _general_index = 0;
  1537 //---------------------------------print_on------------------------------------
  1538 #ifndef PRODUCT
  1539 void Compile::AliasType::print_on(outputStream* st) {
  1540   if (index() < 10)
  1541         st->print("@ <%d> ", index());
  1542   else  st->print("@ <%d>",  index());
  1543   st->print(is_rewritable() ? "   " : " RO");
  1544   int offset = adr_type()->offset();
  1545   if (offset == Type::OffsetBot)
  1546         st->print(" +any");
  1547   else  st->print(" +%-3d", offset);
  1548   st->print(" in ");
  1549   adr_type()->dump_on(st);
  1550   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1551   if (field() != NULL && tjp) {
  1552     if (tjp->klass()  != field()->holder() ||
  1553         tjp->offset() != field()->offset_in_bytes()) {
  1554       st->print(" != ");
  1555       field()->print();
  1556       st->print(" ***");
  1561 void print_alias_types() {
  1562   Compile* C = Compile::current();
  1563   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1564   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1565     C->alias_type(idx)->print_on(tty);
  1566     tty->cr();
  1569 #endif
  1572 //----------------------------probe_alias_cache--------------------------------
  1573 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1574   intptr_t key = (intptr_t) adr_type;
  1575   key ^= key >> logAliasCacheSize;
  1576   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1580 //-----------------------------grow_alias_types--------------------------------
  1581 void Compile::grow_alias_types() {
  1582   const int old_ats  = _max_alias_types; // how many before?
  1583   const int new_ats  = old_ats;          // how many more?
  1584   const int grow_ats = old_ats+new_ats;  // how many now?
  1585   _max_alias_types = grow_ats;
  1586   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1587   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1588   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1589   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1593 //--------------------------------find_alias_type------------------------------
  1594 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1595   if (_AliasLevel == 0)
  1596     return alias_type(AliasIdxBot);
  1598   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1599   if (ace->_adr_type == adr_type) {
  1600     return alias_type(ace->_index);
  1603   // Handle special cases.
  1604   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1605   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1607   // Do it the slow way.
  1608   const TypePtr* flat = flatten_alias_type(adr_type);
  1610 #ifdef ASSERT
  1611   assert(flat == flatten_alias_type(flat), "idempotent");
  1612   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1613   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1614     const TypeOopPtr* foop = flat->is_oopptr();
  1615     // Scalarizable allocations have exact klass always.
  1616     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1617     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1618     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1620   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1621 #endif
  1623   int idx = AliasIdxTop;
  1624   for (int i = 0; i < num_alias_types(); i++) {
  1625     if (alias_type(i)->adr_type() == flat) {
  1626       idx = i;
  1627       break;
  1631   if (idx == AliasIdxTop) {
  1632     if (no_create)  return NULL;
  1633     // Grow the array if necessary.
  1634     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1635     // Add a new alias type.
  1636     idx = _num_alias_types++;
  1637     _alias_types[idx]->Init(idx, flat);
  1638     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1639     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1640     if (flat->isa_instptr()) {
  1641       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1642           && flat->is_instptr()->klass() == env()->Class_klass())
  1643         alias_type(idx)->set_rewritable(false);
  1645     if (flat->isa_aryptr()) {
  1646 #ifdef ASSERT
  1647       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1648       // (T_BYTE has the weakest alignment and size restrictions...)
  1649       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1650 #endif
  1651       if (flat->offset() == TypePtr::OffsetBot) {
  1652         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1655     if (flat->isa_klassptr()) {
  1656       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1657         alias_type(idx)->set_rewritable(false);
  1658       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1659         alias_type(idx)->set_rewritable(false);
  1660       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1661         alias_type(idx)->set_rewritable(false);
  1662       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1663         alias_type(idx)->set_rewritable(false);
  1665     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1666     // but the base pointer type is not distinctive enough to identify
  1667     // references into JavaThread.)
  1669     // Check for final fields.
  1670     const TypeInstPtr* tinst = flat->isa_instptr();
  1671     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1672       ciField* field;
  1673       if (tinst->const_oop() != NULL &&
  1674           tinst->klass() == ciEnv::current()->Class_klass() &&
  1675           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1676         // static field
  1677         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1678         field = k->get_field_by_offset(tinst->offset(), true);
  1679       } else {
  1680         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1681         field = k->get_field_by_offset(tinst->offset(), false);
  1683       assert(field == NULL ||
  1684              original_field == NULL ||
  1685              (field->holder() == original_field->holder() &&
  1686               field->offset() == original_field->offset() &&
  1687               field->is_static() == original_field->is_static()), "wrong field?");
  1688       // Set field() and is_rewritable() attributes.
  1689       if (field != NULL)  alias_type(idx)->set_field(field);
  1693   // Fill the cache for next time.
  1694   ace->_adr_type = adr_type;
  1695   ace->_index    = idx;
  1696   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1698   // Might as well try to fill the cache for the flattened version, too.
  1699   AliasCacheEntry* face = probe_alias_cache(flat);
  1700   if (face->_adr_type == NULL) {
  1701     face->_adr_type = flat;
  1702     face->_index    = idx;
  1703     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1706   return alias_type(idx);
  1710 Compile::AliasType* Compile::alias_type(ciField* field) {
  1711   const TypeOopPtr* t;
  1712   if (field->is_static())
  1713     t = TypeInstPtr::make(field->holder()->java_mirror());
  1714   else
  1715     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1716   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1717   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1718   return atp;
  1722 //------------------------------have_alias_type--------------------------------
  1723 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1724   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1725   if (ace->_adr_type == adr_type) {
  1726     return true;
  1729   // Handle special cases.
  1730   if (adr_type == NULL)             return true;
  1731   if (adr_type == TypePtr::BOTTOM)  return true;
  1733   return find_alias_type(adr_type, true, NULL) != NULL;
  1736 //-----------------------------must_alias--------------------------------------
  1737 // True if all values of the given address type are in the given alias category.
  1738 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1739   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1740   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1741   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1742   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1744   // the only remaining possible overlap is identity
  1745   int adr_idx = get_alias_index(adr_type);
  1746   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1747   assert(adr_idx == alias_idx ||
  1748          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1749           && adr_type                       != TypeOopPtr::BOTTOM),
  1750          "should not be testing for overlap with an unsafe pointer");
  1751   return adr_idx == alias_idx;
  1754 //------------------------------can_alias--------------------------------------
  1755 // True if any values of the given address type are in the given alias category.
  1756 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1757   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1758   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1759   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1760   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1762   // the only remaining possible overlap is identity
  1763   int adr_idx = get_alias_index(adr_type);
  1764   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1765   return adr_idx == alias_idx;
  1770 //---------------------------pop_warm_call-------------------------------------
  1771 WarmCallInfo* Compile::pop_warm_call() {
  1772   WarmCallInfo* wci = _warm_calls;
  1773   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1774   return wci;
  1777 //----------------------------Inline_Warm--------------------------------------
  1778 int Compile::Inline_Warm() {
  1779   // If there is room, try to inline some more warm call sites.
  1780   // %%% Do a graph index compaction pass when we think we're out of space?
  1781   if (!InlineWarmCalls)  return 0;
  1783   int calls_made_hot = 0;
  1784   int room_to_grow   = NodeCountInliningCutoff - unique();
  1785   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1786   int amount_grown   = 0;
  1787   WarmCallInfo* call;
  1788   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1789     int est_size = (int)call->size();
  1790     if (est_size > (room_to_grow - amount_grown)) {
  1791       // This one won't fit anyway.  Get rid of it.
  1792       call->make_cold();
  1793       continue;
  1795     call->make_hot();
  1796     calls_made_hot++;
  1797     amount_grown   += est_size;
  1798     amount_to_grow -= est_size;
  1801   if (calls_made_hot > 0)  set_major_progress();
  1802   return calls_made_hot;
  1806 //----------------------------Finish_Warm--------------------------------------
  1807 void Compile::Finish_Warm() {
  1808   if (!InlineWarmCalls)  return;
  1809   if (failing())  return;
  1810   if (warm_calls() == NULL)  return;
  1812   // Clean up loose ends, if we are out of space for inlining.
  1813   WarmCallInfo* call;
  1814   while ((call = pop_warm_call()) != NULL) {
  1815     call->make_cold();
  1819 //---------------------cleanup_loop_predicates-----------------------
  1820 // Remove the opaque nodes that protect the predicates so that all unused
  1821 // checks and uncommon_traps will be eliminated from the ideal graph
  1822 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1823   if (predicate_count()==0) return;
  1824   for (int i = predicate_count(); i > 0; i--) {
  1825     Node * n = predicate_opaque1_node(i-1);
  1826     assert(n->Opcode() == Op_Opaque1, "must be");
  1827     igvn.replace_node(n, n->in(1));
  1829   assert(predicate_count()==0, "should be clean!");
  1832 // StringOpts and late inlining of string methods
  1833 void Compile::inline_string_calls(bool parse_time) {
  1835     // remove useless nodes to make the usage analysis simpler
  1836     ResourceMark rm;
  1837     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1841     ResourceMark rm;
  1842     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1843     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1844     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1847   // now inline anything that we skipped the first time around
  1848   if (!parse_time) {
  1849     _late_inlines_pos = _late_inlines.length();
  1852   while (_string_late_inlines.length() > 0) {
  1853     CallGenerator* cg = _string_late_inlines.pop();
  1854     cg->do_late_inline();
  1855     if (failing())  return;
  1857   _string_late_inlines.trunc_to(0);
  1860 // Late inlining of boxing methods
  1861 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1862   if (_boxing_late_inlines.length() > 0) {
  1863     assert(has_boxed_value(), "inconsistent");
  1865     PhaseGVN* gvn = initial_gvn();
  1866     set_inlining_incrementally(true);
  1868     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1869     for_igvn()->clear();
  1870     gvn->replace_with(&igvn);
  1872     while (_boxing_late_inlines.length() > 0) {
  1873       CallGenerator* cg = _boxing_late_inlines.pop();
  1874       cg->do_late_inline();
  1875       if (failing())  return;
  1877     _boxing_late_inlines.trunc_to(0);
  1880       ResourceMark rm;
  1881       PhaseRemoveUseless pru(gvn, for_igvn());
  1884     igvn = PhaseIterGVN(gvn);
  1885     igvn.optimize();
  1887     set_inlining_progress(false);
  1888     set_inlining_incrementally(false);
  1892 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1893   assert(IncrementalInline, "incremental inlining should be on");
  1894   PhaseGVN* gvn = initial_gvn();
  1896   set_inlining_progress(false);
  1897   for_igvn()->clear();
  1898   gvn->replace_with(&igvn);
  1900   int i = 0;
  1902   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1903     CallGenerator* cg = _late_inlines.at(i);
  1904     _late_inlines_pos = i+1;
  1905     cg->do_late_inline();
  1906     if (failing())  return;
  1908   int j = 0;
  1909   for (; i < _late_inlines.length(); i++, j++) {
  1910     _late_inlines.at_put(j, _late_inlines.at(i));
  1912   _late_inlines.trunc_to(j);
  1915     ResourceMark rm;
  1916     PhaseRemoveUseless pru(gvn, for_igvn());
  1919   igvn = PhaseIterGVN(gvn);
  1922 // Perform incremental inlining until bound on number of live nodes is reached
  1923 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1924   PhaseGVN* gvn = initial_gvn();
  1926   set_inlining_incrementally(true);
  1927   set_inlining_progress(true);
  1928   uint low_live_nodes = 0;
  1930   while(inlining_progress() && _late_inlines.length() > 0) {
  1932     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1933       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  1934         // PhaseIdealLoop is expensive so we only try it once we are
  1935         // out of loop and we only try it again if the previous helped
  1936         // got the number of nodes down significantly
  1937         PhaseIdealLoop ideal_loop( igvn, false, true );
  1938         if (failing())  return;
  1939         low_live_nodes = live_nodes();
  1940         _major_progress = true;
  1943       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1944         break;
  1948     inline_incrementally_one(igvn);
  1950     if (failing())  return;
  1952     igvn.optimize();
  1954     if (failing())  return;
  1957   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1959   if (_string_late_inlines.length() > 0) {
  1960     assert(has_stringbuilder(), "inconsistent");
  1961     for_igvn()->clear();
  1962     initial_gvn()->replace_with(&igvn);
  1964     inline_string_calls(false);
  1966     if (failing())  return;
  1969       ResourceMark rm;
  1970       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1973     igvn = PhaseIterGVN(gvn);
  1975     igvn.optimize();
  1978   set_inlining_incrementally(false);
  1982 //------------------------------Optimize---------------------------------------
  1983 // Given a graph, optimize it.
  1984 void Compile::Optimize() {
  1985   TracePhase t1("optimizer", &_t_optimizer, true);
  1987 #ifndef PRODUCT
  1988   if (env()->break_at_compile()) {
  1989     BREAKPOINT;
  1992 #endif
  1994   ResourceMark rm;
  1995   int          loop_opts_cnt;
  1997   NOT_PRODUCT( verify_graph_edges(); )
  1999   print_method(PHASE_AFTER_PARSING);
  2002   // Iterative Global Value Numbering, including ideal transforms
  2003   // Initialize IterGVN with types and values from parse-time GVN
  2004   PhaseIterGVN igvn(initial_gvn());
  2006     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  2007     igvn.optimize();
  2010   print_method(PHASE_ITER_GVN1, 2);
  2012   if (failing())  return;
  2015     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2016     inline_incrementally(igvn);
  2019   print_method(PHASE_INCREMENTAL_INLINE, 2);
  2021   if (failing())  return;
  2023   if (eliminate_boxing()) {
  2024     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2025     // Inline valueOf() methods now.
  2026     inline_boxing_calls(igvn);
  2028     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2030     if (failing())  return;
  2033   // Remove the speculative part of types and clean up the graph from
  2034   // the extra CastPP nodes whose only purpose is to carry them. Do
  2035   // that early so that optimizations are not disrupted by the extra
  2036   // CastPP nodes.
  2037   remove_speculative_types(igvn);
  2039   // No more new expensive nodes will be added to the list from here
  2040   // so keep only the actual candidates for optimizations.
  2041   cleanup_expensive_nodes(igvn);
  2043   // Perform escape analysis
  2044   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2045     if (has_loops()) {
  2046       // Cleanup graph (remove dead nodes).
  2047       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2048       PhaseIdealLoop ideal_loop( igvn, false, true );
  2049       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2050       if (failing())  return;
  2052     ConnectionGraph::do_analysis(this, &igvn);
  2054     if (failing())  return;
  2056     // Optimize out fields loads from scalar replaceable allocations.
  2057     igvn.optimize();
  2058     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2060     if (failing())  return;
  2062     if (congraph() != NULL && macro_count() > 0) {
  2063       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2064       PhaseMacroExpand mexp(igvn);
  2065       mexp.eliminate_macro_nodes();
  2066       igvn.set_delay_transform(false);
  2068       igvn.optimize();
  2069       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2071       if (failing())  return;
  2075   // Loop transforms on the ideal graph.  Range Check Elimination,
  2076   // peeling, unrolling, etc.
  2078   // Set loop opts counter
  2079   loop_opts_cnt = num_loop_opts();
  2080   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2082       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2083       PhaseIdealLoop ideal_loop( igvn, true );
  2084       loop_opts_cnt--;
  2085       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2086       if (failing())  return;
  2088     // Loop opts pass if partial peeling occurred in previous pass
  2089     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2090       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2091       PhaseIdealLoop ideal_loop( igvn, false );
  2092       loop_opts_cnt--;
  2093       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2094       if (failing())  return;
  2096     // Loop opts pass for loop-unrolling before CCP
  2097     if(major_progress() && (loop_opts_cnt > 0)) {
  2098       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2099       PhaseIdealLoop ideal_loop( igvn, false );
  2100       loop_opts_cnt--;
  2101       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2103     if (!failing()) {
  2104       // Verify that last round of loop opts produced a valid graph
  2105       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2106       PhaseIdealLoop::verify(igvn);
  2109   if (failing())  return;
  2111   // Conditional Constant Propagation;
  2112   PhaseCCP ccp( &igvn );
  2113   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2115     TracePhase t2("ccp", &_t_ccp, true);
  2116     ccp.do_transform();
  2118   print_method(PHASE_CPP1, 2);
  2120   assert( true, "Break here to ccp.dump_old2new_map()");
  2122   // Iterative Global Value Numbering, including ideal transforms
  2124     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2125     igvn = ccp;
  2126     igvn.optimize();
  2129   print_method(PHASE_ITER_GVN2, 2);
  2131   if (failing())  return;
  2133   // Loop transforms on the ideal graph.  Range Check Elimination,
  2134   // peeling, unrolling, etc.
  2135   if(loop_opts_cnt > 0) {
  2136     debug_only( int cnt = 0; );
  2137     while(major_progress() && (loop_opts_cnt > 0)) {
  2138       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2139       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2140       PhaseIdealLoop ideal_loop( igvn, true);
  2141       loop_opts_cnt--;
  2142       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2143       if (failing())  return;
  2148     // Verify that all previous optimizations produced a valid graph
  2149     // at least to this point, even if no loop optimizations were done.
  2150     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2151     PhaseIdealLoop::verify(igvn);
  2155     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2156     PhaseMacroExpand  mex(igvn);
  2157     if (mex.expand_macro_nodes()) {
  2158       assert(failing(), "must bail out w/ explicit message");
  2159       return;
  2163  } // (End scope of igvn; run destructor if necessary for asserts.)
  2165   dump_inlining();
  2166   // A method with only infinite loops has no edges entering loops from root
  2168     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2169     if (final_graph_reshaping()) {
  2170       assert(failing(), "must bail out w/ explicit message");
  2171       return;
  2175   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2179 //------------------------------Code_Gen---------------------------------------
  2180 // Given a graph, generate code for it
  2181 void Compile::Code_Gen() {
  2182   if (failing()) {
  2183     return;
  2186   // Perform instruction selection.  You might think we could reclaim Matcher
  2187   // memory PDQ, but actually the Matcher is used in generating spill code.
  2188   // Internals of the Matcher (including some VectorSets) must remain live
  2189   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2190   // set a bit in reclaimed memory.
  2192   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2193   // nodes.  Mapping is only valid at the root of each matched subtree.
  2194   NOT_PRODUCT( verify_graph_edges(); )
  2196   Matcher matcher;
  2197   _matcher = &matcher;
  2199     TracePhase t2("matcher", &_t_matcher, true);
  2200     matcher.match();
  2202   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2203   // nodes.  Mapping is only valid at the root of each matched subtree.
  2204   NOT_PRODUCT( verify_graph_edges(); )
  2206   // If you have too many nodes, or if matching has failed, bail out
  2207   check_node_count(0, "out of nodes matching instructions");
  2208   if (failing()) {
  2209     return;
  2212   // Build a proper-looking CFG
  2213   PhaseCFG cfg(node_arena(), root(), matcher);
  2214   _cfg = &cfg;
  2216     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2217     bool success = cfg.do_global_code_motion();
  2218     if (!success) {
  2219       return;
  2222     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2223     NOT_PRODUCT( verify_graph_edges(); )
  2224     debug_only( cfg.verify(); )
  2227   PhaseChaitin regalloc(unique(), cfg, matcher);
  2228   _regalloc = &regalloc;
  2230     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2231     // Perform register allocation.  After Chaitin, use-def chains are
  2232     // no longer accurate (at spill code) and so must be ignored.
  2233     // Node->LRG->reg mappings are still accurate.
  2234     _regalloc->Register_Allocate();
  2236     // Bail out if the allocator builds too many nodes
  2237     if (failing()) {
  2238       return;
  2242   // Prior to register allocation we kept empty basic blocks in case the
  2243   // the allocator needed a place to spill.  After register allocation we
  2244   // are not adding any new instructions.  If any basic block is empty, we
  2245   // can now safely remove it.
  2247     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2248     cfg.remove_empty_blocks();
  2249     if (do_freq_based_layout()) {
  2250       PhaseBlockLayout layout(cfg);
  2251     } else {
  2252       cfg.set_loop_alignment();
  2254     cfg.fixup_flow();
  2257   // Apply peephole optimizations
  2258   if( OptoPeephole ) {
  2259     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2260     PhasePeephole peep( _regalloc, cfg);
  2261     peep.do_transform();
  2264   // Convert Nodes to instruction bits in a buffer
  2266     // %%%% workspace merge brought two timers together for one job
  2267     TracePhase t2a("output", &_t_output, true);
  2268     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2269     Output();
  2272   print_method(PHASE_FINAL_CODE);
  2274   // He's dead, Jim.
  2275   _cfg     = (PhaseCFG*)0xdeadbeef;
  2276   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2280 //------------------------------dump_asm---------------------------------------
  2281 // Dump formatted assembly
  2282 #ifndef PRODUCT
  2283 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2284   bool cut_short = false;
  2285   tty->print_cr("#");
  2286   tty->print("#  ");  _tf->dump();  tty->cr();
  2287   tty->print_cr("#");
  2289   // For all blocks
  2290   int pc = 0x0;                 // Program counter
  2291   char starts_bundle = ' ';
  2292   _regalloc->dump_frame();
  2294   Node *n = NULL;
  2295   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2296     if (VMThread::should_terminate()) {
  2297       cut_short = true;
  2298       break;
  2300     Block* block = _cfg->get_block(i);
  2301     if (block->is_connector() && !Verbose) {
  2302       continue;
  2304     n = block->head();
  2305     if (pcs && n->_idx < pc_limit) {
  2306       tty->print("%3.3x   ", pcs[n->_idx]);
  2307     } else {
  2308       tty->print("      ");
  2310     block->dump_head(_cfg);
  2311     if (block->is_connector()) {
  2312       tty->print_cr("        # Empty connector block");
  2313     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2314       tty->print_cr("        # Block is sole successor of call");
  2317     // For all instructions
  2318     Node *delay = NULL;
  2319     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2320       if (VMThread::should_terminate()) {
  2321         cut_short = true;
  2322         break;
  2324       n = block->get_node(j);
  2325       if (valid_bundle_info(n)) {
  2326         Bundle* bundle = node_bundling(n);
  2327         if (bundle->used_in_unconditional_delay()) {
  2328           delay = n;
  2329           continue;
  2331         if (bundle->starts_bundle()) {
  2332           starts_bundle = '+';
  2336       if (WizardMode) {
  2337         n->dump();
  2340       if( !n->is_Region() &&    // Dont print in the Assembly
  2341           !n->is_Phi() &&       // a few noisely useless nodes
  2342           !n->is_Proj() &&
  2343           !n->is_MachTemp() &&
  2344           !n->is_SafePointScalarObject() &&
  2345           !n->is_Catch() &&     // Would be nice to print exception table targets
  2346           !n->is_MergeMem() &&  // Not very interesting
  2347           !n->is_top() &&       // Debug info table constants
  2348           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2349           ) {
  2350         if (pcs && n->_idx < pc_limit)
  2351           tty->print("%3.3x", pcs[n->_idx]);
  2352         else
  2353           tty->print("   ");
  2354         tty->print(" %c ", starts_bundle);
  2355         starts_bundle = ' ';
  2356         tty->print("\t");
  2357         n->format(_regalloc, tty);
  2358         tty->cr();
  2361       // If we have an instruction with a delay slot, and have seen a delay,
  2362       // then back up and print it
  2363       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2364         assert(delay != NULL, "no unconditional delay instruction");
  2365         if (WizardMode) delay->dump();
  2367         if (node_bundling(delay)->starts_bundle())
  2368           starts_bundle = '+';
  2369         if (pcs && n->_idx < pc_limit)
  2370           tty->print("%3.3x", pcs[n->_idx]);
  2371         else
  2372           tty->print("   ");
  2373         tty->print(" %c ", starts_bundle);
  2374         starts_bundle = ' ';
  2375         tty->print("\t");
  2376         delay->format(_regalloc, tty);
  2377         tty->print_cr("");
  2378         delay = NULL;
  2381       // Dump the exception table as well
  2382       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2383         // Print the exception table for this offset
  2384         _handler_table.print_subtable_for(pc);
  2388     if (pcs && n->_idx < pc_limit)
  2389       tty->print_cr("%3.3x", pcs[n->_idx]);
  2390     else
  2391       tty->print_cr("");
  2393     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2395   } // End of per-block dump
  2396   tty->print_cr("");
  2398   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2400 #endif
  2402 //------------------------------Final_Reshape_Counts---------------------------
  2403 // This class defines counters to help identify when a method
  2404 // may/must be executed using hardware with only 24-bit precision.
  2405 struct Final_Reshape_Counts : public StackObj {
  2406   int  _call_count;             // count non-inlined 'common' calls
  2407   int  _float_count;            // count float ops requiring 24-bit precision
  2408   int  _double_count;           // count double ops requiring more precision
  2409   int  _java_call_count;        // count non-inlined 'java' calls
  2410   int  _inner_loop_count;       // count loops which need alignment
  2411   VectorSet _visited;           // Visitation flags
  2412   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2414   Final_Reshape_Counts() :
  2415     _call_count(0), _float_count(0), _double_count(0),
  2416     _java_call_count(0), _inner_loop_count(0),
  2417     _visited( Thread::current()->resource_area() ) { }
  2419   void inc_call_count  () { _call_count  ++; }
  2420   void inc_float_count () { _float_count ++; }
  2421   void inc_double_count() { _double_count++; }
  2422   void inc_java_call_count() { _java_call_count++; }
  2423   void inc_inner_loop_count() { _inner_loop_count++; }
  2425   int  get_call_count  () const { return _call_count  ; }
  2426   int  get_float_count () const { return _float_count ; }
  2427   int  get_double_count() const { return _double_count; }
  2428   int  get_java_call_count() const { return _java_call_count; }
  2429   int  get_inner_loop_count() const { return _inner_loop_count; }
  2430 };
  2432 #ifdef ASSERT
  2433 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2434   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2435   // Make sure the offset goes inside the instance layout.
  2436   return k->contains_field_offset(tp->offset());
  2437   // Note that OffsetBot and OffsetTop are very negative.
  2439 #endif
  2441 // Eliminate trivially redundant StoreCMs and accumulate their
  2442 // precedence edges.
  2443 void Compile::eliminate_redundant_card_marks(Node* n) {
  2444   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2445   if (n->in(MemNode::Address)->outcnt() > 1) {
  2446     // There are multiple users of the same address so it might be
  2447     // possible to eliminate some of the StoreCMs
  2448     Node* mem = n->in(MemNode::Memory);
  2449     Node* adr = n->in(MemNode::Address);
  2450     Node* val = n->in(MemNode::ValueIn);
  2451     Node* prev = n;
  2452     bool done = false;
  2453     // Walk the chain of StoreCMs eliminating ones that match.  As
  2454     // long as it's a chain of single users then the optimization is
  2455     // safe.  Eliminating partially redundant StoreCMs would require
  2456     // cloning copies down the other paths.
  2457     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2458       if (adr == mem->in(MemNode::Address) &&
  2459           val == mem->in(MemNode::ValueIn)) {
  2460         // redundant StoreCM
  2461         if (mem->req() > MemNode::OopStore) {
  2462           // Hasn't been processed by this code yet.
  2463           n->add_prec(mem->in(MemNode::OopStore));
  2464         } else {
  2465           // Already converted to precedence edge
  2466           for (uint i = mem->req(); i < mem->len(); i++) {
  2467             // Accumulate any precedence edges
  2468             if (mem->in(i) != NULL) {
  2469               n->add_prec(mem->in(i));
  2472           // Everything above this point has been processed.
  2473           done = true;
  2475         // Eliminate the previous StoreCM
  2476         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2477         assert(mem->outcnt() == 0, "should be dead");
  2478         mem->disconnect_inputs(NULL, this);
  2479       } else {
  2480         prev = mem;
  2482       mem = prev->in(MemNode::Memory);
  2487 //------------------------------final_graph_reshaping_impl----------------------
  2488 // Implement items 1-5 from final_graph_reshaping below.
  2489 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2491   if ( n->outcnt() == 0 ) return; // dead node
  2492   uint nop = n->Opcode();
  2494   // Check for 2-input instruction with "last use" on right input.
  2495   // Swap to left input.  Implements item (2).
  2496   if( n->req() == 3 &&          // two-input instruction
  2497       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2498       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2499       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2500       !n->in(2)->is_Con() ) {   // right use is not a constant
  2501     // Check for commutative opcode
  2502     switch( nop ) {
  2503     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2504     case Op_MaxI:  case Op_MinI:
  2505     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2506     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2507     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2508       // Move "last use" input to left by swapping inputs
  2509       n->swap_edges(1, 2);
  2510       break;
  2512     default:
  2513       break;
  2517 #ifdef ASSERT
  2518   if( n->is_Mem() ) {
  2519     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2520     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2521             // oop will be recorded in oop map if load crosses safepoint
  2522             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2523                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2524             "raw memory operations should have control edge");
  2526 #endif
  2527   // Count FPU ops and common calls, implements item (3)
  2528   switch( nop ) {
  2529   // Count all float operations that may use FPU
  2530   case Op_AddF:
  2531   case Op_SubF:
  2532   case Op_MulF:
  2533   case Op_DivF:
  2534   case Op_NegF:
  2535   case Op_ModF:
  2536   case Op_ConvI2F:
  2537   case Op_ConF:
  2538   case Op_CmpF:
  2539   case Op_CmpF3:
  2540   // case Op_ConvL2F: // longs are split into 32-bit halves
  2541     frc.inc_float_count();
  2542     break;
  2544   case Op_ConvF2D:
  2545   case Op_ConvD2F:
  2546     frc.inc_float_count();
  2547     frc.inc_double_count();
  2548     break;
  2550   // Count all double operations that may use FPU
  2551   case Op_AddD:
  2552   case Op_SubD:
  2553   case Op_MulD:
  2554   case Op_DivD:
  2555   case Op_NegD:
  2556   case Op_ModD:
  2557   case Op_ConvI2D:
  2558   case Op_ConvD2I:
  2559   // case Op_ConvL2D: // handled by leaf call
  2560   // case Op_ConvD2L: // handled by leaf call
  2561   case Op_ConD:
  2562   case Op_CmpD:
  2563   case Op_CmpD3:
  2564     frc.inc_double_count();
  2565     break;
  2566   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2567   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2568     n->subsume_by(n->in(1), this);
  2569     break;
  2570   case Op_CallStaticJava:
  2571   case Op_CallJava:
  2572   case Op_CallDynamicJava:
  2573     frc.inc_java_call_count(); // Count java call site;
  2574   case Op_CallRuntime:
  2575   case Op_CallLeaf:
  2576   case Op_CallLeafNoFP: {
  2577     assert( n->is_Call(), "" );
  2578     CallNode *call = n->as_Call();
  2579     // Count call sites where the FP mode bit would have to be flipped.
  2580     // Do not count uncommon runtime calls:
  2581     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2582     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2583     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2584       frc.inc_call_count();   // Count the call site
  2585     } else {                  // See if uncommon argument is shared
  2586       Node *n = call->in(TypeFunc::Parms);
  2587       int nop = n->Opcode();
  2588       // Clone shared simple arguments to uncommon calls, item (1).
  2589       if( n->outcnt() > 1 &&
  2590           !n->is_Proj() &&
  2591           nop != Op_CreateEx &&
  2592           nop != Op_CheckCastPP &&
  2593           nop != Op_DecodeN &&
  2594           nop != Op_DecodeNKlass &&
  2595           !n->is_Mem() ) {
  2596         Node *x = n->clone();
  2597         call->set_req( TypeFunc::Parms, x );
  2600     break;
  2603   case Op_StoreD:
  2604   case Op_LoadD:
  2605   case Op_LoadD_unaligned:
  2606     frc.inc_double_count();
  2607     goto handle_mem;
  2608   case Op_StoreF:
  2609   case Op_LoadF:
  2610     frc.inc_float_count();
  2611     goto handle_mem;
  2613   case Op_StoreCM:
  2615       // Convert OopStore dependence into precedence edge
  2616       Node* prec = n->in(MemNode::OopStore);
  2617       n->del_req(MemNode::OopStore);
  2618       n->add_prec(prec);
  2619       eliminate_redundant_card_marks(n);
  2622     // fall through
  2624   case Op_StoreB:
  2625   case Op_StoreC:
  2626   case Op_StorePConditional:
  2627   case Op_StoreI:
  2628   case Op_StoreL:
  2629   case Op_StoreIConditional:
  2630   case Op_StoreLConditional:
  2631   case Op_CompareAndSwapI:
  2632   case Op_CompareAndSwapL:
  2633   case Op_CompareAndSwapP:
  2634   case Op_CompareAndSwapN:
  2635   case Op_GetAndAddI:
  2636   case Op_GetAndAddL:
  2637   case Op_GetAndSetI:
  2638   case Op_GetAndSetL:
  2639   case Op_GetAndSetP:
  2640   case Op_GetAndSetN:
  2641   case Op_StoreP:
  2642   case Op_StoreN:
  2643   case Op_StoreNKlass:
  2644   case Op_LoadB:
  2645   case Op_LoadUB:
  2646   case Op_LoadUS:
  2647   case Op_LoadI:
  2648   case Op_LoadKlass:
  2649   case Op_LoadNKlass:
  2650   case Op_LoadL:
  2651   case Op_LoadL_unaligned:
  2652   case Op_LoadPLocked:
  2653   case Op_LoadP:
  2654   case Op_LoadN:
  2655   case Op_LoadRange:
  2656   case Op_LoadS: {
  2657   handle_mem:
  2658 #ifdef ASSERT
  2659     if( VerifyOptoOopOffsets ) {
  2660       assert( n->is_Mem(), "" );
  2661       MemNode *mem  = (MemNode*)n;
  2662       // Check to see if address types have grounded out somehow.
  2663       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2664       assert( !tp || oop_offset_is_sane(tp), "" );
  2666 #endif
  2667     break;
  2670   case Op_AddP: {               // Assert sane base pointers
  2671     Node *addp = n->in(AddPNode::Address);
  2672     assert( !addp->is_AddP() ||
  2673             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2674             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2675             "Base pointers must match" );
  2676 #ifdef _LP64
  2677     if ((UseCompressedOops || UseCompressedClassPointers) &&
  2678         addp->Opcode() == Op_ConP &&
  2679         addp == n->in(AddPNode::Base) &&
  2680         n->in(AddPNode::Offset)->is_Con()) {
  2681       // Use addressing with narrow klass to load with offset on x86.
  2682       // On sparc loading 32-bits constant and decoding it have less
  2683       // instructions (4) then load 64-bits constant (7).
  2684       // Do this transformation here since IGVN will convert ConN back to ConP.
  2685       const Type* t = addp->bottom_type();
  2686       if (t->isa_oopptr() || t->isa_klassptr()) {
  2687         Node* nn = NULL;
  2689         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2691         // Look for existing ConN node of the same exact type.
  2692         Node* r  = root();
  2693         uint cnt = r->outcnt();
  2694         for (uint i = 0; i < cnt; i++) {
  2695           Node* m = r->raw_out(i);
  2696           if (m!= NULL && m->Opcode() == op &&
  2697               m->bottom_type()->make_ptr() == t) {
  2698             nn = m;
  2699             break;
  2702         if (nn != NULL) {
  2703           // Decode a narrow oop to match address
  2704           // [R12 + narrow_oop_reg<<3 + offset]
  2705           if (t->isa_oopptr()) {
  2706             nn = new (this) DecodeNNode(nn, t);
  2707           } else {
  2708             nn = new (this) DecodeNKlassNode(nn, t);
  2710           n->set_req(AddPNode::Base, nn);
  2711           n->set_req(AddPNode::Address, nn);
  2712           if (addp->outcnt() == 0) {
  2713             addp->disconnect_inputs(NULL, this);
  2718 #endif
  2719     break;
  2722 #ifdef _LP64
  2723   case Op_CastPP:
  2724     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2725       Node* in1 = n->in(1);
  2726       const Type* t = n->bottom_type();
  2727       Node* new_in1 = in1->clone();
  2728       new_in1->as_DecodeN()->set_type(t);
  2730       if (!Matcher::narrow_oop_use_complex_address()) {
  2731         //
  2732         // x86, ARM and friends can handle 2 adds in addressing mode
  2733         // and Matcher can fold a DecodeN node into address by using
  2734         // a narrow oop directly and do implicit NULL check in address:
  2735         //
  2736         // [R12 + narrow_oop_reg<<3 + offset]
  2737         // NullCheck narrow_oop_reg
  2738         //
  2739         // On other platforms (Sparc) we have to keep new DecodeN node and
  2740         // use it to do implicit NULL check in address:
  2741         //
  2742         // decode_not_null narrow_oop_reg, base_reg
  2743         // [base_reg + offset]
  2744         // NullCheck base_reg
  2745         //
  2746         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2747         // to keep the information to which NULL check the new DecodeN node
  2748         // corresponds to use it as value in implicit_null_check().
  2749         //
  2750         new_in1->set_req(0, n->in(0));
  2753       n->subsume_by(new_in1, this);
  2754       if (in1->outcnt() == 0) {
  2755         in1->disconnect_inputs(NULL, this);
  2758     break;
  2760   case Op_CmpP:
  2761     // Do this transformation here to preserve CmpPNode::sub() and
  2762     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2763     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2764       Node* in1 = n->in(1);
  2765       Node* in2 = n->in(2);
  2766       if (!in1->is_DecodeNarrowPtr()) {
  2767         in2 = in1;
  2768         in1 = n->in(2);
  2770       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2772       Node* new_in2 = NULL;
  2773       if (in2->is_DecodeNarrowPtr()) {
  2774         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2775         new_in2 = in2->in(1);
  2776       } else if (in2->Opcode() == Op_ConP) {
  2777         const Type* t = in2->bottom_type();
  2778         if (t == TypePtr::NULL_PTR) {
  2779           assert(in1->is_DecodeN(), "compare klass to null?");
  2780           // Don't convert CmpP null check into CmpN if compressed
  2781           // oops implicit null check is not generated.
  2782           // This will allow to generate normal oop implicit null check.
  2783           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2784             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2785           //
  2786           // This transformation together with CastPP transformation above
  2787           // will generated code for implicit NULL checks for compressed oops.
  2788           //
  2789           // The original code after Optimize()
  2790           //
  2791           //    LoadN memory, narrow_oop_reg
  2792           //    decode narrow_oop_reg, base_reg
  2793           //    CmpP base_reg, NULL
  2794           //    CastPP base_reg // NotNull
  2795           //    Load [base_reg + offset], val_reg
  2796           //
  2797           // after these transformations will be
  2798           //
  2799           //    LoadN memory, narrow_oop_reg
  2800           //    CmpN narrow_oop_reg, NULL
  2801           //    decode_not_null narrow_oop_reg, base_reg
  2802           //    Load [base_reg + offset], val_reg
  2803           //
  2804           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2805           // since narrow oops can be used in debug info now (see the code in
  2806           // final_graph_reshaping_walk()).
  2807           //
  2808           // At the end the code will be matched to
  2809           // on x86:
  2810           //
  2811           //    Load_narrow_oop memory, narrow_oop_reg
  2812           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2813           //    NullCheck narrow_oop_reg
  2814           //
  2815           // and on sparc:
  2816           //
  2817           //    Load_narrow_oop memory, narrow_oop_reg
  2818           //    decode_not_null narrow_oop_reg, base_reg
  2819           //    Load [base_reg + offset], val_reg
  2820           //    NullCheck base_reg
  2821           //
  2822         } else if (t->isa_oopptr()) {
  2823           new_in2 = ConNode::make(this, t->make_narrowoop());
  2824         } else if (t->isa_klassptr()) {
  2825           new_in2 = ConNode::make(this, t->make_narrowklass());
  2828       if (new_in2 != NULL) {
  2829         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2830         n->subsume_by(cmpN, this);
  2831         if (in1->outcnt() == 0) {
  2832           in1->disconnect_inputs(NULL, this);
  2834         if (in2->outcnt() == 0) {
  2835           in2->disconnect_inputs(NULL, this);
  2839     break;
  2841   case Op_DecodeN:
  2842   case Op_DecodeNKlass:
  2843     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2844     // DecodeN could be pinned when it can't be fold into
  2845     // an address expression, see the code for Op_CastPP above.
  2846     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2847     break;
  2849   case Op_EncodeP:
  2850   case Op_EncodePKlass: {
  2851     Node* in1 = n->in(1);
  2852     if (in1->is_DecodeNarrowPtr()) {
  2853       n->subsume_by(in1->in(1), this);
  2854     } else if (in1->Opcode() == Op_ConP) {
  2855       const Type* t = in1->bottom_type();
  2856       if (t == TypePtr::NULL_PTR) {
  2857         assert(t->isa_oopptr(), "null klass?");
  2858         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2859       } else if (t->isa_oopptr()) {
  2860         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2861       } else if (t->isa_klassptr()) {
  2862         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2865     if (in1->outcnt() == 0) {
  2866       in1->disconnect_inputs(NULL, this);
  2868     break;
  2871   case Op_Proj: {
  2872     if (OptimizeStringConcat) {
  2873       ProjNode* p = n->as_Proj();
  2874       if (p->_is_io_use) {
  2875         // Separate projections were used for the exception path which
  2876         // are normally removed by a late inline.  If it wasn't inlined
  2877         // then they will hang around and should just be replaced with
  2878         // the original one.
  2879         Node* proj = NULL;
  2880         // Replace with just one
  2881         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2882           Node *use = i.get();
  2883           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2884             proj = use;
  2885             break;
  2888         assert(proj != NULL, "must be found");
  2889         p->subsume_by(proj, this);
  2892     break;
  2895   case Op_Phi:
  2896     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2897       // The EncodeP optimization may create Phi with the same edges
  2898       // for all paths. It is not handled well by Register Allocator.
  2899       Node* unique_in = n->in(1);
  2900       assert(unique_in != NULL, "");
  2901       uint cnt = n->req();
  2902       for (uint i = 2; i < cnt; i++) {
  2903         Node* m = n->in(i);
  2904         assert(m != NULL, "");
  2905         if (unique_in != m)
  2906           unique_in = NULL;
  2908       if (unique_in != NULL) {
  2909         n->subsume_by(unique_in, this);
  2912     break;
  2914 #endif
  2916   case Op_ModI:
  2917     if (UseDivMod) {
  2918       // Check if a%b and a/b both exist
  2919       Node* d = n->find_similar(Op_DivI);
  2920       if (d) {
  2921         // Replace them with a fused divmod if supported
  2922         if (Matcher::has_match_rule(Op_DivModI)) {
  2923           DivModINode* divmod = DivModINode::make(this, n);
  2924           d->subsume_by(divmod->div_proj(), this);
  2925           n->subsume_by(divmod->mod_proj(), this);
  2926         } else {
  2927           // replace a%b with a-((a/b)*b)
  2928           Node* mult = new (this) MulINode(d, d->in(2));
  2929           Node* sub  = new (this) SubINode(d->in(1), mult);
  2930           n->subsume_by(sub, this);
  2934     break;
  2936   case Op_ModL:
  2937     if (UseDivMod) {
  2938       // Check if a%b and a/b both exist
  2939       Node* d = n->find_similar(Op_DivL);
  2940       if (d) {
  2941         // Replace them with a fused divmod if supported
  2942         if (Matcher::has_match_rule(Op_DivModL)) {
  2943           DivModLNode* divmod = DivModLNode::make(this, n);
  2944           d->subsume_by(divmod->div_proj(), this);
  2945           n->subsume_by(divmod->mod_proj(), this);
  2946         } else {
  2947           // replace a%b with a-((a/b)*b)
  2948           Node* mult = new (this) MulLNode(d, d->in(2));
  2949           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2950           n->subsume_by(sub, this);
  2954     break;
  2956   case Op_LoadVector:
  2957   case Op_StoreVector:
  2958     break;
  2960   case Op_PackB:
  2961   case Op_PackS:
  2962   case Op_PackI:
  2963   case Op_PackF:
  2964   case Op_PackL:
  2965   case Op_PackD:
  2966     if (n->req()-1 > 2) {
  2967       // Replace many operand PackNodes with a binary tree for matching
  2968       PackNode* p = (PackNode*) n;
  2969       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2970       n->subsume_by(btp, this);
  2972     break;
  2973   case Op_Loop:
  2974   case Op_CountedLoop:
  2975     if (n->as_Loop()->is_inner_loop()) {
  2976       frc.inc_inner_loop_count();
  2978     break;
  2979   case Op_LShiftI:
  2980   case Op_RShiftI:
  2981   case Op_URShiftI:
  2982   case Op_LShiftL:
  2983   case Op_RShiftL:
  2984   case Op_URShiftL:
  2985     if (Matcher::need_masked_shift_count) {
  2986       // The cpu's shift instructions don't restrict the count to the
  2987       // lower 5/6 bits. We need to do the masking ourselves.
  2988       Node* in2 = n->in(2);
  2989       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2990       const TypeInt* t = in2->find_int_type();
  2991       if (t != NULL && t->is_con()) {
  2992         juint shift = t->get_con();
  2993         if (shift > mask) { // Unsigned cmp
  2994           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2996       } else {
  2997         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2998           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  2999           n->set_req(2, shift);
  3002       if (in2->outcnt() == 0) { // Remove dead node
  3003         in2->disconnect_inputs(NULL, this);
  3006     break;
  3007   case Op_MemBarStoreStore:
  3008   case Op_MemBarRelease:
  3009     // Break the link with AllocateNode: it is no longer useful and
  3010     // confuses register allocation.
  3011     if (n->req() > MemBarNode::Precedent) {
  3012       n->set_req(MemBarNode::Precedent, top());
  3014     break;
  3015     // Must set a control edge on all nodes that produce a FlagsProj
  3016     // so they can't escape the block that consumes the flags.
  3017     // Must also set the non throwing branch as the control
  3018     // for all nodes that depends on the result. Unless the node
  3019     // already have a control that isn't the control of the
  3020     // flag producer
  3021   case Op_FlagsProj:
  3023       MathExactNode* math = (MathExactNode*)  n->in(0);
  3024       Node* ctrl = math->control_node();
  3025       Node* non_throwing = math->non_throwing_branch();
  3026       math->set_req(0, ctrl);
  3028       Node* result = math->result_node();
  3029       if (result != NULL) {
  3030         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
  3031           Node* out = result->fast_out(j);
  3032           // Phi nodes shouldn't be moved. They would only match below if they
  3033           // had the same control as the MathExactNode. The only time that
  3034           // would happen is if the Phi is also an input to the MathExact
  3035           //
  3036           // Cmp nodes shouldn't have control set at all.
  3037           if (out->is_Phi() ||
  3038               out->is_Cmp()) {
  3039             continue;
  3042           if (out->in(0) == NULL) {
  3043             out->set_req(0, non_throwing);
  3044           } else if (out->in(0) == ctrl) {
  3045             out->set_req(0, non_throwing);
  3050     break;
  3051   default:
  3052     assert( !n->is_Call(), "" );
  3053     assert( !n->is_Mem(), "" );
  3054     break;
  3057   // Collect CFG split points
  3058   if (n->is_MultiBranch())
  3059     frc._tests.push(n);
  3062 //------------------------------final_graph_reshaping_walk---------------------
  3063 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3064 // requires that the walk visits a node's inputs before visiting the node.
  3065 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3066   ResourceArea *area = Thread::current()->resource_area();
  3067   Unique_Node_List sfpt(area);
  3069   frc._visited.set(root->_idx); // first, mark node as visited
  3070   uint cnt = root->req();
  3071   Node *n = root;
  3072   uint  i = 0;
  3073   while (true) {
  3074     if (i < cnt) {
  3075       // Place all non-visited non-null inputs onto stack
  3076       Node* m = n->in(i);
  3077       ++i;
  3078       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3079         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  3080           sfpt.push(m);
  3081         cnt = m->req();
  3082         nstack.push(n, i); // put on stack parent and next input's index
  3083         n = m;
  3084         i = 0;
  3086     } else {
  3087       // Now do post-visit work
  3088       final_graph_reshaping_impl( n, frc );
  3089       if (nstack.is_empty())
  3090         break;             // finished
  3091       n = nstack.node();   // Get node from stack
  3092       cnt = n->req();
  3093       i = nstack.index();
  3094       nstack.pop();        // Shift to the next node on stack
  3098   // Skip next transformation if compressed oops are not used.
  3099   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3100       (!UseCompressedOops && !UseCompressedClassPointers))
  3101     return;
  3103   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3104   // It could be done for an uncommon traps or any safepoints/calls
  3105   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3106   while (sfpt.size() > 0) {
  3107     n = sfpt.pop();
  3108     JVMState *jvms = n->as_SafePoint()->jvms();
  3109     assert(jvms != NULL, "sanity");
  3110     int start = jvms->debug_start();
  3111     int end   = n->req();
  3112     bool is_uncommon = (n->is_CallStaticJava() &&
  3113                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3114     for (int j = start; j < end; j++) {
  3115       Node* in = n->in(j);
  3116       if (in->is_DecodeNarrowPtr()) {
  3117         bool safe_to_skip = true;
  3118         if (!is_uncommon ) {
  3119           // Is it safe to skip?
  3120           for (uint i = 0; i < in->outcnt(); i++) {
  3121             Node* u = in->raw_out(i);
  3122             if (!u->is_SafePoint() ||
  3123                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3124               safe_to_skip = false;
  3128         if (safe_to_skip) {
  3129           n->set_req(j, in->in(1));
  3131         if (in->outcnt() == 0) {
  3132           in->disconnect_inputs(NULL, this);
  3139 //------------------------------final_graph_reshaping--------------------------
  3140 // Final Graph Reshaping.
  3141 //
  3142 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3143 //     and not commoned up and forced early.  Must come after regular
  3144 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3145 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3146 //     Remove Opaque nodes.
  3147 // (2) Move last-uses by commutative operations to the left input to encourage
  3148 //     Intel update-in-place two-address operations and better register usage
  3149 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3150 //     calls canonicalizing them back.
  3151 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3152 //     and call sites.  On Intel, we can get correct rounding either by
  3153 //     forcing singles to memory (requires extra stores and loads after each
  3154 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3155 //     clearing the mode bit around call sites).  The mode bit is only used
  3156 //     if the relative frequency of single FP ops to calls is low enough.
  3157 //     This is a key transform for SPEC mpeg_audio.
  3158 // (4) Detect infinite loops; blobs of code reachable from above but not
  3159 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3160 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3161 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3162 //     Detection is by looking for IfNodes where only 1 projection is
  3163 //     reachable from below or CatchNodes missing some targets.
  3164 // (5) Assert for insane oop offsets in debug mode.
  3166 bool Compile::final_graph_reshaping() {
  3167   // an infinite loop may have been eliminated by the optimizer,
  3168   // in which case the graph will be empty.
  3169   if (root()->req() == 1) {
  3170     record_method_not_compilable("trivial infinite loop");
  3171     return true;
  3174   // Expensive nodes have their control input set to prevent the GVN
  3175   // from freely commoning them. There's no GVN beyond this point so
  3176   // no need to keep the control input. We want the expensive nodes to
  3177   // be freely moved to the least frequent code path by gcm.
  3178   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3179   for (int i = 0; i < expensive_count(); i++) {
  3180     _expensive_nodes->at(i)->set_req(0, NULL);
  3183   Final_Reshape_Counts frc;
  3185   // Visit everybody reachable!
  3186   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  3187   Node_Stack nstack(unique() >> 1);
  3188   final_graph_reshaping_walk(nstack, root(), frc);
  3190   // Check for unreachable (from below) code (i.e., infinite loops).
  3191   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3192     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3193     // Get number of CFG targets.
  3194     // Note that PCTables include exception targets after calls.
  3195     uint required_outcnt = n->required_outcnt();
  3196     if (n->outcnt() != required_outcnt) {
  3197       // Check for a few special cases.  Rethrow Nodes never take the
  3198       // 'fall-thru' path, so expected kids is 1 less.
  3199       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3200         if (n->in(0)->in(0)->is_Call()) {
  3201           CallNode *call = n->in(0)->in(0)->as_Call();
  3202           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3203             required_outcnt--;      // Rethrow always has 1 less kid
  3204           } else if (call->req() > TypeFunc::Parms &&
  3205                      call->is_CallDynamicJava()) {
  3206             // Check for null receiver. In such case, the optimizer has
  3207             // detected that the virtual call will always result in a null
  3208             // pointer exception. The fall-through projection of this CatchNode
  3209             // will not be populated.
  3210             Node *arg0 = call->in(TypeFunc::Parms);
  3211             if (arg0->is_Type() &&
  3212                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3213               required_outcnt--;
  3215           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3216                      call->req() > TypeFunc::Parms+1 &&
  3217                      call->is_CallStaticJava()) {
  3218             // Check for negative array length. In such case, the optimizer has
  3219             // detected that the allocation attempt will always result in an
  3220             // exception. There is no fall-through projection of this CatchNode .
  3221             Node *arg1 = call->in(TypeFunc::Parms+1);
  3222             if (arg1->is_Type() &&
  3223                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3224               required_outcnt--;
  3229       // Recheck with a better notion of 'required_outcnt'
  3230       if (n->outcnt() != required_outcnt) {
  3231         record_method_not_compilable("malformed control flow");
  3232         return true;            // Not all targets reachable!
  3235     // Check that I actually visited all kids.  Unreached kids
  3236     // must be infinite loops.
  3237     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3238       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3239         record_method_not_compilable("infinite loop");
  3240         return true;            // Found unvisited kid; must be unreach
  3244   // If original bytecodes contained a mixture of floats and doubles
  3245   // check if the optimizer has made it homogenous, item (3).
  3246   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3247       frc.get_float_count() > 32 &&
  3248       frc.get_double_count() == 0 &&
  3249       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3250     set_24_bit_selection_and_mode( false,  true );
  3253   set_java_calls(frc.get_java_call_count());
  3254   set_inner_loops(frc.get_inner_loop_count());
  3256   // No infinite loops, no reason to bail out.
  3257   return false;
  3260 //-----------------------------too_many_traps----------------------------------
  3261 // Report if there are too many traps at the current method and bci.
  3262 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3263 bool Compile::too_many_traps(ciMethod* method,
  3264                              int bci,
  3265                              Deoptimization::DeoptReason reason) {
  3266   ciMethodData* md = method->method_data();
  3267   if (md->is_empty()) {
  3268     // Assume the trap has not occurred, or that it occurred only
  3269     // because of a transient condition during start-up in the interpreter.
  3270     return false;
  3272   if (md->has_trap_at(bci, reason) != 0) {
  3273     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3274     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3275     // assume the worst.
  3276     if (log())
  3277       log()->elem("observe trap='%s' count='%d'",
  3278                   Deoptimization::trap_reason_name(reason),
  3279                   md->trap_count(reason));
  3280     return true;
  3281   } else {
  3282     // Ignore method/bci and see if there have been too many globally.
  3283     return too_many_traps(reason, md);
  3287 // Less-accurate variant which does not require a method and bci.
  3288 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3289                              ciMethodData* logmd) {
  3290  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  3291     // Too many traps globally.
  3292     // Note that we use cumulative trap_count, not just md->trap_count.
  3293     if (log()) {
  3294       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3295       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3296                   Deoptimization::trap_reason_name(reason),
  3297                   mcount, trap_count(reason));
  3299     return true;
  3300   } else {
  3301     // The coast is clear.
  3302     return false;
  3306 //--------------------------too_many_recompiles--------------------------------
  3307 // Report if there are too many recompiles at the current method and bci.
  3308 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3309 // Is not eager to return true, since this will cause the compiler to use
  3310 // Action_none for a trap point, to avoid too many recompilations.
  3311 bool Compile::too_many_recompiles(ciMethod* method,
  3312                                   int bci,
  3313                                   Deoptimization::DeoptReason reason) {
  3314   ciMethodData* md = method->method_data();
  3315   if (md->is_empty()) {
  3316     // Assume the trap has not occurred, or that it occurred only
  3317     // because of a transient condition during start-up in the interpreter.
  3318     return false;
  3320   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3321   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3322   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3323   Deoptimization::DeoptReason per_bc_reason
  3324     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3325   if ((per_bc_reason == Deoptimization::Reason_none
  3326        || md->has_trap_at(bci, reason) != 0)
  3327       // The trap frequency measure we care about is the recompile count:
  3328       && md->trap_recompiled_at(bci)
  3329       && md->overflow_recompile_count() >= bc_cutoff) {
  3330     // Do not emit a trap here if it has already caused recompilations.
  3331     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3332     // assume the worst.
  3333     if (log())
  3334       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3335                   Deoptimization::trap_reason_name(reason),
  3336                   md->trap_count(reason),
  3337                   md->overflow_recompile_count());
  3338     return true;
  3339   } else if (trap_count(reason) != 0
  3340              && decompile_count() >= m_cutoff) {
  3341     // Too many recompiles globally, and we have seen this sort of trap.
  3342     // Use cumulative decompile_count, not just md->decompile_count.
  3343     if (log())
  3344       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3345                   Deoptimization::trap_reason_name(reason),
  3346                   md->trap_count(reason), trap_count(reason),
  3347                   md->decompile_count(), decompile_count());
  3348     return true;
  3349   } else {
  3350     // The coast is clear.
  3351     return false;
  3356 #ifndef PRODUCT
  3357 //------------------------------verify_graph_edges---------------------------
  3358 // Walk the Graph and verify that there is a one-to-one correspondence
  3359 // between Use-Def edges and Def-Use edges in the graph.
  3360 void Compile::verify_graph_edges(bool no_dead_code) {
  3361   if (VerifyGraphEdges) {
  3362     ResourceArea *area = Thread::current()->resource_area();
  3363     Unique_Node_List visited(area);
  3364     // Call recursive graph walk to check edges
  3365     _root->verify_edges(visited);
  3366     if (no_dead_code) {
  3367       // Now make sure that no visited node is used by an unvisited node.
  3368       bool dead_nodes = 0;
  3369       Unique_Node_List checked(area);
  3370       while (visited.size() > 0) {
  3371         Node* n = visited.pop();
  3372         checked.push(n);
  3373         for (uint i = 0; i < n->outcnt(); i++) {
  3374           Node* use = n->raw_out(i);
  3375           if (checked.member(use))  continue;  // already checked
  3376           if (visited.member(use))  continue;  // already in the graph
  3377           if (use->is_Con())        continue;  // a dead ConNode is OK
  3378           // At this point, we have found a dead node which is DU-reachable.
  3379           if (dead_nodes++ == 0)
  3380             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3381           use->dump(2);
  3382           tty->print_cr("---");
  3383           checked.push(use);  // No repeats; pretend it is now checked.
  3386       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3391 // Verify GC barriers consistency
  3392 // Currently supported:
  3393 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
  3394 void Compile::verify_barriers() {
  3395   if (UseG1GC) {
  3396     // Verify G1 pre-barriers
  3397     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
  3399     ResourceArea *area = Thread::current()->resource_area();
  3400     Unique_Node_List visited(area);
  3401     Node_List worklist(area);
  3402     // We're going to walk control flow backwards starting from the Root
  3403     worklist.push(_root);
  3404     while (worklist.size() > 0) {
  3405       Node* x = worklist.pop();
  3406       if (x == NULL || x == top()) continue;
  3407       if (visited.member(x)) {
  3408         continue;
  3409       } else {
  3410         visited.push(x);
  3413       if (x->is_Region()) {
  3414         for (uint i = 1; i < x->req(); i++) {
  3415           worklist.push(x->in(i));
  3417       } else {
  3418         worklist.push(x->in(0));
  3419         // We are looking for the pattern:
  3420         //                            /->ThreadLocal
  3421         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
  3422         //              \->ConI(0)
  3423         // We want to verify that the If and the LoadB have the same control
  3424         // See GraphKit::g1_write_barrier_pre()
  3425         if (x->is_If()) {
  3426           IfNode *iff = x->as_If();
  3427           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
  3428             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
  3429             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
  3430                 && cmp->in(1)->is_Load()) {
  3431               LoadNode* load = cmp->in(1)->as_Load();
  3432               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
  3433                   && load->in(2)->in(3)->is_Con()
  3434                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
  3436                 Node* if_ctrl = iff->in(0);
  3437                 Node* load_ctrl = load->in(0);
  3439                 if (if_ctrl != load_ctrl) {
  3440                   // Skip possible CProj->NeverBranch in infinite loops
  3441                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
  3442                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
  3443                     if_ctrl = if_ctrl->in(0)->in(0);
  3446                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
  3456 #endif
  3458 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3459 // This is required because there is not quite a 1-1 relation between the
  3460 // ciEnv and its compilation task and the Compile object.  Note that one
  3461 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3462 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3463 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3464 // by the logic in C2Compiler.
  3465 void Compile::record_failure(const char* reason) {
  3466   if (log() != NULL) {
  3467     log()->elem("failure reason='%s' phase='compile'", reason);
  3469   if (_failure_reason == NULL) {
  3470     // Record the first failure reason.
  3471     _failure_reason = reason;
  3474   EventCompilerFailure event;
  3475   if (event.should_commit()) {
  3476     event.set_compileID(Compile::compile_id());
  3477     event.set_failure(reason);
  3478     event.commit();
  3481   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3482     C->print_method(PHASE_FAILURE);
  3484   _root = NULL;  // flush the graph, too
  3487 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3488   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3489     _phase_name(name), _dolog(dolog)
  3491   if (dolog) {
  3492     C = Compile::current();
  3493     _log = C->log();
  3494   } else {
  3495     C = NULL;
  3496     _log = NULL;
  3498   if (_log != NULL) {
  3499     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3500     _log->stamp();
  3501     _log->end_head();
  3505 Compile::TracePhase::~TracePhase() {
  3507   C = Compile::current();
  3508   if (_dolog) {
  3509     _log = C->log();
  3510   } else {
  3511     _log = NULL;
  3514 #ifdef ASSERT
  3515   if (PrintIdealNodeCount) {
  3516     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3517                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3520   if (VerifyIdealNodeCount) {
  3521     Compile::current()->print_missing_nodes();
  3523 #endif
  3525   if (_log != NULL) {
  3526     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3530 //=============================================================================
  3531 // Two Constant's are equal when the type and the value are equal.
  3532 bool Compile::Constant::operator==(const Constant& other) {
  3533   if (type()          != other.type()         )  return false;
  3534   if (can_be_reused() != other.can_be_reused())  return false;
  3535   // For floating point values we compare the bit pattern.
  3536   switch (type()) {
  3537   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3538   case T_LONG:
  3539   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3540   case T_OBJECT:
  3541   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3542   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3543   case T_METADATA: return (_v._metadata == other._v._metadata);
  3544   default: ShouldNotReachHere();
  3546   return false;
  3549 static int type_to_size_in_bytes(BasicType t) {
  3550   switch (t) {
  3551   case T_LONG:    return sizeof(jlong  );
  3552   case T_FLOAT:   return sizeof(jfloat );
  3553   case T_DOUBLE:  return sizeof(jdouble);
  3554   case T_METADATA: return sizeof(Metadata*);
  3555     // We use T_VOID as marker for jump-table entries (labels) which
  3556     // need an internal word relocation.
  3557   case T_VOID:
  3558   case T_ADDRESS:
  3559   case T_OBJECT:  return sizeof(jobject);
  3562   ShouldNotReachHere();
  3563   return -1;
  3566 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3567   // sort descending
  3568   if (a->freq() > b->freq())  return -1;
  3569   if (a->freq() < b->freq())  return  1;
  3570   return 0;
  3573 void Compile::ConstantTable::calculate_offsets_and_size() {
  3574   // First, sort the array by frequencies.
  3575   _constants.sort(qsort_comparator);
  3577 #ifdef ASSERT
  3578   // Make sure all jump-table entries were sorted to the end of the
  3579   // array (they have a negative frequency).
  3580   bool found_void = false;
  3581   for (int i = 0; i < _constants.length(); i++) {
  3582     Constant con = _constants.at(i);
  3583     if (con.type() == T_VOID)
  3584       found_void = true;  // jump-tables
  3585     else
  3586       assert(!found_void, "wrong sorting");
  3588 #endif
  3590   int offset = 0;
  3591   for (int i = 0; i < _constants.length(); i++) {
  3592     Constant* con = _constants.adr_at(i);
  3594     // Align offset for type.
  3595     int typesize = type_to_size_in_bytes(con->type());
  3596     offset = align_size_up(offset, typesize);
  3597     con->set_offset(offset);   // set constant's offset
  3599     if (con->type() == T_VOID) {
  3600       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3601       offset = offset + typesize * n->outcnt();  // expand jump-table
  3602     } else {
  3603       offset = offset + typesize;
  3607   // Align size up to the next section start (which is insts; see
  3608   // CodeBuffer::align_at_start).
  3609   assert(_size == -1, "already set?");
  3610   _size = align_size_up(offset, CodeEntryAlignment);
  3613 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3614   MacroAssembler _masm(&cb);
  3615   for (int i = 0; i < _constants.length(); i++) {
  3616     Constant con = _constants.at(i);
  3617     address constant_addr;
  3618     switch (con.type()) {
  3619     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3620     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3621     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3622     case T_OBJECT: {
  3623       jobject obj = con.get_jobject();
  3624       int oop_index = _masm.oop_recorder()->find_index(obj);
  3625       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3626       break;
  3628     case T_ADDRESS: {
  3629       address addr = (address) con.get_jobject();
  3630       constant_addr = _masm.address_constant(addr);
  3631       break;
  3633     // We use T_VOID as marker for jump-table entries (labels) which
  3634     // need an internal word relocation.
  3635     case T_VOID: {
  3636       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3637       // Fill the jump-table with a dummy word.  The real value is
  3638       // filled in later in fill_jump_table.
  3639       address dummy = (address) n;
  3640       constant_addr = _masm.address_constant(dummy);
  3641       // Expand jump-table
  3642       for (uint i = 1; i < n->outcnt(); i++) {
  3643         address temp_addr = _masm.address_constant(dummy + i);
  3644         assert(temp_addr, "consts section too small");
  3646       break;
  3648     case T_METADATA: {
  3649       Metadata* obj = con.get_metadata();
  3650       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3651       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3652       break;
  3654     default: ShouldNotReachHere();
  3656     assert(constant_addr, "consts section too small");
  3657     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3661 int Compile::ConstantTable::find_offset(Constant& con) const {
  3662   int idx = _constants.find(con);
  3663   assert(idx != -1, "constant must be in constant table");
  3664   int offset = _constants.at(idx).offset();
  3665   assert(offset != -1, "constant table not emitted yet?");
  3666   return offset;
  3669 void Compile::ConstantTable::add(Constant& con) {
  3670   if (con.can_be_reused()) {
  3671     int idx = _constants.find(con);
  3672     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3673       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3674       return;
  3677   (void) _constants.append(con);
  3680 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3681   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3682   Constant con(type, value, b->_freq);
  3683   add(con);
  3684   return con;
  3687 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3688   Constant con(metadata);
  3689   add(con);
  3690   return con;
  3693 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3694   jvalue value;
  3695   BasicType type = oper->type()->basic_type();
  3696   switch (type) {
  3697   case T_LONG:    value.j = oper->constantL(); break;
  3698   case T_FLOAT:   value.f = oper->constantF(); break;
  3699   case T_DOUBLE:  value.d = oper->constantD(); break;
  3700   case T_OBJECT:
  3701   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3702   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3703   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3705   return add(n, type, value);
  3708 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3709   jvalue value;
  3710   // We can use the node pointer here to identify the right jump-table
  3711   // as this method is called from Compile::Fill_buffer right before
  3712   // the MachNodes are emitted and the jump-table is filled (means the
  3713   // MachNode pointers do not change anymore).
  3714   value.l = (jobject) n;
  3715   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3716   add(con);
  3717   return con;
  3720 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3721   // If called from Compile::scratch_emit_size do nothing.
  3722   if (Compile::current()->in_scratch_emit_size())  return;
  3724   assert(labels.is_nonempty(), "must be");
  3725   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3727   // Since MachConstantNode::constant_offset() also contains
  3728   // table_base_offset() we need to subtract the table_base_offset()
  3729   // to get the plain offset into the constant table.
  3730   int offset = n->constant_offset() - table_base_offset();
  3732   MacroAssembler _masm(&cb);
  3733   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3735   for (uint i = 0; i < n->outcnt(); i++) {
  3736     address* constant_addr = &jump_table_base[i];
  3737     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3738     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3739     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3743 void Compile::dump_inlining() {
  3744   if (print_inlining() || print_intrinsics()) {
  3745     // Print inlining message for candidates that we couldn't inline
  3746     // for lack of space or non constant receiver
  3747     for (int i = 0; i < _late_inlines.length(); i++) {
  3748       CallGenerator* cg = _late_inlines.at(i);
  3749       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3751     Unique_Node_List useful;
  3752     useful.push(root());
  3753     for (uint next = 0; next < useful.size(); ++next) {
  3754       Node* n  = useful.at(next);
  3755       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3756         CallNode* call = n->as_Call();
  3757         CallGenerator* cg = call->generator();
  3758         cg->print_inlining_late("receiver not constant");
  3760       uint max = n->len();
  3761       for ( uint i = 0; i < max; ++i ) {
  3762         Node *m = n->in(i);
  3763         if ( m == NULL ) continue;
  3764         useful.push(m);
  3767     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3768       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
  3773 // Dump inlining replay data to the stream.
  3774 // Don't change thread state and acquire any locks.
  3775 void Compile::dump_inline_data(outputStream* out) {
  3776   InlineTree* inl_tree = ilt();
  3777   if (inl_tree != NULL) {
  3778     out->print(" inline %d", inl_tree->count());
  3779     inl_tree->dump_replay_data(out);
  3783 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3784   if (n1->Opcode() < n2->Opcode())      return -1;
  3785   else if (n1->Opcode() > n2->Opcode()) return 1;
  3787   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3788   for (uint i = 1; i < n1->req(); i++) {
  3789     if (n1->in(i) < n2->in(i))      return -1;
  3790     else if (n1->in(i) > n2->in(i)) return 1;
  3793   return 0;
  3796 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3797   Node* n1 = *n1p;
  3798   Node* n2 = *n2p;
  3800   return cmp_expensive_nodes(n1, n2);
  3803 void Compile::sort_expensive_nodes() {
  3804   if (!expensive_nodes_sorted()) {
  3805     _expensive_nodes->sort(cmp_expensive_nodes);
  3809 bool Compile::expensive_nodes_sorted() const {
  3810   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3811     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3812       return false;
  3815   return true;
  3818 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3819   if (_expensive_nodes->length() == 0) {
  3820     return false;
  3823   assert(OptimizeExpensiveOps, "optimization off?");
  3825   // Take this opportunity to remove dead nodes from the list
  3826   int j = 0;
  3827   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3828     Node* n = _expensive_nodes->at(i);
  3829     if (!n->is_unreachable(igvn)) {
  3830       assert(n->is_expensive(), "should be expensive");
  3831       _expensive_nodes->at_put(j, n);
  3832       j++;
  3835   _expensive_nodes->trunc_to(j);
  3837   // Then sort the list so that similar nodes are next to each other
  3838   // and check for at least two nodes of identical kind with same data
  3839   // inputs.
  3840   sort_expensive_nodes();
  3842   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3843     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3844       return true;
  3848   return false;
  3851 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3852   if (_expensive_nodes->length() == 0) {
  3853     return;
  3856   assert(OptimizeExpensiveOps, "optimization off?");
  3858   // Sort to bring similar nodes next to each other and clear the
  3859   // control input of nodes for which there's only a single copy.
  3860   sort_expensive_nodes();
  3862   int j = 0;
  3863   int identical = 0;
  3864   int i = 0;
  3865   for (; i < _expensive_nodes->length()-1; i++) {
  3866     assert(j <= i, "can't write beyond current index");
  3867     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  3868       identical++;
  3869       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3870       continue;
  3872     if (identical > 0) {
  3873       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3874       identical = 0;
  3875     } else {
  3876       Node* n = _expensive_nodes->at(i);
  3877       igvn.hash_delete(n);
  3878       n->set_req(0, NULL);
  3879       igvn.hash_insert(n);
  3882   if (identical > 0) {
  3883     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3884   } else if (_expensive_nodes->length() >= 1) {
  3885     Node* n = _expensive_nodes->at(i);
  3886     igvn.hash_delete(n);
  3887     n->set_req(0, NULL);
  3888     igvn.hash_insert(n);
  3890   _expensive_nodes->trunc_to(j);
  3893 void Compile::add_expensive_node(Node * n) {
  3894   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  3895   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  3896   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  3897   if (OptimizeExpensiveOps) {
  3898     _expensive_nodes->append(n);
  3899   } else {
  3900     // Clear control input and let IGVN optimize expensive nodes if
  3901     // OptimizeExpensiveOps is off.
  3902     n->set_req(0, NULL);
  3906 /**
  3907  * Remove the speculative part of types and clean up the graph
  3908  */
  3909 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
  3910   if (UseTypeSpeculation) {
  3911     Unique_Node_List worklist;
  3912     worklist.push(root());
  3913     int modified = 0;
  3914     // Go over all type nodes that carry a speculative type, drop the
  3915     // speculative part of the type and enqueue the node for an igvn
  3916     // which may optimize it out.
  3917     for (uint next = 0; next < worklist.size(); ++next) {
  3918       Node *n  = worklist.at(next);
  3919       if (n->is_Type()) {
  3920         TypeNode* tn = n->as_Type();
  3921         const Type* t = tn->type();
  3922         const Type* t_no_spec = t->remove_speculative();
  3923         if (t_no_spec != t) {
  3924           bool in_hash = igvn.hash_delete(n);
  3925           assert(in_hash, "node should be in igvn hash table");
  3926           tn->set_type(t_no_spec);
  3927           igvn.hash_insert(n);
  3928           igvn._worklist.push(n); // give it a chance to go away
  3929           modified++;
  3932       uint max = n->len();
  3933       for( uint i = 0; i < max; ++i ) {
  3934         Node *m = n->in(i);
  3935         if (not_a_node(m))  continue;
  3936         worklist.push(m);
  3939     // Drop the speculative part of all types in the igvn's type table
  3940     igvn.remove_speculative_types();
  3941     if (modified > 0) {
  3942       igvn.optimize();
  3944 #ifdef ASSERT
  3945     // Verify that after the IGVN is over no speculative type has resurfaced
  3946     worklist.clear();
  3947     worklist.push(root());
  3948     for (uint next = 0; next < worklist.size(); ++next) {
  3949       Node *n  = worklist.at(next);
  3950       const Type* t = igvn.type(n);
  3951       assert(t == t->remove_speculative(), "no more speculative types");
  3952       if (n->is_Type()) {
  3953         t = n->as_Type()->type();
  3954         assert(t == t->remove_speculative(), "no more speculative types");
  3956       uint max = n->len();
  3957       for( uint i = 0; i < max; ++i ) {
  3958         Node *m = n->in(i);
  3959         if (not_a_node(m))  continue;
  3960         worklist.push(m);
  3963     igvn.check_no_speculative_types();
  3964 #endif
  3968 // Auxiliary method to support randomized stressing/fuzzing.
  3969 //
  3970 // This method can be called the arbitrary number of times, with current count
  3971 // as the argument. The logic allows selecting a single candidate from the
  3972 // running list of candidates as follows:
  3973 //    int count = 0;
  3974 //    Cand* selected = null;
  3975 //    while(cand = cand->next()) {
  3976 //      if (randomized_select(++count)) {
  3977 //        selected = cand;
  3978 //      }
  3979 //    }
  3980 //
  3981 // Including count equalizes the chances any candidate is "selected".
  3982 // This is useful when we don't have the complete list of candidates to choose
  3983 // from uniformly. In this case, we need to adjust the randomicity of the
  3984 // selection, or else we will end up biasing the selection towards the latter
  3985 // candidates.
  3986 //
  3987 // Quick back-envelope calculation shows that for the list of n candidates
  3988 // the equal probability for the candidate to persist as "best" can be
  3989 // achieved by replacing it with "next" k-th candidate with the probability
  3990 // of 1/k. It can be easily shown that by the end of the run, the
  3991 // probability for any candidate is converged to 1/n, thus giving the
  3992 // uniform distribution among all the candidates.
  3993 //
  3994 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  3995 #define RANDOMIZED_DOMAIN_POW 29
  3996 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  3997 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  3998 bool Compile::randomized_select(int count) {
  3999   assert(count > 0, "only positive");
  4000   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial