src/share/vm/runtime/deoptimization.cpp

Thu, 08 Sep 2011 10:12:25 +0200

author
bdelsart
date
Thu, 08 Sep 2011 10:12:25 +0200
changeset 3130
5432047c7db7
parent 2901
3d2ab563047a
child 3238
b20d64f83668
permissions
-rw-r--r--

7087445: Improve platform independence of JSR292 shared code
Summary: changes necessary for some JSR292 ports
Reviewed-by: jrose, dholmes

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/methodOop.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc
    85 # include "adfiles/ad_ppc.hpp"
    86 #endif
    87 #endif
    89 bool DeoptimizationMarker::_is_active = false;
    91 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    92                                          int  caller_adjustment,
    93                                          int  caller_actual_parameters,
    94                                          int  number_of_frames,
    95                                          intptr_t* frame_sizes,
    96                                          address* frame_pcs,
    97                                          BasicType return_type) {
    98   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    99   _caller_adjustment         = caller_adjustment;
   100   _caller_actual_parameters  = caller_actual_parameters;
   101   _number_of_frames          = number_of_frames;
   102   _frame_sizes               = frame_sizes;
   103   _frame_pcs                 = frame_pcs;
   104   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
   105   _return_type               = return_type;
   106   _initial_info              = 0;
   107   // PD (x86 only)
   108   _counter_temp              = 0;
   109   _unpack_kind               = 0;
   110   _sender_sp_temp            = 0;
   112   _total_frame_sizes         = size_of_frames();
   113 }
   116 Deoptimization::UnrollBlock::~UnrollBlock() {
   117   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
   118   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
   119   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
   120 }
   123 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   124   assert(register_number < RegisterMap::reg_count, "checking register number");
   125   return &_register_block[register_number * 2];
   126 }
   130 int Deoptimization::UnrollBlock::size_of_frames() const {
   131   // Acount first for the adjustment of the initial frame
   132   int result = _caller_adjustment;
   133   for (int index = 0; index < number_of_frames(); index++) {
   134     result += frame_sizes()[index];
   135   }
   136   return result;
   137 }
   140 void Deoptimization::UnrollBlock::print() {
   141   ttyLocker ttyl;
   142   tty->print_cr("UnrollBlock");
   143   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   144   tty->print(   "  frame_sizes: ");
   145   for (int index = 0; index < number_of_frames(); index++) {
   146     tty->print("%d ", frame_sizes()[index]);
   147   }
   148   tty->cr();
   149 }
   152 // In order to make fetch_unroll_info work properly with escape
   153 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   154 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   155 // of previously eliminated objects occurs in realloc_objects, which is
   156 // called from the method fetch_unroll_info_helper below.
   157 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   158   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   159   // but makes the entry a little slower. There is however a little dance we have to
   160   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   162   // fetch_unroll_info() is called at the beginning of the deoptimization
   163   // handler. Note this fact before we start generating temporary frames
   164   // that can confuse an asynchronous stack walker. This counter is
   165   // decremented at the end of unpack_frames().
   166   thread->inc_in_deopt_handler();
   168   return fetch_unroll_info_helper(thread);
   169 JRT_END
   172 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   173 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   175   // Note: there is a safepoint safety issue here. No matter whether we enter
   176   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   177   // the vframeArray is created.
   178   //
   180   // Allocate our special deoptimization ResourceMark
   181   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   182   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   183   thread->set_deopt_mark(dmark);
   185   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   186   RegisterMap map(thread, true);
   187   RegisterMap dummy_map(thread, false);
   188   // Now get the deoptee with a valid map
   189   frame deoptee = stub_frame.sender(&map);
   190   // Set the deoptee nmethod
   191   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   192   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   194   if (VerifyStack) {
   195     thread->validate_frame_layout();
   196   }
   198   // Create a growable array of VFrames where each VFrame represents an inlined
   199   // Java frame.  This storage is allocated with the usual system arena.
   200   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   201   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   202   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   203   while (!vf->is_top()) {
   204     assert(vf->is_compiled_frame(), "Wrong frame type");
   205     chunk->push(compiledVFrame::cast(vf));
   206     vf = vf->sender();
   207   }
   208   assert(vf->is_compiled_frame(), "Wrong frame type");
   209   chunk->push(compiledVFrame::cast(vf));
   211 #ifdef COMPILER2
   212   // Reallocate the non-escaping objects and restore their fields. Then
   213   // relock objects if synchronization on them was eliminated.
   214   if (DoEscapeAnalysis) {
   215     if (EliminateAllocations) {
   216       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   217       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   219       // The flag return_oop() indicates call sites which return oop
   220       // in compiled code. Such sites include java method calls,
   221       // runtime calls (for example, used to allocate new objects/arrays
   222       // on slow code path) and any other calls generated in compiled code.
   223       // It is not guaranteed that we can get such information here only
   224       // by analyzing bytecode in deoptimized frames. This is why this flag
   225       // is set during method compilation (see Compile::Process_OopMap_Node()).
   226       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   227       Handle return_value;
   228       if (save_oop_result) {
   229         // Reallocation may trigger GC. If deoptimization happened on return from
   230         // call which returns oop we need to save it since it is not in oopmap.
   231         oop result = deoptee.saved_oop_result(&map);
   232         assert(result == NULL || result->is_oop(), "must be oop");
   233         return_value = Handle(thread, result);
   234         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   235         if (TraceDeoptimization) {
   236           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
   237         }
   238       }
   239       bool reallocated = false;
   240       if (objects != NULL) {
   241         JRT_BLOCK
   242           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   243         JRT_END
   244       }
   245       if (reallocated) {
   246         reassign_fields(&deoptee, &map, objects);
   247 #ifndef PRODUCT
   248         if (TraceDeoptimization) {
   249           ttyLocker ttyl;
   250           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   251           print_objects(objects);
   252         }
   253 #endif
   254       }
   255       if (save_oop_result) {
   256         // Restore result.
   257         deoptee.set_saved_oop_result(&map, return_value());
   258       }
   259     }
   260     if (EliminateLocks) {
   261 #ifndef PRODUCT
   262       bool first = true;
   263 #endif
   264       for (int i = 0; i < chunk->length(); i++) {
   265         compiledVFrame* cvf = chunk->at(i);
   266         assert (cvf->scope() != NULL,"expect only compiled java frames");
   267         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   268         if (monitors->is_nonempty()) {
   269           relock_objects(monitors, thread);
   270 #ifndef PRODUCT
   271           if (TraceDeoptimization) {
   272             ttyLocker ttyl;
   273             for (int j = 0; j < monitors->length(); j++) {
   274               MonitorInfo* mi = monitors->at(j);
   275               if (mi->eliminated()) {
   276                 if (first) {
   277                   first = false;
   278                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   279                 }
   280                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   281               }
   282             }
   283           }
   284 #endif
   285         }
   286       }
   287     }
   288   }
   289 #endif // COMPILER2
   290   // Ensure that no safepoint is taken after pointers have been stored
   291   // in fields of rematerialized objects.  If a safepoint occurs from here on
   292   // out the java state residing in the vframeArray will be missed.
   293   No_Safepoint_Verifier no_safepoint;
   295   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   297   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   298   thread->set_vframe_array_head(array);
   300   // Now that the vframeArray has been created if we have any deferred local writes
   301   // added by jvmti then we can free up that structure as the data is now in the
   302   // vframeArray
   304   if (thread->deferred_locals() != NULL) {
   305     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   306     int i = 0;
   307     do {
   308       // Because of inlining we could have multiple vframes for a single frame
   309       // and several of the vframes could have deferred writes. Find them all.
   310       if (list->at(i)->id() == array->original().id()) {
   311         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   312         list->remove_at(i);
   313         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   314         delete dlv;
   315       } else {
   316         i++;
   317       }
   318     } while ( i < list->length() );
   319     if (list->length() == 0) {
   320       thread->set_deferred_locals(NULL);
   321       // free the list and elements back to C heap.
   322       delete list;
   323     }
   325   }
   327 #ifndef SHARK
   328   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   329   CodeBlob* cb = stub_frame.cb();
   330   // Verify we have the right vframeArray
   331   assert(cb->frame_size() >= 0, "Unexpected frame size");
   332   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   334   // If the deopt call site is a MethodHandle invoke call site we have
   335   // to adjust the unpack_sp.
   336   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   337   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   338     unpack_sp = deoptee.unextended_sp();
   340 #ifdef ASSERT
   341   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   342   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
   343 #endif
   344 #else
   345   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   346 #endif // !SHARK
   348   // This is a guarantee instead of an assert because if vframe doesn't match
   349   // we will unpack the wrong deoptimized frame and wind up in strange places
   350   // where it will be very difficult to figure out what went wrong. Better
   351   // to die an early death here than some very obscure death later when the
   352   // trail is cold.
   353   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   354   // in that it will fail to detect a problem when there is one. This needs
   355   // more work in tiger timeframe.
   356   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   358   int number_of_frames = array->frames();
   360   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   361   // virtual activation, which is the reverse of the elements in the vframes array.
   362   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
   363   // +1 because we always have an interpreter return address for the final slot.
   364   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
   365   int callee_parameters = 0;
   366   int callee_locals = 0;
   367   int popframe_extra_args = 0;
   368   // Create an interpreter return address for the stub to use as its return
   369   // address so the skeletal frames are perfectly walkable
   370   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   372   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   373   // activation be put back on the expression stack of the caller for reexecution
   374   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   375     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   376   }
   378   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   379   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   380   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   381   //
   382   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   383   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   385   // It's possible that the number of paramters at the call site is
   386   // different than number of arguments in the callee when method
   387   // handles are used.  If the caller is interpreted get the real
   388   // value so that the proper amount of space can be added to it's
   389   // frame.
   390   int caller_actual_parameters = callee_parameters;
   391   if (deopt_sender.is_interpreted_frame()) {
   392     methodHandle method = deopt_sender.interpreter_frame_method();
   393     Bytecode_invoke cur = Bytecode_invoke_check(method,
   394                                                 deopt_sender.interpreter_frame_bci());
   395     Symbol* signature = method->constants()->signature_ref_at(cur.index());
   396     ArgumentSizeComputer asc(signature);
   397     caller_actual_parameters = asc.size() + (cur.has_receiver() ? 1 : 0);
   398   }
   400   //
   401   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   402   // frame_sizes/frame_pcs[1] next oldest frame (int)
   403   // frame_sizes/frame_pcs[n] youngest frame (int)
   404   //
   405   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   406   // owns the space for the return address to it's caller).  Confusing ain't it.
   407   //
   408   // The vframe array can address vframes with indices running from
   409   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   410   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   411   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   412   // so things look a little strange in this loop.
   413   //
   414   for (int index = 0; index < array->frames(); index++ ) {
   415     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   416     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   417     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   418     int caller_parms = callee_parameters;
   419     if (index == array->frames() - 1) {
   420       // Use the value from the interpreted caller
   421       caller_parms = caller_actual_parameters;
   422     }
   423     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
   424                                                                                                     callee_parameters,
   425                                                                                                     callee_locals,
   426                                                                                                     index == 0,
   427                                                                                                     popframe_extra_args);
   428     // This pc doesn't have to be perfect just good enough to identify the frame
   429     // as interpreted so the skeleton frame will be walkable
   430     // The correct pc will be set when the skeleton frame is completely filled out
   431     // The final pc we store in the loop is wrong and will be overwritten below
   432     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   434     callee_parameters = array->element(index)->method()->size_of_parameters();
   435     callee_locals = array->element(index)->method()->max_locals();
   436     popframe_extra_args = 0;
   437   }
   439   // Compute whether the root vframe returns a float or double value.
   440   BasicType return_type;
   441   {
   442     HandleMark hm;
   443     methodHandle method(thread, array->element(0)->method());
   444     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   445     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   446   }
   448   // Compute information for handling adapters and adjusting the frame size of the caller.
   449   int caller_adjustment = 0;
   451   // Compute the amount the oldest interpreter frame will have to adjust
   452   // its caller's stack by. If the caller is a compiled frame then
   453   // we pretend that the callee has no parameters so that the
   454   // extension counts for the full amount of locals and not just
   455   // locals-parms. This is because without a c2i adapter the parm
   456   // area as created by the compiled frame will not be usable by
   457   // the interpreter. (Depending on the calling convention there
   458   // may not even be enough space).
   460   // QQQ I'd rather see this pushed down into last_frame_adjust
   461   // and have it take the sender (aka caller).
   463   if (deopt_sender.is_compiled_frame()) {
   464     caller_adjustment = last_frame_adjust(0, callee_locals);
   465   } else if (callee_locals > caller_actual_parameters) {
   466     // The caller frame may need extending to accommodate
   467     // non-parameter locals of the first unpacked interpreted frame.
   468     // Compute that adjustment.
   469     caller_adjustment = last_frame_adjust(caller_actual_parameters, callee_locals);
   470   }
   472   // If the sender is deoptimized the we must retrieve the address of the handler
   473   // since the frame will "magically" show the original pc before the deopt
   474   // and we'd undo the deopt.
   476   frame_pcs[0] = deopt_sender.raw_pc();
   478 #ifndef SHARK
   479   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   480 #endif // SHARK
   482   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   483                                       caller_adjustment * BytesPerWord,
   484                                       caller_actual_parameters,
   485                                       number_of_frames,
   486                                       frame_sizes,
   487                                       frame_pcs,
   488                                       return_type);
   489   // On some platforms, we need a way to pass some platform dependent
   490   // information to the unpacking code so the skeletal frames come out
   491   // correct (initial fp value, unextended sp, ...)
   492   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
   494   if (array->frames() > 1) {
   495     if (VerifyStack && TraceDeoptimization) {
   496       tty->print_cr("Deoptimizing method containing inlining");
   497     }
   498   }
   500   array->set_unroll_block(info);
   501   return info;
   502 }
   504 // Called to cleanup deoptimization data structures in normal case
   505 // after unpacking to stack and when stack overflow error occurs
   506 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   507                                         vframeArray *array) {
   509   // Get array if coming from exception
   510   if (array == NULL) {
   511     array = thread->vframe_array_head();
   512   }
   513   thread->set_vframe_array_head(NULL);
   515   // Free the previous UnrollBlock
   516   vframeArray* old_array = thread->vframe_array_last();
   517   thread->set_vframe_array_last(array);
   519   if (old_array != NULL) {
   520     UnrollBlock* old_info = old_array->unroll_block();
   521     old_array->set_unroll_block(NULL);
   522     delete old_info;
   523     delete old_array;
   524   }
   526   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   527   // inside the vframeArray (StackValueCollections)
   529   delete thread->deopt_mark();
   530   thread->set_deopt_mark(NULL);
   531   thread->set_deopt_nmethod(NULL);
   534   if (JvmtiExport::can_pop_frame()) {
   535 #ifndef CC_INTERP
   536     // Regardless of whether we entered this routine with the pending
   537     // popframe condition bit set, we should always clear it now
   538     thread->clear_popframe_condition();
   539 #else
   540     // C++ interpeter will clear has_pending_popframe when it enters
   541     // with method_resume. For deopt_resume2 we clear it now.
   542     if (thread->popframe_forcing_deopt_reexecution())
   543         thread->clear_popframe_condition();
   544 #endif /* CC_INTERP */
   545   }
   547   // unpack_frames() is called at the end of the deoptimization handler
   548   // and (in C2) at the end of the uncommon trap handler. Note this fact
   549   // so that an asynchronous stack walker can work again. This counter is
   550   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   551   // the beginning of uncommon_trap().
   552   thread->dec_in_deopt_handler();
   553 }
   556 // Return BasicType of value being returned
   557 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   559   // We are already active int he special DeoptResourceMark any ResourceObj's we
   560   // allocate will be freed at the end of the routine.
   562   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   563   // but makes the entry a little slower. There is however a little dance we have to
   564   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   565   ResetNoHandleMark rnhm; // No-op in release/product versions
   566   HandleMark hm;
   568   frame stub_frame = thread->last_frame();
   570   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   571   // must point to the vframeArray for the unpack frame.
   572   vframeArray* array = thread->vframe_array_head();
   574 #ifndef PRODUCT
   575   if (TraceDeoptimization) {
   576     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   577   }
   578 #endif
   580   UnrollBlock* info = array->unroll_block();
   582   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   583   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
   585   BasicType bt = info->return_type();
   587   // If we have an exception pending, claim that the return type is an oop
   588   // so the deopt_blob does not overwrite the exception_oop.
   590   if (exec_mode == Unpack_exception)
   591     bt = T_OBJECT;
   593   // Cleanup thread deopt data
   594   cleanup_deopt_info(thread, array);
   596 #ifndef PRODUCT
   597   if (VerifyStack) {
   598     ResourceMark res_mark;
   600     thread->validate_frame_layout();
   602     // Verify that the just-unpacked frames match the interpreter's
   603     // notions of expression stack and locals
   604     vframeArray* cur_array = thread->vframe_array_last();
   605     RegisterMap rm(thread, false);
   606     rm.set_include_argument_oops(false);
   607     bool is_top_frame = true;
   608     int callee_size_of_parameters = 0;
   609     int callee_max_locals = 0;
   610     for (int i = 0; i < cur_array->frames(); i++) {
   611       vframeArrayElement* el = cur_array->element(i);
   612       frame* iframe = el->iframe();
   613       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   615       // Get the oop map for this bci
   616       InterpreterOopMap mask;
   617       int cur_invoke_parameter_size = 0;
   618       bool try_next_mask = false;
   619       int next_mask_expression_stack_size = -1;
   620       int top_frame_expression_stack_adjustment = 0;
   621       methodHandle mh(thread, iframe->interpreter_frame_method());
   622       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   623       BytecodeStream str(mh);
   624       str.set_start(iframe->interpreter_frame_bci());
   625       int max_bci = mh->code_size();
   626       // Get to the next bytecode if possible
   627       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   628       // Check to see if we can grab the number of outgoing arguments
   629       // at an uncommon trap for an invoke (where the compiler
   630       // generates debug info before the invoke has executed)
   631       Bytecodes::Code cur_code = str.next();
   632       if (cur_code == Bytecodes::_invokevirtual ||
   633           cur_code == Bytecodes::_invokespecial ||
   634           cur_code == Bytecodes::_invokestatic  ||
   635           cur_code == Bytecodes::_invokeinterface) {
   636         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   637         Symbol* signature = invoke.signature();
   638         ArgumentSizeComputer asc(signature);
   639         cur_invoke_parameter_size = asc.size();
   640         if (cur_code != Bytecodes::_invokestatic) {
   641           // Add in receiver
   642           ++cur_invoke_parameter_size;
   643         }
   644       }
   645       if (str.bci() < max_bci) {
   646         Bytecodes::Code bc = str.next();
   647         if (bc >= 0) {
   648           // The interpreter oop map generator reports results before
   649           // the current bytecode has executed except in the case of
   650           // calls. It seems to be hard to tell whether the compiler
   651           // has emitted debug information matching the "state before"
   652           // a given bytecode or the state after, so we try both
   653           switch (cur_code) {
   654             case Bytecodes::_invokevirtual:
   655             case Bytecodes::_invokespecial:
   656             case Bytecodes::_invokestatic:
   657             case Bytecodes::_invokeinterface:
   658             case Bytecodes::_athrow:
   659               break;
   660             default: {
   661               InterpreterOopMap next_mask;
   662               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   663               next_mask_expression_stack_size = next_mask.expression_stack_size();
   664               // Need to subtract off the size of the result type of
   665               // the bytecode because this is not described in the
   666               // debug info but returned to the interpreter in the TOS
   667               // caching register
   668               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   669               if (bytecode_result_type != T_ILLEGAL) {
   670                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   671               }
   672               assert(top_frame_expression_stack_adjustment >= 0, "");
   673               try_next_mask = true;
   674               break;
   675             }
   676           }
   677         }
   678       }
   680       // Verify stack depth and oops in frame
   681       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   682       if (!(
   683             /* SPARC */
   684             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   685             /* x86 */
   686             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   687             (try_next_mask &&
   688              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   689                                                                     top_frame_expression_stack_adjustment))) ||
   690             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   691             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   692              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   693             )) {
   694         ttyLocker ttyl;
   696         // Print out some information that will help us debug the problem
   697         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   698         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   699         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   700                       iframe->interpreter_frame_expression_stack_size());
   701         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   702         tty->print_cr("  try_next_mask = %d", try_next_mask);
   703         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   704         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   705         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   706         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   707         tty->print_cr("  exec_mode = %d", exec_mode);
   708         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   709         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   710         tty->print_cr("  Interpreted frames:");
   711         for (int k = 0; k < cur_array->frames(); k++) {
   712           vframeArrayElement* el = cur_array->element(k);
   713           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   714         }
   715         cur_array->print_on_2(tty);
   716         guarantee(false, "wrong number of expression stack elements during deopt");
   717       }
   718       VerifyOopClosure verify;
   719       iframe->oops_interpreted_do(&verify, &rm, false);
   720       callee_size_of_parameters = mh->size_of_parameters();
   721       callee_max_locals = mh->max_locals();
   722       is_top_frame = false;
   723     }
   724   }
   725 #endif /* !PRODUCT */
   728   return bt;
   729 JRT_END
   732 int Deoptimization::deoptimize_dependents() {
   733   Threads::deoptimized_wrt_marked_nmethods();
   734   return 0;
   735 }
   738 #ifdef COMPILER2
   739 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   740   Handle pending_exception(thread->pending_exception());
   741   const char* exception_file = thread->exception_file();
   742   int exception_line = thread->exception_line();
   743   thread->clear_pending_exception();
   745   for (int i = 0; i < objects->length(); i++) {
   746     assert(objects->at(i)->is_object(), "invalid debug information");
   747     ObjectValue* sv = (ObjectValue*) objects->at(i);
   749     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   750     oop obj = NULL;
   752     if (k->oop_is_instance()) {
   753       instanceKlass* ik = instanceKlass::cast(k());
   754       obj = ik->allocate_instance(CHECK_(false));
   755     } else if (k->oop_is_typeArray()) {
   756       typeArrayKlass* ak = typeArrayKlass::cast(k());
   757       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   758       int len = sv->field_size() / type2size[ak->element_type()];
   759       obj = ak->allocate(len, CHECK_(false));
   760     } else if (k->oop_is_objArray()) {
   761       objArrayKlass* ak = objArrayKlass::cast(k());
   762       obj = ak->allocate(sv->field_size(), CHECK_(false));
   763     }
   765     assert(obj != NULL, "allocation failed");
   766     assert(sv->value().is_null(), "redundant reallocation");
   767     sv->set_value(obj);
   768   }
   770   if (pending_exception.not_null()) {
   771     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   772   }
   774   return true;
   775 }
   777 // This assumes that the fields are stored in ObjectValue in the same order
   778 // they are yielded by do_nonstatic_fields.
   779 class FieldReassigner: public FieldClosure {
   780   frame* _fr;
   781   RegisterMap* _reg_map;
   782   ObjectValue* _sv;
   783   instanceKlass* _ik;
   784   oop _obj;
   786   int _i;
   787 public:
   788   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   789     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   791   int i() const { return _i; }
   794   void do_field(fieldDescriptor* fd) {
   795     intptr_t val;
   796     StackValue* value =
   797       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   798     int offset = fd->offset();
   799     switch (fd->field_type()) {
   800     case T_OBJECT: case T_ARRAY:
   801       assert(value->type() == T_OBJECT, "Agreement.");
   802       _obj->obj_field_put(offset, value->get_obj()());
   803       break;
   805     case T_LONG: case T_DOUBLE: {
   806       assert(value->type() == T_INT, "Agreement.");
   807       StackValue* low =
   808         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   809 #ifdef _LP64
   810       jlong res = (jlong)low->get_int();
   811 #else
   812 #ifdef SPARC
   813       // For SPARC we have to swap high and low words.
   814       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   815 #else
   816       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   817 #endif //SPARC
   818 #endif
   819       _obj->long_field_put(offset, res);
   820       break;
   821     }
   822     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   823     case T_INT: case T_FLOAT: // 4 bytes.
   824       assert(value->type() == T_INT, "Agreement.");
   825       val = value->get_int();
   826       _obj->int_field_put(offset, (jint)*((jint*)&val));
   827       break;
   829     case T_SHORT: case T_CHAR: // 2 bytes
   830       assert(value->type() == T_INT, "Agreement.");
   831       val = value->get_int();
   832       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   833       break;
   835     case T_BOOLEAN: case T_BYTE: // 1 byte
   836       assert(value->type() == T_INT, "Agreement.");
   837       val = value->get_int();
   838       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   839       break;
   841     default:
   842       ShouldNotReachHere();
   843     }
   844     _i++;
   845   }
   846 };
   848 // restore elements of an eliminated type array
   849 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   850   int index = 0;
   851   intptr_t val;
   853   for (int i = 0; i < sv->field_size(); i++) {
   854     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   855     switch(type) {
   856     case T_LONG: case T_DOUBLE: {
   857       assert(value->type() == T_INT, "Agreement.");
   858       StackValue* low =
   859         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   860 #ifdef _LP64
   861       jlong res = (jlong)low->get_int();
   862 #else
   863 #ifdef SPARC
   864       // For SPARC we have to swap high and low words.
   865       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   866 #else
   867       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   868 #endif //SPARC
   869 #endif
   870       obj->long_at_put(index, res);
   871       break;
   872     }
   874     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   875     case T_INT: case T_FLOAT: // 4 bytes.
   876       assert(value->type() == T_INT, "Agreement.");
   877       val = value->get_int();
   878       obj->int_at_put(index, (jint)*((jint*)&val));
   879       break;
   881     case T_SHORT: case T_CHAR: // 2 bytes
   882       assert(value->type() == T_INT, "Agreement.");
   883       val = value->get_int();
   884       obj->short_at_put(index, (jshort)*((jint*)&val));
   885       break;
   887     case T_BOOLEAN: case T_BYTE: // 1 byte
   888       assert(value->type() == T_INT, "Agreement.");
   889       val = value->get_int();
   890       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   891       break;
   893       default:
   894         ShouldNotReachHere();
   895     }
   896     index++;
   897   }
   898 }
   901 // restore fields of an eliminated object array
   902 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   903   for (int i = 0; i < sv->field_size(); i++) {
   904     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   905     assert(value->type() == T_OBJECT, "object element expected");
   906     obj->obj_at_put(i, value->get_obj()());
   907   }
   908 }
   911 // restore fields of all eliminated objects and arrays
   912 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   913   for (int i = 0; i < objects->length(); i++) {
   914     ObjectValue* sv = (ObjectValue*) objects->at(i);
   915     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   916     Handle obj = sv->value();
   917     assert(obj.not_null(), "reallocation was missed");
   919     if (k->oop_is_instance()) {
   920       instanceKlass* ik = instanceKlass::cast(k());
   921       FieldReassigner reassign(fr, reg_map, sv, obj());
   922       ik->do_nonstatic_fields(&reassign);
   923     } else if (k->oop_is_typeArray()) {
   924       typeArrayKlass* ak = typeArrayKlass::cast(k());
   925       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   926     } else if (k->oop_is_objArray()) {
   927       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   928     }
   929   }
   930 }
   933 // relock objects for which synchronization was eliminated
   934 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   935   for (int i = 0; i < monitors->length(); i++) {
   936     MonitorInfo* mon_info = monitors->at(i);
   937     if (mon_info->eliminated()) {
   938       assert(mon_info->owner() != NULL, "reallocation was missed");
   939       Handle obj = Handle(mon_info->owner());
   940       markOop mark = obj->mark();
   941       if (UseBiasedLocking && mark->has_bias_pattern()) {
   942         // New allocated objects may have the mark set to anonymously biased.
   943         // Also the deoptimized method may called methods with synchronization
   944         // where the thread-local object is bias locked to the current thread.
   945         assert(mark->is_biased_anonymously() ||
   946                mark->biased_locker() == thread, "should be locked to current thread");
   947         // Reset mark word to unbiased prototype.
   948         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   949         obj->set_mark(unbiased_prototype);
   950       }
   951       BasicLock* lock = mon_info->lock();
   952       ObjectSynchronizer::slow_enter(obj, lock, thread);
   953     }
   954     assert(mon_info->owner()->is_locked(), "object must be locked now");
   955   }
   956 }
   959 #ifndef PRODUCT
   960 // print information about reallocated objects
   961 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   962   fieldDescriptor fd;
   964   for (int i = 0; i < objects->length(); i++) {
   965     ObjectValue* sv = (ObjectValue*) objects->at(i);
   966     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   967     Handle obj = sv->value();
   969     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   970     k->as_klassOop()->print_value();
   971     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   972     tty->cr();
   974     if (Verbose) {
   975       k->oop_print_on(obj(), tty);
   976     }
   977   }
   978 }
   979 #endif
   980 #endif // COMPILER2
   982 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   984 #ifndef PRODUCT
   985   if (TraceDeoptimization) {
   986     ttyLocker ttyl;
   987     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   988     fr.print_on(tty);
   989     tty->print_cr("     Virtual frames (innermost first):");
   990     for (int index = 0; index < chunk->length(); index++) {
   991       compiledVFrame* vf = chunk->at(index);
   992       tty->print("       %2d - ", index);
   993       vf->print_value();
   994       int bci = chunk->at(index)->raw_bci();
   995       const char* code_name;
   996       if (bci == SynchronizationEntryBCI) {
   997         code_name = "sync entry";
   998       } else {
   999         Bytecodes::Code code = vf->method()->code_at(bci);
  1000         code_name = Bytecodes::name(code);
  1002       tty->print(" - %s", code_name);
  1003       tty->print_cr(" @ bci %d ", bci);
  1004       if (Verbose) {
  1005         vf->print();
  1006         tty->cr();
  1010 #endif
  1012   // Register map for next frame (used for stack crawl).  We capture
  1013   // the state of the deopt'ing frame's caller.  Thus if we need to
  1014   // stuff a C2I adapter we can properly fill in the callee-save
  1015   // register locations.
  1016   frame caller = fr.sender(reg_map);
  1017   int frame_size = caller.sp() - fr.sp();
  1019   frame sender = caller;
  1021   // Since the Java thread being deoptimized will eventually adjust it's own stack,
  1022   // the vframeArray containing the unpacking information is allocated in the C heap.
  1023   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  1024   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
  1026   // Compare the vframeArray to the collected vframes
  1027   assert(array->structural_compare(thread, chunk), "just checking");
  1028   Events::log("# vframes = %d", (intptr_t)chunk->length());
  1030 #ifndef PRODUCT
  1031   if (TraceDeoptimization) {
  1032     ttyLocker ttyl;
  1033     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1035 #endif // PRODUCT
  1037   return array;
  1041 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1042   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1043   for (int i = 0; i < monitors->length(); i++) {
  1044     MonitorInfo* mon_info = monitors->at(i);
  1045     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1046       objects_to_revoke->append(Handle(mon_info->owner()));
  1052 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1053   if (!UseBiasedLocking) {
  1054     return;
  1057   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1059   // Unfortunately we don't have a RegisterMap available in most of
  1060   // the places we want to call this routine so we need to walk the
  1061   // stack again to update the register map.
  1062   if (map == NULL || !map->update_map()) {
  1063     StackFrameStream sfs(thread, true);
  1064     bool found = false;
  1065     while (!found && !sfs.is_done()) {
  1066       frame* cur = sfs.current();
  1067       sfs.next();
  1068       found = cur->id() == fr.id();
  1070     assert(found, "frame to be deoptimized not found on target thread's stack");
  1071     map = sfs.register_map();
  1074   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1075   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1076   // Revoke monitors' biases in all scopes
  1077   while (!cvf->is_top()) {
  1078     collect_monitors(cvf, objects_to_revoke);
  1079     cvf = compiledVFrame::cast(cvf->sender());
  1081   collect_monitors(cvf, objects_to_revoke);
  1083   if (SafepointSynchronize::is_at_safepoint()) {
  1084     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1085   } else {
  1086     BiasedLocking::revoke(objects_to_revoke);
  1091 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1092   if (!UseBiasedLocking) {
  1093     return;
  1096   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1097   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1098   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1099     if (jt->has_last_Java_frame()) {
  1100       StackFrameStream sfs(jt, true);
  1101       while (!sfs.is_done()) {
  1102         frame* cur = sfs.current();
  1103         if (cb->contains(cur->pc())) {
  1104           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1105           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1106           // Revoke monitors' biases in all scopes
  1107           while (!cvf->is_top()) {
  1108             collect_monitors(cvf, objects_to_revoke);
  1109             cvf = compiledVFrame::cast(cvf->sender());
  1111           collect_monitors(cvf, objects_to_revoke);
  1113         sfs.next();
  1117   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1121 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1122   assert(fr.can_be_deoptimized(), "checking frame type");
  1124   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1126   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
  1128   // Patch the nmethod so that when execution returns to it we will
  1129   // deopt the execution state and return to the interpreter.
  1130   fr.deoptimize(thread);
  1133 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1134   // Deoptimize only if the frame comes from compile code.
  1135   // Do not deoptimize the frame which is already patched
  1136   // during the execution of the loops below.
  1137   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1138     return;
  1140   ResourceMark rm;
  1141   DeoptimizationMarker dm;
  1142   if (UseBiasedLocking) {
  1143     revoke_biases_of_monitors(thread, fr, map);
  1145   deoptimize_single_frame(thread, fr);
  1150 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1151   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1152          "can only deoptimize other thread at a safepoint");
  1153   // Compute frame and register map based on thread and sp.
  1154   RegisterMap reg_map(thread, UseBiasedLocking);
  1155   frame fr = thread->last_frame();
  1156   while (fr.id() != id) {
  1157     fr = fr.sender(&reg_map);
  1159   deoptimize(thread, fr, &reg_map);
  1163 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1164   if (thread == Thread::current()) {
  1165     Deoptimization::deoptimize_frame_internal(thread, id);
  1166   } else {
  1167     VM_DeoptimizeFrame deopt(thread, id);
  1168     VMThread::execute(&deopt);
  1173 // JVMTI PopFrame support
  1174 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1176   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1178 JRT_END
  1181 #if defined(COMPILER2) || defined(SHARK)
  1182 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1183   // in case of an unresolved klass entry, load the class.
  1184   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1185     klassOop tk = constant_pool->klass_at(index, CHECK);
  1186     return;
  1189   if (!constant_pool->tag_at(index).is_symbol()) return;
  1191   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  1192   Symbol*  symbol  = constant_pool->symbol_at(index);
  1194   // class name?
  1195   if (symbol->byte_at(0) != '(') {
  1196     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1197     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1198     return;
  1201   // then it must be a signature!
  1202   ResourceMark rm(THREAD);
  1203   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1204     if (ss.is_object()) {
  1205       Symbol* class_name = ss.as_symbol(CHECK);
  1206       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1207       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1213 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1214   EXCEPTION_MARK;
  1215   load_class_by_index(constant_pool, index, THREAD);
  1216   if (HAS_PENDING_EXCEPTION) {
  1217     // Exception happened during classloading. We ignore the exception here, since it
  1218     // is going to be rethrown since the current activation is going to be deoptimzied and
  1219     // the interpreter will re-execute the bytecode.
  1220     CLEAR_PENDING_EXCEPTION;
  1224 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1225   HandleMark hm;
  1227   // uncommon_trap() is called at the beginning of the uncommon trap
  1228   // handler. Note this fact before we start generating temporary frames
  1229   // that can confuse an asynchronous stack walker. This counter is
  1230   // decremented at the end of unpack_frames().
  1231   thread->inc_in_deopt_handler();
  1233   // We need to update the map if we have biased locking.
  1234   RegisterMap reg_map(thread, UseBiasedLocking);
  1235   frame stub_frame = thread->last_frame();
  1236   frame fr = stub_frame.sender(&reg_map);
  1237   // Make sure the calling nmethod is not getting deoptimized and removed
  1238   // before we are done with it.
  1239   nmethodLocker nl(fr.pc());
  1242     ResourceMark rm;
  1244     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1245     revoke_biases_of_monitors(thread, fr, &reg_map);
  1247     DeoptReason reason = trap_request_reason(trap_request);
  1248     DeoptAction action = trap_request_action(trap_request);
  1249     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1251     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
  1252     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1253     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1255     nmethod* nm = cvf->code();
  1257     ScopeDesc*      trap_scope  = cvf->scope();
  1258     methodHandle    trap_method = trap_scope->method();
  1259     int             trap_bci    = trap_scope->bci();
  1260     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1262     // Record this event in the histogram.
  1263     gather_statistics(reason, action, trap_bc);
  1265     // Ensure that we can record deopt. history:
  1266     bool create_if_missing = ProfileTraps;
  1268     methodDataHandle trap_mdo
  1269       (THREAD, get_method_data(thread, trap_method, create_if_missing));
  1271     // Print a bunch of diagnostics, if requested.
  1272     if (TraceDeoptimization || LogCompilation) {
  1273       ResourceMark rm;
  1274       ttyLocker ttyl;
  1275       char buf[100];
  1276       if (xtty != NULL) {
  1277         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1278                          os::current_thread_id(),
  1279                          format_trap_request(buf, sizeof(buf), trap_request));
  1280         nm->log_identity(xtty);
  1282       Symbol* class_name = NULL;
  1283       bool unresolved = false;
  1284       if (unloaded_class_index >= 0) {
  1285         constantPoolHandle constants (THREAD, trap_method->constants());
  1286         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1287           class_name = constants->klass_name_at(unloaded_class_index);
  1288           unresolved = true;
  1289           if (xtty != NULL)
  1290             xtty->print(" unresolved='1'");
  1291         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1292           class_name = constants->symbol_at(unloaded_class_index);
  1294         if (xtty != NULL)
  1295           xtty->name(class_name);
  1297       if (xtty != NULL && trap_mdo.not_null()) {
  1298         // Dump the relevant MDO state.
  1299         // This is the deopt count for the current reason, any previous
  1300         // reasons or recompiles seen at this point.
  1301         int dcnt = trap_mdo->trap_count(reason);
  1302         if (dcnt != 0)
  1303           xtty->print(" count='%d'", dcnt);
  1304         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1305         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1306         if (dos != 0) {
  1307           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1308           if (trap_state_is_recompiled(dos)) {
  1309             int recnt2 = trap_mdo->overflow_recompile_count();
  1310             if (recnt2 != 0)
  1311               xtty->print(" recompiles2='%d'", recnt2);
  1315       if (xtty != NULL) {
  1316         xtty->stamp();
  1317         xtty->end_head();
  1319       if (TraceDeoptimization) {  // make noise on the tty
  1320         tty->print("Uncommon trap occurred in");
  1321         nm->method()->print_short_name(tty);
  1322         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
  1323                    fr.pc(),
  1324                    (int) os::current_thread_id(),
  1325                    trap_reason_name(reason),
  1326                    trap_action_name(action),
  1327                    unloaded_class_index);
  1328         if (class_name != NULL) {
  1329           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1330           class_name->print_symbol_on(tty);
  1332         tty->cr();
  1334       if (xtty != NULL) {
  1335         // Log the precise location of the trap.
  1336         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1337           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1338           xtty->method(sd->method());
  1339           xtty->end_elem();
  1340           if (sd->is_top())  break;
  1342         xtty->tail("uncommon_trap");
  1345     // (End diagnostic printout.)
  1347     // Load class if necessary
  1348     if (unloaded_class_index >= 0) {
  1349       constantPoolHandle constants(THREAD, trap_method->constants());
  1350       load_class_by_index(constants, unloaded_class_index);
  1353     // Flush the nmethod if necessary and desirable.
  1354     //
  1355     // We need to avoid situations where we are re-flushing the nmethod
  1356     // because of a hot deoptimization site.  Repeated flushes at the same
  1357     // point need to be detected by the compiler and avoided.  If the compiler
  1358     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1359     // module must take measures to avoid an infinite cycle of recompilation
  1360     // and deoptimization.  There are several such measures:
  1361     //
  1362     //   1. If a recompilation is ordered a second time at some site X
  1363     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1364     //   to give the interpreter time to exercise the method more thoroughly.
  1365     //   If this happens, the method's overflow_recompile_count is incremented.
  1366     //
  1367     //   2. If the compiler fails to reduce the deoptimization rate, then
  1368     //   the method's overflow_recompile_count will begin to exceed the set
  1369     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1370     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1371     //   to the interpreter.  This is a performance hit for hot methods,
  1372     //   but is better than a disastrous infinite cycle of recompilations.
  1373     //   (Actually, only the method containing the site X is abandoned.)
  1374     //
  1375     //   3. In parallel with the previous measures, if the total number of
  1376     //   recompilations of a method exceeds the much larger set limit
  1377     //   PerMethodRecompilationCutoff, the method is abandoned.
  1378     //   This should only happen if the method is very large and has
  1379     //   many "lukewarm" deoptimizations.  The code which enforces this
  1380     //   limit is elsewhere (class nmethod, class methodOopDesc).
  1381     //
  1382     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1383     // to recompile at each bytecode independently of the per-BCI cutoff.
  1384     //
  1385     // The decision to update code is up to the compiler, and is encoded
  1386     // in the Action_xxx code.  If the compiler requests Action_none
  1387     // no trap state is changed, no compiled code is changed, and the
  1388     // computation suffers along in the interpreter.
  1389     //
  1390     // The other action codes specify various tactics for decompilation
  1391     // and recompilation.  Action_maybe_recompile is the loosest, and
  1392     // allows the compiled code to stay around until enough traps are seen,
  1393     // and until the compiler gets around to recompiling the trapping method.
  1394     //
  1395     // The other actions cause immediate removal of the present code.
  1397     bool update_trap_state = true;
  1398     bool make_not_entrant = false;
  1399     bool make_not_compilable = false;
  1400     bool reprofile = false;
  1401     switch (action) {
  1402     case Action_none:
  1403       // Keep the old code.
  1404       update_trap_state = false;
  1405       break;
  1406     case Action_maybe_recompile:
  1407       // Do not need to invalidate the present code, but we can
  1408       // initiate another
  1409       // Start compiler without (necessarily) invalidating the nmethod.
  1410       // The system will tolerate the old code, but new code should be
  1411       // generated when possible.
  1412       break;
  1413     case Action_reinterpret:
  1414       // Go back into the interpreter for a while, and then consider
  1415       // recompiling form scratch.
  1416       make_not_entrant = true;
  1417       // Reset invocation counter for outer most method.
  1418       // This will allow the interpreter to exercise the bytecodes
  1419       // for a while before recompiling.
  1420       // By contrast, Action_make_not_entrant is immediate.
  1421       //
  1422       // Note that the compiler will track null_check, null_assert,
  1423       // range_check, and class_check events and log them as if they
  1424       // had been traps taken from compiled code.  This will update
  1425       // the MDO trap history so that the next compilation will
  1426       // properly detect hot trap sites.
  1427       reprofile = true;
  1428       break;
  1429     case Action_make_not_entrant:
  1430       // Request immediate recompilation, and get rid of the old code.
  1431       // Make them not entrant, so next time they are called they get
  1432       // recompiled.  Unloaded classes are loaded now so recompile before next
  1433       // time they are called.  Same for uninitialized.  The interpreter will
  1434       // link the missing class, if any.
  1435       make_not_entrant = true;
  1436       break;
  1437     case Action_make_not_compilable:
  1438       // Give up on compiling this method at all.
  1439       make_not_entrant = true;
  1440       make_not_compilable = true;
  1441       break;
  1442     default:
  1443       ShouldNotReachHere();
  1446     // Setting +ProfileTraps fixes the following, on all platforms:
  1447     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1448     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1449     // recompile relies on a methodDataOop to record heroic opt failures.
  1451     // Whether the interpreter is producing MDO data or not, we also need
  1452     // to use the MDO to detect hot deoptimization points and control
  1453     // aggressive optimization.
  1454     bool inc_recompile_count = false;
  1455     ProfileData* pdata = NULL;
  1456     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
  1457       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
  1458       uint this_trap_count = 0;
  1459       bool maybe_prior_trap = false;
  1460       bool maybe_prior_recompile = false;
  1461       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1462                                    //outputs:
  1463                                    this_trap_count,
  1464                                    maybe_prior_trap,
  1465                                    maybe_prior_recompile);
  1466       // Because the interpreter also counts null, div0, range, and class
  1467       // checks, these traps from compiled code are double-counted.
  1468       // This is harmless; it just means that the PerXTrapLimit values
  1469       // are in effect a little smaller than they look.
  1471       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1472       if (per_bc_reason != Reason_none) {
  1473         // Now take action based on the partially known per-BCI history.
  1474         if (maybe_prior_trap
  1475             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1476           // If there are too many traps at this BCI, force a recompile.
  1477           // This will allow the compiler to see the limit overflow, and
  1478           // take corrective action, if possible.  The compiler generally
  1479           // does not use the exact PerBytecodeTrapLimit value, but instead
  1480           // changes its tactics if it sees any traps at all.  This provides
  1481           // a little hysteresis, delaying a recompile until a trap happens
  1482           // several times.
  1483           //
  1484           // Actually, since there is only one bit of counter per BCI,
  1485           // the possible per-BCI counts are {0,1,(per-method count)}.
  1486           // This produces accurate results if in fact there is only
  1487           // one hot trap site, but begins to get fuzzy if there are
  1488           // many sites.  For example, if there are ten sites each
  1489           // trapping two or more times, they each get the blame for
  1490           // all of their traps.
  1491           make_not_entrant = true;
  1494         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1495         if (make_not_entrant && maybe_prior_recompile) {
  1496           // More than one recompile at this point.
  1497           inc_recompile_count = maybe_prior_trap;
  1499       } else {
  1500         // For reasons which are not recorded per-bytecode, we simply
  1501         // force recompiles unconditionally.
  1502         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1503         make_not_entrant = true;
  1506       // Go back to the compiler if there are too many traps in this method.
  1507       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1508         // If there are too many traps in this method, force a recompile.
  1509         // This will allow the compiler to see the limit overflow, and
  1510         // take corrective action, if possible.
  1511         // (This condition is an unlikely backstop only, because the
  1512         // PerBytecodeTrapLimit is more likely to take effect first,
  1513         // if it is applicable.)
  1514         make_not_entrant = true;
  1517       // Here's more hysteresis:  If there has been a recompile at
  1518       // this trap point already, run the method in the interpreter
  1519       // for a while to exercise it more thoroughly.
  1520       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1521         reprofile = true;
  1526     // Take requested actions on the method:
  1528     // Recompile
  1529     if (make_not_entrant) {
  1530       if (!nm->make_not_entrant()) {
  1531         return; // the call did not change nmethod's state
  1534       if (pdata != NULL) {
  1535         // Record the recompilation event, if any.
  1536         int tstate0 = pdata->trap_state();
  1537         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1538         if (tstate1 != tstate0)
  1539           pdata->set_trap_state(tstate1);
  1543     if (inc_recompile_count) {
  1544       trap_mdo->inc_overflow_recompile_count();
  1545       if ((uint)trap_mdo->overflow_recompile_count() >
  1546           (uint)PerBytecodeRecompilationCutoff) {
  1547         // Give up on the method containing the bad BCI.
  1548         if (trap_method() == nm->method()) {
  1549           make_not_compilable = true;
  1550         } else {
  1551           trap_method->set_not_compilable(CompLevel_full_optimization);
  1552           // But give grace to the enclosing nm->method().
  1557     // Reprofile
  1558     if (reprofile) {
  1559       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1562     // Give up compiling
  1563     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1564       assert(make_not_entrant, "consistent");
  1565       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1568   } // Free marked resources
  1571 JRT_END
  1573 methodDataOop
  1574 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1575                                 bool create_if_missing) {
  1576   Thread* THREAD = thread;
  1577   methodDataOop mdo = m()->method_data();
  1578   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1579     // Build an MDO.  Ignore errors like OutOfMemory;
  1580     // that simply means we won't have an MDO to update.
  1581     methodOopDesc::build_interpreter_method_data(m, THREAD);
  1582     if (HAS_PENDING_EXCEPTION) {
  1583       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1584       CLEAR_PENDING_EXCEPTION;
  1586     mdo = m()->method_data();
  1588   return mdo;
  1591 ProfileData*
  1592 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
  1593                                          int trap_bci,
  1594                                          Deoptimization::DeoptReason reason,
  1595                                          //outputs:
  1596                                          uint& ret_this_trap_count,
  1597                                          bool& ret_maybe_prior_trap,
  1598                                          bool& ret_maybe_prior_recompile) {
  1599   uint prior_trap_count = trap_mdo->trap_count(reason);
  1600   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1602   // If the runtime cannot find a place to store trap history,
  1603   // it is estimated based on the general condition of the method.
  1604   // If the method has ever been recompiled, or has ever incurred
  1605   // a trap with the present reason , then this BCI is assumed
  1606   // (pessimistically) to be the culprit.
  1607   bool maybe_prior_trap      = (prior_trap_count != 0);
  1608   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1609   ProfileData* pdata = NULL;
  1612   // For reasons which are recorded per bytecode, we check per-BCI data.
  1613   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1614   if (per_bc_reason != Reason_none) {
  1615     // Find the profile data for this BCI.  If there isn't one,
  1616     // try to allocate one from the MDO's set of spares.
  1617     // This will let us detect a repeated trap at this point.
  1618     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1620     if (pdata != NULL) {
  1621       // Query the trap state of this profile datum.
  1622       int tstate0 = pdata->trap_state();
  1623       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1624         maybe_prior_trap = false;
  1625       if (!trap_state_is_recompiled(tstate0))
  1626         maybe_prior_recompile = false;
  1628       // Update the trap state of this profile datum.
  1629       int tstate1 = tstate0;
  1630       // Record the reason.
  1631       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1632       // Store the updated state on the MDO, for next time.
  1633       if (tstate1 != tstate0)
  1634         pdata->set_trap_state(tstate1);
  1635     } else {
  1636       if (LogCompilation && xtty != NULL) {
  1637         ttyLocker ttyl;
  1638         // Missing MDP?  Leave a small complaint in the log.
  1639         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1644   // Return results:
  1645   ret_this_trap_count = this_trap_count;
  1646   ret_maybe_prior_trap = maybe_prior_trap;
  1647   ret_maybe_prior_recompile = maybe_prior_recompile;
  1648   return pdata;
  1651 void
  1652 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1653   ResourceMark rm;
  1654   // Ignored outputs:
  1655   uint ignore_this_trap_count;
  1656   bool ignore_maybe_prior_trap;
  1657   bool ignore_maybe_prior_recompile;
  1658   query_update_method_data(trap_mdo, trap_bci,
  1659                            (DeoptReason)reason,
  1660                            ignore_this_trap_count,
  1661                            ignore_maybe_prior_trap,
  1662                            ignore_maybe_prior_recompile);
  1665 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1667   // Still in Java no safepoints
  1669     // This enters VM and may safepoint
  1670     uncommon_trap_inner(thread, trap_request);
  1672   return fetch_unroll_info_helper(thread);
  1675 // Local derived constants.
  1676 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1677 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1678 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1680 //---------------------------trap_state_reason---------------------------------
  1681 Deoptimization::DeoptReason
  1682 Deoptimization::trap_state_reason(int trap_state) {
  1683   // This assert provides the link between the width of DataLayout::trap_bits
  1684   // and the encoding of "recorded" reasons.  It ensures there are enough
  1685   // bits to store all needed reasons in the per-BCI MDO profile.
  1686   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1687   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1688   trap_state -= recompile_bit;
  1689   if (trap_state == DS_REASON_MASK) {
  1690     return Reason_many;
  1691   } else {
  1692     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1693     return (DeoptReason)trap_state;
  1696 //-------------------------trap_state_has_reason-------------------------------
  1697 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1698   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1699   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1700   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1701   trap_state -= recompile_bit;
  1702   if (trap_state == DS_REASON_MASK) {
  1703     return -1;  // true, unspecifically (bottom of state lattice)
  1704   } else if (trap_state == reason) {
  1705     return 1;   // true, definitely
  1706   } else if (trap_state == 0) {
  1707     return 0;   // false, definitely (top of state lattice)
  1708   } else {
  1709     return 0;   // false, definitely
  1712 //-------------------------trap_state_add_reason-------------------------------
  1713 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1714   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1715   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1716   trap_state -= recompile_bit;
  1717   if (trap_state == DS_REASON_MASK) {
  1718     return trap_state + recompile_bit;     // already at state lattice bottom
  1719   } else if (trap_state == reason) {
  1720     return trap_state + recompile_bit;     // the condition is already true
  1721   } else if (trap_state == 0) {
  1722     return reason + recompile_bit;          // no condition has yet been true
  1723   } else {
  1724     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1727 //-----------------------trap_state_is_recompiled------------------------------
  1728 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1729   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1731 //-----------------------trap_state_set_recompiled-----------------------------
  1732 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1733   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1734   else    return trap_state & ~DS_RECOMPILE_BIT;
  1736 //---------------------------format_trap_state---------------------------------
  1737 // This is used for debugging and diagnostics, including hotspot.log output.
  1738 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1739                                               int trap_state) {
  1740   DeoptReason reason      = trap_state_reason(trap_state);
  1741   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1742   // Re-encode the state from its decoded components.
  1743   int decoded_state = 0;
  1744   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1745     decoded_state = trap_state_add_reason(decoded_state, reason);
  1746   if (recomp_flag)
  1747     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1748   // If the state re-encodes properly, format it symbolically.
  1749   // Because this routine is used for debugging and diagnostics,
  1750   // be robust even if the state is a strange value.
  1751   size_t len;
  1752   if (decoded_state != trap_state) {
  1753     // Random buggy state that doesn't decode??
  1754     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1755   } else {
  1756     len = jio_snprintf(buf, buflen, "%s%s",
  1757                        trap_reason_name(reason),
  1758                        recomp_flag ? " recompiled" : "");
  1760   if (len >= buflen)
  1761     buf[buflen-1] = '\0';
  1762   return buf;
  1766 //--------------------------------statics--------------------------------------
  1767 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1768   = Deoptimization::Action_reinterpret;
  1769 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1770   // Note:  Keep this in sync. with enum DeoptReason.
  1771   "none",
  1772   "null_check",
  1773   "null_assert",
  1774   "range_check",
  1775   "class_check",
  1776   "array_check",
  1777   "intrinsic",
  1778   "bimorphic",
  1779   "unloaded",
  1780   "uninitialized",
  1781   "unreached",
  1782   "unhandled",
  1783   "constraint",
  1784   "div0_check",
  1785   "age",
  1786   "predicate",
  1787   "loop_limit_check"
  1788 };
  1789 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1790   // Note:  Keep this in sync. with enum DeoptAction.
  1791   "none",
  1792   "maybe_recompile",
  1793   "reinterpret",
  1794   "make_not_entrant",
  1795   "make_not_compilable"
  1796 };
  1798 const char* Deoptimization::trap_reason_name(int reason) {
  1799   if (reason == Reason_many)  return "many";
  1800   if ((uint)reason < Reason_LIMIT)
  1801     return _trap_reason_name[reason];
  1802   static char buf[20];
  1803   sprintf(buf, "reason%d", reason);
  1804   return buf;
  1806 const char* Deoptimization::trap_action_name(int action) {
  1807   if ((uint)action < Action_LIMIT)
  1808     return _trap_action_name[action];
  1809   static char buf[20];
  1810   sprintf(buf, "action%d", action);
  1811   return buf;
  1814 // This is used for debugging and diagnostics, including hotspot.log output.
  1815 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1816                                                 int trap_request) {
  1817   jint unloaded_class_index = trap_request_index(trap_request);
  1818   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1819   const char* action = trap_action_name(trap_request_action(trap_request));
  1820   size_t len;
  1821   if (unloaded_class_index < 0) {
  1822     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1823                        reason, action);
  1824   } else {
  1825     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1826                        reason, action, unloaded_class_index);
  1828   if (len >= buflen)
  1829     buf[buflen-1] = '\0';
  1830   return buf;
  1833 juint Deoptimization::_deoptimization_hist
  1834         [Deoptimization::Reason_LIMIT]
  1835     [1 + Deoptimization::Action_LIMIT]
  1836         [Deoptimization::BC_CASE_LIMIT]
  1837   = {0};
  1839 enum {
  1840   LSB_BITS = 8,
  1841   LSB_MASK = right_n_bits(LSB_BITS)
  1842 };
  1844 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1845                                        Bytecodes::Code bc) {
  1846   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1847   assert(action >= 0 && action < Action_LIMIT, "oob");
  1848   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1849   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1850   juint* cases = _deoptimization_hist[reason][1+action];
  1851   juint* bc_counter_addr = NULL;
  1852   juint  bc_counter      = 0;
  1853   // Look for an unused counter, or an exact match to this BC.
  1854   if (bc != Bytecodes::_illegal) {
  1855     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1856       juint* counter_addr = &cases[bc_case];
  1857       juint  counter = *counter_addr;
  1858       if ((counter == 0 && bc_counter_addr == NULL)
  1859           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1860         // this counter is either free or is already devoted to this BC
  1861         bc_counter_addr = counter_addr;
  1862         bc_counter = counter | bc;
  1866   if (bc_counter_addr == NULL) {
  1867     // Overflow, or no given bytecode.
  1868     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1869     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1871   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1874 jint Deoptimization::total_deoptimization_count() {
  1875   return _deoptimization_hist[Reason_none][0][0];
  1878 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1879   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1880   return _deoptimization_hist[reason][0][0];
  1883 void Deoptimization::print_statistics() {
  1884   juint total = total_deoptimization_count();
  1885   juint account = total;
  1886   if (total != 0) {
  1887     ttyLocker ttyl;
  1888     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1889     tty->print_cr("Deoptimization traps recorded:");
  1890     #define PRINT_STAT_LINE(name, r) \
  1891       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1892     PRINT_STAT_LINE("total", total);
  1893     // For each non-zero entry in the histogram, print the reason,
  1894     // the action, and (if specifically known) the type of bytecode.
  1895     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1896       for (int action = 0; action < Action_LIMIT; action++) {
  1897         juint* cases = _deoptimization_hist[reason][1+action];
  1898         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1899           juint counter = cases[bc_case];
  1900           if (counter != 0) {
  1901             char name[1*K];
  1902             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1903             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1904               bc = Bytecodes::_illegal;
  1905             sprintf(name, "%s/%s/%s",
  1906                     trap_reason_name(reason),
  1907                     trap_action_name(action),
  1908                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1909             juint r = counter >> LSB_BITS;
  1910             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1911             account -= r;
  1916     if (account != 0) {
  1917       PRINT_STAT_LINE("unaccounted", account);
  1919     #undef PRINT_STAT_LINE
  1920     if (xtty != NULL)  xtty->tail("statistics");
  1923 #else // COMPILER2 || SHARK
  1926 // Stubs for C1 only system.
  1927 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1928   return false;
  1931 const char* Deoptimization::trap_reason_name(int reason) {
  1932   return "unknown";
  1935 void Deoptimization::print_statistics() {
  1936   // no output
  1939 void
  1940 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1941   // no udpate
  1944 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1945   return 0;
  1948 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1949                                        Bytecodes::Code bc) {
  1950   // no update
  1953 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1954                                               int trap_state) {
  1955   jio_snprintf(buf, buflen, "#%d", trap_state);
  1956   return buf;
  1959 #endif // COMPILER2 || SHARK

mercurial