src/cpu/x86/vm/stubGenerator_x86_32.cpp

Thu, 08 Sep 2011 10:12:25 +0200

author
bdelsart
date
Thu, 08 Sep 2011 10:12:25 +0200
changeset 3130
5432047c7db7
parent 2978
d83ac25d0304
child 3136
c565834fb592
permissions
-rw-r--r--

7087445: Improve platform independence of JSR292 shared code
Summary: changes necessary for some JSR292 ports
Reviewed-by: jrose, dholmes

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef COMPILER2
    51 #include "opto/runtime.hpp"
    52 #endif
    54 // Declaration and definition of StubGenerator (no .hpp file).
    55 // For a more detailed description of the stub routine structure
    56 // see the comment in stubRoutines.hpp
    58 #define __ _masm->
    59 #define a__ ((Assembler*)_masm)->
    61 #ifdef PRODUCT
    62 #define BLOCK_COMMENT(str) /* nothing */
    63 #else
    64 #define BLOCK_COMMENT(str) __ block_comment(str)
    65 #endif
    67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    69 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    70 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    72 // -------------------------------------------------------------------------------------------------------------------------
    73 // Stub Code definitions
    75 static address handle_unsafe_access() {
    76   JavaThread* thread = JavaThread::current();
    77   address pc  = thread->saved_exception_pc();
    78   // pc is the instruction which we must emulate
    79   // doing a no-op is fine:  return garbage from the load
    80   // therefore, compute npc
    81   address npc = Assembler::locate_next_instruction(pc);
    83   // request an async exception
    84   thread->set_pending_unsafe_access_error();
    86   // return address of next instruction to execute
    87   return npc;
    88 }
    90 class StubGenerator: public StubCodeGenerator {
    91  private:
    93 #ifdef PRODUCT
    94 #define inc_counter_np(counter) (0)
    95 #else
    96   void inc_counter_np_(int& counter) {
    97     __ incrementl(ExternalAddress((address)&counter));
    98   }
    99 #define inc_counter_np(counter) \
   100   BLOCK_COMMENT("inc_counter " #counter); \
   101   inc_counter_np_(counter);
   102 #endif //PRODUCT
   104   void inc_copy_counter_np(BasicType t) {
   105 #ifndef PRODUCT
   106     switch (t) {
   107     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   108     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   109     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   110     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   111     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   112     }
   113     ShouldNotReachHere();
   114 #endif //PRODUCT
   115   }
   117   //------------------------------------------------------------------------------------------------------------------------
   118   // Call stubs are used to call Java from C
   119   //
   120   //    [ return_from_Java     ] <--- rsp
   121   //    [ argument word n      ]
   122   //      ...
   123   // -N [ argument word 1      ]
   124   // -7 [ Possible padding for stack alignment ]
   125   // -6 [ Possible padding for stack alignment ]
   126   // -5 [ Possible padding for stack alignment ]
   127   // -4 [ mxcsr save           ] <--- rsp_after_call
   128   // -3 [ saved rbx,            ]
   129   // -2 [ saved rsi            ]
   130   // -1 [ saved rdi            ]
   131   //  0 [ saved rbp,            ] <--- rbp,
   132   //  1 [ return address       ]
   133   //  2 [ ptr. to call wrapper ]
   134   //  3 [ result               ]
   135   //  4 [ result_type          ]
   136   //  5 [ method               ]
   137   //  6 [ entry_point          ]
   138   //  7 [ parameters           ]
   139   //  8 [ parameter_size       ]
   140   //  9 [ thread               ]
   143   address generate_call_stub(address& return_address) {
   144     StubCodeMark mark(this, "StubRoutines", "call_stub");
   145     address start = __ pc();
   147     // stub code parameters / addresses
   148     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   149     bool  sse_save = false;
   150     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   151     const int     locals_count_in_bytes  (4*wordSize);
   152     const Address mxcsr_save    (rbp, -4 * wordSize);
   153     const Address saved_rbx     (rbp, -3 * wordSize);
   154     const Address saved_rsi     (rbp, -2 * wordSize);
   155     const Address saved_rdi     (rbp, -1 * wordSize);
   156     const Address result        (rbp,  3 * wordSize);
   157     const Address result_type   (rbp,  4 * wordSize);
   158     const Address method        (rbp,  5 * wordSize);
   159     const Address entry_point   (rbp,  6 * wordSize);
   160     const Address parameters    (rbp,  7 * wordSize);
   161     const Address parameter_size(rbp,  8 * wordSize);
   162     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   163     sse_save =  UseSSE > 0;
   165     // stub code
   166     __ enter();
   167     __ movptr(rcx, parameter_size);              // parameter counter
   168     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   169     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   170     __ subptr(rsp, rcx);
   171     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   173     // save rdi, rsi, & rbx, according to C calling conventions
   174     __ movptr(saved_rdi, rdi);
   175     __ movptr(saved_rsi, rsi);
   176     __ movptr(saved_rbx, rbx);
   177     // save and initialize %mxcsr
   178     if (sse_save) {
   179       Label skip_ldmx;
   180       __ stmxcsr(mxcsr_save);
   181       __ movl(rax, mxcsr_save);
   182       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   183       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   184       __ cmp32(rax, mxcsr_std);
   185       __ jcc(Assembler::equal, skip_ldmx);
   186       __ ldmxcsr(mxcsr_std);
   187       __ bind(skip_ldmx);
   188     }
   190     // make sure the control word is correct.
   191     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   193 #ifdef ASSERT
   194     // make sure we have no pending exceptions
   195     { Label L;
   196       __ movptr(rcx, thread);
   197       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   198       __ jcc(Assembler::equal, L);
   199       __ stop("StubRoutines::call_stub: entered with pending exception");
   200       __ bind(L);
   201     }
   202 #endif
   204     // pass parameters if any
   205     BLOCK_COMMENT("pass parameters if any");
   206     Label parameters_done;
   207     __ movl(rcx, parameter_size);  // parameter counter
   208     __ testl(rcx, rcx);
   209     __ jcc(Assembler::zero, parameters_done);
   211     // parameter passing loop
   213     Label loop;
   214     // Copy Java parameters in reverse order (receiver last)
   215     // Note that the argument order is inverted in the process
   216     // source is rdx[rcx: N-1..0]
   217     // dest   is rsp[rbx: 0..N-1]
   219     __ movptr(rdx, parameters);          // parameter pointer
   220     __ xorptr(rbx, rbx);
   222     __ BIND(loop);
   224     // get parameter
   225     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   226     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   227                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   228     __ increment(rbx);
   229     __ decrement(rcx);
   230     __ jcc(Assembler::notZero, loop);
   232     // call Java function
   233     __ BIND(parameters_done);
   234     __ movptr(rbx, method);           // get methodOop
   235     __ movptr(rax, entry_point);      // get entry_point
   236     __ mov(rsi, rsp);                 // set sender sp
   237     BLOCK_COMMENT("call Java function");
   238     __ call(rax);
   240     BLOCK_COMMENT("call_stub_return_address:");
   241     return_address = __ pc();
   243 #ifdef COMPILER2
   244     {
   245       Label L_skip;
   246       if (UseSSE >= 2) {
   247         __ verify_FPU(0, "call_stub_return");
   248       } else {
   249         for (int i = 1; i < 8; i++) {
   250           __ ffree(i);
   251         }
   253         // UseSSE <= 1 so double result should be left on TOS
   254         __ movl(rsi, result_type);
   255         __ cmpl(rsi, T_DOUBLE);
   256         __ jcc(Assembler::equal, L_skip);
   257         if (UseSSE == 0) {
   258           // UseSSE == 0 so float result should be left on TOS
   259           __ cmpl(rsi, T_FLOAT);
   260           __ jcc(Assembler::equal, L_skip);
   261         }
   262         __ ffree(0);
   263       }
   264       __ BIND(L_skip);
   265     }
   266 #endif // COMPILER2
   268     // store result depending on type
   269     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   270     __ movptr(rdi, result);
   271     Label is_long, is_float, is_double, exit;
   272     __ movl(rsi, result_type);
   273     __ cmpl(rsi, T_LONG);
   274     __ jcc(Assembler::equal, is_long);
   275     __ cmpl(rsi, T_FLOAT);
   276     __ jcc(Assembler::equal, is_float);
   277     __ cmpl(rsi, T_DOUBLE);
   278     __ jcc(Assembler::equal, is_double);
   280     // handle T_INT case
   281     __ movl(Address(rdi, 0), rax);
   282     __ BIND(exit);
   284     // check that FPU stack is empty
   285     __ verify_FPU(0, "generate_call_stub");
   287     // pop parameters
   288     __ lea(rsp, rsp_after_call);
   290     // restore %mxcsr
   291     if (sse_save) {
   292       __ ldmxcsr(mxcsr_save);
   293     }
   295     // restore rdi, rsi and rbx,
   296     __ movptr(rbx, saved_rbx);
   297     __ movptr(rsi, saved_rsi);
   298     __ movptr(rdi, saved_rdi);
   299     __ addptr(rsp, 4*wordSize);
   301     // return
   302     __ pop(rbp);
   303     __ ret(0);
   305     // handle return types different from T_INT
   306     __ BIND(is_long);
   307     __ movl(Address(rdi, 0 * wordSize), rax);
   308     __ movl(Address(rdi, 1 * wordSize), rdx);
   309     __ jmp(exit);
   311     __ BIND(is_float);
   312     // interpreter uses xmm0 for return values
   313     if (UseSSE >= 1) {
   314       __ movflt(Address(rdi, 0), xmm0);
   315     } else {
   316       __ fstp_s(Address(rdi, 0));
   317     }
   318     __ jmp(exit);
   320     __ BIND(is_double);
   321     // interpreter uses xmm0 for return values
   322     if (UseSSE >= 2) {
   323       __ movdbl(Address(rdi, 0), xmm0);
   324     } else {
   325       __ fstp_d(Address(rdi, 0));
   326     }
   327     __ jmp(exit);
   329     return start;
   330   }
   333   //------------------------------------------------------------------------------------------------------------------------
   334   // Return point for a Java call if there's an exception thrown in Java code.
   335   // The exception is caught and transformed into a pending exception stored in
   336   // JavaThread that can be tested from within the VM.
   337   //
   338   // Note: Usually the parameters are removed by the callee. In case of an exception
   339   //       crossing an activation frame boundary, that is not the case if the callee
   340   //       is compiled code => need to setup the rsp.
   341   //
   342   // rax,: exception oop
   344   address generate_catch_exception() {
   345     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   346     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   347     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   348     address start = __ pc();
   350     // get thread directly
   351     __ movptr(rcx, thread);
   352 #ifdef ASSERT
   353     // verify that threads correspond
   354     { Label L;
   355       __ get_thread(rbx);
   356       __ cmpptr(rbx, rcx);
   357       __ jcc(Assembler::equal, L);
   358       __ stop("StubRoutines::catch_exception: threads must correspond");
   359       __ bind(L);
   360     }
   361 #endif
   362     // set pending exception
   363     __ verify_oop(rax);
   364     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   365     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   366            ExternalAddress((address)__FILE__));
   367     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   368     // complete return to VM
   369     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   370     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   372     return start;
   373   }
   376   //------------------------------------------------------------------------------------------------------------------------
   377   // Continuation point for runtime calls returning with a pending exception.
   378   // The pending exception check happened in the runtime or native call stub.
   379   // The pending exception in Thread is converted into a Java-level exception.
   380   //
   381   // Contract with Java-level exception handlers:
   382   // rax: exception
   383   // rdx: throwing pc
   384   //
   385   // NOTE: At entry of this stub, exception-pc must be on stack !!
   387   address generate_forward_exception() {
   388     StubCodeMark mark(this, "StubRoutines", "forward exception");
   389     address start = __ pc();
   390     const Register thread = rcx;
   392     // other registers used in this stub
   393     const Register exception_oop = rax;
   394     const Register handler_addr  = rbx;
   395     const Register exception_pc  = rdx;
   397     // Upon entry, the sp points to the return address returning into Java
   398     // (interpreted or compiled) code; i.e., the return address becomes the
   399     // throwing pc.
   400     //
   401     // Arguments pushed before the runtime call are still on the stack but
   402     // the exception handler will reset the stack pointer -> ignore them.
   403     // A potential result in registers can be ignored as well.
   405 #ifdef ASSERT
   406     // make sure this code is only executed if there is a pending exception
   407     { Label L;
   408       __ get_thread(thread);
   409       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   410       __ jcc(Assembler::notEqual, L);
   411       __ stop("StubRoutines::forward exception: no pending exception (1)");
   412       __ bind(L);
   413     }
   414 #endif
   416     // compute exception handler into rbx,
   417     __ get_thread(thread);
   418     __ movptr(exception_pc, Address(rsp, 0));
   419     BLOCK_COMMENT("call exception_handler_for_return_address");
   420     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   421     __ mov(handler_addr, rax);
   423     // setup rax & rdx, remove return address & clear pending exception
   424     __ get_thread(thread);
   425     __ pop(exception_pc);
   426     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   427     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   429 #ifdef ASSERT
   430     // make sure exception is set
   431     { Label L;
   432       __ testptr(exception_oop, exception_oop);
   433       __ jcc(Assembler::notEqual, L);
   434       __ stop("StubRoutines::forward exception: no pending exception (2)");
   435       __ bind(L);
   436     }
   437 #endif
   439     // Verify that there is really a valid exception in RAX.
   440     __ verify_oop(exception_oop);
   442     // continue at exception handler (return address removed)
   443     // rax: exception
   444     // rbx: exception handler
   445     // rdx: throwing pc
   446     __ jmp(handler_addr);
   448     return start;
   449   }
   452   //----------------------------------------------------------------------------------------------------
   453   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   454   //
   455   // xchg exists as far back as 8086, lock needed for MP only
   456   // Stack layout immediately after call:
   457   //
   458   // 0 [ret addr ] <--- rsp
   459   // 1 [  ex     ]
   460   // 2 [  dest   ]
   461   //
   462   // Result:   *dest <- ex, return (old *dest)
   463   //
   464   // Note: win32 does not currently use this code
   466   address generate_atomic_xchg() {
   467     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   468     address start = __ pc();
   470     __ push(rdx);
   471     Address exchange(rsp, 2 * wordSize);
   472     Address dest_addr(rsp, 3 * wordSize);
   473     __ movl(rax, exchange);
   474     __ movptr(rdx, dest_addr);
   475     __ xchgl(rax, Address(rdx, 0));
   476     __ pop(rdx);
   477     __ ret(0);
   479     return start;
   480   }
   482   //----------------------------------------------------------------------------------------------------
   483   // Support for void verify_mxcsr()
   484   //
   485   // This routine is used with -Xcheck:jni to verify that native
   486   // JNI code does not return to Java code without restoring the
   487   // MXCSR register to our expected state.
   490   address generate_verify_mxcsr() {
   491     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   492     address start = __ pc();
   494     const Address mxcsr_save(rsp, 0);
   496     if (CheckJNICalls && UseSSE > 0 ) {
   497       Label ok_ret;
   498       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   499       __ push(rax);
   500       __ subptr(rsp, wordSize);      // allocate a temp location
   501       __ stmxcsr(mxcsr_save);
   502       __ movl(rax, mxcsr_save);
   503       __ andl(rax, MXCSR_MASK);
   504       __ cmp32(rax, mxcsr_std);
   505       __ jcc(Assembler::equal, ok_ret);
   507       __ warn("MXCSR changed by native JNI code.");
   509       __ ldmxcsr(mxcsr_std);
   511       __ bind(ok_ret);
   512       __ addptr(rsp, wordSize);
   513       __ pop(rax);
   514     }
   516     __ ret(0);
   518     return start;
   519   }
   522   //---------------------------------------------------------------------------
   523   // Support for void verify_fpu_cntrl_wrd()
   524   //
   525   // This routine is used with -Xcheck:jni to verify that native
   526   // JNI code does not return to Java code without restoring the
   527   // FP control word to our expected state.
   529   address generate_verify_fpu_cntrl_wrd() {
   530     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   531     address start = __ pc();
   533     const Address fpu_cntrl_wrd_save(rsp, 0);
   535     if (CheckJNICalls) {
   536       Label ok_ret;
   537       __ push(rax);
   538       __ subptr(rsp, wordSize);      // allocate a temp location
   539       __ fnstcw(fpu_cntrl_wrd_save);
   540       __ movl(rax, fpu_cntrl_wrd_save);
   541       __ andl(rax, FPU_CNTRL_WRD_MASK);
   542       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   543       __ cmp32(rax, fpu_std);
   544       __ jcc(Assembler::equal, ok_ret);
   546       __ warn("Floating point control word changed by native JNI code.");
   548       __ fldcw(fpu_std);
   550       __ bind(ok_ret);
   551       __ addptr(rsp, wordSize);
   552       __ pop(rax);
   553     }
   555     __ ret(0);
   557     return start;
   558   }
   560   //---------------------------------------------------------------------------
   561   // Wrapper for slow-case handling of double-to-integer conversion
   562   // d2i or f2i fast case failed either because it is nan or because
   563   // of under/overflow.
   564   // Input:  FPU TOS: float value
   565   // Output: rax, (rdx): integer (long) result
   567   address generate_d2i_wrapper(BasicType t, address fcn) {
   568     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   569     address start = __ pc();
   571   // Capture info about frame layout
   572   enum layout { FPUState_off         = 0,
   573                 rbp_off              = FPUStateSizeInWords,
   574                 rdi_off,
   575                 rsi_off,
   576                 rcx_off,
   577                 rbx_off,
   578                 saved_argument_off,
   579                 saved_argument_off2, // 2nd half of double
   580                 framesize
   581   };
   583   assert(FPUStateSizeInWords == 27, "update stack layout");
   585     // Save outgoing argument to stack across push_FPU_state()
   586     __ subptr(rsp, wordSize * 2);
   587     __ fstp_d(Address(rsp, 0));
   589     // Save CPU & FPU state
   590     __ push(rbx);
   591     __ push(rcx);
   592     __ push(rsi);
   593     __ push(rdi);
   594     __ push(rbp);
   595     __ push_FPU_state();
   597     // push_FPU_state() resets the FP top of stack
   598     // Load original double into FP top of stack
   599     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   600     // Store double into stack as outgoing argument
   601     __ subptr(rsp, wordSize*2);
   602     __ fst_d(Address(rsp, 0));
   604     // Prepare FPU for doing math in C-land
   605     __ empty_FPU_stack();
   606     // Call the C code to massage the double.  Result in EAX
   607     if (t == T_INT)
   608       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   609     else if (t == T_LONG)
   610       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   611     __ call_VM_leaf( fcn, 2 );
   613     // Restore CPU & FPU state
   614     __ pop_FPU_state();
   615     __ pop(rbp);
   616     __ pop(rdi);
   617     __ pop(rsi);
   618     __ pop(rcx);
   619     __ pop(rbx);
   620     __ addptr(rsp, wordSize * 2);
   622     __ ret(0);
   624     return start;
   625   }
   628   //---------------------------------------------------------------------------
   629   // The following routine generates a subroutine to throw an asynchronous
   630   // UnknownError when an unsafe access gets a fault that could not be
   631   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   632   address generate_handler_for_unsafe_access() {
   633     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   634     address start = __ pc();
   636     __ push(0);                       // hole for return address-to-be
   637     __ pusha();                       // push registers
   638     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   639     BLOCK_COMMENT("call handle_unsafe_access");
   640     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   641     __ movptr(next_pc, rax);          // stuff next address
   642     __ popa();
   643     __ ret(0);                        // jump to next address
   645     return start;
   646   }
   649   //----------------------------------------------------------------------------------------------------
   650   // Non-destructive plausibility checks for oops
   652   address generate_verify_oop() {
   653     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   654     address start = __ pc();
   656     // Incoming arguments on stack after saving rax,:
   657     //
   658     // [tos    ]: saved rdx
   659     // [tos + 1]: saved EFLAGS
   660     // [tos + 2]: return address
   661     // [tos + 3]: char* error message
   662     // [tos + 4]: oop   object to verify
   663     // [tos + 5]: saved rax, - saved by caller and bashed
   665     Label exit, error;
   666     __ pushf();
   667     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   668     __ push(rdx);                                // save rdx
   669     // make sure object is 'reasonable'
   670     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   671     __ testptr(rax, rax);
   672     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   674     // Check if the oop is in the right area of memory
   675     const int oop_mask = Universe::verify_oop_mask();
   676     const int oop_bits = Universe::verify_oop_bits();
   677     __ mov(rdx, rax);
   678     __ andptr(rdx, oop_mask);
   679     __ cmpptr(rdx, oop_bits);
   680     __ jcc(Assembler::notZero, error);
   682     // make sure klass is 'reasonable'
   683     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   684     __ testptr(rax, rax);
   685     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   687     // Check if the klass is in the right area of memory
   688     const int klass_mask = Universe::verify_klass_mask();
   689     const int klass_bits = Universe::verify_klass_bits();
   690     __ mov(rdx, rax);
   691     __ andptr(rdx, klass_mask);
   692     __ cmpptr(rdx, klass_bits);
   693     __ jcc(Assembler::notZero, error);
   695     // make sure klass' klass is 'reasonable'
   696     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   697     __ testptr(rax, rax);
   698     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   700     __ mov(rdx, rax);
   701     __ andptr(rdx, klass_mask);
   702     __ cmpptr(rdx, klass_bits);
   703     __ jcc(Assembler::notZero, error);           // if klass not in right area
   704                                                  // of memory it is broken too.
   706     // return if everything seems ok
   707     __ bind(exit);
   708     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   709     __ pop(rdx);                                 // restore rdx
   710     __ popf();                                   // restore EFLAGS
   711     __ ret(3 * wordSize);                        // pop arguments
   713     // handle errors
   714     __ bind(error);
   715     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   716     __ pop(rdx);                                 // get saved rdx back
   717     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   718     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   719     BLOCK_COMMENT("call MacroAssembler::debug");
   720     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   721     __ popa();
   722     __ ret(3 * wordSize);                        // pop arguments
   723     return start;
   724   }
   726   //
   727   //  Generate pre-barrier for array stores
   728   //
   729   //  Input:
   730   //     start   -  starting address
   731   //     count   -  element count
   732   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
   733     assert_different_registers(start, count);
   734     BarrierSet* bs = Universe::heap()->barrier_set();
   735     switch (bs->kind()) {
   736       case BarrierSet::G1SATBCT:
   737       case BarrierSet::G1SATBCTLogging:
   738         // With G1, don't generate the call if we statically know that the target in uninitialized
   739         if (!uninitialized_target) {
   740            __ pusha();                      // push registers
   741            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   742                            start, count);
   743            __ popa();
   744          }
   745         break;
   746       case BarrierSet::CardTableModRef:
   747       case BarrierSet::CardTableExtension:
   748       case BarrierSet::ModRef:
   749         break;
   750       default      :
   751         ShouldNotReachHere();
   753     }
   754   }
   757   //
   758   // Generate a post-barrier for an array store
   759   //
   760   //     start    -  starting address
   761   //     count    -  element count
   762   //
   763   //  The two input registers are overwritten.
   764   //
   765   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   766     BarrierSet* bs = Universe::heap()->barrier_set();
   767     assert_different_registers(start, count);
   768     switch (bs->kind()) {
   769       case BarrierSet::G1SATBCT:
   770       case BarrierSet::G1SATBCTLogging:
   771         {
   772           __ pusha();                      // push registers
   773           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   774                           start, count);
   775           __ popa();
   776         }
   777         break;
   779       case BarrierSet::CardTableModRef:
   780       case BarrierSet::CardTableExtension:
   781         {
   782           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   783           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   785           Label L_loop;
   786           const Register end = count;  // elements count; end == start+count-1
   787           assert_different_registers(start, end);
   789           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   790           __ shrptr(start, CardTableModRefBS::card_shift);
   791           __ shrptr(end,   CardTableModRefBS::card_shift);
   792           __ subptr(end, start); // end --> count
   793         __ BIND(L_loop);
   794           intptr_t disp = (intptr_t) ct->byte_map_base;
   795           Address cardtable(start, count, Address::times_1, disp);
   796           __ movb(cardtable, 0);
   797           __ decrement(count);
   798           __ jcc(Assembler::greaterEqual, L_loop);
   799         }
   800         break;
   801       case BarrierSet::ModRef:
   802         break;
   803       default      :
   804         ShouldNotReachHere();
   806     }
   807   }
   810   // Copy 64 bytes chunks
   811   //
   812   // Inputs:
   813   //   from        - source array address
   814   //   to_from     - destination array address - from
   815   //   qword_count - 8-bytes element count, negative
   816   //
   817   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   818     assert( UseSSE >= 2, "supported cpu only" );
   819     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   820     // Copy 64-byte chunks
   821     __ jmpb(L_copy_64_bytes);
   822     __ align(OptoLoopAlignment);
   823   __ BIND(L_copy_64_bytes_loop);
   825     if(UseUnalignedLoadStores) {
   826       __ movdqu(xmm0, Address(from, 0));
   827       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   828       __ movdqu(xmm1, Address(from, 16));
   829       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   830       __ movdqu(xmm2, Address(from, 32));
   831       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   832       __ movdqu(xmm3, Address(from, 48));
   833       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   835     } else {
   836       __ movq(xmm0, Address(from, 0));
   837       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   838       __ movq(xmm1, Address(from, 8));
   839       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   840       __ movq(xmm2, Address(from, 16));
   841       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   842       __ movq(xmm3, Address(from, 24));
   843       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   844       __ movq(xmm4, Address(from, 32));
   845       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   846       __ movq(xmm5, Address(from, 40));
   847       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   848       __ movq(xmm6, Address(from, 48));
   849       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   850       __ movq(xmm7, Address(from, 56));
   851       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   852     }
   854     __ addl(from, 64);
   855   __ BIND(L_copy_64_bytes);
   856     __ subl(qword_count, 8);
   857     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   858     __ addl(qword_count, 8);
   859     __ jccb(Assembler::zero, L_exit);
   860     //
   861     // length is too short, just copy qwords
   862     //
   863   __ BIND(L_copy_8_bytes);
   864     __ movq(xmm0, Address(from, 0));
   865     __ movq(Address(from, to_from, Address::times_1), xmm0);
   866     __ addl(from, 8);
   867     __ decrement(qword_count);
   868     __ jcc(Assembler::greater, L_copy_8_bytes);
   869   __ BIND(L_exit);
   870   }
   872   // Copy 64 bytes chunks
   873   //
   874   // Inputs:
   875   //   from        - source array address
   876   //   to_from     - destination array address - from
   877   //   qword_count - 8-bytes element count, negative
   878   //
   879   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   880     assert( VM_Version::supports_mmx(), "supported cpu only" );
   881     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   882     // Copy 64-byte chunks
   883     __ jmpb(L_copy_64_bytes);
   884     __ align(OptoLoopAlignment);
   885   __ BIND(L_copy_64_bytes_loop);
   886     __ movq(mmx0, Address(from, 0));
   887     __ movq(mmx1, Address(from, 8));
   888     __ movq(mmx2, Address(from, 16));
   889     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   890     __ movq(mmx3, Address(from, 24));
   891     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   892     __ movq(mmx4, Address(from, 32));
   893     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   894     __ movq(mmx5, Address(from, 40));
   895     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   896     __ movq(mmx6, Address(from, 48));
   897     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   898     __ movq(mmx7, Address(from, 56));
   899     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   900     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   901     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   902     __ addptr(from, 64);
   903   __ BIND(L_copy_64_bytes);
   904     __ subl(qword_count, 8);
   905     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   906     __ addl(qword_count, 8);
   907     __ jccb(Assembler::zero, L_exit);
   908     //
   909     // length is too short, just copy qwords
   910     //
   911   __ BIND(L_copy_8_bytes);
   912     __ movq(mmx0, Address(from, 0));
   913     __ movq(Address(from, to_from, Address::times_1), mmx0);
   914     __ addptr(from, 8);
   915     __ decrement(qword_count);
   916     __ jcc(Assembler::greater, L_copy_8_bytes);
   917   __ BIND(L_exit);
   918     __ emms();
   919   }
   921   address generate_disjoint_copy(BasicType t, bool aligned,
   922                                  Address::ScaleFactor sf,
   923                                  address* entry, const char *name,
   924                                  bool dest_uninitialized = false) {
   925     __ align(CodeEntryAlignment);
   926     StubCodeMark mark(this, "StubRoutines", name);
   927     address start = __ pc();
   929     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   930     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   932     int shift = Address::times_ptr - sf;
   934     const Register from     = rsi;  // source array address
   935     const Register to       = rdi;  // destination array address
   936     const Register count    = rcx;  // elements count
   937     const Register to_from  = to;   // (to - from)
   938     const Register saved_to = rdx;  // saved destination array address
   940     __ enter(); // required for proper stackwalking of RuntimeStub frame
   941     __ push(rsi);
   942     __ push(rdi);
   943     __ movptr(from , Address(rsp, 12+ 4));
   944     __ movptr(to   , Address(rsp, 12+ 8));
   945     __ movl(count, Address(rsp, 12+ 12));
   947     if (entry != NULL) {
   948       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   949       BLOCK_COMMENT("Entry:");
   950     }
   952     if (t == T_OBJECT) {
   953       __ testl(count, count);
   954       __ jcc(Assembler::zero, L_0_count);
   955       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
   956       __ mov(saved_to, to);          // save 'to'
   957     }
   959     __ subptr(to, from); // to --> to_from
   960     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   961     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   962     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   963       // align source address at 4 bytes address boundary
   964       if (t == T_BYTE) {
   965         // One byte misalignment happens only for byte arrays
   966         __ testl(from, 1);
   967         __ jccb(Assembler::zero, L_skip_align1);
   968         __ movb(rax, Address(from, 0));
   969         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   970         __ increment(from);
   971         __ decrement(count);
   972       __ BIND(L_skip_align1);
   973       }
   974       // Two bytes misalignment happens only for byte and short (char) arrays
   975       __ testl(from, 2);
   976       __ jccb(Assembler::zero, L_skip_align2);
   977       __ movw(rax, Address(from, 0));
   978       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   979       __ addptr(from, 2);
   980       __ subl(count, 1<<(shift-1));
   981     __ BIND(L_skip_align2);
   982     }
   983     if (!VM_Version::supports_mmx()) {
   984       __ mov(rax, count);      // save 'count'
   985       __ shrl(count, shift); // bytes count
   986       __ addptr(to_from, from);// restore 'to'
   987       __ rep_mov();
   988       __ subptr(to_from, from);// restore 'to_from'
   989       __ mov(count, rax);      // restore 'count'
   990       __ jmpb(L_copy_2_bytes); // all dwords were copied
   991     } else {
   992       if (!UseUnalignedLoadStores) {
   993         // align to 8 bytes, we know we are 4 byte aligned to start
   994         __ testptr(from, 4);
   995         __ jccb(Assembler::zero, L_copy_64_bytes);
   996         __ movl(rax, Address(from, 0));
   997         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   998         __ addptr(from, 4);
   999         __ subl(count, 1<<shift);
  1001     __ BIND(L_copy_64_bytes);
  1002       __ mov(rax, count);
  1003       __ shrl(rax, shift+1);  // 8 bytes chunk count
  1004       //
  1005       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
  1006       //
  1007       if (UseXMMForArrayCopy) {
  1008         xmm_copy_forward(from, to_from, rax);
  1009       } else {
  1010         mmx_copy_forward(from, to_from, rax);
  1013     // copy tailing dword
  1014   __ BIND(L_copy_4_bytes);
  1015     __ testl(count, 1<<shift);
  1016     __ jccb(Assembler::zero, L_copy_2_bytes);
  1017     __ movl(rax, Address(from, 0));
  1018     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1019     if (t == T_BYTE || t == T_SHORT) {
  1020       __ addptr(from, 4);
  1021     __ BIND(L_copy_2_bytes);
  1022       // copy tailing word
  1023       __ testl(count, 1<<(shift-1));
  1024       __ jccb(Assembler::zero, L_copy_byte);
  1025       __ movw(rax, Address(from, 0));
  1026       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1027       if (t == T_BYTE) {
  1028         __ addptr(from, 2);
  1029       __ BIND(L_copy_byte);
  1030         // copy tailing byte
  1031         __ testl(count, 1);
  1032         __ jccb(Assembler::zero, L_exit);
  1033         __ movb(rax, Address(from, 0));
  1034         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1035       __ BIND(L_exit);
  1036       } else {
  1037       __ BIND(L_copy_byte);
  1039     } else {
  1040     __ BIND(L_copy_2_bytes);
  1043     if (t == T_OBJECT) {
  1044       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1045       __ mov(to, saved_to); // restore 'to'
  1046       gen_write_ref_array_post_barrier(to, count);
  1047     __ BIND(L_0_count);
  1049     inc_copy_counter_np(t);
  1050     __ pop(rdi);
  1051     __ pop(rsi);
  1052     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1053     __ xorptr(rax, rax); // return 0
  1054     __ ret(0);
  1055     return start;
  1059   address generate_fill(BasicType t, bool aligned, const char *name) {
  1060     __ align(CodeEntryAlignment);
  1061     StubCodeMark mark(this, "StubRoutines", name);
  1062     address start = __ pc();
  1064     BLOCK_COMMENT("Entry:");
  1066     const Register to       = rdi;  // source array address
  1067     const Register value    = rdx;  // value
  1068     const Register count    = rsi;  // elements count
  1070     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1071     __ push(rsi);
  1072     __ push(rdi);
  1073     __ movptr(to   , Address(rsp, 12+ 4));
  1074     __ movl(value, Address(rsp, 12+ 8));
  1075     __ movl(count, Address(rsp, 12+ 12));
  1077     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1079     __ pop(rdi);
  1080     __ pop(rsi);
  1081     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1082     __ ret(0);
  1083     return start;
  1086   address generate_conjoint_copy(BasicType t, bool aligned,
  1087                                  Address::ScaleFactor sf,
  1088                                  address nooverlap_target,
  1089                                  address* entry, const char *name,
  1090                                  bool dest_uninitialized = false) {
  1091     __ align(CodeEntryAlignment);
  1092     StubCodeMark mark(this, "StubRoutines", name);
  1093     address start = __ pc();
  1095     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1096     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1098     int shift = Address::times_ptr - sf;
  1100     const Register src   = rax;  // source array address
  1101     const Register dst   = rdx;  // destination array address
  1102     const Register from  = rsi;  // source array address
  1103     const Register to    = rdi;  // destination array address
  1104     const Register count = rcx;  // elements count
  1105     const Register end   = rax;  // array end address
  1107     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1108     __ push(rsi);
  1109     __ push(rdi);
  1110     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1111     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1112     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1114     if (entry != NULL) {
  1115       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1116       BLOCK_COMMENT("Entry:");
  1119     // nooverlap_target expects arguments in rsi and rdi.
  1120     __ mov(from, src);
  1121     __ mov(to  , dst);
  1123     // arrays overlap test: dispatch to disjoint stub if necessary.
  1124     RuntimeAddress nooverlap(nooverlap_target);
  1125     __ cmpptr(dst, src);
  1126     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1127     __ jump_cc(Assembler::belowEqual, nooverlap);
  1128     __ cmpptr(dst, end);
  1129     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1131     if (t == T_OBJECT) {
  1132       __ testl(count, count);
  1133       __ jcc(Assembler::zero, L_0_count);
  1134       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
  1137     // copy from high to low
  1138     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1139     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1140     if (t == T_BYTE || t == T_SHORT) {
  1141       // Align the end of destination array at 4 bytes address boundary
  1142       __ lea(end, Address(dst, count, sf, 0));
  1143       if (t == T_BYTE) {
  1144         // One byte misalignment happens only for byte arrays
  1145         __ testl(end, 1);
  1146         __ jccb(Assembler::zero, L_skip_align1);
  1147         __ decrement(count);
  1148         __ movb(rdx, Address(from, count, sf, 0));
  1149         __ movb(Address(to, count, sf, 0), rdx);
  1150       __ BIND(L_skip_align1);
  1152       // Two bytes misalignment happens only for byte and short (char) arrays
  1153       __ testl(end, 2);
  1154       __ jccb(Assembler::zero, L_skip_align2);
  1155       __ subptr(count, 1<<(shift-1));
  1156       __ movw(rdx, Address(from, count, sf, 0));
  1157       __ movw(Address(to, count, sf, 0), rdx);
  1158     __ BIND(L_skip_align2);
  1159       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1160       __ jcc(Assembler::below, L_copy_4_bytes);
  1163     if (!VM_Version::supports_mmx()) {
  1164       __ std();
  1165       __ mov(rax, count); // Save 'count'
  1166       __ mov(rdx, to);    // Save 'to'
  1167       __ lea(rsi, Address(from, count, sf, -4));
  1168       __ lea(rdi, Address(to  , count, sf, -4));
  1169       __ shrptr(count, shift); // bytes count
  1170       __ rep_mov();
  1171       __ cld();
  1172       __ mov(count, rax); // restore 'count'
  1173       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1174       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1175       __ mov(to, rdx);   // restore 'to'
  1176       __ jmpb(L_copy_2_bytes); // all dword were copied
  1177    } else {
  1178       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1179       __ testptr(end, 4);
  1180       __ jccb(Assembler::zero, L_copy_8_bytes);
  1181       __ subl(count, 1<<shift);
  1182       __ movl(rdx, Address(from, count, sf, 0));
  1183       __ movl(Address(to, count, sf, 0), rdx);
  1184       __ jmpb(L_copy_8_bytes);
  1186       __ align(OptoLoopAlignment);
  1187       // Move 8 bytes
  1188     __ BIND(L_copy_8_bytes_loop);
  1189       if (UseXMMForArrayCopy) {
  1190         __ movq(xmm0, Address(from, count, sf, 0));
  1191         __ movq(Address(to, count, sf, 0), xmm0);
  1192       } else {
  1193         __ movq(mmx0, Address(from, count, sf, 0));
  1194         __ movq(Address(to, count, sf, 0), mmx0);
  1196     __ BIND(L_copy_8_bytes);
  1197       __ subl(count, 2<<shift);
  1198       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1199       __ addl(count, 2<<shift);
  1200       if (!UseXMMForArrayCopy) {
  1201         __ emms();
  1204   __ BIND(L_copy_4_bytes);
  1205     // copy prefix qword
  1206     __ testl(count, 1<<shift);
  1207     __ jccb(Assembler::zero, L_copy_2_bytes);
  1208     __ movl(rdx, Address(from, count, sf, -4));
  1209     __ movl(Address(to, count, sf, -4), rdx);
  1211     if (t == T_BYTE || t == T_SHORT) {
  1212         __ subl(count, (1<<shift));
  1213       __ BIND(L_copy_2_bytes);
  1214         // copy prefix dword
  1215         __ testl(count, 1<<(shift-1));
  1216         __ jccb(Assembler::zero, L_copy_byte);
  1217         __ movw(rdx, Address(from, count, sf, -2));
  1218         __ movw(Address(to, count, sf, -2), rdx);
  1219         if (t == T_BYTE) {
  1220           __ subl(count, 1<<(shift-1));
  1221         __ BIND(L_copy_byte);
  1222           // copy prefix byte
  1223           __ testl(count, 1);
  1224           __ jccb(Assembler::zero, L_exit);
  1225           __ movb(rdx, Address(from, 0));
  1226           __ movb(Address(to, 0), rdx);
  1227         __ BIND(L_exit);
  1228         } else {
  1229         __ BIND(L_copy_byte);
  1231     } else {
  1232     __ BIND(L_copy_2_bytes);
  1234     if (t == T_OBJECT) {
  1235       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1236       gen_write_ref_array_post_barrier(to, count);
  1237     __ BIND(L_0_count);
  1239     inc_copy_counter_np(t);
  1240     __ pop(rdi);
  1241     __ pop(rsi);
  1242     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1243     __ xorptr(rax, rax); // return 0
  1244     __ ret(0);
  1245     return start;
  1249   address generate_disjoint_long_copy(address* entry, const char *name) {
  1250     __ align(CodeEntryAlignment);
  1251     StubCodeMark mark(this, "StubRoutines", name);
  1252     address start = __ pc();
  1254     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1255     const Register from       = rax;  // source array address
  1256     const Register to         = rdx;  // destination array address
  1257     const Register count      = rcx;  // elements count
  1258     const Register to_from    = rdx;  // (to - from)
  1260     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1261     __ movptr(from , Address(rsp, 8+0));       // from
  1262     __ movptr(to   , Address(rsp, 8+4));       // to
  1263     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1265     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1266     BLOCK_COMMENT("Entry:");
  1268     __ subptr(to, from); // to --> to_from
  1269     if (VM_Version::supports_mmx()) {
  1270       if (UseXMMForArrayCopy) {
  1271         xmm_copy_forward(from, to_from, count);
  1272       } else {
  1273         mmx_copy_forward(from, to_from, count);
  1275     } else {
  1276       __ jmpb(L_copy_8_bytes);
  1277       __ align(OptoLoopAlignment);
  1278     __ BIND(L_copy_8_bytes_loop);
  1279       __ fild_d(Address(from, 0));
  1280       __ fistp_d(Address(from, to_from, Address::times_1));
  1281       __ addptr(from, 8);
  1282     __ BIND(L_copy_8_bytes);
  1283       __ decrement(count);
  1284       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1286     inc_copy_counter_np(T_LONG);
  1287     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1288     __ xorptr(rax, rax); // return 0
  1289     __ ret(0);
  1290     return start;
  1293   address generate_conjoint_long_copy(address nooverlap_target,
  1294                                       address* entry, const char *name) {
  1295     __ align(CodeEntryAlignment);
  1296     StubCodeMark mark(this, "StubRoutines", name);
  1297     address start = __ pc();
  1299     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1300     const Register from       = rax;  // source array address
  1301     const Register to         = rdx;  // destination array address
  1302     const Register count      = rcx;  // elements count
  1303     const Register end_from   = rax;  // source array end address
  1305     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1306     __ movptr(from , Address(rsp, 8+0));       // from
  1307     __ movptr(to   , Address(rsp, 8+4));       // to
  1308     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1310     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1311     BLOCK_COMMENT("Entry:");
  1313     // arrays overlap test
  1314     __ cmpptr(to, from);
  1315     RuntimeAddress nooverlap(nooverlap_target);
  1316     __ jump_cc(Assembler::belowEqual, nooverlap);
  1317     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1318     __ cmpptr(to, end_from);
  1319     __ movptr(from, Address(rsp, 8));  // from
  1320     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1322     __ jmpb(L_copy_8_bytes);
  1324     __ align(OptoLoopAlignment);
  1325   __ BIND(L_copy_8_bytes_loop);
  1326     if (VM_Version::supports_mmx()) {
  1327       if (UseXMMForArrayCopy) {
  1328         __ movq(xmm0, Address(from, count, Address::times_8));
  1329         __ movq(Address(to, count, Address::times_8), xmm0);
  1330       } else {
  1331         __ movq(mmx0, Address(from, count, Address::times_8));
  1332         __ movq(Address(to, count, Address::times_8), mmx0);
  1334     } else {
  1335       __ fild_d(Address(from, count, Address::times_8));
  1336       __ fistp_d(Address(to, count, Address::times_8));
  1338   __ BIND(L_copy_8_bytes);
  1339     __ decrement(count);
  1340     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1342     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1343       __ emms();
  1345     inc_copy_counter_np(T_LONG);
  1346     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1347     __ xorptr(rax, rax); // return 0
  1348     __ ret(0);
  1349     return start;
  1353   // Helper for generating a dynamic type check.
  1354   // The sub_klass must be one of {rbx, rdx, rsi}.
  1355   // The temp is killed.
  1356   void generate_type_check(Register sub_klass,
  1357                            Address& super_check_offset_addr,
  1358                            Address& super_klass_addr,
  1359                            Register temp,
  1360                            Label* L_success, Label* L_failure) {
  1361     BLOCK_COMMENT("type_check:");
  1363     Label L_fallthrough;
  1364 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1365     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1366     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1368     // The following is a strange variation of the fast path which requires
  1369     // one less register, because needed values are on the argument stack.
  1370     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1371     //                                  L_success, L_failure, NULL);
  1372     assert_different_registers(sub_klass, temp);
  1374     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  1375                      Klass::secondary_super_cache_offset_in_bytes());
  1377     // if the pointers are equal, we are done (e.g., String[] elements)
  1378     __ cmpptr(sub_klass, super_klass_addr);
  1379     LOCAL_JCC(Assembler::equal, L_success);
  1381     // check the supertype display:
  1382     __ movl2ptr(temp, super_check_offset_addr);
  1383     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1384     __ movptr(temp, super_check_addr); // load displayed supertype
  1385     __ cmpptr(temp, super_klass_addr); // test the super type
  1386     LOCAL_JCC(Assembler::equal, L_success);
  1388     // if it was a primary super, we can just fail immediately
  1389     __ cmpl(super_check_offset_addr, sc_offset);
  1390     LOCAL_JCC(Assembler::notEqual, L_failure);
  1392     // The repne_scan instruction uses fixed registers, which will get spilled.
  1393     // We happen to know this works best when super_klass is in rax.
  1394     Register super_klass = temp;
  1395     __ movptr(super_klass, super_klass_addr);
  1396     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1397                                      L_success, L_failure);
  1399     __ bind(L_fallthrough);
  1401     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1402     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1404 #undef LOCAL_JCC
  1407   //
  1408   //  Generate checkcasting array copy stub
  1409   //
  1410   //  Input:
  1411   //    4(rsp)   - source array address
  1412   //    8(rsp)   - destination array address
  1413   //   12(rsp)   - element count, can be zero
  1414   //   16(rsp)   - size_t ckoff (super_check_offset)
  1415   //   20(rsp)   - oop ckval (super_klass)
  1416   //
  1417   //  Output:
  1418   //    rax, ==  0  -  success
  1419   //    rax, == -1^K - failure, where K is partial transfer count
  1420   //
  1421   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
  1422     __ align(CodeEntryAlignment);
  1423     StubCodeMark mark(this, "StubRoutines", name);
  1424     address start = __ pc();
  1426     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1428     // register use:
  1429     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1430     //  rdi, rsi      -- element access (oop, klass)
  1431     //  rbx,           -- temp
  1432     const Register from       = rax;    // source array address
  1433     const Register to         = rdx;    // destination array address
  1434     const Register length     = rcx;    // elements count
  1435     const Register elem       = rdi;    // each oop copied
  1436     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1437     const Register temp       = rbx;    // lone remaining temp
  1439     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1441     __ push(rsi);
  1442     __ push(rdi);
  1443     __ push(rbx);
  1445     Address   from_arg(rsp, 16+ 4);     // from
  1446     Address     to_arg(rsp, 16+ 8);     // to
  1447     Address length_arg(rsp, 16+12);     // elements count
  1448     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1449     Address  ckval_arg(rsp, 16+20);     // super_klass
  1451     // Load up:
  1452     __ movptr(from,     from_arg);
  1453     __ movptr(to,         to_arg);
  1454     __ movl2ptr(length, length_arg);
  1456     if (entry != NULL) {
  1457       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1458       BLOCK_COMMENT("Entry:");
  1461     //---------------------------------------------------------------
  1462     // Assembler stub will be used for this call to arraycopy
  1463     // if the two arrays are subtypes of Object[] but the
  1464     // destination array type is not equal to or a supertype
  1465     // of the source type.  Each element must be separately
  1466     // checked.
  1468     // Loop-invariant addresses.  They are exclusive end pointers.
  1469     Address end_from_addr(from, length, Address::times_ptr, 0);
  1470     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1472     Register end_from = from;           // re-use
  1473     Register end_to   = to;             // re-use
  1474     Register count    = length;         // re-use
  1476     // Loop-variant addresses.  They assume post-incremented count < 0.
  1477     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1478     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1479     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1481     // Copy from low to high addresses, indexed from the end of each array.
  1482     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1483     __ lea(end_from, end_from_addr);
  1484     __ lea(end_to,   end_to_addr);
  1485     assert(length == count, "");        // else fix next line:
  1486     __ negptr(count);                   // negate and test the length
  1487     __ jccb(Assembler::notZero, L_load_element);
  1489     // Empty array:  Nothing to do.
  1490     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1491     __ jmp(L_done);
  1493     // ======== begin loop ========
  1494     // (Loop is rotated; its entry is L_load_element.)
  1495     // Loop control:
  1496     //   for (count = -count; count != 0; count++)
  1497     // Base pointers src, dst are biased by 8*count,to last element.
  1498     __ align(OptoLoopAlignment);
  1500     __ BIND(L_store_element);
  1501     __ movptr(to_element_addr, elem);     // store the oop
  1502     __ increment(count);                // increment the count toward zero
  1503     __ jccb(Assembler::zero, L_do_card_marks);
  1505     // ======== loop entry is here ========
  1506     __ BIND(L_load_element);
  1507     __ movptr(elem, from_element_addr);   // load the oop
  1508     __ testptr(elem, elem);
  1509     __ jccb(Assembler::zero, L_store_element);
  1511     // (Could do a trick here:  Remember last successful non-null
  1512     // element stored and make a quick oop equality check on it.)
  1514     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1515     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1516                         &L_store_element, NULL);
  1517       // (On fall-through, we have failed the element type check.)
  1518     // ======== end loop ========
  1520     // It was a real error; we must depend on the caller to finish the job.
  1521     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1522     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1523     // and report their number to the caller.
  1524     __ addl(count, length_arg);         // transfers = (length - remaining)
  1525     __ movl2ptr(rax, count);            // save the value
  1526     __ notptr(rax);                     // report (-1^K) to caller
  1527     __ movptr(to, to_arg);              // reload
  1528     assert_different_registers(to, count, rax);
  1529     gen_write_ref_array_post_barrier(to, count);
  1530     __ jmpb(L_done);
  1532     // Come here on success only.
  1533     __ BIND(L_do_card_marks);
  1534     __ movl2ptr(count, length_arg);
  1535     __ movptr(to, to_arg);                // reload
  1536     gen_write_ref_array_post_barrier(to, count);
  1537     __ xorptr(rax, rax);                  // return 0 on success
  1539     // Common exit point (success or failure).
  1540     __ BIND(L_done);
  1541     __ pop(rbx);
  1542     __ pop(rdi);
  1543     __ pop(rsi);
  1544     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1545     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1546     __ ret(0);
  1548     return start;
  1551   //
  1552   //  Generate 'unsafe' array copy stub
  1553   //  Though just as safe as the other stubs, it takes an unscaled
  1554   //  size_t argument instead of an element count.
  1555   //
  1556   //  Input:
  1557   //    4(rsp)   - source array address
  1558   //    8(rsp)   - destination array address
  1559   //   12(rsp)   - byte count, can be zero
  1560   //
  1561   //  Output:
  1562   //    rax, ==  0  -  success
  1563   //    rax, == -1  -  need to call System.arraycopy
  1564   //
  1565   // Examines the alignment of the operands and dispatches
  1566   // to a long, int, short, or byte copy loop.
  1567   //
  1568   address generate_unsafe_copy(const char *name,
  1569                                address byte_copy_entry,
  1570                                address short_copy_entry,
  1571                                address int_copy_entry,
  1572                                address long_copy_entry) {
  1574     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1576     __ align(CodeEntryAlignment);
  1577     StubCodeMark mark(this, "StubRoutines", name);
  1578     address start = __ pc();
  1580     const Register from       = rax;  // source array address
  1581     const Register to         = rdx;  // destination array address
  1582     const Register count      = rcx;  // elements count
  1584     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1585     __ push(rsi);
  1586     __ push(rdi);
  1587     Address  from_arg(rsp, 12+ 4);      // from
  1588     Address    to_arg(rsp, 12+ 8);      // to
  1589     Address count_arg(rsp, 12+12);      // byte count
  1591     // Load up:
  1592     __ movptr(from ,  from_arg);
  1593     __ movptr(to   ,    to_arg);
  1594     __ movl2ptr(count, count_arg);
  1596     // bump this on entry, not on exit:
  1597     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1599     const Register bits = rsi;
  1600     __ mov(bits, from);
  1601     __ orptr(bits, to);
  1602     __ orptr(bits, count);
  1604     __ testl(bits, BytesPerLong-1);
  1605     __ jccb(Assembler::zero, L_long_aligned);
  1607     __ testl(bits, BytesPerInt-1);
  1608     __ jccb(Assembler::zero, L_int_aligned);
  1610     __ testl(bits, BytesPerShort-1);
  1611     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1613     __ BIND(L_short_aligned);
  1614     __ shrptr(count, LogBytesPerShort); // size => short_count
  1615     __ movl(count_arg, count);          // update 'count'
  1616     __ jump(RuntimeAddress(short_copy_entry));
  1618     __ BIND(L_int_aligned);
  1619     __ shrptr(count, LogBytesPerInt); // size => int_count
  1620     __ movl(count_arg, count);          // update 'count'
  1621     __ jump(RuntimeAddress(int_copy_entry));
  1623     __ BIND(L_long_aligned);
  1624     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1625     __ movl(count_arg, count);          // update 'count'
  1626     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1627     __ pop(rsi);
  1628     __ jump(RuntimeAddress(long_copy_entry));
  1630     return start;
  1634   // Perform range checks on the proposed arraycopy.
  1635   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1636   void arraycopy_range_checks(Register src,
  1637                               Register src_pos,
  1638                               Register dst,
  1639                               Register dst_pos,
  1640                               Address& length,
  1641                               Label& L_failed) {
  1642     BLOCK_COMMENT("arraycopy_range_checks:");
  1643     const Register src_end = src_pos;   // source array end position
  1644     const Register dst_end = dst_pos;   // destination array end position
  1645     __ addl(src_end, length); // src_pos + length
  1646     __ addl(dst_end, length); // dst_pos + length
  1648     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1649     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1650     __ jcc(Assembler::above, L_failed);
  1652     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1653     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1654     __ jcc(Assembler::above, L_failed);
  1656     BLOCK_COMMENT("arraycopy_range_checks done");
  1660   //
  1661   //  Generate generic array copy stubs
  1662   //
  1663   //  Input:
  1664   //     4(rsp)    -  src oop
  1665   //     8(rsp)    -  src_pos
  1666   //    12(rsp)    -  dst oop
  1667   //    16(rsp)    -  dst_pos
  1668   //    20(rsp)    -  element count
  1669   //
  1670   //  Output:
  1671   //    rax, ==  0  -  success
  1672   //    rax, == -1^K - failure, where K is partial transfer count
  1673   //
  1674   address generate_generic_copy(const char *name,
  1675                                 address entry_jbyte_arraycopy,
  1676                                 address entry_jshort_arraycopy,
  1677                                 address entry_jint_arraycopy,
  1678                                 address entry_oop_arraycopy,
  1679                                 address entry_jlong_arraycopy,
  1680                                 address entry_checkcast_arraycopy) {
  1681     Label L_failed, L_failed_0, L_objArray;
  1683     { int modulus = CodeEntryAlignment;
  1684       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1685       int advance = target - (__ offset() % modulus);
  1686       if (advance < 0)  advance += modulus;
  1687       if (advance > 0)  __ nop(advance);
  1689     StubCodeMark mark(this, "StubRoutines", name);
  1691     // Short-hop target to L_failed.  Makes for denser prologue code.
  1692     __ BIND(L_failed_0);
  1693     __ jmp(L_failed);
  1694     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1696     __ align(CodeEntryAlignment);
  1697     address start = __ pc();
  1699     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1700     __ push(rsi);
  1701     __ push(rdi);
  1703     // bump this on entry, not on exit:
  1704     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1706     // Input values
  1707     Address SRC     (rsp, 12+ 4);
  1708     Address SRC_POS (rsp, 12+ 8);
  1709     Address DST     (rsp, 12+12);
  1710     Address DST_POS (rsp, 12+16);
  1711     Address LENGTH  (rsp, 12+20);
  1713     //-----------------------------------------------------------------------
  1714     // Assembler stub will be used for this call to arraycopy
  1715     // if the following conditions are met:
  1716     //
  1717     // (1) src and dst must not be null.
  1718     // (2) src_pos must not be negative.
  1719     // (3) dst_pos must not be negative.
  1720     // (4) length  must not be negative.
  1721     // (5) src klass and dst klass should be the same and not NULL.
  1722     // (6) src and dst should be arrays.
  1723     // (7) src_pos + length must not exceed length of src.
  1724     // (8) dst_pos + length must not exceed length of dst.
  1725     //
  1727     const Register src     = rax;       // source array oop
  1728     const Register src_pos = rsi;
  1729     const Register dst     = rdx;       // destination array oop
  1730     const Register dst_pos = rdi;
  1731     const Register length  = rcx;       // transfer count
  1733     //  if (src == NULL) return -1;
  1734     __ movptr(src, SRC);      // src oop
  1735     __ testptr(src, src);
  1736     __ jccb(Assembler::zero, L_failed_0);
  1738     //  if (src_pos < 0) return -1;
  1739     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1740     __ testl(src_pos, src_pos);
  1741     __ jccb(Assembler::negative, L_failed_0);
  1743     //  if (dst == NULL) return -1;
  1744     __ movptr(dst, DST);      // dst oop
  1745     __ testptr(dst, dst);
  1746     __ jccb(Assembler::zero, L_failed_0);
  1748     //  if (dst_pos < 0) return -1;
  1749     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1750     __ testl(dst_pos, dst_pos);
  1751     __ jccb(Assembler::negative, L_failed_0);
  1753     //  if (length < 0) return -1;
  1754     __ movl2ptr(length, LENGTH);   // length
  1755     __ testl(length, length);
  1756     __ jccb(Assembler::negative, L_failed_0);
  1758     //  if (src->klass() == NULL) return -1;
  1759     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1760     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1761     const Register rcx_src_klass = rcx;    // array klass
  1762     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1764 #ifdef ASSERT
  1765     //  assert(src->klass() != NULL);
  1766     BLOCK_COMMENT("assert klasses not null");
  1767     { Label L1, L2;
  1768       __ testptr(rcx_src_klass, rcx_src_klass);
  1769       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1770       __ bind(L1);
  1771       __ stop("broken null klass");
  1772       __ bind(L2);
  1773       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1774       __ jccb(Assembler::equal, L1);      // this would be broken also
  1775       BLOCK_COMMENT("assert done");
  1777 #endif //ASSERT
  1779     // Load layout helper (32-bits)
  1780     //
  1781     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1782     // 32        30    24            16              8     2                 0
  1783     //
  1784     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1785     //
  1787     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  1788                     Klass::layout_helper_offset_in_bytes();
  1789     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1791     // Handle objArrays completely differently...
  1792     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1793     __ cmpl(src_klass_lh_addr, objArray_lh);
  1794     __ jcc(Assembler::equal, L_objArray);
  1796     //  if (src->klass() != dst->klass()) return -1;
  1797     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1798     __ jccb(Assembler::notEqual, L_failed_0);
  1800     const Register rcx_lh = rcx;  // layout helper
  1801     assert(rcx_lh == rcx_src_klass, "known alias");
  1802     __ movl(rcx_lh, src_klass_lh_addr);
  1804     //  if (!src->is_Array()) return -1;
  1805     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1806     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1808     // At this point, it is known to be a typeArray (array_tag 0x3).
  1809 #ifdef ASSERT
  1810     { Label L;
  1811       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1812       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1813       __ stop("must be a primitive array");
  1814       __ bind(L);
  1816 #endif
  1818     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1819     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1821     // typeArrayKlass
  1822     //
  1823     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1824     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1825     //
  1826     const Register rsi_offset = rsi; // array offset
  1827     const Register src_array  = src; // src array offset
  1828     const Register dst_array  = dst; // dst array offset
  1829     const Register rdi_elsize = rdi; // log2 element size
  1831     __ mov(rsi_offset, rcx_lh);
  1832     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1833     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1834     __ addptr(src_array, rsi_offset);  // src array offset
  1835     __ addptr(dst_array, rsi_offset);  // dst array offset
  1836     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1838     // next registers should be set before the jump to corresponding stub
  1839     const Register from       = src; // source array address
  1840     const Register to         = dst; // destination array address
  1841     const Register count      = rcx; // elements count
  1842     // some of them should be duplicated on stack
  1843 #define FROM   Address(rsp, 12+ 4)
  1844 #define TO     Address(rsp, 12+ 8)   // Not used now
  1845 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1847     BLOCK_COMMENT("scale indexes to element size");
  1848     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1849     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1850     assert(src_array == from, "");
  1851     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1852     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1853     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1854     assert(dst_array == to, "");
  1855     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1856     __ movptr(FROM, from);      // src_addr
  1857     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1858     __ movl2ptr(count, LENGTH); // elements count
  1860     BLOCK_COMMENT("choose copy loop based on element size");
  1861     __ cmpl(rdi_elsize, 0);
  1863     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1864     __ cmpl(rdi_elsize, LogBytesPerShort);
  1865     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1866     __ cmpl(rdi_elsize, LogBytesPerInt);
  1867     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1868 #ifdef ASSERT
  1869     __ cmpl(rdi_elsize, LogBytesPerLong);
  1870     __ jccb(Assembler::notEqual, L_failed);
  1871 #endif
  1872     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1873     __ pop(rsi);
  1874     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1876   __ BIND(L_failed);
  1877     __ xorptr(rax, rax);
  1878     __ notptr(rax); // return -1
  1879     __ pop(rdi);
  1880     __ pop(rsi);
  1881     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1882     __ ret(0);
  1884     // objArrayKlass
  1885   __ BIND(L_objArray);
  1886     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1888     Label L_plain_copy, L_checkcast_copy;
  1889     //  test array classes for subtyping
  1890     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1891     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1893     // Identically typed arrays can be copied without element-wise checks.
  1894     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1895     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1897   __ BIND(L_plain_copy);
  1898     __ movl2ptr(count, LENGTH); // elements count
  1899     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1900     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1901                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1902     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1903     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1904                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1905     __ movptr(FROM,  from);   // src_addr
  1906     __ movptr(TO,    to);     // dst_addr
  1907     __ movl(COUNT, count);  // count
  1908     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1910   __ BIND(L_checkcast_copy);
  1911     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1913       // Handy offsets:
  1914       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  1915                         objArrayKlass::element_klass_offset_in_bytes());
  1916       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  1917                         Klass::super_check_offset_offset_in_bytes());
  1919       Register rsi_dst_klass = rsi;
  1920       Register rdi_temp      = rdi;
  1921       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1922       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1923       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1925       // Before looking at dst.length, make sure dst is also an objArray.
  1926       __ movptr(rsi_dst_klass, dst_klass_addr);
  1927       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1928       __ jccb(Assembler::notEqual, L_failed);
  1930       // It is safe to examine both src.length and dst.length.
  1931       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1932       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1933       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1935       // We'll need this temp (don't forget to pop it after the type check).
  1936       __ push(rbx);
  1937       Register rbx_src_klass = rbx;
  1939       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1940       __ movptr(rsi_dst_klass, dst_klass_addr);
  1941       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1942       Label L_fail_array_check;
  1943       generate_type_check(rbx_src_klass,
  1944                           super_check_offset_addr, dst_klass_addr,
  1945                           rdi_temp, NULL, &L_fail_array_check);
  1946       // (On fall-through, we have passed the array type check.)
  1947       __ pop(rbx);
  1948       __ jmp(L_plain_copy);
  1950       __ BIND(L_fail_array_check);
  1951       // Reshuffle arguments so we can call checkcast_arraycopy:
  1953       // match initial saves for checkcast_arraycopy
  1954       // push(rsi);    // already done; see above
  1955       // push(rdi);    // already done; see above
  1956       // push(rbx);    // already done; see above
  1958       // Marshal outgoing arguments now, freeing registers.
  1959       Address   from_arg(rsp, 16+ 4);   // from
  1960       Address     to_arg(rsp, 16+ 8);   // to
  1961       Address length_arg(rsp, 16+12);   // elements count
  1962       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1963       Address  ckval_arg(rsp, 16+20);   // super_klass
  1965       Address SRC_POS_arg(rsp, 16+ 8);
  1966       Address DST_POS_arg(rsp, 16+16);
  1967       Address  LENGTH_arg(rsp, 16+20);
  1968       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1969       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1971       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1972       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1973       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1974       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1976       __ movptr(ckval_arg, rbx);          // destination element type
  1977       __ movl(rbx, Address(rbx, sco_offset));
  1978       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1980       __ movl(length_arg, length);      // outgoing length argument
  1982       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1983                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1984       __ movptr(from_arg, from);
  1986       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1987                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1988       __ movptr(to_arg, to);
  1989       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1992     return start;
  1995   void generate_arraycopy_stubs() {
  1996     address entry;
  1997     address entry_jbyte_arraycopy;
  1998     address entry_jshort_arraycopy;
  1999     address entry_jint_arraycopy;
  2000     address entry_oop_arraycopy;
  2001     address entry_jlong_arraycopy;
  2002     address entry_checkcast_arraycopy;
  2004     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  2005         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  2006                                "arrayof_jbyte_disjoint_arraycopy");
  2007     StubRoutines::_arrayof_jbyte_arraycopy =
  2008         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  2009                                NULL, "arrayof_jbyte_arraycopy");
  2010     StubRoutines::_jbyte_disjoint_arraycopy =
  2011         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  2012                                "jbyte_disjoint_arraycopy");
  2013     StubRoutines::_jbyte_arraycopy =
  2014         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  2015                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  2017     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  2018         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  2019                                "arrayof_jshort_disjoint_arraycopy");
  2020     StubRoutines::_arrayof_jshort_arraycopy =
  2021         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  2022                                NULL, "arrayof_jshort_arraycopy");
  2023     StubRoutines::_jshort_disjoint_arraycopy =
  2024         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  2025                                "jshort_disjoint_arraycopy");
  2026     StubRoutines::_jshort_arraycopy =
  2027         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  2028                                &entry_jshort_arraycopy, "jshort_arraycopy");
  2030     // Next arrays are always aligned on 4 bytes at least.
  2031     StubRoutines::_jint_disjoint_arraycopy =
  2032         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  2033                                "jint_disjoint_arraycopy");
  2034     StubRoutines::_jint_arraycopy =
  2035         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  2036                                &entry_jint_arraycopy, "jint_arraycopy");
  2038     StubRoutines::_oop_disjoint_arraycopy =
  2039         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2040                                "oop_disjoint_arraycopy");
  2041     StubRoutines::_oop_arraycopy =
  2042         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2043                                &entry_oop_arraycopy, "oop_arraycopy");
  2045     StubRoutines::_oop_disjoint_arraycopy_uninit =
  2046         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2047                                "oop_disjoint_arraycopy_uninit",
  2048                                /*dest_uninitialized*/true);
  2049     StubRoutines::_oop_arraycopy_uninit =
  2050         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2051                                NULL, "oop_arraycopy_uninit",
  2052                                /*dest_uninitialized*/true);
  2054     StubRoutines::_jlong_disjoint_arraycopy =
  2055         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2056     StubRoutines::_jlong_arraycopy =
  2057         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2058                                     "jlong_arraycopy");
  2060     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2061     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2062     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2063     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2064     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2065     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2067     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
  2068     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
  2069     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
  2070     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
  2072     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
  2073     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
  2074     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
  2075     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
  2077     StubRoutines::_checkcast_arraycopy =
  2078         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  2079     StubRoutines::_checkcast_arraycopy_uninit =
  2080         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
  2082     StubRoutines::_unsafe_arraycopy =
  2083         generate_unsafe_copy("unsafe_arraycopy",
  2084                                entry_jbyte_arraycopy,
  2085                                entry_jshort_arraycopy,
  2086                                entry_jint_arraycopy,
  2087                                entry_jlong_arraycopy);
  2089     StubRoutines::_generic_arraycopy =
  2090         generate_generic_copy("generic_arraycopy",
  2091                                entry_jbyte_arraycopy,
  2092                                entry_jshort_arraycopy,
  2093                                entry_jint_arraycopy,
  2094                                entry_oop_arraycopy,
  2095                                entry_jlong_arraycopy,
  2096                                entry_checkcast_arraycopy);
  2099   void generate_math_stubs() {
  2101       StubCodeMark mark(this, "StubRoutines", "log");
  2102       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2104       __ fld_d(Address(rsp, 4));
  2105       __ flog();
  2106       __ ret(0);
  2109       StubCodeMark mark(this, "StubRoutines", "log10");
  2110       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2112       __ fld_d(Address(rsp, 4));
  2113       __ flog10();
  2114       __ ret(0);
  2117       StubCodeMark mark(this, "StubRoutines", "sin");
  2118       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2120       __ fld_d(Address(rsp, 4));
  2121       __ trigfunc('s');
  2122       __ ret(0);
  2125       StubCodeMark mark(this, "StubRoutines", "cos");
  2126       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2128       __ fld_d(Address(rsp, 4));
  2129       __ trigfunc('c');
  2130       __ ret(0);
  2133       StubCodeMark mark(this, "StubRoutines", "tan");
  2134       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2136       __ fld_d(Address(rsp, 4));
  2137       __ trigfunc('t');
  2138       __ ret(0);
  2141     // The intrinsic version of these seem to return the same value as
  2142     // the strict version.
  2143     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2144     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2147  public:
  2148   // Information about frame layout at time of blocking runtime call.
  2149   // Note that we only have to preserve callee-saved registers since
  2150   // the compilers are responsible for supplying a continuation point
  2151   // if they expect all registers to be preserved.
  2152   enum layout {
  2153     thread_off,    // last_java_sp
  2154     arg1_off,
  2155     arg2_off,
  2156     rbp_off,       // callee saved register
  2157     ret_pc,
  2158     framesize
  2159   };
  2161  private:
  2163 #undef  __
  2164 #define __ masm->
  2166   //------------------------------------------------------------------------------------------------------------------------
  2167   // Continuation point for throwing of implicit exceptions that are not handled in
  2168   // the current activation. Fabricates an exception oop and initiates normal
  2169   // exception dispatching in this frame.
  2170   //
  2171   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2172   // This is no longer true after adapter frames were removed but could possibly
  2173   // be brought back in the future if the interpreter code was reworked and it
  2174   // was deemed worthwhile. The comment below was left to describe what must
  2175   // happen here if callee saves were resurrected. As it stands now this stub
  2176   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2177   // Since it doesn't make much difference we've chosen to leave it the
  2178   // way it was in the callee save days and keep the comment.
  2180   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2181   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2182   // If the compiler needs all registers to be preserved between the fault
  2183   // point and the exception handler then it must assume responsibility for that in
  2184   // AbstractCompiler::continuation_for_implicit_null_exception or
  2185   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2186   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2187   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2188   // so caller saved registers were assumed volatile in the compiler.
  2189   address generate_throw_exception(const char* name, address runtime_entry,
  2190                                    bool restore_saved_exception_pc, Register arg1 = noreg, Register arg2 = noreg) {
  2192     int insts_size = 256;
  2193     int locs_size  = 32;
  2195     CodeBuffer code(name, insts_size, locs_size);
  2196     OopMapSet* oop_maps  = new OopMapSet();
  2197     MacroAssembler* masm = new MacroAssembler(&code);
  2199     address start = __ pc();
  2201     // This is an inlined and slightly modified version of call_VM
  2202     // which has the ability to fetch the return PC out of
  2203     // thread-local storage and also sets up last_Java_sp slightly
  2204     // differently than the real call_VM
  2205     Register java_thread = rbx;
  2206     __ get_thread(java_thread);
  2207     if (restore_saved_exception_pc) {
  2208       __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
  2209       __ push(rax);
  2212     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2214     // pc and rbp, already pushed
  2215     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2217     // Frame is now completed as far as size and linkage.
  2219     int frame_complete = __ pc() - start;
  2221     // push java thread (becomes first argument of C function)
  2222     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2223     if (arg1 != noreg) {
  2224       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
  2226     if (arg2 != noreg) {
  2227       assert(arg1 != noreg, "missing reg arg");
  2228       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
  2231     // Set up last_Java_sp and last_Java_fp
  2232     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2234     // Call runtime
  2235     BLOCK_COMMENT("call runtime_entry");
  2236     __ call(RuntimeAddress(runtime_entry));
  2237     // Generate oop map
  2238     OopMap* map =  new OopMap(framesize, 0);
  2239     oop_maps->add_gc_map(__ pc() - start, map);
  2241     // restore the thread (cannot use the pushed argument since arguments
  2242     // may be overwritten by C code generated by an optimizing compiler);
  2243     // however can use the register value directly if it is callee saved.
  2244     __ get_thread(java_thread);
  2246     __ reset_last_Java_frame(java_thread, true, false);
  2248     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2250     // check for pending exceptions
  2251 #ifdef ASSERT
  2252     Label L;
  2253     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2254     __ jcc(Assembler::notEqual, L);
  2255     __ should_not_reach_here();
  2256     __ bind(L);
  2257 #endif /* ASSERT */
  2258     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2261     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2262     return stub->entry_point();
  2266   void create_control_words() {
  2267     // Round to nearest, 53-bit mode, exceptions masked
  2268     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2269     // Round to zero, 53-bit mode, exception mased
  2270     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2271     // Round to nearest, 24-bit mode, exceptions masked
  2272     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2273     // Round to nearest, 64-bit mode, exceptions masked
  2274     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2275     // Round to nearest, 64-bit mode, exceptions masked
  2276     StubRoutines::_mxcsr_std           = 0x1F80;
  2277     // Note: the following two constants are 80-bit values
  2278     //       layout is critical for correct loading by FPU.
  2279     // Bias for strict fp multiply/divide
  2280     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2281     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2282     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2283     // Un-Bias for strict fp multiply/divide
  2284     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2285     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2286     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2289   //---------------------------------------------------------------------------
  2290   // Initialization
  2292   void generate_initial() {
  2293     // Generates all stubs and initializes the entry points
  2295     //------------------------------------------------------------------------------------------------------------------------
  2296     // entry points that exist in all platforms
  2297     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2298     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2299     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2301     StubRoutines::_call_stub_entry              =
  2302       generate_call_stub(StubRoutines::_call_stub_return_address);
  2303     // is referenced by megamorphic call
  2304     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2306     // These are currently used by Solaris/Intel
  2307     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2309     StubRoutines::_handler_for_unsafe_access_entry =
  2310       generate_handler_for_unsafe_access();
  2312     // platform dependent
  2313     create_control_words();
  2315     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2316     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2317     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2318                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2319     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2320                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2322     // Build this early so it's available for the interpreter
  2323     StubRoutines::_throw_WrongMethodTypeException_entry =
  2324       generate_throw_exception("WrongMethodTypeException throw_exception",
  2325                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
  2326                                false, rax, rcx);
  2330   void generate_all() {
  2331     // Generates all stubs and initializes the entry points
  2333     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2334     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2335     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2336     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2337     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2338     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2339     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2340     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2342     //------------------------------------------------------------------------------------------------------------------------
  2343     // entry points that are platform specific
  2345     // support for verify_oop (must happen after universe_init)
  2346     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2348     // arraycopy stubs used by compilers
  2349     generate_arraycopy_stubs();
  2351     generate_math_stubs();
  2355  public:
  2356   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2357     if (all) {
  2358       generate_all();
  2359     } else {
  2360       generate_initial();
  2363 }; // end class declaration
  2366 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2367   StubGenerator g(code, all);

mercurial