src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Thu, 08 Sep 2011 10:12:25 +0200

author
bdelsart
date
Thu, 08 Sep 2011 10:12:25 +0200
changeset 3130
5432047c7db7
parent 2950
cba7b5c2d53f
child 3500
0382d2b469b2
permissions
-rw-r--r--

7087445: Improve platform independence of JSR292 shared code
Summary: changes necessary for some JSR292 ports
Reviewed-by: jrose, dholmes

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class RegisterSaver {
    49   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
    50   // Capture info about frame layout
    51   enum layout {
    52                 fpu_state_off = 0,
    53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
    54                 st0_off, st0H_off,
    55                 st1_off, st1H_off,
    56                 st2_off, st2H_off,
    57                 st3_off, st3H_off,
    58                 st4_off, st4H_off,
    59                 st5_off, st5H_off,
    60                 st6_off, st6H_off,
    61                 st7_off, st7H_off,
    63                 xmm0_off, xmm0H_off,
    64                 xmm1_off, xmm1H_off,
    65                 xmm2_off, xmm2H_off,
    66                 xmm3_off, xmm3H_off,
    67                 xmm4_off, xmm4H_off,
    68                 xmm5_off, xmm5H_off,
    69                 xmm6_off, xmm6H_off,
    70                 xmm7_off, xmm7H_off,
    71                 flags_off,
    72                 rdi_off,
    73                 rsi_off,
    74                 ignore_off,  // extra copy of rbp,
    75                 rsp_off,
    76                 rbx_off,
    77                 rdx_off,
    78                 rcx_off,
    79                 rax_off,
    80                 // The frame sender code expects that rbp will be in the "natural" place and
    81                 // will override any oopMap setting for it. We must therefore force the layout
    82                 // so that it agrees with the frame sender code.
    83                 rbp_off,
    84                 return_off,      // slot for return address
    85                 reg_save_size };
    88   public:
    90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
    91                                      int* total_frame_words, bool verify_fpu = true);
    92   static void restore_live_registers(MacroAssembler* masm);
    94   static int rax_offset() { return rax_off; }
    95   static int rbx_offset() { return rbx_off; }
    97   // Offsets into the register save area
    98   // Used by deoptimization when it is managing result register
    99   // values on its own
   101   static int raxOffset(void) { return rax_off; }
   102   static int rdxOffset(void) { return rdx_off; }
   103   static int rbxOffset(void) { return rbx_off; }
   104   static int xmm0Offset(void) { return xmm0_off; }
   105   // This really returns a slot in the fp save area, which one is not important
   106   static int fpResultOffset(void) { return st0_off; }
   108   // During deoptimization only the result register need to be restored
   109   // all the other values have already been extracted.
   111   static void restore_result_registers(MacroAssembler* masm);
   113 };
   115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   116                                            int* total_frame_words, bool verify_fpu) {
   118   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
   119   int frame_words = frame_size_in_bytes / wordSize;
   120   *total_frame_words = frame_words;
   122   assert(FPUStateSizeInWords == 27, "update stack layout");
   124   // save registers, fpu state, and flags
   125   // We assume caller has already has return address slot on the stack
   126   // We push epb twice in this sequence because we want the real rbp,
   127   // to be under the return like a normal enter and we want to use pusha
   128   // We push by hand instead of pusing push
   129   __ enter();
   130   __ pusha();
   131   __ pushf();
   132   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
   133   __ push_FPU_state();          // Save FPU state & init
   135   if (verify_fpu) {
   136     // Some stubs may have non standard FPU control word settings so
   137     // only check and reset the value when it required to be the
   138     // standard value.  The safepoint blob in particular can be used
   139     // in methods which are using the 24 bit control word for
   140     // optimized float math.
   142 #ifdef ASSERT
   143     // Make sure the control word has the expected value
   144     Label ok;
   145     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   146     __ jccb(Assembler::equal, ok);
   147     __ stop("corrupted control word detected");
   148     __ bind(ok);
   149 #endif
   151     // Reset the control word to guard against exceptions being unmasked
   152     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   153     // into the on stack copy and then reload that to make sure that the
   154     // current and future values are correct.
   155     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   156   }
   158   __ frstor(Address(rsp, 0));
   159   if (!verify_fpu) {
   160     // Set the control word so that exceptions are masked for the
   161     // following code.
   162     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   163   }
   165   // Save the FPU registers in de-opt-able form
   167   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   168   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   169   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   170   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   171   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   172   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   173   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   174   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   176   if( UseSSE == 1 ) {           // Save the XMM state
   177     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   178     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   179     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   180     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   181     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   182     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   183     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   184     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   185   } else if( UseSSE >= 2 ) {
   186     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
   187     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
   188     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
   189     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
   190     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
   191     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
   192     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
   193     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
   194   }
   196   // Set an oopmap for the call site.  This oopmap will map all
   197   // oop-registers and debug-info registers as callee-saved.  This
   198   // will allow deoptimization at this safepoint to find all possible
   199   // debug-info recordings, as well as let GC find all oops.
   201   OopMapSet *oop_maps = new OopMapSet();
   202   OopMap* map =  new OopMap( frame_words, 0 );
   204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   206   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   207   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   208   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   209   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   210   // rbp, location is known implicitly, no oopMap
   211   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   212   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   213   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   214   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   215   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   223   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   225   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   226   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   227   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   228   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   229   // %%% This is really a waste but we'll keep things as they were for now
   230   if (true) {
   231 #define NEXTREG(x) (x)->as_VMReg()->next()
   232     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   233     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   234     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   235     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   236     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   237     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   238     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   239     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   240     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   241     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   242     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   243     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   244     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   245     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   246     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   247     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   248 #undef NEXTREG
   249 #undef STACK_OFFSET
   250   }
   252   return map;
   254 }
   256 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   258   // Recover XMM & FPU state
   259   if( UseSSE == 1 ) {
   260     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   261     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   262     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   263     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   264     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   265     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   266     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   267     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   268   } else if( UseSSE >= 2 ) {
   269     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
   270     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
   271     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
   272     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
   273     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
   274     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
   275     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
   276     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
   277   }
   278   __ pop_FPU_state();
   279   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
   281   __ popf();
   282   __ popa();
   283   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   284   __ pop(rbp);
   286 }
   288 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   290   // Just restore result register. Only used by deoptimization. By
   291   // now any callee save register that needs to be restore to a c2
   292   // caller of the deoptee has been extracted into the vframeArray
   293   // and will be stuffed into the c2i adapter we create for later
   294   // restoration so only result registers need to be restored here.
   295   //
   297   __ frstor(Address(rsp, 0));      // Restore fpu state
   299   // Recover XMM & FPU state
   300   if( UseSSE == 1 ) {
   301     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   302   } else if( UseSSE >= 2 ) {
   303     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   304   }
   305   __ movptr(rax, Address(rsp, rax_off*wordSize));
   306   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   307   // Pop all of the register save are off the stack except the return address
   308   __ addptr(rsp, return_off * wordSize);
   309 }
   311 // The java_calling_convention describes stack locations as ideal slots on
   312 // a frame with no abi restrictions. Since we must observe abi restrictions
   313 // (like the placement of the register window) the slots must be biased by
   314 // the following value.
   315 static int reg2offset_in(VMReg r) {
   316   // Account for saved rbp, and return address
   317   // This should really be in_preserve_stack_slots
   318   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   319 }
   321 static int reg2offset_out(VMReg r) {
   322   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   323 }
   325 // ---------------------------------------------------------------------------
   326 // Read the array of BasicTypes from a signature, and compute where the
   327 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   328 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   329 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   330 // as framesizes are fixed.
   331 // VMRegImpl::stack0 refers to the first slot 0(sp).
   332 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   333 // up to RegisterImpl::number_of_registers) are the 32-bit
   334 // integer registers.
   336 // Pass first two oop/int args in registers ECX and EDX.
   337 // Pass first two float/double args in registers XMM0 and XMM1.
   338 // Doubles have precedence, so if you pass a mix of floats and doubles
   339 // the doubles will grab the registers before the floats will.
   341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   342 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   343 // units regardless of build. Of course for i486 there is no 64 bit build
   346 // ---------------------------------------------------------------------------
   347 // The compiled Java calling convention.
   348 // Pass first two oop/int args in registers ECX and EDX.
   349 // Pass first two float/double args in registers XMM0 and XMM1.
   350 // Doubles have precedence, so if you pass a mix of floats and doubles
   351 // the doubles will grab the registers before the floats will.
   352 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   353                                            VMRegPair *regs,
   354                                            int total_args_passed,
   355                                            int is_outgoing) {
   356   uint    stack = 0;          // Starting stack position for args on stack
   359   // Pass first two oop/int args in registers ECX and EDX.
   360   uint reg_arg0 = 9999;
   361   uint reg_arg1 = 9999;
   363   // Pass first two float/double args in registers XMM0 and XMM1.
   364   // Doubles have precedence, so if you pass a mix of floats and doubles
   365   // the doubles will grab the registers before the floats will.
   366   // CNC - TURNED OFF FOR non-SSE.
   367   //       On Intel we have to round all doubles (and most floats) at
   368   //       call sites by storing to the stack in any case.
   369   // UseSSE=0 ==> Don't Use ==> 9999+0
   370   // UseSSE=1 ==> Floats only ==> 9999+1
   371   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   372   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   373   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   374   uint freg_arg0 = 9999+fargs;
   375   uint freg_arg1 = 9999+fargs;
   377   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   378   int i;
   379   for( i = 0; i < total_args_passed; i++) {
   380     if( sig_bt[i] == T_DOUBLE ) {
   381       // first 2 doubles go in registers
   382       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   383       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   384       else // Else double is passed low on the stack to be aligned.
   385         stack += 2;
   386     } else if( sig_bt[i] == T_LONG ) {
   387       stack += 2;
   388     }
   389   }
   390   int dstack = 0;             // Separate counter for placing doubles
   392   // Now pick where all else goes.
   393   for( i = 0; i < total_args_passed; i++) {
   394     // From the type and the argument number (count) compute the location
   395     switch( sig_bt[i] ) {
   396     case T_SHORT:
   397     case T_CHAR:
   398     case T_BYTE:
   399     case T_BOOLEAN:
   400     case T_INT:
   401     case T_ARRAY:
   402     case T_OBJECT:
   403     case T_ADDRESS:
   404       if( reg_arg0 == 9999 )  {
   405         reg_arg0 = i;
   406         regs[i].set1(rcx->as_VMReg());
   407       } else if( reg_arg1 == 9999 )  {
   408         reg_arg1 = i;
   409         regs[i].set1(rdx->as_VMReg());
   410       } else {
   411         regs[i].set1(VMRegImpl::stack2reg(stack++));
   412       }
   413       break;
   414     case T_FLOAT:
   415       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   416         freg_arg0 = i;
   417         regs[i].set1(xmm0->as_VMReg());
   418       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   419         freg_arg1 = i;
   420         regs[i].set1(xmm1->as_VMReg());
   421       } else {
   422         regs[i].set1(VMRegImpl::stack2reg(stack++));
   423       }
   424       break;
   425     case T_LONG:
   426       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   427       regs[i].set2(VMRegImpl::stack2reg(dstack));
   428       dstack += 2;
   429       break;
   430     case T_DOUBLE:
   431       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   432       if( freg_arg0 == (uint)i ) {
   433         regs[i].set2(xmm0->as_VMReg());
   434       } else if( freg_arg1 == (uint)i ) {
   435         regs[i].set2(xmm1->as_VMReg());
   436       } else {
   437         regs[i].set2(VMRegImpl::stack2reg(dstack));
   438         dstack += 2;
   439       }
   440       break;
   441     case T_VOID: regs[i].set_bad(); break;
   442       break;
   443     default:
   444       ShouldNotReachHere();
   445       break;
   446     }
   447   }
   449   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   450   return round_to(stack, 2);
   451 }
   453 // Patch the callers callsite with entry to compiled code if it exists.
   454 static void patch_callers_callsite(MacroAssembler *masm) {
   455   Label L;
   456   __ verify_oop(rbx);
   457   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   458   __ jcc(Assembler::equal, L);
   459   // Schedule the branch target address early.
   460   // Call into the VM to patch the caller, then jump to compiled callee
   461   // rax, isn't live so capture return address while we easily can
   462   __ movptr(rax, Address(rsp, 0));
   463   __ pusha();
   464   __ pushf();
   466   if (UseSSE == 1) {
   467     __ subptr(rsp, 2*wordSize);
   468     __ movflt(Address(rsp, 0), xmm0);
   469     __ movflt(Address(rsp, wordSize), xmm1);
   470   }
   471   if (UseSSE >= 2) {
   472     __ subptr(rsp, 4*wordSize);
   473     __ movdbl(Address(rsp, 0), xmm0);
   474     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   475   }
   476 #ifdef COMPILER2
   477   // C2 may leave the stack dirty if not in SSE2+ mode
   478   if (UseSSE >= 2) {
   479     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   480   } else {
   481     __ empty_FPU_stack();
   482   }
   483 #endif /* COMPILER2 */
   485   // VM needs caller's callsite
   486   __ push(rax);
   487   // VM needs target method
   488   __ push(rbx);
   489   __ verify_oop(rbx);
   490   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   491   __ addptr(rsp, 2*wordSize);
   493   if (UseSSE == 1) {
   494     __ movflt(xmm0, Address(rsp, 0));
   495     __ movflt(xmm1, Address(rsp, wordSize));
   496     __ addptr(rsp, 2*wordSize);
   497   }
   498   if (UseSSE >= 2) {
   499     __ movdbl(xmm0, Address(rsp, 0));
   500     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   501     __ addptr(rsp, 4*wordSize);
   502   }
   504   __ popf();
   505   __ popa();
   506   __ bind(L);
   507 }
   510 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   511   int next_off = st_off - Interpreter::stackElementSize;
   512   __ movdbl(Address(rsp, next_off), r);
   513 }
   515 static void gen_c2i_adapter(MacroAssembler *masm,
   516                             int total_args_passed,
   517                             int comp_args_on_stack,
   518                             const BasicType *sig_bt,
   519                             const VMRegPair *regs,
   520                             Label& skip_fixup) {
   521   // Before we get into the guts of the C2I adapter, see if we should be here
   522   // at all.  We've come from compiled code and are attempting to jump to the
   523   // interpreter, which means the caller made a static call to get here
   524   // (vcalls always get a compiled target if there is one).  Check for a
   525   // compiled target.  If there is one, we need to patch the caller's call.
   526   patch_callers_callsite(masm);
   528   __ bind(skip_fixup);
   530 #ifdef COMPILER2
   531   // C2 may leave the stack dirty if not in SSE2+ mode
   532   if (UseSSE >= 2) {
   533     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   534   } else {
   535     __ empty_FPU_stack();
   536   }
   537 #endif /* COMPILER2 */
   539   // Since all args are passed on the stack, total_args_passed * interpreter_
   540   // stack_element_size  is the
   541   // space we need.
   542   int extraspace = total_args_passed * Interpreter::stackElementSize;
   544   // Get return address
   545   __ pop(rax);
   547   // set senderSP value
   548   __ movptr(rsi, rsp);
   550   __ subptr(rsp, extraspace);
   552   // Now write the args into the outgoing interpreter space
   553   for (int i = 0; i < total_args_passed; i++) {
   554     if (sig_bt[i] == T_VOID) {
   555       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   556       continue;
   557     }
   559     // st_off points to lowest address on stack.
   560     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
   561     int next_off = st_off - Interpreter::stackElementSize;
   563     // Say 4 args:
   564     // i   st_off
   565     // 0   12 T_LONG
   566     // 1    8 T_VOID
   567     // 2    4 T_OBJECT
   568     // 3    0 T_BOOL
   569     VMReg r_1 = regs[i].first();
   570     VMReg r_2 = regs[i].second();
   571     if (!r_1->is_valid()) {
   572       assert(!r_2->is_valid(), "");
   573       continue;
   574     }
   576     if (r_1->is_stack()) {
   577       // memory to memory use fpu stack top
   578       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   580       if (!r_2->is_valid()) {
   581         __ movl(rdi, Address(rsp, ld_off));
   582         __ movptr(Address(rsp, st_off), rdi);
   583       } else {
   585         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   586         // st_off == MSW, st_off-wordSize == LSW
   588         __ movptr(rdi, Address(rsp, ld_off));
   589         __ movptr(Address(rsp, next_off), rdi);
   590 #ifndef _LP64
   591         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   592         __ movptr(Address(rsp, st_off), rdi);
   593 #else
   594 #ifdef ASSERT
   595         // Overwrite the unused slot with known junk
   596         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   597         __ movptr(Address(rsp, st_off), rax);
   598 #endif /* ASSERT */
   599 #endif // _LP64
   600       }
   601     } else if (r_1->is_Register()) {
   602       Register r = r_1->as_Register();
   603       if (!r_2->is_valid()) {
   604         __ movl(Address(rsp, st_off), r);
   605       } else {
   606         // long/double in gpr
   607         NOT_LP64(ShouldNotReachHere());
   608         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   609         // T_DOUBLE and T_LONG use two slots in the interpreter
   610         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   611           // long/double in gpr
   612 #ifdef ASSERT
   613           // Overwrite the unused slot with known junk
   614           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   615           __ movptr(Address(rsp, st_off), rax);
   616 #endif /* ASSERT */
   617           __ movptr(Address(rsp, next_off), r);
   618         } else {
   619           __ movptr(Address(rsp, st_off), r);
   620         }
   621       }
   622     } else {
   623       assert(r_1->is_XMMRegister(), "");
   624       if (!r_2->is_valid()) {
   625         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   626       } else {
   627         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   628         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   629       }
   630     }
   631   }
   633   // Schedule the branch target address early.
   634   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   635   // And repush original return address
   636   __ push(rax);
   637   __ jmp(rcx);
   638 }
   641 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   642   int next_val_off = ld_off - Interpreter::stackElementSize;
   643   __ movdbl(r, Address(saved_sp, next_val_off));
   644 }
   646 static void gen_i2c_adapter(MacroAssembler *masm,
   647                             int total_args_passed,
   648                             int comp_args_on_stack,
   649                             const BasicType *sig_bt,
   650                             const VMRegPair *regs) {
   652   // Note: rsi contains the senderSP on entry. We must preserve it since
   653   // we may do a i2c -> c2i transition if we lose a race where compiled
   654   // code goes non-entrant while we get args ready.
   656   // Pick up the return address
   657   __ movptr(rax, Address(rsp, 0));
   659   // Must preserve original SP for loading incoming arguments because
   660   // we need to align the outgoing SP for compiled code.
   661   __ movptr(rdi, rsp);
   663   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   664   // in registers, we will occasionally have no stack args.
   665   int comp_words_on_stack = 0;
   666   if (comp_args_on_stack) {
   667     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   668     // registers are below.  By subtracting stack0, we either get a negative
   669     // number (all values in registers) or the maximum stack slot accessed.
   670     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   671     // Convert 4-byte stack slots to words.
   672     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   673     // Round up to miminum stack alignment, in wordSize
   674     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   675     __ subptr(rsp, comp_words_on_stack * wordSize);
   676   }
   678   // Align the outgoing SP
   679   __ andptr(rsp, -(StackAlignmentInBytes));
   681   // push the return address on the stack (note that pushing, rather
   682   // than storing it, yields the correct frame alignment for the callee)
   683   __ push(rax);
   685   // Put saved SP in another register
   686   const Register saved_sp = rax;
   687   __ movptr(saved_sp, rdi);
   690   // Will jump to the compiled code just as if compiled code was doing it.
   691   // Pre-load the register-jump target early, to schedule it better.
   692   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   694   // Now generate the shuffle code.  Pick up all register args and move the
   695   // rest through the floating point stack top.
   696   for (int i = 0; i < total_args_passed; i++) {
   697     if (sig_bt[i] == T_VOID) {
   698       // Longs and doubles are passed in native word order, but misaligned
   699       // in the 32-bit build.
   700       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   701       continue;
   702     }
   704     // Pick up 0, 1 or 2 words from SP+offset.
   706     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   707             "scrambled load targets?");
   708     // Load in argument order going down.
   709     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
   710     // Point to interpreter value (vs. tag)
   711     int next_off = ld_off - Interpreter::stackElementSize;
   712     //
   713     //
   714     //
   715     VMReg r_1 = regs[i].first();
   716     VMReg r_2 = regs[i].second();
   717     if (!r_1->is_valid()) {
   718       assert(!r_2->is_valid(), "");
   719       continue;
   720     }
   721     if (r_1->is_stack()) {
   722       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   723       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   725       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   726       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   727       // we be generated.
   728       if (!r_2->is_valid()) {
   729         // __ fld_s(Address(saved_sp, ld_off));
   730         // __ fstp_s(Address(rsp, st_off));
   731         __ movl(rsi, Address(saved_sp, ld_off));
   732         __ movptr(Address(rsp, st_off), rsi);
   733       } else {
   734         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   735         // are accessed as negative so LSW is at LOW address
   737         // ld_off is MSW so get LSW
   738         // st_off is LSW (i.e. reg.first())
   739         // __ fld_d(Address(saved_sp, next_off));
   740         // __ fstp_d(Address(rsp, st_off));
   741         //
   742         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   743         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   744         // So we must adjust where to pick up the data to match the interpreter.
   745         //
   746         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   747         // are accessed as negative so LSW is at LOW address
   749         // ld_off is MSW so get LSW
   750         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   751                            next_off : ld_off;
   752         __ movptr(rsi, Address(saved_sp, offset));
   753         __ movptr(Address(rsp, st_off), rsi);
   754 #ifndef _LP64
   755         __ movptr(rsi, Address(saved_sp, ld_off));
   756         __ movptr(Address(rsp, st_off + wordSize), rsi);
   757 #endif // _LP64
   758       }
   759     } else if (r_1->is_Register()) {  // Register argument
   760       Register r = r_1->as_Register();
   761       assert(r != rax, "must be different");
   762       if (r_2->is_valid()) {
   763         //
   764         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   765         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   766         // So we must adjust where to pick up the data to match the interpreter.
   768         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   769                            next_off : ld_off;
   771         // this can be a misaligned move
   772         __ movptr(r, Address(saved_sp, offset));
   773 #ifndef _LP64
   774         assert(r_2->as_Register() != rax, "need another temporary register");
   775         // Remember r_1 is low address (and LSB on x86)
   776         // So r_2 gets loaded from high address regardless of the platform
   777         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   778 #endif // _LP64
   779       } else {
   780         __ movl(r, Address(saved_sp, ld_off));
   781       }
   782     } else {
   783       assert(r_1->is_XMMRegister(), "");
   784       if (!r_2->is_valid()) {
   785         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   786       } else {
   787         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   788       }
   789     }
   790   }
   792   // 6243940 We might end up in handle_wrong_method if
   793   // the callee is deoptimized as we race thru here. If that
   794   // happens we don't want to take a safepoint because the
   795   // caller frame will look interpreted and arguments are now
   796   // "compiled" so it is much better to make this transition
   797   // invisible to the stack walking code. Unfortunately if
   798   // we try and find the callee by normal means a safepoint
   799   // is possible. So we stash the desired callee in the thread
   800   // and the vm will find there should this case occur.
   802   __ get_thread(rax);
   803   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   805   // move methodOop to rax, in case we end up in an c2i adapter.
   806   // the c2i adapters expect methodOop in rax, (c2) because c2's
   807   // resolve stubs return the result (the method) in rax,.
   808   // I'd love to fix this.
   809   __ mov(rax, rbx);
   811   __ jmp(rdi);
   812 }
   814 // ---------------------------------------------------------------
   815 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   816                                                             int total_args_passed,
   817                                                             int comp_args_on_stack,
   818                                                             const BasicType *sig_bt,
   819                                                             const VMRegPair *regs,
   820                                                             AdapterFingerPrint* fingerprint) {
   821   address i2c_entry = __ pc();
   823   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   825   // -------------------------------------------------------------------------
   826   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
   827   // to the interpreter.  The args start out packed in the compiled layout.  They
   828   // need to be unpacked into the interpreter layout.  This will almost always
   829   // require some stack space.  We grow the current (compiled) stack, then repack
   830   // the args.  We  finally end in a jump to the generic interpreter entry point.
   831   // On exit from the interpreter, the interpreter will restore our SP (lest the
   832   // compiled code, which relys solely on SP and not EBP, get sick).
   834   address c2i_unverified_entry = __ pc();
   835   Label skip_fixup;
   837   Register holder = rax;
   838   Register receiver = rcx;
   839   Register temp = rbx;
   841   {
   843     Label missed;
   845     __ verify_oop(holder);
   846     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   847     __ verify_oop(temp);
   849     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   850     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   851     __ jcc(Assembler::notEqual, missed);
   852     // Method might have been compiled since the call site was patched to
   853     // interpreted if that is the case treat it as a miss so we can get
   854     // the call site corrected.
   855     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   856     __ jcc(Assembler::equal, skip_fixup);
   858     __ bind(missed);
   859     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   860   }
   862   address c2i_entry = __ pc();
   864   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   866   __ flush();
   867   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   868 }
   870 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   871                                          VMRegPair *regs,
   872                                          int total_args_passed) {
   873 // We return the amount of VMRegImpl stack slots we need to reserve for all
   874 // the arguments NOT counting out_preserve_stack_slots.
   876   uint    stack = 0;        // All arguments on stack
   878   for( int i = 0; i < total_args_passed; i++) {
   879     // From the type and the argument number (count) compute the location
   880     switch( sig_bt[i] ) {
   881     case T_BOOLEAN:
   882     case T_CHAR:
   883     case T_FLOAT:
   884     case T_BYTE:
   885     case T_SHORT:
   886     case T_INT:
   887     case T_OBJECT:
   888     case T_ARRAY:
   889     case T_ADDRESS:
   890       regs[i].set1(VMRegImpl::stack2reg(stack++));
   891       break;
   892     case T_LONG:
   893     case T_DOUBLE: // The stack numbering is reversed from Java
   894       // Since C arguments do not get reversed, the ordering for
   895       // doubles on the stack must be opposite the Java convention
   896       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   897       regs[i].set2(VMRegImpl::stack2reg(stack));
   898       stack += 2;
   899       break;
   900     case T_VOID: regs[i].set_bad(); break;
   901     default:
   902       ShouldNotReachHere();
   903       break;
   904     }
   905   }
   906   return stack;
   907 }
   909 // A simple move of integer like type
   910 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   911   if (src.first()->is_stack()) {
   912     if (dst.first()->is_stack()) {
   913       // stack to stack
   914       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
   915       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
   916       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
   917       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
   918     } else {
   919       // stack to reg
   920       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
   921     }
   922   } else if (dst.first()->is_stack()) {
   923     // reg to stack
   924     // no need to sign extend on 64bit
   925     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   926   } else {
   927     if (dst.first() != src.first()) {
   928       __ mov(dst.first()->as_Register(), src.first()->as_Register());
   929     }
   930   }
   931 }
   933 // An oop arg. Must pass a handle not the oop itself
   934 static void object_move(MacroAssembler* masm,
   935                         OopMap* map,
   936                         int oop_handle_offset,
   937                         int framesize_in_slots,
   938                         VMRegPair src,
   939                         VMRegPair dst,
   940                         bool is_receiver,
   941                         int* receiver_offset) {
   943   // Because of the calling conventions we know that src can be a
   944   // register or a stack location. dst can only be a stack location.
   946   assert(dst.first()->is_stack(), "must be stack");
   947   // must pass a handle. First figure out the location we use as a handle
   949   if (src.first()->is_stack()) {
   950     // Oop is already on the stack as an argument
   951     Register rHandle = rax;
   952     Label nil;
   953     __ xorptr(rHandle, rHandle);
   954     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
   955     __ jcc(Assembler::equal, nil);
   956     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
   957     __ bind(nil);
   958     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
   960     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   961     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
   962     if (is_receiver) {
   963       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
   964     }
   965   } else {
   966     // Oop is in an a register we must store it to the space we reserve
   967     // on the stack for oop_handles
   968     const Register rOop = src.first()->as_Register();
   969     const Register rHandle = rax;
   970     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
   971     int offset = oop_slot*VMRegImpl::stack_slot_size;
   972     Label skip;
   973     __ movptr(Address(rsp, offset), rOop);
   974     map->set_oop(VMRegImpl::stack2reg(oop_slot));
   975     __ xorptr(rHandle, rHandle);
   976     __ cmpptr(rOop, (int32_t)NULL_WORD);
   977     __ jcc(Assembler::equal, skip);
   978     __ lea(rHandle, Address(rsp, offset));
   979     __ bind(skip);
   980     // Store the handle parameter
   981     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
   982     if (is_receiver) {
   983       *receiver_offset = offset;
   984     }
   985   }
   986 }
   988 // A float arg may have to do float reg int reg conversion
   989 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   990   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
   992   // Because of the calling convention we know that src is either a stack location
   993   // or an xmm register. dst can only be a stack location.
   995   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
   997   if (src.first()->is_stack()) {
   998     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
   999     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1000   } else {
  1001     // reg to stack
  1002     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1006 // A long move
  1007 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1009   // The only legal possibility for a long_move VMRegPair is:
  1010   // 1: two stack slots (possibly unaligned)
  1011   // as neither the java  or C calling convention will use registers
  1012   // for longs.
  1014   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1015     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1016     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1017     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1018     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1019     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1020   } else {
  1021     ShouldNotReachHere();
  1025 // A double move
  1026 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1028   // The only legal possibilities for a double_move VMRegPair are:
  1029   // The painful thing here is that like long_move a VMRegPair might be
  1031   // Because of the calling convention we know that src is either
  1032   //   1: a single physical register (xmm registers only)
  1033   //   2: two stack slots (possibly unaligned)
  1034   // dst can only be a pair of stack slots.
  1036   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1038   if (src.first()->is_stack()) {
  1039     // source is all stack
  1040     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1041     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1042     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1043     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1044   } else {
  1045     // reg to stack
  1046     // No worries about stack alignment
  1047     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1052 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1053   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1054   // which by this time is free to use
  1055   switch (ret_type) {
  1056   case T_FLOAT:
  1057     __ fstp_s(Address(rbp, -wordSize));
  1058     break;
  1059   case T_DOUBLE:
  1060     __ fstp_d(Address(rbp, -2*wordSize));
  1061     break;
  1062   case T_VOID:  break;
  1063   case T_LONG:
  1064     __ movptr(Address(rbp, -wordSize), rax);
  1065     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1066     break;
  1067   default: {
  1068     __ movptr(Address(rbp, -wordSize), rax);
  1073 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1074   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1075   // which by this time is free to use
  1076   switch (ret_type) {
  1077   case T_FLOAT:
  1078     __ fld_s(Address(rbp, -wordSize));
  1079     break;
  1080   case T_DOUBLE:
  1081     __ fld_d(Address(rbp, -2*wordSize));
  1082     break;
  1083   case T_LONG:
  1084     __ movptr(rax, Address(rbp, -wordSize));
  1085     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1086     break;
  1087   case T_VOID:  break;
  1088   default: {
  1089     __ movptr(rax, Address(rbp, -wordSize));
  1094 // ---------------------------------------------------------------------------
  1095 // Generate a native wrapper for a given method.  The method takes arguments
  1096 // in the Java compiled code convention, marshals them to the native
  1097 // convention (handlizes oops, etc), transitions to native, makes the call,
  1098 // returns to java state (possibly blocking), unhandlizes any result and
  1099 // returns.
  1100 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1101                                                 methodHandle method,
  1102                                                 int compile_id,
  1103                                                 int total_in_args,
  1104                                                 int comp_args_on_stack,
  1105                                                 BasicType *in_sig_bt,
  1106                                                 VMRegPair *in_regs,
  1107                                                 BasicType ret_type) {
  1109   // An OopMap for lock (and class if static)
  1110   OopMapSet *oop_maps = new OopMapSet();
  1112   // We have received a description of where all the java arg are located
  1113   // on entry to the wrapper. We need to convert these args to where
  1114   // the jni function will expect them. To figure out where they go
  1115   // we convert the java signature to a C signature by inserting
  1116   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1118   int total_c_args = total_in_args + 1;
  1119   if (method->is_static()) {
  1120     total_c_args++;
  1123   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1124   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1126   int argc = 0;
  1127   out_sig_bt[argc++] = T_ADDRESS;
  1128   if (method->is_static()) {
  1129     out_sig_bt[argc++] = T_OBJECT;
  1132   int i;
  1133   for (i = 0; i < total_in_args ; i++ ) {
  1134     out_sig_bt[argc++] = in_sig_bt[i];
  1138   // Now figure out where the args must be stored and how much stack space
  1139   // they require (neglecting out_preserve_stack_slots but space for storing
  1140   // the 1st six register arguments). It's weird see int_stk_helper.
  1141   //
  1142   int out_arg_slots;
  1143   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1145   // Compute framesize for the wrapper.  We need to handlize all oops in
  1146   // registers a max of 2 on x86.
  1148   // Calculate the total number of stack slots we will need.
  1150   // First count the abi requirement plus all of the outgoing args
  1151   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1153   // Now the space for the inbound oop handle area
  1155   int oop_handle_offset = stack_slots;
  1156   stack_slots += 2*VMRegImpl::slots_per_word;
  1158   // Now any space we need for handlizing a klass if static method
  1160   int klass_slot_offset = 0;
  1161   int klass_offset = -1;
  1162   int lock_slot_offset = 0;
  1163   bool is_static = false;
  1164   int oop_temp_slot_offset = 0;
  1166   if (method->is_static()) {
  1167     klass_slot_offset = stack_slots;
  1168     stack_slots += VMRegImpl::slots_per_word;
  1169     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1170     is_static = true;
  1173   // Plus a lock if needed
  1175   if (method->is_synchronized()) {
  1176     lock_slot_offset = stack_slots;
  1177     stack_slots += VMRegImpl::slots_per_word;
  1180   // Now a place (+2) to save return values or temp during shuffling
  1181   // + 2 for return address (which we own) and saved rbp,
  1182   stack_slots += 4;
  1184   // Ok The space we have allocated will look like:
  1185   //
  1186   //
  1187   // FP-> |                     |
  1188   //      |---------------------|
  1189   //      | 2 slots for moves   |
  1190   //      |---------------------|
  1191   //      | lock box (if sync)  |
  1192   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1193   //      | klass (if static)   |
  1194   //      |---------------------| <- klass_slot_offset
  1195   //      | oopHandle area      |
  1196   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1197   //      | outbound memory     |
  1198   //      | based arguments     |
  1199   //      |                     |
  1200   //      |---------------------|
  1201   //      |                     |
  1202   // SP-> | out_preserved_slots |
  1203   //
  1204   //
  1205   // ****************************************************************************
  1206   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1207   // arguments off of the stack after the jni call. Before the call we can use
  1208   // instructions that are SP relative. After the jni call we switch to FP
  1209   // relative instructions instead of re-adjusting the stack on windows.
  1210   // ****************************************************************************
  1213   // Now compute actual number of stack words we need rounding to make
  1214   // stack properly aligned.
  1215   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1217   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1219   intptr_t start = (intptr_t)__ pc();
  1221   // First thing make an ic check to see if we should even be here
  1223   // We are free to use all registers as temps without saving them and
  1224   // restoring them except rbp,. rbp, is the only callee save register
  1225   // as far as the interpreter and the compiler(s) are concerned.
  1228   const Register ic_reg = rax;
  1229   const Register receiver = rcx;
  1230   Label hit;
  1231   Label exception_pending;
  1234   __ verify_oop(receiver);
  1235   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1236   __ jcc(Assembler::equal, hit);
  1238   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1240   // verified entry must be aligned for code patching.
  1241   // and the first 5 bytes must be in the same cache line
  1242   // if we align at 8 then we will be sure 5 bytes are in the same line
  1243   __ align(8);
  1245   __ bind(hit);
  1247   int vep_offset = ((intptr_t)__ pc()) - start;
  1249 #ifdef COMPILER1
  1250   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1251     // Object.hashCode can pull the hashCode from the header word
  1252     // instead of doing a full VM transition once it's been computed.
  1253     // Since hashCode is usually polymorphic at call sites we can't do
  1254     // this optimization at the call site without a lot of work.
  1255     Label slowCase;
  1256     Register receiver = rcx;
  1257     Register result = rax;
  1258     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1260     // check if locked
  1261     __ testptr(result, markOopDesc::unlocked_value);
  1262     __ jcc (Assembler::zero, slowCase);
  1264     if (UseBiasedLocking) {
  1265       // Check if biased and fall through to runtime if so
  1266       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1267       __ jcc (Assembler::notZero, slowCase);
  1270     // get hash
  1271     __ andptr(result, markOopDesc::hash_mask_in_place);
  1272     // test if hashCode exists
  1273     __ jcc  (Assembler::zero, slowCase);
  1274     __ shrptr(result, markOopDesc::hash_shift);
  1275     __ ret(0);
  1276     __ bind (slowCase);
  1278 #endif // COMPILER1
  1280   // The instruction at the verified entry point must be 5 bytes or longer
  1281   // because it can be patched on the fly by make_non_entrant. The stack bang
  1282   // instruction fits that requirement.
  1284   // Generate stack overflow check
  1286   if (UseStackBanging) {
  1287     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1288   } else {
  1289     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1290     __ fat_nop();
  1293   // Generate a new frame for the wrapper.
  1294   __ enter();
  1295   // -2 because return address is already present and so is saved rbp,
  1296   __ subptr(rsp, stack_size - 2*wordSize);
  1298   // Frame is now completed as far a size and linkage.
  1300   int frame_complete = ((intptr_t)__ pc()) - start;
  1302   // Calculate the difference between rsp and rbp,. We need to know it
  1303   // after the native call because on windows Java Natives will pop
  1304   // the arguments and it is painful to do rsp relative addressing
  1305   // in a platform independent way. So after the call we switch to
  1306   // rbp, relative addressing.
  1308   int fp_adjustment = stack_size - 2*wordSize;
  1310 #ifdef COMPILER2
  1311   // C2 may leave the stack dirty if not in SSE2+ mode
  1312   if (UseSSE >= 2) {
  1313     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1314   } else {
  1315     __ empty_FPU_stack();
  1317 #endif /* COMPILER2 */
  1319   // Compute the rbp, offset for any slots used after the jni call
  1321   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1322   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1324   // We use rdi as a thread pointer because it is callee save and
  1325   // if we load it once it is usable thru the entire wrapper
  1326   const Register thread = rdi;
  1328   // We use rsi as the oop handle for the receiver/klass
  1329   // It is callee save so it survives the call to native
  1331   const Register oop_handle_reg = rsi;
  1333   __ get_thread(thread);
  1336   //
  1337   // We immediately shuffle the arguments so that any vm call we have to
  1338   // make from here on out (sync slow path, jvmti, etc.) we will have
  1339   // captured the oops from our caller and have a valid oopMap for
  1340   // them.
  1342   // -----------------
  1343   // The Grand Shuffle
  1344   //
  1345   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1346   // and, if static, the class mirror instead of a receiver.  This pretty much
  1347   // guarantees that register layout will not match (and x86 doesn't use reg
  1348   // parms though amd does).  Since the native abi doesn't use register args
  1349   // and the java conventions does we don't have to worry about collisions.
  1350   // All of our moved are reg->stack or stack->stack.
  1351   // We ignore the extra arguments during the shuffle and handle them at the
  1352   // last moment. The shuffle is described by the two calling convention
  1353   // vectors we have in our possession. We simply walk the java vector to
  1354   // get the source locations and the c vector to get the destinations.
  1356   int c_arg = method->is_static() ? 2 : 1 ;
  1358   // Record rsp-based slot for receiver on stack for non-static methods
  1359   int receiver_offset = -1;
  1361   // This is a trick. We double the stack slots so we can claim
  1362   // the oops in the caller's frame. Since we are sure to have
  1363   // more args than the caller doubling is enough to make
  1364   // sure we can capture all the incoming oop args from the
  1365   // caller.
  1366   //
  1367   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1369   // Mark location of rbp,
  1370   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1372   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1373   // Are free to temporaries if we have to do  stack to steck moves.
  1374   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1376   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
  1377     switch (in_sig_bt[i]) {
  1378       case T_ARRAY:
  1379       case T_OBJECT:
  1380         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1381                     ((i == 0) && (!is_static)),
  1382                     &receiver_offset);
  1383         break;
  1384       case T_VOID:
  1385         break;
  1387       case T_FLOAT:
  1388         float_move(masm, in_regs[i], out_regs[c_arg]);
  1389           break;
  1391       case T_DOUBLE:
  1392         assert( i + 1 < total_in_args &&
  1393                 in_sig_bt[i + 1] == T_VOID &&
  1394                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1395         double_move(masm, in_regs[i], out_regs[c_arg]);
  1396         break;
  1398       case T_LONG :
  1399         long_move(masm, in_regs[i], out_regs[c_arg]);
  1400         break;
  1402       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1404       default:
  1405         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1409   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1410   // the normal JNI call code.
  1411   if (method->is_static()) {
  1413     //  load opp into a register
  1414     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1416     // Now handlize the static class mirror it's known not-null.
  1417     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1418     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1420     // Now get the handle
  1421     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1422     // store the klass handle as second argument
  1423     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1426   // Change state to native (we save the return address in the thread, since it might not
  1427   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1428   // points into the right code segment. It does not have to be the correct return pc.
  1429   // We use the same pc/oopMap repeatedly when we call out
  1431   intptr_t the_pc = (intptr_t) __ pc();
  1432   oop_maps->add_gc_map(the_pc - start, map);
  1434   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1437   // We have all of the arguments setup at this point. We must not touch any register
  1438   // argument registers at this point (what if we save/restore them there are no oop?
  1441     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1442     __ movoop(rax, JNIHandles::make_local(method()));
  1443     __ call_VM_leaf(
  1444          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1445          thread, rax);
  1448   // RedefineClasses() tracing support for obsolete method entry
  1449   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1450     __ movoop(rax, JNIHandles::make_local(method()));
  1451     __ call_VM_leaf(
  1452          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1453          thread, rax);
  1456   // These are register definitions we need for locking/unlocking
  1457   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1458   const Register obj_reg  = rcx;  // Will contain the oop
  1459   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1461   Label slow_path_lock;
  1462   Label lock_done;
  1464   // Lock a synchronized method
  1465   if (method->is_synchronized()) {
  1468     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1470     // Get the handle (the 2nd argument)
  1471     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1473     // Get address of the box
  1475     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  1477     // Load the oop from the handle
  1478     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1480     if (UseBiasedLocking) {
  1481       // Note that oop_handle_reg is trashed during this call
  1482       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  1485     // Load immediate 1 into swap_reg %rax,
  1486     __ movptr(swap_reg, 1);
  1488     // Load (object->mark() | 1) into swap_reg %rax,
  1489     __ orptr(swap_reg, Address(obj_reg, 0));
  1491     // Save (object->mark() | 1) into BasicLock's displaced header
  1492     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1494     if (os::is_MP()) {
  1495       __ lock();
  1498     // src -> dest iff dest == rax, else rax, <- dest
  1499     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  1500     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1501     __ jcc(Assembler::equal, lock_done);
  1503     // Test if the oopMark is an obvious stack pointer, i.e.,
  1504     //  1) (mark & 3) == 0, and
  1505     //  2) rsp <= mark < mark + os::pagesize()
  1506     // These 3 tests can be done by evaluating the following
  1507     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1508     // assuming both stack pointer and pagesize have their
  1509     // least significant 2 bits clear.
  1510     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  1512     __ subptr(swap_reg, rsp);
  1513     __ andptr(swap_reg, 3 - os::vm_page_size());
  1515     // Save the test result, for recursive case, the result is zero
  1516     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1517     __ jcc(Assembler::notEqual, slow_path_lock);
  1518     // Slow path will re-enter here
  1519     __ bind(lock_done);
  1521     if (UseBiasedLocking) {
  1522       // Re-fetch oop_handle_reg as we trashed it above
  1523       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1528   // Finally just about ready to make the JNI call
  1531   // get JNIEnv* which is first argument to native
  1533   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  1534   __ movptr(Address(rsp, 0), rdx);
  1536   // Now set thread in native
  1537   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1539   __ call(RuntimeAddress(method->native_function()));
  1541   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1542   // arguments off of the stack. We could just re-adjust the stack pointer here
  1543   // and continue to do SP relative addressing but we instead switch to FP
  1544   // relative addressing.
  1546   // Unpack native results.
  1547   switch (ret_type) {
  1548   case T_BOOLEAN: __ c2bool(rax);            break;
  1549   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  1550   case T_BYTE   : __ sign_extend_byte (rax); break;
  1551   case T_SHORT  : __ sign_extend_short(rax); break;
  1552   case T_INT    : /* nothing to do */        break;
  1553   case T_DOUBLE :
  1554   case T_FLOAT  :
  1555     // Result is in st0 we'll save as needed
  1556     break;
  1557   case T_ARRAY:                 // Really a handle
  1558   case T_OBJECT:                // Really a handle
  1559       break; // can't de-handlize until after safepoint check
  1560   case T_VOID: break;
  1561   case T_LONG: break;
  1562   default       : ShouldNotReachHere();
  1565   // Switch thread to "native transition" state before reading the synchronization state.
  1566   // This additional state is necessary because reading and testing the synchronization
  1567   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1568   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1569   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1570   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1571   //     didn't see any synchronization is progress, and escapes.
  1572   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1574   if(os::is_MP()) {
  1575     if (UseMembar) {
  1576       // Force this write out before the read below
  1577       __ membar(Assembler::Membar_mask_bits(
  1578            Assembler::LoadLoad | Assembler::LoadStore |
  1579            Assembler::StoreLoad | Assembler::StoreStore));
  1580     } else {
  1581       // Write serialization page so VM thread can do a pseudo remote membar.
  1582       // We use the current thread pointer to calculate a thread specific
  1583       // offset to write to within the page. This minimizes bus traffic
  1584       // due to cache line collision.
  1585       __ serialize_memory(thread, rcx);
  1589   if (AlwaysRestoreFPU) {
  1590     // Make sure the control word is correct.
  1591     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1594   // check for safepoint operation in progress and/or pending suspend requests
  1595   { Label Continue;
  1597     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1598              SafepointSynchronize::_not_synchronized);
  1600     Label L;
  1601     __ jcc(Assembler::notEqual, L);
  1602     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1603     __ jcc(Assembler::equal, Continue);
  1604     __ bind(L);
  1606     // Don't use call_VM as it will see a possible pending exception and forward it
  1607     // and never return here preventing us from clearing _last_native_pc down below.
  1608     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1609     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1610     // by hand.
  1611     //
  1612     save_native_result(masm, ret_type, stack_slots);
  1613     __ push(thread);
  1614     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1615                                             JavaThread::check_special_condition_for_native_trans)));
  1616     __ increment(rsp, wordSize);
  1617     // Restore any method result value
  1618     restore_native_result(masm, ret_type, stack_slots);
  1620     __ bind(Continue);
  1623   // change thread state
  1624   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1626   Label reguard;
  1627   Label reguard_done;
  1628   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1629   __ jcc(Assembler::equal, reguard);
  1631   // slow path reguard  re-enters here
  1632   __ bind(reguard_done);
  1634   // Handle possible exception (will unlock if necessary)
  1636   // native result if any is live
  1638   // Unlock
  1639   Label slow_path_unlock;
  1640   Label unlock_done;
  1641   if (method->is_synchronized()) {
  1643     Label done;
  1645     // Get locked oop from the handle we passed to jni
  1646     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1648     if (UseBiasedLocking) {
  1649       __ biased_locking_exit(obj_reg, rbx, done);
  1652     // Simple recursive lock?
  1654     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  1655     __ jcc(Assembler::equal, done);
  1657     // Must save rax, if if it is live now because cmpxchg must use it
  1658     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1659       save_native_result(masm, ret_type, stack_slots);
  1662     //  get old displaced header
  1663     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  1665     // get address of the stack lock
  1666     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  1668     // Atomic swap old header if oop still contains the stack lock
  1669     if (os::is_MP()) {
  1670     __ lock();
  1673     // src -> dest iff dest == rax, else rax, <- dest
  1674     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  1675     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  1676     __ jcc(Assembler::notEqual, slow_path_unlock);
  1678     // slow path re-enters here
  1679     __ bind(unlock_done);
  1680     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1681       restore_native_result(masm, ret_type, stack_slots);
  1684     __ bind(done);
  1689     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1690     // Tell dtrace about this method exit
  1691     save_native_result(masm, ret_type, stack_slots);
  1692     __ movoop(rax, JNIHandles::make_local(method()));
  1693     __ call_VM_leaf(
  1694          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1695          thread, rax);
  1696     restore_native_result(masm, ret_type, stack_slots);
  1699   // We can finally stop using that last_Java_frame we setup ages ago
  1701   __ reset_last_Java_frame(thread, false, true);
  1703   // Unpack oop result
  1704   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  1705       Label L;
  1706       __ cmpptr(rax, (int32_t)NULL_WORD);
  1707       __ jcc(Assembler::equal, L);
  1708       __ movptr(rax, Address(rax, 0));
  1709       __ bind(L);
  1710       __ verify_oop(rax);
  1713   // reset handle block
  1714   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  1716   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1718   // Any exception pending?
  1719   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1720   __ jcc(Assembler::notEqual, exception_pending);
  1723   // no exception, we're almost done
  1725   // check that only result value is on FPU stack
  1726   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  1728   // Fixup floating pointer results so that result looks like a return from a compiled method
  1729   if (ret_type == T_FLOAT) {
  1730     if (UseSSE >= 1) {
  1731       // Pop st0 and store as float and reload into xmm register
  1732       __ fstp_s(Address(rbp, -4));
  1733       __ movflt(xmm0, Address(rbp, -4));
  1735   } else if (ret_type == T_DOUBLE) {
  1736     if (UseSSE >= 2) {
  1737       // Pop st0 and store as double and reload into xmm register
  1738       __ fstp_d(Address(rbp, -8));
  1739       __ movdbl(xmm0, Address(rbp, -8));
  1743   // Return
  1745   __ leave();
  1746   __ ret(0);
  1748   // Unexpected paths are out of line and go here
  1750   // Slow path locking & unlocking
  1751   if (method->is_synchronized()) {
  1753     // BEGIN Slow path lock
  1755     __ bind(slow_path_lock);
  1757     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  1758     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  1759     __ push(thread);
  1760     __ push(lock_reg);
  1761     __ push(obj_reg);
  1762     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  1763     __ addptr(rsp, 3*wordSize);
  1765 #ifdef ASSERT
  1766     { Label L;
  1767     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1768     __ jcc(Assembler::equal, L);
  1769     __ stop("no pending exception allowed on exit from monitorenter");
  1770     __ bind(L);
  1772 #endif
  1773     __ jmp(lock_done);
  1775     // END Slow path lock
  1777     // BEGIN Slow path unlock
  1778     __ bind(slow_path_unlock);
  1780     // Slow path unlock
  1782     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1783       save_native_result(masm, ret_type, stack_slots);
  1785     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  1787     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  1788     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
  1791     // should be a peal
  1792     // +wordSize because of the push above
  1793     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  1794     __ push(rax);
  1796     __ push(obj_reg);
  1797     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  1798     __ addptr(rsp, 2*wordSize);
  1799 #ifdef ASSERT
  1801       Label L;
  1802       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1803       __ jcc(Assembler::equal, L);
  1804       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  1805       __ bind(L);
  1807 #endif /* ASSERT */
  1809     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  1811     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1812       restore_native_result(masm, ret_type, stack_slots);
  1814     __ jmp(unlock_done);
  1815     // END Slow path unlock
  1819   // SLOW PATH Reguard the stack if needed
  1821   __ bind(reguard);
  1822   save_native_result(masm, ret_type, stack_slots);
  1824     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1826   restore_native_result(masm, ret_type, stack_slots);
  1827   __ jmp(reguard_done);
  1830   // BEGIN EXCEPTION PROCESSING
  1832   // Forward  the exception
  1833   __ bind(exception_pending);
  1835   // remove possible return value from FPU register stack
  1836   __ empty_FPU_stack();
  1838   // pop our frame
  1839   __ leave();
  1840   // and forward the exception
  1841   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1843   __ flush();
  1845   nmethod *nm = nmethod::new_native_nmethod(method,
  1846                                             compile_id,
  1847                                             masm->code(),
  1848                                             vep_offset,
  1849                                             frame_complete,
  1850                                             stack_slots / VMRegImpl::slots_per_word,
  1851                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  1852                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  1853                                             oop_maps);
  1854   return nm;
  1858 #ifdef HAVE_DTRACE_H
  1859 // ---------------------------------------------------------------------------
  1860 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  1861 // in the Java compiled code convention, marshals them to the native
  1862 // abi and then leaves nops at the position you would expect to call a native
  1863 // function. When the probe is enabled the nops are replaced with a trap
  1864 // instruction that dtrace inserts and the trace will cause a notification
  1865 // to dtrace.
  1866 //
  1867 // The probes are only able to take primitive types and java/lang/String as
  1868 // arguments.  No other java types are allowed. Strings are converted to utf8
  1869 // strings so that from dtrace point of view java strings are converted to C
  1870 // strings. There is an arbitrary fixed limit on the total space that a method
  1871 // can use for converting the strings. (256 chars per string in the signature).
  1872 // So any java string larger then this is truncated.
  1874 nmethod *SharedRuntime::generate_dtrace_nmethod(
  1875     MacroAssembler *masm, methodHandle method) {
  1877   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  1878   // be single threaded in this method.
  1879   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  1881   // Fill in the signature array, for the calling-convention call.
  1882   int total_args_passed = method->size_of_parameters();
  1884   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  1885   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  1887   // The signature we are going to use for the trap that dtrace will see
  1888   // java/lang/String is converted. We drop "this" and any other object
  1889   // is converted to NULL.  (A one-slot java/lang/Long object reference
  1890   // is converted to a two-slot long, which is why we double the allocation).
  1891   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  1892   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  1894   int i=0;
  1895   int total_strings = 0;
  1896   int first_arg_to_pass = 0;
  1897   int total_c_args = 0;
  1899   if( !method->is_static() ) {  // Pass in receiver first
  1900     in_sig_bt[i++] = T_OBJECT;
  1901     first_arg_to_pass = 1;
  1904   // We need to convert the java args to where a native (non-jni) function
  1905   // would expect them. To figure out where they go we convert the java
  1906   // signature to a C signature.
  1908   SignatureStream ss(method->signature());
  1909   for ( ; !ss.at_return_type(); ss.next()) {
  1910     BasicType bt = ss.type();
  1911     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  1912     out_sig_bt[total_c_args++] = bt;
  1913     if( bt == T_OBJECT) {
  1914       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  1915       if (s == vmSymbols::java_lang_String()) {
  1916         total_strings++;
  1917         out_sig_bt[total_c_args-1] = T_ADDRESS;
  1918       } else if (s == vmSymbols::java_lang_Boolean() ||
  1919                  s == vmSymbols::java_lang_Character() ||
  1920                  s == vmSymbols::java_lang_Byte() ||
  1921                  s == vmSymbols::java_lang_Short() ||
  1922                  s == vmSymbols::java_lang_Integer() ||
  1923                  s == vmSymbols::java_lang_Float()) {
  1924         out_sig_bt[total_c_args-1] = T_INT;
  1925       } else if (s == vmSymbols::java_lang_Long() ||
  1926                  s == vmSymbols::java_lang_Double()) {
  1927         out_sig_bt[total_c_args-1] = T_LONG;
  1928         out_sig_bt[total_c_args++] = T_VOID;
  1930     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  1931       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1932       out_sig_bt[total_c_args++] = T_VOID;
  1936   assert(i==total_args_passed, "validly parsed signature");
  1938   // Now get the compiled-Java layout as input arguments
  1939   int comp_args_on_stack;
  1940   comp_args_on_stack = SharedRuntime::java_calling_convention(
  1941       in_sig_bt, in_regs, total_args_passed, false);
  1943   // Now figure out where the args must be stored and how much stack space
  1944   // they require (neglecting out_preserve_stack_slots).
  1946   int out_arg_slots;
  1947   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1949   // Calculate the total number of stack slots we will need.
  1951   // First count the abi requirement plus all of the outgoing args
  1952   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1954   // Now space for the string(s) we must convert
  1956   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  1957   for (i = 0; i < total_strings ; i++) {
  1958     string_locs[i] = stack_slots;
  1959     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  1962   // + 2 for return address (which we own) and saved rbp,
  1964   stack_slots += 2;
  1966   // Ok The space we have allocated will look like:
  1967   //
  1968   //
  1969   // FP-> |                     |
  1970   //      |---------------------|
  1971   //      | string[n]           |
  1972   //      |---------------------| <- string_locs[n]
  1973   //      | string[n-1]         |
  1974   //      |---------------------| <- string_locs[n-1]
  1975   //      | ...                 |
  1976   //      | ...                 |
  1977   //      |---------------------| <- string_locs[1]
  1978   //      | string[0]           |
  1979   //      |---------------------| <- string_locs[0]
  1980   //      | outbound memory     |
  1981   //      | based arguments     |
  1982   //      |                     |
  1983   //      |---------------------|
  1984   //      |                     |
  1985   // SP-> | out_preserved_slots |
  1986   //
  1987   //
  1989   // Now compute actual number of stack words we need rounding to make
  1990   // stack properly aligned.
  1991   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  1993   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1995   intptr_t start = (intptr_t)__ pc();
  1997   // First thing make an ic check to see if we should even be here
  1999   // We are free to use all registers as temps without saving them and
  2000   // restoring them except rbp. rbp, is the only callee save register
  2001   // as far as the interpreter and the compiler(s) are concerned.
  2003   const Register ic_reg = rax;
  2004   const Register receiver = rcx;
  2005   Label hit;
  2006   Label exception_pending;
  2009   __ verify_oop(receiver);
  2010   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2011   __ jcc(Assembler::equal, hit);
  2013   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2015   // verified entry must be aligned for code patching.
  2016   // and the first 5 bytes must be in the same cache line
  2017   // if we align at 8 then we will be sure 5 bytes are in the same line
  2018   __ align(8);
  2020   __ bind(hit);
  2022   int vep_offset = ((intptr_t)__ pc()) - start;
  2025   // The instruction at the verified entry point must be 5 bytes or longer
  2026   // because it can be patched on the fly by make_non_entrant. The stack bang
  2027   // instruction fits that requirement.
  2029   // Generate stack overflow check
  2032   if (UseStackBanging) {
  2033     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2034       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2035     } else {
  2036       __ movl(rax, stack_size);
  2037       __ bang_stack_size(rax, rbx);
  2039   } else {
  2040     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2041     __ fat_nop();
  2044   assert(((int)__ pc() - start - vep_offset) >= 5,
  2045          "valid size for make_non_entrant");
  2047   // Generate a new frame for the wrapper.
  2048   __ enter();
  2050   // -2 because return address is already present and so is saved rbp,
  2051   if (stack_size - 2*wordSize != 0) {
  2052     __ subl(rsp, stack_size - 2*wordSize);
  2055   // Frame is now completed as far a size and linkage.
  2057   int frame_complete = ((intptr_t)__ pc()) - start;
  2059   // First thing we do store all the args as if we are doing the call.
  2060   // Since the C calling convention is stack based that ensures that
  2061   // all the Java register args are stored before we need to convert any
  2062   // string we might have.
  2064   int sid = 0;
  2065   int c_arg, j_arg;
  2066   int string_reg = 0;
  2068   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2069        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2071     VMRegPair src = in_regs[j_arg];
  2072     VMRegPair dst = out_regs[c_arg];
  2073     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2074            "stack based abi assumed");
  2076     switch (in_sig_bt[j_arg]) {
  2078       case T_ARRAY:
  2079       case T_OBJECT:
  2080         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2081           // Any register based arg for a java string after the first
  2082           // will be destroyed by the call to get_utf so we store
  2083           // the original value in the location the utf string address
  2084           // will eventually be stored.
  2085           if (src.first()->is_reg()) {
  2086             if (string_reg++ != 0) {
  2087               simple_move32(masm, src, dst);
  2090         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2091           // need to unbox a one-word value
  2092           Register in_reg = rax;
  2093           if ( src.first()->is_reg() ) {
  2094             in_reg = src.first()->as_Register();
  2095           } else {
  2096             simple_move32(masm, src, in_reg->as_VMReg());
  2098           Label skipUnbox;
  2099           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2100           if ( out_sig_bt[c_arg] == T_LONG ) {
  2101             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2103           __ testl(in_reg, in_reg);
  2104           __ jcc(Assembler::zero, skipUnbox);
  2105           assert(dst.first()->is_stack() &&
  2106                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2107                  "value(s) must go into stack slots");
  2109           BasicType bt = out_sig_bt[c_arg];
  2110           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2111           if ( bt == T_LONG ) {
  2112             __ movl(rbx, Address(in_reg,
  2113                                  box_offset + VMRegImpl::stack_slot_size));
  2114             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2116           __ movl(in_reg,  Address(in_reg, box_offset));
  2117           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2118           __ bind(skipUnbox);
  2119         } else {
  2120           // Convert the arg to NULL
  2121           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2123         if (out_sig_bt[c_arg] == T_LONG) {
  2124           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2125           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2127         break;
  2129       case T_VOID:
  2130         break;
  2132       case T_FLOAT:
  2133         float_move(masm, src, dst);
  2134         break;
  2136       case T_DOUBLE:
  2137         assert( j_arg + 1 < total_args_passed &&
  2138                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2139         double_move(masm, src, dst);
  2140         break;
  2142       case T_LONG :
  2143         long_move(masm, src, dst);
  2144         break;
  2146       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2148       default:
  2149         simple_move32(masm, src, dst);
  2153   // Now we must convert any string we have to utf8
  2154   //
  2156   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2157        sid < total_strings ; j_arg++, c_arg++ ) {
  2159     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2161       Address utf8_addr = Address(
  2162           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2163       __ leal(rax, utf8_addr);
  2165       // The first string we find might still be in the original java arg
  2166       // register
  2167       VMReg orig_loc = in_regs[j_arg].first();
  2168       Register string_oop;
  2170       // This is where the argument will eventually reside
  2171       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2173       if (sid == 1 && orig_loc->is_reg()) {
  2174         string_oop = orig_loc->as_Register();
  2175         assert(string_oop != rax, "smashed arg");
  2176       } else {
  2178         if (orig_loc->is_reg()) {
  2179           // Get the copy of the jls object
  2180           __ movl(rcx, dest);
  2181         } else {
  2182           // arg is still in the original location
  2183           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2185         string_oop = rcx;
  2188       Label nullString;
  2189       __ movl(dest, NULL_WORD);
  2190       __ testl(string_oop, string_oop);
  2191       __ jcc(Assembler::zero, nullString);
  2193       // Now we can store the address of the utf string as the argument
  2194       __ movl(dest, rax);
  2196       // And do the conversion
  2197       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2198              address, SharedRuntime::get_utf), string_oop, rax);
  2199       __ bind(nullString);
  2202     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2203       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2204       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2209   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2210   // patch in the trap
  2212   int patch_offset = ((intptr_t)__ pc()) - start;
  2214   __ nop();
  2217   // Return
  2219   __ leave();
  2220   __ ret(0);
  2222   __ flush();
  2224   nmethod *nm = nmethod::new_dtrace_nmethod(
  2225       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2226       stack_slots / VMRegImpl::slots_per_word);
  2227   return nm;
  2231 #endif // HAVE_DTRACE_H
  2233 // this function returns the adjust size (in number of words) to a c2i adapter
  2234 // activation for use during deoptimization
  2235 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2236   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2240 uint SharedRuntime::out_preserve_stack_slots() {
  2241   return 0;
  2245 //------------------------------generate_deopt_blob----------------------------
  2246 void SharedRuntime::generate_deopt_blob() {
  2247   // allocate space for the code
  2248   ResourceMark rm;
  2249   // setup code generation tools
  2250   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2251   MacroAssembler* masm = new MacroAssembler(&buffer);
  2252   int frame_size_in_words;
  2253   OopMap* map = NULL;
  2254   // Account for the extra args we place on the stack
  2255   // by the time we call fetch_unroll_info
  2256   const int additional_words = 2; // deopt kind, thread
  2258   OopMapSet *oop_maps = new OopMapSet();
  2260   // -------------
  2261   // This code enters when returning to a de-optimized nmethod.  A return
  2262   // address has been pushed on the the stack, and return values are in
  2263   // registers.
  2264   // If we are doing a normal deopt then we were called from the patched
  2265   // nmethod from the point we returned to the nmethod. So the return
  2266   // address on the stack is wrong by NativeCall::instruction_size
  2267   // We will adjust the value to it looks like we have the original return
  2268   // address on the stack (like when we eagerly deoptimized).
  2269   // In the case of an exception pending with deoptimized then we enter
  2270   // with a return address on the stack that points after the call we patched
  2271   // into the exception handler. We have the following register state:
  2272   //    rax,: exception
  2273   //    rbx,: exception handler
  2274   //    rdx: throwing pc
  2275   // So in this case we simply jam rdx into the useless return address and
  2276   // the stack looks just like we want.
  2277   //
  2278   // At this point we need to de-opt.  We save the argument return
  2279   // registers.  We call the first C routine, fetch_unroll_info().  This
  2280   // routine captures the return values and returns a structure which
  2281   // describes the current frame size and the sizes of all replacement frames.
  2282   // The current frame is compiled code and may contain many inlined
  2283   // functions, each with their own JVM state.  We pop the current frame, then
  2284   // push all the new frames.  Then we call the C routine unpack_frames() to
  2285   // populate these frames.  Finally unpack_frames() returns us the new target
  2286   // address.  Notice that callee-save registers are BLOWN here; they have
  2287   // already been captured in the vframeArray at the time the return PC was
  2288   // patched.
  2289   address start = __ pc();
  2290   Label cont;
  2292   // Prolog for non exception case!
  2294   // Save everything in sight.
  2296   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2297   // Normal deoptimization
  2298   __ push(Deoptimization::Unpack_deopt);
  2299   __ jmp(cont);
  2301   int reexecute_offset = __ pc() - start;
  2303   // Reexecute case
  2304   // return address is the pc describes what bci to do re-execute at
  2306   // No need to update map as each call to save_live_registers will produce identical oopmap
  2307   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2309   __ push(Deoptimization::Unpack_reexecute);
  2310   __ jmp(cont);
  2312   int exception_offset = __ pc() - start;
  2314   // Prolog for exception case
  2316   // all registers are dead at this entry point, except for rax, and
  2317   // rdx which contain the exception oop and exception pc
  2318   // respectively.  Set them in TLS and fall thru to the
  2319   // unpack_with_exception_in_tls entry point.
  2321   __ get_thread(rdi);
  2322   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2323   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2325   int exception_in_tls_offset = __ pc() - start;
  2327   // new implementation because exception oop is now passed in JavaThread
  2329   // Prolog for exception case
  2330   // All registers must be preserved because they might be used by LinearScan
  2331   // Exceptiop oop and throwing PC are passed in JavaThread
  2332   // tos: stack at point of call to method that threw the exception (i.e. only
  2333   // args are on the stack, no return address)
  2335   // make room on stack for the return address
  2336   // It will be patched later with the throwing pc. The correct value is not
  2337   // available now because loading it from memory would destroy registers.
  2338   __ push(0);
  2340   // Save everything in sight.
  2342   // No need to update map as each call to save_live_registers will produce identical oopmap
  2343   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2345   // Now it is safe to overwrite any register
  2347   // store the correct deoptimization type
  2348   __ push(Deoptimization::Unpack_exception);
  2350   // load throwing pc from JavaThread and patch it as the return address
  2351   // of the current frame. Then clear the field in JavaThread
  2352   __ get_thread(rdi);
  2353   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2354   __ movptr(Address(rbp, wordSize), rdx);
  2355   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
  2357 #ifdef ASSERT
  2358   // verify that there is really an exception oop in JavaThread
  2359   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2360   __ verify_oop(rax);
  2362   // verify that there is no pending exception
  2363   Label no_pending_exception;
  2364   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2365   __ testptr(rax, rax);
  2366   __ jcc(Assembler::zero, no_pending_exception);
  2367   __ stop("must not have pending exception here");
  2368   __ bind(no_pending_exception);
  2369 #endif
  2371   __ bind(cont);
  2373   // Compiled code leaves the floating point stack dirty, empty it.
  2374   __ empty_FPU_stack();
  2377   // Call C code.  Need thread and this frame, but NOT official VM entry
  2378   // crud.  We cannot block on this call, no GC can happen.
  2379   __ get_thread(rcx);
  2380   __ push(rcx);
  2381   // fetch_unroll_info needs to call last_java_frame()
  2382   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2384   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2386   // Need to have an oopmap that tells fetch_unroll_info where to
  2387   // find any register it might need.
  2389   oop_maps->add_gc_map( __ pc()-start, map);
  2391   // Discard arg to fetch_unroll_info
  2392   __ pop(rcx);
  2394   __ get_thread(rcx);
  2395   __ reset_last_Java_frame(rcx, false, false);
  2397   // Load UnrollBlock into EDI
  2398   __ mov(rdi, rax);
  2400   // Move the unpack kind to a safe place in the UnrollBlock because
  2401   // we are very short of registers
  2403   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2404   // retrieve the deopt kind from where we left it.
  2405   __ pop(rax);
  2406   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2408    Label noException;
  2409   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2410   __ jcc(Assembler::notEqual, noException);
  2411   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2412   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2413   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
  2414   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
  2416   __ verify_oop(rax);
  2418   // Overwrite the result registers with the exception results.
  2419   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2420   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2422   __ bind(noException);
  2424   // Stack is back to only having register save data on the stack.
  2425   // Now restore the result registers. Everything else is either dead or captured
  2426   // in the vframeArray.
  2428   RegisterSaver::restore_result_registers(masm);
  2430   // Non standard control word may be leaked out through a safepoint blob, and we can
  2431   // deopt at a poll point with the non standard control word. However, we should make
  2432   // sure the control word is correct after restore_result_registers.
  2433   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2435   // All of the register save area has been popped of the stack. Only the
  2436   // return address remains.
  2438   // Pop all the frames we must move/replace.
  2439   //
  2440   // Frame picture (youngest to oldest)
  2441   // 1: self-frame (no frame link)
  2442   // 2: deopting frame  (no frame link)
  2443   // 3: caller of deopting frame (could be compiled/interpreted).
  2444   //
  2445   // Note: by leaving the return address of self-frame on the stack
  2446   // and using the size of frame 2 to adjust the stack
  2447   // when we are done the return to frame 3 will still be on the stack.
  2449   // Pop deoptimized frame
  2450   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2452   // sp should be pointing at the return address to the caller (3)
  2454   // Stack bang to make sure there's enough room for these interpreter frames.
  2455   if (UseStackBanging) {
  2456     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2457     __ bang_stack_size(rbx, rcx);
  2460   // Load array of frame pcs into ECX
  2461   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2463   __ pop(rsi); // trash the old pc
  2465   // Load array of frame sizes into ESI
  2466   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2468   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2470   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2471   __ movl(counter, rbx);
  2473   // Pick up the initial fp we should save
  2474   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  2476   // Now adjust the caller's stack to make up for the extra locals
  2477   // but record the original sp so that we can save it in the skeletal interpreter
  2478   // frame and the stack walking of interpreter_sender will get the unextended sp
  2479   // value and not the "real" sp value.
  2481   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2482   __ movptr(sp_temp, rsp);
  2483   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2484   __ subptr(rsp, rbx);
  2486   // Push interpreter frames in a loop
  2487   Label loop;
  2488   __ bind(loop);
  2489   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2490 #ifdef CC_INTERP
  2491   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2492 #ifdef ASSERT
  2493   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2494   __ push(0xDEADDEAD);
  2495 #else /* ASSERT */
  2496   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2497 #endif /* ASSERT */
  2498 #else /* CC_INTERP */
  2499   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2500 #endif /* CC_INTERP */
  2501   __ pushptr(Address(rcx, 0));          // save return address
  2502   __ enter();                           // save old & set new rbp,
  2503   __ subptr(rsp, rbx);                  // Prolog!
  2504   __ movptr(rbx, sp_temp);              // sender's sp
  2505 #ifdef CC_INTERP
  2506   __ movptr(Address(rbp,
  2507                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2508           rbx); // Make it walkable
  2509 #else /* CC_INTERP */
  2510   // This value is corrected by layout_activation_impl
  2511   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  2512   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2513 #endif /* CC_INTERP */
  2514   __ movptr(sp_temp, rsp);              // pass to next frame
  2515   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2516   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2517   __ decrementl(counter);             // decrement counter
  2518   __ jcc(Assembler::notZero, loop);
  2519   __ pushptr(Address(rcx, 0));          // save final return address
  2521   // Re-push self-frame
  2522   __ enter();                           // save old & set new rbp,
  2524   //  Return address and rbp, are in place
  2525   // We'll push additional args later. Just allocate a full sized
  2526   // register save area
  2527   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  2529   // Restore frame locals after moving the frame
  2530   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2531   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2532   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  2533   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2534   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2536   // Set up the args to unpack_frame
  2538   __ pushl(unpack_kind);                     // get the unpack_kind value
  2539   __ get_thread(rcx);
  2540   __ push(rcx);
  2542   // set last_Java_sp, last_Java_fp
  2543   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  2545   // Call C code.  Need thread but NOT official VM entry
  2546   // crud.  We cannot block on this call, no GC can happen.  Call should
  2547   // restore return values to their stack-slots with the new SP.
  2548   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2549   // Set an oopmap for the call site
  2550   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  2552   // rax, contains the return result type
  2553   __ push(rax);
  2555   __ get_thread(rcx);
  2556   __ reset_last_Java_frame(rcx, false, false);
  2558   // Collect return values
  2559   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  2560   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  2562   // Clear floating point stack before returning to interpreter
  2563   __ empty_FPU_stack();
  2565   // Check if we should push the float or double return value.
  2566   Label results_done, yes_double_value;
  2567   __ cmpl(Address(rsp, 0), T_DOUBLE);
  2568   __ jcc (Assembler::zero, yes_double_value);
  2569   __ cmpl(Address(rsp, 0), T_FLOAT);
  2570   __ jcc (Assembler::notZero, results_done);
  2572   // return float value as expected by interpreter
  2573   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2574   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2575   __ jmp(results_done);
  2577   // return double value as expected by interpreter
  2578   __ bind(yes_double_value);
  2579   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2580   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2582   __ bind(results_done);
  2584   // Pop self-frame.
  2585   __ leave();                              // Epilog!
  2587   // Jump to interpreter
  2588   __ ret(0);
  2590   // -------------
  2591   // make sure all code is generated
  2592   masm->flush();
  2594   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  2595   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  2599 #ifdef COMPILER2
  2600 //------------------------------generate_uncommon_trap_blob--------------------
  2601 void SharedRuntime::generate_uncommon_trap_blob() {
  2602   // allocate space for the code
  2603   ResourceMark rm;
  2604   // setup code generation tools
  2605   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  2606   MacroAssembler* masm = new MacroAssembler(&buffer);
  2608   enum frame_layout {
  2609     arg0_off,      // thread                     sp + 0 // Arg location for
  2610     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  2611     // The frame sender code expects that rbp will be in the "natural" place and
  2612     // will override any oopMap setting for it. We must therefore force the layout
  2613     // so that it agrees with the frame sender code.
  2614     rbp_off,       // callee saved register      sp + 2
  2615     return_off,    // slot for return address    sp + 3
  2616     framesize
  2617   };
  2619   address start = __ pc();
  2620   // Push self-frame.
  2621   __ subptr(rsp, return_off*wordSize);     // Epilog!
  2623   // rbp, is an implicitly saved callee saved register (i.e. the calling
  2624   // convention will save restore it in prolog/epilog) Other than that
  2625   // there are no callee save registers no that adapter frames are gone.
  2626   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  2628   // Clear the floating point exception stack
  2629   __ empty_FPU_stack();
  2631   // set last_Java_sp
  2632   __ get_thread(rdx);
  2633   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  2635   // Call C code.  Need thread but NOT official VM entry
  2636   // crud.  We cannot block on this call, no GC can happen.  Call should
  2637   // capture callee-saved registers as well as return values.
  2638   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  2639   // argument already in ECX
  2640   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  2641   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2643   // Set an oopmap for the call site
  2644   OopMapSet *oop_maps = new OopMapSet();
  2645   OopMap* map =  new OopMap( framesize, 0 );
  2646   // No oopMap for rbp, it is known implicitly
  2648   oop_maps->add_gc_map( __ pc()-start, map);
  2650   __ get_thread(rcx);
  2652   __ reset_last_Java_frame(rcx, false, false);
  2654   // Load UnrollBlock into EDI
  2655   __ movptr(rdi, rax);
  2657   // Pop all the frames we must move/replace.
  2658   //
  2659   // Frame picture (youngest to oldest)
  2660   // 1: self-frame (no frame link)
  2661   // 2: deopting frame  (no frame link)
  2662   // 3: caller of deopting frame (could be compiled/interpreted).
  2664   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  2665   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  2667   // Pop deoptimized frame
  2668   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2669   __ addptr(rsp, rcx);
  2671   // sp should be pointing at the return address to the caller (3)
  2673   // Stack bang to make sure there's enough room for these interpreter frames.
  2674   if (UseStackBanging) {
  2675     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2676     __ bang_stack_size(rbx, rcx);
  2680   // Load array of frame pcs into ECX
  2681   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2683   __ pop(rsi); // trash the pc
  2685   // Load array of frame sizes into ESI
  2686   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2688   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2690   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2691   __ movl(counter, rbx);
  2693   // Pick up the initial fp we should save
  2694   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  2696   // Now adjust the caller's stack to make up for the extra locals
  2697   // but record the original sp so that we can save it in the skeletal interpreter
  2698   // frame and the stack walking of interpreter_sender will get the unextended sp
  2699   // value and not the "real" sp value.
  2701   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2702   __ movptr(sp_temp, rsp);
  2703   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2704   __ subptr(rsp, rbx);
  2706   // Push interpreter frames in a loop
  2707   Label loop;
  2708   __ bind(loop);
  2709   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2710 #ifdef CC_INTERP
  2711   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2712 #ifdef ASSERT
  2713   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2714   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  2715 #else /* ASSERT */
  2716   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2717 #endif /* ASSERT */
  2718 #else /* CC_INTERP */
  2719   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2720 #endif /* CC_INTERP */
  2721   __ pushptr(Address(rcx, 0));          // save return address
  2722   __ enter();                           // save old & set new rbp,
  2723   __ subptr(rsp, rbx);                  // Prolog!
  2724   __ movptr(rbx, sp_temp);              // sender's sp
  2725 #ifdef CC_INTERP
  2726   __ movptr(Address(rbp,
  2727                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2728           rbx); // Make it walkable
  2729 #else /* CC_INTERP */
  2730   // This value is corrected by layout_activation_impl
  2731   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
  2732   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2733 #endif /* CC_INTERP */
  2734   __ movptr(sp_temp, rsp);              // pass to next frame
  2735   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2736   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2737   __ decrementl(counter);             // decrement counter
  2738   __ jcc(Assembler::notZero, loop);
  2739   __ pushptr(Address(rcx, 0));            // save final return address
  2741   // Re-push self-frame
  2742   __ enter();                           // save old & set new rbp,
  2743   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  2746   // set last_Java_sp, last_Java_fp
  2747   __ get_thread(rdi);
  2748   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  2750   // Call C code.  Need thread but NOT official VM entry
  2751   // crud.  We cannot block on this call, no GC can happen.  Call should
  2752   // restore return values to their stack-slots with the new SP.
  2753   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  2754   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  2755   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2756   // Set an oopmap for the call site
  2757   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  2759   __ get_thread(rdi);
  2760   __ reset_last_Java_frame(rdi, true, false);
  2762   // Pop self-frame.
  2763   __ leave();     // Epilog!
  2765   // Jump to interpreter
  2766   __ ret(0);
  2768   // -------------
  2769   // make sure all code is generated
  2770   masm->flush();
  2772    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  2774 #endif // COMPILER2
  2776 //------------------------------generate_handler_blob------
  2777 //
  2778 // Generate a special Compile2Runtime blob that saves all registers,
  2779 // setup oopmap, and calls safepoint code to stop the compiled code for
  2780 // a safepoint.
  2781 //
  2782 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  2784   // Account for thread arg in our frame
  2785   const int additional_words = 1;
  2786   int frame_size_in_words;
  2788   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  2790   ResourceMark rm;
  2791   OopMapSet *oop_maps = new OopMapSet();
  2792   OopMap* map;
  2794   // allocate space for the code
  2795   // setup code generation tools
  2796   CodeBuffer   buffer("handler_blob", 1024, 512);
  2797   MacroAssembler* masm = new MacroAssembler(&buffer);
  2799   const Register java_thread = rdi; // callee-saved for VC++
  2800   address start   = __ pc();
  2801   address call_pc = NULL;
  2803   // If cause_return is true we are at a poll_return and there is
  2804   // the return address on the stack to the caller on the nmethod
  2805   // that is safepoint. We can leave this return on the stack and
  2806   // effectively complete the return and safepoint in the caller.
  2807   // Otherwise we push space for a return address that the safepoint
  2808   // handler will install later to make the stack walking sensible.
  2809   if( !cause_return )
  2810     __ push(rbx);                // Make room for return address (or push it again)
  2812   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2814   // The following is basically a call_VM. However, we need the precise
  2815   // address of the call in order to generate an oopmap. Hence, we do all the
  2816   // work ourselves.
  2818   // Push thread argument and setup last_Java_sp
  2819   __ get_thread(java_thread);
  2820   __ push(java_thread);
  2821   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  2823   // if this was not a poll_return then we need to correct the return address now.
  2824   if( !cause_return ) {
  2825     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  2826     __ movptr(Address(rbp, wordSize), rax);
  2829   // do the call
  2830   __ call(RuntimeAddress(call_ptr));
  2832   // Set an oopmap for the call site.  This oopmap will map all
  2833   // oop-registers and debug-info registers as callee-saved.  This
  2834   // will allow deoptimization at this safepoint to find all possible
  2835   // debug-info recordings, as well as let GC find all oops.
  2837   oop_maps->add_gc_map( __ pc() - start, map);
  2839   // Discard arg
  2840   __ pop(rcx);
  2842   Label noException;
  2844   // Clear last_Java_sp again
  2845   __ get_thread(java_thread);
  2846   __ reset_last_Java_frame(java_thread, false, false);
  2848   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2849   __ jcc(Assembler::equal, noException);
  2851   // Exception pending
  2853   RegisterSaver::restore_live_registers(masm);
  2855   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2857   __ bind(noException);
  2859   // Normal exit, register restoring and exit
  2860   RegisterSaver::restore_live_registers(masm);
  2862   __ ret(0);
  2864   // make sure all code is generated
  2865   masm->flush();
  2867   // Fill-out other meta info
  2868   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  2871 //
  2872 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  2873 //
  2874 // Generate a stub that calls into vm to find out the proper destination
  2875 // of a java call. All the argument registers are live at this point
  2876 // but since this is generic code we don't know what they are and the caller
  2877 // must do any gc of the args.
  2878 //
  2879 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  2880   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  2882   // allocate space for the code
  2883   ResourceMark rm;
  2885   CodeBuffer buffer(name, 1000, 512);
  2886   MacroAssembler* masm                = new MacroAssembler(&buffer);
  2888   int frame_size_words;
  2889   enum frame_layout {
  2890                 thread_off,
  2891                 extra_words };
  2893   OopMapSet *oop_maps = new OopMapSet();
  2894   OopMap* map = NULL;
  2896   int start = __ offset();
  2898   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  2900   int frame_complete = __ offset();
  2902   const Register thread = rdi;
  2903   __ get_thread(rdi);
  2905   __ push(thread);
  2906   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  2908   __ call(RuntimeAddress(destination));
  2911   // Set an oopmap for the call site.
  2912   // We need this not only for callee-saved registers, but also for volatile
  2913   // registers that the compiler might be keeping live across a safepoint.
  2915   oop_maps->add_gc_map( __ offset() - start, map);
  2917   // rax, contains the address we are going to jump to assuming no exception got installed
  2919   __ addptr(rsp, wordSize);
  2921   // clear last_Java_sp
  2922   __ reset_last_Java_frame(thread, true, false);
  2923   // check for pending exceptions
  2924   Label pending;
  2925   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2926   __ jcc(Assembler::notEqual, pending);
  2928   // get the returned methodOop
  2929   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
  2930   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  2932   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  2934   RegisterSaver::restore_live_registers(masm);
  2936   // We are back the the original state on entry and ready to go.
  2938   __ jmp(rax);
  2940   // Pending exception after the safepoint
  2942   __ bind(pending);
  2944   RegisterSaver::restore_live_registers(masm);
  2946   // exception pending => remove activation and forward to exception handler
  2948   __ get_thread(thread);
  2949   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  2950   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  2951   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2953   // -------------
  2954   // make sure all code is generated
  2955   masm->flush();
  2957   // return the  blob
  2958   // frame_size_words or bytes??
  2959   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial