src/cpu/x86/vm/interp_masm_x86_32.cpp

Thu, 08 Sep 2011 10:12:25 +0200

author
bdelsart
date
Thu, 08 Sep 2011 10:12:25 +0200
changeset 3130
5432047c7db7
parent 3050
fdb992d83a87
child 3156
f08d439fab8c
permissions
-rw-r--r--

7087445: Improve platform independence of JSR292 shared code
Summary: changes necessary for some JSR292 ports
Reviewed-by: jrose, dholmes

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_x86_32.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/methodOop.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "thread_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "thread_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "thread_windows.inline.hpp"
    47 #endif
    50 // Implementation of InterpreterMacroAssembler
    51 #ifdef CC_INTERP
    52 void InterpreterMacroAssembler::get_method(Register reg) {
    53   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
    54   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    55 }
    56 #endif // CC_INTERP
    59 #ifndef CC_INTERP
    60 void InterpreterMacroAssembler::call_VM_leaf_base(
    61   address entry_point,
    62   int     number_of_arguments
    63 ) {
    64   // interpreter specific
    65   //
    66   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
    67   //       since these are callee saved registers and no blocking/
    68   //       GC can happen in leaf calls.
    69   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    70   // already saved them so that it can use rsi/rdi as temporaries
    71   // then a save/restore here will DESTROY the copy the caller
    72   // saved! There used to be a save_bcp() that only happened in
    73   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    74   // when jvm built with ASSERTs.
    75 #ifdef ASSERT
    76   { Label L;
    77     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    78     jcc(Assembler::equal, L);
    79     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    80     bind(L);
    81   }
    82 #endif
    83   // super call
    84   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    85   // interpreter specific
    87   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
    88   // but since they may not have been saved (and we don't want to
    89   // save them here (see note above) the assert is invalid.
    90 }
    93 void InterpreterMacroAssembler::call_VM_base(
    94   Register oop_result,
    95   Register java_thread,
    96   Register last_java_sp,
    97   address  entry_point,
    98   int      number_of_arguments,
    99   bool     check_exceptions
   100 ) {
   101 #ifdef ASSERT
   102   { Label L;
   103     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   104     jcc(Assembler::equal, L);
   105     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
   106     bind(L);
   107   }
   108 #endif /* ASSERT */
   109   // interpreter specific
   110   //
   111   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
   112   //       really make a difference for these runtime calls, since they are
   113   //       slow anyway. Btw., bcp must be saved/restored since it may change
   114   //       due to GC.
   115   assert(java_thread == noreg , "not expecting a precomputed java thread");
   116   save_bcp();
   117   // super call
   118   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
   119   // interpreter specific
   120   restore_bcp();
   121   restore_locals();
   122 }
   125 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   126   if (JvmtiExport::can_pop_frame()) {
   127     Label L;
   128     // Initiate popframe handling only if it is not already being processed.  If the flag
   129     // has the popframe_processing bit set, it means that this code is called *during* popframe
   130     // handling - we don't want to reenter.
   131     Register pop_cond = java_thread;  // Not clear if any other register is available...
   132     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
   133     testl(pop_cond, JavaThread::popframe_pending_bit);
   134     jcc(Assembler::zero, L);
   135     testl(pop_cond, JavaThread::popframe_processing_bit);
   136     jcc(Assembler::notZero, L);
   137     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   138     // address of the same-named entrypoint in the generated interpreter code.
   139     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   140     jmp(rax);
   141     bind(L);
   142     get_thread(java_thread);
   143   }
   144 }
   147 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   148   get_thread(rcx);
   149   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
   150   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
   151   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
   152   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
   153   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
   154                              + in_ByteSize(wordSize));
   155   switch (state) {
   156     case atos: movptr(rax, oop_addr);
   157                movptr(oop_addr, NULL_WORD);
   158                verify_oop(rax, state);                break;
   159     case ltos:
   160                movl(rdx, val_addr1);               // fall through
   161     case btos:                                     // fall through
   162     case ctos:                                     // fall through
   163     case stos:                                     // fall through
   164     case itos: movl(rax, val_addr);                   break;
   165     case ftos: fld_s(val_addr);                       break;
   166     case dtos: fld_d(val_addr);                       break;
   167     case vtos: /* nothing to do */                    break;
   168     default  : ShouldNotReachHere();
   169   }
   170   // Clean up tos value in the thread object
   171   movl(tos_addr,  (int32_t) ilgl);
   172   movptr(val_addr,  NULL_WORD);
   173   NOT_LP64(movptr(val_addr1, NULL_WORD));
   174 }
   177 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   178   if (JvmtiExport::can_force_early_return()) {
   179     Label L;
   180     Register tmp = java_thread;
   181     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
   182     testptr(tmp, tmp);
   183     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   185     // Initiate earlyret handling only if it is not already being processed.
   186     // If the flag has the earlyret_processing bit set, it means that this code
   187     // is called *during* earlyret handling - we don't want to reenter.
   188     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
   189     cmpl(tmp, JvmtiThreadState::earlyret_pending);
   190     jcc(Assembler::notEqual, L);
   192     // Call Interpreter::remove_activation_early_entry() to get the address of the
   193     // same-named entrypoint in the generated interpreter code.
   194     get_thread(java_thread);
   195     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
   196     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
   197     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
   198     jmp(rax);
   199     bind(L);
   200     get_thread(java_thread);
   201   }
   202 }
   205 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
   206   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   207   movl(reg, Address(rsi, bcp_offset));
   208   bswapl(reg);
   209   shrl(reg, 16);
   210 }
   213 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
   214   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   215   if (index_size == sizeof(u2)) {
   216     load_unsigned_short(reg, Address(rsi, bcp_offset));
   217   } else if (index_size == sizeof(u4)) {
   218     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   219     movl(reg, Address(rsi, bcp_offset));
   220     // Check if the secondary index definition is still ~x, otherwise
   221     // we have to change the following assembler code to calculate the
   222     // plain index.
   223     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   224     notl(reg);  // convert to plain index
   225   } else if (index_size == sizeof(u1)) {
   226     assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
   227     load_unsigned_byte(reg, Address(rsi, bcp_offset));
   228   } else {
   229     ShouldNotReachHere();
   230   }
   231 }
   234 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
   235                                                            int bcp_offset, size_t index_size) {
   236   assert_different_registers(cache, index);
   237   get_cache_index_at_bcp(index, bcp_offset, index_size);
   238   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   239   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   240   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
   241 }
   244 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
   245                                                                         Register index,
   246                                                                         Register bytecode,
   247                                                                         int byte_no,
   248                                                                         int bcp_offset,
   249                                                                         size_t index_size) {
   250   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
   251   movptr(bytecode, Address(cache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   252   const int shift_count = (1 + byte_no) * BitsPerByte;
   253   shrptr(bytecode, shift_count);
   254   andptr(bytecode, 0xFF);
   255 }
   258 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   259                                                                int bcp_offset, size_t index_size) {
   260   assert(cache != tmp, "must use different register");
   261   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
   262   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   263                                // convert from field index to ConstantPoolCacheEntry index
   264                                // and from word offset to byte offset
   265   shll(tmp, 2 + LogBytesPerWord);
   266   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   267                                // skip past the header
   268   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   269   addptr(cache, tmp);            // construct pointer to cache entry
   270 }
   273   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   274   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
   275   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
   276 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
   277   assert( Rsub_klass != rax, "rax, holds superklass" );
   278   assert( Rsub_klass != rcx, "used as a temp" );
   279   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
   281   // Profile the not-null value's klass.
   282   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   284   // Do the check.
   285   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   287   // Profile the failure of the check.
   288   profile_typecheck_failed(rcx); // blows rcx
   289 }
   291 void InterpreterMacroAssembler::f2ieee() {
   292   if (IEEEPrecision) {
   293     fstp_s(Address(rsp, 0));
   294     fld_s(Address(rsp, 0));
   295   }
   296 }
   299 void InterpreterMacroAssembler::d2ieee() {
   300   if (IEEEPrecision) {
   301     fstp_d(Address(rsp, 0));
   302     fld_d(Address(rsp, 0));
   303   }
   304 }
   306 // Java Expression Stack
   308 void InterpreterMacroAssembler::pop_ptr(Register r) {
   309   pop(r);
   310 }
   312 void InterpreterMacroAssembler::pop_i(Register r) {
   313   pop(r);
   314 }
   316 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
   317   pop(lo);
   318   pop(hi);
   319 }
   321 void InterpreterMacroAssembler::pop_f() {
   322   fld_s(Address(rsp, 0));
   323   addptr(rsp, 1 * wordSize);
   324 }
   326 void InterpreterMacroAssembler::pop_d() {
   327   fld_d(Address(rsp, 0));
   328   addptr(rsp, 2 * wordSize);
   329 }
   332 void InterpreterMacroAssembler::pop(TosState state) {
   333   switch (state) {
   334     case atos: pop_ptr(rax);                                 break;
   335     case btos:                                               // fall through
   336     case ctos:                                               // fall through
   337     case stos:                                               // fall through
   338     case itos: pop_i(rax);                                   break;
   339     case ltos: pop_l(rax, rdx);                              break;
   340     case ftos: pop_f();                                      break;
   341     case dtos: pop_d();                                      break;
   342     case vtos: /* nothing to do */                           break;
   343     default  : ShouldNotReachHere();
   344   }
   345   verify_oop(rax, state);
   346 }
   348 void InterpreterMacroAssembler::push_ptr(Register r) {
   349   push(r);
   350 }
   352 void InterpreterMacroAssembler::push_i(Register r) {
   353   push(r);
   354 }
   356 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
   357   push(hi);
   358   push(lo);
   359 }
   361 void InterpreterMacroAssembler::push_f() {
   362   // Do not schedule for no AGI! Never write beyond rsp!
   363   subptr(rsp, 1 * wordSize);
   364   fstp_s(Address(rsp, 0));
   365 }
   367 void InterpreterMacroAssembler::push_d(Register r) {
   368   // Do not schedule for no AGI! Never write beyond rsp!
   369   subptr(rsp, 2 * wordSize);
   370   fstp_d(Address(rsp, 0));
   371 }
   374 void InterpreterMacroAssembler::push(TosState state) {
   375   verify_oop(rax, state);
   376   switch (state) {
   377     case atos: push_ptr(rax); break;
   378     case btos:                                               // fall through
   379     case ctos:                                               // fall through
   380     case stos:                                               // fall through
   381     case itos: push_i(rax);                                    break;
   382     case ltos: push_l(rax, rdx);                               break;
   383     case ftos: push_f();                                       break;
   384     case dtos: push_d(rax);                                    break;
   385     case vtos: /* nothing to do */                             break;
   386     default  : ShouldNotReachHere();
   387   }
   388 }
   391 // Helpers for swap and dup
   392 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   393   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   394 }
   396 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   397   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   398 }
   400 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   401   // set sender sp
   402   lea(rsi, Address(rsp, wordSize));
   403   // record last_sp
   404   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
   405 }
   408 // Jump to from_interpreted entry of a call unless single stepping is possible
   409 // in this thread in which case we must call the i2i entry
   410 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   411   prepare_to_jump_from_interpreted();
   413   if (JvmtiExport::can_post_interpreter_events()) {
   414     Label run_compiled_code;
   415     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   416     // compiled code in threads for which the event is enabled.  Check here for
   417     // interp_only_mode if these events CAN be enabled.
   418     get_thread(temp);
   419     // interp_only is an int, on little endian it is sufficient to test the byte only
   420     // Is a cmpl faster?
   421     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   422     jccb(Assembler::zero, run_compiled_code);
   423     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   424     bind(run_compiled_code);
   425   }
   427   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   429 }
   432 // The following two routines provide a hook so that an implementation
   433 // can schedule the dispatch in two parts.  Intel does not do this.
   434 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   435   // Nothing Intel-specific to be done here.
   436 }
   438 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   439   dispatch_next(state, step);
   440 }
   442 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
   443                                               bool verifyoop) {
   444   verify_FPU(1, state);
   445   if (VerifyActivationFrameSize) {
   446     Label L;
   447     mov(rcx, rbp);
   448     subptr(rcx, rsp);
   449     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
   450     cmpptr(rcx, min_frame_size);
   451     jcc(Assembler::greaterEqual, L);
   452     stop("broken stack frame");
   453     bind(L);
   454   }
   455   if (verifyoop) verify_oop(rax, state);
   456   Address index(noreg, rbx, Address::times_ptr);
   457   ExternalAddress tbl((address)table);
   458   ArrayAddress dispatch(tbl, index);
   459   jump(dispatch);
   460 }
   463 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   464   dispatch_base(state, Interpreter::dispatch_table(state));
   465 }
   468 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   469   dispatch_base(state, Interpreter::normal_table(state));
   470 }
   472 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   473   dispatch_base(state, Interpreter::normal_table(state), false);
   474 }
   477 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   478   // load next bytecode (load before advancing rsi to prevent AGI)
   479   load_unsigned_byte(rbx, Address(rsi, step));
   480   // advance rsi
   481   increment(rsi, step);
   482   dispatch_base(state, Interpreter::dispatch_table(state));
   483 }
   486 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   487   // load current bytecode
   488   load_unsigned_byte(rbx, Address(rsi, 0));
   489   dispatch_base(state, table);
   490 }
   492 // remove activation
   493 //
   494 // Unlock the receiver if this is a synchronized method.
   495 // Unlock any Java monitors from syncronized blocks.
   496 // Remove the activation from the stack.
   497 //
   498 // If there are locked Java monitors
   499 //    If throw_monitor_exception
   500 //       throws IllegalMonitorStateException
   501 //    Else if install_monitor_exception
   502 //       installs IllegalMonitorStateException
   503 //    Else
   504 //       no error processing
   505 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
   506                                                   bool throw_monitor_exception,
   507                                                   bool install_monitor_exception,
   508                                                   bool notify_jvmdi) {
   509   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
   510   // check if synchronized method
   511   Label unlocked, unlock, no_unlock;
   513   get_thread(rcx);
   514   const Address do_not_unlock_if_synchronized(rcx,
   515     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   517   movbool(rbx, do_not_unlock_if_synchronized);
   518   mov(rdi,rbx);
   519   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   521   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
   522   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   524   testl(rcx, JVM_ACC_SYNCHRONIZED);
   525   jcc(Assembler::zero, unlocked);
   527   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   528   // is set.
   529   mov(rcx,rdi);
   530   testbool(rcx);
   531   jcc(Assembler::notZero, no_unlock);
   533   // unlock monitor
   534   push(state);                                   // save result
   536   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   537   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   538   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
   539   lea   (rdx, monitor);                          // address of first monitor
   541   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
   542   testptr(rax, rax);
   543   jcc    (Assembler::notZero, unlock);
   545   pop(state);
   546   if (throw_monitor_exception) {
   547     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   549     // Entry already unlocked, need to throw exception
   550     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   551     should_not_reach_here();
   552   } else {
   553     // Monitor already unlocked during a stack unroll.
   554     // If requested, install an illegal_monitor_state_exception.
   555     // Continue with stack unrolling.
   556     if (install_monitor_exception) {
   557       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   558       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   559     }
   560     jmp(unlocked);
   561   }
   563   bind(unlock);
   564   unlock_object(rdx);
   565   pop(state);
   567   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
   568   bind(unlocked);
   570   // rax, rdx: Might contain return value
   572   // Check that all monitors are unlocked
   573   {
   574     Label loop, exception, entry, restart;
   575     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
   576     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   577     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
   579     bind(restart);
   580     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
   581     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
   582     jmp(entry);
   584     // Entry already locked, need to throw exception
   585     bind(exception);
   587     if (throw_monitor_exception) {
   588       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   590       // Throw exception
   591       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   592       should_not_reach_here();
   593     } else {
   594       // Stack unrolling. Unlock object and install illegal_monitor_exception
   595       // Unlock does not block, so don't have to worry about the frame
   597       push(state);
   598       mov(rdx, rcx);
   599       unlock_object(rdx);
   600       pop(state);
   602       if (install_monitor_exception) {
   603         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   604         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   605       }
   607       jmp(restart);
   608     }
   610     bind(loop);
   611     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
   612     jcc(Assembler::notEqual, exception);
   614     addptr(rcx, entry_size);                     // otherwise advance to next entry
   615     bind(entry);
   616     cmpptr(rcx, rbx);                            // check if bottom reached
   617     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
   618   }
   620   bind(no_unlock);
   622   // jvmti support
   623   if (notify_jvmdi) {
   624     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
   625   } else {
   626     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   627   }
   629   // remove activation
   630   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
   631   leave();                                     // remove frame anchor
   632   pop(ret_addr);                               // get return address
   633   mov(rsp, rbx);                               // set sp to sender sp
   634   if (UseSSE) {
   635     // float and double are returned in xmm register in SSE-mode
   636     if (state == ftos && UseSSE >= 1) {
   637       subptr(rsp, wordSize);
   638       fstp_s(Address(rsp, 0));
   639       movflt(xmm0, Address(rsp, 0));
   640       addptr(rsp, wordSize);
   641     } else if (state == dtos && UseSSE >= 2) {
   642       subptr(rsp, 2*wordSize);
   643       fstp_d(Address(rsp, 0));
   644       movdbl(xmm0, Address(rsp, 0));
   645       addptr(rsp, 2*wordSize);
   646     }
   647   }
   648 }
   650 #endif /* !CC_INTERP */
   653 // Lock object
   654 //
   655 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
   656 // be initialized with object to lock
   657 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   658   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   660   if (UseHeavyMonitors) {
   661     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   662   } else {
   664     Label done;
   666     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
   667     const Register obj_reg  = rcx;  // Will contain the oop
   669     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   670     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   671     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
   673     Label slow_case;
   675     // Load object pointer into obj_reg %rcx
   676     movptr(obj_reg, Address(lock_reg, obj_offset));
   678     if (UseBiasedLocking) {
   679       // Note: we use noreg for the temporary register since it's hard
   680       // to come up with a free register on all incoming code paths
   681       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
   682     }
   684     // Load immediate 1 into swap_reg %rax,
   685     movptr(swap_reg, (int32_t)1);
   687     // Load (object->mark() | 1) into swap_reg %rax,
   688     orptr(swap_reg, Address(obj_reg, 0));
   690     // Save (object->mark() | 1) into BasicLock's displaced header
   691     movptr(Address(lock_reg, mark_offset), swap_reg);
   693     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
   694     if (os::is_MP()) {
   695       lock();
   696     }
   697     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   698     if (PrintBiasedLockingStatistics) {
   699       cond_inc32(Assembler::zero,
   700                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   701     }
   702     jcc(Assembler::zero, done);
   704     // Test if the oopMark is an obvious stack pointer, i.e.,
   705     //  1) (mark & 3) == 0, and
   706     //  2) rsp <= mark < mark + os::pagesize()
   707     //
   708     // These 3 tests can be done by evaluating the following
   709     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
   710     // assuming both stack pointer and pagesize have their
   711     // least significant 2 bits clear.
   712     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
   713     subptr(swap_reg, rsp);
   714     andptr(swap_reg, 3 - os::vm_page_size());
   716     // Save the test result, for recursive case, the result is zero
   717     movptr(Address(lock_reg, mark_offset), swap_reg);
   719     if (PrintBiasedLockingStatistics) {
   720       cond_inc32(Assembler::zero,
   721                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   722     }
   723     jcc(Assembler::zero, done);
   725     bind(slow_case);
   727     // Call the runtime routine for slow case
   728     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   730     bind(done);
   731   }
   732 }
   735 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   736 //
   737 // Argument: rdx : Points to BasicObjectLock structure for lock
   738 // Throw an IllegalMonitorException if object is not locked by current thread
   739 //
   740 // Uses: rax, rbx, rcx, rdx
   741 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   742   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   744   if (UseHeavyMonitors) {
   745     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   746   } else {
   747     Label done;
   749     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
   750     const Register header_reg = rbx;  // Will contain the old oopMark
   751     const Register obj_reg    = rcx;  // Will contain the oop
   753     save_bcp(); // Save in case of exception
   755     // Convert from BasicObjectLock structure to object and BasicLock structure
   756     // Store the BasicLock address into %rax,
   757     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   759     // Load oop into obj_reg(%rcx)
   760     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
   762     // Free entry
   763     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
   765     if (UseBiasedLocking) {
   766       biased_locking_exit(obj_reg, header_reg, done);
   767     }
   769     // Load the old header from BasicLock structure
   770     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
   772     // Test for recursion
   773     testptr(header_reg, header_reg);
   775     // zero for recursive case
   776     jcc(Assembler::zero, done);
   778     // Atomic swap back the old header
   779     if (os::is_MP()) lock();
   780     cmpxchgptr(header_reg, Address(obj_reg, 0));
   782     // zero for recursive case
   783     jcc(Assembler::zero, done);
   785     // Call the runtime routine for slow case.
   786     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
   787     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   789     bind(done);
   791     restore_bcp();
   792   }
   793 }
   796 #ifndef CC_INTERP
   798 // Test ImethodDataPtr.  If it is null, continue at the specified label
   799 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
   800   assert(ProfileInterpreter, "must be profiling interpreter");
   801   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   802   testptr(mdp, mdp);
   803   jcc(Assembler::zero, zero_continue);
   804 }
   807 // Set the method data pointer for the current bcp.
   808 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   809   assert(ProfileInterpreter, "must be profiling interpreter");
   810   Label set_mdp;
   811   push(rax);
   812   push(rbx);
   814   get_method(rbx);
   815   // Test MDO to avoid the call if it is NULL.
   816   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   817   testptr(rax, rax);
   818   jcc(Assembler::zero, set_mdp);
   819   // rbx,: method
   820   // rsi: bcp
   821   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
   822   // rax,: mdi
   823   // mdo is guaranteed to be non-zero here, we checked for it before the call.
   824   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   825   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
   826   addptr(rax, rbx);
   827   bind(set_mdp);
   828   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
   829   pop(rbx);
   830   pop(rax);
   831 }
   833 void InterpreterMacroAssembler::verify_method_data_pointer() {
   834   assert(ProfileInterpreter, "must be profiling interpreter");
   835 #ifdef ASSERT
   836   Label verify_continue;
   837   push(rax);
   838   push(rbx);
   839   push(rcx);
   840   push(rdx);
   841   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
   842   get_method(rbx);
   844   // If the mdp is valid, it will point to a DataLayout header which is
   845   // consistent with the bcp.  The converse is highly probable also.
   846   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
   847   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   848   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   849   cmpptr(rdx, rsi);
   850   jcc(Assembler::equal, verify_continue);
   851   // rbx,: method
   852   // rsi: bcp
   853   // rcx: mdp
   854   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
   855   bind(verify_continue);
   856   pop(rdx);
   857   pop(rcx);
   858   pop(rbx);
   859   pop(rax);
   860 #endif // ASSERT
   861 }
   864 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
   865   // %%% this seems to be used to store counter data which is surely 32bits
   866   // however 64bit side stores 64 bits which seems wrong
   867   assert(ProfileInterpreter, "must be profiling interpreter");
   868   Address data(mdp_in, constant);
   869   movptr(data, value);
   870 }
   873 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   874                                                       int constant,
   875                                                       bool decrement) {
   876   // Counter address
   877   Address data(mdp_in, constant);
   879   increment_mdp_data_at(data, decrement);
   880 }
   883 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
   884                                                       bool decrement) {
   886   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
   887   assert(ProfileInterpreter, "must be profiling interpreter");
   889   // %%% 64bit treats this as 64 bit which seems unlikely
   890   if (decrement) {
   891     // Decrement the register.  Set condition codes.
   892     addl(data, -DataLayout::counter_increment);
   893     // If the decrement causes the counter to overflow, stay negative
   894     Label L;
   895     jcc(Assembler::negative, L);
   896     addl(data, DataLayout::counter_increment);
   897     bind(L);
   898   } else {
   899     assert(DataLayout::counter_increment == 1,
   900            "flow-free idiom only works with 1");
   901     // Increment the register.  Set carry flag.
   902     addl(data, DataLayout::counter_increment);
   903     // If the increment causes the counter to overflow, pull back by 1.
   904     sbbl(data, 0);
   905   }
   906 }
   909 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   910                                                       Register reg,
   911                                                       int constant,
   912                                                       bool decrement) {
   913   Address data(mdp_in, reg, Address::times_1, constant);
   915   increment_mdp_data_at(data, decrement);
   916 }
   919 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
   920   assert(ProfileInterpreter, "must be profiling interpreter");
   921   int header_offset = in_bytes(DataLayout::header_offset());
   922   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
   923   // Set the flag
   924   orl(Address(mdp_in, header_offset), header_bits);
   925 }
   929 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
   930                                                  int offset,
   931                                                  Register value,
   932                                                  Register test_value_out,
   933                                                  Label& not_equal_continue) {
   934   assert(ProfileInterpreter, "must be profiling interpreter");
   935   if (test_value_out == noreg) {
   936     cmpptr(value, Address(mdp_in, offset));
   937   } else {
   938     // Put the test value into a register, so caller can use it:
   939     movptr(test_value_out, Address(mdp_in, offset));
   940     cmpptr(test_value_out, value);
   941   }
   942   jcc(Assembler::notEqual, not_equal_continue);
   943 }
   946 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
   947   assert(ProfileInterpreter, "must be profiling interpreter");
   948   Address disp_address(mdp_in, offset_of_disp);
   949   addptr(mdp_in,disp_address);
   950   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   951 }
   954 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
   955   assert(ProfileInterpreter, "must be profiling interpreter");
   956   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
   957   addptr(mdp_in, disp_address);
   958   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   959 }
   962 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
   963   assert(ProfileInterpreter, "must be profiling interpreter");
   964   addptr(mdp_in, constant);
   965   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   966 }
   969 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
   970   assert(ProfileInterpreter, "must be profiling interpreter");
   971   push(return_bci);             // save/restore across call_VM
   972   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
   973   pop(return_bci);
   974 }
   977 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
   978   if (ProfileInterpreter) {
   979     Label profile_continue;
   981     // If no method data exists, go to profile_continue.
   982     // Otherwise, assign to mdp
   983     test_method_data_pointer(mdp, profile_continue);
   985     // We are taking a branch.  Increment the taken count.
   986     // We inline increment_mdp_data_at to return bumped_count in a register
   987     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
   988     Address data(mdp, in_bytes(JumpData::taken_offset()));
   990     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
   991     movl(bumped_count,data);
   992     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
   993     addl(bumped_count, DataLayout::counter_increment);
   994     sbbl(bumped_count, 0);
   995     movl(data,bumped_count);    // Store back out
   997     // The method data pointer needs to be updated to reflect the new target.
   998     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
   999     bind (profile_continue);
  1004 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1005   if (ProfileInterpreter) {
  1006     Label profile_continue;
  1008     // If no method data exists, go to profile_continue.
  1009     test_method_data_pointer(mdp, profile_continue);
  1011     // We are taking a branch.  Increment the not taken count.
  1012     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1014     // The method data pointer needs to be updated to correspond to the next bytecode
  1015     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1016     bind (profile_continue);
  1021 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1022   if (ProfileInterpreter) {
  1023     Label profile_continue;
  1025     // If no method data exists, go to profile_continue.
  1026     test_method_data_pointer(mdp, profile_continue);
  1028     // We are making a call.  Increment the count.
  1029     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1031     // The method data pointer needs to be updated to reflect the new target.
  1032     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1033     bind (profile_continue);
  1038 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1039   if (ProfileInterpreter) {
  1040     Label profile_continue;
  1042     // If no method data exists, go to profile_continue.
  1043     test_method_data_pointer(mdp, profile_continue);
  1045     // We are making a call.  Increment the count.
  1046     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1048     // The method data pointer needs to be updated to reflect the new target.
  1049     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
  1050     bind (profile_continue);
  1055 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
  1056                                                      Register reg2,
  1057                                                      bool receiver_can_be_null) {
  1058   if (ProfileInterpreter) {
  1059     Label profile_continue;
  1061     // If no method data exists, go to profile_continue.
  1062     test_method_data_pointer(mdp, profile_continue);
  1064     Label skip_receiver_profile;
  1065     if (receiver_can_be_null) {
  1066       Label not_null;
  1067       testptr(receiver, receiver);
  1068       jccb(Assembler::notZero, not_null);
  1069       // We are making a call.  Increment the count for null receiver.
  1070       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1071       jmp(skip_receiver_profile);
  1072       bind(not_null);
  1075     // Record the receiver type.
  1076     record_klass_in_profile(receiver, mdp, reg2, true);
  1077     bind(skip_receiver_profile);
  1079     // The method data pointer needs to be updated to reflect the new target.
  1080     update_mdp_by_constant(mdp,
  1081                            in_bytes(VirtualCallData::
  1082                                     virtual_call_data_size()));
  1083     bind(profile_continue);
  1088 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1089                                         Register receiver, Register mdp,
  1090                                         Register reg2, int start_row,
  1091                                         Label& done, bool is_virtual_call) {
  1092   if (TypeProfileWidth == 0) {
  1093     if (is_virtual_call) {
  1094       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1096     return;
  1099   int last_row = VirtualCallData::row_limit() - 1;
  1100   assert(start_row <= last_row, "must be work left to do");
  1101   // Test this row for both the receiver and for null.
  1102   // Take any of three different outcomes:
  1103   //   1. found receiver => increment count and goto done
  1104   //   2. found null => keep looking for case 1, maybe allocate this cell
  1105   //   3. found something else => keep looking for cases 1 and 2
  1106   // Case 3 is handled by a recursive call.
  1107   for (int row = start_row; row <= last_row; row++) {
  1108     Label next_test;
  1109     bool test_for_null_also = (row == start_row);
  1111     // See if the receiver is receiver[n].
  1112     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1113     test_mdp_data_at(mdp, recvr_offset, receiver,
  1114                      (test_for_null_also ? reg2 : noreg),
  1115                      next_test);
  1116     // (Reg2 now contains the receiver from the CallData.)
  1118     // The receiver is receiver[n].  Increment count[n].
  1119     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1120     increment_mdp_data_at(mdp, count_offset);
  1121     jmp(done);
  1122     bind(next_test);
  1124     if (row == start_row) {
  1125       Label found_null;
  1126       // Failed the equality check on receiver[n]...  Test for null.
  1127       testptr(reg2, reg2);
  1128       if (start_row == last_row) {
  1129         // The only thing left to do is handle the null case.
  1130         if (is_virtual_call) {
  1131           jccb(Assembler::zero, found_null);
  1132           // Receiver did not match any saved receiver and there is no empty row for it.
  1133           // Increment total counter to indicate polymorphic case.
  1134           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1135           jmp(done);
  1136           bind(found_null);
  1137         } else {
  1138           jcc(Assembler::notZero, done);
  1140         break;
  1142       // Since null is rare, make it be the branch-taken case.
  1143       jcc(Assembler::zero, found_null);
  1145       // Put all the "Case 3" tests here.
  1146       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1148       // Found a null.  Keep searching for a matching receiver,
  1149       // but remember that this is an empty (unused) slot.
  1150       bind(found_null);
  1154   // In the fall-through case, we found no matching receiver, but we
  1155   // observed the receiver[start_row] is NULL.
  1157   // Fill in the receiver field and increment the count.
  1158   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1159   set_mdp_data_at(mdp, recvr_offset, receiver);
  1160   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1161   movptr(reg2, (int32_t)DataLayout::counter_increment);
  1162   set_mdp_data_at(mdp, count_offset, reg2);
  1163   if (start_row > 0) {
  1164     jmp(done);
  1168 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1169                                                         Register mdp, Register reg2,
  1170                                                         bool is_virtual_call) {
  1171   assert(ProfileInterpreter, "must be profiling");
  1172   Label done;
  1174   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1176   bind (done);
  1179 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  1180   if (ProfileInterpreter) {
  1181     Label profile_continue;
  1182     uint row;
  1184     // If no method data exists, go to profile_continue.
  1185     test_method_data_pointer(mdp, profile_continue);
  1187     // Update the total ret count.
  1188     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1190     for (row = 0; row < RetData::row_limit(); row++) {
  1191       Label next_test;
  1193       // See if return_bci is equal to bci[n]:
  1194       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
  1195                        noreg, next_test);
  1197       // return_bci is equal to bci[n].  Increment the count.
  1198       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1200       // The method data pointer needs to be updated to reflect the new target.
  1201       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
  1202       jmp(profile_continue);
  1203       bind(next_test);
  1206     update_mdp_for_ret(return_bci);
  1208     bind (profile_continue);
  1213 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1214   if (ProfileInterpreter) {
  1215     Label profile_continue;
  1217     // If no method data exists, go to profile_continue.
  1218     test_method_data_pointer(mdp, profile_continue);
  1220     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1222     // The method data pointer needs to be updated.
  1223     int mdp_delta = in_bytes(BitData::bit_data_size());
  1224     if (TypeProfileCasts) {
  1225       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1227     update_mdp_by_constant(mdp, mdp_delta);
  1229     bind (profile_continue);
  1234 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1235   if (ProfileInterpreter && TypeProfileCasts) {
  1236     Label profile_continue;
  1238     // If no method data exists, go to profile_continue.
  1239     test_method_data_pointer(mdp, profile_continue);
  1241     int count_offset = in_bytes(CounterData::count_offset());
  1242     // Back up the address, since we have already bumped the mdp.
  1243     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1245     // *Decrement* the counter.  We expect to see zero or small negatives.
  1246     increment_mdp_data_at(mdp, count_offset, true);
  1248     bind (profile_continue);
  1253 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
  1255   if (ProfileInterpreter) {
  1256     Label profile_continue;
  1258     // If no method data exists, go to profile_continue.
  1259     test_method_data_pointer(mdp, profile_continue);
  1261     // The method data pointer needs to be updated.
  1262     int mdp_delta = in_bytes(BitData::bit_data_size());
  1263     if (TypeProfileCasts) {
  1264       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1266       // Record the object type.
  1267       record_klass_in_profile(klass, mdp, reg2, false);
  1268       assert(reg2 == rdi, "we know how to fix this blown reg");
  1269       restore_locals();         // Restore EDI
  1271     update_mdp_by_constant(mdp, mdp_delta);
  1273     bind(profile_continue);
  1278 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1279   if (ProfileInterpreter) {
  1280     Label profile_continue;
  1282     // If no method data exists, go to profile_continue.
  1283     test_method_data_pointer(mdp, profile_continue);
  1285     // Update the default case count
  1286     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
  1288     // The method data pointer needs to be updated.
  1289     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
  1291     bind (profile_continue);
  1296 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  1297   if (ProfileInterpreter) {
  1298     Label profile_continue;
  1300     // If no method data exists, go to profile_continue.
  1301     test_method_data_pointer(mdp, profile_continue);
  1303     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1304     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
  1305     // index is positive and so should have correct value if this code were
  1306     // used on 64bits
  1307     imulptr(index, reg2);
  1308     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
  1310     // Update the case count
  1311     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
  1313     // The method data pointer needs to be updated.
  1314     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
  1316     bind (profile_continue);
  1320 #endif // !CC_INTERP
  1324 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1325   if (state == atos) MacroAssembler::verify_oop(reg);
  1329 #ifndef CC_INTERP
  1330 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1331   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  1334 #endif /* CC_INTERP */
  1337 void InterpreterMacroAssembler::notify_method_entry() {
  1338   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1339   // track stack depth.  If it is possible to enter interp_only_mode we add
  1340   // the code to check if the event should be sent.
  1341   if (JvmtiExport::can_post_interpreter_events()) {
  1342     Label L;
  1343     get_thread(rcx);
  1344     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1345     testl(rcx,rcx);
  1346     jcc(Assembler::zero, L);
  1347     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  1348     bind(L);
  1352     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1353     get_thread(rcx);
  1354     get_method(rbx);
  1355     call_VM_leaf(
  1356       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  1359   // RedefineClasses() tracing support for obsolete method entry
  1360   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1361     get_thread(rcx);
  1362     get_method(rbx);
  1363     call_VM_leaf(
  1364       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1365       rcx, rbx);
  1370 void InterpreterMacroAssembler::notify_method_exit(
  1371     TosState state, NotifyMethodExitMode mode) {
  1372   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1373   // track stack depth.  If it is possible to enter interp_only_mode we add
  1374   // the code to check if the event should be sent.
  1375   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1376     Label L;
  1377     // Note: frame::interpreter_frame_result has a dependency on how the
  1378     // method result is saved across the call to post_method_exit. If this
  1379     // is changed then the interpreter_frame_result implementation will
  1380     // need to be updated too.
  1382     // For c++ interpreter the result is always stored at a known location in the frame
  1383     // template interpreter will leave it on the top of the stack.
  1384     NOT_CC_INTERP(push(state);)
  1385     get_thread(rcx);
  1386     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1387     testl(rcx,rcx);
  1388     jcc(Assembler::zero, L);
  1389     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1390     bind(L);
  1391     NOT_CC_INTERP(pop(state);)
  1395     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1396     NOT_CC_INTERP(push(state));
  1397     get_thread(rbx);
  1398     get_method(rcx);
  1399     call_VM_leaf(
  1400       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1401       rbx, rcx);
  1402     NOT_CC_INTERP(pop(state));
  1406 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  1407 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  1408                                                         int increment, int mask,
  1409                                                         Register scratch, bool preloaded,
  1410                                                         Condition cond, Label* where) {
  1411   if (!preloaded) {
  1412     movl(scratch, counter_addr);
  1414   incrementl(scratch, increment);
  1415   movl(counter_addr, scratch);
  1416   andl(scratch, mask);
  1417   jcc(cond, *where);

mercurial