src/cpu/x86/vm/assembler_x86.cpp

Thu, 08 Sep 2011 10:12:25 +0200

author
bdelsart
date
Thu, 08 Sep 2011 10:12:25 +0200
changeset 3130
5432047c7db7
parent 3071
a594deb1d6dc
child 3137
e6b1331a51d2
permissions
-rw-r--r--

7087445: Improve platform independence of JSR292 shared code
Summary: changes necessary for some JSR292 ports
Reviewed-by: jrose, dholmes

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Implementation of AddressLiteral
    46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    47   _is_lval = false;
    48   _target = target;
    49   switch (rtype) {
    50   case relocInfo::oop_type:
    51     // Oops are a special case. Normally they would be their own section
    52     // but in cases like icBuffer they are literals in the code stream that
    53     // we don't have a section for. We use none so that we get a literal address
    54     // which is always patchable.
    55     break;
    56   case relocInfo::external_word_type:
    57     _rspec = external_word_Relocation::spec(target);
    58     break;
    59   case relocInfo::internal_word_type:
    60     _rspec = internal_word_Relocation::spec(target);
    61     break;
    62   case relocInfo::opt_virtual_call_type:
    63     _rspec = opt_virtual_call_Relocation::spec();
    64     break;
    65   case relocInfo::static_call_type:
    66     _rspec = static_call_Relocation::spec();
    67     break;
    68   case relocInfo::runtime_call_type:
    69     _rspec = runtime_call_Relocation::spec();
    70     break;
    71   case relocInfo::poll_type:
    72   case relocInfo::poll_return_type:
    73     _rspec = Relocation::spec_simple(rtype);
    74     break;
    75   case relocInfo::none:
    76     break;
    77   default:
    78     ShouldNotReachHere();
    79     break;
    80   }
    81 }
    83 // Implementation of Address
    85 #ifdef _LP64
    87 Address Address::make_array(ArrayAddress adr) {
    88   // Not implementable on 64bit machines
    89   // Should have been handled higher up the call chain.
    90   ShouldNotReachHere();
    91   return Address();
    92 }
    94 // exceedingly dangerous constructor
    95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    96   _base  = noreg;
    97   _index = noreg;
    98   _scale = no_scale;
    99   _disp  = disp;
   100   switch (rtype) {
   101     case relocInfo::external_word_type:
   102       _rspec = external_word_Relocation::spec(loc);
   103       break;
   104     case relocInfo::internal_word_type:
   105       _rspec = internal_word_Relocation::spec(loc);
   106       break;
   107     case relocInfo::runtime_call_type:
   108       // HMM
   109       _rspec = runtime_call_Relocation::spec();
   110       break;
   111     case relocInfo::poll_type:
   112     case relocInfo::poll_return_type:
   113       _rspec = Relocation::spec_simple(rtype);
   114       break;
   115     case relocInfo::none:
   116       break;
   117     default:
   118       ShouldNotReachHere();
   119   }
   120 }
   121 #else // LP64
   123 Address Address::make_array(ArrayAddress adr) {
   124   AddressLiteral base = adr.base();
   125   Address index = adr.index();
   126   assert(index._disp == 0, "must not have disp"); // maybe it can?
   127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   128   array._rspec = base._rspec;
   129   return array;
   130 }
   132 // exceedingly dangerous constructor
   133 Address::Address(address loc, RelocationHolder spec) {
   134   _base  = noreg;
   135   _index = noreg;
   136   _scale = no_scale;
   137   _disp  = (intptr_t) loc;
   138   _rspec = spec;
   139 }
   141 #endif // _LP64
   145 // Convert the raw encoding form into the form expected by the constructor for
   146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   147 // that to noreg for the Address constructor.
   148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   149   RelocationHolder rspec;
   150   if (disp_is_oop) {
   151     rspec = Relocation::spec_simple(relocInfo::oop_type);
   152   }
   153   bool valid_index = index != rsp->encoding();
   154   if (valid_index) {
   155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   156     madr._rspec = rspec;
   157     return madr;
   158   } else {
   159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   160     madr._rspec = rspec;
   161     return madr;
   162   }
   163 }
   165 // Implementation of Assembler
   167 int AbstractAssembler::code_fill_byte() {
   168   return (u_char)'\xF4'; // hlt
   169 }
   171 // make this go away someday
   172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   173   if (rtype == relocInfo::none)
   174         emit_long(data);
   175   else  emit_data(data, Relocation::spec_simple(rtype), format);
   176 }
   178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   179   assert(imm_operand == 0, "default format must be immediate in this file");
   180   assert(inst_mark() != NULL, "must be inside InstructionMark");
   181   if (rspec.type() !=  relocInfo::none) {
   182     #ifdef ASSERT
   183       check_relocation(rspec, format);
   184     #endif
   185     // Do not use AbstractAssembler::relocate, which is not intended for
   186     // embedded words.  Instead, relocate to the enclosing instruction.
   188     // hack. call32 is too wide for mask so use disp32
   189     if (format == call32_operand)
   190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   191     else
   192       code_section()->relocate(inst_mark(), rspec, format);
   193   }
   194   emit_long(data);
   195 }
   197 static int encode(Register r) {
   198   int enc = r->encoding();
   199   if (enc >= 8) {
   200     enc -= 8;
   201   }
   202   return enc;
   203 }
   205 static int encode(XMMRegister r) {
   206   int enc = r->encoding();
   207   if (enc >= 8) {
   208     enc -= 8;
   209   }
   210   return enc;
   211 }
   213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   214   assert(dst->has_byte_register(), "must have byte register");
   215   assert(isByte(op1) && isByte(op2), "wrong opcode");
   216   assert(isByte(imm8), "not a byte");
   217   assert((op1 & 0x01) == 0, "should be 8bit operation");
   218   emit_byte(op1);
   219   emit_byte(op2 | encode(dst));
   220   emit_byte(imm8);
   221 }
   224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert((op1 & 0x01) == 1, "should be 32bit operation");
   227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   228   if (is8bit(imm32)) {
   229     emit_byte(op1 | 0x02); // set sign bit
   230     emit_byte(op2 | encode(dst));
   231     emit_byte(imm32 & 0xFF);
   232   } else {
   233     emit_byte(op1);
   234     emit_byte(op2 | encode(dst));
   235     emit_long(imm32);
   236   }
   237 }
   239 // immediate-to-memory forms
   240 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   241   assert((op1 & 0x01) == 1, "should be 32bit operation");
   242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   243   if (is8bit(imm32)) {
   244     emit_byte(op1 | 0x02); // set sign bit
   245     emit_operand(rm, adr, 1);
   246     emit_byte(imm32 & 0xFF);
   247   } else {
   248     emit_byte(op1);
   249     emit_operand(rm, adr, 4);
   250     emit_long(imm32);
   251   }
   252 }
   254 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   255   LP64_ONLY(ShouldNotReachHere());
   256   assert(isByte(op1) && isByte(op2), "wrong opcode");
   257   assert((op1 & 0x01) == 1, "should be 32bit operation");
   258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   259   InstructionMark im(this);
   260   emit_byte(op1);
   261   emit_byte(op2 | encode(dst));
   262   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   263 }
   266 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   267   assert(isByte(op1) && isByte(op2), "wrong opcode");
   268   emit_byte(op1);
   269   emit_byte(op2 | encode(dst) << 3 | encode(src));
   270 }
   273 void Assembler::emit_operand(Register reg, Register base, Register index,
   274                              Address::ScaleFactor scale, int disp,
   275                              RelocationHolder const& rspec,
   276                              int rip_relative_correction) {
   277   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   279   // Encode the registers as needed in the fields they are used in
   281   int regenc = encode(reg) << 3;
   282   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   283   int baseenc = base->is_valid() ? encode(base) : 0;
   285   if (base->is_valid()) {
   286     if (index->is_valid()) {
   287       assert(scale != Address::no_scale, "inconsistent address");
   288       // [base + index*scale + disp]
   289       if (disp == 0 && rtype == relocInfo::none  &&
   290           base != rbp LP64_ONLY(&& base != r13)) {
   291         // [base + index*scale]
   292         // [00 reg 100][ss index base]
   293         assert(index != rsp, "illegal addressing mode");
   294         emit_byte(0x04 | regenc);
   295         emit_byte(scale << 6 | indexenc | baseenc);
   296       } else if (is8bit(disp) && rtype == relocInfo::none) {
   297         // [base + index*scale + imm8]
   298         // [01 reg 100][ss index base] imm8
   299         assert(index != rsp, "illegal addressing mode");
   300         emit_byte(0x44 | regenc);
   301         emit_byte(scale << 6 | indexenc | baseenc);
   302         emit_byte(disp & 0xFF);
   303       } else {
   304         // [base + index*scale + disp32]
   305         // [10 reg 100][ss index base] disp32
   306         assert(index != rsp, "illegal addressing mode");
   307         emit_byte(0x84 | regenc);
   308         emit_byte(scale << 6 | indexenc | baseenc);
   309         emit_data(disp, rspec, disp32_operand);
   310       }
   311     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   312       // [rsp + disp]
   313       if (disp == 0 && rtype == relocInfo::none) {
   314         // [rsp]
   315         // [00 reg 100][00 100 100]
   316         emit_byte(0x04 | regenc);
   317         emit_byte(0x24);
   318       } else if (is8bit(disp) && rtype == relocInfo::none) {
   319         // [rsp + imm8]
   320         // [01 reg 100][00 100 100] disp8
   321         emit_byte(0x44 | regenc);
   322         emit_byte(0x24);
   323         emit_byte(disp & 0xFF);
   324       } else {
   325         // [rsp + imm32]
   326         // [10 reg 100][00 100 100] disp32
   327         emit_byte(0x84 | regenc);
   328         emit_byte(0x24);
   329         emit_data(disp, rspec, disp32_operand);
   330       }
   331     } else {
   332       // [base + disp]
   333       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   334       if (disp == 0 && rtype == relocInfo::none &&
   335           base != rbp LP64_ONLY(&& base != r13)) {
   336         // [base]
   337         // [00 reg base]
   338         emit_byte(0x00 | regenc | baseenc);
   339       } else if (is8bit(disp) && rtype == relocInfo::none) {
   340         // [base + disp8]
   341         // [01 reg base] disp8
   342         emit_byte(0x40 | regenc | baseenc);
   343         emit_byte(disp & 0xFF);
   344       } else {
   345         // [base + disp32]
   346         // [10 reg base] disp32
   347         emit_byte(0x80 | regenc | baseenc);
   348         emit_data(disp, rspec, disp32_operand);
   349       }
   350     }
   351   } else {
   352     if (index->is_valid()) {
   353       assert(scale != Address::no_scale, "inconsistent address");
   354       // [index*scale + disp]
   355       // [00 reg 100][ss index 101] disp32
   356       assert(index != rsp, "illegal addressing mode");
   357       emit_byte(0x04 | regenc);
   358       emit_byte(scale << 6 | indexenc | 0x05);
   359       emit_data(disp, rspec, disp32_operand);
   360     } else if (rtype != relocInfo::none ) {
   361       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   362       // [00 000 101] disp32
   364       emit_byte(0x05 | regenc);
   365       // Note that the RIP-rel. correction applies to the generated
   366       // disp field, but _not_ to the target address in the rspec.
   368       // disp was created by converting the target address minus the pc
   369       // at the start of the instruction. That needs more correction here.
   370       // intptr_t disp = target - next_ip;
   371       assert(inst_mark() != NULL, "must be inside InstructionMark");
   372       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   373       int64_t adjusted = disp;
   374       // Do rip-rel adjustment for 64bit
   375       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   376       assert(is_simm32(adjusted),
   377              "must be 32bit offset (RIP relative address)");
   378       emit_data((int32_t) adjusted, rspec, disp32_operand);
   380     } else {
   381       // 32bit never did this, did everything as the rip-rel/disp code above
   382       // [disp] ABSOLUTE
   383       // [00 reg 100][00 100 101] disp32
   384       emit_byte(0x04 | regenc);
   385       emit_byte(0x25);
   386       emit_data(disp, rspec, disp32_operand);
   387     }
   388   }
   389 }
   391 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   392                              Address::ScaleFactor scale, int disp,
   393                              RelocationHolder const& rspec) {
   394   emit_operand((Register)reg, base, index, scale, disp, rspec);
   395 }
   397 // Secret local extension to Assembler::WhichOperand:
   398 #define end_pc_operand (_WhichOperand_limit)
   400 address Assembler::locate_operand(address inst, WhichOperand which) {
   401   // Decode the given instruction, and return the address of
   402   // an embedded 32-bit operand word.
   404   // If "which" is disp32_operand, selects the displacement portion
   405   // of an effective address specifier.
   406   // If "which" is imm64_operand, selects the trailing immediate constant.
   407   // If "which" is call32_operand, selects the displacement of a call or jump.
   408   // Caller is responsible for ensuring that there is such an operand,
   409   // and that it is 32/64 bits wide.
   411   // If "which" is end_pc_operand, find the end of the instruction.
   413   address ip = inst;
   414   bool is_64bit = false;
   416   debug_only(bool has_disp32 = false);
   417   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   419   again_after_prefix:
   420   switch (0xFF & *ip++) {
   422   // These convenience macros generate groups of "case" labels for the switch.
   423 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   424 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   425              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   426 #define REP16(x) REP8((x)+0): \
   427               case REP8((x)+8)
   429   case CS_segment:
   430   case SS_segment:
   431   case DS_segment:
   432   case ES_segment:
   433   case FS_segment:
   434   case GS_segment:
   435     // Seems dubious
   436     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   437     assert(ip == inst+1, "only one prefix allowed");
   438     goto again_after_prefix;
   440   case 0x67:
   441   case REX:
   442   case REX_B:
   443   case REX_X:
   444   case REX_XB:
   445   case REX_R:
   446   case REX_RB:
   447   case REX_RX:
   448   case REX_RXB:
   449     NOT_LP64(assert(false, "64bit prefixes"));
   450     goto again_after_prefix;
   452   case REX_W:
   453   case REX_WB:
   454   case REX_WX:
   455   case REX_WXB:
   456   case REX_WR:
   457   case REX_WRB:
   458   case REX_WRX:
   459   case REX_WRXB:
   460     NOT_LP64(assert(false, "64bit prefixes"));
   461     is_64bit = true;
   462     goto again_after_prefix;
   464   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   465   case 0x88: // movb a, r
   466   case 0x89: // movl a, r
   467   case 0x8A: // movb r, a
   468   case 0x8B: // movl r, a
   469   case 0x8F: // popl a
   470     debug_only(has_disp32 = true);
   471     break;
   473   case 0x68: // pushq #32
   474     if (which == end_pc_operand) {
   475       return ip + 4;
   476     }
   477     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   478     return ip;                  // not produced by emit_operand
   480   case 0x66: // movw ... (size prefix)
   481     again_after_size_prefix2:
   482     switch (0xFF & *ip++) {
   483     case REX:
   484     case REX_B:
   485     case REX_X:
   486     case REX_XB:
   487     case REX_R:
   488     case REX_RB:
   489     case REX_RX:
   490     case REX_RXB:
   491     case REX_W:
   492     case REX_WB:
   493     case REX_WX:
   494     case REX_WXB:
   495     case REX_WR:
   496     case REX_WRB:
   497     case REX_WRX:
   498     case REX_WRXB:
   499       NOT_LP64(assert(false, "64bit prefix found"));
   500       goto again_after_size_prefix2;
   501     case 0x8B: // movw r, a
   502     case 0x89: // movw a, r
   503       debug_only(has_disp32 = true);
   504       break;
   505     case 0xC7: // movw a, #16
   506       debug_only(has_disp32 = true);
   507       tail_size = 2;  // the imm16
   508       break;
   509     case 0x0F: // several SSE/SSE2 variants
   510       ip--;    // reparse the 0x0F
   511       goto again_after_prefix;
   512     default:
   513       ShouldNotReachHere();
   514     }
   515     break;
   517   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   518     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   519     // these asserts are somewhat nonsensical
   520 #ifndef _LP64
   521     assert(which == imm_operand || which == disp32_operand, "");
   522 #else
   523     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   524            which == narrow_oop_operand && !is_64bit, "");
   525 #endif // _LP64
   526     return ip;
   528   case 0x69: // imul r, a, #32
   529   case 0xC7: // movl a, #32(oop?)
   530     tail_size = 4;
   531     debug_only(has_disp32 = true); // has both kinds of operands!
   532     break;
   534   case 0x0F: // movx..., etc.
   535     switch (0xFF & *ip++) {
   536     case 0x12: // movlps
   537     case 0x28: // movaps
   538     case 0x2E: // ucomiss
   539     case 0x2F: // comiss
   540     case 0x54: // andps
   541     case 0x55: // andnps
   542     case 0x56: // orps
   543     case 0x57: // xorps
   544     case 0x6E: // movd
   545     case 0x7E: // movd
   546     case 0xAE: // ldmxcsr   a
   547       // 64bit side says it these have both operands but that doesn't
   548       // appear to be true
   549       debug_only(has_disp32 = true);
   550       break;
   552     case 0xAD: // shrd r, a, %cl
   553     case 0xAF: // imul r, a
   554     case 0xBE: // movsbl r, a (movsxb)
   555     case 0xBF: // movswl r, a (movsxw)
   556     case 0xB6: // movzbl r, a (movzxb)
   557     case 0xB7: // movzwl r, a (movzxw)
   558     case REP16(0x40): // cmovl cc, r, a
   559     case 0xB0: // cmpxchgb
   560     case 0xB1: // cmpxchg
   561     case 0xC1: // xaddl
   562     case 0xC7: // cmpxchg8
   563     case REP16(0x90): // setcc a
   564       debug_only(has_disp32 = true);
   565       // fall out of the switch to decode the address
   566       break;
   568     case 0xAC: // shrd r, a, #8
   569       debug_only(has_disp32 = true);
   570       tail_size = 1;  // the imm8
   571       break;
   573     case REP16(0x80): // jcc rdisp32
   574       if (which == end_pc_operand)  return ip + 4;
   575       assert(which == call32_operand, "jcc has no disp32 or imm");
   576       return ip;
   577     default:
   578       ShouldNotReachHere();
   579     }
   580     break;
   582   case 0x81: // addl a, #32; addl r, #32
   583     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   584     // on 32bit in the case of cmpl, the imm might be an oop
   585     tail_size = 4;
   586     debug_only(has_disp32 = true); // has both kinds of operands!
   587     break;
   589   case 0x83: // addl a, #8; addl r, #8
   590     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   591     debug_only(has_disp32 = true); // has both kinds of operands!
   592     tail_size = 1;
   593     break;
   595   case 0x9B:
   596     switch (0xFF & *ip++) {
   597     case 0xD9: // fnstcw a
   598       debug_only(has_disp32 = true);
   599       break;
   600     default:
   601       ShouldNotReachHere();
   602     }
   603     break;
   605   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   606   case REP4(0x10): // adc...
   607   case REP4(0x20): // and...
   608   case REP4(0x30): // xor...
   609   case REP4(0x08): // or...
   610   case REP4(0x18): // sbb...
   611   case REP4(0x28): // sub...
   612   case 0xF7: // mull a
   613   case 0x8D: // lea r, a
   614   case 0x87: // xchg r, a
   615   case REP4(0x38): // cmp...
   616   case 0x85: // test r, a
   617     debug_only(has_disp32 = true); // has both kinds of operands!
   618     break;
   620   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   621   case 0xC6: // movb a, #8
   622   case 0x80: // cmpb a, #8
   623   case 0x6B: // imul r, a, #8
   624     debug_only(has_disp32 = true); // has both kinds of operands!
   625     tail_size = 1; // the imm8
   626     break;
   628   case 0xE8: // call rdisp32
   629   case 0xE9: // jmp  rdisp32
   630     if (which == end_pc_operand)  return ip + 4;
   631     assert(which == call32_operand, "call has no disp32 or imm");
   632     return ip;
   634   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   635   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   636   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   637   case 0xDD: // fld_d a; fst_d a; fstp_d a
   638   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   639   case 0xDF: // fild_d a; fistp_d a
   640   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   641   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   642   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   643     debug_only(has_disp32 = true);
   644     break;
   646   case 0xF0:                    // Lock
   647     assert(os::is_MP(), "only on MP");
   648     goto again_after_prefix;
   650   case 0xF3:                    // For SSE
   651   case 0xF2:                    // For SSE2
   652     switch (0xFF & *ip++) {
   653     case REX:
   654     case REX_B:
   655     case REX_X:
   656     case REX_XB:
   657     case REX_R:
   658     case REX_RB:
   659     case REX_RX:
   660     case REX_RXB:
   661     case REX_W:
   662     case REX_WB:
   663     case REX_WX:
   664     case REX_WXB:
   665     case REX_WR:
   666     case REX_WRB:
   667     case REX_WRX:
   668     case REX_WRXB:
   669       NOT_LP64(assert(false, "found 64bit prefix"));
   670       ip++;
   671     default:
   672       ip++;
   673     }
   674     debug_only(has_disp32 = true); // has both kinds of operands!
   675     break;
   677   default:
   678     ShouldNotReachHere();
   680 #undef REP8
   681 #undef REP16
   682   }
   684   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   685 #ifdef _LP64
   686   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   687 #else
   688   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   689   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   690 #endif // LP64
   691   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   693   // parse the output of emit_operand
   694   int op2 = 0xFF & *ip++;
   695   int base = op2 & 0x07;
   696   int op3 = -1;
   697   const int b100 = 4;
   698   const int b101 = 5;
   699   if (base == b100 && (op2 >> 6) != 3) {
   700     op3 = 0xFF & *ip++;
   701     base = op3 & 0x07;   // refetch the base
   702   }
   703   // now ip points at the disp (if any)
   705   switch (op2 >> 6) {
   706   case 0:
   707     // [00 reg  100][ss index base]
   708     // [00 reg  100][00   100  esp]
   709     // [00 reg base]
   710     // [00 reg  100][ss index  101][disp32]
   711     // [00 reg  101]               [disp32]
   713     if (base == b101) {
   714       if (which == disp32_operand)
   715         return ip;              // caller wants the disp32
   716       ip += 4;                  // skip the disp32
   717     }
   718     break;
   720   case 1:
   721     // [01 reg  100][ss index base][disp8]
   722     // [01 reg  100][00   100  esp][disp8]
   723     // [01 reg base]               [disp8]
   724     ip += 1;                    // skip the disp8
   725     break;
   727   case 2:
   728     // [10 reg  100][ss index base][disp32]
   729     // [10 reg  100][00   100  esp][disp32]
   730     // [10 reg base]               [disp32]
   731     if (which == disp32_operand)
   732       return ip;                // caller wants the disp32
   733     ip += 4;                    // skip the disp32
   734     break;
   736   case 3:
   737     // [11 reg base]  (not a memory addressing mode)
   738     break;
   739   }
   741   if (which == end_pc_operand) {
   742     return ip + tail_size;
   743   }
   745 #ifdef _LP64
   746   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   747 #else
   748   assert(which == imm_operand, "instruction has only an imm field");
   749 #endif // LP64
   750   return ip;
   751 }
   753 address Assembler::locate_next_instruction(address inst) {
   754   // Secretly share code with locate_operand:
   755   return locate_operand(inst, end_pc_operand);
   756 }
   759 #ifdef ASSERT
   760 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   761   address inst = inst_mark();
   762   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   763   address opnd;
   765   Relocation* r = rspec.reloc();
   766   if (r->type() == relocInfo::none) {
   767     return;
   768   } else if (r->is_call() || format == call32_operand) {
   769     // assert(format == imm32_operand, "cannot specify a nonzero format");
   770     opnd = locate_operand(inst, call32_operand);
   771   } else if (r->is_data()) {
   772     assert(format == imm_operand || format == disp32_operand
   773            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   774     opnd = locate_operand(inst, (WhichOperand)format);
   775   } else {
   776     assert(format == imm_operand, "cannot specify a format");
   777     return;
   778   }
   779   assert(opnd == pc(), "must put operand where relocs can find it");
   780 }
   781 #endif // ASSERT
   783 void Assembler::emit_operand32(Register reg, Address adr) {
   784   assert(reg->encoding() < 8, "no extended registers");
   785   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   786   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   787                adr._rspec);
   788 }
   790 void Assembler::emit_operand(Register reg, Address adr,
   791                              int rip_relative_correction) {
   792   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   793                adr._rspec,
   794                rip_relative_correction);
   795 }
   797 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   798   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   799                adr._rspec);
   800 }
   802 // MMX operations
   803 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   804   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   805   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   806 }
   808 // work around gcc (3.2.1-7a) bug
   809 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   810   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   811   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   812 }
   815 void Assembler::emit_farith(int b1, int b2, int i) {
   816   assert(isByte(b1) && isByte(b2), "wrong opcode");
   817   assert(0 <= i &&  i < 8, "illegal stack offset");
   818   emit_byte(b1);
   819   emit_byte(b2 + i);
   820 }
   823 // Now the Assembler instructions (identical for 32/64 bits)
   825 void Assembler::adcl(Address dst, int32_t imm32) {
   826   InstructionMark im(this);
   827   prefix(dst);
   828   emit_arith_operand(0x81, rdx, dst, imm32);
   829 }
   831 void Assembler::adcl(Address dst, Register src) {
   832   InstructionMark im(this);
   833   prefix(dst, src);
   834   emit_byte(0x11);
   835   emit_operand(src, dst);
   836 }
   838 void Assembler::adcl(Register dst, int32_t imm32) {
   839   prefix(dst);
   840   emit_arith(0x81, 0xD0, dst, imm32);
   841 }
   843 void Assembler::adcl(Register dst, Address src) {
   844   InstructionMark im(this);
   845   prefix(src, dst);
   846   emit_byte(0x13);
   847   emit_operand(dst, src);
   848 }
   850 void Assembler::adcl(Register dst, Register src) {
   851   (void) prefix_and_encode(dst->encoding(), src->encoding());
   852   emit_arith(0x13, 0xC0, dst, src);
   853 }
   855 void Assembler::addl(Address dst, int32_t imm32) {
   856   InstructionMark im(this);
   857   prefix(dst);
   858   emit_arith_operand(0x81, rax, dst, imm32);
   859 }
   861 void Assembler::addl(Address dst, Register src) {
   862   InstructionMark im(this);
   863   prefix(dst, src);
   864   emit_byte(0x01);
   865   emit_operand(src, dst);
   866 }
   868 void Assembler::addl(Register dst, int32_t imm32) {
   869   prefix(dst);
   870   emit_arith(0x81, 0xC0, dst, imm32);
   871 }
   873 void Assembler::addl(Register dst, Address src) {
   874   InstructionMark im(this);
   875   prefix(src, dst);
   876   emit_byte(0x03);
   877   emit_operand(dst, src);
   878 }
   880 void Assembler::addl(Register dst, Register src) {
   881   (void) prefix_and_encode(dst->encoding(), src->encoding());
   882   emit_arith(0x03, 0xC0, dst, src);
   883 }
   885 void Assembler::addr_nop_4() {
   886   // 4 bytes: NOP DWORD PTR [EAX+0]
   887   emit_byte(0x0F);
   888   emit_byte(0x1F);
   889   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   890   emit_byte(0);    // 8-bits offset (1 byte)
   891 }
   893 void Assembler::addr_nop_5() {
   894   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   895   emit_byte(0x0F);
   896   emit_byte(0x1F);
   897   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   898   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   899   emit_byte(0);    // 8-bits offset (1 byte)
   900 }
   902 void Assembler::addr_nop_7() {
   903   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   904   emit_byte(0x0F);
   905   emit_byte(0x1F);
   906   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   907   emit_long(0);    // 32-bits offset (4 bytes)
   908 }
   910 void Assembler::addr_nop_8() {
   911   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   912   emit_byte(0x0F);
   913   emit_byte(0x1F);
   914   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   915   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   916   emit_long(0);    // 32-bits offset (4 bytes)
   917 }
   919 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   921   emit_byte(0xF2);
   922   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   923   emit_byte(0x0F);
   924   emit_byte(0x58);
   925   emit_byte(0xC0 | encode);
   926 }
   928 void Assembler::addsd(XMMRegister dst, Address src) {
   929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   930   InstructionMark im(this);
   931   emit_byte(0xF2);
   932   prefix(src, dst);
   933   emit_byte(0x0F);
   934   emit_byte(0x58);
   935   emit_operand(dst, src);
   936 }
   938 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   939   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   940   emit_byte(0xF3);
   941   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   942   emit_byte(0x0F);
   943   emit_byte(0x58);
   944   emit_byte(0xC0 | encode);
   945 }
   947 void Assembler::addss(XMMRegister dst, Address src) {
   948   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   949   InstructionMark im(this);
   950   emit_byte(0xF3);
   951   prefix(src, dst);
   952   emit_byte(0x0F);
   953   emit_byte(0x58);
   954   emit_operand(dst, src);
   955 }
   957 void Assembler::andl(Register dst, int32_t imm32) {
   958   prefix(dst);
   959   emit_arith(0x81, 0xE0, dst, imm32);
   960 }
   962 void Assembler::andl(Register dst, Address src) {
   963   InstructionMark im(this);
   964   prefix(src, dst);
   965   emit_byte(0x23);
   966   emit_operand(dst, src);
   967 }
   969 void Assembler::andl(Register dst, Register src) {
   970   (void) prefix_and_encode(dst->encoding(), src->encoding());
   971   emit_arith(0x23, 0xC0, dst, src);
   972 }
   974 void Assembler::andpd(XMMRegister dst, Address src) {
   975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   976   InstructionMark im(this);
   977   emit_byte(0x66);
   978   prefix(src, dst);
   979   emit_byte(0x0F);
   980   emit_byte(0x54);
   981   emit_operand(dst, src);
   982 }
   984 void Assembler::bsfl(Register dst, Register src) {
   985   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   986   emit_byte(0x0F);
   987   emit_byte(0xBC);
   988   emit_byte(0xC0 | encode);
   989 }
   991 void Assembler::bsrl(Register dst, Register src) {
   992   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
   993   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   994   emit_byte(0x0F);
   995   emit_byte(0xBD);
   996   emit_byte(0xC0 | encode);
   997 }
   999 void Assembler::bswapl(Register reg) { // bswap
  1000   int encode = prefix_and_encode(reg->encoding());
  1001   emit_byte(0x0F);
  1002   emit_byte(0xC8 | encode);
  1005 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1006   // suspect disp32 is always good
  1007   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1009   if (L.is_bound()) {
  1010     const int long_size = 5;
  1011     int offs = (int)( target(L) - pc() );
  1012     assert(offs <= 0, "assembler error");
  1013     InstructionMark im(this);
  1014     // 1110 1000 #32-bit disp
  1015     emit_byte(0xE8);
  1016     emit_data(offs - long_size, rtype, operand);
  1017   } else {
  1018     InstructionMark im(this);
  1019     // 1110 1000 #32-bit disp
  1020     L.add_patch_at(code(), locator());
  1022     emit_byte(0xE8);
  1023     emit_data(int(0), rtype, operand);
  1027 void Assembler::call(Register dst) {
  1028   // This was originally using a 32bit register encoding
  1029   // and surely we want 64bit!
  1030   // this is a 32bit encoding but in 64bit mode the default
  1031   // operand size is 64bit so there is no need for the
  1032   // wide prefix. So prefix only happens if we use the
  1033   // new registers. Much like push/pop.
  1034   int x = offset();
  1035   // this may be true but dbx disassembles it as if it
  1036   // were 32bits...
  1037   // int encode = prefix_and_encode(dst->encoding());
  1038   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
  1039   int encode = prefixq_and_encode(dst->encoding());
  1041   emit_byte(0xFF);
  1042   emit_byte(0xD0 | encode);
  1046 void Assembler::call(Address adr) {
  1047   InstructionMark im(this);
  1048   prefix(adr);
  1049   emit_byte(0xFF);
  1050   emit_operand(rdx, adr);
  1053 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1054   assert(entry != NULL, "call most probably wrong");
  1055   InstructionMark im(this);
  1056   emit_byte(0xE8);
  1057   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1058   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1059   // Technically, should use call32_operand, but this format is
  1060   // implied by the fact that we're emitting a call instruction.
  1062   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1063   emit_data((int) disp, rspec, operand);
  1066 void Assembler::cdql() {
  1067   emit_byte(0x99);
  1070 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1071   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1072   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1073   emit_byte(0x0F);
  1074   emit_byte(0x40 | cc);
  1075   emit_byte(0xC0 | encode);
  1079 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1080   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1081   prefix(src, dst);
  1082   emit_byte(0x0F);
  1083   emit_byte(0x40 | cc);
  1084   emit_operand(dst, src);
  1087 void Assembler::cmpb(Address dst, int imm8) {
  1088   InstructionMark im(this);
  1089   prefix(dst);
  1090   emit_byte(0x80);
  1091   emit_operand(rdi, dst, 1);
  1092   emit_byte(imm8);
  1095 void Assembler::cmpl(Address dst, int32_t imm32) {
  1096   InstructionMark im(this);
  1097   prefix(dst);
  1098   emit_byte(0x81);
  1099   emit_operand(rdi, dst, 4);
  1100   emit_long(imm32);
  1103 void Assembler::cmpl(Register dst, int32_t imm32) {
  1104   prefix(dst);
  1105   emit_arith(0x81, 0xF8, dst, imm32);
  1108 void Assembler::cmpl(Register dst, Register src) {
  1109   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1110   emit_arith(0x3B, 0xC0, dst, src);
  1114 void Assembler::cmpl(Register dst, Address  src) {
  1115   InstructionMark im(this);
  1116   prefix(src, dst);
  1117   emit_byte(0x3B);
  1118   emit_operand(dst, src);
  1121 void Assembler::cmpw(Address dst, int imm16) {
  1122   InstructionMark im(this);
  1123   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1124   emit_byte(0x66);
  1125   emit_byte(0x81);
  1126   emit_operand(rdi, dst, 2);
  1127   emit_word(imm16);
  1130 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1131 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1132 // The ZF is set if the compared values were equal, and cleared otherwise.
  1133 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1134   if (Atomics & 2) {
  1135      // caveat: no instructionmark, so this isn't relocatable.
  1136      // Emit a synthetic, non-atomic, CAS equivalent.
  1137      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1138      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1139      cmpl(rax, adr);
  1140      movl(rax, adr);
  1141      if (reg != rax) {
  1142         Label L ;
  1143         jcc(Assembler::notEqual, L);
  1144         movl(adr, reg);
  1145         bind(L);
  1147   } else {
  1148      InstructionMark im(this);
  1149      prefix(adr, reg);
  1150      emit_byte(0x0F);
  1151      emit_byte(0xB1);
  1152      emit_operand(reg, adr);
  1156 void Assembler::comisd(XMMRegister dst, Address src) {
  1157   // NOTE: dbx seems to decode this as comiss even though the
  1158   // 0x66 is there. Strangly ucomisd comes out correct
  1159   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1160   emit_byte(0x66);
  1161   comiss(dst, src);
  1164 void Assembler::comiss(XMMRegister dst, Address src) {
  1165   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1167   InstructionMark im(this);
  1168   prefix(src, dst);
  1169   emit_byte(0x0F);
  1170   emit_byte(0x2F);
  1171   emit_operand(dst, src);
  1174 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1176   emit_byte(0xF3);
  1177   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1178   emit_byte(0x0F);
  1179   emit_byte(0xE6);
  1180   emit_byte(0xC0 | encode);
  1183 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1185   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1186   emit_byte(0x0F);
  1187   emit_byte(0x5B);
  1188   emit_byte(0xC0 | encode);
  1191 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1193   emit_byte(0xF2);
  1194   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1195   emit_byte(0x0F);
  1196   emit_byte(0x5A);
  1197   emit_byte(0xC0 | encode);
  1200 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1201   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1202   emit_byte(0xF2);
  1203   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1204   emit_byte(0x0F);
  1205   emit_byte(0x2A);
  1206   emit_byte(0xC0 | encode);
  1209 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1210   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1211   emit_byte(0xF3);
  1212   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1213   emit_byte(0x0F);
  1214   emit_byte(0x2A);
  1215   emit_byte(0xC0 | encode);
  1218 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1219   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1220   emit_byte(0xF3);
  1221   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1222   emit_byte(0x0F);
  1223   emit_byte(0x5A);
  1224   emit_byte(0xC0 | encode);
  1227 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1228   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1229   emit_byte(0xF2);
  1230   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1231   emit_byte(0x0F);
  1232   emit_byte(0x2C);
  1233   emit_byte(0xC0 | encode);
  1236 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1237   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1238   emit_byte(0xF3);
  1239   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1240   emit_byte(0x0F);
  1241   emit_byte(0x2C);
  1242   emit_byte(0xC0 | encode);
  1245 void Assembler::decl(Address dst) {
  1246   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1247   InstructionMark im(this);
  1248   prefix(dst);
  1249   emit_byte(0xFF);
  1250   emit_operand(rcx, dst);
  1253 void Assembler::divsd(XMMRegister dst, Address src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1255   InstructionMark im(this);
  1256   emit_byte(0xF2);
  1257   prefix(src, dst);
  1258   emit_byte(0x0F);
  1259   emit_byte(0x5E);
  1260   emit_operand(dst, src);
  1263 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1265   emit_byte(0xF2);
  1266   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1267   emit_byte(0x0F);
  1268   emit_byte(0x5E);
  1269   emit_byte(0xC0 | encode);
  1272 void Assembler::divss(XMMRegister dst, Address src) {
  1273   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1274   InstructionMark im(this);
  1275   emit_byte(0xF3);
  1276   prefix(src, dst);
  1277   emit_byte(0x0F);
  1278   emit_byte(0x5E);
  1279   emit_operand(dst, src);
  1282 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1283   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1284   emit_byte(0xF3);
  1285   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1286   emit_byte(0x0F);
  1287   emit_byte(0x5E);
  1288   emit_byte(0xC0 | encode);
  1291 void Assembler::emms() {
  1292   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1293   emit_byte(0x0F);
  1294   emit_byte(0x77);
  1297 void Assembler::hlt() {
  1298   emit_byte(0xF4);
  1301 void Assembler::idivl(Register src) {
  1302   int encode = prefix_and_encode(src->encoding());
  1303   emit_byte(0xF7);
  1304   emit_byte(0xF8 | encode);
  1307 void Assembler::divl(Register src) { // Unsigned
  1308   int encode = prefix_and_encode(src->encoding());
  1309   emit_byte(0xF7);
  1310   emit_byte(0xF0 | encode);
  1313 void Assembler::imull(Register dst, Register src) {
  1314   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1315   emit_byte(0x0F);
  1316   emit_byte(0xAF);
  1317   emit_byte(0xC0 | encode);
  1321 void Assembler::imull(Register dst, Register src, int value) {
  1322   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1323   if (is8bit(value)) {
  1324     emit_byte(0x6B);
  1325     emit_byte(0xC0 | encode);
  1326     emit_byte(value & 0xFF);
  1327   } else {
  1328     emit_byte(0x69);
  1329     emit_byte(0xC0 | encode);
  1330     emit_long(value);
  1334 void Assembler::incl(Address dst) {
  1335   // Don't use it directly. Use MacroAssembler::increment() instead.
  1336   InstructionMark im(this);
  1337   prefix(dst);
  1338   emit_byte(0xFF);
  1339   emit_operand(rax, dst);
  1342 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1343   InstructionMark im(this);
  1344   assert((0 <= cc) && (cc < 16), "illegal cc");
  1345   if (L.is_bound()) {
  1346     address dst = target(L);
  1347     assert(dst != NULL, "jcc most probably wrong");
  1349     const int short_size = 2;
  1350     const int long_size = 6;
  1351     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1352     if (maybe_short && is8bit(offs - short_size)) {
  1353       // 0111 tttn #8-bit disp
  1354       emit_byte(0x70 | cc);
  1355       emit_byte((offs - short_size) & 0xFF);
  1356     } else {
  1357       // 0000 1111 1000 tttn #32-bit disp
  1358       assert(is_simm32(offs - long_size),
  1359              "must be 32bit offset (call4)");
  1360       emit_byte(0x0F);
  1361       emit_byte(0x80 | cc);
  1362       emit_long(offs - long_size);
  1364   } else {
  1365     // Note: could eliminate cond. jumps to this jump if condition
  1366     //       is the same however, seems to be rather unlikely case.
  1367     // Note: use jccb() if label to be bound is very close to get
  1368     //       an 8-bit displacement
  1369     L.add_patch_at(code(), locator());
  1370     emit_byte(0x0F);
  1371     emit_byte(0x80 | cc);
  1372     emit_long(0);
  1376 void Assembler::jccb(Condition cc, Label& L) {
  1377   if (L.is_bound()) {
  1378     const int short_size = 2;
  1379     address entry = target(L);
  1380     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  1381            "Dispacement too large for a short jmp");
  1382     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1383     // 0111 tttn #8-bit disp
  1384     emit_byte(0x70 | cc);
  1385     emit_byte((offs - short_size) & 0xFF);
  1386   } else {
  1387     InstructionMark im(this);
  1388     L.add_patch_at(code(), locator());
  1389     emit_byte(0x70 | cc);
  1390     emit_byte(0);
  1394 void Assembler::jmp(Address adr) {
  1395   InstructionMark im(this);
  1396   prefix(adr);
  1397   emit_byte(0xFF);
  1398   emit_operand(rsp, adr);
  1401 void Assembler::jmp(Label& L, bool maybe_short) {
  1402   if (L.is_bound()) {
  1403     address entry = target(L);
  1404     assert(entry != NULL, "jmp most probably wrong");
  1405     InstructionMark im(this);
  1406     const int short_size = 2;
  1407     const int long_size = 5;
  1408     intptr_t offs = entry - _code_pos;
  1409     if (maybe_short && is8bit(offs - short_size)) {
  1410       emit_byte(0xEB);
  1411       emit_byte((offs - short_size) & 0xFF);
  1412     } else {
  1413       emit_byte(0xE9);
  1414       emit_long(offs - long_size);
  1416   } else {
  1417     // By default, forward jumps are always 32-bit displacements, since
  1418     // we can't yet know where the label will be bound.  If you're sure that
  1419     // the forward jump will not run beyond 256 bytes, use jmpb to
  1420     // force an 8-bit displacement.
  1421     InstructionMark im(this);
  1422     L.add_patch_at(code(), locator());
  1423     emit_byte(0xE9);
  1424     emit_long(0);
  1428 void Assembler::jmp(Register entry) {
  1429   int encode = prefix_and_encode(entry->encoding());
  1430   emit_byte(0xFF);
  1431   emit_byte(0xE0 | encode);
  1434 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1435   InstructionMark im(this);
  1436   emit_byte(0xE9);
  1437   assert(dest != NULL, "must have a target");
  1438   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1439   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1440   emit_data(disp, rspec.reloc(), call32_operand);
  1443 void Assembler::jmpb(Label& L) {
  1444   if (L.is_bound()) {
  1445     const int short_size = 2;
  1446     address entry = target(L);
  1447     assert(is8bit((entry - _code_pos) + short_size),
  1448            "Dispacement too large for a short jmp");
  1449     assert(entry != NULL, "jmp most probably wrong");
  1450     intptr_t offs = entry - _code_pos;
  1451     emit_byte(0xEB);
  1452     emit_byte((offs - short_size) & 0xFF);
  1453   } else {
  1454     InstructionMark im(this);
  1455     L.add_patch_at(code(), locator());
  1456     emit_byte(0xEB);
  1457     emit_byte(0);
  1461 void Assembler::ldmxcsr( Address src) {
  1462   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1463   InstructionMark im(this);
  1464   prefix(src);
  1465   emit_byte(0x0F);
  1466   emit_byte(0xAE);
  1467   emit_operand(as_Register(2), src);
  1470 void Assembler::leal(Register dst, Address src) {
  1471   InstructionMark im(this);
  1472 #ifdef _LP64
  1473   emit_byte(0x67); // addr32
  1474   prefix(src, dst);
  1475 #endif // LP64
  1476   emit_byte(0x8D);
  1477   emit_operand(dst, src);
  1480 void Assembler::lock() {
  1481   if (Atomics & 1) {
  1482      // Emit either nothing, a NOP, or a NOP: prefix
  1483      emit_byte(0x90) ;
  1484   } else {
  1485      emit_byte(0xF0);
  1489 void Assembler::lzcntl(Register dst, Register src) {
  1490   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1491   emit_byte(0xF3);
  1492   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1493   emit_byte(0x0F);
  1494   emit_byte(0xBD);
  1495   emit_byte(0xC0 | encode);
  1498 // Emit mfence instruction
  1499 void Assembler::mfence() {
  1500   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1501   emit_byte( 0x0F );
  1502   emit_byte( 0xAE );
  1503   emit_byte( 0xF0 );
  1506 void Assembler::mov(Register dst, Register src) {
  1507   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1510 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1511   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1512   int dstenc = dst->encoding();
  1513   int srcenc = src->encoding();
  1514   emit_byte(0x66);
  1515   if (dstenc < 8) {
  1516     if (srcenc >= 8) {
  1517       prefix(REX_B);
  1518       srcenc -= 8;
  1520   } else {
  1521     if (srcenc < 8) {
  1522       prefix(REX_R);
  1523     } else {
  1524       prefix(REX_RB);
  1525       srcenc -= 8;
  1527     dstenc -= 8;
  1529   emit_byte(0x0F);
  1530   emit_byte(0x28);
  1531   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1534 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1535   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1536   int dstenc = dst->encoding();
  1537   int srcenc = src->encoding();
  1538   if (dstenc < 8) {
  1539     if (srcenc >= 8) {
  1540       prefix(REX_B);
  1541       srcenc -= 8;
  1543   } else {
  1544     if (srcenc < 8) {
  1545       prefix(REX_R);
  1546     } else {
  1547       prefix(REX_RB);
  1548       srcenc -= 8;
  1550     dstenc -= 8;
  1552   emit_byte(0x0F);
  1553   emit_byte(0x28);
  1554   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1557 void Assembler::movb(Register dst, Address src) {
  1558   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1559   InstructionMark im(this);
  1560   prefix(src, dst, true);
  1561   emit_byte(0x8A);
  1562   emit_operand(dst, src);
  1566 void Assembler::movb(Address dst, int imm8) {
  1567   InstructionMark im(this);
  1568    prefix(dst);
  1569   emit_byte(0xC6);
  1570   emit_operand(rax, dst, 1);
  1571   emit_byte(imm8);
  1575 void Assembler::movb(Address dst, Register src) {
  1576   assert(src->has_byte_register(), "must have byte register");
  1577   InstructionMark im(this);
  1578   prefix(dst, src, true);
  1579   emit_byte(0x88);
  1580   emit_operand(src, dst);
  1583 void Assembler::movdl(XMMRegister dst, Register src) {
  1584   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1585   emit_byte(0x66);
  1586   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1587   emit_byte(0x0F);
  1588   emit_byte(0x6E);
  1589   emit_byte(0xC0 | encode);
  1592 void Assembler::movdl(Register dst, XMMRegister src) {
  1593   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1594   emit_byte(0x66);
  1595   // swap src/dst to get correct prefix
  1596   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1597   emit_byte(0x0F);
  1598   emit_byte(0x7E);
  1599   emit_byte(0xC0 | encode);
  1602 void Assembler::movdl(XMMRegister dst, Address src) {
  1603   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1604   InstructionMark im(this);
  1605   emit_byte(0x66);
  1606   prefix(src, dst);
  1607   emit_byte(0x0F);
  1608   emit_byte(0x6E);
  1609   emit_operand(dst, src);
  1613 void Assembler::movdqa(XMMRegister dst, Address src) {
  1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1615   InstructionMark im(this);
  1616   emit_byte(0x66);
  1617   prefix(src, dst);
  1618   emit_byte(0x0F);
  1619   emit_byte(0x6F);
  1620   emit_operand(dst, src);
  1623 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1624   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1625   emit_byte(0x66);
  1626   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1627   emit_byte(0x0F);
  1628   emit_byte(0x6F);
  1629   emit_byte(0xC0 | encode);
  1632 void Assembler::movdqa(Address dst, XMMRegister src) {
  1633   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1634   InstructionMark im(this);
  1635   emit_byte(0x66);
  1636   prefix(dst, src);
  1637   emit_byte(0x0F);
  1638   emit_byte(0x7F);
  1639   emit_operand(src, dst);
  1642 void Assembler::movdqu(XMMRegister dst, Address src) {
  1643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1644   InstructionMark im(this);
  1645   emit_byte(0xF3);
  1646   prefix(src, dst);
  1647   emit_byte(0x0F);
  1648   emit_byte(0x6F);
  1649   emit_operand(dst, src);
  1652 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1654   emit_byte(0xF3);
  1655   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1656   emit_byte(0x0F);
  1657   emit_byte(0x6F);
  1658   emit_byte(0xC0 | encode);
  1661 void Assembler::movdqu(Address dst, XMMRegister src) {
  1662   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1663   InstructionMark im(this);
  1664   emit_byte(0xF3);
  1665   prefix(dst, src);
  1666   emit_byte(0x0F);
  1667   emit_byte(0x7F);
  1668   emit_operand(src, dst);
  1671 // Uses zero extension on 64bit
  1673 void Assembler::movl(Register dst, int32_t imm32) {
  1674   int encode = prefix_and_encode(dst->encoding());
  1675   emit_byte(0xB8 | encode);
  1676   emit_long(imm32);
  1679 void Assembler::movl(Register dst, Register src) {
  1680   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1681   emit_byte(0x8B);
  1682   emit_byte(0xC0 | encode);
  1685 void Assembler::movl(Register dst, Address src) {
  1686   InstructionMark im(this);
  1687   prefix(src, dst);
  1688   emit_byte(0x8B);
  1689   emit_operand(dst, src);
  1692 void Assembler::movl(Address dst, int32_t imm32) {
  1693   InstructionMark im(this);
  1694   prefix(dst);
  1695   emit_byte(0xC7);
  1696   emit_operand(rax, dst, 4);
  1697   emit_long(imm32);
  1700 void Assembler::movl(Address dst, Register src) {
  1701   InstructionMark im(this);
  1702   prefix(dst, src);
  1703   emit_byte(0x89);
  1704   emit_operand(src, dst);
  1707 // New cpus require to use movsd and movss to avoid partial register stall
  1708 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1709 // The selection is done in MacroAssembler::movdbl() and movflt().
  1710 void Assembler::movlpd(XMMRegister dst, Address src) {
  1711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1712   InstructionMark im(this);
  1713   emit_byte(0x66);
  1714   prefix(src, dst);
  1715   emit_byte(0x0F);
  1716   emit_byte(0x12);
  1717   emit_operand(dst, src);
  1720 void Assembler::movq( MMXRegister dst, Address src ) {
  1721   assert( VM_Version::supports_mmx(), "" );
  1722   emit_byte(0x0F);
  1723   emit_byte(0x6F);
  1724   emit_operand(dst, src);
  1727 void Assembler::movq( Address dst, MMXRegister src ) {
  1728   assert( VM_Version::supports_mmx(), "" );
  1729   emit_byte(0x0F);
  1730   emit_byte(0x7F);
  1731   // workaround gcc (3.2.1-7a) bug
  1732   // In that version of gcc with only an emit_operand(MMX, Address)
  1733   // gcc will tail jump and try and reverse the parameters completely
  1734   // obliterating dst in the process. By having a version available
  1735   // that doesn't need to swap the args at the tail jump the bug is
  1736   // avoided.
  1737   emit_operand(dst, src);
  1740 void Assembler::movq(XMMRegister dst, Address src) {
  1741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1742   InstructionMark im(this);
  1743   emit_byte(0xF3);
  1744   prefix(src, dst);
  1745   emit_byte(0x0F);
  1746   emit_byte(0x7E);
  1747   emit_operand(dst, src);
  1750 void Assembler::movq(Address dst, XMMRegister src) {
  1751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1752   InstructionMark im(this);
  1753   emit_byte(0x66);
  1754   prefix(dst, src);
  1755   emit_byte(0x0F);
  1756   emit_byte(0xD6);
  1757   emit_operand(src, dst);
  1760 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1761   InstructionMark im(this);
  1762   prefix(src, dst);
  1763   emit_byte(0x0F);
  1764   emit_byte(0xBE);
  1765   emit_operand(dst, src);
  1768 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1769   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1770   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1771   emit_byte(0x0F);
  1772   emit_byte(0xBE);
  1773   emit_byte(0xC0 | encode);
  1776 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1777   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1778   emit_byte(0xF2);
  1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1780   emit_byte(0x0F);
  1781   emit_byte(0x10);
  1782   emit_byte(0xC0 | encode);
  1785 void Assembler::movsd(XMMRegister dst, Address src) {
  1786   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1787   InstructionMark im(this);
  1788   emit_byte(0xF2);
  1789   prefix(src, dst);
  1790   emit_byte(0x0F);
  1791   emit_byte(0x10);
  1792   emit_operand(dst, src);
  1795 void Assembler::movsd(Address dst, XMMRegister src) {
  1796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1797   InstructionMark im(this);
  1798   emit_byte(0xF2);
  1799   prefix(dst, src);
  1800   emit_byte(0x0F);
  1801   emit_byte(0x11);
  1802   emit_operand(src, dst);
  1805 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1806   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1807   emit_byte(0xF3);
  1808   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1809   emit_byte(0x0F);
  1810   emit_byte(0x10);
  1811   emit_byte(0xC0 | encode);
  1814 void Assembler::movss(XMMRegister dst, Address src) {
  1815   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1816   InstructionMark im(this);
  1817   emit_byte(0xF3);
  1818   prefix(src, dst);
  1819   emit_byte(0x0F);
  1820   emit_byte(0x10);
  1821   emit_operand(dst, src);
  1824 void Assembler::movss(Address dst, XMMRegister src) {
  1825   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1826   InstructionMark im(this);
  1827   emit_byte(0xF3);
  1828   prefix(dst, src);
  1829   emit_byte(0x0F);
  1830   emit_byte(0x11);
  1831   emit_operand(src, dst);
  1834 void Assembler::movswl(Register dst, Address src) { // movsxw
  1835   InstructionMark im(this);
  1836   prefix(src, dst);
  1837   emit_byte(0x0F);
  1838   emit_byte(0xBF);
  1839   emit_operand(dst, src);
  1842 void Assembler::movswl(Register dst, Register src) { // movsxw
  1843   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1844   emit_byte(0x0F);
  1845   emit_byte(0xBF);
  1846   emit_byte(0xC0 | encode);
  1849 void Assembler::movw(Address dst, int imm16) {
  1850   InstructionMark im(this);
  1852   emit_byte(0x66); // switch to 16-bit mode
  1853   prefix(dst);
  1854   emit_byte(0xC7);
  1855   emit_operand(rax, dst, 2);
  1856   emit_word(imm16);
  1859 void Assembler::movw(Register dst, Address src) {
  1860   InstructionMark im(this);
  1861   emit_byte(0x66);
  1862   prefix(src, dst);
  1863   emit_byte(0x8B);
  1864   emit_operand(dst, src);
  1867 void Assembler::movw(Address dst, Register src) {
  1868   InstructionMark im(this);
  1869   emit_byte(0x66);
  1870   prefix(dst, src);
  1871   emit_byte(0x89);
  1872   emit_operand(src, dst);
  1875 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1876   InstructionMark im(this);
  1877   prefix(src, dst);
  1878   emit_byte(0x0F);
  1879   emit_byte(0xB6);
  1880   emit_operand(dst, src);
  1883 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1884   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1885   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1886   emit_byte(0x0F);
  1887   emit_byte(0xB6);
  1888   emit_byte(0xC0 | encode);
  1891 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1892   InstructionMark im(this);
  1893   prefix(src, dst);
  1894   emit_byte(0x0F);
  1895   emit_byte(0xB7);
  1896   emit_operand(dst, src);
  1899 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1900   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1901   emit_byte(0x0F);
  1902   emit_byte(0xB7);
  1903   emit_byte(0xC0 | encode);
  1906 void Assembler::mull(Address src) {
  1907   InstructionMark im(this);
  1908   prefix(src);
  1909   emit_byte(0xF7);
  1910   emit_operand(rsp, src);
  1913 void Assembler::mull(Register src) {
  1914   int encode = prefix_and_encode(src->encoding());
  1915   emit_byte(0xF7);
  1916   emit_byte(0xE0 | encode);
  1919 void Assembler::mulsd(XMMRegister dst, Address src) {
  1920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1921   InstructionMark im(this);
  1922   emit_byte(0xF2);
  1923   prefix(src, dst);
  1924   emit_byte(0x0F);
  1925   emit_byte(0x59);
  1926   emit_operand(dst, src);
  1929 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1930   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1931   emit_byte(0xF2);
  1932   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1933   emit_byte(0x0F);
  1934   emit_byte(0x59);
  1935   emit_byte(0xC0 | encode);
  1938 void Assembler::mulss(XMMRegister dst, Address src) {
  1939   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1940   InstructionMark im(this);
  1941   emit_byte(0xF3);
  1942   prefix(src, dst);
  1943   emit_byte(0x0F);
  1944   emit_byte(0x59);
  1945   emit_operand(dst, src);
  1948 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1949   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1950   emit_byte(0xF3);
  1951   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1952   emit_byte(0x0F);
  1953   emit_byte(0x59);
  1954   emit_byte(0xC0 | encode);
  1957 void Assembler::negl(Register dst) {
  1958   int encode = prefix_and_encode(dst->encoding());
  1959   emit_byte(0xF7);
  1960   emit_byte(0xD8 | encode);
  1963 void Assembler::nop(int i) {
  1964 #ifdef ASSERT
  1965   assert(i > 0, " ");
  1966   // The fancy nops aren't currently recognized by debuggers making it a
  1967   // pain to disassemble code while debugging. If asserts are on clearly
  1968   // speed is not an issue so simply use the single byte traditional nop
  1969   // to do alignment.
  1971   for (; i > 0 ; i--) emit_byte(0x90);
  1972   return;
  1974 #endif // ASSERT
  1976   if (UseAddressNop && VM_Version::is_intel()) {
  1977     //
  1978     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1979     //  1: 0x90
  1980     //  2: 0x66 0x90
  1981     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1982     //  4: 0x0F 0x1F 0x40 0x00
  1983     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1984     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1985     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1986     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1987     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1988     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1989     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1991     // The rest coding is Intel specific - don't use consecutive address nops
  1993     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1994     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1995     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1996     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1998     while(i >= 15) {
  1999       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2000       i -= 15;
  2001       emit_byte(0x66);   // size prefix
  2002       emit_byte(0x66);   // size prefix
  2003       emit_byte(0x66);   // size prefix
  2004       addr_nop_8();
  2005       emit_byte(0x66);   // size prefix
  2006       emit_byte(0x66);   // size prefix
  2007       emit_byte(0x66);   // size prefix
  2008       emit_byte(0x90);   // nop
  2010     switch (i) {
  2011       case 14:
  2012         emit_byte(0x66); // size prefix
  2013       case 13:
  2014         emit_byte(0x66); // size prefix
  2015       case 12:
  2016         addr_nop_8();
  2017         emit_byte(0x66); // size prefix
  2018         emit_byte(0x66); // size prefix
  2019         emit_byte(0x66); // size prefix
  2020         emit_byte(0x90); // nop
  2021         break;
  2022       case 11:
  2023         emit_byte(0x66); // size prefix
  2024       case 10:
  2025         emit_byte(0x66); // size prefix
  2026       case 9:
  2027         emit_byte(0x66); // size prefix
  2028       case 8:
  2029         addr_nop_8();
  2030         break;
  2031       case 7:
  2032         addr_nop_7();
  2033         break;
  2034       case 6:
  2035         emit_byte(0x66); // size prefix
  2036       case 5:
  2037         addr_nop_5();
  2038         break;
  2039       case 4:
  2040         addr_nop_4();
  2041         break;
  2042       case 3:
  2043         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2044         emit_byte(0x66); // size prefix
  2045       case 2:
  2046         emit_byte(0x66); // size prefix
  2047       case 1:
  2048         emit_byte(0x90); // nop
  2049         break;
  2050       default:
  2051         assert(i == 0, " ");
  2053     return;
  2055   if (UseAddressNop && VM_Version::is_amd()) {
  2056     //
  2057     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2058     //  1: 0x90
  2059     //  2: 0x66 0x90
  2060     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2061     //  4: 0x0F 0x1F 0x40 0x00
  2062     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2063     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2064     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2065     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2066     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2067     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2068     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2070     // The rest coding is AMD specific - use consecutive address nops
  2072     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2073     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2074     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2075     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2076     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2077     //     Size prefixes (0x66) are added for larger sizes
  2079     while(i >= 22) {
  2080       i -= 11;
  2081       emit_byte(0x66); // size prefix
  2082       emit_byte(0x66); // size prefix
  2083       emit_byte(0x66); // size prefix
  2084       addr_nop_8();
  2086     // Generate first nop for size between 21-12
  2087     switch (i) {
  2088       case 21:
  2089         i -= 1;
  2090         emit_byte(0x66); // size prefix
  2091       case 20:
  2092       case 19:
  2093         i -= 1;
  2094         emit_byte(0x66); // size prefix
  2095       case 18:
  2096       case 17:
  2097         i -= 1;
  2098         emit_byte(0x66); // size prefix
  2099       case 16:
  2100       case 15:
  2101         i -= 8;
  2102         addr_nop_8();
  2103         break;
  2104       case 14:
  2105       case 13:
  2106         i -= 7;
  2107         addr_nop_7();
  2108         break;
  2109       case 12:
  2110         i -= 6;
  2111         emit_byte(0x66); // size prefix
  2112         addr_nop_5();
  2113         break;
  2114       default:
  2115         assert(i < 12, " ");
  2118     // Generate second nop for size between 11-1
  2119     switch (i) {
  2120       case 11:
  2121         emit_byte(0x66); // size prefix
  2122       case 10:
  2123         emit_byte(0x66); // size prefix
  2124       case 9:
  2125         emit_byte(0x66); // size prefix
  2126       case 8:
  2127         addr_nop_8();
  2128         break;
  2129       case 7:
  2130         addr_nop_7();
  2131         break;
  2132       case 6:
  2133         emit_byte(0x66); // size prefix
  2134       case 5:
  2135         addr_nop_5();
  2136         break;
  2137       case 4:
  2138         addr_nop_4();
  2139         break;
  2140       case 3:
  2141         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2142         emit_byte(0x66); // size prefix
  2143       case 2:
  2144         emit_byte(0x66); // size prefix
  2145       case 1:
  2146         emit_byte(0x90); // nop
  2147         break;
  2148       default:
  2149         assert(i == 0, " ");
  2151     return;
  2154   // Using nops with size prefixes "0x66 0x90".
  2155   // From AMD Optimization Guide:
  2156   //  1: 0x90
  2157   //  2: 0x66 0x90
  2158   //  3: 0x66 0x66 0x90
  2159   //  4: 0x66 0x66 0x66 0x90
  2160   //  5: 0x66 0x66 0x90 0x66 0x90
  2161   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2162   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2163   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2164   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2165   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2166   //
  2167   while(i > 12) {
  2168     i -= 4;
  2169     emit_byte(0x66); // size prefix
  2170     emit_byte(0x66);
  2171     emit_byte(0x66);
  2172     emit_byte(0x90); // nop
  2174   // 1 - 12 nops
  2175   if(i > 8) {
  2176     if(i > 9) {
  2177       i -= 1;
  2178       emit_byte(0x66);
  2180     i -= 3;
  2181     emit_byte(0x66);
  2182     emit_byte(0x66);
  2183     emit_byte(0x90);
  2185   // 1 - 8 nops
  2186   if(i > 4) {
  2187     if(i > 6) {
  2188       i -= 1;
  2189       emit_byte(0x66);
  2191     i -= 3;
  2192     emit_byte(0x66);
  2193     emit_byte(0x66);
  2194     emit_byte(0x90);
  2196   switch (i) {
  2197     case 4:
  2198       emit_byte(0x66);
  2199     case 3:
  2200       emit_byte(0x66);
  2201     case 2:
  2202       emit_byte(0x66);
  2203     case 1:
  2204       emit_byte(0x90);
  2205       break;
  2206     default:
  2207       assert(i == 0, " ");
  2211 void Assembler::notl(Register dst) {
  2212   int encode = prefix_and_encode(dst->encoding());
  2213   emit_byte(0xF7);
  2214   emit_byte(0xD0 | encode );
  2217 void Assembler::orl(Address dst, int32_t imm32) {
  2218   InstructionMark im(this);
  2219   prefix(dst);
  2220   emit_arith_operand(0x81, rcx, dst, imm32);
  2223 void Assembler::orl(Register dst, int32_t imm32) {
  2224   prefix(dst);
  2225   emit_arith(0x81, 0xC8, dst, imm32);
  2228 void Assembler::orl(Register dst, Address src) {
  2229   InstructionMark im(this);
  2230   prefix(src, dst);
  2231   emit_byte(0x0B);
  2232   emit_operand(dst, src);
  2235 void Assembler::orl(Register dst, Register src) {
  2236   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2237   emit_arith(0x0B, 0xC0, dst, src);
  2240 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2241   assert(VM_Version::supports_sse4_2(), "");
  2243   InstructionMark im(this);
  2244   emit_byte(0x66);
  2245   prefix(src, dst);
  2246   emit_byte(0x0F);
  2247   emit_byte(0x3A);
  2248   emit_byte(0x61);
  2249   emit_operand(dst, src);
  2250   emit_byte(imm8);
  2253 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2254   assert(VM_Version::supports_sse4_2(), "");
  2256   emit_byte(0x66);
  2257   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2258   emit_byte(0x0F);
  2259   emit_byte(0x3A);
  2260   emit_byte(0x61);
  2261   emit_byte(0xC0 | encode);
  2262   emit_byte(imm8);
  2265 // generic
  2266 void Assembler::pop(Register dst) {
  2267   int encode = prefix_and_encode(dst->encoding());
  2268   emit_byte(0x58 | encode);
  2271 void Assembler::popcntl(Register dst, Address src) {
  2272   assert(VM_Version::supports_popcnt(), "must support");
  2273   InstructionMark im(this);
  2274   emit_byte(0xF3);
  2275   prefix(src, dst);
  2276   emit_byte(0x0F);
  2277   emit_byte(0xB8);
  2278   emit_operand(dst, src);
  2281 void Assembler::popcntl(Register dst, Register src) {
  2282   assert(VM_Version::supports_popcnt(), "must support");
  2283   emit_byte(0xF3);
  2284   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2285   emit_byte(0x0F);
  2286   emit_byte(0xB8);
  2287   emit_byte(0xC0 | encode);
  2290 void Assembler::popf() {
  2291   emit_byte(0x9D);
  2294 #ifndef _LP64 // no 32bit push/pop on amd64
  2295 void Assembler::popl(Address dst) {
  2296   // NOTE: this will adjust stack by 8byte on 64bits
  2297   InstructionMark im(this);
  2298   prefix(dst);
  2299   emit_byte(0x8F);
  2300   emit_operand(rax, dst);
  2302 #endif
  2304 void Assembler::prefetch_prefix(Address src) {
  2305   prefix(src);
  2306   emit_byte(0x0F);
  2309 void Assembler::prefetchnta(Address src) {
  2310   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2311   InstructionMark im(this);
  2312   prefetch_prefix(src);
  2313   emit_byte(0x18);
  2314   emit_operand(rax, src); // 0, src
  2317 void Assembler::prefetchr(Address src) {
  2318   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2319   InstructionMark im(this);
  2320   prefetch_prefix(src);
  2321   emit_byte(0x0D);
  2322   emit_operand(rax, src); // 0, src
  2325 void Assembler::prefetcht0(Address src) {
  2326   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2327   InstructionMark im(this);
  2328   prefetch_prefix(src);
  2329   emit_byte(0x18);
  2330   emit_operand(rcx, src); // 1, src
  2333 void Assembler::prefetcht1(Address src) {
  2334   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2335   InstructionMark im(this);
  2336   prefetch_prefix(src);
  2337   emit_byte(0x18);
  2338   emit_operand(rdx, src); // 2, src
  2341 void Assembler::prefetcht2(Address src) {
  2342   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2343   InstructionMark im(this);
  2344   prefetch_prefix(src);
  2345   emit_byte(0x18);
  2346   emit_operand(rbx, src); // 3, src
  2349 void Assembler::prefetchw(Address src) {
  2350   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2351   InstructionMark im(this);
  2352   prefetch_prefix(src);
  2353   emit_byte(0x0D);
  2354   emit_operand(rcx, src); // 1, src
  2357 void Assembler::prefix(Prefix p) {
  2358   a_byte(p);
  2361 void Assembler::por(XMMRegister dst, XMMRegister src) {
  2362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2364   emit_byte(0x66);
  2365   int  encode = prefix_and_encode(dst->encoding(), src->encoding());
  2366   emit_byte(0x0F);
  2368   emit_byte(0xEB);
  2369   emit_byte(0xC0 | encode);
  2372 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2373   assert(isByte(mode), "invalid value");
  2374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2376   emit_byte(0x66);
  2377   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2378   emit_byte(0x0F);
  2379   emit_byte(0x70);
  2380   emit_byte(0xC0 | encode);
  2381   emit_byte(mode & 0xFF);
  2385 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2386   assert(isByte(mode), "invalid value");
  2387   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2389   InstructionMark im(this);
  2390   emit_byte(0x66);
  2391   prefix(src, dst);
  2392   emit_byte(0x0F);
  2393   emit_byte(0x70);
  2394   emit_operand(dst, src);
  2395   emit_byte(mode & 0xFF);
  2398 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2399   assert(isByte(mode), "invalid value");
  2400   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2402   emit_byte(0xF2);
  2403   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2404   emit_byte(0x0F);
  2405   emit_byte(0x70);
  2406   emit_byte(0xC0 | encode);
  2407   emit_byte(mode & 0xFF);
  2410 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2411   assert(isByte(mode), "invalid value");
  2412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2414   InstructionMark im(this);
  2415   emit_byte(0xF2);
  2416   prefix(src, dst); // QQ new
  2417   emit_byte(0x0F);
  2418   emit_byte(0x70);
  2419   emit_operand(dst, src);
  2420   emit_byte(mode & 0xFF);
  2423 void Assembler::psrlq(XMMRegister dst, int shift) {
  2424   // Shift 64 bit value logically right by specified number of bits.
  2425   // HMM Table D-1 says sse2 or mmx.
  2426   // Do not confuse it with psrldq SSE2 instruction which
  2427   // shifts 128 bit value in xmm register by number of bytes.
  2428   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2430   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  2431   emit_byte(0x66);
  2432   emit_byte(0x0F);
  2433   emit_byte(0x73);
  2434   emit_byte(0xC0 | encode);
  2435   emit_byte(shift);
  2438 void Assembler::psrldq(XMMRegister dst, int shift) {
  2439   // Shift 128 bit value in xmm register by number of bytes.
  2440   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2442   int encode = prefixq_and_encode(xmm3->encoding(), dst->encoding());
  2443   emit_byte(0x66);
  2444   emit_byte(0x0F);
  2445   emit_byte(0x73);
  2446   emit_byte(0xC0 | encode);
  2447   emit_byte(shift);
  2450 void Assembler::ptest(XMMRegister dst, Address src) {
  2451   assert(VM_Version::supports_sse4_1(), "");
  2453   InstructionMark im(this);
  2454   emit_byte(0x66);
  2455   prefix(src, dst);
  2456   emit_byte(0x0F);
  2457   emit_byte(0x38);
  2458   emit_byte(0x17);
  2459   emit_operand(dst, src);
  2462 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2463   assert(VM_Version::supports_sse4_1(), "");
  2465   emit_byte(0x66);
  2466   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2467   emit_byte(0x0F);
  2468   emit_byte(0x38);
  2469   emit_byte(0x17);
  2470   emit_byte(0xC0 | encode);
  2473 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2474   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2475   emit_byte(0x66);
  2476   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2477   emit_byte(0x0F);
  2478   emit_byte(0x60);
  2479   emit_byte(0xC0 | encode);
  2482 void Assembler::push(int32_t imm32) {
  2483   // in 64bits we push 64bits onto the stack but only
  2484   // take a 32bit immediate
  2485   emit_byte(0x68);
  2486   emit_long(imm32);
  2489 void Assembler::push(Register src) {
  2490   int encode = prefix_and_encode(src->encoding());
  2492   emit_byte(0x50 | encode);
  2495 void Assembler::pushf() {
  2496   emit_byte(0x9C);
  2499 #ifndef _LP64 // no 32bit push/pop on amd64
  2500 void Assembler::pushl(Address src) {
  2501   // Note this will push 64bit on 64bit
  2502   InstructionMark im(this);
  2503   prefix(src);
  2504   emit_byte(0xFF);
  2505   emit_operand(rsi, src);
  2507 #endif
  2509 void Assembler::pxor(XMMRegister dst, Address src) {
  2510   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2511   InstructionMark im(this);
  2512   emit_byte(0x66);
  2513   prefix(src, dst);
  2514   emit_byte(0x0F);
  2515   emit_byte(0xEF);
  2516   emit_operand(dst, src);
  2519 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2520   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2521   InstructionMark im(this);
  2522   emit_byte(0x66);
  2523   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2524   emit_byte(0x0F);
  2525   emit_byte(0xEF);
  2526   emit_byte(0xC0 | encode);
  2529 void Assembler::rcll(Register dst, int imm8) {
  2530   assert(isShiftCount(imm8), "illegal shift count");
  2531   int encode = prefix_and_encode(dst->encoding());
  2532   if (imm8 == 1) {
  2533     emit_byte(0xD1);
  2534     emit_byte(0xD0 | encode);
  2535   } else {
  2536     emit_byte(0xC1);
  2537     emit_byte(0xD0 | encode);
  2538     emit_byte(imm8);
  2542 // copies data from [esi] to [edi] using rcx pointer sized words
  2543 // generic
  2544 void Assembler::rep_mov() {
  2545   emit_byte(0xF3);
  2546   // MOVSQ
  2547   LP64_ONLY(prefix(REX_W));
  2548   emit_byte(0xA5);
  2551 // sets rcx pointer sized words with rax, value at [edi]
  2552 // generic
  2553 void Assembler::rep_set() { // rep_set
  2554   emit_byte(0xF3);
  2555   // STOSQ
  2556   LP64_ONLY(prefix(REX_W));
  2557   emit_byte(0xAB);
  2560 // scans rcx pointer sized words at [edi] for occurance of rax,
  2561 // generic
  2562 void Assembler::repne_scan() { // repne_scan
  2563   emit_byte(0xF2);
  2564   // SCASQ
  2565   LP64_ONLY(prefix(REX_W));
  2566   emit_byte(0xAF);
  2569 #ifdef _LP64
  2570 // scans rcx 4 byte words at [edi] for occurance of rax,
  2571 // generic
  2572 void Assembler::repne_scanl() { // repne_scan
  2573   emit_byte(0xF2);
  2574   // SCASL
  2575   emit_byte(0xAF);
  2577 #endif
  2579 void Assembler::ret(int imm16) {
  2580   if (imm16 == 0) {
  2581     emit_byte(0xC3);
  2582   } else {
  2583     emit_byte(0xC2);
  2584     emit_word(imm16);
  2588 void Assembler::sahf() {
  2589 #ifdef _LP64
  2590   // Not supported in 64bit mode
  2591   ShouldNotReachHere();
  2592 #endif
  2593   emit_byte(0x9E);
  2596 void Assembler::sarl(Register dst, int imm8) {
  2597   int encode = prefix_and_encode(dst->encoding());
  2598   assert(isShiftCount(imm8), "illegal shift count");
  2599   if (imm8 == 1) {
  2600     emit_byte(0xD1);
  2601     emit_byte(0xF8 | encode);
  2602   } else {
  2603     emit_byte(0xC1);
  2604     emit_byte(0xF8 | encode);
  2605     emit_byte(imm8);
  2609 void Assembler::sarl(Register dst) {
  2610   int encode = prefix_and_encode(dst->encoding());
  2611   emit_byte(0xD3);
  2612   emit_byte(0xF8 | encode);
  2615 void Assembler::sbbl(Address dst, int32_t imm32) {
  2616   InstructionMark im(this);
  2617   prefix(dst);
  2618   emit_arith_operand(0x81, rbx, dst, imm32);
  2621 void Assembler::sbbl(Register dst, int32_t imm32) {
  2622   prefix(dst);
  2623   emit_arith(0x81, 0xD8, dst, imm32);
  2627 void Assembler::sbbl(Register dst, Address src) {
  2628   InstructionMark im(this);
  2629   prefix(src, dst);
  2630   emit_byte(0x1B);
  2631   emit_operand(dst, src);
  2634 void Assembler::sbbl(Register dst, Register src) {
  2635   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2636   emit_arith(0x1B, 0xC0, dst, src);
  2639 void Assembler::setb(Condition cc, Register dst) {
  2640   assert(0 <= cc && cc < 16, "illegal cc");
  2641   int encode = prefix_and_encode(dst->encoding(), true);
  2642   emit_byte(0x0F);
  2643   emit_byte(0x90 | cc);
  2644   emit_byte(0xC0 | encode);
  2647 void Assembler::shll(Register dst, int imm8) {
  2648   assert(isShiftCount(imm8), "illegal shift count");
  2649   int encode = prefix_and_encode(dst->encoding());
  2650   if (imm8 == 1 ) {
  2651     emit_byte(0xD1);
  2652     emit_byte(0xE0 | encode);
  2653   } else {
  2654     emit_byte(0xC1);
  2655     emit_byte(0xE0 | encode);
  2656     emit_byte(imm8);
  2660 void Assembler::shll(Register dst) {
  2661   int encode = prefix_and_encode(dst->encoding());
  2662   emit_byte(0xD3);
  2663   emit_byte(0xE0 | encode);
  2666 void Assembler::shrl(Register dst, int imm8) {
  2667   assert(isShiftCount(imm8), "illegal shift count");
  2668   int encode = prefix_and_encode(dst->encoding());
  2669   emit_byte(0xC1);
  2670   emit_byte(0xE8 | encode);
  2671   emit_byte(imm8);
  2674 void Assembler::shrl(Register dst) {
  2675   int encode = prefix_and_encode(dst->encoding());
  2676   emit_byte(0xD3);
  2677   emit_byte(0xE8 | encode);
  2680 // copies a single word from [esi] to [edi]
  2681 void Assembler::smovl() {
  2682   emit_byte(0xA5);
  2685 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2686   // HMM Table D-1 says sse2
  2687   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2688   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2689   emit_byte(0xF2);
  2690   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2691   emit_byte(0x0F);
  2692   emit_byte(0x51);
  2693   emit_byte(0xC0 | encode);
  2696 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2698   InstructionMark im(this);
  2699   emit_byte(0xF2);
  2700   prefix(src, dst);
  2701   emit_byte(0x0F);
  2702   emit_byte(0x51);
  2703   emit_operand(dst, src);
  2706 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2707   // HMM Table D-1 says sse2
  2708   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2710   emit_byte(0xF3);
  2711   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2712   emit_byte(0x0F);
  2713   emit_byte(0x51);
  2714   emit_byte(0xC0 | encode);
  2717 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2719   InstructionMark im(this);
  2720   emit_byte(0xF3);
  2721   prefix(src, dst);
  2722   emit_byte(0x0F);
  2723   emit_byte(0x51);
  2724   emit_operand(dst, src);
  2727 void Assembler::stmxcsr( Address dst) {
  2728   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2729   InstructionMark im(this);
  2730   prefix(dst);
  2731   emit_byte(0x0F);
  2732   emit_byte(0xAE);
  2733   emit_operand(as_Register(3), dst);
  2736 void Assembler::subl(Address dst, int32_t imm32) {
  2737   InstructionMark im(this);
  2738   prefix(dst);
  2739   emit_arith_operand(0x81, rbp, dst, imm32);
  2742 void Assembler::subl(Address dst, Register src) {
  2743   InstructionMark im(this);
  2744   prefix(dst, src);
  2745   emit_byte(0x29);
  2746   emit_operand(src, dst);
  2749 void Assembler::subl(Register dst, int32_t imm32) {
  2750   prefix(dst);
  2751   emit_arith(0x81, 0xE8, dst, imm32);
  2754 void Assembler::subl(Register dst, Address src) {
  2755   InstructionMark im(this);
  2756   prefix(src, dst);
  2757   emit_byte(0x2B);
  2758   emit_operand(dst, src);
  2761 void Assembler::subl(Register dst, Register src) {
  2762   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2763   emit_arith(0x2B, 0xC0, dst, src);
  2766 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2767   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2768   emit_byte(0xF2);
  2769   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2770   emit_byte(0x0F);
  2771   emit_byte(0x5C);
  2772   emit_byte(0xC0 | encode);
  2775 void Assembler::subsd(XMMRegister dst, Address src) {
  2776   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2777   InstructionMark im(this);
  2778   emit_byte(0xF2);
  2779   prefix(src, dst);
  2780   emit_byte(0x0F);
  2781   emit_byte(0x5C);
  2782   emit_operand(dst, src);
  2785 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2786   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2787   emit_byte(0xF3);
  2788   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2789   emit_byte(0x0F);
  2790   emit_byte(0x5C);
  2791   emit_byte(0xC0 | encode);
  2794 void Assembler::subss(XMMRegister dst, Address src) {
  2795   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2796   InstructionMark im(this);
  2797   emit_byte(0xF3);
  2798   prefix(src, dst);
  2799   emit_byte(0x0F);
  2800   emit_byte(0x5C);
  2801   emit_operand(dst, src);
  2804 void Assembler::testb(Register dst, int imm8) {
  2805   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2806   (void) prefix_and_encode(dst->encoding(), true);
  2807   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2810 void Assembler::testl(Register dst, int32_t imm32) {
  2811   // not using emit_arith because test
  2812   // doesn't support sign-extension of
  2813   // 8bit operands
  2814   int encode = dst->encoding();
  2815   if (encode == 0) {
  2816     emit_byte(0xA9);
  2817   } else {
  2818     encode = prefix_and_encode(encode);
  2819     emit_byte(0xF7);
  2820     emit_byte(0xC0 | encode);
  2822   emit_long(imm32);
  2825 void Assembler::testl(Register dst, Register src) {
  2826   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2827   emit_arith(0x85, 0xC0, dst, src);
  2830 void Assembler::testl(Register dst, Address  src) {
  2831   InstructionMark im(this);
  2832   prefix(src, dst);
  2833   emit_byte(0x85);
  2834   emit_operand(dst, src);
  2837 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2838   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2839   emit_byte(0x66);
  2840   ucomiss(dst, src);
  2843 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2844   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2845   emit_byte(0x66);
  2846   ucomiss(dst, src);
  2849 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2850   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2852   InstructionMark im(this);
  2853   prefix(src, dst);
  2854   emit_byte(0x0F);
  2855   emit_byte(0x2E);
  2856   emit_operand(dst, src);
  2859 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2860   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2861   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2862   emit_byte(0x0F);
  2863   emit_byte(0x2E);
  2864   emit_byte(0xC0 | encode);
  2868 void Assembler::xaddl(Address dst, Register src) {
  2869   InstructionMark im(this);
  2870   prefix(dst, src);
  2871   emit_byte(0x0F);
  2872   emit_byte(0xC1);
  2873   emit_operand(src, dst);
  2876 void Assembler::xchgl(Register dst, Address src) { // xchg
  2877   InstructionMark im(this);
  2878   prefix(src, dst);
  2879   emit_byte(0x87);
  2880   emit_operand(dst, src);
  2883 void Assembler::xchgl(Register dst, Register src) {
  2884   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2885   emit_byte(0x87);
  2886   emit_byte(0xc0 | encode);
  2889 void Assembler::xorl(Register dst, int32_t imm32) {
  2890   prefix(dst);
  2891   emit_arith(0x81, 0xF0, dst, imm32);
  2894 void Assembler::xorl(Register dst, Address src) {
  2895   InstructionMark im(this);
  2896   prefix(src, dst);
  2897   emit_byte(0x33);
  2898   emit_operand(dst, src);
  2901 void Assembler::xorl(Register dst, Register src) {
  2902   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2903   emit_arith(0x33, 0xC0, dst, src);
  2906 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2907   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2908   emit_byte(0x66);
  2909   xorps(dst, src);
  2912 void Assembler::xorpd(XMMRegister dst, Address src) {
  2913   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2914   InstructionMark im(this);
  2915   emit_byte(0x66);
  2916   prefix(src, dst);
  2917   emit_byte(0x0F);
  2918   emit_byte(0x57);
  2919   emit_operand(dst, src);
  2923 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2924   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2925   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2926   emit_byte(0x0F);
  2927   emit_byte(0x57);
  2928   emit_byte(0xC0 | encode);
  2931 void Assembler::xorps(XMMRegister dst, Address src) {
  2932   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2933   InstructionMark im(this);
  2934   prefix(src, dst);
  2935   emit_byte(0x0F);
  2936   emit_byte(0x57);
  2937   emit_operand(dst, src);
  2940 #ifndef _LP64
  2941 // 32bit only pieces of the assembler
  2943 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  2944   // NO PREFIX AS NEVER 64BIT
  2945   InstructionMark im(this);
  2946   emit_byte(0x81);
  2947   emit_byte(0xF8 | src1->encoding());
  2948   emit_data(imm32, rspec, 0);
  2951 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  2952   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  2953   InstructionMark im(this);
  2954   emit_byte(0x81);
  2955   emit_operand(rdi, src1);
  2956   emit_data(imm32, rspec, 0);
  2959 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  2960 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  2961 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  2962 void Assembler::cmpxchg8(Address adr) {
  2963   InstructionMark im(this);
  2964   emit_byte(0x0F);
  2965   emit_byte(0xc7);
  2966   emit_operand(rcx, adr);
  2969 void Assembler::decl(Register dst) {
  2970   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  2971  emit_byte(0x48 | dst->encoding());
  2974 #endif // _LP64
  2976 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  2978 void Assembler::fabs() {
  2979   emit_byte(0xD9);
  2980   emit_byte(0xE1);
  2983 void Assembler::fadd(int i) {
  2984   emit_farith(0xD8, 0xC0, i);
  2987 void Assembler::fadd_d(Address src) {
  2988   InstructionMark im(this);
  2989   emit_byte(0xDC);
  2990   emit_operand32(rax, src);
  2993 void Assembler::fadd_s(Address src) {
  2994   InstructionMark im(this);
  2995   emit_byte(0xD8);
  2996   emit_operand32(rax, src);
  2999 void Assembler::fadda(int i) {
  3000   emit_farith(0xDC, 0xC0, i);
  3003 void Assembler::faddp(int i) {
  3004   emit_farith(0xDE, 0xC0, i);
  3007 void Assembler::fchs() {
  3008   emit_byte(0xD9);
  3009   emit_byte(0xE0);
  3012 void Assembler::fcom(int i) {
  3013   emit_farith(0xD8, 0xD0, i);
  3016 void Assembler::fcomp(int i) {
  3017   emit_farith(0xD8, 0xD8, i);
  3020 void Assembler::fcomp_d(Address src) {
  3021   InstructionMark im(this);
  3022   emit_byte(0xDC);
  3023   emit_operand32(rbx, src);
  3026 void Assembler::fcomp_s(Address src) {
  3027   InstructionMark im(this);
  3028   emit_byte(0xD8);
  3029   emit_operand32(rbx, src);
  3032 void Assembler::fcompp() {
  3033   emit_byte(0xDE);
  3034   emit_byte(0xD9);
  3037 void Assembler::fcos() {
  3038   emit_byte(0xD9);
  3039   emit_byte(0xFF);
  3042 void Assembler::fdecstp() {
  3043   emit_byte(0xD9);
  3044   emit_byte(0xF6);
  3047 void Assembler::fdiv(int i) {
  3048   emit_farith(0xD8, 0xF0, i);
  3051 void Assembler::fdiv_d(Address src) {
  3052   InstructionMark im(this);
  3053   emit_byte(0xDC);
  3054   emit_operand32(rsi, src);
  3057 void Assembler::fdiv_s(Address src) {
  3058   InstructionMark im(this);
  3059   emit_byte(0xD8);
  3060   emit_operand32(rsi, src);
  3063 void Assembler::fdiva(int i) {
  3064   emit_farith(0xDC, 0xF8, i);
  3067 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3068 //       is erroneous for some of the floating-point instructions below.
  3070 void Assembler::fdivp(int i) {
  3071   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3074 void Assembler::fdivr(int i) {
  3075   emit_farith(0xD8, 0xF8, i);
  3078 void Assembler::fdivr_d(Address src) {
  3079   InstructionMark im(this);
  3080   emit_byte(0xDC);
  3081   emit_operand32(rdi, src);
  3084 void Assembler::fdivr_s(Address src) {
  3085   InstructionMark im(this);
  3086   emit_byte(0xD8);
  3087   emit_operand32(rdi, src);
  3090 void Assembler::fdivra(int i) {
  3091   emit_farith(0xDC, 0xF0, i);
  3094 void Assembler::fdivrp(int i) {
  3095   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3098 void Assembler::ffree(int i) {
  3099   emit_farith(0xDD, 0xC0, i);
  3102 void Assembler::fild_d(Address adr) {
  3103   InstructionMark im(this);
  3104   emit_byte(0xDF);
  3105   emit_operand32(rbp, adr);
  3108 void Assembler::fild_s(Address adr) {
  3109   InstructionMark im(this);
  3110   emit_byte(0xDB);
  3111   emit_operand32(rax, adr);
  3114 void Assembler::fincstp() {
  3115   emit_byte(0xD9);
  3116   emit_byte(0xF7);
  3119 void Assembler::finit() {
  3120   emit_byte(0x9B);
  3121   emit_byte(0xDB);
  3122   emit_byte(0xE3);
  3125 void Assembler::fist_s(Address adr) {
  3126   InstructionMark im(this);
  3127   emit_byte(0xDB);
  3128   emit_operand32(rdx, adr);
  3131 void Assembler::fistp_d(Address adr) {
  3132   InstructionMark im(this);
  3133   emit_byte(0xDF);
  3134   emit_operand32(rdi, adr);
  3137 void Assembler::fistp_s(Address adr) {
  3138   InstructionMark im(this);
  3139   emit_byte(0xDB);
  3140   emit_operand32(rbx, adr);
  3143 void Assembler::fld1() {
  3144   emit_byte(0xD9);
  3145   emit_byte(0xE8);
  3148 void Assembler::fld_d(Address adr) {
  3149   InstructionMark im(this);
  3150   emit_byte(0xDD);
  3151   emit_operand32(rax, adr);
  3154 void Assembler::fld_s(Address adr) {
  3155   InstructionMark im(this);
  3156   emit_byte(0xD9);
  3157   emit_operand32(rax, adr);
  3161 void Assembler::fld_s(int index) {
  3162   emit_farith(0xD9, 0xC0, index);
  3165 void Assembler::fld_x(Address adr) {
  3166   InstructionMark im(this);
  3167   emit_byte(0xDB);
  3168   emit_operand32(rbp, adr);
  3171 void Assembler::fldcw(Address src) {
  3172   InstructionMark im(this);
  3173   emit_byte(0xd9);
  3174   emit_operand32(rbp, src);
  3177 void Assembler::fldenv(Address src) {
  3178   InstructionMark im(this);
  3179   emit_byte(0xD9);
  3180   emit_operand32(rsp, src);
  3183 void Assembler::fldlg2() {
  3184   emit_byte(0xD9);
  3185   emit_byte(0xEC);
  3188 void Assembler::fldln2() {
  3189   emit_byte(0xD9);
  3190   emit_byte(0xED);
  3193 void Assembler::fldz() {
  3194   emit_byte(0xD9);
  3195   emit_byte(0xEE);
  3198 void Assembler::flog() {
  3199   fldln2();
  3200   fxch();
  3201   fyl2x();
  3204 void Assembler::flog10() {
  3205   fldlg2();
  3206   fxch();
  3207   fyl2x();
  3210 void Assembler::fmul(int i) {
  3211   emit_farith(0xD8, 0xC8, i);
  3214 void Assembler::fmul_d(Address src) {
  3215   InstructionMark im(this);
  3216   emit_byte(0xDC);
  3217   emit_operand32(rcx, src);
  3220 void Assembler::fmul_s(Address src) {
  3221   InstructionMark im(this);
  3222   emit_byte(0xD8);
  3223   emit_operand32(rcx, src);
  3226 void Assembler::fmula(int i) {
  3227   emit_farith(0xDC, 0xC8, i);
  3230 void Assembler::fmulp(int i) {
  3231   emit_farith(0xDE, 0xC8, i);
  3234 void Assembler::fnsave(Address dst) {
  3235   InstructionMark im(this);
  3236   emit_byte(0xDD);
  3237   emit_operand32(rsi, dst);
  3240 void Assembler::fnstcw(Address src) {
  3241   InstructionMark im(this);
  3242   emit_byte(0x9B);
  3243   emit_byte(0xD9);
  3244   emit_operand32(rdi, src);
  3247 void Assembler::fnstsw_ax() {
  3248   emit_byte(0xdF);
  3249   emit_byte(0xE0);
  3252 void Assembler::fprem() {
  3253   emit_byte(0xD9);
  3254   emit_byte(0xF8);
  3257 void Assembler::fprem1() {
  3258   emit_byte(0xD9);
  3259   emit_byte(0xF5);
  3262 void Assembler::frstor(Address src) {
  3263   InstructionMark im(this);
  3264   emit_byte(0xDD);
  3265   emit_operand32(rsp, src);
  3268 void Assembler::fsin() {
  3269   emit_byte(0xD9);
  3270   emit_byte(0xFE);
  3273 void Assembler::fsqrt() {
  3274   emit_byte(0xD9);
  3275   emit_byte(0xFA);
  3278 void Assembler::fst_d(Address adr) {
  3279   InstructionMark im(this);
  3280   emit_byte(0xDD);
  3281   emit_operand32(rdx, adr);
  3284 void Assembler::fst_s(Address adr) {
  3285   InstructionMark im(this);
  3286   emit_byte(0xD9);
  3287   emit_operand32(rdx, adr);
  3290 void Assembler::fstp_d(Address adr) {
  3291   InstructionMark im(this);
  3292   emit_byte(0xDD);
  3293   emit_operand32(rbx, adr);
  3296 void Assembler::fstp_d(int index) {
  3297   emit_farith(0xDD, 0xD8, index);
  3300 void Assembler::fstp_s(Address adr) {
  3301   InstructionMark im(this);
  3302   emit_byte(0xD9);
  3303   emit_operand32(rbx, adr);
  3306 void Assembler::fstp_x(Address adr) {
  3307   InstructionMark im(this);
  3308   emit_byte(0xDB);
  3309   emit_operand32(rdi, adr);
  3312 void Assembler::fsub(int i) {
  3313   emit_farith(0xD8, 0xE0, i);
  3316 void Assembler::fsub_d(Address src) {
  3317   InstructionMark im(this);
  3318   emit_byte(0xDC);
  3319   emit_operand32(rsp, src);
  3322 void Assembler::fsub_s(Address src) {
  3323   InstructionMark im(this);
  3324   emit_byte(0xD8);
  3325   emit_operand32(rsp, src);
  3328 void Assembler::fsuba(int i) {
  3329   emit_farith(0xDC, 0xE8, i);
  3332 void Assembler::fsubp(int i) {
  3333   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3336 void Assembler::fsubr(int i) {
  3337   emit_farith(0xD8, 0xE8, i);
  3340 void Assembler::fsubr_d(Address src) {
  3341   InstructionMark im(this);
  3342   emit_byte(0xDC);
  3343   emit_operand32(rbp, src);
  3346 void Assembler::fsubr_s(Address src) {
  3347   InstructionMark im(this);
  3348   emit_byte(0xD8);
  3349   emit_operand32(rbp, src);
  3352 void Assembler::fsubra(int i) {
  3353   emit_farith(0xDC, 0xE0, i);
  3356 void Assembler::fsubrp(int i) {
  3357   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3360 void Assembler::ftan() {
  3361   emit_byte(0xD9);
  3362   emit_byte(0xF2);
  3363   emit_byte(0xDD);
  3364   emit_byte(0xD8);
  3367 void Assembler::ftst() {
  3368   emit_byte(0xD9);
  3369   emit_byte(0xE4);
  3372 void Assembler::fucomi(int i) {
  3373   // make sure the instruction is supported (introduced for P6, together with cmov)
  3374   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3375   emit_farith(0xDB, 0xE8, i);
  3378 void Assembler::fucomip(int i) {
  3379   // make sure the instruction is supported (introduced for P6, together with cmov)
  3380   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3381   emit_farith(0xDF, 0xE8, i);
  3384 void Assembler::fwait() {
  3385   emit_byte(0x9B);
  3388 void Assembler::fxch(int i) {
  3389   emit_farith(0xD9, 0xC8, i);
  3392 void Assembler::fyl2x() {
  3393   emit_byte(0xD9);
  3394   emit_byte(0xF1);
  3398 #ifndef _LP64
  3400 void Assembler::incl(Register dst) {
  3401   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3402  emit_byte(0x40 | dst->encoding());
  3405 void Assembler::lea(Register dst, Address src) {
  3406   leal(dst, src);
  3409 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3410   InstructionMark im(this);
  3411   emit_byte(0xC7);
  3412   emit_operand(rax, dst);
  3413   emit_data((int)imm32, rspec, 0);
  3416 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3417   InstructionMark im(this);
  3418   int encode = prefix_and_encode(dst->encoding());
  3419   emit_byte(0xB8 | encode);
  3420   emit_data((int)imm32, rspec, 0);
  3423 void Assembler::popa() { // 32bit
  3424   emit_byte(0x61);
  3427 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3428   InstructionMark im(this);
  3429   emit_byte(0x68);
  3430   emit_data(imm32, rspec, 0);
  3433 void Assembler::pusha() { // 32bit
  3434   emit_byte(0x60);
  3437 void Assembler::set_byte_if_not_zero(Register dst) {
  3438   emit_byte(0x0F);
  3439   emit_byte(0x95);
  3440   emit_byte(0xE0 | dst->encoding());
  3443 void Assembler::shldl(Register dst, Register src) {
  3444   emit_byte(0x0F);
  3445   emit_byte(0xA5);
  3446   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3449 void Assembler::shrdl(Register dst, Register src) {
  3450   emit_byte(0x0F);
  3451   emit_byte(0xAD);
  3452   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3455 #else // LP64
  3457 void Assembler::set_byte_if_not_zero(Register dst) {
  3458   int enc = prefix_and_encode(dst->encoding(), true);
  3459   emit_byte(0x0F);
  3460   emit_byte(0x95);
  3461   emit_byte(0xE0 | enc);
  3464 // 64bit only pieces of the assembler
  3465 // This should only be used by 64bit instructions that can use rip-relative
  3466 // it cannot be used by instructions that want an immediate value.
  3468 bool Assembler::reachable(AddressLiteral adr) {
  3469   int64_t disp;
  3470   // None will force a 64bit literal to the code stream. Likely a placeholder
  3471   // for something that will be patched later and we need to certain it will
  3472   // always be reachable.
  3473   if (adr.reloc() == relocInfo::none) {
  3474     return false;
  3476   if (adr.reloc() == relocInfo::internal_word_type) {
  3477     // This should be rip relative and easily reachable.
  3478     return true;
  3480   if (adr.reloc() == relocInfo::virtual_call_type ||
  3481       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3482       adr.reloc() == relocInfo::static_call_type ||
  3483       adr.reloc() == relocInfo::static_stub_type ) {
  3484     // This should be rip relative within the code cache and easily
  3485     // reachable until we get huge code caches. (At which point
  3486     // ic code is going to have issues).
  3487     return true;
  3489   if (adr.reloc() != relocInfo::external_word_type &&
  3490       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3491       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3492       adr.reloc() != relocInfo::runtime_call_type ) {
  3493     return false;
  3496   // Stress the correction code
  3497   if (ForceUnreachable) {
  3498     // Must be runtimecall reloc, see if it is in the codecache
  3499     // Flipping stuff in the codecache to be unreachable causes issues
  3500     // with things like inline caches where the additional instructions
  3501     // are not handled.
  3502     if (CodeCache::find_blob(adr._target) == NULL) {
  3503       return false;
  3506   // For external_word_type/runtime_call_type if it is reachable from where we
  3507   // are now (possibly a temp buffer) and where we might end up
  3508   // anywhere in the codeCache then we are always reachable.
  3509   // This would have to change if we ever save/restore shared code
  3510   // to be more pessimistic.
  3511   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3512   if (!is_simm32(disp)) return false;
  3513   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3514   if (!is_simm32(disp)) return false;
  3516   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3518   // Because rip relative is a disp + address_of_next_instruction and we
  3519   // don't know the value of address_of_next_instruction we apply a fudge factor
  3520   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3521   // We don't have to fudge the checks above here because they are already worst case.
  3523   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3524   // + 4 because better safe than sorry.
  3525   const int fudge = 12 + 4;
  3526   if (disp < 0) {
  3527     disp -= fudge;
  3528   } else {
  3529     disp += fudge;
  3531   return is_simm32(disp);
  3534 // Check if the polling page is not reachable from the code cache using rip-relative
  3535 // addressing.
  3536 bool Assembler::is_polling_page_far() {
  3537   intptr_t addr = (intptr_t)os::get_polling_page();
  3538   return !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  3539          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  3542 void Assembler::emit_data64(jlong data,
  3543                             relocInfo::relocType rtype,
  3544                             int format) {
  3545   if (rtype == relocInfo::none) {
  3546     emit_long64(data);
  3547   } else {
  3548     emit_data64(data, Relocation::spec_simple(rtype), format);
  3552 void Assembler::emit_data64(jlong data,
  3553                             RelocationHolder const& rspec,
  3554                             int format) {
  3555   assert(imm_operand == 0, "default format must be immediate in this file");
  3556   assert(imm_operand == format, "must be immediate");
  3557   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3558   // Do not use AbstractAssembler::relocate, which is not intended for
  3559   // embedded words.  Instead, relocate to the enclosing instruction.
  3560   code_section()->relocate(inst_mark(), rspec, format);
  3561 #ifdef ASSERT
  3562   check_relocation(rspec, format);
  3563 #endif
  3564   emit_long64(data);
  3567 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3568   if (reg_enc >= 8) {
  3569     prefix(REX_B);
  3570     reg_enc -= 8;
  3571   } else if (byteinst && reg_enc >= 4) {
  3572     prefix(REX);
  3574   return reg_enc;
  3577 int Assembler::prefixq_and_encode(int reg_enc) {
  3578   if (reg_enc < 8) {
  3579     prefix(REX_W);
  3580   } else {
  3581     prefix(REX_WB);
  3582     reg_enc -= 8;
  3584   return reg_enc;
  3587 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3588   if (dst_enc < 8) {
  3589     if (src_enc >= 8) {
  3590       prefix(REX_B);
  3591       src_enc -= 8;
  3592     } else if (byteinst && src_enc >= 4) {
  3593       prefix(REX);
  3595   } else {
  3596     if (src_enc < 8) {
  3597       prefix(REX_R);
  3598     } else {
  3599       prefix(REX_RB);
  3600       src_enc -= 8;
  3602     dst_enc -= 8;
  3604   return dst_enc << 3 | src_enc;
  3607 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3608   if (dst_enc < 8) {
  3609     if (src_enc < 8) {
  3610       prefix(REX_W);
  3611     } else {
  3612       prefix(REX_WB);
  3613       src_enc -= 8;
  3615   } else {
  3616     if (src_enc < 8) {
  3617       prefix(REX_WR);
  3618     } else {
  3619       prefix(REX_WRB);
  3620       src_enc -= 8;
  3622     dst_enc -= 8;
  3624   return dst_enc << 3 | src_enc;
  3627 void Assembler::prefix(Register reg) {
  3628   if (reg->encoding() >= 8) {
  3629     prefix(REX_B);
  3633 void Assembler::prefix(Address adr) {
  3634   if (adr.base_needs_rex()) {
  3635     if (adr.index_needs_rex()) {
  3636       prefix(REX_XB);
  3637     } else {
  3638       prefix(REX_B);
  3640   } else {
  3641     if (adr.index_needs_rex()) {
  3642       prefix(REX_X);
  3647 void Assembler::prefixq(Address adr) {
  3648   if (adr.base_needs_rex()) {
  3649     if (adr.index_needs_rex()) {
  3650       prefix(REX_WXB);
  3651     } else {
  3652       prefix(REX_WB);
  3654   } else {
  3655     if (adr.index_needs_rex()) {
  3656       prefix(REX_WX);
  3657     } else {
  3658       prefix(REX_W);
  3664 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3665   if (reg->encoding() < 8) {
  3666     if (adr.base_needs_rex()) {
  3667       if (adr.index_needs_rex()) {
  3668         prefix(REX_XB);
  3669       } else {
  3670         prefix(REX_B);
  3672     } else {
  3673       if (adr.index_needs_rex()) {
  3674         prefix(REX_X);
  3675       } else if (byteinst && reg->encoding() >= 4 ) {
  3676         prefix(REX);
  3679   } else {
  3680     if (adr.base_needs_rex()) {
  3681       if (adr.index_needs_rex()) {
  3682         prefix(REX_RXB);
  3683       } else {
  3684         prefix(REX_RB);
  3686     } else {
  3687       if (adr.index_needs_rex()) {
  3688         prefix(REX_RX);
  3689       } else {
  3690         prefix(REX_R);
  3696 void Assembler::prefixq(Address adr, Register src) {
  3697   if (src->encoding() < 8) {
  3698     if (adr.base_needs_rex()) {
  3699       if (adr.index_needs_rex()) {
  3700         prefix(REX_WXB);
  3701       } else {
  3702         prefix(REX_WB);
  3704     } else {
  3705       if (adr.index_needs_rex()) {
  3706         prefix(REX_WX);
  3707       } else {
  3708         prefix(REX_W);
  3711   } else {
  3712     if (adr.base_needs_rex()) {
  3713       if (adr.index_needs_rex()) {
  3714         prefix(REX_WRXB);
  3715       } else {
  3716         prefix(REX_WRB);
  3718     } else {
  3719       if (adr.index_needs_rex()) {
  3720         prefix(REX_WRX);
  3721       } else {
  3722         prefix(REX_WR);
  3728 void Assembler::prefix(Address adr, XMMRegister reg) {
  3729   if (reg->encoding() < 8) {
  3730     if (adr.base_needs_rex()) {
  3731       if (adr.index_needs_rex()) {
  3732         prefix(REX_XB);
  3733       } else {
  3734         prefix(REX_B);
  3736     } else {
  3737       if (adr.index_needs_rex()) {
  3738         prefix(REX_X);
  3741   } else {
  3742     if (adr.base_needs_rex()) {
  3743       if (adr.index_needs_rex()) {
  3744         prefix(REX_RXB);
  3745       } else {
  3746         prefix(REX_RB);
  3748     } else {
  3749       if (adr.index_needs_rex()) {
  3750         prefix(REX_RX);
  3751       } else {
  3752         prefix(REX_R);
  3758 void Assembler::adcq(Register dst, int32_t imm32) {
  3759   (void) prefixq_and_encode(dst->encoding());
  3760   emit_arith(0x81, 0xD0, dst, imm32);
  3763 void Assembler::adcq(Register dst, Address src) {
  3764   InstructionMark im(this);
  3765   prefixq(src, dst);
  3766   emit_byte(0x13);
  3767   emit_operand(dst, src);
  3770 void Assembler::adcq(Register dst, Register src) {
  3771   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3772   emit_arith(0x13, 0xC0, dst, src);
  3775 void Assembler::addq(Address dst, int32_t imm32) {
  3776   InstructionMark im(this);
  3777   prefixq(dst);
  3778   emit_arith_operand(0x81, rax, dst,imm32);
  3781 void Assembler::addq(Address dst, Register src) {
  3782   InstructionMark im(this);
  3783   prefixq(dst, src);
  3784   emit_byte(0x01);
  3785   emit_operand(src, dst);
  3788 void Assembler::addq(Register dst, int32_t imm32) {
  3789   (void) prefixq_and_encode(dst->encoding());
  3790   emit_arith(0x81, 0xC0, dst, imm32);
  3793 void Assembler::addq(Register dst, Address src) {
  3794   InstructionMark im(this);
  3795   prefixq(src, dst);
  3796   emit_byte(0x03);
  3797   emit_operand(dst, src);
  3800 void Assembler::addq(Register dst, Register src) {
  3801   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3802   emit_arith(0x03, 0xC0, dst, src);
  3805 void Assembler::andq(Address dst, int32_t imm32) {
  3806   InstructionMark im(this);
  3807   prefixq(dst);
  3808   emit_byte(0x81);
  3809   emit_operand(rsp, dst, 4);
  3810   emit_long(imm32);
  3813 void Assembler::andq(Register dst, int32_t imm32) {
  3814   (void) prefixq_and_encode(dst->encoding());
  3815   emit_arith(0x81, 0xE0, dst, imm32);
  3818 void Assembler::andq(Register dst, Address src) {
  3819   InstructionMark im(this);
  3820   prefixq(src, dst);
  3821   emit_byte(0x23);
  3822   emit_operand(dst, src);
  3825 void Assembler::andq(Register dst, Register src) {
  3826   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3827   emit_arith(0x23, 0xC0, dst, src);
  3830 void Assembler::bsfq(Register dst, Register src) {
  3831   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3832   emit_byte(0x0F);
  3833   emit_byte(0xBC);
  3834   emit_byte(0xC0 | encode);
  3837 void Assembler::bsrq(Register dst, Register src) {
  3838   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  3839   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3840   emit_byte(0x0F);
  3841   emit_byte(0xBD);
  3842   emit_byte(0xC0 | encode);
  3845 void Assembler::bswapq(Register reg) {
  3846   int encode = prefixq_and_encode(reg->encoding());
  3847   emit_byte(0x0F);
  3848   emit_byte(0xC8 | encode);
  3851 void Assembler::cdqq() {
  3852   prefix(REX_W);
  3853   emit_byte(0x99);
  3856 void Assembler::clflush(Address adr) {
  3857   prefix(adr);
  3858   emit_byte(0x0F);
  3859   emit_byte(0xAE);
  3860   emit_operand(rdi, adr);
  3863 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  3864   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3865   emit_byte(0x0F);
  3866   emit_byte(0x40 | cc);
  3867   emit_byte(0xC0 | encode);
  3870 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  3871   InstructionMark im(this);
  3872   prefixq(src, dst);
  3873   emit_byte(0x0F);
  3874   emit_byte(0x40 | cc);
  3875   emit_operand(dst, src);
  3878 void Assembler::cmpq(Address dst, int32_t imm32) {
  3879   InstructionMark im(this);
  3880   prefixq(dst);
  3881   emit_byte(0x81);
  3882   emit_operand(rdi, dst, 4);
  3883   emit_long(imm32);
  3886 void Assembler::cmpq(Register dst, int32_t imm32) {
  3887   (void) prefixq_and_encode(dst->encoding());
  3888   emit_arith(0x81, 0xF8, dst, imm32);
  3891 void Assembler::cmpq(Address dst, Register src) {
  3892   InstructionMark im(this);
  3893   prefixq(dst, src);
  3894   emit_byte(0x3B);
  3895   emit_operand(src, dst);
  3898 void Assembler::cmpq(Register dst, Register src) {
  3899   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3900   emit_arith(0x3B, 0xC0, dst, src);
  3903 void Assembler::cmpq(Register dst, Address  src) {
  3904   InstructionMark im(this);
  3905   prefixq(src, dst);
  3906   emit_byte(0x3B);
  3907   emit_operand(dst, src);
  3910 void Assembler::cmpxchgq(Register reg, Address adr) {
  3911   InstructionMark im(this);
  3912   prefixq(adr, reg);
  3913   emit_byte(0x0F);
  3914   emit_byte(0xB1);
  3915   emit_operand(reg, adr);
  3918 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3919   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3920   emit_byte(0xF2);
  3921   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3922   emit_byte(0x0F);
  3923   emit_byte(0x2A);
  3924   emit_byte(0xC0 | encode);
  3927 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3928   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3929   emit_byte(0xF3);
  3930   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3931   emit_byte(0x0F);
  3932   emit_byte(0x2A);
  3933   emit_byte(0xC0 | encode);
  3936 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3937   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3938   emit_byte(0xF2);
  3939   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3940   emit_byte(0x0F);
  3941   emit_byte(0x2C);
  3942   emit_byte(0xC0 | encode);
  3945 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3946   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3947   emit_byte(0xF3);
  3948   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3949   emit_byte(0x0F);
  3950   emit_byte(0x2C);
  3951   emit_byte(0xC0 | encode);
  3954 void Assembler::decl(Register dst) {
  3955   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3956   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  3957   int encode = prefix_and_encode(dst->encoding());
  3958   emit_byte(0xFF);
  3959   emit_byte(0xC8 | encode);
  3962 void Assembler::decq(Register dst) {
  3963   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3964   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3965   int encode = prefixq_and_encode(dst->encoding());
  3966   emit_byte(0xFF);
  3967   emit_byte(0xC8 | encode);
  3970 void Assembler::decq(Address dst) {
  3971   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3972   InstructionMark im(this);
  3973   prefixq(dst);
  3974   emit_byte(0xFF);
  3975   emit_operand(rcx, dst);
  3978 void Assembler::fxrstor(Address src) {
  3979   prefixq(src);
  3980   emit_byte(0x0F);
  3981   emit_byte(0xAE);
  3982   emit_operand(as_Register(1), src);
  3985 void Assembler::fxsave(Address dst) {
  3986   prefixq(dst);
  3987   emit_byte(0x0F);
  3988   emit_byte(0xAE);
  3989   emit_operand(as_Register(0), dst);
  3992 void Assembler::idivq(Register src) {
  3993   int encode = prefixq_and_encode(src->encoding());
  3994   emit_byte(0xF7);
  3995   emit_byte(0xF8 | encode);
  3998 void Assembler::imulq(Register dst, Register src) {
  3999   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4000   emit_byte(0x0F);
  4001   emit_byte(0xAF);
  4002   emit_byte(0xC0 | encode);
  4005 void Assembler::imulq(Register dst, Register src, int value) {
  4006   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4007   if (is8bit(value)) {
  4008     emit_byte(0x6B);
  4009     emit_byte(0xC0 | encode);
  4010     emit_byte(value & 0xFF);
  4011   } else {
  4012     emit_byte(0x69);
  4013     emit_byte(0xC0 | encode);
  4014     emit_long(value);
  4018 void Assembler::incl(Register dst) {
  4019   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4020   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4021   int encode = prefix_and_encode(dst->encoding());
  4022   emit_byte(0xFF);
  4023   emit_byte(0xC0 | encode);
  4026 void Assembler::incq(Register dst) {
  4027   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4028   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4029   int encode = prefixq_and_encode(dst->encoding());
  4030   emit_byte(0xFF);
  4031   emit_byte(0xC0 | encode);
  4034 void Assembler::incq(Address dst) {
  4035   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4036   InstructionMark im(this);
  4037   prefixq(dst);
  4038   emit_byte(0xFF);
  4039   emit_operand(rax, dst);
  4042 void Assembler::lea(Register dst, Address src) {
  4043   leaq(dst, src);
  4046 void Assembler::leaq(Register dst, Address src) {
  4047   InstructionMark im(this);
  4048   prefixq(src, dst);
  4049   emit_byte(0x8D);
  4050   emit_operand(dst, src);
  4053 void Assembler::mov64(Register dst, int64_t imm64) {
  4054   InstructionMark im(this);
  4055   int encode = prefixq_and_encode(dst->encoding());
  4056   emit_byte(0xB8 | encode);
  4057   emit_long64(imm64);
  4060 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4061   InstructionMark im(this);
  4062   int encode = prefixq_and_encode(dst->encoding());
  4063   emit_byte(0xB8 | encode);
  4064   emit_data64(imm64, rspec);
  4067 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4068   InstructionMark im(this);
  4069   int encode = prefix_and_encode(dst->encoding());
  4070   emit_byte(0xB8 | encode);
  4071   emit_data((int)imm32, rspec, narrow_oop_operand);
  4074 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4075   InstructionMark im(this);
  4076   prefix(dst);
  4077   emit_byte(0xC7);
  4078   emit_operand(rax, dst, 4);
  4079   emit_data((int)imm32, rspec, narrow_oop_operand);
  4082 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4083   InstructionMark im(this);
  4084   int encode = prefix_and_encode(src1->encoding());
  4085   emit_byte(0x81);
  4086   emit_byte(0xF8 | encode);
  4087   emit_data((int)imm32, rspec, narrow_oop_operand);
  4090 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4091   InstructionMark im(this);
  4092   prefix(src1);
  4093   emit_byte(0x81);
  4094   emit_operand(rax, src1, 4);
  4095   emit_data((int)imm32, rspec, narrow_oop_operand);
  4098 void Assembler::lzcntq(Register dst, Register src) {
  4099   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4100   emit_byte(0xF3);
  4101   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4102   emit_byte(0x0F);
  4103   emit_byte(0xBD);
  4104   emit_byte(0xC0 | encode);
  4107 void Assembler::movdq(XMMRegister dst, Register src) {
  4108   // table D-1 says MMX/SSE2
  4109   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4110   emit_byte(0x66);
  4111   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4112   emit_byte(0x0F);
  4113   emit_byte(0x6E);
  4114   emit_byte(0xC0 | encode);
  4117 void Assembler::movdq(Register dst, XMMRegister src) {
  4118   // table D-1 says MMX/SSE2
  4119   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4120   emit_byte(0x66);
  4121   // swap src/dst to get correct prefix
  4122   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  4123   emit_byte(0x0F);
  4124   emit_byte(0x7E);
  4125   emit_byte(0xC0 | encode);
  4128 void Assembler::movq(Register dst, Register src) {
  4129   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4130   emit_byte(0x8B);
  4131   emit_byte(0xC0 | encode);
  4134 void Assembler::movq(Register dst, Address src) {
  4135   InstructionMark im(this);
  4136   prefixq(src, dst);
  4137   emit_byte(0x8B);
  4138   emit_operand(dst, src);
  4141 void Assembler::movq(Address dst, Register src) {
  4142   InstructionMark im(this);
  4143   prefixq(dst, src);
  4144   emit_byte(0x89);
  4145   emit_operand(src, dst);
  4148 void Assembler::movsbq(Register dst, Address src) {
  4149   InstructionMark im(this);
  4150   prefixq(src, dst);
  4151   emit_byte(0x0F);
  4152   emit_byte(0xBE);
  4153   emit_operand(dst, src);
  4156 void Assembler::movsbq(Register dst, Register src) {
  4157   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4158   emit_byte(0x0F);
  4159   emit_byte(0xBE);
  4160   emit_byte(0xC0 | encode);
  4163 void Assembler::movslq(Register dst, int32_t imm32) {
  4164   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4165   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4166   // as a result we shouldn't use until tested at runtime...
  4167   ShouldNotReachHere();
  4168   InstructionMark im(this);
  4169   int encode = prefixq_and_encode(dst->encoding());
  4170   emit_byte(0xC7 | encode);
  4171   emit_long(imm32);
  4174 void Assembler::movslq(Address dst, int32_t imm32) {
  4175   assert(is_simm32(imm32), "lost bits");
  4176   InstructionMark im(this);
  4177   prefixq(dst);
  4178   emit_byte(0xC7);
  4179   emit_operand(rax, dst, 4);
  4180   emit_long(imm32);
  4183 void Assembler::movslq(Register dst, Address src) {
  4184   InstructionMark im(this);
  4185   prefixq(src, dst);
  4186   emit_byte(0x63);
  4187   emit_operand(dst, src);
  4190 void Assembler::movslq(Register dst, Register src) {
  4191   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4192   emit_byte(0x63);
  4193   emit_byte(0xC0 | encode);
  4196 void Assembler::movswq(Register dst, Address src) {
  4197   InstructionMark im(this);
  4198   prefixq(src, dst);
  4199   emit_byte(0x0F);
  4200   emit_byte(0xBF);
  4201   emit_operand(dst, src);
  4204 void Assembler::movswq(Register dst, Register src) {
  4205   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4206   emit_byte(0x0F);
  4207   emit_byte(0xBF);
  4208   emit_byte(0xC0 | encode);
  4211 void Assembler::movzbq(Register dst, Address src) {
  4212   InstructionMark im(this);
  4213   prefixq(src, dst);
  4214   emit_byte(0x0F);
  4215   emit_byte(0xB6);
  4216   emit_operand(dst, src);
  4219 void Assembler::movzbq(Register dst, Register src) {
  4220   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4221   emit_byte(0x0F);
  4222   emit_byte(0xB6);
  4223   emit_byte(0xC0 | encode);
  4226 void Assembler::movzwq(Register dst, Address src) {
  4227   InstructionMark im(this);
  4228   prefixq(src, dst);
  4229   emit_byte(0x0F);
  4230   emit_byte(0xB7);
  4231   emit_operand(dst, src);
  4234 void Assembler::movzwq(Register dst, Register src) {
  4235   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4236   emit_byte(0x0F);
  4237   emit_byte(0xB7);
  4238   emit_byte(0xC0 | encode);
  4241 void Assembler::negq(Register dst) {
  4242   int encode = prefixq_and_encode(dst->encoding());
  4243   emit_byte(0xF7);
  4244   emit_byte(0xD8 | encode);
  4247 void Assembler::notq(Register dst) {
  4248   int encode = prefixq_and_encode(dst->encoding());
  4249   emit_byte(0xF7);
  4250   emit_byte(0xD0 | encode);
  4253 void Assembler::orq(Address dst, int32_t imm32) {
  4254   InstructionMark im(this);
  4255   prefixq(dst);
  4256   emit_byte(0x81);
  4257   emit_operand(rcx, dst, 4);
  4258   emit_long(imm32);
  4261 void Assembler::orq(Register dst, int32_t imm32) {
  4262   (void) prefixq_and_encode(dst->encoding());
  4263   emit_arith(0x81, 0xC8, dst, imm32);
  4266 void Assembler::orq(Register dst, Address src) {
  4267   InstructionMark im(this);
  4268   prefixq(src, dst);
  4269   emit_byte(0x0B);
  4270   emit_operand(dst, src);
  4273 void Assembler::orq(Register dst, Register src) {
  4274   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4275   emit_arith(0x0B, 0xC0, dst, src);
  4278 void Assembler::popa() { // 64bit
  4279   movq(r15, Address(rsp, 0));
  4280   movq(r14, Address(rsp, wordSize));
  4281   movq(r13, Address(rsp, 2 * wordSize));
  4282   movq(r12, Address(rsp, 3 * wordSize));
  4283   movq(r11, Address(rsp, 4 * wordSize));
  4284   movq(r10, Address(rsp, 5 * wordSize));
  4285   movq(r9,  Address(rsp, 6 * wordSize));
  4286   movq(r8,  Address(rsp, 7 * wordSize));
  4287   movq(rdi, Address(rsp, 8 * wordSize));
  4288   movq(rsi, Address(rsp, 9 * wordSize));
  4289   movq(rbp, Address(rsp, 10 * wordSize));
  4290   // skip rsp
  4291   movq(rbx, Address(rsp, 12 * wordSize));
  4292   movq(rdx, Address(rsp, 13 * wordSize));
  4293   movq(rcx, Address(rsp, 14 * wordSize));
  4294   movq(rax, Address(rsp, 15 * wordSize));
  4296   addq(rsp, 16 * wordSize);
  4299 void Assembler::popcntq(Register dst, Address src) {
  4300   assert(VM_Version::supports_popcnt(), "must support");
  4301   InstructionMark im(this);
  4302   emit_byte(0xF3);
  4303   prefixq(src, dst);
  4304   emit_byte(0x0F);
  4305   emit_byte(0xB8);
  4306   emit_operand(dst, src);
  4309 void Assembler::popcntq(Register dst, Register src) {
  4310   assert(VM_Version::supports_popcnt(), "must support");
  4311   emit_byte(0xF3);
  4312   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4313   emit_byte(0x0F);
  4314   emit_byte(0xB8);
  4315   emit_byte(0xC0 | encode);
  4318 void Assembler::popq(Address dst) {
  4319   InstructionMark im(this);
  4320   prefixq(dst);
  4321   emit_byte(0x8F);
  4322   emit_operand(rax, dst);
  4325 void Assembler::pusha() { // 64bit
  4326   // we have to store original rsp.  ABI says that 128 bytes
  4327   // below rsp are local scratch.
  4328   movq(Address(rsp, -5 * wordSize), rsp);
  4330   subq(rsp, 16 * wordSize);
  4332   movq(Address(rsp, 15 * wordSize), rax);
  4333   movq(Address(rsp, 14 * wordSize), rcx);
  4334   movq(Address(rsp, 13 * wordSize), rdx);
  4335   movq(Address(rsp, 12 * wordSize), rbx);
  4336   // skip rsp
  4337   movq(Address(rsp, 10 * wordSize), rbp);
  4338   movq(Address(rsp, 9 * wordSize), rsi);
  4339   movq(Address(rsp, 8 * wordSize), rdi);
  4340   movq(Address(rsp, 7 * wordSize), r8);
  4341   movq(Address(rsp, 6 * wordSize), r9);
  4342   movq(Address(rsp, 5 * wordSize), r10);
  4343   movq(Address(rsp, 4 * wordSize), r11);
  4344   movq(Address(rsp, 3 * wordSize), r12);
  4345   movq(Address(rsp, 2 * wordSize), r13);
  4346   movq(Address(rsp, wordSize), r14);
  4347   movq(Address(rsp, 0), r15);
  4350 void Assembler::pushq(Address src) {
  4351   InstructionMark im(this);
  4352   prefixq(src);
  4353   emit_byte(0xFF);
  4354   emit_operand(rsi, src);
  4357 void Assembler::rclq(Register dst, int imm8) {
  4358   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4359   int encode = prefixq_and_encode(dst->encoding());
  4360   if (imm8 == 1) {
  4361     emit_byte(0xD1);
  4362     emit_byte(0xD0 | encode);
  4363   } else {
  4364     emit_byte(0xC1);
  4365     emit_byte(0xD0 | encode);
  4366     emit_byte(imm8);
  4369 void Assembler::sarq(Register dst, int imm8) {
  4370   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4371   int encode = prefixq_and_encode(dst->encoding());
  4372   if (imm8 == 1) {
  4373     emit_byte(0xD1);
  4374     emit_byte(0xF8 | encode);
  4375   } else {
  4376     emit_byte(0xC1);
  4377     emit_byte(0xF8 | encode);
  4378     emit_byte(imm8);
  4382 void Assembler::sarq(Register dst) {
  4383   int encode = prefixq_and_encode(dst->encoding());
  4384   emit_byte(0xD3);
  4385   emit_byte(0xF8 | encode);
  4388 void Assembler::sbbq(Address dst, int32_t imm32) {
  4389   InstructionMark im(this);
  4390   prefixq(dst);
  4391   emit_arith_operand(0x81, rbx, dst, imm32);
  4394 void Assembler::sbbq(Register dst, int32_t imm32) {
  4395   (void) prefixq_and_encode(dst->encoding());
  4396   emit_arith(0x81, 0xD8, dst, imm32);
  4399 void Assembler::sbbq(Register dst, Address src) {
  4400   InstructionMark im(this);
  4401   prefixq(src, dst);
  4402   emit_byte(0x1B);
  4403   emit_operand(dst, src);
  4406 void Assembler::sbbq(Register dst, Register src) {
  4407   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4408   emit_arith(0x1B, 0xC0, dst, src);
  4411 void Assembler::shlq(Register dst, int imm8) {
  4412   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4413   int encode = prefixq_and_encode(dst->encoding());
  4414   if (imm8 == 1) {
  4415     emit_byte(0xD1);
  4416     emit_byte(0xE0 | encode);
  4417   } else {
  4418     emit_byte(0xC1);
  4419     emit_byte(0xE0 | encode);
  4420     emit_byte(imm8);
  4424 void Assembler::shlq(Register dst) {
  4425   int encode = prefixq_and_encode(dst->encoding());
  4426   emit_byte(0xD3);
  4427   emit_byte(0xE0 | encode);
  4430 void Assembler::shrq(Register dst, int imm8) {
  4431   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4432   int encode = prefixq_and_encode(dst->encoding());
  4433   emit_byte(0xC1);
  4434   emit_byte(0xE8 | encode);
  4435   emit_byte(imm8);
  4438 void Assembler::shrq(Register dst) {
  4439   int encode = prefixq_and_encode(dst->encoding());
  4440   emit_byte(0xD3);
  4441   emit_byte(0xE8 | encode);
  4444 void Assembler::subq(Address dst, int32_t imm32) {
  4445   InstructionMark im(this);
  4446   prefixq(dst);
  4447   emit_arith_operand(0x81, rbp, dst, imm32);
  4450 void Assembler::subq(Address dst, Register src) {
  4451   InstructionMark im(this);
  4452   prefixq(dst, src);
  4453   emit_byte(0x29);
  4454   emit_operand(src, dst);
  4457 void Assembler::subq(Register dst, int32_t imm32) {
  4458   (void) prefixq_and_encode(dst->encoding());
  4459   emit_arith(0x81, 0xE8, dst, imm32);
  4462 void Assembler::subq(Register dst, Address src) {
  4463   InstructionMark im(this);
  4464   prefixq(src, dst);
  4465   emit_byte(0x2B);
  4466   emit_operand(dst, src);
  4469 void Assembler::subq(Register dst, Register src) {
  4470   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4471   emit_arith(0x2B, 0xC0, dst, src);
  4474 void Assembler::testq(Register dst, int32_t imm32) {
  4475   // not using emit_arith because test
  4476   // doesn't support sign-extension of
  4477   // 8bit operands
  4478   int encode = dst->encoding();
  4479   if (encode == 0) {
  4480     prefix(REX_W);
  4481     emit_byte(0xA9);
  4482   } else {
  4483     encode = prefixq_and_encode(encode);
  4484     emit_byte(0xF7);
  4485     emit_byte(0xC0 | encode);
  4487   emit_long(imm32);
  4490 void Assembler::testq(Register dst, Register src) {
  4491   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4492   emit_arith(0x85, 0xC0, dst, src);
  4495 void Assembler::xaddq(Address dst, Register src) {
  4496   InstructionMark im(this);
  4497   prefixq(dst, src);
  4498   emit_byte(0x0F);
  4499   emit_byte(0xC1);
  4500   emit_operand(src, dst);
  4503 void Assembler::xchgq(Register dst, Address src) {
  4504   InstructionMark im(this);
  4505   prefixq(src, dst);
  4506   emit_byte(0x87);
  4507   emit_operand(dst, src);
  4510 void Assembler::xchgq(Register dst, Register src) {
  4511   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4512   emit_byte(0x87);
  4513   emit_byte(0xc0 | encode);
  4516 void Assembler::xorq(Register dst, Register src) {
  4517   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4518   emit_arith(0x33, 0xC0, dst, src);
  4521 void Assembler::xorq(Register dst, Address src) {
  4522   InstructionMark im(this);
  4523   prefixq(src, dst);
  4524   emit_byte(0x33);
  4525   emit_operand(dst, src);
  4528 #endif // !LP64
  4530 static Assembler::Condition reverse[] = {
  4531     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4532     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4533     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4534     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4535     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4536     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4537     Assembler::above          /* belowEqual    = 0x6 */ ,
  4538     Assembler::belowEqual     /* above         = 0x7 */ ,
  4539     Assembler::positive       /* negative      = 0x8 */ ,
  4540     Assembler::negative       /* positive      = 0x9 */ ,
  4541     Assembler::noParity       /* parity        = 0xa */ ,
  4542     Assembler::parity         /* noParity      = 0xb */ ,
  4543     Assembler::greaterEqual   /* less          = 0xc */ ,
  4544     Assembler::less           /* greaterEqual  = 0xd */ ,
  4545     Assembler::greater        /* lessEqual     = 0xe */ ,
  4546     Assembler::lessEqual      /* greater       = 0xf, */
  4548 };
  4551 // Implementation of MacroAssembler
  4553 // First all the versions that have distinct versions depending on 32/64 bit
  4554 // Unless the difference is trivial (1 line or so).
  4556 #ifndef _LP64
  4558 // 32bit versions
  4560 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4561   return Address(adr.target(), adr.rspec());
  4564 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4565   return Address::make_array(adr);
  4568 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4569                                          Register obj_reg,
  4570                                          Register swap_reg,
  4571                                          Register tmp_reg,
  4572                                          bool swap_reg_contains_mark,
  4573                                          Label& done,
  4574                                          Label* slow_case,
  4575                                          BiasedLockingCounters* counters) {
  4576   assert(UseBiasedLocking, "why call this otherwise?");
  4577   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4578   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4580   if (PrintBiasedLockingStatistics && counters == NULL)
  4581     counters = BiasedLocking::counters();
  4583   bool need_tmp_reg = false;
  4584   if (tmp_reg == noreg) {
  4585     need_tmp_reg = true;
  4586     tmp_reg = lock_reg;
  4587   } else {
  4588     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4590   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4591   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4592   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4593   Address saved_mark_addr(lock_reg, 0);
  4595   // Biased locking
  4596   // See whether the lock is currently biased toward our thread and
  4597   // whether the epoch is still valid
  4598   // Note that the runtime guarantees sufficient alignment of JavaThread
  4599   // pointers to allow age to be placed into low bits
  4600   // First check to see whether biasing is even enabled for this object
  4601   Label cas_label;
  4602   int null_check_offset = -1;
  4603   if (!swap_reg_contains_mark) {
  4604     null_check_offset = offset();
  4605     movl(swap_reg, mark_addr);
  4607   if (need_tmp_reg) {
  4608     push(tmp_reg);
  4610   movl(tmp_reg, swap_reg);
  4611   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4612   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4613   if (need_tmp_reg) {
  4614     pop(tmp_reg);
  4616   jcc(Assembler::notEqual, cas_label);
  4617   // The bias pattern is present in the object's header. Need to check
  4618   // whether the bias owner and the epoch are both still current.
  4619   // Note that because there is no current thread register on x86 we
  4620   // need to store off the mark word we read out of the object to
  4621   // avoid reloading it and needing to recheck invariants below. This
  4622   // store is unfortunate but it makes the overall code shorter and
  4623   // simpler.
  4624   movl(saved_mark_addr, swap_reg);
  4625   if (need_tmp_reg) {
  4626     push(tmp_reg);
  4628   get_thread(tmp_reg);
  4629   xorl(swap_reg, tmp_reg);
  4630   if (swap_reg_contains_mark) {
  4631     null_check_offset = offset();
  4633   movl(tmp_reg, klass_addr);
  4634   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4635   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4636   if (need_tmp_reg) {
  4637     pop(tmp_reg);
  4639   if (counters != NULL) {
  4640     cond_inc32(Assembler::zero,
  4641                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4643   jcc(Assembler::equal, done);
  4645   Label try_revoke_bias;
  4646   Label try_rebias;
  4648   // At this point we know that the header has the bias pattern and
  4649   // that we are not the bias owner in the current epoch. We need to
  4650   // figure out more details about the state of the header in order to
  4651   // know what operations can be legally performed on the object's
  4652   // header.
  4654   // If the low three bits in the xor result aren't clear, that means
  4655   // the prototype header is no longer biased and we have to revoke
  4656   // the bias on this object.
  4657   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4658   jcc(Assembler::notZero, try_revoke_bias);
  4660   // Biasing is still enabled for this data type. See whether the
  4661   // epoch of the current bias is still valid, meaning that the epoch
  4662   // bits of the mark word are equal to the epoch bits of the
  4663   // prototype header. (Note that the prototype header's epoch bits
  4664   // only change at a safepoint.) If not, attempt to rebias the object
  4665   // toward the current thread. Note that we must be absolutely sure
  4666   // that the current epoch is invalid in order to do this because
  4667   // otherwise the manipulations it performs on the mark word are
  4668   // illegal.
  4669   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4670   jcc(Assembler::notZero, try_rebias);
  4672   // The epoch of the current bias is still valid but we know nothing
  4673   // about the owner; it might be set or it might be clear. Try to
  4674   // acquire the bias of the object using an atomic operation. If this
  4675   // fails we will go in to the runtime to revoke the object's bias.
  4676   // Note that we first construct the presumed unbiased header so we
  4677   // don't accidentally blow away another thread's valid bias.
  4678   movl(swap_reg, saved_mark_addr);
  4679   andl(swap_reg,
  4680        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4681   if (need_tmp_reg) {
  4682     push(tmp_reg);
  4684   get_thread(tmp_reg);
  4685   orl(tmp_reg, swap_reg);
  4686   if (os::is_MP()) {
  4687     lock();
  4689   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4690   if (need_tmp_reg) {
  4691     pop(tmp_reg);
  4693   // If the biasing toward our thread failed, this means that
  4694   // another thread succeeded in biasing it toward itself and we
  4695   // need to revoke that bias. The revocation will occur in the
  4696   // interpreter runtime in the slow case.
  4697   if (counters != NULL) {
  4698     cond_inc32(Assembler::zero,
  4699                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  4701   if (slow_case != NULL) {
  4702     jcc(Assembler::notZero, *slow_case);
  4704   jmp(done);
  4706   bind(try_rebias);
  4707   // At this point we know the epoch has expired, meaning that the
  4708   // current "bias owner", if any, is actually invalid. Under these
  4709   // circumstances _only_, we are allowed to use the current header's
  4710   // value as the comparison value when doing the cas to acquire the
  4711   // bias in the current epoch. In other words, we allow transfer of
  4712   // the bias from one thread to another directly in this situation.
  4713   //
  4714   // FIXME: due to a lack of registers we currently blow away the age
  4715   // bits in this situation. Should attempt to preserve them.
  4716   if (need_tmp_reg) {
  4717     push(tmp_reg);
  4719   get_thread(tmp_reg);
  4720   movl(swap_reg, klass_addr);
  4721   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4722   movl(swap_reg, saved_mark_addr);
  4723   if (os::is_MP()) {
  4724     lock();
  4726   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4727   if (need_tmp_reg) {
  4728     pop(tmp_reg);
  4730   // If the biasing toward our thread failed, then another thread
  4731   // succeeded in biasing it toward itself and we need to revoke that
  4732   // bias. The revocation will occur in the runtime in the slow case.
  4733   if (counters != NULL) {
  4734     cond_inc32(Assembler::zero,
  4735                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  4737   if (slow_case != NULL) {
  4738     jcc(Assembler::notZero, *slow_case);
  4740   jmp(done);
  4742   bind(try_revoke_bias);
  4743   // The prototype mark in the klass doesn't have the bias bit set any
  4744   // more, indicating that objects of this data type are not supposed
  4745   // to be biased any more. We are going to try to reset the mark of
  4746   // this object to the prototype value and fall through to the
  4747   // CAS-based locking scheme. Note that if our CAS fails, it means
  4748   // that another thread raced us for the privilege of revoking the
  4749   // bias of this particular object, so it's okay to continue in the
  4750   // normal locking code.
  4751   //
  4752   // FIXME: due to a lack of registers we currently blow away the age
  4753   // bits in this situation. Should attempt to preserve them.
  4754   movl(swap_reg, saved_mark_addr);
  4755   if (need_tmp_reg) {
  4756     push(tmp_reg);
  4758   movl(tmp_reg, klass_addr);
  4759   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4760   if (os::is_MP()) {
  4761     lock();
  4763   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4764   if (need_tmp_reg) {
  4765     pop(tmp_reg);
  4767   // Fall through to the normal CAS-based lock, because no matter what
  4768   // the result of the above CAS, some thread must have succeeded in
  4769   // removing the bias bit from the object's header.
  4770   if (counters != NULL) {
  4771     cond_inc32(Assembler::zero,
  4772                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  4775   bind(cas_label);
  4777   return null_check_offset;
  4779 void MacroAssembler::call_VM_leaf_base(address entry_point,
  4780                                        int number_of_arguments) {
  4781   call(RuntimeAddress(entry_point));
  4782   increment(rsp, number_of_arguments * wordSize);
  4785 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  4786   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4789 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  4790   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4793 void MacroAssembler::extend_sign(Register hi, Register lo) {
  4794   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  4795   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  4796     cdql();
  4797   } else {
  4798     movl(hi, lo);
  4799     sarl(hi, 31);
  4803 void MacroAssembler::fat_nop() {
  4804   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  4805   emit_byte(0x26); // es:
  4806   emit_byte(0x2e); // cs:
  4807   emit_byte(0x64); // fs:
  4808   emit_byte(0x65); // gs:
  4809   emit_byte(0x90);
  4812 void MacroAssembler::jC2(Register tmp, Label& L) {
  4813   // set parity bit if FPU flag C2 is set (via rax)
  4814   save_rax(tmp);
  4815   fwait(); fnstsw_ax();
  4816   sahf();
  4817   restore_rax(tmp);
  4818   // branch
  4819   jcc(Assembler::parity, L);
  4822 void MacroAssembler::jnC2(Register tmp, Label& L) {
  4823   // set parity bit if FPU flag C2 is set (via rax)
  4824   save_rax(tmp);
  4825   fwait(); fnstsw_ax();
  4826   sahf();
  4827   restore_rax(tmp);
  4828   // branch
  4829   jcc(Assembler::noParity, L);
  4832 // 32bit can do a case table jump in one instruction but we no longer allow the base
  4833 // to be installed in the Address class
  4834 void MacroAssembler::jump(ArrayAddress entry) {
  4835   jmp(as_Address(entry));
  4838 // Note: y_lo will be destroyed
  4839 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  4840   // Long compare for Java (semantics as described in JVM spec.)
  4841   Label high, low, done;
  4843   cmpl(x_hi, y_hi);
  4844   jcc(Assembler::less, low);
  4845   jcc(Assembler::greater, high);
  4846   // x_hi is the return register
  4847   xorl(x_hi, x_hi);
  4848   cmpl(x_lo, y_lo);
  4849   jcc(Assembler::below, low);
  4850   jcc(Assembler::equal, done);
  4852   bind(high);
  4853   xorl(x_hi, x_hi);
  4854   increment(x_hi);
  4855   jmp(done);
  4857   bind(low);
  4858   xorl(x_hi, x_hi);
  4859   decrementl(x_hi);
  4861   bind(done);
  4864 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  4865     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  4868 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  4869   // leal(dst, as_Address(adr));
  4870   // see note in movl as to why we must use a move
  4871   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  4874 void MacroAssembler::leave() {
  4875   mov(rsp, rbp);
  4876   pop(rbp);
  4879 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  4880   // Multiplication of two Java long values stored on the stack
  4881   // as illustrated below. Result is in rdx:rax.
  4882   //
  4883   // rsp ---> [  ??  ] \               \
  4884   //            ....    | y_rsp_offset  |
  4885   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  4886   //          [ y_hi ]                  | (in bytes)
  4887   //            ....                    |
  4888   //          [ x_lo ]                 /
  4889   //          [ x_hi ]
  4890   //            ....
  4891   //
  4892   // Basic idea: lo(result) = lo(x_lo * y_lo)
  4893   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  4894   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  4895   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  4896   Label quick;
  4897   // load x_hi, y_hi and check if quick
  4898   // multiplication is possible
  4899   movl(rbx, x_hi);
  4900   movl(rcx, y_hi);
  4901   movl(rax, rbx);
  4902   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  4903   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  4904   // do full multiplication
  4905   // 1st step
  4906   mull(y_lo);                                    // x_hi * y_lo
  4907   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  4908   // 2nd step
  4909   movl(rax, x_lo);
  4910   mull(rcx);                                     // x_lo * y_hi
  4911   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  4912   // 3rd step
  4913   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  4914   movl(rax, x_lo);
  4915   mull(y_lo);                                    // x_lo * y_lo
  4916   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  4919 void MacroAssembler::lneg(Register hi, Register lo) {
  4920   negl(lo);
  4921   adcl(hi, 0);
  4922   negl(hi);
  4925 void MacroAssembler::lshl(Register hi, Register lo) {
  4926   // Java shift left long support (semantics as described in JVM spec., p.305)
  4927   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  4928   // shift value is in rcx !
  4929   assert(hi != rcx, "must not use rcx");
  4930   assert(lo != rcx, "must not use rcx");
  4931   const Register s = rcx;                        // shift count
  4932   const int      n = BitsPerWord;
  4933   Label L;
  4934   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4935   cmpl(s, n);                                    // if (s < n)
  4936   jcc(Assembler::less, L);                       // else (s >= n)
  4937   movl(hi, lo);                                  // x := x << n
  4938   xorl(lo, lo);
  4939   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4940   bind(L);                                       // s (mod n) < n
  4941   shldl(hi, lo);                                 // x := x << s
  4942   shll(lo);
  4946 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  4947   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  4948   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  4949   assert(hi != rcx, "must not use rcx");
  4950   assert(lo != rcx, "must not use rcx");
  4951   const Register s = rcx;                        // shift count
  4952   const int      n = BitsPerWord;
  4953   Label L;
  4954   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4955   cmpl(s, n);                                    // if (s < n)
  4956   jcc(Assembler::less, L);                       // else (s >= n)
  4957   movl(lo, hi);                                  // x := x >> n
  4958   if (sign_extension) sarl(hi, 31);
  4959   else                xorl(hi, hi);
  4960   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4961   bind(L);                                       // s (mod n) < n
  4962   shrdl(lo, hi);                                 // x := x >> s
  4963   if (sign_extension) sarl(hi);
  4964   else                shrl(hi);
  4967 void MacroAssembler::movoop(Register dst, jobject obj) {
  4968   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4971 void MacroAssembler::movoop(Address dst, jobject obj) {
  4972   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4975 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  4976   if (src.is_lval()) {
  4977     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  4978   } else {
  4979     movl(dst, as_Address(src));
  4983 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  4984   movl(as_Address(dst), src);
  4987 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  4988   movl(dst, as_Address(src));
  4991 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  4992 void MacroAssembler::movptr(Address dst, intptr_t src) {
  4993   movl(dst, src);
  4997 void MacroAssembler::pop_callee_saved_registers() {
  4998   pop(rcx);
  4999   pop(rdx);
  5000   pop(rdi);
  5001   pop(rsi);
  5004 void MacroAssembler::pop_fTOS() {
  5005   fld_d(Address(rsp, 0));
  5006   addl(rsp, 2 * wordSize);
  5009 void MacroAssembler::push_callee_saved_registers() {
  5010   push(rsi);
  5011   push(rdi);
  5012   push(rdx);
  5013   push(rcx);
  5016 void MacroAssembler::push_fTOS() {
  5017   subl(rsp, 2 * wordSize);
  5018   fstp_d(Address(rsp, 0));
  5022 void MacroAssembler::pushoop(jobject obj) {
  5023   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5027 void MacroAssembler::pushptr(AddressLiteral src) {
  5028   if (src.is_lval()) {
  5029     push_literal32((int32_t)src.target(), src.rspec());
  5030   } else {
  5031     pushl(as_Address(src));
  5035 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5036   xorl(dst, dst);
  5037   set_byte_if_not_zero(dst);
  5040 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5041   masm->push(arg);
  5044 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5045   masm->push(arg);
  5048 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5049   masm->push(arg);
  5052 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5053   masm->push(arg);
  5056 #ifndef PRODUCT
  5057 extern "C" void findpc(intptr_t x);
  5058 #endif
  5060 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5061   // In order to get locks to work, we need to fake a in_VM state
  5062   JavaThread* thread = JavaThread::current();
  5063   JavaThreadState saved_state = thread->thread_state();
  5064   thread->set_thread_state(_thread_in_vm);
  5065   if (ShowMessageBoxOnError) {
  5066     JavaThread* thread = JavaThread::current();
  5067     JavaThreadState saved_state = thread->thread_state();
  5068     thread->set_thread_state(_thread_in_vm);
  5069     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5070       ttyLocker ttyl;
  5071       BytecodeCounter::print();
  5073     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5074     // This is the value of eip which points to where verify_oop will return.
  5075     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5076       ttyLocker ttyl;
  5077       tty->print_cr("eip = 0x%08x", eip);
  5078 #ifndef PRODUCT
  5079       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5080         tty->cr();
  5081         findpc(eip);
  5082         tty->cr();
  5084 #endif
  5085       tty->print_cr("rax = 0x%08x", rax);
  5086       tty->print_cr("rbx = 0x%08x", rbx);
  5087       tty->print_cr("rcx = 0x%08x", rcx);
  5088       tty->print_cr("rdx = 0x%08x", rdx);
  5089       tty->print_cr("rdi = 0x%08x", rdi);
  5090       tty->print_cr("rsi = 0x%08x", rsi);
  5091       tty->print_cr("rbp = 0x%08x", rbp);
  5092       tty->print_cr("rsp = 0x%08x", rsp);
  5093       BREAKPOINT;
  5094       assert(false, "start up GDB");
  5096   } else {
  5097     ttyLocker ttyl;
  5098     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5099     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5101   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5104 void MacroAssembler::stop(const char* msg) {
  5105   ExternalAddress message((address)msg);
  5106   // push address of message
  5107   pushptr(message.addr());
  5108   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5109   pusha();                                           // push registers
  5110   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5111   hlt();
  5114 void MacroAssembler::warn(const char* msg) {
  5115   push_CPU_state();
  5117   ExternalAddress message((address) msg);
  5118   // push address of message
  5119   pushptr(message.addr());
  5121   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5122   addl(rsp, wordSize);       // discard argument
  5123   pop_CPU_state();
  5126 #else // _LP64
  5128 // 64 bit versions
  5130 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5131   // amd64 always does this as a pc-rel
  5132   // we can be absolute or disp based on the instruction type
  5133   // jmp/call are displacements others are absolute
  5134   assert(!adr.is_lval(), "must be rval");
  5135   assert(reachable(adr), "must be");
  5136   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5140 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5141   AddressLiteral base = adr.base();
  5142   lea(rscratch1, base);
  5143   Address index = adr.index();
  5144   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5145   Address array(rscratch1, index._index, index._scale, index._disp);
  5146   return array;
  5149 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5150                                          Register obj_reg,
  5151                                          Register swap_reg,
  5152                                          Register tmp_reg,
  5153                                          bool swap_reg_contains_mark,
  5154                                          Label& done,
  5155                                          Label* slow_case,
  5156                                          BiasedLockingCounters* counters) {
  5157   assert(UseBiasedLocking, "why call this otherwise?");
  5158   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5159   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5160   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5161   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5162   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5163   Address saved_mark_addr(lock_reg, 0);
  5165   if (PrintBiasedLockingStatistics && counters == NULL)
  5166     counters = BiasedLocking::counters();
  5168   // Biased locking
  5169   // See whether the lock is currently biased toward our thread and
  5170   // whether the epoch is still valid
  5171   // Note that the runtime guarantees sufficient alignment of JavaThread
  5172   // pointers to allow age to be placed into low bits
  5173   // First check to see whether biasing is even enabled for this object
  5174   Label cas_label;
  5175   int null_check_offset = -1;
  5176   if (!swap_reg_contains_mark) {
  5177     null_check_offset = offset();
  5178     movq(swap_reg, mark_addr);
  5180   movq(tmp_reg, swap_reg);
  5181   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5182   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5183   jcc(Assembler::notEqual, cas_label);
  5184   // The bias pattern is present in the object's header. Need to check
  5185   // whether the bias owner and the epoch are both still current.
  5186   load_prototype_header(tmp_reg, obj_reg);
  5187   orq(tmp_reg, r15_thread);
  5188   xorq(tmp_reg, swap_reg);
  5189   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5190   if (counters != NULL) {
  5191     cond_inc32(Assembler::zero,
  5192                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5194   jcc(Assembler::equal, done);
  5196   Label try_revoke_bias;
  5197   Label try_rebias;
  5199   // At this point we know that the header has the bias pattern and
  5200   // that we are not the bias owner in the current epoch. We need to
  5201   // figure out more details about the state of the header in order to
  5202   // know what operations can be legally performed on the object's
  5203   // header.
  5205   // If the low three bits in the xor result aren't clear, that means
  5206   // the prototype header is no longer biased and we have to revoke
  5207   // the bias on this object.
  5208   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5209   jcc(Assembler::notZero, try_revoke_bias);
  5211   // Biasing is still enabled for this data type. See whether the
  5212   // epoch of the current bias is still valid, meaning that the epoch
  5213   // bits of the mark word are equal to the epoch bits of the
  5214   // prototype header. (Note that the prototype header's epoch bits
  5215   // only change at a safepoint.) If not, attempt to rebias the object
  5216   // toward the current thread. Note that we must be absolutely sure
  5217   // that the current epoch is invalid in order to do this because
  5218   // otherwise the manipulations it performs on the mark word are
  5219   // illegal.
  5220   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5221   jcc(Assembler::notZero, try_rebias);
  5223   // The epoch of the current bias is still valid but we know nothing
  5224   // about the owner; it might be set or it might be clear. Try to
  5225   // acquire the bias of the object using an atomic operation. If this
  5226   // fails we will go in to the runtime to revoke the object's bias.
  5227   // Note that we first construct the presumed unbiased header so we
  5228   // don't accidentally blow away another thread's valid bias.
  5229   andq(swap_reg,
  5230        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5231   movq(tmp_reg, swap_reg);
  5232   orq(tmp_reg, r15_thread);
  5233   if (os::is_MP()) {
  5234     lock();
  5236   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5237   // If the biasing toward our thread failed, this means that
  5238   // another thread succeeded in biasing it toward itself and we
  5239   // need to revoke that bias. The revocation will occur in the
  5240   // interpreter runtime in the slow case.
  5241   if (counters != NULL) {
  5242     cond_inc32(Assembler::zero,
  5243                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5245   if (slow_case != NULL) {
  5246     jcc(Assembler::notZero, *slow_case);
  5248   jmp(done);
  5250   bind(try_rebias);
  5251   // At this point we know the epoch has expired, meaning that the
  5252   // current "bias owner", if any, is actually invalid. Under these
  5253   // circumstances _only_, we are allowed to use the current header's
  5254   // value as the comparison value when doing the cas to acquire the
  5255   // bias in the current epoch. In other words, we allow transfer of
  5256   // the bias from one thread to another directly in this situation.
  5257   //
  5258   // FIXME: due to a lack of registers we currently blow away the age
  5259   // bits in this situation. Should attempt to preserve them.
  5260   load_prototype_header(tmp_reg, obj_reg);
  5261   orq(tmp_reg, r15_thread);
  5262   if (os::is_MP()) {
  5263     lock();
  5265   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5266   // If the biasing toward our thread failed, then another thread
  5267   // succeeded in biasing it toward itself and we need to revoke that
  5268   // bias. The revocation will occur in the runtime in the slow case.
  5269   if (counters != NULL) {
  5270     cond_inc32(Assembler::zero,
  5271                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5273   if (slow_case != NULL) {
  5274     jcc(Assembler::notZero, *slow_case);
  5276   jmp(done);
  5278   bind(try_revoke_bias);
  5279   // The prototype mark in the klass doesn't have the bias bit set any
  5280   // more, indicating that objects of this data type are not supposed
  5281   // to be biased any more. We are going to try to reset the mark of
  5282   // this object to the prototype value and fall through to the
  5283   // CAS-based locking scheme. Note that if our CAS fails, it means
  5284   // that another thread raced us for the privilege of revoking the
  5285   // bias of this particular object, so it's okay to continue in the
  5286   // normal locking code.
  5287   //
  5288   // FIXME: due to a lack of registers we currently blow away the age
  5289   // bits in this situation. Should attempt to preserve them.
  5290   load_prototype_header(tmp_reg, obj_reg);
  5291   if (os::is_MP()) {
  5292     lock();
  5294   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5295   // Fall through to the normal CAS-based lock, because no matter what
  5296   // the result of the above CAS, some thread must have succeeded in
  5297   // removing the bias bit from the object's header.
  5298   if (counters != NULL) {
  5299     cond_inc32(Assembler::zero,
  5300                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5303   bind(cas_label);
  5305   return null_check_offset;
  5308 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5309   Label L, E;
  5311 #ifdef _WIN64
  5312   // Windows always allocates space for it's register args
  5313   assert(num_args <= 4, "only register arguments supported");
  5314   subq(rsp,  frame::arg_reg_save_area_bytes);
  5315 #endif
  5317   // Align stack if necessary
  5318   testl(rsp, 15);
  5319   jcc(Assembler::zero, L);
  5321   subq(rsp, 8);
  5323     call(RuntimeAddress(entry_point));
  5325   addq(rsp, 8);
  5326   jmp(E);
  5328   bind(L);
  5330     call(RuntimeAddress(entry_point));
  5333   bind(E);
  5335 #ifdef _WIN64
  5336   // restore stack pointer
  5337   addq(rsp, frame::arg_reg_save_area_bytes);
  5338 #endif
  5342 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5343   assert(!src2.is_lval(), "should use cmpptr");
  5345   if (reachable(src2)) {
  5346     cmpq(src1, as_Address(src2));
  5347   } else {
  5348     lea(rscratch1, src2);
  5349     Assembler::cmpq(src1, Address(rscratch1, 0));
  5353 int MacroAssembler::corrected_idivq(Register reg) {
  5354   // Full implementation of Java ldiv and lrem; checks for special
  5355   // case as described in JVM spec., p.243 & p.271.  The function
  5356   // returns the (pc) offset of the idivl instruction - may be needed
  5357   // for implicit exceptions.
  5358   //
  5359   //         normal case                           special case
  5360   //
  5361   // input : rax: dividend                         min_long
  5362   //         reg: divisor   (may not be eax/edx)   -1
  5363   //
  5364   // output: rax: quotient  (= rax idiv reg)       min_long
  5365   //         rdx: remainder (= rax irem reg)       0
  5366   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5367   static const int64_t min_long = 0x8000000000000000;
  5368   Label normal_case, special_case;
  5370   // check for special case
  5371   cmp64(rax, ExternalAddress((address) &min_long));
  5372   jcc(Assembler::notEqual, normal_case);
  5373   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5374                   // remainder = 0)
  5375   cmpq(reg, -1);
  5376   jcc(Assembler::equal, special_case);
  5378   // handle normal case
  5379   bind(normal_case);
  5380   cdqq();
  5381   int idivq_offset = offset();
  5382   idivq(reg);
  5384   // normal and special case exit
  5385   bind(special_case);
  5387   return idivq_offset;
  5390 void MacroAssembler::decrementq(Register reg, int value) {
  5391   if (value == min_jint) { subq(reg, value); return; }
  5392   if (value <  0) { incrementq(reg, -value); return; }
  5393   if (value == 0) {                        ; return; }
  5394   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5395   /* else */      { subq(reg, value)       ; return; }
  5398 void MacroAssembler::decrementq(Address dst, int value) {
  5399   if (value == min_jint) { subq(dst, value); return; }
  5400   if (value <  0) { incrementq(dst, -value); return; }
  5401   if (value == 0) {                        ; return; }
  5402   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5403   /* else */      { subq(dst, value)       ; return; }
  5406 void MacroAssembler::fat_nop() {
  5407   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5408   // Recommened sequence from 'Software Optimization Guide for the AMD
  5409   // Hammer Processor'
  5410   emit_byte(0x66);
  5411   emit_byte(0x66);
  5412   emit_byte(0x90);
  5413   emit_byte(0x66);
  5414   emit_byte(0x90);
  5417 void MacroAssembler::incrementq(Register reg, int value) {
  5418   if (value == min_jint) { addq(reg, value); return; }
  5419   if (value <  0) { decrementq(reg, -value); return; }
  5420   if (value == 0) {                        ; return; }
  5421   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5422   /* else */      { addq(reg, value)       ; return; }
  5425 void MacroAssembler::incrementq(Address dst, int value) {
  5426   if (value == min_jint) { addq(dst, value); return; }
  5427   if (value <  0) { decrementq(dst, -value); return; }
  5428   if (value == 0) {                        ; return; }
  5429   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5430   /* else */      { addq(dst, value)       ; return; }
  5433 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5434 // to be installed in the Address class
  5435 void MacroAssembler::jump(ArrayAddress entry) {
  5436   lea(rscratch1, entry.base());
  5437   Address dispatch = entry.index();
  5438   assert(dispatch._base == noreg, "must be");
  5439   dispatch._base = rscratch1;
  5440   jmp(dispatch);
  5443 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5444   ShouldNotReachHere(); // 64bit doesn't use two regs
  5445   cmpq(x_lo, y_lo);
  5448 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5449     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5452 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5453   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5454   movptr(dst, rscratch1);
  5457 void MacroAssembler::leave() {
  5458   // %%% is this really better? Why not on 32bit too?
  5459   emit_byte(0xC9); // LEAVE
  5462 void MacroAssembler::lneg(Register hi, Register lo) {
  5463   ShouldNotReachHere(); // 64bit doesn't use two regs
  5464   negq(lo);
  5467 void MacroAssembler::movoop(Register dst, jobject obj) {
  5468   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5471 void MacroAssembler::movoop(Address dst, jobject obj) {
  5472   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5473   movq(dst, rscratch1);
  5476 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5477   if (src.is_lval()) {
  5478     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5479   } else {
  5480     if (reachable(src)) {
  5481       movq(dst, as_Address(src));
  5482     } else {
  5483       lea(rscratch1, src);
  5484       movq(dst, Address(rscratch1,0));
  5489 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5490   movq(as_Address(dst), src);
  5493 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5494   movq(dst, as_Address(src));
  5497 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5498 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5499   mov64(rscratch1, src);
  5500   movq(dst, rscratch1);
  5503 // These are mostly for initializing NULL
  5504 void MacroAssembler::movptr(Address dst, int32_t src) {
  5505   movslq(dst, src);
  5508 void MacroAssembler::movptr(Register dst, int32_t src) {
  5509   mov64(dst, (intptr_t)src);
  5512 void MacroAssembler::pushoop(jobject obj) {
  5513   movoop(rscratch1, obj);
  5514   push(rscratch1);
  5517 void MacroAssembler::pushptr(AddressLiteral src) {
  5518   lea(rscratch1, src);
  5519   if (src.is_lval()) {
  5520     push(rscratch1);
  5521   } else {
  5522     pushq(Address(rscratch1, 0));
  5526 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5527                                            bool clear_pc) {
  5528   // we must set sp to zero to clear frame
  5529   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5530   // must clear fp, so that compiled frames are not confused; it is
  5531   // possible that we need it only for debugging
  5532   if (clear_fp) {
  5533     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5536   if (clear_pc) {
  5537     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5541 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5542                                          Register last_java_fp,
  5543                                          address  last_java_pc) {
  5544   // determine last_java_sp register
  5545   if (!last_java_sp->is_valid()) {
  5546     last_java_sp = rsp;
  5549   // last_java_fp is optional
  5550   if (last_java_fp->is_valid()) {
  5551     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5552            last_java_fp);
  5555   // last_java_pc is optional
  5556   if (last_java_pc != NULL) {
  5557     Address java_pc(r15_thread,
  5558                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5559     lea(rscratch1, InternalAddress(last_java_pc));
  5560     movptr(java_pc, rscratch1);
  5563   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5566 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5567   if (c_rarg0 != arg ) {
  5568     masm->mov(c_rarg0, arg);
  5572 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5573   if (c_rarg1 != arg ) {
  5574     masm->mov(c_rarg1, arg);
  5578 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5579   if (c_rarg2 != arg ) {
  5580     masm->mov(c_rarg2, arg);
  5584 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5585   if (c_rarg3 != arg ) {
  5586     masm->mov(c_rarg3, arg);
  5590 void MacroAssembler::stop(const char* msg) {
  5591   address rip = pc();
  5592   pusha(); // get regs on stack
  5593   lea(c_rarg0, ExternalAddress((address) msg));
  5594   lea(c_rarg1, InternalAddress(rip));
  5595   movq(c_rarg2, rsp); // pass pointer to regs array
  5596   andq(rsp, -16); // align stack as required by ABI
  5597   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5598   hlt();
  5601 void MacroAssembler::warn(const char* msg) {
  5602   push(rsp);
  5603   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5605   push_CPU_state();   // keeps alignment at 16 bytes
  5606   lea(c_rarg0, ExternalAddress((address) msg));
  5607   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5608   pop_CPU_state();
  5609   pop(rsp);
  5612 #ifndef PRODUCT
  5613 extern "C" void findpc(intptr_t x);
  5614 #endif
  5616 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5617   // In order to get locks to work, we need to fake a in_VM state
  5618   if (ShowMessageBoxOnError ) {
  5619     JavaThread* thread = JavaThread::current();
  5620     JavaThreadState saved_state = thread->thread_state();
  5621     thread->set_thread_state(_thread_in_vm);
  5622 #ifndef PRODUCT
  5623     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5624       ttyLocker ttyl;
  5625       BytecodeCounter::print();
  5627 #endif
  5628     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5629     // XXX correct this offset for amd64
  5630     // This is the value of eip which points to where verify_oop will return.
  5631     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5632       ttyLocker ttyl;
  5633       tty->print_cr("rip = 0x%016lx", pc);
  5634 #ifndef PRODUCT
  5635       tty->cr();
  5636       findpc(pc);
  5637       tty->cr();
  5638 #endif
  5639       tty->print_cr("rax = 0x%016lx", regs[15]);
  5640       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5641       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5642       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5643       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5644       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5645       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5646       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5647       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5648       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5649       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5650       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5651       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5652       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5653       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5654       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5655       BREAKPOINT;
  5657     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5658   } else {
  5659     ttyLocker ttyl;
  5660     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5661                     msg);
  5662     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5666 #endif // _LP64
  5668 // Now versions that are common to 32/64 bit
  5670 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5671   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5674 void MacroAssembler::addptr(Register dst, Register src) {
  5675   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5678 void MacroAssembler::addptr(Address dst, Register src) {
  5679   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5682 void MacroAssembler::align(int modulus) {
  5683   if (offset() % modulus != 0) {
  5684     nop(modulus - (offset() % modulus));
  5688 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  5689   if (reachable(src)) {
  5690     andpd(dst, as_Address(src));
  5691   } else {
  5692     lea(rscratch1, src);
  5693     andpd(dst, Address(rscratch1, 0));
  5697 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  5698   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  5701 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5702   pushf();
  5703   if (os::is_MP())
  5704     lock();
  5705   incrementl(counter_addr);
  5706   popf();
  5709 // Writes to stack successive pages until offset reached to check for
  5710 // stack overflow + shadow pages.  This clobbers tmp.
  5711 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5712   movptr(tmp, rsp);
  5713   // Bang stack for total size given plus shadow page size.
  5714   // Bang one page at a time because large size can bang beyond yellow and
  5715   // red zones.
  5716   Label loop;
  5717   bind(loop);
  5718   movl(Address(tmp, (-os::vm_page_size())), size );
  5719   subptr(tmp, os::vm_page_size());
  5720   subl(size, os::vm_page_size());
  5721   jcc(Assembler::greater, loop);
  5723   // Bang down shadow pages too.
  5724   // The -1 because we already subtracted 1 page.
  5725   for (int i = 0; i< StackShadowPages-1; i++) {
  5726     // this could be any sized move but this is can be a debugging crumb
  5727     // so the bigger the better.
  5728     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  5732 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5733   assert(UseBiasedLocking, "why call this otherwise?");
  5735   // Check for biased locking unlock case, which is a no-op
  5736   // Note: we do not have to check the thread ID for two reasons.
  5737   // First, the interpreter checks for IllegalMonitorStateException at
  5738   // a higher level. Second, if the bias was revoked while we held the
  5739   // lock, the object could not be rebiased toward another thread, so
  5740   // the bias bit would be clear.
  5741   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5742   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5743   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  5744   jcc(Assembler::equal, done);
  5747 void MacroAssembler::c2bool(Register x) {
  5748   // implements x == 0 ? 0 : 1
  5749   // note: must only look at least-significant byte of x
  5750   //       since C-style booleans are stored in one byte
  5751   //       only! (was bug)
  5752   andl(x, 0xFF);
  5753   setb(Assembler::notZero, x);
  5756 // Wouldn't need if AddressLiteral version had new name
  5757 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  5758   Assembler::call(L, rtype);
  5761 void MacroAssembler::call(Register entry) {
  5762   Assembler::call(entry);
  5765 void MacroAssembler::call(AddressLiteral entry) {
  5766   if (reachable(entry)) {
  5767     Assembler::call_literal(entry.target(), entry.rspec());
  5768   } else {
  5769     lea(rscratch1, entry);
  5770     Assembler::call(rscratch1);
  5774 // Implementation of call_VM versions
  5776 void MacroAssembler::call_VM(Register oop_result,
  5777                              address entry_point,
  5778                              bool check_exceptions) {
  5779   Label C, E;
  5780   call(C, relocInfo::none);
  5781   jmp(E);
  5783   bind(C);
  5784   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  5785   ret(0);
  5787   bind(E);
  5790 void MacroAssembler::call_VM(Register oop_result,
  5791                              address entry_point,
  5792                              Register arg_1,
  5793                              bool check_exceptions) {
  5794   Label C, E;
  5795   call(C, relocInfo::none);
  5796   jmp(E);
  5798   bind(C);
  5799   pass_arg1(this, arg_1);
  5800   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  5801   ret(0);
  5803   bind(E);
  5806 void MacroAssembler::call_VM(Register oop_result,
  5807                              address entry_point,
  5808                              Register arg_1,
  5809                              Register arg_2,
  5810                              bool check_exceptions) {
  5811   Label C, E;
  5812   call(C, relocInfo::none);
  5813   jmp(E);
  5815   bind(C);
  5817   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5819   pass_arg2(this, arg_2);
  5820   pass_arg1(this, arg_1);
  5821   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  5822   ret(0);
  5824   bind(E);
  5827 void MacroAssembler::call_VM(Register oop_result,
  5828                              address entry_point,
  5829                              Register arg_1,
  5830                              Register arg_2,
  5831                              Register arg_3,
  5832                              bool check_exceptions) {
  5833   Label C, E;
  5834   call(C, relocInfo::none);
  5835   jmp(E);
  5837   bind(C);
  5839   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5840   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5841   pass_arg3(this, arg_3);
  5843   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5844   pass_arg2(this, arg_2);
  5846   pass_arg1(this, arg_1);
  5847   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  5848   ret(0);
  5850   bind(E);
  5853 void MacroAssembler::call_VM(Register oop_result,
  5854                              Register last_java_sp,
  5855                              address entry_point,
  5856                              int number_of_arguments,
  5857                              bool check_exceptions) {
  5858   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5859   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5862 void MacroAssembler::call_VM(Register oop_result,
  5863                              Register last_java_sp,
  5864                              address entry_point,
  5865                              Register arg_1,
  5866                              bool check_exceptions) {
  5867   pass_arg1(this, arg_1);
  5868   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5871 void MacroAssembler::call_VM(Register oop_result,
  5872                              Register last_java_sp,
  5873                              address entry_point,
  5874                              Register arg_1,
  5875                              Register arg_2,
  5876                              bool check_exceptions) {
  5878   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5879   pass_arg2(this, arg_2);
  5880   pass_arg1(this, arg_1);
  5881   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5884 void MacroAssembler::call_VM(Register oop_result,
  5885                              Register last_java_sp,
  5886                              address entry_point,
  5887                              Register arg_1,
  5888                              Register arg_2,
  5889                              Register arg_3,
  5890                              bool check_exceptions) {
  5891   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5892   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5893   pass_arg3(this, arg_3);
  5894   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5895   pass_arg2(this, arg_2);
  5896   pass_arg1(this, arg_1);
  5897   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5900 void MacroAssembler::super_call_VM(Register oop_result,
  5901                                    Register last_java_sp,
  5902                                    address entry_point,
  5903                                    int number_of_arguments,
  5904                                    bool check_exceptions) {
  5905   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5906   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5909 void MacroAssembler::super_call_VM(Register oop_result,
  5910                                    Register last_java_sp,
  5911                                    address entry_point,
  5912                                    Register arg_1,
  5913                                    bool check_exceptions) {
  5914   pass_arg1(this, arg_1);
  5915   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5918 void MacroAssembler::super_call_VM(Register oop_result,
  5919                                    Register last_java_sp,
  5920                                    address entry_point,
  5921                                    Register arg_1,
  5922                                    Register arg_2,
  5923                                    bool check_exceptions) {
  5925   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5926   pass_arg2(this, arg_2);
  5927   pass_arg1(this, arg_1);
  5928   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5931 void MacroAssembler::super_call_VM(Register oop_result,
  5932                                    Register last_java_sp,
  5933                                    address entry_point,
  5934                                    Register arg_1,
  5935                                    Register arg_2,
  5936                                    Register arg_3,
  5937                                    bool check_exceptions) {
  5938   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5939   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5940   pass_arg3(this, arg_3);
  5941   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5942   pass_arg2(this, arg_2);
  5943   pass_arg1(this, arg_1);
  5944   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5947 void MacroAssembler::call_VM_base(Register oop_result,
  5948                                   Register java_thread,
  5949                                   Register last_java_sp,
  5950                                   address  entry_point,
  5951                                   int      number_of_arguments,
  5952                                   bool     check_exceptions) {
  5953   // determine java_thread register
  5954   if (!java_thread->is_valid()) {
  5955 #ifdef _LP64
  5956     java_thread = r15_thread;
  5957 #else
  5958     java_thread = rdi;
  5959     get_thread(java_thread);
  5960 #endif // LP64
  5962   // determine last_java_sp register
  5963   if (!last_java_sp->is_valid()) {
  5964     last_java_sp = rsp;
  5966   // debugging support
  5967   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  5968   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  5969 #ifdef ASSERT
  5970   LP64_ONLY(if (UseCompressedOops) verify_heapbase("call_VM_base");)
  5971 #endif // ASSERT
  5973   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  5974   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  5976   // push java thread (becomes first argument of C function)
  5978   NOT_LP64(push(java_thread); number_of_arguments++);
  5979   LP64_ONLY(mov(c_rarg0, r15_thread));
  5981   // set last Java frame before call
  5982   assert(last_java_sp != rbp, "can't use ebp/rbp");
  5984   // Only interpreter should have to set fp
  5985   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  5987   // do the call, remove parameters
  5988   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  5990   // restore the thread (cannot use the pushed argument since arguments
  5991   // may be overwritten by C code generated by an optimizing compiler);
  5992   // however can use the register value directly if it is callee saved.
  5993   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  5994     // rdi & rsi (also r15) are callee saved -> nothing to do
  5995 #ifdef ASSERT
  5996     guarantee(java_thread != rax, "change this code");
  5997     push(rax);
  5998     { Label L;
  5999       get_thread(rax);
  6000       cmpptr(java_thread, rax);
  6001       jcc(Assembler::equal, L);
  6002       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  6003       bind(L);
  6005     pop(rax);
  6006 #endif
  6007   } else {
  6008     get_thread(java_thread);
  6010   // reset last Java frame
  6011   // Only interpreter should have to clear fp
  6012   reset_last_Java_frame(java_thread, true, false);
  6014 #ifndef CC_INTERP
  6015    // C++ interp handles this in the interpreter
  6016   check_and_handle_popframe(java_thread);
  6017   check_and_handle_earlyret(java_thread);
  6018 #endif /* CC_INTERP */
  6020   if (check_exceptions) {
  6021     // check for pending exceptions (java_thread is set upon return)
  6022     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6023 #ifndef _LP64
  6024     jump_cc(Assembler::notEqual,
  6025             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6026 #else
  6027     // This used to conditionally jump to forward_exception however it is
  6028     // possible if we relocate that the branch will not reach. So we must jump
  6029     // around so we can always reach
  6031     Label ok;
  6032     jcc(Assembler::equal, ok);
  6033     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  6034     bind(ok);
  6035 #endif // LP64
  6038   // get oop result if there is one and reset the value in the thread
  6039   if (oop_result->is_valid()) {
  6040     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  6041     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  6042     verify_oop(oop_result, "broken oop in call_VM_base");
  6046 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  6048   // Calculate the value for last_Java_sp
  6049   // somewhat subtle. call_VM does an intermediate call
  6050   // which places a return address on the stack just under the
  6051   // stack pointer as the user finsihed with it. This allows
  6052   // use to retrieve last_Java_pc from last_Java_sp[-1].
  6053   // On 32bit we then have to push additional args on the stack to accomplish
  6054   // the actual requested call. On 64bit call_VM only can use register args
  6055   // so the only extra space is the return address that call_VM created.
  6056   // This hopefully explains the calculations here.
  6058 #ifdef _LP64
  6059   // We've pushed one address, correct last_Java_sp
  6060   lea(rax, Address(rsp, wordSize));
  6061 #else
  6062   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6063 #endif // LP64
  6065   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6069 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6070   call_VM_leaf_base(entry_point, number_of_arguments);
  6073 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6074   pass_arg0(this, arg_0);
  6075   call_VM_leaf(entry_point, 1);
  6078 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6080   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6081   pass_arg1(this, arg_1);
  6082   pass_arg0(this, arg_0);
  6083   call_VM_leaf(entry_point, 2);
  6086 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6087   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6088   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6089   pass_arg2(this, arg_2);
  6090   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6091   pass_arg1(this, arg_1);
  6092   pass_arg0(this, arg_0);
  6093   call_VM_leaf(entry_point, 3);
  6096 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  6097   pass_arg0(this, arg_0);
  6098   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  6101 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6103   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6104   pass_arg1(this, arg_1);
  6105   pass_arg0(this, arg_0);
  6106   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  6109 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6110   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6111   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6112   pass_arg2(this, arg_2);
  6113   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6114   pass_arg1(this, arg_1);
  6115   pass_arg0(this, arg_0);
  6116   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  6119 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  6120   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  6121   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6122   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6123   pass_arg3(this, arg_3);
  6124   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6125   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6126   pass_arg2(this, arg_2);
  6127   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6128   pass_arg1(this, arg_1);
  6129   pass_arg0(this, arg_0);
  6130   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  6133 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6136 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6139 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6140   if (reachable(src1)) {
  6141     cmpl(as_Address(src1), imm);
  6142   } else {
  6143     lea(rscratch1, src1);
  6144     cmpl(Address(rscratch1, 0), imm);
  6148 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6149   assert(!src2.is_lval(), "use cmpptr");
  6150   if (reachable(src2)) {
  6151     cmpl(src1, as_Address(src2));
  6152   } else {
  6153     lea(rscratch1, src2);
  6154     cmpl(src1, Address(rscratch1, 0));
  6158 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6159   Assembler::cmpl(src1, imm);
  6162 void MacroAssembler::cmp32(Register src1, Address src2) {
  6163   Assembler::cmpl(src1, src2);
  6166 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6167   ucomisd(opr1, opr2);
  6169   Label L;
  6170   if (unordered_is_less) {
  6171     movl(dst, -1);
  6172     jcc(Assembler::parity, L);
  6173     jcc(Assembler::below , L);
  6174     movl(dst, 0);
  6175     jcc(Assembler::equal , L);
  6176     increment(dst);
  6177   } else { // unordered is greater
  6178     movl(dst, 1);
  6179     jcc(Assembler::parity, L);
  6180     jcc(Assembler::above , L);
  6181     movl(dst, 0);
  6182     jcc(Assembler::equal , L);
  6183     decrementl(dst);
  6185   bind(L);
  6188 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6189   ucomiss(opr1, opr2);
  6191   Label L;
  6192   if (unordered_is_less) {
  6193     movl(dst, -1);
  6194     jcc(Assembler::parity, L);
  6195     jcc(Assembler::below , L);
  6196     movl(dst, 0);
  6197     jcc(Assembler::equal , L);
  6198     increment(dst);
  6199   } else { // unordered is greater
  6200     movl(dst, 1);
  6201     jcc(Assembler::parity, L);
  6202     jcc(Assembler::above , L);
  6203     movl(dst, 0);
  6204     jcc(Assembler::equal , L);
  6205     decrementl(dst);
  6207   bind(L);
  6211 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6212   if (reachable(src1)) {
  6213     cmpb(as_Address(src1), imm);
  6214   } else {
  6215     lea(rscratch1, src1);
  6216     cmpb(Address(rscratch1, 0), imm);
  6220 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6221 #ifdef _LP64
  6222   if (src2.is_lval()) {
  6223     movptr(rscratch1, src2);
  6224     Assembler::cmpq(src1, rscratch1);
  6225   } else if (reachable(src2)) {
  6226     cmpq(src1, as_Address(src2));
  6227   } else {
  6228     lea(rscratch1, src2);
  6229     Assembler::cmpq(src1, Address(rscratch1, 0));
  6231 #else
  6232   if (src2.is_lval()) {
  6233     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6234   } else {
  6235     cmpl(src1, as_Address(src2));
  6237 #endif // _LP64
  6240 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6241   assert(src2.is_lval(), "not a mem-mem compare");
  6242 #ifdef _LP64
  6243   // moves src2's literal address
  6244   movptr(rscratch1, src2);
  6245   Assembler::cmpq(src1, rscratch1);
  6246 #else
  6247   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6248 #endif // _LP64
  6251 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6252   if (reachable(adr)) {
  6253     if (os::is_MP())
  6254       lock();
  6255     cmpxchgptr(reg, as_Address(adr));
  6256   } else {
  6257     lea(rscratch1, adr);
  6258     if (os::is_MP())
  6259       lock();
  6260     cmpxchgptr(reg, Address(rscratch1, 0));
  6264 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6265   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6268 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6269   if (reachable(src)) {
  6270     comisd(dst, as_Address(src));
  6271   } else {
  6272     lea(rscratch1, src);
  6273     comisd(dst, Address(rscratch1, 0));
  6277 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6278   if (reachable(src)) {
  6279     comiss(dst, as_Address(src));
  6280   } else {
  6281     lea(rscratch1, src);
  6282     comiss(dst, Address(rscratch1, 0));
  6287 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6288   Condition negated_cond = negate_condition(cond);
  6289   Label L;
  6290   jcc(negated_cond, L);
  6291   atomic_incl(counter_addr);
  6292   bind(L);
  6295 int MacroAssembler::corrected_idivl(Register reg) {
  6296   // Full implementation of Java idiv and irem; checks for
  6297   // special case as described in JVM spec., p.243 & p.271.
  6298   // The function returns the (pc) offset of the idivl
  6299   // instruction - may be needed for implicit exceptions.
  6300   //
  6301   //         normal case                           special case
  6302   //
  6303   // input : rax,: dividend                         min_int
  6304   //         reg: divisor   (may not be rax,/rdx)   -1
  6305   //
  6306   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6307   //         rdx: remainder (= rax, irem reg)       0
  6308   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6309   const int min_int = 0x80000000;
  6310   Label normal_case, special_case;
  6312   // check for special case
  6313   cmpl(rax, min_int);
  6314   jcc(Assembler::notEqual, normal_case);
  6315   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6316   cmpl(reg, -1);
  6317   jcc(Assembler::equal, special_case);
  6319   // handle normal case
  6320   bind(normal_case);
  6321   cdql();
  6322   int idivl_offset = offset();
  6323   idivl(reg);
  6325   // normal and special case exit
  6326   bind(special_case);
  6328   return idivl_offset;
  6333 void MacroAssembler::decrementl(Register reg, int value) {
  6334   if (value == min_jint) {subl(reg, value) ; return; }
  6335   if (value <  0) { incrementl(reg, -value); return; }
  6336   if (value == 0) {                        ; return; }
  6337   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6338   /* else */      { subl(reg, value)       ; return; }
  6341 void MacroAssembler::decrementl(Address dst, int value) {
  6342   if (value == min_jint) {subl(dst, value) ; return; }
  6343   if (value <  0) { incrementl(dst, -value); return; }
  6344   if (value == 0) {                        ; return; }
  6345   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6346   /* else */      { subl(dst, value)       ; return; }
  6349 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6350   assert (shift_value > 0, "illegal shift value");
  6351   Label _is_positive;
  6352   testl (reg, reg);
  6353   jcc (Assembler::positive, _is_positive);
  6354   int offset = (1 << shift_value) - 1 ;
  6356   if (offset == 1) {
  6357     incrementl(reg);
  6358   } else {
  6359     addl(reg, offset);
  6362   bind (_is_positive);
  6363   sarl(reg, shift_value);
  6366 // !defined(COMPILER2) is because of stupid core builds
  6367 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6368 void MacroAssembler::empty_FPU_stack() {
  6369   if (VM_Version::supports_mmx()) {
  6370     emms();
  6371   } else {
  6372     for (int i = 8; i-- > 0; ) ffree(i);
  6375 #endif // !LP64 || C1 || !C2
  6378 // Defines obj, preserves var_size_in_bytes
  6379 void MacroAssembler::eden_allocate(Register obj,
  6380                                    Register var_size_in_bytes,
  6381                                    int con_size_in_bytes,
  6382                                    Register t1,
  6383                                    Label& slow_case) {
  6384   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6385   assert_different_registers(obj, var_size_in_bytes, t1);
  6386   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6387     jmp(slow_case);
  6388   } else {
  6389     Register end = t1;
  6390     Label retry;
  6391     bind(retry);
  6392     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6393     movptr(obj, heap_top);
  6394     if (var_size_in_bytes == noreg) {
  6395       lea(end, Address(obj, con_size_in_bytes));
  6396     } else {
  6397       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6399     // if end < obj then we wrapped around => object too long => slow case
  6400     cmpptr(end, obj);
  6401     jcc(Assembler::below, slow_case);
  6402     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6403     jcc(Assembler::above, slow_case);
  6404     // Compare obj with the top addr, and if still equal, store the new top addr in
  6405     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6406     // it otherwise. Use lock prefix for atomicity on MPs.
  6407     locked_cmpxchgptr(end, heap_top);
  6408     jcc(Assembler::notEqual, retry);
  6412 void MacroAssembler::enter() {
  6413   push(rbp);
  6414   mov(rbp, rsp);
  6417 void MacroAssembler::fcmp(Register tmp) {
  6418   fcmp(tmp, 1, true, true);
  6421 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6422   assert(!pop_right || pop_left, "usage error");
  6423   if (VM_Version::supports_cmov()) {
  6424     assert(tmp == noreg, "unneeded temp");
  6425     if (pop_left) {
  6426       fucomip(index);
  6427     } else {
  6428       fucomi(index);
  6430     if (pop_right) {
  6431       fpop();
  6433   } else {
  6434     assert(tmp != noreg, "need temp");
  6435     if (pop_left) {
  6436       if (pop_right) {
  6437         fcompp();
  6438       } else {
  6439         fcomp(index);
  6441     } else {
  6442       fcom(index);
  6444     // convert FPU condition into eflags condition via rax,
  6445     save_rax(tmp);
  6446     fwait(); fnstsw_ax();
  6447     sahf();
  6448     restore_rax(tmp);
  6450   // condition codes set as follows:
  6451   //
  6452   // CF (corresponds to C0) if x < y
  6453   // PF (corresponds to C2) if unordered
  6454   // ZF (corresponds to C3) if x = y
  6457 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6458   fcmp2int(dst, unordered_is_less, 1, true, true);
  6461 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6462   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6463   Label L;
  6464   if (unordered_is_less) {
  6465     movl(dst, -1);
  6466     jcc(Assembler::parity, L);
  6467     jcc(Assembler::below , L);
  6468     movl(dst, 0);
  6469     jcc(Assembler::equal , L);
  6470     increment(dst);
  6471   } else { // unordered is greater
  6472     movl(dst, 1);
  6473     jcc(Assembler::parity, L);
  6474     jcc(Assembler::above , L);
  6475     movl(dst, 0);
  6476     jcc(Assembler::equal , L);
  6477     decrementl(dst);
  6479   bind(L);
  6482 void MacroAssembler::fld_d(AddressLiteral src) {
  6483   fld_d(as_Address(src));
  6486 void MacroAssembler::fld_s(AddressLiteral src) {
  6487   fld_s(as_Address(src));
  6490 void MacroAssembler::fld_x(AddressLiteral src) {
  6491   Assembler::fld_x(as_Address(src));
  6494 void MacroAssembler::fldcw(AddressLiteral src) {
  6495   Assembler::fldcw(as_Address(src));
  6498 void MacroAssembler::fpop() {
  6499   ffree();
  6500   fincstp();
  6503 void MacroAssembler::fremr(Register tmp) {
  6504   save_rax(tmp);
  6505   { Label L;
  6506     bind(L);
  6507     fprem();
  6508     fwait(); fnstsw_ax();
  6509 #ifdef _LP64
  6510     testl(rax, 0x400);
  6511     jcc(Assembler::notEqual, L);
  6512 #else
  6513     sahf();
  6514     jcc(Assembler::parity, L);
  6515 #endif // _LP64
  6517   restore_rax(tmp);
  6518   // Result is in ST0.
  6519   // Note: fxch & fpop to get rid of ST1
  6520   // (otherwise FPU stack could overflow eventually)
  6521   fxch(1);
  6522   fpop();
  6526 void MacroAssembler::incrementl(AddressLiteral dst) {
  6527   if (reachable(dst)) {
  6528     incrementl(as_Address(dst));
  6529   } else {
  6530     lea(rscratch1, dst);
  6531     incrementl(Address(rscratch1, 0));
  6535 void MacroAssembler::incrementl(ArrayAddress dst) {
  6536   incrementl(as_Address(dst));
  6539 void MacroAssembler::incrementl(Register reg, int value) {
  6540   if (value == min_jint) {addl(reg, value) ; return; }
  6541   if (value <  0) { decrementl(reg, -value); return; }
  6542   if (value == 0) {                        ; return; }
  6543   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6544   /* else */      { addl(reg, value)       ; return; }
  6547 void MacroAssembler::incrementl(Address dst, int value) {
  6548   if (value == min_jint) {addl(dst, value) ; return; }
  6549   if (value <  0) { decrementl(dst, -value); return; }
  6550   if (value == 0) {                        ; return; }
  6551   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6552   /* else */      { addl(dst, value)       ; return; }
  6555 void MacroAssembler::jump(AddressLiteral dst) {
  6556   if (reachable(dst)) {
  6557     jmp_literal(dst.target(), dst.rspec());
  6558   } else {
  6559     lea(rscratch1, dst);
  6560     jmp(rscratch1);
  6564 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6565   if (reachable(dst)) {
  6566     InstructionMark im(this);
  6567     relocate(dst.reloc());
  6568     const int short_size = 2;
  6569     const int long_size = 6;
  6570     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6571     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6572       // 0111 tttn #8-bit disp
  6573       emit_byte(0x70 | cc);
  6574       emit_byte((offs - short_size) & 0xFF);
  6575     } else {
  6576       // 0000 1111 1000 tttn #32-bit disp
  6577       emit_byte(0x0F);
  6578       emit_byte(0x80 | cc);
  6579       emit_long(offs - long_size);
  6581   } else {
  6582 #ifdef ASSERT
  6583     warning("reversing conditional branch");
  6584 #endif /* ASSERT */
  6585     Label skip;
  6586     jccb(reverse[cc], skip);
  6587     lea(rscratch1, dst);
  6588     Assembler::jmp(rscratch1);
  6589     bind(skip);
  6593 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6594   if (reachable(src)) {
  6595     Assembler::ldmxcsr(as_Address(src));
  6596   } else {
  6597     lea(rscratch1, src);
  6598     Assembler::ldmxcsr(Address(rscratch1, 0));
  6602 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6603   int off;
  6604   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6605     off = offset();
  6606     movsbl(dst, src); // movsxb
  6607   } else {
  6608     off = load_unsigned_byte(dst, src);
  6609     shll(dst, 24);
  6610     sarl(dst, 24);
  6612   return off;
  6615 // Note: load_signed_short used to be called load_signed_word.
  6616 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6617 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6618 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6619 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6620   int off;
  6621   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6622     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6623     // version but this is what 64bit has always done. This seems to imply
  6624     // that users are only using 32bits worth.
  6625     off = offset();
  6626     movswl(dst, src); // movsxw
  6627   } else {
  6628     off = load_unsigned_short(dst, src);
  6629     shll(dst, 16);
  6630     sarl(dst, 16);
  6632   return off;
  6635 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6636   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6637   // and "3.9 Partial Register Penalties", p. 22).
  6638   int off;
  6639   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6640     off = offset();
  6641     movzbl(dst, src); // movzxb
  6642   } else {
  6643     xorl(dst, dst);
  6644     off = offset();
  6645     movb(dst, src);
  6647   return off;
  6650 // Note: load_unsigned_short used to be called load_unsigned_word.
  6651 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  6652   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6653   // and "3.9 Partial Register Penalties", p. 22).
  6654   int off;
  6655   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  6656     off = offset();
  6657     movzwl(dst, src); // movzxw
  6658   } else {
  6659     xorl(dst, dst);
  6660     off = offset();
  6661     movw(dst, src);
  6663   return off;
  6666 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  6667   switch (size_in_bytes) {
  6668 #ifndef _LP64
  6669   case  8:
  6670     assert(dst2 != noreg, "second dest register required");
  6671     movl(dst,  src);
  6672     movl(dst2, src.plus_disp(BytesPerInt));
  6673     break;
  6674 #else
  6675   case  8:  movq(dst, src); break;
  6676 #endif
  6677   case  4:  movl(dst, src); break;
  6678   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  6679   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  6680   default:  ShouldNotReachHere();
  6684 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  6685   switch (size_in_bytes) {
  6686 #ifndef _LP64
  6687   case  8:
  6688     assert(src2 != noreg, "second source register required");
  6689     movl(dst,                        src);
  6690     movl(dst.plus_disp(BytesPerInt), src2);
  6691     break;
  6692 #else
  6693   case  8:  movq(dst, src); break;
  6694 #endif
  6695   case  4:  movl(dst, src); break;
  6696   case  2:  movw(dst, src); break;
  6697   case  1:  movb(dst, src); break;
  6698   default:  ShouldNotReachHere();
  6702 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  6703   if (reachable(dst)) {
  6704     movl(as_Address(dst), src);
  6705   } else {
  6706     lea(rscratch1, dst);
  6707     movl(Address(rscratch1, 0), src);
  6711 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  6712   if (reachable(src)) {
  6713     movl(dst, as_Address(src));
  6714   } else {
  6715     lea(rscratch1, src);
  6716     movl(dst, Address(rscratch1, 0));
  6720 // C++ bool manipulation
  6722 void MacroAssembler::movbool(Register dst, Address src) {
  6723   if(sizeof(bool) == 1)
  6724     movb(dst, src);
  6725   else if(sizeof(bool) == 2)
  6726     movw(dst, src);
  6727   else if(sizeof(bool) == 4)
  6728     movl(dst, src);
  6729   else
  6730     // unsupported
  6731     ShouldNotReachHere();
  6734 void MacroAssembler::movbool(Address dst, bool boolconst) {
  6735   if(sizeof(bool) == 1)
  6736     movb(dst, (int) boolconst);
  6737   else if(sizeof(bool) == 2)
  6738     movw(dst, (int) boolconst);
  6739   else if(sizeof(bool) == 4)
  6740     movl(dst, (int) boolconst);
  6741   else
  6742     // unsupported
  6743     ShouldNotReachHere();
  6746 void MacroAssembler::movbool(Address dst, Register src) {
  6747   if(sizeof(bool) == 1)
  6748     movb(dst, src);
  6749   else if(sizeof(bool) == 2)
  6750     movw(dst, src);
  6751   else if(sizeof(bool) == 4)
  6752     movl(dst, src);
  6753   else
  6754     // unsupported
  6755     ShouldNotReachHere();
  6758 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  6759   movb(as_Address(dst), src);
  6762 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  6763   if (reachable(src)) {
  6764     if (UseXmmLoadAndClearUpper) {
  6765       movsd (dst, as_Address(src));
  6766     } else {
  6767       movlpd(dst, as_Address(src));
  6769   } else {
  6770     lea(rscratch1, src);
  6771     if (UseXmmLoadAndClearUpper) {
  6772       movsd (dst, Address(rscratch1, 0));
  6773     } else {
  6774       movlpd(dst, Address(rscratch1, 0));
  6779 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  6780   if (reachable(src)) {
  6781     movss(dst, as_Address(src));
  6782   } else {
  6783     lea(rscratch1, src);
  6784     movss(dst, Address(rscratch1, 0));
  6788 void MacroAssembler::movptr(Register dst, Register src) {
  6789   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6792 void MacroAssembler::movptr(Register dst, Address src) {
  6793   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6796 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6797 void MacroAssembler::movptr(Register dst, intptr_t src) {
  6798   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  6801 void MacroAssembler::movptr(Address dst, Register src) {
  6802   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6805 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  6806   if (reachable(src)) {
  6807     movss(dst, as_Address(src));
  6808   } else {
  6809     lea(rscratch1, src);
  6810     movss(dst, Address(rscratch1, 0));
  6814 void MacroAssembler::null_check(Register reg, int offset) {
  6815   if (needs_explicit_null_check(offset)) {
  6816     // provoke OS NULL exception if reg = NULL by
  6817     // accessing M[reg] w/o changing any (non-CC) registers
  6818     // NOTE: cmpl is plenty here to provoke a segv
  6819     cmpptr(rax, Address(reg, 0));
  6820     // Note: should probably use testl(rax, Address(reg, 0));
  6821     //       may be shorter code (however, this version of
  6822     //       testl needs to be implemented first)
  6823   } else {
  6824     // nothing to do, (later) access of M[reg + offset]
  6825     // will provoke OS NULL exception if reg = NULL
  6829 void MacroAssembler::os_breakpoint() {
  6830   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  6831   // (e.g., MSVC can't call ps() otherwise)
  6832   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  6835 void MacroAssembler::pop_CPU_state() {
  6836   pop_FPU_state();
  6837   pop_IU_state();
  6840 void MacroAssembler::pop_FPU_state() {
  6841   NOT_LP64(frstor(Address(rsp, 0));)
  6842   LP64_ONLY(fxrstor(Address(rsp, 0));)
  6843   addptr(rsp, FPUStateSizeInWords * wordSize);
  6846 void MacroAssembler::pop_IU_state() {
  6847   popa();
  6848   LP64_ONLY(addq(rsp, 8));
  6849   popf();
  6852 // Save Integer and Float state
  6853 // Warning: Stack must be 16 byte aligned (64bit)
  6854 void MacroAssembler::push_CPU_state() {
  6855   push_IU_state();
  6856   push_FPU_state();
  6859 void MacroAssembler::push_FPU_state() {
  6860   subptr(rsp, FPUStateSizeInWords * wordSize);
  6861 #ifndef _LP64
  6862   fnsave(Address(rsp, 0));
  6863   fwait();
  6864 #else
  6865   fxsave(Address(rsp, 0));
  6866 #endif // LP64
  6869 void MacroAssembler::push_IU_state() {
  6870   // Push flags first because pusha kills them
  6871   pushf();
  6872   // Make sure rsp stays 16-byte aligned
  6873   LP64_ONLY(subq(rsp, 8));
  6874   pusha();
  6877 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  6878   // determine java_thread register
  6879   if (!java_thread->is_valid()) {
  6880     java_thread = rdi;
  6881     get_thread(java_thread);
  6883   // we must set sp to zero to clear frame
  6884   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6885   if (clear_fp) {
  6886     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6889   if (clear_pc)
  6890     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6894 void MacroAssembler::restore_rax(Register tmp) {
  6895   if (tmp == noreg) pop(rax);
  6896   else if (tmp != rax) mov(rax, tmp);
  6899 void MacroAssembler::round_to(Register reg, int modulus) {
  6900   addptr(reg, modulus - 1);
  6901   andptr(reg, -modulus);
  6904 void MacroAssembler::save_rax(Register tmp) {
  6905   if (tmp == noreg) push(rax);
  6906   else if (tmp != rax) mov(tmp, rax);
  6909 // Write serialization page so VM thread can do a pseudo remote membar.
  6910 // We use the current thread pointer to calculate a thread specific
  6911 // offset to write to within the page. This minimizes bus traffic
  6912 // due to cache line collision.
  6913 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  6914   movl(tmp, thread);
  6915   shrl(tmp, os::get_serialize_page_shift_count());
  6916   andl(tmp, (os::vm_page_size() - sizeof(int)));
  6918   Address index(noreg, tmp, Address::times_1);
  6919   ExternalAddress page(os::get_memory_serialize_page());
  6921   // Size of store must match masking code above
  6922   movl(as_Address(ArrayAddress(page, index)), tmp);
  6925 // Calls to C land
  6926 //
  6927 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  6928 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  6929 // has to be reset to 0. This is required to allow proper stack traversal.
  6930 void MacroAssembler::set_last_Java_frame(Register java_thread,
  6931                                          Register last_java_sp,
  6932                                          Register last_java_fp,
  6933                                          address  last_java_pc) {
  6934   // determine java_thread register
  6935   if (!java_thread->is_valid()) {
  6936     java_thread = rdi;
  6937     get_thread(java_thread);
  6939   // determine last_java_sp register
  6940   if (!last_java_sp->is_valid()) {
  6941     last_java_sp = rsp;
  6944   // last_java_fp is optional
  6946   if (last_java_fp->is_valid()) {
  6947     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  6950   // last_java_pc is optional
  6952   if (last_java_pc != NULL) {
  6953     lea(Address(java_thread,
  6954                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  6955         InternalAddress(last_java_pc));
  6958   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6961 void MacroAssembler::shlptr(Register dst, int imm8) {
  6962   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  6965 void MacroAssembler::shrptr(Register dst, int imm8) {
  6966   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  6969 void MacroAssembler::sign_extend_byte(Register reg) {
  6970   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  6971     movsbl(reg, reg); // movsxb
  6972   } else {
  6973     shll(reg, 24);
  6974     sarl(reg, 24);
  6978 void MacroAssembler::sign_extend_short(Register reg) {
  6979   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6980     movswl(reg, reg); // movsxw
  6981   } else {
  6982     shll(reg, 16);
  6983     sarl(reg, 16);
  6987 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  6988   assert(reachable(src), "Address should be reachable");
  6989   testl(dst, as_Address(src));
  6992 //////////////////////////////////////////////////////////////////////////////////
  6993 #ifndef SERIALGC
  6995 void MacroAssembler::g1_write_barrier_pre(Register obj,
  6996                                           Register pre_val,
  6997                                           Register thread,
  6998                                           Register tmp,
  6999                                           bool tosca_live,
  7000                                           bool expand_call) {
  7002   // If expand_call is true then we expand the call_VM_leaf macro
  7003   // directly to skip generating the check by
  7004   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  7006 #ifdef _LP64
  7007   assert(thread == r15_thread, "must be");
  7008 #endif // _LP64
  7010   Label done;
  7011   Label runtime;
  7013   assert(pre_val != noreg, "check this code");
  7015   if (obj != noreg) {
  7016     assert_different_registers(obj, pre_val, tmp);
  7017     assert(pre_val != rax, "check this code");
  7020   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7021                                        PtrQueue::byte_offset_of_active()));
  7022   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7023                                        PtrQueue::byte_offset_of_index()));
  7024   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7025                                        PtrQueue::byte_offset_of_buf()));
  7028   // Is marking active?
  7029   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  7030     cmpl(in_progress, 0);
  7031   } else {
  7032     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  7033     cmpb(in_progress, 0);
  7035   jcc(Assembler::equal, done);
  7037   // Do we need to load the previous value?
  7038   if (obj != noreg) {
  7039     load_heap_oop(pre_val, Address(obj, 0));
  7042   // Is the previous value null?
  7043   cmpptr(pre_val, (int32_t) NULL_WORD);
  7044   jcc(Assembler::equal, done);
  7046   // Can we store original value in the thread's buffer?
  7047   // Is index == 0?
  7048   // (The index field is typed as size_t.)
  7050   movptr(tmp, index);                   // tmp := *index_adr
  7051   cmpptr(tmp, 0);                       // tmp == 0?
  7052   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  7054   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  7055   movptr(index, tmp);                   // *index_adr := tmp
  7056   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  7058   // Record the previous value
  7059   movptr(Address(tmp, 0), pre_val);
  7060   jmp(done);
  7062   bind(runtime);
  7063   // save the live input values
  7064   if(tosca_live) push(rax);
  7066   if (obj != noreg && obj != rax)
  7067     push(obj);
  7069   if (pre_val != rax)
  7070     push(pre_val);
  7072   // Calling the runtime using the regular call_VM_leaf mechanism generates
  7073   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  7074   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  7075   //
  7076   // If we care generating the pre-barrier without a frame (e.g. in the
  7077   // intrinsified Reference.get() routine) then ebp might be pointing to
  7078   // the caller frame and so this check will most likely fail at runtime.
  7079   //
  7080   // Expanding the call directly bypasses the generation of the check.
  7081   // So when we do not have have a full interpreter frame on the stack
  7082   // expand_call should be passed true.
  7084   NOT_LP64( push(thread); )
  7086   if (expand_call) {
  7087     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  7088     pass_arg1(this, thread);
  7089     pass_arg0(this, pre_val);
  7090     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  7091   } else {
  7092     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  7095   NOT_LP64( pop(thread); )
  7097   // save the live input values
  7098   if (pre_val != rax)
  7099     pop(pre_val);
  7101   if (obj != noreg && obj != rax)
  7102     pop(obj);
  7104   if(tosca_live) pop(rax);
  7106   bind(done);
  7109 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  7110                                            Register new_val,
  7111                                            Register thread,
  7112                                            Register tmp,
  7113                                            Register tmp2) {
  7114 #ifdef _LP64
  7115   assert(thread == r15_thread, "must be");
  7116 #endif // _LP64
  7118   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  7119                                        PtrQueue::byte_offset_of_index()));
  7120   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  7121                                        PtrQueue::byte_offset_of_buf()));
  7123   BarrierSet* bs = Universe::heap()->barrier_set();
  7124   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7125   Label done;
  7126   Label runtime;
  7128   // Does store cross heap regions?
  7130   movptr(tmp, store_addr);
  7131   xorptr(tmp, new_val);
  7132   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  7133   jcc(Assembler::equal, done);
  7135   // crosses regions, storing NULL?
  7137   cmpptr(new_val, (int32_t) NULL_WORD);
  7138   jcc(Assembler::equal, done);
  7140   // storing region crossing non-NULL, is card already dirty?
  7142   ExternalAddress cardtable((address) ct->byte_map_base);
  7143   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7144 #ifdef _LP64
  7145   const Register card_addr = tmp;
  7147   movq(card_addr, store_addr);
  7148   shrq(card_addr, CardTableModRefBS::card_shift);
  7150   lea(tmp2, cardtable);
  7152   // get the address of the card
  7153   addq(card_addr, tmp2);
  7154 #else
  7155   const Register card_index = tmp;
  7157   movl(card_index, store_addr);
  7158   shrl(card_index, CardTableModRefBS::card_shift);
  7160   Address index(noreg, card_index, Address::times_1);
  7161   const Register card_addr = tmp;
  7162   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  7163 #endif
  7164   cmpb(Address(card_addr, 0), 0);
  7165   jcc(Assembler::equal, done);
  7167   // storing a region crossing, non-NULL oop, card is clean.
  7168   // dirty card and log.
  7170   movb(Address(card_addr, 0), 0);
  7172   cmpl(queue_index, 0);
  7173   jcc(Assembler::equal, runtime);
  7174   subl(queue_index, wordSize);
  7175   movptr(tmp2, buffer);
  7176 #ifdef _LP64
  7177   movslq(rscratch1, queue_index);
  7178   addq(tmp2, rscratch1);
  7179   movq(Address(tmp2, 0), card_addr);
  7180 #else
  7181   addl(tmp2, queue_index);
  7182   movl(Address(tmp2, 0), card_index);
  7183 #endif
  7184   jmp(done);
  7186   bind(runtime);
  7187   // save the live input values
  7188   push(store_addr);
  7189   push(new_val);
  7190 #ifdef _LP64
  7191   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  7192 #else
  7193   push(thread);
  7194   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  7195   pop(thread);
  7196 #endif
  7197   pop(new_val);
  7198   pop(store_addr);
  7200   bind(done);
  7203 #endif // SERIALGC
  7204 //////////////////////////////////////////////////////////////////////////////////
  7207 void MacroAssembler::store_check(Register obj) {
  7208   // Does a store check for the oop in register obj. The content of
  7209   // register obj is destroyed afterwards.
  7210   store_check_part_1(obj);
  7211   store_check_part_2(obj);
  7214 void MacroAssembler::store_check(Register obj, Address dst) {
  7215   store_check(obj);
  7219 // split the store check operation so that other instructions can be scheduled inbetween
  7220 void MacroAssembler::store_check_part_1(Register obj) {
  7221   BarrierSet* bs = Universe::heap()->barrier_set();
  7222   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7223   shrptr(obj, CardTableModRefBS::card_shift);
  7226 void MacroAssembler::store_check_part_2(Register obj) {
  7227   BarrierSet* bs = Universe::heap()->barrier_set();
  7228   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7229   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7230   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7232   // The calculation for byte_map_base is as follows:
  7233   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  7234   // So this essentially converts an address to a displacement and
  7235   // it will never need to be relocated. On 64bit however the value may be too
  7236   // large for a 32bit displacement
  7238   intptr_t disp = (intptr_t) ct->byte_map_base;
  7239   if (is_simm32(disp)) {
  7240     Address cardtable(noreg, obj, Address::times_1, disp);
  7241     movb(cardtable, 0);
  7242   } else {
  7243     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  7244     // displacement and done in a single instruction given favorable mapping and
  7245     // a smarter version of as_Address. Worst case it is two instructions which
  7246     // is no worse off then loading disp into a register and doing as a simple
  7247     // Address() as above.
  7248     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  7249     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  7250     // in some cases we'll get a single instruction version.
  7252     ExternalAddress cardtable((address)disp);
  7253     Address index(noreg, obj, Address::times_1);
  7254     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  7258 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  7259   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  7262 void MacroAssembler::subptr(Register dst, Register src) {
  7263   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  7266 // C++ bool manipulation
  7267 void MacroAssembler::testbool(Register dst) {
  7268   if(sizeof(bool) == 1)
  7269     testb(dst, 0xff);
  7270   else if(sizeof(bool) == 2) {
  7271     // testw implementation needed for two byte bools
  7272     ShouldNotReachHere();
  7273   } else if(sizeof(bool) == 4)
  7274     testl(dst, dst);
  7275   else
  7276     // unsupported
  7277     ShouldNotReachHere();
  7280 void MacroAssembler::testptr(Register dst, Register src) {
  7281   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  7284 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  7285 void MacroAssembler::tlab_allocate(Register obj,
  7286                                    Register var_size_in_bytes,
  7287                                    int con_size_in_bytes,
  7288                                    Register t1,
  7289                                    Register t2,
  7290                                    Label& slow_case) {
  7291   assert_different_registers(obj, t1, t2);
  7292   assert_different_registers(obj, var_size_in_bytes, t1);
  7293   Register end = t2;
  7294   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7296   verify_tlab();
  7298   NOT_LP64(get_thread(thread));
  7300   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7301   if (var_size_in_bytes == noreg) {
  7302     lea(end, Address(obj, con_size_in_bytes));
  7303   } else {
  7304     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7306   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7307   jcc(Assembler::above, slow_case);
  7309   // update the tlab top pointer
  7310   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7312   // recover var_size_in_bytes if necessary
  7313   if (var_size_in_bytes == end) {
  7314     subptr(var_size_in_bytes, obj);
  7316   verify_tlab();
  7319 // Preserves rbx, and rdx.
  7320 Register MacroAssembler::tlab_refill(Label& retry,
  7321                                      Label& try_eden,
  7322                                      Label& slow_case) {
  7323   Register top = rax;
  7324   Register t1  = rcx;
  7325   Register t2  = rsi;
  7326   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7327   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7328   Label do_refill, discard_tlab;
  7330   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7331     // No allocation in the shared eden.
  7332     jmp(slow_case);
  7335   NOT_LP64(get_thread(thread_reg));
  7337   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7338   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7340   // calculate amount of free space
  7341   subptr(t1, top);
  7342   shrptr(t1, LogHeapWordSize);
  7344   // Retain tlab and allocate object in shared space if
  7345   // the amount free in the tlab is too large to discard.
  7346   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7347   jcc(Assembler::lessEqual, discard_tlab);
  7349   // Retain
  7350   // %%% yuck as movptr...
  7351   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7352   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7353   if (TLABStats) {
  7354     // increment number of slow_allocations
  7355     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7357   jmp(try_eden);
  7359   bind(discard_tlab);
  7360   if (TLABStats) {
  7361     // increment number of refills
  7362     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7363     // accumulate wastage -- t1 is amount free in tlab
  7364     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7367   // if tlab is currently allocated (top or end != null) then
  7368   // fill [top, end + alignment_reserve) with array object
  7369   testptr(top, top);
  7370   jcc(Assembler::zero, do_refill);
  7372   // set up the mark word
  7373   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7374   // set the length to the remaining space
  7375   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7376   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7377   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7378   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7379   // set klass to intArrayKlass
  7380   // dubious reloc why not an oop reloc?
  7381   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  7382   // store klass last.  concurrent gcs assumes klass length is valid if
  7383   // klass field is not null.
  7384   store_klass(top, t1);
  7386   movptr(t1, top);
  7387   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7388   incr_allocated_bytes(thread_reg, t1, 0);
  7390   // refill the tlab with an eden allocation
  7391   bind(do_refill);
  7392   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7393   shlptr(t1, LogHeapWordSize);
  7394   // allocate new tlab, address returned in top
  7395   eden_allocate(top, t1, 0, t2, slow_case);
  7397   // Check that t1 was preserved in eden_allocate.
  7398 #ifdef ASSERT
  7399   if (UseTLAB) {
  7400     Label ok;
  7401     Register tsize = rsi;
  7402     assert_different_registers(tsize, thread_reg, t1);
  7403     push(tsize);
  7404     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7405     shlptr(tsize, LogHeapWordSize);
  7406     cmpptr(t1, tsize);
  7407     jcc(Assembler::equal, ok);
  7408     stop("assert(t1 != tlab size)");
  7409     should_not_reach_here();
  7411     bind(ok);
  7412     pop(tsize);
  7414 #endif
  7415   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  7416   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  7417   addptr(top, t1);
  7418   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  7419   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  7420   verify_tlab();
  7421   jmp(retry);
  7423   return thread_reg; // for use by caller
  7426 void MacroAssembler::incr_allocated_bytes(Register thread,
  7427                                           Register var_size_in_bytes,
  7428                                           int con_size_in_bytes,
  7429                                           Register t1) {
  7430 #ifdef _LP64
  7431   if (var_size_in_bytes->is_valid()) {
  7432     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  7433   } else {
  7434     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  7436 #else
  7437   if (!thread->is_valid()) {
  7438     assert(t1->is_valid(), "need temp reg");
  7439     thread = t1;
  7440     get_thread(thread);
  7443   if (var_size_in_bytes->is_valid()) {
  7444     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  7445   } else {
  7446     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  7448   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  7449 #endif
  7452 static const double     pi_4 =  0.7853981633974483;
  7454 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  7455   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  7456   // was attempted in this code; unfortunately it appears that the
  7457   // switch to 80-bit precision and back causes this to be
  7458   // unprofitable compared with simply performing a runtime call if
  7459   // the argument is out of the (-pi/4, pi/4) range.
  7461   Register tmp = noreg;
  7462   if (!VM_Version::supports_cmov()) {
  7463     // fcmp needs a temporary so preserve rbx,
  7464     tmp = rbx;
  7465     push(tmp);
  7468   Label slow_case, done;
  7470   ExternalAddress pi4_adr = (address)&pi_4;
  7471   if (reachable(pi4_adr)) {
  7472     // x ?<= pi/4
  7473     fld_d(pi4_adr);
  7474     fld_s(1);                // Stack:  X  PI/4  X
  7475     fabs();                  // Stack: |X| PI/4  X
  7476     fcmp(tmp);
  7477     jcc(Assembler::above, slow_case);
  7479     // fastest case: -pi/4 <= x <= pi/4
  7480     switch(trig) {
  7481     case 's':
  7482       fsin();
  7483       break;
  7484     case 'c':
  7485       fcos();
  7486       break;
  7487     case 't':
  7488       ftan();
  7489       break;
  7490     default:
  7491       assert(false, "bad intrinsic");
  7492       break;
  7494     jmp(done);
  7497   // slow case: runtime call
  7498   bind(slow_case);
  7499   // Preserve registers across runtime call
  7500   pusha();
  7501   int incoming_argument_and_return_value_offset = -1;
  7502   if (num_fpu_regs_in_use > 1) {
  7503     // Must preserve all other FPU regs (could alternatively convert
  7504     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  7505     // FPU state, but can not trust C compiler)
  7506     NEEDS_CLEANUP;
  7507     // NOTE that in this case we also push the incoming argument to
  7508     // the stack and restore it later; we also use this stack slot to
  7509     // hold the return value from dsin or dcos.
  7510     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7511       subptr(rsp, sizeof(jdouble));
  7512       fstp_d(Address(rsp, 0));
  7514     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  7515     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  7517   subptr(rsp, sizeof(jdouble));
  7518   fstp_d(Address(rsp, 0));
  7519 #ifdef _LP64
  7520   movdbl(xmm0, Address(rsp, 0));
  7521 #endif // _LP64
  7523   // NOTE: we must not use call_VM_leaf here because that requires a
  7524   // complete interpreter frame in debug mode -- same bug as 4387334
  7525   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  7526   // do proper 64bit abi
  7528   NEEDS_CLEANUP;
  7529   // Need to add stack banging before this runtime call if it needs to
  7530   // be taken; however, there is no generic stack banging routine at
  7531   // the MacroAssembler level
  7532   switch(trig) {
  7533   case 's':
  7535       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  7537     break;
  7538   case 'c':
  7540       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  7542     break;
  7543   case 't':
  7545       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  7547     break;
  7548   default:
  7549     assert(false, "bad intrinsic");
  7550     break;
  7552 #ifdef _LP64
  7553     movsd(Address(rsp, 0), xmm0);
  7554     fld_d(Address(rsp, 0));
  7555 #endif // _LP64
  7556   addptr(rsp, sizeof(jdouble));
  7557   if (num_fpu_regs_in_use > 1) {
  7558     // Must save return value to stack and then restore entire FPU stack
  7559     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  7560     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7561       fld_d(Address(rsp, 0));
  7562       addptr(rsp, sizeof(jdouble));
  7565   popa();
  7567   // Come here with result in F-TOS
  7568   bind(done);
  7570   if (tmp != noreg) {
  7571     pop(tmp);
  7576 // Look up the method for a megamorphic invokeinterface call.
  7577 // The target method is determined by <intf_klass, itable_index>.
  7578 // The receiver klass is in recv_klass.
  7579 // On success, the result will be in method_result, and execution falls through.
  7580 // On failure, execution transfers to the given label.
  7581 void MacroAssembler::lookup_interface_method(Register recv_klass,
  7582                                              Register intf_klass,
  7583                                              RegisterOrConstant itable_index,
  7584                                              Register method_result,
  7585                                              Register scan_temp,
  7586                                              Label& L_no_such_interface) {
  7587   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  7588   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  7589          "caller must use same register for non-constant itable index as for method");
  7591   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  7592   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  7593   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  7594   int scan_step   = itableOffsetEntry::size() * wordSize;
  7595   int vte_size    = vtableEntry::size() * wordSize;
  7596   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  7597   assert(vte_size == wordSize, "else adjust times_vte_scale");
  7599   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  7601   // %%% Could store the aligned, prescaled offset in the klassoop.
  7602   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  7603   if (HeapWordsPerLong > 1) {
  7604     // Round up to align_object_offset boundary
  7605     // see code for instanceKlass::start_of_itable!
  7606     round_to(scan_temp, BytesPerLong);
  7609   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  7610   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  7611   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  7613   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  7614   //   if (scan->interface() == intf) {
  7615   //     result = (klass + scan->offset() + itable_index);
  7616   //   }
  7617   // }
  7618   Label search, found_method;
  7620   for (int peel = 1; peel >= 0; peel--) {
  7621     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  7622     cmpptr(intf_klass, method_result);
  7624     if (peel) {
  7625       jccb(Assembler::equal, found_method);
  7626     } else {
  7627       jccb(Assembler::notEqual, search);
  7628       // (invert the test to fall through to found_method...)
  7631     if (!peel)  break;
  7633     bind(search);
  7635     // Check that the previous entry is non-null.  A null entry means that
  7636     // the receiver class doesn't implement the interface, and wasn't the
  7637     // same as when the caller was compiled.
  7638     testptr(method_result, method_result);
  7639     jcc(Assembler::zero, L_no_such_interface);
  7640     addptr(scan_temp, scan_step);
  7643   bind(found_method);
  7645   // Got a hit.
  7646   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  7647   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  7651 void MacroAssembler::check_klass_subtype(Register sub_klass,
  7652                            Register super_klass,
  7653                            Register temp_reg,
  7654                            Label& L_success) {
  7655   Label L_failure;
  7656   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  7657   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  7658   bind(L_failure);
  7662 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  7663                                                    Register super_klass,
  7664                                                    Register temp_reg,
  7665                                                    Label* L_success,
  7666                                                    Label* L_failure,
  7667                                                    Label* L_slow_path,
  7668                                         RegisterOrConstant super_check_offset) {
  7669   assert_different_registers(sub_klass, super_klass, temp_reg);
  7670   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  7671   if (super_check_offset.is_register()) {
  7672     assert_different_registers(sub_klass, super_klass,
  7673                                super_check_offset.as_register());
  7674   } else if (must_load_sco) {
  7675     assert(temp_reg != noreg, "supply either a temp or a register offset");
  7678   Label L_fallthrough;
  7679   int label_nulls = 0;
  7680   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7681   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7682   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  7683   assert(label_nulls <= 1, "at most one NULL in the batch");
  7685   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7686                    Klass::secondary_super_cache_offset_in_bytes());
  7687   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  7688                     Klass::super_check_offset_offset_in_bytes());
  7689   Address super_check_offset_addr(super_klass, sco_offset);
  7691   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  7692   // range of a jccb.  If this routine grows larger, reconsider at
  7693   // least some of these.
  7694 #define local_jcc(assembler_cond, label)                                \
  7695   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  7696   else                             jcc( assembler_cond, label) /*omit semi*/
  7698   // Hacked jmp, which may only be used just before L_fallthrough.
  7699 #define final_jmp(label)                                                \
  7700   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  7701   else                            jmp(label)                /*omit semi*/
  7703   // If the pointers are equal, we are done (e.g., String[] elements).
  7704   // This self-check enables sharing of secondary supertype arrays among
  7705   // non-primary types such as array-of-interface.  Otherwise, each such
  7706   // type would need its own customized SSA.
  7707   // We move this check to the front of the fast path because many
  7708   // type checks are in fact trivially successful in this manner,
  7709   // so we get a nicely predicted branch right at the start of the check.
  7710   cmpptr(sub_klass, super_klass);
  7711   local_jcc(Assembler::equal, *L_success);
  7713   // Check the supertype display:
  7714   if (must_load_sco) {
  7715     // Positive movl does right thing on LP64.
  7716     movl(temp_reg, super_check_offset_addr);
  7717     super_check_offset = RegisterOrConstant(temp_reg);
  7719   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  7720   cmpptr(super_klass, super_check_addr); // load displayed supertype
  7722   // This check has worked decisively for primary supers.
  7723   // Secondary supers are sought in the super_cache ('super_cache_addr').
  7724   // (Secondary supers are interfaces and very deeply nested subtypes.)
  7725   // This works in the same check above because of a tricky aliasing
  7726   // between the super_cache and the primary super display elements.
  7727   // (The 'super_check_addr' can address either, as the case requires.)
  7728   // Note that the cache is updated below if it does not help us find
  7729   // what we need immediately.
  7730   // So if it was a primary super, we can just fail immediately.
  7731   // Otherwise, it's the slow path for us (no success at this point).
  7733   if (super_check_offset.is_register()) {
  7734     local_jcc(Assembler::equal, *L_success);
  7735     cmpl(super_check_offset.as_register(), sc_offset);
  7736     if (L_failure == &L_fallthrough) {
  7737       local_jcc(Assembler::equal, *L_slow_path);
  7738     } else {
  7739       local_jcc(Assembler::notEqual, *L_failure);
  7740       final_jmp(*L_slow_path);
  7742   } else if (super_check_offset.as_constant() == sc_offset) {
  7743     // Need a slow path; fast failure is impossible.
  7744     if (L_slow_path == &L_fallthrough) {
  7745       local_jcc(Assembler::equal, *L_success);
  7746     } else {
  7747       local_jcc(Assembler::notEqual, *L_slow_path);
  7748       final_jmp(*L_success);
  7750   } else {
  7751     // No slow path; it's a fast decision.
  7752     if (L_failure == &L_fallthrough) {
  7753       local_jcc(Assembler::equal, *L_success);
  7754     } else {
  7755       local_jcc(Assembler::notEqual, *L_failure);
  7756       final_jmp(*L_success);
  7760   bind(L_fallthrough);
  7762 #undef local_jcc
  7763 #undef final_jmp
  7767 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  7768                                                    Register super_klass,
  7769                                                    Register temp_reg,
  7770                                                    Register temp2_reg,
  7771                                                    Label* L_success,
  7772                                                    Label* L_failure,
  7773                                                    bool set_cond_codes) {
  7774   assert_different_registers(sub_klass, super_klass, temp_reg);
  7775   if (temp2_reg != noreg)
  7776     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  7777 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  7779   Label L_fallthrough;
  7780   int label_nulls = 0;
  7781   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7782   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7783   assert(label_nulls <= 1, "at most one NULL in the batch");
  7785   // a couple of useful fields in sub_klass:
  7786   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  7787                    Klass::secondary_supers_offset_in_bytes());
  7788   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7789                    Klass::secondary_super_cache_offset_in_bytes());
  7790   Address secondary_supers_addr(sub_klass, ss_offset);
  7791   Address super_cache_addr(     sub_klass, sc_offset);
  7793   // Do a linear scan of the secondary super-klass chain.
  7794   // This code is rarely used, so simplicity is a virtue here.
  7795   // The repne_scan instruction uses fixed registers, which we must spill.
  7796   // Don't worry too much about pre-existing connections with the input regs.
  7798   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  7799   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  7801   // Get super_klass value into rax (even if it was in rdi or rcx).
  7802   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  7803   if (super_klass != rax || UseCompressedOops) {
  7804     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  7805     mov(rax, super_klass);
  7807   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  7808   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  7810 #ifndef PRODUCT
  7811   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  7812   ExternalAddress pst_counter_addr((address) pst_counter);
  7813   NOT_LP64(  incrementl(pst_counter_addr) );
  7814   LP64_ONLY( lea(rcx, pst_counter_addr) );
  7815   LP64_ONLY( incrementl(Address(rcx, 0)) );
  7816 #endif //PRODUCT
  7818   // We will consult the secondary-super array.
  7819   movptr(rdi, secondary_supers_addr);
  7820   // Load the array length.  (Positive movl does right thing on LP64.)
  7821   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  7822   // Skip to start of data.
  7823   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  7825   // Scan RCX words at [RDI] for an occurrence of RAX.
  7826   // Set NZ/Z based on last compare.
  7827   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  7828   // not change flags (only scas instruction which is repeated sets flags).
  7829   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  7830 #ifdef _LP64
  7831   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  7832   // and we store values in objArrays always encoded, thus we need to encode
  7833   // the value of rax before repne.  Note that rax is dead after the repne.
  7834   if (UseCompressedOops) {
  7835     encode_heap_oop_not_null(rax); // Changes flags.
  7836     // The superclass is never null; it would be a basic system error if a null
  7837     // pointer were to sneak in here.  Note that we have already loaded the
  7838     // Klass::super_check_offset from the super_klass in the fast path,
  7839     // so if there is a null in that register, we are already in the afterlife.
  7840     testl(rax,rax); // Set Z = 0
  7841     repne_scanl();
  7842   } else
  7843 #endif // _LP64
  7845     testptr(rax,rax); // Set Z = 0
  7846     repne_scan();
  7848   // Unspill the temp. registers:
  7849   if (pushed_rdi)  pop(rdi);
  7850   if (pushed_rcx)  pop(rcx);
  7851   if (pushed_rax)  pop(rax);
  7853   if (set_cond_codes) {
  7854     // Special hack for the AD files:  rdi is guaranteed non-zero.
  7855     assert(!pushed_rdi, "rdi must be left non-NULL");
  7856     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  7859   if (L_failure == &L_fallthrough)
  7860         jccb(Assembler::notEqual, *L_failure);
  7861   else  jcc(Assembler::notEqual, *L_failure);
  7863   // Success.  Cache the super we found and proceed in triumph.
  7864   movptr(super_cache_addr, super_klass);
  7866   if (L_success != &L_fallthrough) {
  7867     jmp(*L_success);
  7870 #undef IS_A_TEMP
  7872   bind(L_fallthrough);
  7876 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7877   ucomisd(dst, as_Address(src));
  7880 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7881   ucomiss(dst, as_Address(src));
  7884 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7885   if (reachable(src)) {
  7886     xorpd(dst, as_Address(src));
  7887   } else {
  7888     lea(rscratch1, src);
  7889     xorpd(dst, Address(rscratch1, 0));
  7893 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7894   if (reachable(src)) {
  7895     xorps(dst, as_Address(src));
  7896   } else {
  7897     lea(rscratch1, src);
  7898     xorps(dst, Address(rscratch1, 0));
  7902 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  7903   if (VM_Version::supports_cmov()) {
  7904     cmovl(cc, dst, src);
  7905   } else {
  7906     Label L;
  7907     jccb(negate_condition(cc), L);
  7908     movl(dst, src);
  7909     bind(L);
  7913 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  7914   if (VM_Version::supports_cmov()) {
  7915     cmovl(cc, dst, src);
  7916   } else {
  7917     Label L;
  7918     jccb(negate_condition(cc), L);
  7919     movl(dst, src);
  7920     bind(L);
  7924 void MacroAssembler::verify_oop(Register reg, const char* s) {
  7925   if (!VerifyOops) return;
  7927   // Pass register number to verify_oop_subroutine
  7928   char* b = new char[strlen(s) + 50];
  7929   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  7930 #ifdef _LP64
  7931   push(rscratch1);                    // save r10, trashed by movptr()
  7932 #endif
  7933   push(rax);                          // save rax,
  7934   push(reg);                          // pass register argument
  7935   ExternalAddress buffer((address) b);
  7936   // avoid using pushptr, as it modifies scratch registers
  7937   // and our contract is not to modify anything
  7938   movptr(rax, buffer.addr());
  7939   push(rax);
  7940   // call indirectly to solve generation ordering problem
  7941   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7942   call(rax);
  7943   // Caller pops the arguments (oop, message) and restores rax, r10
  7947 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  7948                                                       Register tmp,
  7949                                                       int offset) {
  7950   intptr_t value = *delayed_value_addr;
  7951   if (value != 0)
  7952     return RegisterOrConstant(value + offset);
  7954   // load indirectly to solve generation ordering problem
  7955   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  7957 #ifdef ASSERT
  7958   { Label L;
  7959     testptr(tmp, tmp);
  7960     if (WizardMode) {
  7961       jcc(Assembler::notZero, L);
  7962       char* buf = new char[40];
  7963       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  7964       stop(buf);
  7965     } else {
  7966       jccb(Assembler::notZero, L);
  7967       hlt();
  7969     bind(L);
  7971 #endif
  7973   if (offset != 0)
  7974     addptr(tmp, offset);
  7976   return RegisterOrConstant(tmp);
  7980 // registers on entry:
  7981 //  - rax ('check' register): required MethodType
  7982 //  - rcx: method handle
  7983 //  - rdx, rsi, or ?: killable temp
  7984 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  7985                                               Register temp_reg,
  7986                                               Label& wrong_method_type) {
  7987   Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
  7988   // compare method type against that of the receiver
  7989   if (UseCompressedOops) {
  7990     load_heap_oop(temp_reg, type_addr);
  7991     cmpptr(mtype_reg, temp_reg);
  7992   } else {
  7993     cmpptr(mtype_reg, type_addr);
  7995   jcc(Assembler::notEqual, wrong_method_type);
  7999 // A method handle has a "vmslots" field which gives the size of its
  8000 // argument list in JVM stack slots.  This field is either located directly
  8001 // in every method handle, or else is indirectly accessed through the
  8002 // method handle's MethodType.  This macro hides the distinction.
  8003 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  8004                                                 Register temp_reg) {
  8005   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  8006   // load mh.type.form.vmslots
  8007   if (java_lang_invoke_MethodHandle::vmslots_offset_in_bytes() != 0) {
  8008     // hoist vmslots into every mh to avoid dependent load chain
  8009     movl(vmslots_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
  8010   } else {
  8011     Register temp2_reg = vmslots_reg;
  8012     load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
  8013     load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
  8014     movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  8019 // registers on entry:
  8020 //  - rcx: method handle
  8021 //  - rdx: killable temp (interpreted only)
  8022 //  - rax: killable temp (compiled only)
  8023 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  8024   assert(mh_reg == rcx, "caller must put MH object in rcx");
  8025   assert_different_registers(mh_reg, temp_reg);
  8027   // pick out the interpreted side of the handler
  8028   // NOTE: vmentry is not an oop!
  8029   movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  8031   // off we go...
  8032   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  8034   // for the various stubs which take control at this point,
  8035   // see MethodHandles::generate_method_handle_stub
  8039 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  8040                                          int extra_slot_offset) {
  8041   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  8042   int stackElementSize = Interpreter::stackElementSize;
  8043   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  8044 #ifdef ASSERT
  8045   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  8046   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  8047 #endif
  8048   Register             scale_reg    = noreg;
  8049   Address::ScaleFactor scale_factor = Address::no_scale;
  8050   if (arg_slot.is_constant()) {
  8051     offset += arg_slot.as_constant() * stackElementSize;
  8052   } else {
  8053     scale_reg    = arg_slot.as_register();
  8054     scale_factor = Address::times(stackElementSize);
  8056   offset += wordSize;           // return PC is on stack
  8057   return Address(rsp, scale_reg, scale_factor, offset);
  8061 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  8062   if (!VerifyOops) return;
  8064   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  8065   // Pass register number to verify_oop_subroutine
  8066   char* b = new char[strlen(s) + 50];
  8067   sprintf(b, "verify_oop_addr: %s", s);
  8069 #ifdef _LP64
  8070   push(rscratch1);                    // save r10, trashed by movptr()
  8071 #endif
  8072   push(rax);                          // save rax,
  8073   // addr may contain rsp so we will have to adjust it based on the push
  8074   // we just did (and on 64 bit we do two pushes)
  8075   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  8076   // stores rax into addr which is backwards of what was intended.
  8077   if (addr.uses(rsp)) {
  8078     lea(rax, addr);
  8079     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  8080   } else {
  8081     pushptr(addr);
  8084   ExternalAddress buffer((address) b);
  8085   // pass msg argument
  8086   // avoid using pushptr, as it modifies scratch registers
  8087   // and our contract is not to modify anything
  8088   movptr(rax, buffer.addr());
  8089   push(rax);
  8091   // call indirectly to solve generation ordering problem
  8092   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  8093   call(rax);
  8094   // Caller pops the arguments (addr, message) and restores rax, r10.
  8097 void MacroAssembler::verify_tlab() {
  8098 #ifdef ASSERT
  8099   if (UseTLAB && VerifyOops) {
  8100     Label next, ok;
  8101     Register t1 = rsi;
  8102     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  8104     push(t1);
  8105     NOT_LP64(push(thread_reg));
  8106     NOT_LP64(get_thread(thread_reg));
  8108     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8109     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8110     jcc(Assembler::aboveEqual, next);
  8111     stop("assert(top >= start)");
  8112     should_not_reach_here();
  8114     bind(next);
  8115     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8116     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8117     jcc(Assembler::aboveEqual, ok);
  8118     stop("assert(top <= end)");
  8119     should_not_reach_here();
  8121     bind(ok);
  8122     NOT_LP64(pop(thread_reg));
  8123     pop(t1);
  8125 #endif
  8128 class ControlWord {
  8129  public:
  8130   int32_t _value;
  8132   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  8133   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  8134   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  8135   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  8136   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  8137   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  8138   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  8139   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  8141   void print() const {
  8142     // rounding control
  8143     const char* rc;
  8144     switch (rounding_control()) {
  8145       case 0: rc = "round near"; break;
  8146       case 1: rc = "round down"; break;
  8147       case 2: rc = "round up  "; break;
  8148       case 3: rc = "chop      "; break;
  8149     };
  8150     // precision control
  8151     const char* pc;
  8152     switch (precision_control()) {
  8153       case 0: pc = "24 bits "; break;
  8154       case 1: pc = "reserved"; break;
  8155       case 2: pc = "53 bits "; break;
  8156       case 3: pc = "64 bits "; break;
  8157     };
  8158     // flags
  8159     char f[9];
  8160     f[0] = ' ';
  8161     f[1] = ' ';
  8162     f[2] = (precision   ()) ? 'P' : 'p';
  8163     f[3] = (underflow   ()) ? 'U' : 'u';
  8164     f[4] = (overflow    ()) ? 'O' : 'o';
  8165     f[5] = (zero_divide ()) ? 'Z' : 'z';
  8166     f[6] = (denormalized()) ? 'D' : 'd';
  8167     f[7] = (invalid     ()) ? 'I' : 'i';
  8168     f[8] = '\x0';
  8169     // output
  8170     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  8173 };
  8175 class StatusWord {
  8176  public:
  8177   int32_t _value;
  8179   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  8180   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  8181   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  8182   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  8183   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  8184   int  top() const                     { return  (_value >> 11) & 7      ; }
  8185   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  8186   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  8187   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  8188   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  8189   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  8190   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  8191   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  8192   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  8194   void print() const {
  8195     // condition codes
  8196     char c[5];
  8197     c[0] = (C3()) ? '3' : '-';
  8198     c[1] = (C2()) ? '2' : '-';
  8199     c[2] = (C1()) ? '1' : '-';
  8200     c[3] = (C0()) ? '0' : '-';
  8201     c[4] = '\x0';
  8202     // flags
  8203     char f[9];
  8204     f[0] = (error_status()) ? 'E' : '-';
  8205     f[1] = (stack_fault ()) ? 'S' : '-';
  8206     f[2] = (precision   ()) ? 'P' : '-';
  8207     f[3] = (underflow   ()) ? 'U' : '-';
  8208     f[4] = (overflow    ()) ? 'O' : '-';
  8209     f[5] = (zero_divide ()) ? 'Z' : '-';
  8210     f[6] = (denormalized()) ? 'D' : '-';
  8211     f[7] = (invalid     ()) ? 'I' : '-';
  8212     f[8] = '\x0';
  8213     // output
  8214     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  8217 };
  8219 class TagWord {
  8220  public:
  8221   int32_t _value;
  8223   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  8225   void print() const {
  8226     printf("%04x", _value & 0xFFFF);
  8229 };
  8231 class FPU_Register {
  8232  public:
  8233   int32_t _m0;
  8234   int32_t _m1;
  8235   int16_t _ex;
  8237   bool is_indefinite() const           {
  8238     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  8241   void print() const {
  8242     char  sign = (_ex < 0) ? '-' : '+';
  8243     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  8244     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  8245   };
  8247 };
  8249 class FPU_State {
  8250  public:
  8251   enum {
  8252     register_size       = 10,
  8253     number_of_registers =  8,
  8254     register_mask       =  7
  8255   };
  8257   ControlWord  _control_word;
  8258   StatusWord   _status_word;
  8259   TagWord      _tag_word;
  8260   int32_t      _error_offset;
  8261   int32_t      _error_selector;
  8262   int32_t      _data_offset;
  8263   int32_t      _data_selector;
  8264   int8_t       _register[register_size * number_of_registers];
  8266   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  8267   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  8269   const char* tag_as_string(int tag) const {
  8270     switch (tag) {
  8271       case 0: return "valid";
  8272       case 1: return "zero";
  8273       case 2: return "special";
  8274       case 3: return "empty";
  8276     ShouldNotReachHere();
  8277     return NULL;
  8280   void print() const {
  8281     // print computation registers
  8282     { int t = _status_word.top();
  8283       for (int i = 0; i < number_of_registers; i++) {
  8284         int j = (i - t) & register_mask;
  8285         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  8286         st(j)->print();
  8287         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  8290     printf("\n");
  8291     // print control registers
  8292     printf("ctrl = "); _control_word.print(); printf("\n");
  8293     printf("stat = "); _status_word .print(); printf("\n");
  8294     printf("tags = "); _tag_word    .print(); printf("\n");
  8297 };
  8299 class Flag_Register {
  8300  public:
  8301   int32_t _value;
  8303   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  8304   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  8305   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  8306   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  8307   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  8308   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  8309   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  8311   void print() const {
  8312     // flags
  8313     char f[8];
  8314     f[0] = (overflow       ()) ? 'O' : '-';
  8315     f[1] = (direction      ()) ? 'D' : '-';
  8316     f[2] = (sign           ()) ? 'S' : '-';
  8317     f[3] = (zero           ()) ? 'Z' : '-';
  8318     f[4] = (auxiliary_carry()) ? 'A' : '-';
  8319     f[5] = (parity         ()) ? 'P' : '-';
  8320     f[6] = (carry          ()) ? 'C' : '-';
  8321     f[7] = '\x0';
  8322     // output
  8323     printf("%08x  flags = %s", _value, f);
  8326 };
  8328 class IU_Register {
  8329  public:
  8330   int32_t _value;
  8332   void print() const {
  8333     printf("%08x  %11d", _value, _value);
  8336 };
  8338 class IU_State {
  8339  public:
  8340   Flag_Register _eflags;
  8341   IU_Register   _rdi;
  8342   IU_Register   _rsi;
  8343   IU_Register   _rbp;
  8344   IU_Register   _rsp;
  8345   IU_Register   _rbx;
  8346   IU_Register   _rdx;
  8347   IU_Register   _rcx;
  8348   IU_Register   _rax;
  8350   void print() const {
  8351     // computation registers
  8352     printf("rax,  = "); _rax.print(); printf("\n");
  8353     printf("rbx,  = "); _rbx.print(); printf("\n");
  8354     printf("rcx  = "); _rcx.print(); printf("\n");
  8355     printf("rdx  = "); _rdx.print(); printf("\n");
  8356     printf("rdi  = "); _rdi.print(); printf("\n");
  8357     printf("rsi  = "); _rsi.print(); printf("\n");
  8358     printf("rbp,  = "); _rbp.print(); printf("\n");
  8359     printf("rsp  = "); _rsp.print(); printf("\n");
  8360     printf("\n");
  8361     // control registers
  8362     printf("flgs = "); _eflags.print(); printf("\n");
  8364 };
  8367 class CPU_State {
  8368  public:
  8369   FPU_State _fpu_state;
  8370   IU_State  _iu_state;
  8372   void print() const {
  8373     printf("--------------------------------------------------\n");
  8374     _iu_state .print();
  8375     printf("\n");
  8376     _fpu_state.print();
  8377     printf("--------------------------------------------------\n");
  8380 };
  8383 static void _print_CPU_state(CPU_State* state) {
  8384   state->print();
  8385 };
  8388 void MacroAssembler::print_CPU_state() {
  8389   push_CPU_state();
  8390   push(rsp);                // pass CPU state
  8391   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  8392   addptr(rsp, wordSize);       // discard argument
  8393   pop_CPU_state();
  8397 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  8398   static int counter = 0;
  8399   FPU_State* fs = &state->_fpu_state;
  8400   counter++;
  8401   // For leaf calls, only verify that the top few elements remain empty.
  8402   // We only need 1 empty at the top for C2 code.
  8403   if( stack_depth < 0 ) {
  8404     if( fs->tag_for_st(7) != 3 ) {
  8405       printf("FPR7 not empty\n");
  8406       state->print();
  8407       assert(false, "error");
  8408       return false;
  8410     return true;                // All other stack states do not matter
  8413   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  8414          "bad FPU control word");
  8416   // compute stack depth
  8417   int i = 0;
  8418   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  8419   int d = i;
  8420   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  8421   // verify findings
  8422   if (i != FPU_State::number_of_registers) {
  8423     // stack not contiguous
  8424     printf("%s: stack not contiguous at ST%d\n", s, i);
  8425     state->print();
  8426     assert(false, "error");
  8427     return false;
  8429   // check if computed stack depth corresponds to expected stack depth
  8430   if (stack_depth < 0) {
  8431     // expected stack depth is -stack_depth or less
  8432     if (d > -stack_depth) {
  8433       // too many elements on the stack
  8434       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  8435       state->print();
  8436       assert(false, "error");
  8437       return false;
  8439   } else {
  8440     // expected stack depth is stack_depth
  8441     if (d != stack_depth) {
  8442       // wrong stack depth
  8443       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  8444       state->print();
  8445       assert(false, "error");
  8446       return false;
  8449   // everything is cool
  8450   return true;
  8454 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  8455   if (!VerifyFPU) return;
  8456   push_CPU_state();
  8457   push(rsp);                // pass CPU state
  8458   ExternalAddress msg((address) s);
  8459   // pass message string s
  8460   pushptr(msg.addr());
  8461   push(stack_depth);        // pass stack depth
  8462   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  8463   addptr(rsp, 3 * wordSize);   // discard arguments
  8464   // check for error
  8465   { Label L;
  8466     testl(rax, rax);
  8467     jcc(Assembler::notZero, L);
  8468     int3();                  // break if error condition
  8469     bind(L);
  8471   pop_CPU_state();
  8474 void MacroAssembler::load_klass(Register dst, Register src) {
  8475 #ifdef _LP64
  8476   if (UseCompressedOops) {
  8477     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8478     decode_heap_oop_not_null(dst);
  8479   } else
  8480 #endif
  8481     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8484 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  8485 #ifdef _LP64
  8486   if (UseCompressedOops) {
  8487     assert (Universe::heap() != NULL, "java heap should be initialized");
  8488     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8489     if (Universe::narrow_oop_shift() != 0) {
  8490       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8491       if (LogMinObjAlignmentInBytes == Address::times_8) {
  8492         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8493       } else {
  8494         // OK to use shift since we don't need to preserve flags.
  8495         shlq(dst, LogMinObjAlignmentInBytes);
  8496         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8498     } else {
  8499       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8501   } else
  8502 #endif
  8504     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8505     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8509 void MacroAssembler::store_klass(Register dst, Register src) {
  8510 #ifdef _LP64
  8511   if (UseCompressedOops) {
  8512     encode_heap_oop_not_null(src);
  8513     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8514   } else
  8515 #endif
  8516     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8519 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  8520 #ifdef _LP64
  8521   if (UseCompressedOops) {
  8522     movl(dst, src);
  8523     decode_heap_oop(dst);
  8524   } else
  8525 #endif
  8526     movptr(dst, src);
  8529 // Doesn't do verfication, generates fixed size code
  8530 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  8531 #ifdef _LP64
  8532   if (UseCompressedOops) {
  8533     movl(dst, src);
  8534     decode_heap_oop_not_null(dst);
  8535   } else
  8536 #endif
  8537     movptr(dst, src);
  8540 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  8541 #ifdef _LP64
  8542   if (UseCompressedOops) {
  8543     assert(!dst.uses(src), "not enough registers");
  8544     encode_heap_oop(src);
  8545     movl(dst, src);
  8546   } else
  8547 #endif
  8548     movptr(dst, src);
  8551 // Used for storing NULLs.
  8552 void MacroAssembler::store_heap_oop_null(Address dst) {
  8553 #ifdef _LP64
  8554   if (UseCompressedOops) {
  8555     movl(dst, (int32_t)NULL_WORD);
  8556   } else {
  8557     movslq(dst, (int32_t)NULL_WORD);
  8559 #else
  8560   movl(dst, (int32_t)NULL_WORD);
  8561 #endif
  8564 #ifdef _LP64
  8565 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  8566   if (UseCompressedOops) {
  8567     // Store to klass gap in destination
  8568     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  8572 #ifdef ASSERT
  8573 void MacroAssembler::verify_heapbase(const char* msg) {
  8574   assert (UseCompressedOops, "should be compressed");
  8575   assert (Universe::heap() != NULL, "java heap should be initialized");
  8576   if (CheckCompressedOops) {
  8577     Label ok;
  8578     push(rscratch1); // cmpptr trashes rscratch1
  8579     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8580     jcc(Assembler::equal, ok);
  8581     stop(msg);
  8582     bind(ok);
  8583     pop(rscratch1);
  8586 #endif
  8588 // Algorithm must match oop.inline.hpp encode_heap_oop.
  8589 void MacroAssembler::encode_heap_oop(Register r) {
  8590 #ifdef ASSERT
  8591   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  8592 #endif
  8593   verify_oop(r, "broken oop in encode_heap_oop");
  8594   if (Universe::narrow_oop_base() == NULL) {
  8595     if (Universe::narrow_oop_shift() != 0) {
  8596       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8597       shrq(r, LogMinObjAlignmentInBytes);
  8599     return;
  8601   testq(r, r);
  8602   cmovq(Assembler::equal, r, r12_heapbase);
  8603   subq(r, r12_heapbase);
  8604   shrq(r, LogMinObjAlignmentInBytes);
  8607 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  8608 #ifdef ASSERT
  8609   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  8610   if (CheckCompressedOops) {
  8611     Label ok;
  8612     testq(r, r);
  8613     jcc(Assembler::notEqual, ok);
  8614     stop("null oop passed to encode_heap_oop_not_null");
  8615     bind(ok);
  8617 #endif
  8618   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  8619   if (Universe::narrow_oop_base() != NULL) {
  8620     subq(r, r12_heapbase);
  8622   if (Universe::narrow_oop_shift() != 0) {
  8623     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8624     shrq(r, LogMinObjAlignmentInBytes);
  8628 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  8629 #ifdef ASSERT
  8630   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  8631   if (CheckCompressedOops) {
  8632     Label ok;
  8633     testq(src, src);
  8634     jcc(Assembler::notEqual, ok);
  8635     stop("null oop passed to encode_heap_oop_not_null2");
  8636     bind(ok);
  8638 #endif
  8639   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  8640   if (dst != src) {
  8641     movq(dst, src);
  8643   if (Universe::narrow_oop_base() != NULL) {
  8644     subq(dst, r12_heapbase);
  8646   if (Universe::narrow_oop_shift() != 0) {
  8647     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8648     shrq(dst, LogMinObjAlignmentInBytes);
  8652 void  MacroAssembler::decode_heap_oop(Register r) {
  8653 #ifdef ASSERT
  8654   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  8655 #endif
  8656   if (Universe::narrow_oop_base() == NULL) {
  8657     if (Universe::narrow_oop_shift() != 0) {
  8658       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8659       shlq(r, LogMinObjAlignmentInBytes);
  8661   } else {
  8662     Label done;
  8663     shlq(r, LogMinObjAlignmentInBytes);
  8664     jccb(Assembler::equal, done);
  8665     addq(r, r12_heapbase);
  8666     bind(done);
  8668   verify_oop(r, "broken oop in decode_heap_oop");
  8671 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  8672   // Note: it will change flags
  8673   assert (UseCompressedOops, "should only be used for compressed headers");
  8674   assert (Universe::heap() != NULL, "java heap should be initialized");
  8675   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8676   // vtableStubs also counts instructions in pd_code_size_limit.
  8677   // Also do not verify_oop as this is called by verify_oop.
  8678   if (Universe::narrow_oop_shift() != 0) {
  8679     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8680     shlq(r, LogMinObjAlignmentInBytes);
  8681     if (Universe::narrow_oop_base() != NULL) {
  8682       addq(r, r12_heapbase);
  8684   } else {
  8685     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8689 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  8690   // Note: it will change flags
  8691   assert (UseCompressedOops, "should only be used for compressed headers");
  8692   assert (Universe::heap() != NULL, "java heap should be initialized");
  8693   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8694   // vtableStubs also counts instructions in pd_code_size_limit.
  8695   // Also do not verify_oop as this is called by verify_oop.
  8696   if (Universe::narrow_oop_shift() != 0) {
  8697     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8698     if (LogMinObjAlignmentInBytes == Address::times_8) {
  8699       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  8700     } else {
  8701       if (dst != src) {
  8702         movq(dst, src);
  8704       shlq(dst, LogMinObjAlignmentInBytes);
  8705       if (Universe::narrow_oop_base() != NULL) {
  8706         addq(dst, r12_heapbase);
  8709   } else {
  8710     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8711     if (dst != src) {
  8712       movq(dst, src);
  8717 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  8718   assert (UseCompressedOops, "should only be used for compressed headers");
  8719   assert (Universe::heap() != NULL, "java heap should be initialized");
  8720   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8721   int oop_index = oop_recorder()->find_index(obj);
  8722   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8723   mov_narrow_oop(dst, oop_index, rspec);
  8726 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  8727   assert (UseCompressedOops, "should only be used for compressed headers");
  8728   assert (Universe::heap() != NULL, "java heap should be initialized");
  8729   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8730   int oop_index = oop_recorder()->find_index(obj);
  8731   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8732   mov_narrow_oop(dst, oop_index, rspec);
  8735 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  8736   assert (UseCompressedOops, "should only be used for compressed headers");
  8737   assert (Universe::heap() != NULL, "java heap should be initialized");
  8738   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8739   int oop_index = oop_recorder()->find_index(obj);
  8740   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8741   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8744 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  8745   assert (UseCompressedOops, "should only be used for compressed headers");
  8746   assert (Universe::heap() != NULL, "java heap should be initialized");
  8747   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8748   int oop_index = oop_recorder()->find_index(obj);
  8749   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8750   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8753 void MacroAssembler::reinit_heapbase() {
  8754   if (UseCompressedOops) {
  8755     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8758 #endif // _LP64
  8760 // IndexOf for constant substrings with size >= 8 chars
  8761 // which don't need to be loaded through stack.
  8762 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  8763                                       Register cnt1, Register cnt2,
  8764                                       int int_cnt2,  Register result,
  8765                                       XMMRegister vec, Register tmp) {
  8766   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  8768   // This method uses pcmpestri inxtruction with bound registers
  8769   //   inputs:
  8770   //     xmm - substring
  8771   //     rax - substring length (elements count)
  8772   //     mem - scanned string
  8773   //     rdx - string length (elements count)
  8774   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  8775   //   outputs:
  8776   //     rcx - matched index in string
  8777   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  8779   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  8780         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  8781         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  8783   // Note, inline_string_indexOf() generates checks:
  8784   // if (substr.count > string.count) return -1;
  8785   // if (substr.count == 0) return 0;
  8786   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  8788   // Load substring.
  8789   movdqu(vec, Address(str2, 0));
  8790   movl(cnt2, int_cnt2);
  8791   movptr(result, str1); // string addr
  8793   if (int_cnt2 > 8) {
  8794     jmpb(SCAN_TO_SUBSTR);
  8796     // Reload substr for rescan, this code
  8797     // is executed only for large substrings (> 8 chars)
  8798     bind(RELOAD_SUBSTR);
  8799     movdqu(vec, Address(str2, 0));
  8800     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  8802     bind(RELOAD_STR);
  8803     // We came here after the beginning of the substring was
  8804     // matched but the rest of it was not so we need to search
  8805     // again. Start from the next element after the previous match.
  8807     // cnt2 is number of substring reminding elements and
  8808     // cnt1 is number of string reminding elements when cmp failed.
  8809     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  8810     subl(cnt1, cnt2);
  8811     addl(cnt1, int_cnt2);
  8812     movl(cnt2, int_cnt2); // Now restore cnt2
  8814     decrementl(cnt1);     // Shift to next element
  8815     cmpl(cnt1, cnt2);
  8816     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  8818     addptr(result, 2);
  8820   } // (int_cnt2 > 8)
  8822   // Scan string for start of substr in 16-byte vectors
  8823   bind(SCAN_TO_SUBSTR);
  8824   pcmpestri(vec, Address(result, 0), 0x0d);
  8825   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  8826   subl(cnt1, 8);
  8827   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  8828   cmpl(cnt1, cnt2);
  8829   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  8830   addptr(result, 16);
  8831   jmpb(SCAN_TO_SUBSTR);
  8833   // Found a potential substr
  8834   bind(FOUND_CANDIDATE);
  8835   // Matched whole vector if first element matched (tmp(rcx) == 0).
  8836   if (int_cnt2 == 8) {
  8837     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  8838   } else { // int_cnt2 > 8
  8839     jccb(Assembler::overflow, FOUND_SUBSTR);
  8841   // After pcmpestri tmp(rcx) contains matched element index
  8842   // Compute start addr of substr
  8843   lea(result, Address(result, tmp, Address::times_2));
  8845   // Make sure string is still long enough
  8846   subl(cnt1, tmp);
  8847   cmpl(cnt1, cnt2);
  8848   if (int_cnt2 == 8) {
  8849     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  8850   } else { // int_cnt2 > 8
  8851     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  8853   // Left less then substring.
  8855   bind(RET_NOT_FOUND);
  8856   movl(result, -1);
  8857   jmpb(EXIT);
  8859   if (int_cnt2 > 8) {
  8860     // This code is optimized for the case when whole substring
  8861     // is matched if its head is matched.
  8862     bind(MATCH_SUBSTR_HEAD);
  8863     pcmpestri(vec, Address(result, 0), 0x0d);
  8864     // Reload only string if does not match
  8865     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  8867     Label CONT_SCAN_SUBSTR;
  8868     // Compare the rest of substring (> 8 chars).
  8869     bind(FOUND_SUBSTR);
  8870     // First 8 chars are already matched.
  8871     negptr(cnt2);
  8872     addptr(cnt2, 8);
  8874     bind(SCAN_SUBSTR);
  8875     subl(cnt1, 8);
  8876     cmpl(cnt2, -8); // Do not read beyond substring
  8877     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  8878     // Back-up strings to avoid reading beyond substring:
  8879     // cnt1 = cnt1 - cnt2 + 8
  8880     addl(cnt1, cnt2); // cnt2 is negative
  8881     addl(cnt1, 8);
  8882     movl(cnt2, 8); negptr(cnt2);
  8883     bind(CONT_SCAN_SUBSTR);
  8884     if (int_cnt2 < (int)G) {
  8885       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  8886       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  8887     } else {
  8888       // calculate index in register to avoid integer overflow (int_cnt2*2)
  8889       movl(tmp, int_cnt2);
  8890       addptr(tmp, cnt2);
  8891       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  8892       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  8894     // Need to reload strings pointers if not matched whole vector
  8895     jccb(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  8896     addptr(cnt2, 8);
  8897     jccb(Assembler::negative, SCAN_SUBSTR);
  8898     // Fall through if found full substring
  8900   } // (int_cnt2 > 8)
  8902   bind(RET_FOUND);
  8903   // Found result if we matched full small substring.
  8904   // Compute substr offset
  8905   subptr(result, str1);
  8906   shrl(result, 1); // index
  8907   bind(EXIT);
  8909 } // string_indexofC8
  8911 // Small strings are loaded through stack if they cross page boundary.
  8912 void MacroAssembler::string_indexof(Register str1, Register str2,
  8913                                     Register cnt1, Register cnt2,
  8914                                     int int_cnt2,  Register result,
  8915                                     XMMRegister vec, Register tmp) {
  8916   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  8917   //
  8918   // int_cnt2 is length of small (< 8 chars) constant substring
  8919   // or (-1) for non constant substring in which case its length
  8920   // is in cnt2 register.
  8921   //
  8922   // Note, inline_string_indexOf() generates checks:
  8923   // if (substr.count > string.count) return -1;
  8924   // if (substr.count == 0) return 0;
  8925   //
  8926   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  8928   // This method uses pcmpestri inxtruction with bound registers
  8929   //   inputs:
  8930   //     xmm - substring
  8931   //     rax - substring length (elements count)
  8932   //     mem - scanned string
  8933   //     rdx - string length (elements count)
  8934   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  8935   //   outputs:
  8936   //     rcx - matched index in string
  8937   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  8939   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  8940         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  8941         FOUND_CANDIDATE;
  8943   { //========================================================
  8944     // We don't know where these strings are located
  8945     // and we can't read beyond them. Load them through stack.
  8946     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  8948     movptr(tmp, rsp); // save old SP
  8950     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  8951       if (int_cnt2 == 1) {  // One char
  8952         load_unsigned_short(result, Address(str2, 0));
  8953         movdl(vec, result); // move 32 bits
  8954       } else if (int_cnt2 == 2) { // Two chars
  8955         movdl(vec, Address(str2, 0)); // move 32 bits
  8956       } else if (int_cnt2 == 4) { // Four chars
  8957         movq(vec, Address(str2, 0));  // move 64 bits
  8958       } else { // cnt2 = { 3, 5, 6, 7 }
  8959         // Array header size is 12 bytes in 32-bit VM
  8960         // + 6 bytes for 3 chars == 18 bytes,
  8961         // enough space to load vec and shift.
  8962         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
  8963         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  8964         psrldq(vec, 16-(int_cnt2*2));
  8966     } else { // not constant substring
  8967       cmpl(cnt2, 8);
  8968       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  8970       // We can read beyond string if srt+16 does not cross page boundary
  8971       // since heaps are aligned and mapped by pages.
  8972       assert(os::vm_page_size() < (int)G, "default page should be small");
  8973       movl(result, str2); // We need only low 32 bits
  8974       andl(result, (os::vm_page_size()-1));
  8975       cmpl(result, (os::vm_page_size()-16));
  8976       jccb(Assembler::belowEqual, CHECK_STR);
  8978       // Move small strings to stack to allow load 16 bytes into vec.
  8979       subptr(rsp, 16);
  8980       int stk_offset = wordSize-2;
  8981       push(cnt2);
  8983       bind(COPY_SUBSTR);
  8984       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  8985       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  8986       decrement(cnt2);
  8987       jccb(Assembler::notZero, COPY_SUBSTR);
  8989       pop(cnt2);
  8990       movptr(str2, rsp);  // New substring address
  8991     } // non constant
  8993     bind(CHECK_STR);
  8994     cmpl(cnt1, 8);
  8995     jccb(Assembler::aboveEqual, BIG_STRINGS);
  8997     // Check cross page boundary.
  8998     movl(result, str1); // We need only low 32 bits
  8999     andl(result, (os::vm_page_size()-1));
  9000     cmpl(result, (os::vm_page_size()-16));
  9001     jccb(Assembler::belowEqual, BIG_STRINGS);
  9003     subptr(rsp, 16);
  9004     int stk_offset = -2;
  9005     if (int_cnt2 < 0) { // not constant
  9006       push(cnt2);
  9007       stk_offset += wordSize;
  9009     movl(cnt2, cnt1);
  9011     bind(COPY_STR);
  9012     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  9013     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  9014     decrement(cnt2);
  9015     jccb(Assembler::notZero, COPY_STR);
  9017     if (int_cnt2 < 0) { // not constant
  9018       pop(cnt2);
  9020     movptr(str1, rsp);  // New string address
  9022     bind(BIG_STRINGS);
  9023     // Load substring.
  9024     if (int_cnt2 < 0) { // -1
  9025       movdqu(vec, Address(str2, 0));
  9026       push(cnt2);       // substr count
  9027       push(str2);       // substr addr
  9028       push(str1);       // string addr
  9029     } else {
  9030       // Small (< 8 chars) constant substrings are loaded already.
  9031       movl(cnt2, int_cnt2);
  9033     push(tmp);  // original SP
  9035   } // Finished loading
  9037   //========================================================
  9038   // Start search
  9039   //
  9041   movptr(result, str1); // string addr
  9043   if (int_cnt2  < 0) {  // Only for non constant substring
  9044     jmpb(SCAN_TO_SUBSTR);
  9046     // SP saved at sp+0
  9047     // String saved at sp+1*wordSize
  9048     // Substr saved at sp+2*wordSize
  9049     // Substr count saved at sp+3*wordSize
  9051     // Reload substr for rescan, this code
  9052     // is executed only for large substrings (> 8 chars)
  9053     bind(RELOAD_SUBSTR);
  9054     movptr(str2, Address(rsp, 2*wordSize));
  9055     movl(cnt2, Address(rsp, 3*wordSize));
  9056     movdqu(vec, Address(str2, 0));
  9057     // We came here after the beginning of the substring was
  9058     // matched but the rest of it was not so we need to search
  9059     // again. Start from the next element after the previous match.
  9060     subptr(str1, result); // Restore counter
  9061     shrl(str1, 1);
  9062     addl(cnt1, str1);
  9063     decrementl(cnt1);   // Shift to next element
  9064     cmpl(cnt1, cnt2);
  9065     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9067     addptr(result, 2);
  9068   } // non constant
  9070   // Scan string for start of substr in 16-byte vectors
  9071   bind(SCAN_TO_SUBSTR);
  9072   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9073   pcmpestri(vec, Address(result, 0), 0x0d);
  9074   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  9075   subl(cnt1, 8);
  9076   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  9077   cmpl(cnt1, cnt2);
  9078   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9079   addptr(result, 16);
  9081   bind(ADJUST_STR);
  9082   cmpl(cnt1, 8); // Do not read beyond string
  9083   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  9084   // Back-up string to avoid reading beyond string.
  9085   lea(result, Address(result, cnt1, Address::times_2, -16));
  9086   movl(cnt1, 8);
  9087   jmpb(SCAN_TO_SUBSTR);
  9089   // Found a potential substr
  9090   bind(FOUND_CANDIDATE);
  9091   // After pcmpestri tmp(rcx) contains matched element index
  9093   // Make sure string is still long enough
  9094   subl(cnt1, tmp);
  9095   cmpl(cnt1, cnt2);
  9096   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  9097   // Left less then substring.
  9099   bind(RET_NOT_FOUND);
  9100   movl(result, -1);
  9101   jmpb(CLEANUP);
  9103   bind(FOUND_SUBSTR);
  9104   // Compute start addr of substr
  9105   lea(result, Address(result, tmp, Address::times_2));
  9107   if (int_cnt2 > 0) { // Constant substring
  9108     // Repeat search for small substring (< 8 chars)
  9109     // from new point without reloading substring.
  9110     // Have to check that we don't read beyond string.
  9111     cmpl(tmp, 8-int_cnt2);
  9112     jccb(Assembler::greater, ADJUST_STR);
  9113     // Fall through if matched whole substring.
  9114   } else { // non constant
  9115     assert(int_cnt2 == -1, "should be != 0");
  9117     addl(tmp, cnt2);
  9118     // Found result if we matched whole substring.
  9119     cmpl(tmp, 8);
  9120     jccb(Assembler::lessEqual, RET_FOUND);
  9122     // Repeat search for small substring (<= 8 chars)
  9123     // from new point 'str1' without reloading substring.
  9124     cmpl(cnt2, 8);
  9125     // Have to check that we don't read beyond string.
  9126     jccb(Assembler::lessEqual, ADJUST_STR);
  9128     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  9129     // Compare the rest of substring (> 8 chars).
  9130     movptr(str1, result);
  9132     cmpl(tmp, cnt2);
  9133     // First 8 chars are already matched.
  9134     jccb(Assembler::equal, CHECK_NEXT);
  9136     bind(SCAN_SUBSTR);
  9137     pcmpestri(vec, Address(str1, 0), 0x0d);
  9138     // Need to reload strings pointers if not matched whole vector
  9139     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  9141     bind(CHECK_NEXT);
  9142     subl(cnt2, 8);
  9143     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  9144     addptr(str1, 16);
  9145     addptr(str2, 16);
  9146     subl(cnt1, 8);
  9147     cmpl(cnt2, 8); // Do not read beyond substring
  9148     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  9149     // Back-up strings to avoid reading beyond substring.
  9150     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  9151     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  9152     subl(cnt1, cnt2);
  9153     movl(cnt2, 8);
  9154     addl(cnt1, 8);
  9155     bind(CONT_SCAN_SUBSTR);
  9156     movdqu(vec, Address(str2, 0));
  9157     jmpb(SCAN_SUBSTR);
  9159     bind(RET_FOUND_LONG);
  9160     movptr(str1, Address(rsp, wordSize));
  9161   } // non constant
  9163   bind(RET_FOUND);
  9164   // Compute substr offset
  9165   subptr(result, str1);
  9166   shrl(result, 1); // index
  9168   bind(CLEANUP);
  9169   pop(rsp); // restore SP
  9171 } // string_indexof
  9173 // Compare strings.
  9174 void MacroAssembler::string_compare(Register str1, Register str2,
  9175                                     Register cnt1, Register cnt2, Register result,
  9176                                     XMMRegister vec1) {
  9177   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  9179   // Compute the minimum of the string lengths and the
  9180   // difference of the string lengths (stack).
  9181   // Do the conditional move stuff
  9182   movl(result, cnt1);
  9183   subl(cnt1, cnt2);
  9184   push(cnt1);
  9185   cmov32(Assembler::lessEqual, cnt2, result);
  9187   // Is the minimum length zero?
  9188   testl(cnt2, cnt2);
  9189   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  9191   // Load first characters
  9192   load_unsigned_short(result, Address(str1, 0));
  9193   load_unsigned_short(cnt1, Address(str2, 0));
  9195   // Compare first characters
  9196   subl(result, cnt1);
  9197   jcc(Assembler::notZero,  POP_LABEL);
  9198   decrementl(cnt2);
  9199   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  9202     // Check after comparing first character to see if strings are equivalent
  9203     Label LSkip2;
  9204     // Check if the strings start at same location
  9205     cmpptr(str1, str2);
  9206     jccb(Assembler::notEqual, LSkip2);
  9208     // Check if the length difference is zero (from stack)
  9209     cmpl(Address(rsp, 0), 0x0);
  9210     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  9212     // Strings might not be equivalent
  9213     bind(LSkip2);
  9216   Address::ScaleFactor scale = Address::times_2;
  9217   int stride = 8;
  9219   // Advance to next element
  9220   addptr(str1, 16/stride);
  9221   addptr(str2, 16/stride);
  9223   if (UseSSE42Intrinsics) {
  9224     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  9225     int pcmpmask = 0x19;
  9226     // Setup to compare 16-byte vectors
  9227     movl(result, cnt2);
  9228     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  9229     jccb(Assembler::zero, COMPARE_TAIL);
  9231     lea(str1, Address(str1, result, scale));
  9232     lea(str2, Address(str2, result, scale));
  9233     negptr(result);
  9235     // pcmpestri
  9236     //   inputs:
  9237     //     vec1- substring
  9238     //     rax - negative string length (elements count)
  9239     //     mem - scaned string
  9240     //     rdx - string length (elements count)
  9241     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  9242     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  9243     //   outputs:
  9244     //     rcx - first mismatched element index
  9245     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  9247     bind(COMPARE_WIDE_VECTORS);
  9248     movdqu(vec1, Address(str1, result, scale));
  9249     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  9250     // After pcmpestri cnt1(rcx) contains mismatched element index
  9252     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  9253     addptr(result, stride);
  9254     subptr(cnt2, stride);
  9255     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  9257     // compare wide vectors tail
  9258     testl(result, result);
  9259     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  9261     movl(cnt2, stride);
  9262     movl(result, stride);
  9263     negptr(result);
  9264     movdqu(vec1, Address(str1, result, scale));
  9265     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  9266     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  9268     // Mismatched characters in the vectors
  9269     bind(VECTOR_NOT_EQUAL);
  9270     addptr(result, cnt1);
  9271     movptr(cnt2, result);
  9272     load_unsigned_short(result, Address(str1, cnt2, scale));
  9273     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
  9274     subl(result, cnt1);
  9275     jmpb(POP_LABEL);
  9277     bind(COMPARE_TAIL); // limit is zero
  9278     movl(cnt2, result);
  9279     // Fallthru to tail compare
  9282   // Shift str2 and str1 to the end of the arrays, negate min
  9283   lea(str1, Address(str1, cnt2, scale, 0));
  9284   lea(str2, Address(str2, cnt2, scale, 0));
  9285   negptr(cnt2);
  9287   // Compare the rest of the elements
  9288   bind(WHILE_HEAD_LABEL);
  9289   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  9290   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  9291   subl(result, cnt1);
  9292   jccb(Assembler::notZero, POP_LABEL);
  9293   increment(cnt2);
  9294   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  9296   // Strings are equal up to min length.  Return the length difference.
  9297   bind(LENGTH_DIFF_LABEL);
  9298   pop(result);
  9299   jmpb(DONE_LABEL);
  9301   // Discard the stored length difference
  9302   bind(POP_LABEL);
  9303   pop(cnt1);
  9305   // That's it
  9306   bind(DONE_LABEL);
  9309 // Compare char[] arrays aligned to 4 bytes or substrings.
  9310 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  9311                                         Register limit, Register result, Register chr,
  9312                                         XMMRegister vec1, XMMRegister vec2) {
  9313   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  9315   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  9316   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  9318   // Check the input args
  9319   cmpptr(ary1, ary2);
  9320   jcc(Assembler::equal, TRUE_LABEL);
  9322   if (is_array_equ) {
  9323     // Need additional checks for arrays_equals.
  9324     testptr(ary1, ary1);
  9325     jcc(Assembler::zero, FALSE_LABEL);
  9326     testptr(ary2, ary2);
  9327     jcc(Assembler::zero, FALSE_LABEL);
  9329     // Check the lengths
  9330     movl(limit, Address(ary1, length_offset));
  9331     cmpl(limit, Address(ary2, length_offset));
  9332     jcc(Assembler::notEqual, FALSE_LABEL);
  9335   // count == 0
  9336   testl(limit, limit);
  9337   jcc(Assembler::zero, TRUE_LABEL);
  9339   if (is_array_equ) {
  9340     // Load array address
  9341     lea(ary1, Address(ary1, base_offset));
  9342     lea(ary2, Address(ary2, base_offset));
  9345   shll(limit, 1);      // byte count != 0
  9346   movl(result, limit); // copy
  9348   if (UseSSE42Intrinsics) {
  9349     // With SSE4.2, use double quad vector compare
  9350     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  9352     // Compare 16-byte vectors
  9353     andl(result, 0x0000000e);  //   tail count (in bytes)
  9354     andl(limit, 0xfffffff0);   // vector count (in bytes)
  9355     jccb(Assembler::zero, COMPARE_TAIL);
  9357     lea(ary1, Address(ary1, limit, Address::times_1));
  9358     lea(ary2, Address(ary2, limit, Address::times_1));
  9359     negptr(limit);
  9361     bind(COMPARE_WIDE_VECTORS);
  9362     movdqu(vec1, Address(ary1, limit, Address::times_1));
  9363     movdqu(vec2, Address(ary2, limit, Address::times_1));
  9364     pxor(vec1, vec2);
  9366     ptest(vec1, vec1);
  9367     jccb(Assembler::notZero, FALSE_LABEL);
  9368     addptr(limit, 16);
  9369     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  9371     testl(result, result);
  9372     jccb(Assembler::zero, TRUE_LABEL);
  9374     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  9375     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  9376     pxor(vec1, vec2);
  9378     ptest(vec1, vec1);
  9379     jccb(Assembler::notZero, FALSE_LABEL);
  9380     jmpb(TRUE_LABEL);
  9382     bind(COMPARE_TAIL); // limit is zero
  9383     movl(limit, result);
  9384     // Fallthru to tail compare
  9387   // Compare 4-byte vectors
  9388   andl(limit, 0xfffffffc); // vector count (in bytes)
  9389   jccb(Assembler::zero, COMPARE_CHAR);
  9391   lea(ary1, Address(ary1, limit, Address::times_1));
  9392   lea(ary2, Address(ary2, limit, Address::times_1));
  9393   negptr(limit);
  9395   bind(COMPARE_VECTORS);
  9396   movl(chr, Address(ary1, limit, Address::times_1));
  9397   cmpl(chr, Address(ary2, limit, Address::times_1));
  9398   jccb(Assembler::notEqual, FALSE_LABEL);
  9399   addptr(limit, 4);
  9400   jcc(Assembler::notZero, COMPARE_VECTORS);
  9402   // Compare trailing char (final 2 bytes), if any
  9403   bind(COMPARE_CHAR);
  9404   testl(result, 0x2);   // tail  char
  9405   jccb(Assembler::zero, TRUE_LABEL);
  9406   load_unsigned_short(chr, Address(ary1, 0));
  9407   load_unsigned_short(limit, Address(ary2, 0));
  9408   cmpl(chr, limit);
  9409   jccb(Assembler::notEqual, FALSE_LABEL);
  9411   bind(TRUE_LABEL);
  9412   movl(result, 1);   // return true
  9413   jmpb(DONE);
  9415   bind(FALSE_LABEL);
  9416   xorl(result, result); // return false
  9418   // That's it
  9419   bind(DONE);
  9422 #ifdef PRODUCT
  9423 #define BLOCK_COMMENT(str) /* nothing */
  9424 #else
  9425 #define BLOCK_COMMENT(str) block_comment(str)
  9426 #endif
  9428 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  9429 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  9430                                    Register to, Register value, Register count,
  9431                                    Register rtmp, XMMRegister xtmp) {
  9432   assert_different_registers(to, value, count, rtmp);
  9433   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  9434   Label L_fill_2_bytes, L_fill_4_bytes;
  9436   int shift = -1;
  9437   switch (t) {
  9438     case T_BYTE:
  9439       shift = 2;
  9440       break;
  9441     case T_SHORT:
  9442       shift = 1;
  9443       break;
  9444     case T_INT:
  9445       shift = 0;
  9446       break;
  9447     default: ShouldNotReachHere();
  9450   if (t == T_BYTE) {
  9451     andl(value, 0xff);
  9452     movl(rtmp, value);
  9453     shll(rtmp, 8);
  9454     orl(value, rtmp);
  9456   if (t == T_SHORT) {
  9457     andl(value, 0xffff);
  9459   if (t == T_BYTE || t == T_SHORT) {
  9460     movl(rtmp, value);
  9461     shll(rtmp, 16);
  9462     orl(value, rtmp);
  9465   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  9466   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  9467   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  9468     // align source address at 4 bytes address boundary
  9469     if (t == T_BYTE) {
  9470       // One byte misalignment happens only for byte arrays
  9471       testptr(to, 1);
  9472       jccb(Assembler::zero, L_skip_align1);
  9473       movb(Address(to, 0), value);
  9474       increment(to);
  9475       decrement(count);
  9476       BIND(L_skip_align1);
  9478     // Two bytes misalignment happens only for byte and short (char) arrays
  9479     testptr(to, 2);
  9480     jccb(Assembler::zero, L_skip_align2);
  9481     movw(Address(to, 0), value);
  9482     addptr(to, 2);
  9483     subl(count, 1<<(shift-1));
  9484     BIND(L_skip_align2);
  9486   if (UseSSE < 2) {
  9487     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  9488     // Fill 32-byte chunks
  9489     subl(count, 8 << shift);
  9490     jcc(Assembler::less, L_check_fill_8_bytes);
  9491     align(16);
  9493     BIND(L_fill_32_bytes_loop);
  9495     for (int i = 0; i < 32; i += 4) {
  9496       movl(Address(to, i), value);
  9499     addptr(to, 32);
  9500     subl(count, 8 << shift);
  9501     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  9502     BIND(L_check_fill_8_bytes);
  9503     addl(count, 8 << shift);
  9504     jccb(Assembler::zero, L_exit);
  9505     jmpb(L_fill_8_bytes);
  9507     //
  9508     // length is too short, just fill qwords
  9509     //
  9510     BIND(L_fill_8_bytes_loop);
  9511     movl(Address(to, 0), value);
  9512     movl(Address(to, 4), value);
  9513     addptr(to, 8);
  9514     BIND(L_fill_8_bytes);
  9515     subl(count, 1 << (shift + 1));
  9516     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  9517     // fall through to fill 4 bytes
  9518   } else {
  9519     Label L_fill_32_bytes;
  9520     if (!UseUnalignedLoadStores) {
  9521       // align to 8 bytes, we know we are 4 byte aligned to start
  9522       testptr(to, 4);
  9523       jccb(Assembler::zero, L_fill_32_bytes);
  9524       movl(Address(to, 0), value);
  9525       addptr(to, 4);
  9526       subl(count, 1<<shift);
  9528     BIND(L_fill_32_bytes);
  9530       assert( UseSSE >= 2, "supported cpu only" );
  9531       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  9532       // Fill 32-byte chunks
  9533       movdl(xtmp, value);
  9534       pshufd(xtmp, xtmp, 0);
  9536       subl(count, 8 << shift);
  9537       jcc(Assembler::less, L_check_fill_8_bytes);
  9538       align(16);
  9540       BIND(L_fill_32_bytes_loop);
  9542       if (UseUnalignedLoadStores) {
  9543         movdqu(Address(to, 0), xtmp);
  9544         movdqu(Address(to, 16), xtmp);
  9545       } else {
  9546         movq(Address(to, 0), xtmp);
  9547         movq(Address(to, 8), xtmp);
  9548         movq(Address(to, 16), xtmp);
  9549         movq(Address(to, 24), xtmp);
  9552       addptr(to, 32);
  9553       subl(count, 8 << shift);
  9554       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  9555       BIND(L_check_fill_8_bytes);
  9556       addl(count, 8 << shift);
  9557       jccb(Assembler::zero, L_exit);
  9558       jmpb(L_fill_8_bytes);
  9560       //
  9561       // length is too short, just fill qwords
  9562       //
  9563       BIND(L_fill_8_bytes_loop);
  9564       movq(Address(to, 0), xtmp);
  9565       addptr(to, 8);
  9566       BIND(L_fill_8_bytes);
  9567       subl(count, 1 << (shift + 1));
  9568       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  9571   // fill trailing 4 bytes
  9572   BIND(L_fill_4_bytes);
  9573   testl(count, 1<<shift);
  9574   jccb(Assembler::zero, L_fill_2_bytes);
  9575   movl(Address(to, 0), value);
  9576   if (t == T_BYTE || t == T_SHORT) {
  9577     addptr(to, 4);
  9578     BIND(L_fill_2_bytes);
  9579     // fill trailing 2 bytes
  9580     testl(count, 1<<(shift-1));
  9581     jccb(Assembler::zero, L_fill_byte);
  9582     movw(Address(to, 0), value);
  9583     if (t == T_BYTE) {
  9584       addptr(to, 2);
  9585       BIND(L_fill_byte);
  9586       // fill trailing byte
  9587       testl(count, 1);
  9588       jccb(Assembler::zero, L_exit);
  9589       movb(Address(to, 0), value);
  9590     } else {
  9591       BIND(L_fill_byte);
  9593   } else {
  9594     BIND(L_fill_2_bytes);
  9596   BIND(L_exit);
  9598 #undef BIND
  9599 #undef BLOCK_COMMENT
  9602 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  9603   switch (cond) {
  9604     // Note some conditions are synonyms for others
  9605     case Assembler::zero:         return Assembler::notZero;
  9606     case Assembler::notZero:      return Assembler::zero;
  9607     case Assembler::less:         return Assembler::greaterEqual;
  9608     case Assembler::lessEqual:    return Assembler::greater;
  9609     case Assembler::greater:      return Assembler::lessEqual;
  9610     case Assembler::greaterEqual: return Assembler::less;
  9611     case Assembler::below:        return Assembler::aboveEqual;
  9612     case Assembler::belowEqual:   return Assembler::above;
  9613     case Assembler::above:        return Assembler::belowEqual;
  9614     case Assembler::aboveEqual:   return Assembler::below;
  9615     case Assembler::overflow:     return Assembler::noOverflow;
  9616     case Assembler::noOverflow:   return Assembler::overflow;
  9617     case Assembler::negative:     return Assembler::positive;
  9618     case Assembler::positive:     return Assembler::negative;
  9619     case Assembler::parity:       return Assembler::noParity;
  9620     case Assembler::noParity:     return Assembler::parity;
  9622   ShouldNotReachHere(); return Assembler::overflow;
  9625 SkipIfEqual::SkipIfEqual(
  9626     MacroAssembler* masm, const bool* flag_addr, bool value) {
  9627   _masm = masm;
  9628   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  9629   _masm->jcc(Assembler::equal, _label);
  9632 SkipIfEqual::~SkipIfEqual() {
  9633   _masm->bind(_label);

mercurial