src/share/vm/code/relocInfo.hpp

Thu, 04 Jul 2013 10:51:31 +0200

author
goetz
date
Thu, 04 Jul 2013 10:51:31 +0200
changeset 6447
53fa76359eb1
parent 5314
7875ea94bea5
child 6461
bdd155477289
permissions
-rw-r--r--

8016696: PPC64 (part 4): add relocation for trampoline stubs
Summary: A trampoline allows to encode a small branch in the code, even if there is the chance that this branch can not reach all possible code locations. If the relocation finds that a branch is too far for the instruction in the code, it can patch it to jump to the trampoline where is sufficient space for a far branch. Needed on PPC.
Reviewed-by: kvn, bdelsart, jrose

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_CODE_RELOCINFO_HPP
    26 #define SHARE_VM_CODE_RELOCINFO_HPP
    28 #include "memory/allocation.hpp"
    29 #include "utilities/top.hpp"
    31 class NativeMovConstReg;
    33 // Types in this file:
    34 //    relocInfo
    35 //      One element of an array of halfwords encoding compressed relocations.
    36 //      Also, the source of relocation types (relocInfo::oop_type, ...).
    37 //    Relocation
    38 //      A flyweight object representing a single relocation.
    39 //      It is fully unpacked from the compressed relocation array.
    40 //    metadata_Relocation, ... (subclasses of Relocation)
    41 //      The location of some type-specific operations (metadata_addr, ...).
    42 //      Also, the source of relocation specs (metadata_Relocation::spec, ...).
    43 //    oop_Relocation, ... (subclasses of Relocation)
    44 //      oops in the code stream (strings, class loaders)
    45 //      Also, the source of relocation specs (oop_Relocation::spec, ...).
    46 //    RelocationHolder
    47 //      A ValueObj type which acts as a union holding a Relocation object.
    48 //      Represents a relocation spec passed into a CodeBuffer during assembly.
    49 //    RelocIterator
    50 //      A StackObj which iterates over the relocations associated with
    51 //      a range of code addresses.  Can be used to operate a copy of code.
    52 //    BoundRelocation
    53 //      An _internal_ type shared by packers and unpackers of relocations.
    54 //      It pastes together a RelocationHolder with some pointers into
    55 //      code and relocInfo streams.
    58 // Notes on relocType:
    59 //
    60 // These hold enough information to read or write a value embedded in
    61 // the instructions of an CodeBlob.  They're used to update:
    62 //
    63 //   1) embedded oops     (isOop()          == true)
    64 //   2) inline caches     (isIC()           == true)
    65 //   3) runtime calls     (isRuntimeCall()  == true)
    66 //   4) internal word ref (isInternalWord() == true)
    67 //   5) external word ref (isExternalWord() == true)
    68 //
    69 // when objects move (GC) or if code moves (compacting the code heap).
    70 // They are also used to patch the code (if a call site must change)
    71 //
    72 // A relocInfo is represented in 16 bits:
    73 //   4 bits indicating the relocation type
    74 //  12 bits indicating the offset from the previous relocInfo address
    75 //
    76 // The offsets accumulate along the relocInfo stream to encode the
    77 // address within the CodeBlob, which is named RelocIterator::addr().
    78 // The address of a particular relocInfo always points to the first
    79 // byte of the relevant instruction (and not to any of its subfields
    80 // or embedded immediate constants).
    81 //
    82 // The offset value is scaled appropriately for the target machine.
    83 // (See relocInfo_<arch>.hpp for the offset scaling.)
    84 //
    85 // On some machines, there may also be a "format" field which may provide
    86 // additional information about the format of the instruction stream
    87 // at the corresponding code address.  The format value is usually zero.
    88 // Any machine (such as Intel) whose instructions can sometimes contain
    89 // more than one relocatable constant needs format codes to distinguish
    90 // which operand goes with a given relocation.
    91 //
    92 // If the target machine needs N format bits, the offset has 12-N bits,
    93 // the format is encoded between the offset and the type, and the
    94 // relocInfo_<arch>.hpp file has manifest constants for the format codes.
    95 //
    96 // If the type is "data_prefix_tag" then the offset bits are further encoded,
    97 // and in fact represent not a code-stream offset but some inline data.
    98 // The data takes the form of a counted sequence of halfwords, which
    99 // precedes the actual relocation record.  (Clients never see it directly.)
   100 // The interpetation of this extra data depends on the relocation type.
   101 //
   102 // On machines that have 32-bit immediate fields, there is usually
   103 // little need for relocation "prefix" data, because the instruction stream
   104 // is a perfectly reasonable place to store the value.  On machines in
   105 // which 32-bit values must be "split" across instructions, the relocation
   106 // data is the "true" specification of the value, which is then applied
   107 // to some field of the instruction (22 or 13 bits, on SPARC).
   108 //
   109 // Whenever the location of the CodeBlob changes, any PC-relative
   110 // relocations, and any internal_word_type relocations, must be reapplied.
   111 // After the GC runs, oop_type relocations must be reapplied.
   112 //
   113 //
   114 // Here are meanings of the types:
   115 //
   116 // relocInfo::none -- a filler record
   117 //   Value:  none
   118 //   Instruction: The corresponding code address is ignored
   119 //   Data:  Any data prefix and format code are ignored
   120 //   (This means that any relocInfo can be disabled by setting
   121 //   its type to none.  See relocInfo::remove.)
   122 //
   123 // relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
   124 //   Value:  an oop, or else the address (handle) of an oop
   125 //   Instruction types: memory (load), set (load address)
   126 //   Data:  []       an oop stored in 4 bytes of instruction
   127 //          [n]      n is the index of an oop in the CodeBlob's oop pool
   128 //          [[N]n l] and l is a byte offset to be applied to the oop
   129 //          [Nn Ll]  both index and offset may be 32 bits if necessary
   130 //   Here is a special hack, used only by the old compiler:
   131 //          [[N]n 00] the value is the __address__ of the nth oop in the pool
   132 //   (Note that the offset allows optimal references to class variables.)
   133 //
   134 // relocInfo::internal_word_type -- an address within the same CodeBlob
   135 // relocInfo::section_word_type -- same, but can refer to another section
   136 //   Value:  an address in the CodeBlob's code or constants section
   137 //   Instruction types: memory (load), set (load address)
   138 //   Data:  []     stored in 4 bytes of instruction
   139 //          [[L]l] a relative offset (see [About Offsets] below)
   140 //   In the case of section_word_type, the offset is relative to a section
   141 //   base address, and the section number (e.g., SECT_INSTS) is encoded
   142 //   into the low two bits of the offset L.
   143 //
   144 // relocInfo::external_word_type -- a fixed address in the runtime system
   145 //   Value:  an address
   146 //   Instruction types: memory (load), set (load address)
   147 //   Data:  []   stored in 4 bytes of instruction
   148 //          [n]  the index of a "well-known" stub (usual case on RISC)
   149 //          [Ll] a 32-bit address
   150 //
   151 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
   152 //   Value:  an address
   153 //   Instruction types: PC-relative call (or a PC-relative branch)
   154 //   Data:  []   stored in 4 bytes of instruction
   155 //
   156 // relocInfo::static_call_type -- a static call
   157 //   Value:  an CodeBlob, a stub, or a fixup routine
   158 //   Instruction types: a call
   159 //   Data:  []
   160 //   The identity of the callee is extracted from debugging information.
   161 //   //%note reloc_3
   162 //
   163 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline
   164 //                                 cache)
   165 //   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
   166 //   Instruction types: a call, plus some associated set-oop instructions
   167 //   Data:  []       the associated set-oops are adjacent to the call
   168 //          [n]      n is a relative offset to the first set-oop
   169 //          [[N]n l] and l is a limit within which the set-oops occur
   170 //          [Nn Ll]  both n and l may be 32 bits if necessary
   171 //   The identity of the callee is extracted from debugging information.
   172 //
   173 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
   174 //
   175 //    Same info as a static_call_type. We use a special type, so the handling of
   176 //    virtuals and statics are separated.
   177 //
   178 //
   179 //   The offset n points to the first set-oop.  (See [About Offsets] below.)
   180 //   In turn, the set-oop instruction specifies or contains an oop cell devoted
   181 //   exclusively to the IC call, which can be patched along with the call.
   182 //
   183 //   The locations of any other set-oops are found by searching the relocation
   184 //   information starting at the first set-oop, and continuing until all
   185 //   relocations up through l have been inspected.  The value l is another
   186 //   relative offset.  (Both n and l are relative to the call's first byte.)
   187 //
   188 //   The limit l of the search is exclusive.  However, if it points within
   189 //   the call (e.g., offset zero), it is adjusted to point after the call and
   190 //   any associated machine-specific delay slot.
   191 //
   192 //   Since the offsets could be as wide as 32-bits, these conventions
   193 //   put no restrictions whatever upon code reorganization.
   194 //
   195 //   The compiler is responsible for ensuring that transition from a clean
   196 //   state to a monomorphic compiled state is MP-safe.  This implies that
   197 //   the system must respond well to intermediate states where a random
   198 //   subset of the set-oops has been correctly from the clean state
   199 //   upon entry to the VEP of the compiled method.  In the case of a
   200 //   machine (Intel) with a single set-oop instruction, the 32-bit
   201 //   immediate field must not straddle a unit of memory coherence.
   202 //   //%note reloc_3
   203 //
   204 // relocInfo::static_stub_type -- an extra stub for each static_call_type
   205 //   Value:  none
   206 //   Instruction types: a virtual call:  { set_oop; jump; }
   207 //   Data:  [[N]n]  the offset of the associated static_call reloc
   208 //   This stub becomes the target of a static call which must be upgraded
   209 //   to a virtual call (because the callee is interpreted).
   210 //   See [About Offsets] below.
   211 //   //%note reloc_2
   212 //
   213 // For example:
   214 //
   215 //   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
   216 //   ------------                               ----    -----------
   217 // sethi      %hi(myObject),  R               oop_type [n(myObject)]
   218 // ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
   219 // add R2, 1, R2
   220 // st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
   221 //%note reloc_1
   222 //
   223 // This uses 4 instruction words, 8 relocation halfwords,
   224 // and an entry (which is sharable) in the CodeBlob's oop pool,
   225 // for a total of 36 bytes.
   226 //
   227 // Note that the compiler is responsible for ensuring the "fldOffset" when
   228 // added to "%lo(myObject)" does not overflow the immediate fields of the
   229 // memory instructions.
   230 //
   231 //
   232 // [About Offsets] Relative offsets are supplied to this module as
   233 // positive byte offsets, but they may be internally stored scaled
   234 // and/or negated, depending on what is most compact for the target
   235 // system.  Since the object pointed to by the offset typically
   236 // precedes the relocation address, it is profitable to store
   237 // these negative offsets as positive numbers, but this decision
   238 // is internal to the relocation information abstractions.
   239 //
   241 class Relocation;
   242 class CodeBuffer;
   243 class CodeSection;
   244 class RelocIterator;
   246 class relocInfo VALUE_OBJ_CLASS_SPEC {
   247   friend class RelocIterator;
   248  public:
   249   enum relocType {
   250     none                    =  0, // Used when no relocation should be generated
   251     oop_type                =  1, // embedded oop
   252     virtual_call_type       =  2, // a standard inline cache call for a virtual send
   253     opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
   254     static_call_type        =  4, // a static send
   255     static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
   256     runtime_call_type       =  6, // call to fixed external routine
   257     external_word_type      =  7, // reference to fixed external address
   258     internal_word_type      =  8, // reference within the current code blob
   259     section_word_type       =  9, // internal, but a cross-section reference
   260     poll_type               = 10, // polling instruction for safepoints
   261     poll_return_type        = 11, // polling instruction for safepoints at return
   262     metadata_type           = 12, // metadata that used to be oops
   263     trampoline_stub_type    = 13, // stub-entry for trampoline
   264     yet_unused_type_1       = 14, // Still unused
   265     data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
   266     type_mask               = 15  // A mask which selects only the above values
   267   };
   269  protected:
   270   unsigned short _value;
   272   enum RawBitsToken { RAW_BITS };
   273   relocInfo(relocType type, RawBitsToken ignore, int bits)
   274     : _value((type << nontype_width) + bits) { }
   276   relocInfo(relocType type, RawBitsToken ignore, int off, int f)
   277     : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
   279  public:
   280   // constructor
   281   relocInfo(relocType type, int offset, int format = 0)
   282 #ifndef ASSERT
   283   {
   284     (*this) = relocInfo(type, RAW_BITS, offset, format);
   285   }
   286 #else
   287   // Put a bunch of assertions out-of-line.
   288   ;
   289 #endif
   291   #define APPLY_TO_RELOCATIONS(visitor) \
   292     visitor(oop) \
   293     visitor(metadata) \
   294     visitor(virtual_call) \
   295     visitor(opt_virtual_call) \
   296     visitor(static_call) \
   297     visitor(static_stub) \
   298     visitor(runtime_call) \
   299     visitor(external_word) \
   300     visitor(internal_word) \
   301     visitor(poll) \
   302     visitor(poll_return) \
   303     visitor(section_word) \
   304     visitor(trampoline_stub) \
   307  public:
   308   enum {
   309     value_width             = sizeof(unsigned short) * BitsPerByte,
   310     type_width              = 4,   // == log2(type_mask+1)
   311     nontype_width           = value_width - type_width,
   312     datalen_width           = nontype_width-1,
   313     datalen_tag             = 1 << datalen_width,  // or-ed into _value
   314     datalen_limit           = 1 << datalen_width,
   315     datalen_mask            = (1 << datalen_width)-1
   316   };
   318   // accessors
   319  public:
   320   relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
   321   int  format()           const { return format_mask==0? 0: format_mask &
   322                                          ((unsigned)_value >> offset_width); }
   323   int  addr_offset()      const { assert(!is_prefix(), "must have offset");
   324                                   return (_value & offset_mask)*offset_unit; }
   326  protected:
   327   const short* data()     const { assert(is_datalen(), "must have data");
   328                                   return (const short*)(this + 1); }
   329   int          datalen()  const { assert(is_datalen(), "must have data");
   330                                   return (_value & datalen_mask); }
   331   int         immediate() const { assert(is_immediate(), "must have immed");
   332                                   return (_value & datalen_mask); }
   333  public:
   334   static int addr_unit()        { return offset_unit; }
   335   static int offset_limit()     { return (1 << offset_width) * offset_unit; }
   337   void set_type(relocType type);
   338   void set_format(int format);
   340   void remove() { set_type(none); }
   342  protected:
   343   bool is_none()                const { return type() == none; }
   344   bool is_prefix()              const { return type() == data_prefix_tag; }
   345   bool is_datalen()             const { assert(is_prefix(), "must be prefix");
   346                                         return (_value & datalen_tag) != 0; }
   347   bool is_immediate()           const { assert(is_prefix(), "must be prefix");
   348                                         return (_value & datalen_tag) == 0; }
   350  public:
   351   // Occasionally records of type relocInfo::none will appear in the stream.
   352   // We do not bother to filter these out, but clients should ignore them.
   353   // These records serve as "filler" in three ways:
   354   //  - to skip large spans of unrelocated code (this is rare)
   355   //  - to pad out the relocInfo array to the required oop alignment
   356   //  - to disable old relocation information which is no longer applicable
   358   inline friend relocInfo filler_relocInfo();
   360   // Every non-prefix relocation may be preceded by at most one prefix,
   361   // which supplies 1 or more halfwords of associated data.  Conventionally,
   362   // an int is represented by 0, 1, or 2 halfwords, depending on how
   363   // many bits are required to represent the value.  (In addition,
   364   // if the sole halfword is a 10-bit unsigned number, it is made
   365   // "immediate" in the prefix header word itself.  This optimization
   366   // is invisible outside this module.)
   368   inline friend relocInfo prefix_relocInfo(int datalen = 0);
   370  protected:
   371   // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
   372   static relocInfo immediate_relocInfo(int data0) {
   373     assert(fits_into_immediate(data0), "data0 in limits");
   374     return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
   375   }
   376   static bool fits_into_immediate(int data0) {
   377     return (data0 >= 0 && data0 < datalen_limit);
   378   }
   380  public:
   381   // Support routines for compilers.
   383   // This routine takes an infant relocInfo (unprefixed) and
   384   // edits in its prefix, if any.  It also updates dest.locs_end.
   385   void initialize(CodeSection* dest, Relocation* reloc);
   387   // This routine updates a prefix and returns the limit pointer.
   388   // It tries to compress the prefix from 32 to 16 bits, and if
   389   // successful returns a reduced "prefix_limit" pointer.
   390   relocInfo* finish_prefix(short* prefix_limit);
   392   // bit-packers for the data array:
   394   // As it happens, the bytes within the shorts are ordered natively,
   395   // but the shorts within the word are ordered big-endian.
   396   // This is an arbitrary choice, made this way mainly to ease debugging.
   397   static int data0_from_int(jint x)         { return x >> value_width; }
   398   static int data1_from_int(jint x)         { return (short)x; }
   399   static jint jint_from_data(short* data) {
   400     return (data[0] << value_width) + (unsigned short)data[1];
   401   }
   403   static jint short_data_at(int n, short* data, int datalen) {
   404     return datalen > n ? data[n] : 0;
   405   }
   407   static jint jint_data_at(int n, short* data, int datalen) {
   408     return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
   409   }
   411   // Update methods for relocation information
   412   // (since code is dynamically patched, we also need to dynamically update the relocation info)
   413   // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
   414   static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
   415   static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
   417   // Machine dependent stuff
   418 #ifdef TARGET_ARCH_x86
   419 # include "relocInfo_x86.hpp"
   420 #endif
   421 #ifdef TARGET_ARCH_sparc
   422 # include "relocInfo_sparc.hpp"
   423 #endif
   424 #ifdef TARGET_ARCH_zero
   425 # include "relocInfo_zero.hpp"
   426 #endif
   427 #ifdef TARGET_ARCH_arm
   428 # include "relocInfo_arm.hpp"
   429 #endif
   430 #ifdef TARGET_ARCH_ppc
   431 # include "relocInfo_ppc.hpp"
   432 #endif
   435  protected:
   436   // Derived constant, based on format_width which is PD:
   437   enum {
   438     offset_width       = nontype_width - format_width,
   439     offset_mask        = (1<<offset_width) - 1,
   440     format_mask        = (1<<format_width) - 1
   441   };
   442  public:
   443   enum {
   444     // Conservatively large estimate of maximum length (in shorts)
   445     // of any relocation record.
   446     // Extended format is length prefix, data words, and tag/offset suffix.
   447     length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
   448     have_format        = format_width > 0
   449   };
   450 };
   452 #define FORWARD_DECLARE_EACH_CLASS(name)              \
   453 class name##_Relocation;
   454 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
   455 #undef FORWARD_DECLARE_EACH_CLASS
   459 inline relocInfo filler_relocInfo() {
   460   return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
   461 }
   463 inline relocInfo prefix_relocInfo(int datalen) {
   464   assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
   465   return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
   466 }
   469 // Holder for flyweight relocation objects.
   470 // Although the flyweight subclasses are of varying sizes,
   471 // the holder is "one size fits all".
   472 class RelocationHolder VALUE_OBJ_CLASS_SPEC {
   473   friend class Relocation;
   474   friend class CodeSection;
   476  private:
   477   // this preallocated memory must accommodate all subclasses of Relocation
   478   // (this number is assertion-checked in Relocation::operator new)
   479   enum { _relocbuf_size = 5 };
   480   void* _relocbuf[ _relocbuf_size ];
   482  public:
   483   Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
   484   inline relocInfo::relocType type() const;
   486   // Add a constant offset to a relocation.  Helper for class Address.
   487   RelocationHolder plus(int offset) const;
   489   inline RelocationHolder();                // initializes type to none
   491   inline RelocationHolder(Relocation* r);   // make a copy
   493   static const RelocationHolder none;
   494 };
   496 // A RelocIterator iterates through the relocation information of a CodeBlob.
   497 // It is a variable BoundRelocation which is able to take on successive
   498 // values as it is advanced through a code stream.
   499 // Usage:
   500 //   RelocIterator iter(nm);
   501 //   while (iter.next()) {
   502 //     iter.reloc()->some_operation();
   503 //   }
   504 // or:
   505 //   RelocIterator iter(nm);
   506 //   while (iter.next()) {
   507 //     switch (iter.type()) {
   508 //      case relocInfo::oop_type          :
   509 //      case relocInfo::ic_type           :
   510 //      case relocInfo::prim_type         :
   511 //      case relocInfo::uncommon_type     :
   512 //      case relocInfo::runtime_call_type :
   513 //      case relocInfo::internal_word_type:
   514 //      case relocInfo::external_word_type:
   515 //      ...
   516 //     }
   517 //   }
   519 class RelocIterator : public StackObj {
   520   enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
   521   friend class Relocation;
   522   friend class relocInfo;       // for change_reloc_info_for_address only
   523   typedef relocInfo::relocType relocType;
   525  private:
   526   address    _limit;   // stop producing relocations after this _addr
   527   relocInfo* _current; // the current relocation information
   528   relocInfo* _end;     // end marker; we're done iterating when _current == _end
   529   nmethod*   _code;    // compiled method containing _addr
   530   address    _addr;    // instruction to which the relocation applies
   531   short      _databuf; // spare buffer for compressed data
   532   short*     _data;    // pointer to the relocation's data
   533   short      _datalen; // number of halfwords in _data
   534   char       _format;  // position within the instruction
   536   // Base addresses needed to compute targets of section_word_type relocs.
   537   address    _section_start[SECT_LIMIT];
   538   address    _section_end  [SECT_LIMIT];
   540   void set_has_current(bool b) {
   541     _datalen = !b ? -1 : 0;
   542     debug_only(_data = NULL);
   543   }
   544   void set_current(relocInfo& ri) {
   545     _current = &ri;
   546     set_has_current(true);
   547   }
   549   RelocationHolder _rh; // where the current relocation is allocated
   551   relocInfo* current() const { assert(has_current(), "must have current");
   552                                return _current; }
   554   void set_limits(address begin, address limit);
   556   void advance_over_prefix();    // helper method
   558   void initialize_misc();
   560   void initialize(nmethod* nm, address begin, address limit);
   562   RelocIterator() { initialize_misc(); }
   564  public:
   565   // constructor
   566   RelocIterator(nmethod* nm,     address begin = NULL, address limit = NULL);
   567   RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
   569   // get next reloc info, return !eos
   570   bool next() {
   571     _current++;
   572     assert(_current <= _end, "must not overrun relocInfo");
   573     if (_current == _end) {
   574       set_has_current(false);
   575       return false;
   576     }
   577     set_has_current(true);
   579     if (_current->is_prefix()) {
   580       advance_over_prefix();
   581       assert(!current()->is_prefix(), "only one prefix at a time");
   582     }
   584     _addr += _current->addr_offset();
   586     if (_limit != NULL && _addr >= _limit) {
   587       set_has_current(false);
   588       return false;
   589     }
   591     if (relocInfo::have_format)  _format = current()->format();
   592     return true;
   593   }
   595   // accessors
   596   address      limit()        const { return _limit; }
   597   void     set_limit(address x);
   598   relocType    type()         const { return current()->type(); }
   599   int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
   600   address      addr()         const { return _addr; }
   601   nmethod*     code()         const { return _code; }
   602   short*       data()         const { return _data; }
   603   int          datalen()      const { return _datalen; }
   604   bool     has_current()      const { return _datalen >= 0; }
   606   void       set_addr(address addr) { _addr = addr; }
   607   bool   addr_in_const()      const;
   609   address section_start(int n) const {
   610     assert(_section_start[n], "must be initialized");
   611     return _section_start[n];
   612   }
   613   address section_end(int n) const {
   614     assert(_section_end[n], "must be initialized");
   615     return _section_end[n];
   616   }
   618   // The address points to the affected displacement part of the instruction.
   619   // For RISC, this is just the whole instruction.
   620   // For Intel, this is an unaligned 32-bit word.
   622   // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
   623   #define EACH_TYPE(name)                               \
   624   inline name##_Relocation* name##_reloc();
   625   APPLY_TO_RELOCATIONS(EACH_TYPE)
   626   #undef EACH_TYPE
   627   // generic relocation accessor; switches on type to call the above
   628   Relocation* reloc();
   630   // CodeBlob's have relocation indexes for faster random access:
   631   static int locs_and_index_size(int code_size, int locs_size);
   632   // Store an index into [dest_start+dest_count..dest_end).
   633   // At dest_start[0..dest_count] is the actual relocation information.
   634   // Everything else up to dest_end is free space for the index.
   635   static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
   637 #ifndef PRODUCT
   638  public:
   639   void print();
   640   void print_current();
   641 #endif
   642 };
   645 // A Relocation is a flyweight object allocated within a RelocationHolder.
   646 // It represents the relocation data of relocation record.
   647 // So, the RelocIterator unpacks relocInfos into Relocations.
   649 class Relocation VALUE_OBJ_CLASS_SPEC {
   650   friend class RelocationHolder;
   651   friend class RelocIterator;
   653  private:
   654   static void guarantee_size();
   656   // When a relocation has been created by a RelocIterator,
   657   // this field is non-null.  It allows the relocation to know
   658   // its context, such as the address to which it applies.
   659   RelocIterator* _binding;
   661  protected:
   662   RelocIterator* binding() const {
   663     assert(_binding != NULL, "must be bound");
   664     return _binding;
   665   }
   666   void set_binding(RelocIterator* b) {
   667     assert(_binding == NULL, "must be unbound");
   668     _binding = b;
   669     assert(_binding != NULL, "must now be bound");
   670   }
   672   Relocation() {
   673     _binding = NULL;
   674   }
   676   static RelocationHolder newHolder() {
   677     return RelocationHolder();
   678   }
   680  public:
   681   void* operator new(size_t size, const RelocationHolder& holder) {
   682     if (size > sizeof(holder._relocbuf)) guarantee_size();
   683     assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
   684     return holder.reloc();
   685   }
   687   // make a generic relocation for a given type (if possible)
   688   static RelocationHolder spec_simple(relocInfo::relocType rtype);
   690   // here is the type-specific hook which writes relocation data:
   691   virtual void pack_data_to(CodeSection* dest) { }
   693   // here is the type-specific hook which reads (unpacks) relocation data:
   694   virtual void unpack_data() {
   695     assert(datalen()==0 || type()==relocInfo::none, "no data here");
   696   }
   698   static bool is_reloc_index(intptr_t index) {
   699     return 0 < index && index < os::vm_page_size();
   700   }
   702  protected:
   703   // Helper functions for pack_data_to() and unpack_data().
   705   // Most of the compression logic is confined here.
   706   // (The "immediate data" mechanism of relocInfo works independently
   707   // of this stuff, and acts to further compress most 1-word data prefixes.)
   709   // A variable-width int is encoded as a short if it will fit in 16 bits.
   710   // The decoder looks at datalen to decide whether to unpack short or jint.
   711   // Most relocation records are quite simple, containing at most two ints.
   713   static bool is_short(jint x) { return x == (short)x; }
   714   static short* add_short(short* p, int x)  { *p++ = x; return p; }
   715   static short* add_jint (short* p, jint x) {
   716     *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
   717     return p;
   718   }
   719   static short* add_var_int(short* p, jint x) {   // add a variable-width int
   720     if (is_short(x))  p = add_short(p, x);
   721     else              p = add_jint (p, x);
   722     return p;
   723   }
   725   static short* pack_1_int_to(short* p, jint x0) {
   726     // Format is one of:  [] [x] [Xx]
   727     if (x0 != 0)  p = add_var_int(p, x0);
   728     return p;
   729   }
   730   int unpack_1_int() {
   731     assert(datalen() <= 2, "too much data");
   732     return relocInfo::jint_data_at(0, data(), datalen());
   733   }
   735   // With two ints, the short form is used only if both ints are short.
   736   short* pack_2_ints_to(short* p, jint x0, jint x1) {
   737     // Format is one of:  [] [x y?] [Xx Y?y]
   738     if (x0 == 0 && x1 == 0) {
   739       // no halfwords needed to store zeroes
   740     } else if (is_short(x0) && is_short(x1)) {
   741       // 1-2 halfwords needed to store shorts
   742       p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
   743     } else {
   744       // 3-4 halfwords needed to store jints
   745       p = add_jint(p, x0);             p = add_var_int(p, x1);
   746     }
   747     return p;
   748   }
   749   void unpack_2_ints(jint& x0, jint& x1) {
   750     int    dlen = datalen();
   751     short* dp  = data();
   752     if (dlen <= 2) {
   753       x0 = relocInfo::short_data_at(0, dp, dlen);
   754       x1 = relocInfo::short_data_at(1, dp, dlen);
   755     } else {
   756       assert(dlen <= 4, "too much data");
   757       x0 = relocInfo::jint_data_at(0, dp, dlen);
   758       x1 = relocInfo::jint_data_at(2, dp, dlen);
   759     }
   760   }
   762  protected:
   763   // platform-dependent utilities for decoding and patching instructions
   764   void       pd_set_data_value       (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
   765   void       pd_verify_data_value    (address x, intptr_t off) { pd_set_data_value(x, off, true); }
   766   address    pd_call_destination     (address orig_addr = NULL);
   767   void       pd_set_call_destination (address x);
   769   // this extracts the address of an address in the code stream instead of the reloc data
   770   address* pd_address_in_code       ();
   772   // this extracts an address from the code stream instead of the reloc data
   773   address  pd_get_address_from_code ();
   775   // these convert from byte offsets, to scaled offsets, to addresses
   776   static jint scaled_offset(address x, address base) {
   777     int byte_offset = x - base;
   778     int offset = -byte_offset / relocInfo::addr_unit();
   779     assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
   780     return offset;
   781   }
   782   static jint scaled_offset_null_special(address x, address base) {
   783     // Some relocations treat offset=0 as meaning NULL.
   784     // Handle this extra convention carefully.
   785     if (x == NULL)  return 0;
   786     assert(x != base, "offset must not be zero");
   787     return scaled_offset(x, base);
   788   }
   789   static address address_from_scaled_offset(jint offset, address base) {
   790     int byte_offset = -( offset * relocInfo::addr_unit() );
   791     return base + byte_offset;
   792   }
   794   // these convert between indexes and addresses in the runtime system
   795   static int32_t runtime_address_to_index(address runtime_address);
   796   static address index_to_runtime_address(int32_t index);
   798   // helpers for mapping between old and new addresses after a move or resize
   799   address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
   800   address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
   801   void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
   803  public:
   804   // accessors which only make sense for a bound Relocation
   805   address  addr()         const { return binding()->addr(); }
   806   nmethod* code()         const { return binding()->code(); }
   807   bool     addr_in_const() const { return binding()->addr_in_const(); }
   808  protected:
   809   short*   data()         const { return binding()->data(); }
   810   int      datalen()      const { return binding()->datalen(); }
   811   int      format()       const { return binding()->format(); }
   813  public:
   814   virtual relocInfo::relocType type()            { return relocInfo::none; }
   816   // is it a call instruction?
   817   virtual bool is_call()                         { return false; }
   819   // is it a data movement instruction?
   820   virtual bool is_data()                         { return false; }
   822   // some relocations can compute their own values
   823   virtual address  value();
   825   // all relocations are able to reassert their values
   826   virtual void set_value(address x);
   828   virtual void clear_inline_cache()              { }
   830   // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
   831   // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
   832   // probably a reasonable assumption, since empty caches simplifies code reloacation.
   833   virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
   835   void print();
   836 };
   839 // certain inlines must be deferred until class Relocation is defined:
   841 inline RelocationHolder::RelocationHolder() {
   842   // initialize the vtbl, just to keep things type-safe
   843   new(*this) Relocation();
   844 }
   847 inline RelocationHolder::RelocationHolder(Relocation* r) {
   848   // wordwise copy from r (ok if it copies garbage after r)
   849   for (int i = 0; i < _relocbuf_size; i++) {
   850     _relocbuf[i] = ((void**)r)[i];
   851   }
   852 }
   855 relocInfo::relocType RelocationHolder::type() const {
   856   return reloc()->type();
   857 }
   859 // A DataRelocation always points at a memory or load-constant instruction..
   860 // It is absolute on most machines, and the constant is split on RISCs.
   861 // The specific subtypes are oop, external_word, and internal_word.
   862 // By convention, the "value" does not include a separately reckoned "offset".
   863 class DataRelocation : public Relocation {
   864  public:
   865   bool          is_data()                      { return true; }
   867   // both target and offset must be computed somehow from relocation data
   868   virtual int    offset()                      { return 0; }
   869   address         value()                      = 0;
   870   void        set_value(address x)             { set_value(x, offset()); }
   871   void        set_value(address x, intptr_t o) {
   872     if (addr_in_const())
   873       *(address*)addr() = x;
   874     else
   875       pd_set_data_value(x, o);
   876   }
   877   void        verify_value(address x) {
   878     if (addr_in_const())
   879       assert(*(address*)addr() == x, "must agree");
   880     else
   881       pd_verify_data_value(x, offset());
   882   }
   884   // The "o" (displacement) argument is relevant only to split relocations
   885   // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
   886   // can encode more than 32 bits between them.  This allows compilers to
   887   // share set-hi instructions between addresses that differ by a small
   888   // offset (e.g., different static variables in the same class).
   889   // On such machines, the "x" argument to set_value on all set-lo
   890   // instructions must be the same as the "x" argument for the
   891   // corresponding set-hi instructions.  The "o" arguments for the
   892   // set-hi instructions are ignored, and must not affect the high-half
   893   // immediate constant.  The "o" arguments for the set-lo instructions are
   894   // added into the low-half immediate constant, and must not overflow it.
   895 };
   897 // A CallRelocation always points at a call instruction.
   898 // It is PC-relative on most machines.
   899 class CallRelocation : public Relocation {
   900  public:
   901   bool is_call() { return true; }
   903   address  destination()                    { return pd_call_destination(); }
   904   void     set_destination(address x); // pd_set_call_destination
   906   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
   907   address  value()                          { return destination();  }
   908   void     set_value(address x)             { set_destination(x); }
   909 };
   911 class oop_Relocation : public DataRelocation {
   912   relocInfo::relocType type() { return relocInfo::oop_type; }
   914  public:
   915   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
   916   // an oop in the CodeBlob's oop pool
   917   static RelocationHolder spec(int oop_index, int offset = 0) {
   918     assert(oop_index > 0, "must be a pool-resident oop");
   919     RelocationHolder rh = newHolder();
   920     new(rh) oop_Relocation(oop_index, offset);
   921     return rh;
   922   }
   923   // an oop in the instruction stream
   924   static RelocationHolder spec_for_immediate() {
   925     const int oop_index = 0;
   926     const int offset    = 0;    // if you want an offset, use the oop pool
   927     RelocationHolder rh = newHolder();
   928     new(rh) oop_Relocation(oop_index, offset);
   929     return rh;
   930   }
   932  private:
   933   jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
   934   jint _offset;                     // byte offset to apply to the oop itself
   936   oop_Relocation(int oop_index, int offset) {
   937     _oop_index = oop_index; _offset = offset;
   938   }
   940   friend class RelocIterator;
   941   oop_Relocation() { }
   943  public:
   944   int oop_index() { return _oop_index; }
   945   int offset()    { return _offset; }
   947   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
   948   void pack_data_to(CodeSection* dest);
   949   void unpack_data();
   951   void fix_oop_relocation();        // reasserts oop value
   953   void verify_oop_relocation();
   955   address value()  { return (address) *oop_addr(); }
   957   bool oop_is_immediate()  { return oop_index() == 0; }
   959   oop* oop_addr();                  // addr or &pool[jint_data]
   960   oop  oop_value();                 // *oop_addr
   961   // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
   962 };
   965 // copy of oop_Relocation for now but may delete stuff in both/either
   966 class metadata_Relocation : public DataRelocation {
   967   relocInfo::relocType type() { return relocInfo::metadata_type; }
   969  public:
   970   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
   971   // an metadata in the CodeBlob's metadata pool
   972   static RelocationHolder spec(int metadata_index, int offset = 0) {
   973     assert(metadata_index > 0, "must be a pool-resident metadata");
   974     RelocationHolder rh = newHolder();
   975     new(rh) metadata_Relocation(metadata_index, offset);
   976     return rh;
   977   }
   978   // an metadata in the instruction stream
   979   static RelocationHolder spec_for_immediate() {
   980     const int metadata_index = 0;
   981     const int offset    = 0;    // if you want an offset, use the metadata pool
   982     RelocationHolder rh = newHolder();
   983     new(rh) metadata_Relocation(metadata_index, offset);
   984     return rh;
   985   }
   987  private:
   988   jint _metadata_index;            // if > 0, index into nmethod::metadata_at
   989   jint _offset;                     // byte offset to apply to the metadata itself
   991   metadata_Relocation(int metadata_index, int offset) {
   992     _metadata_index = metadata_index; _offset = offset;
   993   }
   995   friend class RelocIterator;
   996   metadata_Relocation() { }
   998   // Fixes a Metadata pointer in the code. Most platforms embeds the
   999   // Metadata pointer in the code at compile time so this is empty
  1000   // for them.
  1001   void pd_fix_value(address x);
  1003  public:
  1004   int metadata_index() { return _metadata_index; }
  1005   int offset()    { return _offset; }
  1007   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
  1008   void pack_data_to(CodeSection* dest);
  1009   void unpack_data();
  1011   void fix_metadata_relocation();        // reasserts metadata value
  1013   void verify_metadata_relocation();
  1015   address value()  { return (address) *metadata_addr(); }
  1017   bool metadata_is_immediate()  { return metadata_index() == 0; }
  1019   Metadata**   metadata_addr();                  // addr or &pool[jint_data]
  1020   Metadata*    metadata_value();                 // *metadata_addr
  1021   // Note:  metadata_value transparently converts Universe::non_metadata_word to NULL.
  1022 };
  1025 class virtual_call_Relocation : public CallRelocation {
  1026   relocInfo::relocType type() { return relocInfo::virtual_call_type; }
  1028  public:
  1029   // "cached_value" points to the first associated set-oop.
  1030   // The oop_limit helps find the last associated set-oop.
  1031   // (See comments at the top of this file.)
  1032   static RelocationHolder spec(address cached_value) {
  1033     RelocationHolder rh = newHolder();
  1034     new(rh) virtual_call_Relocation(cached_value);
  1035     return rh;
  1038   virtual_call_Relocation(address cached_value) {
  1039     _cached_value = cached_value;
  1040     assert(cached_value != NULL, "first oop address must be specified");
  1043  private:
  1044   address _cached_value;               // location of set-value instruction
  1046   friend class RelocIterator;
  1047   virtual_call_Relocation() { }
  1050  public:
  1051   address cached_value();
  1053   // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
  1054   // oop_limit is set to 0 if the limit falls somewhere within the call.
  1055   // When unpacking, a zero oop_limit is taken to refer to the end of the call.
  1056   // (This has the effect of bringing in the call's delay slot on SPARC.)
  1057   void pack_data_to(CodeSection* dest);
  1058   void unpack_data();
  1060   void clear_inline_cache();
  1061 };
  1064 class opt_virtual_call_Relocation : public CallRelocation {
  1065   relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
  1067  public:
  1068   static RelocationHolder spec() {
  1069     RelocationHolder rh = newHolder();
  1070     new(rh) opt_virtual_call_Relocation();
  1071     return rh;
  1074  private:
  1075   friend class RelocIterator;
  1076   opt_virtual_call_Relocation() { }
  1078  public:
  1079   void clear_inline_cache();
  1081   // find the matching static_stub
  1082   address static_stub();
  1083 };
  1086 class static_call_Relocation : public CallRelocation {
  1087   relocInfo::relocType type() { return relocInfo::static_call_type; }
  1089  public:
  1090   static RelocationHolder spec() {
  1091     RelocationHolder rh = newHolder();
  1092     new(rh) static_call_Relocation();
  1093     return rh;
  1096  private:
  1097   friend class RelocIterator;
  1098   static_call_Relocation() { }
  1100  public:
  1101   void clear_inline_cache();
  1103   // find the matching static_stub
  1104   address static_stub();
  1105 };
  1107 class static_stub_Relocation : public Relocation {
  1108   relocInfo::relocType type() { return relocInfo::static_stub_type; }
  1110  public:
  1111   static RelocationHolder spec(address static_call) {
  1112     RelocationHolder rh = newHolder();
  1113     new(rh) static_stub_Relocation(static_call);
  1114     return rh;
  1117  private:
  1118   address _static_call;             // location of corresponding static_call
  1120   static_stub_Relocation(address static_call) {
  1121     _static_call = static_call;
  1124   friend class RelocIterator;
  1125   static_stub_Relocation() { }
  1127  public:
  1128   void clear_inline_cache();
  1130   address static_call() { return _static_call; }
  1132   // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
  1133   void pack_data_to(CodeSection* dest);
  1134   void unpack_data();
  1135 };
  1137 class runtime_call_Relocation : public CallRelocation {
  1138   relocInfo::relocType type() { return relocInfo::runtime_call_type; }
  1140  public:
  1141   static RelocationHolder spec() {
  1142     RelocationHolder rh = newHolder();
  1143     new(rh) runtime_call_Relocation();
  1144     return rh;
  1147  private:
  1148   friend class RelocIterator;
  1149   runtime_call_Relocation() { }
  1151  public:
  1152 };
  1154 // Trampoline Relocations.
  1155 // A trampoline allows to encode a small branch in the code, even if there
  1156 // is the chance that this branch can not reach all possible code locations.
  1157 // If the relocation finds that a branch is too far for the instruction
  1158 // in the code, it can patch it to jump to the trampoline where is
  1159 // sufficient space for a far branch. Needed on PPC.
  1160 class trampoline_stub_Relocation : public Relocation {
  1161   relocInfo::relocType type() { return relocInfo::trampoline_stub_type; }
  1163  public:
  1164   static RelocationHolder spec(address static_call) {
  1165     RelocationHolder rh = newHolder();
  1166     return (new (rh) trampoline_stub_Relocation(static_call));
  1169  private:
  1170   address _owner;    // Address of the NativeCall that owns the trampoline.
  1172   trampoline_stub_Relocation(address owner) {
  1173     _owner = owner;
  1176   friend class RelocIterator;
  1177   trampoline_stub_Relocation() { }
  1179  public:
  1181   // Return the address of the NativeCall that owns the trampoline.
  1182   address owner() { return _owner; }
  1184   void pack_data_to(CodeSection * dest);
  1185   void unpack_data();
  1187   // Find the trampoline stub for a call.
  1188   static address get_trampoline_for(address call, nmethod* code);
  1189 };
  1191 class external_word_Relocation : public DataRelocation {
  1192   relocInfo::relocType type() { return relocInfo::external_word_type; }
  1194  public:
  1195   static RelocationHolder spec(address target) {
  1196     assert(target != NULL, "must not be null");
  1197     RelocationHolder rh = newHolder();
  1198     new(rh) external_word_Relocation(target);
  1199     return rh;
  1202   // Use this one where all 32/64 bits of the target live in the code stream.
  1203   // The target must be an intptr_t, and must be absolute (not relative).
  1204   static RelocationHolder spec_for_immediate() {
  1205     RelocationHolder rh = newHolder();
  1206     new(rh) external_word_Relocation(NULL);
  1207     return rh;
  1210   // Some address looking values aren't safe to treat as relocations
  1211   // and should just be treated as constants.
  1212   static bool can_be_relocated(address target) {
  1213     return target != NULL && !is_reloc_index((intptr_t)target);
  1216  private:
  1217   address _target;                  // address in runtime
  1219   external_word_Relocation(address target) {
  1220     _target = target;
  1223   friend class RelocIterator;
  1224   external_word_Relocation() { }
  1226  public:
  1227   // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
  1228   // The function runtime_address_to_index is used to turn full addresses
  1229   // to short indexes, if they are pre-registered by the stub mechanism.
  1230   // If the "a" value is 0 (i.e., _target is NULL), the address is stored
  1231   // in the code stream.  See external_word_Relocation::target().
  1232   void pack_data_to(CodeSection* dest);
  1233   void unpack_data();
  1235   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1236   address  target();        // if _target==NULL, fetch addr from code stream
  1237   address  value()          { return target(); }
  1238 };
  1240 class internal_word_Relocation : public DataRelocation {
  1241   relocInfo::relocType type() { return relocInfo::internal_word_type; }
  1243  public:
  1244   static RelocationHolder spec(address target) {
  1245     assert(target != NULL, "must not be null");
  1246     RelocationHolder rh = newHolder();
  1247     new(rh) internal_word_Relocation(target);
  1248     return rh;
  1251   // use this one where all the bits of the target can fit in the code stream:
  1252   static RelocationHolder spec_for_immediate() {
  1253     RelocationHolder rh = newHolder();
  1254     new(rh) internal_word_Relocation(NULL);
  1255     return rh;
  1258   internal_word_Relocation(address target) {
  1259     _target  = target;
  1260     _section = -1;  // self-relative
  1263  protected:
  1264   address _target;                  // address in CodeBlob
  1265   int     _section;                 // section providing base address, if any
  1267   friend class RelocIterator;
  1268   internal_word_Relocation() { }
  1270   // bit-width of LSB field in packed offset, if section >= 0
  1271   enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
  1273  public:
  1274   // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
  1275   // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
  1276   // in the code stream.  See internal_word_Relocation::target().
  1277   // If _section is not -1, it is appended to the low bits of the offset.
  1278   void pack_data_to(CodeSection* dest);
  1279   void unpack_data();
  1281   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1282   address  target();        // if _target==NULL, fetch addr from code stream
  1283   int      section()        { return _section;   }
  1284   address  value()          { return target();   }
  1285 };
  1287 class section_word_Relocation : public internal_word_Relocation {
  1288   relocInfo::relocType type() { return relocInfo::section_word_type; }
  1290  public:
  1291   static RelocationHolder spec(address target, int section) {
  1292     RelocationHolder rh = newHolder();
  1293     new(rh) section_word_Relocation(target, section);
  1294     return rh;
  1297   section_word_Relocation(address target, int section) {
  1298     assert(target != NULL, "must not be null");
  1299     assert(section >= 0, "must be a valid section");
  1300     _target  = target;
  1301     _section = section;
  1304   //void pack_data_to -- inherited
  1305   void unpack_data();
  1307  private:
  1308   friend class RelocIterator;
  1309   section_word_Relocation() { }
  1310 };
  1313 class poll_Relocation : public Relocation {
  1314   bool          is_data()                      { return true; }
  1315   relocInfo::relocType type() { return relocInfo::poll_type; }
  1316   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1317 };
  1319 class poll_return_Relocation : public Relocation {
  1320   bool          is_data()                      { return true; }
  1321   relocInfo::relocType type() { return relocInfo::poll_return_type; }
  1322   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1323 };
  1325 // We know all the xxx_Relocation classes, so now we can define these:
  1326 #define EACH_CASE(name)                                         \
  1327 inline name##_Relocation* RelocIterator::name##_reloc() {       \
  1328   assert(type() == relocInfo::name##_type, "type must agree");  \
  1329   /* The purpose of the placed "new" is to re-use the same */   \
  1330   /* stack storage for each new iteration. */                   \
  1331   name##_Relocation* r = new(_rh) name##_Relocation();          \
  1332   r->set_binding(this);                                         \
  1333   r->name##_Relocation::unpack_data();                          \
  1334   return r;                                                     \
  1336 APPLY_TO_RELOCATIONS(EACH_CASE);
  1337 #undef EACH_CASE
  1339 inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
  1340   initialize(nm, begin, limit);
  1343 #endif // SHARE_VM_CODE_RELOCINFO_HPP

mercurial