src/share/vm/gc_interface/collectedHeap.cpp

Fri, 21 Mar 2014 10:16:35 +0100

author
ehelin
date
Fri, 21 Mar 2014 10:16:35 +0100
changeset 6416
537c8e21b118
parent 6376
cfd4aac53239
child 6420
9fdaa79b0c27
permissions
-rw-r--r--

8036696: Add metaspace gc threshold to metaspace summary trace event
Reviewed-by: jmasa, stefank, mgerdin

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "gc_implementation/shared/gcHeapSummary.hpp"
    28 #include "gc_implementation/shared/gcTrace.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_implementation/shared/gcWhen.hpp"
    31 #include "gc_implementation/shared/vmGCOperations.hpp"
    32 #include "gc_interface/allocTracer.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "gc_interface/collectedHeap.inline.hpp"
    35 #include "memory/metaspace.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "oops/instanceMirrorKlass.hpp"
    38 #include "runtime/init.hpp"
    39 #include "runtime/thread.inline.hpp"
    40 #include "services/heapDumper.hpp"
    43 #ifdef ASSERT
    44 int CollectedHeap::_fire_out_of_memory_count = 0;
    45 #endif
    47 size_t CollectedHeap::_filler_array_max_size = 0;
    49 template <>
    50 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
    51   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
    52   st->print_raw(m);
    53 }
    55 void GCHeapLog::log_heap(bool before) {
    56   if (!should_log()) {
    57     return;
    58   }
    60   double timestamp = fetch_timestamp();
    61   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
    62   int index = compute_log_index();
    63   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
    64   _records[index].timestamp = timestamp;
    65   _records[index].data.is_before = before;
    66   stringStream st(_records[index].data.buffer(), _records[index].data.size());
    67   if (before) {
    68     Universe::print_heap_before_gc(&st, true);
    69   } else {
    70     Universe::print_heap_after_gc(&st, true);
    71   }
    72 }
    74 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
    75   size_t capacity_in_words = capacity() / HeapWordSize;
    77   return VirtualSpaceSummary(
    78     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
    79 }
    81 GCHeapSummary CollectedHeap::create_heap_summary() {
    82   VirtualSpaceSummary heap_space = create_heap_space_summary();
    83   return GCHeapSummary(heap_space, used());
    84 }
    86 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
    87   const MetaspaceSizes meta_space(
    88       MetaspaceAux::allocated_capacity_bytes(),
    89       MetaspaceAux::allocated_used_bytes(),
    90       MetaspaceAux::reserved_bytes());
    91   const MetaspaceSizes data_space(
    92       MetaspaceAux::allocated_capacity_bytes(Metaspace::NonClassType),
    93       MetaspaceAux::allocated_used_bytes(Metaspace::NonClassType),
    94       MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
    95   const MetaspaceSizes class_space(
    96       MetaspaceAux::allocated_capacity_bytes(Metaspace::ClassType),
    97       MetaspaceAux::allocated_used_bytes(Metaspace::ClassType),
    98       MetaspaceAux::reserved_bytes(Metaspace::ClassType));
   100   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space);
   101 }
   103 void CollectedHeap::print_heap_before_gc() {
   104   if (PrintHeapAtGC) {
   105     Universe::print_heap_before_gc();
   106   }
   107   if (_gc_heap_log != NULL) {
   108     _gc_heap_log->log_heap_before();
   109   }
   110 }
   112 void CollectedHeap::print_heap_after_gc() {
   113   if (PrintHeapAtGC) {
   114     Universe::print_heap_after_gc();
   115   }
   116   if (_gc_heap_log != NULL) {
   117     _gc_heap_log->log_heap_after();
   118   }
   119 }
   121 void CollectedHeap::register_nmethod(nmethod* nm) {
   122   assert_locked_or_safepoint(CodeCache_lock);
   123 }
   125 void CollectedHeap::unregister_nmethod(nmethod* nm) {
   126   assert_locked_or_safepoint(CodeCache_lock);
   127 }
   129 void CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
   130   const GCHeapSummary& heap_summary = create_heap_summary();
   131   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
   132   gc_tracer->report_gc_heap_summary(when, heap_summary, metaspace_summary);
   133 }
   135 void CollectedHeap::trace_heap_before_gc(GCTracer* gc_tracer) {
   136   trace_heap(GCWhen::BeforeGC, gc_tracer);
   137 }
   139 void CollectedHeap::trace_heap_after_gc(GCTracer* gc_tracer) {
   140   trace_heap(GCWhen::AfterGC, gc_tracer);
   141 }
   143 // Memory state functions.
   146 CollectedHeap::CollectedHeap() : _n_par_threads(0)
   147 {
   148   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
   149   const size_t elements_per_word = HeapWordSize / sizeof(jint);
   150   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
   151                                              max_len / elements_per_word);
   153   _barrier_set = NULL;
   154   _is_gc_active = false;
   155   _total_collections = _total_full_collections = 0;
   156   _gc_cause = _gc_lastcause = GCCause::_no_gc;
   157   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
   158   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
   160   if (UsePerfData) {
   161     EXCEPTION_MARK;
   163     // create the gc cause jvmstat counters
   164     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
   165                              80, GCCause::to_string(_gc_cause), CHECK);
   167     _perf_gc_lastcause =
   168                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
   169                              80, GCCause::to_string(_gc_lastcause), CHECK);
   170   }
   171   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
   172   // Create the ring log
   173   if (LogEvents) {
   174     _gc_heap_log = new GCHeapLog();
   175   } else {
   176     _gc_heap_log = NULL;
   177   }
   178 }
   180 // This interface assumes that it's being called by the
   181 // vm thread. It collects the heap assuming that the
   182 // heap lock is already held and that we are executing in
   183 // the context of the vm thread.
   184 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   185   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   186   assert(Heap_lock->is_locked(), "Precondition#2");
   187   GCCauseSetter gcs(this, cause);
   188   switch (cause) {
   189     case GCCause::_heap_inspection:
   190     case GCCause::_heap_dump:
   191     case GCCause::_metadata_GC_threshold : {
   192       HandleMark hm;
   193       do_full_collection(false);        // don't clear all soft refs
   194       break;
   195     }
   196     case GCCause::_last_ditch_collection: {
   197       HandleMark hm;
   198       do_full_collection(true);         // do clear all soft refs
   199       break;
   200     }
   201     default:
   202       ShouldNotReachHere(); // Unexpected use of this function
   203   }
   204 }
   206 void CollectedHeap::pre_initialize() {
   207   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
   208   // otherwise remains unused.
   209 #ifdef COMPILER2
   210   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
   211                              && (DeferInitialCardMark || card_mark_must_follow_store());
   212 #else
   213   assert(_defer_initial_card_mark == false, "Who would set it?");
   214 #endif
   215 }
   217 #ifndef PRODUCT
   218 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
   219   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   220     for (size_t slot = 0; slot < size; slot += 1) {
   221       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
   222              "Found badHeapWordValue in post-allocation check");
   223     }
   224   }
   225 }
   227 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
   228   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   229     for (size_t slot = 0; slot < size; slot += 1) {
   230       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
   231              "Found non badHeapWordValue in pre-allocation check");
   232     }
   233   }
   234 }
   235 #endif // PRODUCT
   237 #ifdef ASSERT
   238 void CollectedHeap::check_for_valid_allocation_state() {
   239   Thread *thread = Thread::current();
   240   // How to choose between a pending exception and a potential
   241   // OutOfMemoryError?  Don't allow pending exceptions.
   242   // This is a VM policy failure, so how do we exhaustively test it?
   243   assert(!thread->has_pending_exception(),
   244          "shouldn't be allocating with pending exception");
   245   if (StrictSafepointChecks) {
   246     assert(thread->allow_allocation(),
   247            "Allocation done by thread for which allocation is blocked "
   248            "by No_Allocation_Verifier!");
   249     // Allocation of an oop can always invoke a safepoint,
   250     // hence, the true argument
   251     thread->check_for_valid_safepoint_state(true);
   252   }
   253 }
   254 #endif
   256 HeapWord* CollectedHeap::allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size) {
   258   // Retain tlab and allocate object in shared space if
   259   // the amount free in the tlab is too large to discard.
   260   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
   261     thread->tlab().record_slow_allocation(size);
   262     return NULL;
   263   }
   265   // Discard tlab and allocate a new one.
   266   // To minimize fragmentation, the last TLAB may be smaller than the rest.
   267   size_t new_tlab_size = thread->tlab().compute_size(size);
   269   thread->tlab().clear_before_allocation();
   271   if (new_tlab_size == 0) {
   272     return NULL;
   273   }
   275   // Allocate a new TLAB...
   276   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
   277   if (obj == NULL) {
   278     return NULL;
   279   }
   281   AllocTracer::send_allocation_in_new_tlab_event(klass, new_tlab_size * HeapWordSize, size * HeapWordSize);
   283   if (ZeroTLAB) {
   284     // ..and clear it.
   285     Copy::zero_to_words(obj, new_tlab_size);
   286   } else {
   287     // ...and zap just allocated object.
   288 #ifdef ASSERT
   289     // Skip mangling the space corresponding to the object header to
   290     // ensure that the returned space is not considered parsable by
   291     // any concurrent GC thread.
   292     size_t hdr_size = oopDesc::header_size();
   293     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
   294 #endif // ASSERT
   295   }
   296   thread->tlab().fill(obj, obj + size, new_tlab_size);
   297   return obj;
   298 }
   300 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
   301   MemRegion deferred = thread->deferred_card_mark();
   302   if (!deferred.is_empty()) {
   303     assert(_defer_initial_card_mark, "Otherwise should be empty");
   304     {
   305       // Verify that the storage points to a parsable object in heap
   306       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
   307       assert(is_in(old_obj), "Not in allocated heap");
   308       assert(!can_elide_initializing_store_barrier(old_obj),
   309              "Else should have been filtered in new_store_pre_barrier()");
   310       assert(old_obj->is_oop(true), "Not an oop");
   311       assert(deferred.word_size() == (size_t)(old_obj->size()),
   312              "Mismatch: multiple objects?");
   313     }
   314     BarrierSet* bs = barrier_set();
   315     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   316     bs->write_region(deferred);
   317     // "Clear" the deferred_card_mark field
   318     thread->set_deferred_card_mark(MemRegion());
   319   }
   320   assert(thread->deferred_card_mark().is_empty(), "invariant");
   321 }
   323 size_t CollectedHeap::max_tlab_size() const {
   324   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
   325   // This restriction could be removed by enabling filling with multiple arrays.
   326   // If we compute that the reasonable way as
   327   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
   328   // we'll overflow on the multiply, so we do the divide first.
   329   // We actually lose a little by dividing first,
   330   // but that just makes the TLAB  somewhat smaller than the biggest array,
   331   // which is fine, since we'll be able to fill that.
   332   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
   333               sizeof(jint) *
   334               ((juint) max_jint / (size_t) HeapWordSize);
   335   return align_size_down(max_int_size, MinObjAlignment);
   336 }
   338 // Helper for ReduceInitialCardMarks. For performance,
   339 // compiled code may elide card-marks for initializing stores
   340 // to a newly allocated object along the fast-path. We
   341 // compensate for such elided card-marks as follows:
   342 // (a) Generational, non-concurrent collectors, such as
   343 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
   344 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
   345 //     need the card-mark if and only if the region is
   346 //     in the old gen, and do not care if the card-mark
   347 //     succeeds or precedes the initializing stores themselves,
   348 //     so long as the card-mark is completed before the next
   349 //     scavenge. For all these cases, we can do a card mark
   350 //     at the point at which we do a slow path allocation
   351 //     in the old gen, i.e. in this call.
   352 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
   353 //     in addition that the card-mark for an old gen allocated
   354 //     object strictly follow any associated initializing stores.
   355 //     In these cases, the memRegion remembered below is
   356 //     used to card-mark the entire region either just before the next
   357 //     slow-path allocation by this thread or just before the next scavenge or
   358 //     CMS-associated safepoint, whichever of these events happens first.
   359 //     (The implicit assumption is that the object has been fully
   360 //     initialized by this point, a fact that we assert when doing the
   361 //     card-mark.)
   362 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
   363 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
   364 //     is used to remember the pre-value of any store. Initializing
   365 //     stores will not need this barrier, so we need not worry about
   366 //     compensating for the missing pre-barrier here. Turning now
   367 //     to the post-barrier, we note that G1 needs a RS update barrier
   368 //     which simply enqueues a (sequence of) dirty cards which may
   369 //     optionally be refined by the concurrent update threads. Note
   370 //     that this barrier need only be applied to a non-young write,
   371 //     but, like in CMS, because of the presence of concurrent refinement
   372 //     (much like CMS' precleaning), must strictly follow the oop-store.
   373 //     Thus, using the same protocol for maintaining the intended
   374 //     invariants turns out, serendepitously, to be the same for both
   375 //     G1 and CMS.
   376 //
   377 // For any future collector, this code should be reexamined with
   378 // that specific collector in mind, and the documentation above suitably
   379 // extended and updated.
   380 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
   381   // If a previous card-mark was deferred, flush it now.
   382   flush_deferred_store_barrier(thread);
   383   if (can_elide_initializing_store_barrier(new_obj)) {
   384     // The deferred_card_mark region should be empty
   385     // following the flush above.
   386     assert(thread->deferred_card_mark().is_empty(), "Error");
   387   } else {
   388     MemRegion mr((HeapWord*)new_obj, new_obj->size());
   389     assert(!mr.is_empty(), "Error");
   390     if (_defer_initial_card_mark) {
   391       // Defer the card mark
   392       thread->set_deferred_card_mark(mr);
   393     } else {
   394       // Do the card mark
   395       BarrierSet* bs = barrier_set();
   396       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   397       bs->write_region(mr);
   398     }
   399   }
   400   return new_obj;
   401 }
   403 size_t CollectedHeap::filler_array_hdr_size() {
   404   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
   405 }
   407 size_t CollectedHeap::filler_array_min_size() {
   408   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
   409 }
   411 #ifdef ASSERT
   412 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
   413 {
   414   assert(words >= min_fill_size(), "too small to fill");
   415   assert(words % MinObjAlignment == 0, "unaligned size");
   416   assert(Universe::heap()->is_in_reserved(start), "not in heap");
   417   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
   418 }
   420 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
   421 {
   422   if (ZapFillerObjects && zap) {
   423     Copy::fill_to_words(start + filler_array_hdr_size(),
   424                         words - filler_array_hdr_size(), 0XDEAFBABE);
   425   }
   426 }
   427 #endif // ASSERT
   429 void
   430 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
   431 {
   432   assert(words >= filler_array_min_size(), "too small for an array");
   433   assert(words <= filler_array_max_size(), "too big for a single object");
   435   const size_t payload_size = words - filler_array_hdr_size();
   436   const size_t len = payload_size * HeapWordSize / sizeof(jint);
   437   assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));
   439   // Set the length first for concurrent GC.
   440   ((arrayOop)start)->set_length((int)len);
   441   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
   442   DEBUG_ONLY(zap_filler_array(start, words, zap);)
   443 }
   445 void
   446 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
   447 {
   448   assert(words <= filler_array_max_size(), "too big for a single object");
   450   if (words >= filler_array_min_size()) {
   451     fill_with_array(start, words, zap);
   452   } else if (words > 0) {
   453     assert(words == min_fill_size(), "unaligned size");
   454     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
   455   }
   456 }
   458 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
   459 {
   460   DEBUG_ONLY(fill_args_check(start, words);)
   461   HandleMark hm;  // Free handles before leaving.
   462   fill_with_object_impl(start, words, zap);
   463 }
   465 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
   466 {
   467   DEBUG_ONLY(fill_args_check(start, words);)
   468   HandleMark hm;  // Free handles before leaving.
   470 #ifdef _LP64
   471   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
   472   // First fill with arrays, ensuring that any remaining space is big enough to
   473   // fill.  The remainder is filled with a single object.
   474   const size_t min = min_fill_size();
   475   const size_t max = filler_array_max_size();
   476   while (words > max) {
   477     const size_t cur = words - max >= min ? max : max - min;
   478     fill_with_array(start, cur, zap);
   479     start += cur;
   480     words -= cur;
   481   }
   482 #endif
   484   fill_with_object_impl(start, words, zap);
   485 }
   487 void CollectedHeap::post_initialize() {
   488   collector_policy()->post_heap_initialize();
   489 }
   491 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
   492   guarantee(false, "thread-local allocation buffers not supported");
   493   return NULL;
   494 }
   496 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
   497   // The second disjunct in the assertion below makes a concession
   498   // for the start-up verification done while the VM is being
   499   // created. Callers be careful that you know that mutators
   500   // aren't going to interfere -- for instance, this is permissible
   501   // if we are still single-threaded and have either not yet
   502   // started allocating (nothing much to verify) or we have
   503   // started allocating but are now a full-fledged JavaThread
   504   // (and have thus made our TLAB's) available for filling.
   505   assert(SafepointSynchronize::is_at_safepoint() ||
   506          !is_init_completed(),
   507          "Should only be called at a safepoint or at start-up"
   508          " otherwise concurrent mutator activity may make heap "
   509          " unparsable again");
   510   const bool use_tlab = UseTLAB;
   511   const bool deferred = _defer_initial_card_mark;
   512   // The main thread starts allocating via a TLAB even before it
   513   // has added itself to the threads list at vm boot-up.
   514   assert(!use_tlab || Threads::first() != NULL,
   515          "Attempt to fill tlabs before main thread has been added"
   516          " to threads list is doomed to failure!");
   517   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   518      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
   519 #ifdef COMPILER2
   520      // The deferred store barriers must all have been flushed to the
   521      // card-table (or other remembered set structure) before GC starts
   522      // processing the card-table (or other remembered set).
   523      if (deferred) flush_deferred_store_barrier(thread);
   524 #else
   525      assert(!deferred, "Should be false");
   526      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
   527 #endif
   528   }
   529 }
   531 void CollectedHeap::accumulate_statistics_all_tlabs() {
   532   if (UseTLAB) {
   533     assert(SafepointSynchronize::is_at_safepoint() ||
   534          !is_init_completed(),
   535          "should only accumulate statistics on tlabs at safepoint");
   537     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
   538   }
   539 }
   541 void CollectedHeap::resize_all_tlabs() {
   542   if (UseTLAB) {
   543     assert(SafepointSynchronize::is_at_safepoint() ||
   544          !is_init_completed(),
   545          "should only resize tlabs at safepoint");
   547     ThreadLocalAllocBuffer::resize_all_tlabs();
   548   }
   549 }
   551 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
   552   if (HeapDumpBeforeFullGC) {
   553     GCTraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, timer);
   554     // We are doing a "major" collection and a heap dump before
   555     // major collection has been requested.
   556     HeapDumper::dump_heap();
   557   }
   558   if (PrintClassHistogramBeforeFullGC) {
   559     GCTraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, timer);
   560     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
   561     inspector.doit();
   562   }
   563 }
   565 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
   566   if (HeapDumpAfterFullGC) {
   567     GCTraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, timer);
   568     HeapDumper::dump_heap();
   569   }
   570   if (PrintClassHistogramAfterFullGC) {
   571     GCTraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, timer);
   572     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
   573     inspector.doit();
   574   }
   575 }
   577 oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
   578   debug_only(check_for_valid_allocation_state());
   579   assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
   580   assert(size >= 0, "int won't convert to size_t");
   581   HeapWord* obj;
   582     assert(ScavengeRootsInCode > 0, "must be");
   583     obj = common_mem_allocate_init(real_klass, size, CHECK_NULL);
   584   post_allocation_setup_common(klass, obj);
   585   assert(Universe::is_bootstrapping() ||
   586          !((oop)obj)->is_array(), "must not be an array");
   587   NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
   588   oop mirror = (oop)obj;
   590   java_lang_Class::set_oop_size(mirror, size);
   592   // Setup indirections
   593   if (!real_klass.is_null()) {
   594     java_lang_Class::set_klass(mirror, real_klass());
   595     real_klass->set_java_mirror(mirror);
   596   }
   598   InstanceMirrorKlass* mk = InstanceMirrorKlass::cast(mirror->klass());
   599   assert(size == mk->instance_size(real_klass), "should have been set");
   601   // notify jvmti and dtrace
   602   post_allocation_notify(klass, (oop)obj);
   604   return mirror;
   605 }
   607 /////////////// Unit tests ///////////////
   609 #ifndef PRODUCT
   610 void CollectedHeap::test_is_in() {
   611   CollectedHeap* heap = Universe::heap();
   613   uintptr_t epsilon    = (uintptr_t) MinObjAlignment;
   614   uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
   615   uintptr_t heap_end   = (uintptr_t) heap->_reserved.end();
   617   // Test that NULL is not in the heap.
   618   assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
   620   // Test that a pointer to before the heap start is reported as outside the heap.
   621   assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
   622   void* before_heap = (void*)(heap_start - epsilon);
   623   assert(!heap->is_in(before_heap),
   624       err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));
   626   // Test that a pointer to after the heap end is reported as outside the heap.
   627   assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
   628   void* after_heap = (void*)(heap_end + epsilon);
   629   assert(!heap->is_in(after_heap),
   630       err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
   631 }
   632 #endif

mercurial