src/share/vm/runtime/deoptimization.cpp

Tue, 11 Mar 2008 11:25:13 -0700

author
kvn
date
Tue, 11 Mar 2008 11:25:13 -0700
changeset 479
52fed2ec0afb
parent 435
a61af66fc99e
child 518
d3cd40645d0d
permissions
-rw-r--r--

6667620: (Escape Analysis) fix deoptimization for scalar replaced objects
Summary: Deoptimization code for reallocation and relocking scalar replaced objects has to be fixed.
Reviewed-by: rasbold, never

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_deoptimization.cpp.incl"
    28 bool DeoptimizationMarker::_is_active = false;
    30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    31                                          int  caller_adjustment,
    32                                          int  number_of_frames,
    33                                          intptr_t* frame_sizes,
    34                                          address* frame_pcs,
    35                                          BasicType return_type) {
    36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    37   _caller_adjustment         = caller_adjustment;
    38   _number_of_frames          = number_of_frames;
    39   _frame_sizes               = frame_sizes;
    40   _frame_pcs                 = frame_pcs;
    41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
    42   _return_type               = return_type;
    43   // PD (x86 only)
    44   _counter_temp              = 0;
    45   _initial_fp                = 0;
    46   _unpack_kind               = 0;
    47   _sender_sp_temp            = 0;
    49   _total_frame_sizes         = size_of_frames();
    50 }
    53 Deoptimization::UnrollBlock::~UnrollBlock() {
    54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
    55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
    56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
    57 }
    60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
    61   assert(register_number < RegisterMap::reg_count, "checking register number");
    62   return &_register_block[register_number * 2];
    63 }
    67 int Deoptimization::UnrollBlock::size_of_frames() const {
    68   // Acount first for the adjustment of the initial frame
    69   int result = _caller_adjustment;
    70   for (int index = 0; index < number_of_frames(); index++) {
    71     result += frame_sizes()[index];
    72   }
    73   return result;
    74 }
    77 void Deoptimization::UnrollBlock::print() {
    78   ttyLocker ttyl;
    79   tty->print_cr("UnrollBlock");
    80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
    81   tty->print(   "  frame_sizes: ");
    82   for (int index = 0; index < number_of_frames(); index++) {
    83     tty->print("%d ", frame_sizes()[index]);
    84   }
    85   tty->cr();
    86 }
    89 // In order to make fetch_unroll_info work properly with escape
    90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
    91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
    92 // of previously eliminated objects occurs in realloc_objects, which is
    93 // called from the method fetch_unroll_info_helper below.
    94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
    95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
    96   // but makes the entry a little slower. There is however a little dance we have to
    97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
    99   // fetch_unroll_info() is called at the beginning of the deoptimization
   100   // handler. Note this fact before we start generating temporary frames
   101   // that can confuse an asynchronous stack walker. This counter is
   102   // decremented at the end of unpack_frames().
   103   thread->inc_in_deopt_handler();
   105   return fetch_unroll_info_helper(thread);
   106 JRT_END
   109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   112   // Note: there is a safepoint safety issue here. No matter whether we enter
   113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   114   // the vframeArray is created.
   115   //
   117   // Allocate our special deoptimization ResourceMark
   118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   120   thread->set_deopt_mark(dmark);
   122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   123   RegisterMap map(thread, true);
   124   RegisterMap dummy_map(thread, false);
   125   // Now get the deoptee with a valid map
   126   frame deoptee = stub_frame.sender(&map);
   128   // Create a growable array of VFrames where each VFrame represents an inlined
   129   // Java frame.  This storage is allocated with the usual system arena.
   130   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   131   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   132   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   133   while (!vf->is_top()) {
   134     assert(vf->is_compiled_frame(), "Wrong frame type");
   135     chunk->push(compiledVFrame::cast(vf));
   136     vf = vf->sender();
   137   }
   138   assert(vf->is_compiled_frame(), "Wrong frame type");
   139   chunk->push(compiledVFrame::cast(vf));
   141 #ifdef COMPILER2
   142   // Reallocate the non-escaping objects and restore their fields. Then
   143   // relock objects if synchronization on them was eliminated.
   144   if (DoEscapeAnalysis) {
   145     if (EliminateAllocations) {
   146       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   147       bool reallocated = false;
   148       if (objects != NULL) {
   149         JRT_BLOCK
   150           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   151         JRT_END
   152       }
   153       if (reallocated) {
   154         reassign_fields(&deoptee, &map, objects);
   155 #ifndef PRODUCT
   156         if (TraceDeoptimization) {
   157           ttyLocker ttyl;
   158           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   159           print_objects(objects);
   160       }
   161 #endif
   162       }
   163     }
   164     if (EliminateLocks) {
   165       for (int i = 0; i < chunk->length(); i++) {
   166         GrowableArray<MonitorValue*>* monitors = chunk->at(i)->scope()->monitors();
   167         if (monitors != NULL) {
   168           relock_objects(&deoptee, &map, monitors);
   169 #ifndef PRODUCT
   170           if (TraceDeoptimization) {
   171             ttyLocker ttyl;
   172             tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   173             for (int j = 0; j < monitors->length(); j++) {
   174               MonitorValue* mv = monitors->at(j);
   175               if (mv->eliminated()) {
   176                 StackValue* owner = StackValue::create_stack_value(&deoptee, &map, mv->owner());
   177                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", owner->get_obj()());
   178               }
   179             }
   180           }
   181 #endif
   182         }
   183       }
   184     }
   185   }
   186 #endif // COMPILER2
   187   // Ensure that no safepoint is taken after pointers have been stored
   188   // in fields of rematerialized objects.  If a safepoint occurs from here on
   189   // out the java state residing in the vframeArray will be missed.
   190   No_Safepoint_Verifier no_safepoint;
   192   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   194   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   195   thread->set_vframe_array_head(array);
   197   // Now that the vframeArray has been created if we have any deferred local writes
   198   // added by jvmti then we can free up that structure as the data is now in the
   199   // vframeArray
   201   if (thread->deferred_locals() != NULL) {
   202     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   203     int i = 0;
   204     do {
   205       // Because of inlining we could have multiple vframes for a single frame
   206       // and several of the vframes could have deferred writes. Find them all.
   207       if (list->at(i)->id() == array->original().id()) {
   208         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   209         list->remove_at(i);
   210         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   211         delete dlv;
   212       } else {
   213         i++;
   214       }
   215     } while ( i < list->length() );
   216     if (list->length() == 0) {
   217       thread->set_deferred_locals(NULL);
   218       // free the list and elements back to C heap.
   219       delete list;
   220     }
   222   }
   224   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   225   CodeBlob* cb = stub_frame.cb();
   226   // Verify we have the right vframeArray
   227   assert(cb->frame_size() >= 0, "Unexpected frame size");
   228   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   230 #ifdef ASSERT
   231   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   232   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
   233 #endif
   234   // This is a guarantee instead of an assert because if vframe doesn't match
   235   // we will unpack the wrong deoptimized frame and wind up in strange places
   236   // where it will be very difficult to figure out what went wrong. Better
   237   // to die an early death here than some very obscure death later when the
   238   // trail is cold.
   239   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   240   // in that it will fail to detect a problem when there is one. This needs
   241   // more work in tiger timeframe.
   242   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   244   int number_of_frames = array->frames();
   246   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   247   // virtual activation, which is the reverse of the elements in the vframes array.
   248   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
   249   // +1 because we always have an interpreter return address for the final slot.
   250   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
   251   int callee_parameters = 0;
   252   int callee_locals = 0;
   253   int popframe_extra_args = 0;
   254   // Create an interpreter return address for the stub to use as its return
   255   // address so the skeletal frames are perfectly walkable
   256   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   258   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   259   // activation be put back on the expression stack of the caller for reexecution
   260   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   261     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   262   }
   264   //
   265   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   266   // frame_sizes/frame_pcs[1] next oldest frame (int)
   267   // frame_sizes/frame_pcs[n] youngest frame (int)
   268   //
   269   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   270   // owns the space for the return address to it's caller).  Confusing ain't it.
   271   //
   272   // The vframe array can address vframes with indices running from
   273   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   274   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   275   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   276   // so things look a little strange in this loop.
   277   //
   278   for (int index = 0; index < array->frames(); index++ ) {
   279     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   280     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   281     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   282     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   283                                                                                                     callee_locals,
   284                                                                                                     index == 0,
   285                                                                                                     popframe_extra_args);
   286     // This pc doesn't have to be perfect just good enough to identify the frame
   287     // as interpreted so the skeleton frame will be walkable
   288     // The correct pc will be set when the skeleton frame is completely filled out
   289     // The final pc we store in the loop is wrong and will be overwritten below
   290     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   292     callee_parameters = array->element(index)->method()->size_of_parameters();
   293     callee_locals = array->element(index)->method()->max_locals();
   294     popframe_extra_args = 0;
   295   }
   297   // Compute whether the root vframe returns a float or double value.
   298   BasicType return_type;
   299   {
   300     HandleMark hm;
   301     methodHandle method(thread, array->element(0)->method());
   302     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
   303     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
   304   }
   306   // Compute information for handling adapters and adjusting the frame size of the caller.
   307   int caller_adjustment = 0;
   309   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   310   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   311   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   312   //
   313   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   314   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   316   // Compute the amount the oldest interpreter frame will have to adjust
   317   // its caller's stack by. If the caller is a compiled frame then
   318   // we pretend that the callee has no parameters so that the
   319   // extension counts for the full amount of locals and not just
   320   // locals-parms. This is because without a c2i adapter the parm
   321   // area as created by the compiled frame will not be usable by
   322   // the interpreter. (Depending on the calling convention there
   323   // may not even be enough space).
   325   // QQQ I'd rather see this pushed down into last_frame_adjust
   326   // and have it take the sender (aka caller).
   328   if (deopt_sender.is_compiled_frame()) {
   329     caller_adjustment = last_frame_adjust(0, callee_locals);
   330   } else if (callee_locals > callee_parameters) {
   331     // The caller frame may need extending to accommodate
   332     // non-parameter locals of the first unpacked interpreted frame.
   333     // Compute that adjustment.
   334     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   335   }
   338   // If the sender is deoptimized the we must retrieve the address of the handler
   339   // since the frame will "magically" show the original pc before the deopt
   340   // and we'd undo the deopt.
   342   frame_pcs[0] = deopt_sender.raw_pc();
   344   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   346   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   347                                       caller_adjustment * BytesPerWord,
   348                                       number_of_frames,
   349                                       frame_sizes,
   350                                       frame_pcs,
   351                                       return_type);
   352 #if defined(IA32) || defined(AMD64)
   353   // We need a way to pass fp to the unpacking code so the skeletal frames
   354   // come out correct. This is only needed for x86 because of c2 using ebp
   355   // as an allocatable register. So this update is useless (and harmless)
   356   // on the other platforms. It would be nice to do this in a different
   357   // way but even the old style deoptimization had a problem with deriving
   358   // this value. NEEDS_CLEANUP
   359   // Note: now that c1 is using c2's deopt blob we must do this on all
   360   // x86 based platforms
   361   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
   362   *fp_addr = array->sender().fp(); // was adapter_caller
   363 #endif /* IA32 || AMD64 */
   365   if (array->frames() > 1) {
   366     if (VerifyStack && TraceDeoptimization) {
   367       tty->print_cr("Deoptimizing method containing inlining");
   368     }
   369   }
   371   array->set_unroll_block(info);
   372   return info;
   373 }
   375 // Called to cleanup deoptimization data structures in normal case
   376 // after unpacking to stack and when stack overflow error occurs
   377 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   378                                         vframeArray *array) {
   380   // Get array if coming from exception
   381   if (array == NULL) {
   382     array = thread->vframe_array_head();
   383   }
   384   thread->set_vframe_array_head(NULL);
   386   // Free the previous UnrollBlock
   387   vframeArray* old_array = thread->vframe_array_last();
   388   thread->set_vframe_array_last(array);
   390   if (old_array != NULL) {
   391     UnrollBlock* old_info = old_array->unroll_block();
   392     old_array->set_unroll_block(NULL);
   393     delete old_info;
   394     delete old_array;
   395   }
   397   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   398   // inside the vframeArray (StackValueCollections)
   400   delete thread->deopt_mark();
   401   thread->set_deopt_mark(NULL);
   404   if (JvmtiExport::can_pop_frame()) {
   405 #ifndef CC_INTERP
   406     // Regardless of whether we entered this routine with the pending
   407     // popframe condition bit set, we should always clear it now
   408     thread->clear_popframe_condition();
   409 #else
   410     // C++ interpeter will clear has_pending_popframe when it enters
   411     // with method_resume. For deopt_resume2 we clear it now.
   412     if (thread->popframe_forcing_deopt_reexecution())
   413         thread->clear_popframe_condition();
   414 #endif /* CC_INTERP */
   415   }
   417   // unpack_frames() is called at the end of the deoptimization handler
   418   // and (in C2) at the end of the uncommon trap handler. Note this fact
   419   // so that an asynchronous stack walker can work again. This counter is
   420   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   421   // the beginning of uncommon_trap().
   422   thread->dec_in_deopt_handler();
   423 }
   426 // Return BasicType of value being returned
   427 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   429   // We are already active int he special DeoptResourceMark any ResourceObj's we
   430   // allocate will be freed at the end of the routine.
   432   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   433   // but makes the entry a little slower. There is however a little dance we have to
   434   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   435   ResetNoHandleMark rnhm; // No-op in release/product versions
   436   HandleMark hm;
   438   frame stub_frame = thread->last_frame();
   440   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   441   // must point to the vframeArray for the unpack frame.
   442   vframeArray* array = thread->vframe_array_head();
   444 #ifndef PRODUCT
   445   if (TraceDeoptimization) {
   446     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   447   }
   448 #endif
   450   UnrollBlock* info = array->unroll_block();
   452   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   453   array->unpack_to_stack(stub_frame, exec_mode);
   455   BasicType bt = info->return_type();
   457   // If we have an exception pending, claim that the return type is an oop
   458   // so the deopt_blob does not overwrite the exception_oop.
   460   if (exec_mode == Unpack_exception)
   461     bt = T_OBJECT;
   463   // Cleanup thread deopt data
   464   cleanup_deopt_info(thread, array);
   466 #ifndef PRODUCT
   467   if (VerifyStack) {
   468     ResourceMark res_mark;
   470     // Verify that the just-unpacked frames match the interpreter's
   471     // notions of expression stack and locals
   472     vframeArray* cur_array = thread->vframe_array_last();
   473     RegisterMap rm(thread, false);
   474     rm.set_include_argument_oops(false);
   475     bool is_top_frame = true;
   476     int callee_size_of_parameters = 0;
   477     int callee_max_locals = 0;
   478     for (int i = 0; i < cur_array->frames(); i++) {
   479       vframeArrayElement* el = cur_array->element(i);
   480       frame* iframe = el->iframe();
   481       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   483       // Get the oop map for this bci
   484       InterpreterOopMap mask;
   485       int cur_invoke_parameter_size = 0;
   486       bool try_next_mask = false;
   487       int next_mask_expression_stack_size = -1;
   488       int top_frame_expression_stack_adjustment = 0;
   489       methodHandle mh(thread, iframe->interpreter_frame_method());
   490       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   491       BytecodeStream str(mh);
   492       str.set_start(iframe->interpreter_frame_bci());
   493       int max_bci = mh->code_size();
   494       // Get to the next bytecode if possible
   495       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   496       // Check to see if we can grab the number of outgoing arguments
   497       // at an uncommon trap for an invoke (where the compiler
   498       // generates debug info before the invoke has executed)
   499       Bytecodes::Code cur_code = str.next();
   500       if (cur_code == Bytecodes::_invokevirtual ||
   501           cur_code == Bytecodes::_invokespecial ||
   502           cur_code == Bytecodes::_invokestatic  ||
   503           cur_code == Bytecodes::_invokeinterface) {
   504         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
   505         symbolHandle signature(thread, invoke->signature());
   506         ArgumentSizeComputer asc(signature);
   507         cur_invoke_parameter_size = asc.size();
   508         if (cur_code != Bytecodes::_invokestatic) {
   509           // Add in receiver
   510           ++cur_invoke_parameter_size;
   511         }
   512       }
   513       if (str.bci() < max_bci) {
   514         Bytecodes::Code bc = str.next();
   515         if (bc >= 0) {
   516           // The interpreter oop map generator reports results before
   517           // the current bytecode has executed except in the case of
   518           // calls. It seems to be hard to tell whether the compiler
   519           // has emitted debug information matching the "state before"
   520           // a given bytecode or the state after, so we try both
   521           switch (cur_code) {
   522             case Bytecodes::_invokevirtual:
   523             case Bytecodes::_invokespecial:
   524             case Bytecodes::_invokestatic:
   525             case Bytecodes::_invokeinterface:
   526             case Bytecodes::_athrow:
   527               break;
   528             default: {
   529               InterpreterOopMap next_mask;
   530               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   531               next_mask_expression_stack_size = next_mask.expression_stack_size();
   532               // Need to subtract off the size of the result type of
   533               // the bytecode because this is not described in the
   534               // debug info but returned to the interpreter in the TOS
   535               // caching register
   536               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   537               if (bytecode_result_type != T_ILLEGAL) {
   538                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   539               }
   540               assert(top_frame_expression_stack_adjustment >= 0, "");
   541               try_next_mask = true;
   542               break;
   543             }
   544           }
   545         }
   546       }
   548       // Verify stack depth and oops in frame
   549       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   550       if (!(
   551             /* SPARC */
   552             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   553             /* x86 */
   554             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   555             (try_next_mask &&
   556              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   557                                                                     top_frame_expression_stack_adjustment))) ||
   558             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   559             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   560              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   561             )) {
   562         ttyLocker ttyl;
   564         // Print out some information that will help us debug the problem
   565         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   566         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   567         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   568                       iframe->interpreter_frame_expression_stack_size());
   569         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   570         tty->print_cr("  try_next_mask = %d", try_next_mask);
   571         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   572         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   573         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   574         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   575         tty->print_cr("  exec_mode = %d", exec_mode);
   576         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   577         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   578         tty->print_cr("  Interpreted frames:");
   579         for (int k = 0; k < cur_array->frames(); k++) {
   580           vframeArrayElement* el = cur_array->element(k);
   581           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   582         }
   583         cur_array->print_on_2(tty);
   584         guarantee(false, "wrong number of expression stack elements during deopt");
   585       }
   586       VerifyOopClosure verify;
   587       iframe->oops_interpreted_do(&verify, &rm, false);
   588       callee_size_of_parameters = mh->size_of_parameters();
   589       callee_max_locals = mh->max_locals();
   590       is_top_frame = false;
   591     }
   592   }
   593 #endif /* !PRODUCT */
   596   return bt;
   597 JRT_END
   600 int Deoptimization::deoptimize_dependents() {
   601   Threads::deoptimized_wrt_marked_nmethods();
   602   return 0;
   603 }
   606 #ifdef COMPILER2
   607 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   608   Handle pending_exception(thread->pending_exception());
   609   const char* exception_file = thread->exception_file();
   610   int exception_line = thread->exception_line();
   611   thread->clear_pending_exception();
   613   for (int i = 0; i < objects->length(); i++) {
   614     assert(objects->at(i)->is_object(), "invalid debug information");
   615     ObjectValue* sv = (ObjectValue*) objects->at(i);
   617     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   618     oop obj = NULL;
   620     if (k->oop_is_instance()) {
   621       instanceKlass* ik = instanceKlass::cast(k());
   622       obj = ik->allocate_instance(CHECK_(false));
   623     } else if (k->oop_is_typeArray()) {
   624       typeArrayKlass* ak = typeArrayKlass::cast(k());
   625       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   626       int len = sv->field_size() / type2size[ak->element_type()];
   627       obj = ak->allocate(len, CHECK_(false));
   628     } else if (k->oop_is_objArray()) {
   629       objArrayKlass* ak = objArrayKlass::cast(k());
   630       obj = ak->allocate(sv->field_size(), CHECK_(false));
   631     }
   633     assert(obj != NULL, "allocation failed");
   634     assert(sv->value().is_null(), "redundant reallocation");
   635     sv->set_value(obj);
   636   }
   638   if (pending_exception.not_null()) {
   639     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   640   }
   642   return true;
   643 }
   645 // This assumes that the fields are stored in ObjectValue in the same order
   646 // they are yielded by do_nonstatic_fields.
   647 class FieldReassigner: public FieldClosure {
   648   frame* _fr;
   649   RegisterMap* _reg_map;
   650   ObjectValue* _sv;
   651   instanceKlass* _ik;
   652   oop _obj;
   654   int _i;
   655 public:
   656   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   657     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   659   int i() const { return _i; }
   662   void do_field(fieldDescriptor* fd) {
   663     intptr_t val;
   664     StackValue* value =
   665       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   666     int offset = fd->offset();
   667     switch (fd->field_type()) {
   668     case T_OBJECT: case T_ARRAY:
   669       assert(value->type() == T_OBJECT, "Agreement.");
   670       _obj->obj_field_put(offset, value->get_obj()());
   671       break;
   673     case T_LONG: case T_DOUBLE: {
   674       assert(value->type() == T_INT, "Agreement.");
   675       StackValue* low =
   676         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   677 #ifdef _LP64
   678       jlong res = (jlong)low->get_int();
   679 #else
   680 #ifdef SPARC
   681       // For SPARC we have to swap high and low words.
   682       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   683 #else
   684       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   685 #endif //SPARC
   686 #endif
   687       _obj->long_field_put(offset, res);
   688       break;
   689     }
   690     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   691     case T_INT: case T_FLOAT: // 4 bytes.
   692       assert(value->type() == T_INT, "Agreement.");
   693       val = value->get_int();
   694       _obj->int_field_put(offset, (jint)*((jint*)&val));
   695       break;
   697     case T_SHORT: case T_CHAR: // 2 bytes
   698       assert(value->type() == T_INT, "Agreement.");
   699       val = value->get_int();
   700       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   701       break;
   703     case T_BOOLEAN: case T_BYTE: // 1 byte
   704       assert(value->type() == T_INT, "Agreement.");
   705       val = value->get_int();
   706       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   707       break;
   709     default:
   710       ShouldNotReachHere();
   711     }
   712     _i++;
   713   }
   714 };
   716 // restore elements of an eliminated type array
   717 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   718   int index = 0;
   719   intptr_t val;
   721   for (int i = 0; i < sv->field_size(); i++) {
   722     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   723     switch(type) {
   724     case T_LONG: case T_DOUBLE: {
   725       assert(value->type() == T_INT, "Agreement.");
   726       StackValue* low =
   727         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   728 #ifdef _LP64
   729       jlong res = (jlong)low->get_int();
   730 #else
   731 #ifdef SPARC
   732       // For SPARC we have to swap high and low words.
   733       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   734 #else
   735       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   736 #endif //SPARC
   737 #endif
   738       obj->long_at_put(index, res);
   739       break;
   740     }
   742     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   743     case T_INT: case T_FLOAT: // 4 bytes.
   744       assert(value->type() == T_INT, "Agreement.");
   745       val = value->get_int();
   746       obj->int_at_put(index, (jint)*((jint*)&val));
   747       break;
   749     case T_SHORT: case T_CHAR: // 2 bytes
   750       assert(value->type() == T_INT, "Agreement.");
   751       val = value->get_int();
   752       obj->short_at_put(index, (jshort)*((jint*)&val));
   753       break;
   755     case T_BOOLEAN: case T_BYTE: // 1 byte
   756       assert(value->type() == T_INT, "Agreement.");
   757       val = value->get_int();
   758       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   759       break;
   761       default:
   762         ShouldNotReachHere();
   763     }
   764     index++;
   765   }
   766 }
   769 // restore fields of an eliminated object array
   770 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   771   for (int i = 0; i < sv->field_size(); i++) {
   772     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   773     assert(value->type() == T_OBJECT, "object element expected");
   774     obj->obj_at_put(i, value->get_obj()());
   775   }
   776 }
   779 // restore fields of all eliminated objects and arrays
   780 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   781   for (int i = 0; i < objects->length(); i++) {
   782     ObjectValue* sv = (ObjectValue*) objects->at(i);
   783     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   784     Handle obj = sv->value();
   785     assert(obj.not_null(), "reallocation was missed");
   787     if (k->oop_is_instance()) {
   788       instanceKlass* ik = instanceKlass::cast(k());
   789       FieldReassigner reassign(fr, reg_map, sv, obj());
   790       ik->do_nonstatic_fields(&reassign);
   791     } else if (k->oop_is_typeArray()) {
   792       typeArrayKlass* ak = typeArrayKlass::cast(k());
   793       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   794     } else if (k->oop_is_objArray()) {
   795       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   796     }
   797   }
   798 }
   801 // relock objects for which synchronization was eliminated
   802 void Deoptimization::relock_objects(frame* fr, RegisterMap* reg_map, GrowableArray<MonitorValue*>* monitors) {
   803   for (int i = 0; i < monitors->length(); i++) {
   804     MonitorValue* mv = monitors->at(i);
   805     StackValue* owner = StackValue::create_stack_value(fr, reg_map, mv->owner());
   806     if (mv->eliminated()) {
   807       Handle obj = owner->get_obj();
   808       assert(obj.not_null(), "reallocation was missed");
   809       BasicLock* lock = StackValue::resolve_monitor_lock(fr, mv->basic_lock());
   810       lock->set_displaced_header(obj->mark());
   811       obj->set_mark((markOop) lock);
   812     }
   813     assert(owner->get_obj()->is_locked(), "object must be locked now");
   814   }
   815 }
   818 #ifndef PRODUCT
   819 // print information about reallocated objects
   820 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   821   fieldDescriptor fd;
   823   for (int i = 0; i < objects->length(); i++) {
   824     ObjectValue* sv = (ObjectValue*) objects->at(i);
   825     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   826     Handle obj = sv->value();
   828     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   829     k->as_klassOop()->print_value();
   830     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   831     tty->cr();
   833     if (Verbose) {
   834       k->oop_print_on(obj(), tty);
   835     }
   836   }
   837 }
   838 #endif
   839 #endif // COMPILER2
   841 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   843 #ifndef PRODUCT
   844   if (TraceDeoptimization) {
   845     ttyLocker ttyl;
   846     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   847     fr.print_on(tty);
   848     tty->print_cr("     Virtual frames (innermost first):");
   849     for (int index = 0; index < chunk->length(); index++) {
   850       compiledVFrame* vf = chunk->at(index);
   851       tty->print("       %2d - ", index);
   852       vf->print_value();
   853       int bci = chunk->at(index)->raw_bci();
   854       const char* code_name;
   855       if (bci == SynchronizationEntryBCI) {
   856         code_name = "sync entry";
   857       } else {
   858         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
   859         code_name = Bytecodes::name(code);
   860       }
   861       tty->print(" - %s", code_name);
   862       tty->print_cr(" @ bci %d ", bci);
   863       if (Verbose) {
   864         vf->print();
   865         tty->cr();
   866       }
   867     }
   868   }
   869 #endif
   871   // Register map for next frame (used for stack crawl).  We capture
   872   // the state of the deopt'ing frame's caller.  Thus if we need to
   873   // stuff a C2I adapter we can properly fill in the callee-save
   874   // register locations.
   875   frame caller = fr.sender(reg_map);
   876   int frame_size = caller.sp() - fr.sp();
   878   frame sender = caller;
   880   // Since the Java thread being deoptimized will eventually adjust it's own stack,
   881   // the vframeArray containing the unpacking information is allocated in the C heap.
   882   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
   883   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
   885   // Compare the vframeArray to the collected vframes
   886   assert(array->structural_compare(thread, chunk), "just checking");
   887   Events::log("# vframes = %d", (intptr_t)chunk->length());
   889 #ifndef PRODUCT
   890   if (TraceDeoptimization) {
   891     ttyLocker ttyl;
   892     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
   893     if (Verbose) {
   894       int count = 0;
   895       // this used to leak deoptimizedVFrame like it was going out of style!!!
   896       for (int index = 0; index < array->frames(); index++ ) {
   897         vframeArrayElement* e = array->element(index);
   898         e->print(tty);
   900         /*
   901           No printing yet.
   902         array->vframe_at(index)->print_activation(count++);
   903         // better as...
   904         array->print_activation_for(index, count++);
   905         */
   906       }
   907     }
   908   }
   909 #endif // PRODUCT
   911   return array;
   912 }
   915 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
   916   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   917   for (int i = 0; i < monitors->length(); i++) {
   918     MonitorInfo* mon_info = monitors->at(i);
   919     if (mon_info->owner() != NULL) {
   920       objects_to_revoke->append(Handle(mon_info->owner()));
   921     }
   922   }
   923 }
   926 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
   927   if (!UseBiasedLocking) {
   928     return;
   929   }
   931   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
   933   // Unfortunately we don't have a RegisterMap available in most of
   934   // the places we want to call this routine so we need to walk the
   935   // stack again to update the register map.
   936   if (map == NULL || !map->update_map()) {
   937     StackFrameStream sfs(thread, true);
   938     bool found = false;
   939     while (!found && !sfs.is_done()) {
   940       frame* cur = sfs.current();
   941       sfs.next();
   942       found = cur->id() == fr.id();
   943     }
   944     assert(found, "frame to be deoptimized not found on target thread's stack");
   945     map = sfs.register_map();
   946   }
   948   vframe* vf = vframe::new_vframe(&fr, map, thread);
   949   compiledVFrame* cvf = compiledVFrame::cast(vf);
   950   // Revoke monitors' biases in all scopes
   951   while (!cvf->is_top()) {
   952     collect_monitors(cvf, objects_to_revoke);
   953     cvf = compiledVFrame::cast(cvf->sender());
   954   }
   955   collect_monitors(cvf, objects_to_revoke);
   957   if (SafepointSynchronize::is_at_safepoint()) {
   958     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
   959   } else {
   960     BiasedLocking::revoke(objects_to_revoke);
   961   }
   962 }
   965 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
   966   if (!UseBiasedLocking) {
   967     return;
   968   }
   970   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
   971   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
   972   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
   973     if (jt->has_last_Java_frame()) {
   974       StackFrameStream sfs(jt, true);
   975       while (!sfs.is_done()) {
   976         frame* cur = sfs.current();
   977         if (cb->contains(cur->pc())) {
   978           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
   979           compiledVFrame* cvf = compiledVFrame::cast(vf);
   980           // Revoke monitors' biases in all scopes
   981           while (!cvf->is_top()) {
   982             collect_monitors(cvf, objects_to_revoke);
   983             cvf = compiledVFrame::cast(cvf->sender());
   984           }
   985           collect_monitors(cvf, objects_to_revoke);
   986         }
   987         sfs.next();
   988       }
   989     }
   990   }
   991   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
   992 }
   995 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
   996   assert(fr.can_be_deoptimized(), "checking frame type");
   998   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1000   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
  1002   // Patch the nmethod so that when execution returns to it we will
  1003   // deopt the execution state and return to the interpreter.
  1004   fr.deoptimize(thread);
  1007 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1008   // Deoptimize only if the frame comes from compile code.
  1009   // Do not deoptimize the frame which is already patched
  1010   // during the execution of the loops below.
  1011   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1012     return;
  1014   ResourceMark rm;
  1015   DeoptimizationMarker dm;
  1016   if (UseBiasedLocking) {
  1017     revoke_biases_of_monitors(thread, fr, map);
  1019   deoptimize_single_frame(thread, fr);
  1024 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1025   // Compute frame and register map based on thread and sp.
  1026   RegisterMap reg_map(thread, UseBiasedLocking);
  1027   frame fr = thread->last_frame();
  1028   while (fr.id() != id) {
  1029     fr = fr.sender(&reg_map);
  1031   deoptimize(thread, fr, &reg_map);
  1035 // JVMTI PopFrame support
  1036 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1038   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1040 JRT_END
  1043 #ifdef COMPILER2
  1044 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1045   // in case of an unresolved klass entry, load the class.
  1046   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1047     klassOop tk = constant_pool->klass_at(index, CHECK);
  1048     return;
  1051   if (!constant_pool->tag_at(index).is_symbol()) return;
  1053   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  1054   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
  1056   // class name?
  1057   if (symbol->byte_at(0) != '(') {
  1058     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1059     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1060     return;
  1063   // then it must be a signature!
  1064   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1065     if (ss.is_object()) {
  1066       symbolOop s = ss.as_symbol(CHECK);
  1067       symbolHandle class_name (THREAD, s);
  1068       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1069       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1075 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1076   EXCEPTION_MARK;
  1077   load_class_by_index(constant_pool, index, THREAD);
  1078   if (HAS_PENDING_EXCEPTION) {
  1079     // Exception happened during classloading. We ignore the exception here, since it
  1080     // is going to be rethrown since the current activation is going to be deoptimzied and
  1081     // the interpreter will re-execute the bytecode.
  1082     CLEAR_PENDING_EXCEPTION;
  1086 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1087   HandleMark hm;
  1089   // uncommon_trap() is called at the beginning of the uncommon trap
  1090   // handler. Note this fact before we start generating temporary frames
  1091   // that can confuse an asynchronous stack walker. This counter is
  1092   // decremented at the end of unpack_frames().
  1093   thread->inc_in_deopt_handler();
  1095   // We need to update the map if we have biased locking.
  1096   RegisterMap reg_map(thread, UseBiasedLocking);
  1097   frame stub_frame = thread->last_frame();
  1098   frame fr = stub_frame.sender(&reg_map);
  1099   // Make sure the calling nmethod is not getting deoptimized and removed
  1100   // before we are done with it.
  1101   nmethodLocker nl(fr.pc());
  1104     ResourceMark rm;
  1106     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1107     revoke_biases_of_monitors(thread, fr, &reg_map);
  1109     DeoptReason reason = trap_request_reason(trap_request);
  1110     DeoptAction action = trap_request_action(trap_request);
  1111     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1113     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
  1114     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1115     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1117     nmethod* nm = cvf->code();
  1119     ScopeDesc*      trap_scope  = cvf->scope();
  1120     methodHandle    trap_method = trap_scope->method();
  1121     int             trap_bci    = trap_scope->bci();
  1122     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
  1124     // Record this event in the histogram.
  1125     gather_statistics(reason, action, trap_bc);
  1127     // Ensure that we can record deopt. history:
  1128     bool create_if_missing = ProfileTraps;
  1130     methodDataHandle trap_mdo
  1131       (THREAD, get_method_data(thread, trap_method, create_if_missing));
  1133     // Print a bunch of diagnostics, if requested.
  1134     if (TraceDeoptimization || LogCompilation) {
  1135       ResourceMark rm;
  1136       ttyLocker ttyl;
  1137       char buf[100];
  1138       if (xtty != NULL) {
  1139         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1140                          os::current_thread_id(),
  1141                          format_trap_request(buf, sizeof(buf), trap_request));
  1142         nm->log_identity(xtty);
  1144       symbolHandle class_name;
  1145       bool unresolved = false;
  1146       if (unloaded_class_index >= 0) {
  1147         constantPoolHandle constants (THREAD, trap_method->constants());
  1148         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1149           class_name = symbolHandle(THREAD,
  1150             constants->klass_name_at(unloaded_class_index));
  1151           unresolved = true;
  1152           if (xtty != NULL)
  1153             xtty->print(" unresolved='1'");
  1154         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1155           class_name = symbolHandle(THREAD,
  1156             constants->symbol_at(unloaded_class_index));
  1158         if (xtty != NULL)
  1159           xtty->name(class_name);
  1161       if (xtty != NULL && trap_mdo.not_null()) {
  1162         // Dump the relevant MDO state.
  1163         // This is the deopt count for the current reason, any previous
  1164         // reasons or recompiles seen at this point.
  1165         int dcnt = trap_mdo->trap_count(reason);
  1166         if (dcnt != 0)
  1167           xtty->print(" count='%d'", dcnt);
  1168         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1169         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1170         if (dos != 0) {
  1171           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1172           if (trap_state_is_recompiled(dos)) {
  1173             int recnt2 = trap_mdo->overflow_recompile_count();
  1174             if (recnt2 != 0)
  1175               xtty->print(" recompiles2='%d'", recnt2);
  1179       if (xtty != NULL) {
  1180         xtty->stamp();
  1181         xtty->end_head();
  1183       if (TraceDeoptimization) {  // make noise on the tty
  1184         tty->print("Uncommon trap occurred in");
  1185         nm->method()->print_short_name(tty);
  1186         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
  1187                    fr.pc(),
  1188                    (int) os::current_thread_id(),
  1189                    trap_reason_name(reason),
  1190                    trap_action_name(action),
  1191                    unloaded_class_index);
  1192         if (class_name.not_null()) {
  1193           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1194           class_name->print_symbol_on(tty);
  1196         tty->cr();
  1198       if (xtty != NULL) {
  1199         // Log the precise location of the trap.
  1200         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1201           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1202           xtty->method(sd->method());
  1203           xtty->end_elem();
  1204           if (sd->is_top())  break;
  1206         xtty->tail("uncommon_trap");
  1209     // (End diagnostic printout.)
  1211     // Load class if necessary
  1212     if (unloaded_class_index >= 0) {
  1213       constantPoolHandle constants(THREAD, trap_method->constants());
  1214       load_class_by_index(constants, unloaded_class_index);
  1217     // Flush the nmethod if necessary and desirable.
  1218     //
  1219     // We need to avoid situations where we are re-flushing the nmethod
  1220     // because of a hot deoptimization site.  Repeated flushes at the same
  1221     // point need to be detected by the compiler and avoided.  If the compiler
  1222     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1223     // module must take measures to avoid an infinite cycle of recompilation
  1224     // and deoptimization.  There are several such measures:
  1225     //
  1226     //   1. If a recompilation is ordered a second time at some site X
  1227     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1228     //   to give the interpreter time to exercise the method more thoroughly.
  1229     //   If this happens, the method's overflow_recompile_count is incremented.
  1230     //
  1231     //   2. If the compiler fails to reduce the deoptimization rate, then
  1232     //   the method's overflow_recompile_count will begin to exceed the set
  1233     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1234     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1235     //   to the interpreter.  This is a performance hit for hot methods,
  1236     //   but is better than a disastrous infinite cycle of recompilations.
  1237     //   (Actually, only the method containing the site X is abandoned.)
  1238     //
  1239     //   3. In parallel with the previous measures, if the total number of
  1240     //   recompilations of a method exceeds the much larger set limit
  1241     //   PerMethodRecompilationCutoff, the method is abandoned.
  1242     //   This should only happen if the method is very large and has
  1243     //   many "lukewarm" deoptimizations.  The code which enforces this
  1244     //   limit is elsewhere (class nmethod, class methodOopDesc).
  1245     //
  1246     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1247     // to recompile at each bytecode independently of the per-BCI cutoff.
  1248     //
  1249     // The decision to update code is up to the compiler, and is encoded
  1250     // in the Action_xxx code.  If the compiler requests Action_none
  1251     // no trap state is changed, no compiled code is changed, and the
  1252     // computation suffers along in the interpreter.
  1253     //
  1254     // The other action codes specify various tactics for decompilation
  1255     // and recompilation.  Action_maybe_recompile is the loosest, and
  1256     // allows the compiled code to stay around until enough traps are seen,
  1257     // and until the compiler gets around to recompiling the trapping method.
  1258     //
  1259     // The other actions cause immediate removal of the present code.
  1261     bool update_trap_state = true;
  1262     bool make_not_entrant = false;
  1263     bool make_not_compilable = false;
  1264     bool reset_counters = false;
  1265     switch (action) {
  1266     case Action_none:
  1267       // Keep the old code.
  1268       update_trap_state = false;
  1269       break;
  1270     case Action_maybe_recompile:
  1271       // Do not need to invalidate the present code, but we can
  1272       // initiate another
  1273       // Start compiler without (necessarily) invalidating the nmethod.
  1274       // The system will tolerate the old code, but new code should be
  1275       // generated when possible.
  1276       break;
  1277     case Action_reinterpret:
  1278       // Go back into the interpreter for a while, and then consider
  1279       // recompiling form scratch.
  1280       make_not_entrant = true;
  1281       // Reset invocation counter for outer most method.
  1282       // This will allow the interpreter to exercise the bytecodes
  1283       // for a while before recompiling.
  1284       // By contrast, Action_make_not_entrant is immediate.
  1285       //
  1286       // Note that the compiler will track null_check, null_assert,
  1287       // range_check, and class_check events and log them as if they
  1288       // had been traps taken from compiled code.  This will update
  1289       // the MDO trap history so that the next compilation will
  1290       // properly detect hot trap sites.
  1291       reset_counters = true;
  1292       break;
  1293     case Action_make_not_entrant:
  1294       // Request immediate recompilation, and get rid of the old code.
  1295       // Make them not entrant, so next time they are called they get
  1296       // recompiled.  Unloaded classes are loaded now so recompile before next
  1297       // time they are called.  Same for uninitialized.  The interpreter will
  1298       // link the missing class, if any.
  1299       make_not_entrant = true;
  1300       break;
  1301     case Action_make_not_compilable:
  1302       // Give up on compiling this method at all.
  1303       make_not_entrant = true;
  1304       make_not_compilable = true;
  1305       break;
  1306     default:
  1307       ShouldNotReachHere();
  1310     // Setting +ProfileTraps fixes the following, on all platforms:
  1311     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1312     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1313     // recompile relies on a methodDataOop to record heroic opt failures.
  1315     // Whether the interpreter is producing MDO data or not, we also need
  1316     // to use the MDO to detect hot deoptimization points and control
  1317     // aggressive optimization.
  1318     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
  1319       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
  1320       uint this_trap_count = 0;
  1321       bool maybe_prior_trap = false;
  1322       bool maybe_prior_recompile = false;
  1323       ProfileData* pdata
  1324         = query_update_method_data(trap_mdo, trap_bci, reason,
  1325                                    //outputs:
  1326                                    this_trap_count,
  1327                                    maybe_prior_trap,
  1328                                    maybe_prior_recompile);
  1329       // Because the interpreter also counts null, div0, range, and class
  1330       // checks, these traps from compiled code are double-counted.
  1331       // This is harmless; it just means that the PerXTrapLimit values
  1332       // are in effect a little smaller than they look.
  1334       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1335       if (per_bc_reason != Reason_none) {
  1336         // Now take action based on the partially known per-BCI history.
  1337         if (maybe_prior_trap
  1338             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1339           // If there are too many traps at this BCI, force a recompile.
  1340           // This will allow the compiler to see the limit overflow, and
  1341           // take corrective action, if possible.  The compiler generally
  1342           // does not use the exact PerBytecodeTrapLimit value, but instead
  1343           // changes its tactics if it sees any traps at all.  This provides
  1344           // a little hysteresis, delaying a recompile until a trap happens
  1345           // several times.
  1346           //
  1347           // Actually, since there is only one bit of counter per BCI,
  1348           // the possible per-BCI counts are {0,1,(per-method count)}.
  1349           // This produces accurate results if in fact there is only
  1350           // one hot trap site, but begins to get fuzzy if there are
  1351           // many sites.  For example, if there are ten sites each
  1352           // trapping two or more times, they each get the blame for
  1353           // all of their traps.
  1354           make_not_entrant = true;
  1357         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1358         if (make_not_entrant && maybe_prior_recompile) {
  1359           // More than one recompile at this point.
  1360           trap_mdo->inc_overflow_recompile_count();
  1361           if (maybe_prior_trap
  1362               && ((uint)trap_mdo->overflow_recompile_count()
  1363                   > (uint)PerBytecodeRecompilationCutoff)) {
  1364             // Give up on the method containing the bad BCI.
  1365             if (trap_method() == nm->method()) {
  1366               make_not_compilable = true;
  1367             } else {
  1368               trap_method->set_not_compilable();
  1369               // But give grace to the enclosing nm->method().
  1373       } else {
  1374         // For reasons which are not recorded per-bytecode, we simply
  1375         // force recompiles unconditionally.
  1376         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1377         make_not_entrant = true;
  1380       // Go back to the compiler if there are too many traps in this method.
  1381       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1382         // If there are too many traps in this method, force a recompile.
  1383         // This will allow the compiler to see the limit overflow, and
  1384         // take corrective action, if possible.
  1385         // (This condition is an unlikely backstop only, because the
  1386         // PerBytecodeTrapLimit is more likely to take effect first,
  1387         // if it is applicable.)
  1388         make_not_entrant = true;
  1391       // Here's more hysteresis:  If there has been a recompile at
  1392       // this trap point already, run the method in the interpreter
  1393       // for a while to exercise it more thoroughly.
  1394       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1395         reset_counters = true;
  1398       if (make_not_entrant && pdata != NULL) {
  1399         // Record the recompilation event, if any.
  1400         int tstate0 = pdata->trap_state();
  1401         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1402         if (tstate1 != tstate0)
  1403           pdata->set_trap_state(tstate1);
  1407     // Take requested actions on the method:
  1409     // Reset invocation counters
  1410     if (reset_counters) {
  1411       if (nm->is_osr_method())
  1412         reset_invocation_counter(trap_scope, CompileThreshold);
  1413       else
  1414         reset_invocation_counter(trap_scope);
  1417     // Recompile
  1418     if (make_not_entrant) {
  1419       nm->make_not_entrant();
  1422     // Give up compiling
  1423     if (make_not_compilable) {
  1424       assert(make_not_entrant, "consistent");
  1425       nm->method()->set_not_compilable();
  1428   } // Free marked resources
  1431 JRT_END
  1433 methodDataOop
  1434 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1435                                 bool create_if_missing) {
  1436   Thread* THREAD = thread;
  1437   methodDataOop mdo = m()->method_data();
  1438   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1439     // Build an MDO.  Ignore errors like OutOfMemory;
  1440     // that simply means we won't have an MDO to update.
  1441     methodOopDesc::build_interpreter_method_data(m, THREAD);
  1442     if (HAS_PENDING_EXCEPTION) {
  1443       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1444       CLEAR_PENDING_EXCEPTION;
  1446     mdo = m()->method_data();
  1448   return mdo;
  1451 ProfileData*
  1452 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
  1453                                          int trap_bci,
  1454                                          Deoptimization::DeoptReason reason,
  1455                                          //outputs:
  1456                                          uint& ret_this_trap_count,
  1457                                          bool& ret_maybe_prior_trap,
  1458                                          bool& ret_maybe_prior_recompile) {
  1459   uint prior_trap_count = trap_mdo->trap_count(reason);
  1460   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1462   // If the runtime cannot find a place to store trap history,
  1463   // it is estimated based on the general condition of the method.
  1464   // If the method has ever been recompiled, or has ever incurred
  1465   // a trap with the present reason , then this BCI is assumed
  1466   // (pessimistically) to be the culprit.
  1467   bool maybe_prior_trap      = (prior_trap_count != 0);
  1468   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1469   ProfileData* pdata = NULL;
  1472   // For reasons which are recorded per bytecode, we check per-BCI data.
  1473   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1474   if (per_bc_reason != Reason_none) {
  1475     // Find the profile data for this BCI.  If there isn't one,
  1476     // try to allocate one from the MDO's set of spares.
  1477     // This will let us detect a repeated trap at this point.
  1478     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1480     if (pdata != NULL) {
  1481       // Query the trap state of this profile datum.
  1482       int tstate0 = pdata->trap_state();
  1483       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1484         maybe_prior_trap = false;
  1485       if (!trap_state_is_recompiled(tstate0))
  1486         maybe_prior_recompile = false;
  1488       // Update the trap state of this profile datum.
  1489       int tstate1 = tstate0;
  1490       // Record the reason.
  1491       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1492       // Store the updated state on the MDO, for next time.
  1493       if (tstate1 != tstate0)
  1494         pdata->set_trap_state(tstate1);
  1495     } else {
  1496       if (LogCompilation && xtty != NULL)
  1497         // Missing MDP?  Leave a small complaint in the log.
  1498         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1502   // Return results:
  1503   ret_this_trap_count = this_trap_count;
  1504   ret_maybe_prior_trap = maybe_prior_trap;
  1505   ret_maybe_prior_recompile = maybe_prior_recompile;
  1506   return pdata;
  1509 void
  1510 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1511   ResourceMark rm;
  1512   // Ignored outputs:
  1513   uint ignore_this_trap_count;
  1514   bool ignore_maybe_prior_trap;
  1515   bool ignore_maybe_prior_recompile;
  1516   query_update_method_data(trap_mdo, trap_bci,
  1517                            (DeoptReason)reason,
  1518                            ignore_this_trap_count,
  1519                            ignore_maybe_prior_trap,
  1520                            ignore_maybe_prior_recompile);
  1523 void Deoptimization::reset_invocation_counter(ScopeDesc* trap_scope, jint top_count) {
  1524   ScopeDesc* sd = trap_scope;
  1525   for (; !sd->is_top(); sd = sd->sender()) {
  1526     // Reset ICs of inlined methods, since they can trigger compilations also.
  1527     sd->method()->invocation_counter()->reset();
  1529   InvocationCounter* c = sd->method()->invocation_counter();
  1530   if (top_count != _no_count) {
  1531     // It was an OSR method, so bump the count higher.
  1532     c->set(c->state(), top_count);
  1533   } else {
  1534     c->reset();
  1536   sd->method()->backedge_counter()->reset();
  1539 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1541   // Still in Java no safepoints
  1543     // This enters VM and may safepoint
  1544     uncommon_trap_inner(thread, trap_request);
  1546   return fetch_unroll_info_helper(thread);
  1549 // Local derived constants.
  1550 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1551 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1552 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1554 //---------------------------trap_state_reason---------------------------------
  1555 Deoptimization::DeoptReason
  1556 Deoptimization::trap_state_reason(int trap_state) {
  1557   // This assert provides the link between the width of DataLayout::trap_bits
  1558   // and the encoding of "recorded" reasons.  It ensures there are enough
  1559   // bits to store all needed reasons in the per-BCI MDO profile.
  1560   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1561   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1562   trap_state -= recompile_bit;
  1563   if (trap_state == DS_REASON_MASK) {
  1564     return Reason_many;
  1565   } else {
  1566     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1567     return (DeoptReason)trap_state;
  1570 //-------------------------trap_state_has_reason-------------------------------
  1571 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1572   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1573   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1574   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1575   trap_state -= recompile_bit;
  1576   if (trap_state == DS_REASON_MASK) {
  1577     return -1;  // true, unspecifically (bottom of state lattice)
  1578   } else if (trap_state == reason) {
  1579     return 1;   // true, definitely
  1580   } else if (trap_state == 0) {
  1581     return 0;   // false, definitely (top of state lattice)
  1582   } else {
  1583     return 0;   // false, definitely
  1586 //-------------------------trap_state_add_reason-------------------------------
  1587 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1588   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1589   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1590   trap_state -= recompile_bit;
  1591   if (trap_state == DS_REASON_MASK) {
  1592     return trap_state + recompile_bit;     // already at state lattice bottom
  1593   } else if (trap_state == reason) {
  1594     return trap_state + recompile_bit;     // the condition is already true
  1595   } else if (trap_state == 0) {
  1596     return reason + recompile_bit;          // no condition has yet been true
  1597   } else {
  1598     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1601 //-----------------------trap_state_is_recompiled------------------------------
  1602 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1603   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1605 //-----------------------trap_state_set_recompiled-----------------------------
  1606 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1607   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1608   else    return trap_state & ~DS_RECOMPILE_BIT;
  1610 //---------------------------format_trap_state---------------------------------
  1611 // This is used for debugging and diagnostics, including hotspot.log output.
  1612 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1613                                               int trap_state) {
  1614   DeoptReason reason      = trap_state_reason(trap_state);
  1615   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1616   // Re-encode the state from its decoded components.
  1617   int decoded_state = 0;
  1618   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1619     decoded_state = trap_state_add_reason(decoded_state, reason);
  1620   if (recomp_flag)
  1621     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1622   // If the state re-encodes properly, format it symbolically.
  1623   // Because this routine is used for debugging and diagnostics,
  1624   // be robust even if the state is a strange value.
  1625   size_t len;
  1626   if (decoded_state != trap_state) {
  1627     // Random buggy state that doesn't decode??
  1628     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1629   } else {
  1630     len = jio_snprintf(buf, buflen, "%s%s",
  1631                        trap_reason_name(reason),
  1632                        recomp_flag ? " recompiled" : "");
  1634   if (len >= buflen)
  1635     buf[buflen-1] = '\0';
  1636   return buf;
  1640 //--------------------------------statics--------------------------------------
  1641 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1642   = Deoptimization::Action_reinterpret;
  1643 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1644   // Note:  Keep this in sync. with enum DeoptReason.
  1645   "none",
  1646   "null_check",
  1647   "null_assert",
  1648   "range_check",
  1649   "class_check",
  1650   "array_check",
  1651   "intrinsic",
  1652   "unloaded",
  1653   "uninitialized",
  1654   "unreached",
  1655   "unhandled",
  1656   "constraint",
  1657   "div0_check",
  1658   "age"
  1659 };
  1660 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1661   // Note:  Keep this in sync. with enum DeoptAction.
  1662   "none",
  1663   "maybe_recompile",
  1664   "reinterpret",
  1665   "make_not_entrant",
  1666   "make_not_compilable"
  1667 };
  1669 const char* Deoptimization::trap_reason_name(int reason) {
  1670   if (reason == Reason_many)  return "many";
  1671   if ((uint)reason < Reason_LIMIT)
  1672     return _trap_reason_name[reason];
  1673   static char buf[20];
  1674   sprintf(buf, "reason%d", reason);
  1675   return buf;
  1677 const char* Deoptimization::trap_action_name(int action) {
  1678   if ((uint)action < Action_LIMIT)
  1679     return _trap_action_name[action];
  1680   static char buf[20];
  1681   sprintf(buf, "action%d", action);
  1682   return buf;
  1685 // This is used for debugging and diagnostics, including hotspot.log output.
  1686 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1687                                                 int trap_request) {
  1688   jint unloaded_class_index = trap_request_index(trap_request);
  1689   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1690   const char* action = trap_action_name(trap_request_action(trap_request));
  1691   size_t len;
  1692   if (unloaded_class_index < 0) {
  1693     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1694                        reason, action);
  1695   } else {
  1696     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1697                        reason, action, unloaded_class_index);
  1699   if (len >= buflen)
  1700     buf[buflen-1] = '\0';
  1701   return buf;
  1704 juint Deoptimization::_deoptimization_hist
  1705         [Deoptimization::Reason_LIMIT]
  1706     [1 + Deoptimization::Action_LIMIT]
  1707         [Deoptimization::BC_CASE_LIMIT]
  1708   = {0};
  1710 enum {
  1711   LSB_BITS = 8,
  1712   LSB_MASK = right_n_bits(LSB_BITS)
  1713 };
  1715 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1716                                        Bytecodes::Code bc) {
  1717   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1718   assert(action >= 0 && action < Action_LIMIT, "oob");
  1719   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1720   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1721   juint* cases = _deoptimization_hist[reason][1+action];
  1722   juint* bc_counter_addr = NULL;
  1723   juint  bc_counter      = 0;
  1724   // Look for an unused counter, or an exact match to this BC.
  1725   if (bc != Bytecodes::_illegal) {
  1726     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1727       juint* counter_addr = &cases[bc_case];
  1728       juint  counter = *counter_addr;
  1729       if ((counter == 0 && bc_counter_addr == NULL)
  1730           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1731         // this counter is either free or is already devoted to this BC
  1732         bc_counter_addr = counter_addr;
  1733         bc_counter = counter | bc;
  1737   if (bc_counter_addr == NULL) {
  1738     // Overflow, or no given bytecode.
  1739     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1740     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1742   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1745 jint Deoptimization::total_deoptimization_count() {
  1746   return _deoptimization_hist[Reason_none][0][0];
  1749 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1750   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1751   return _deoptimization_hist[reason][0][0];
  1754 void Deoptimization::print_statistics() {
  1755   juint total = total_deoptimization_count();
  1756   juint account = total;
  1757   if (total != 0) {
  1758     ttyLocker ttyl;
  1759     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1760     tty->print_cr("Deoptimization traps recorded:");
  1761     #define PRINT_STAT_LINE(name, r) \
  1762       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1763     PRINT_STAT_LINE("total", total);
  1764     // For each non-zero entry in the histogram, print the reason,
  1765     // the action, and (if specifically known) the type of bytecode.
  1766     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1767       for (int action = 0; action < Action_LIMIT; action++) {
  1768         juint* cases = _deoptimization_hist[reason][1+action];
  1769         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1770           juint counter = cases[bc_case];
  1771           if (counter != 0) {
  1772             char name[1*K];
  1773             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1774             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1775               bc = Bytecodes::_illegal;
  1776             sprintf(name, "%s/%s/%s",
  1777                     trap_reason_name(reason),
  1778                     trap_action_name(action),
  1779                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1780             juint r = counter >> LSB_BITS;
  1781             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1782             account -= r;
  1787     if (account != 0) {
  1788       PRINT_STAT_LINE("unaccounted", account);
  1790     #undef PRINT_STAT_LINE
  1791     if (xtty != NULL)  xtty->tail("statistics");
  1794 #else // COMPILER2
  1797 // Stubs for C1 only system.
  1798 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1799   return false;
  1802 const char* Deoptimization::trap_reason_name(int reason) {
  1803   return "unknown";
  1806 void Deoptimization::print_statistics() {
  1807   // no output
  1810 void
  1811 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1812   // no udpate
  1815 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1816   return 0;
  1819 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1820                                        Bytecodes::Code bc) {
  1821   // no update
  1824 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1825                                               int trap_state) {
  1826   jio_snprintf(buf, buflen, "#%d", trap_state);
  1827   return buf;
  1830 #endif // COMPILER2

mercurial