src/cpu/mips/vm/macroAssembler_mips.cpp

Thu, 07 Sep 2017 09:12:16 +0800

author
aoqi
date
Thu, 07 Sep 2017 09:12:16 +0800
changeset 6880
52ea28d233d2
child 6886
2fa8027581f6
permissions
-rw-r--r--

#5745 [Code Reorganization] code cleanup and code style fix
This is a huge patch, but only code cleanup, code style fix and useless code deletion are included, for example:
tab -> two spaces, deleted spacees at the end of a line, delete useless comments.

This patch also included:
Declaration and definition of class MacroAssembler is moved from assembler_mips.h/cpp to macroAssembler_mips.h/cpp

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2017, Loongson Technology. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/assembler.hpp"
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/macroAssembler.inline.hpp"
    30 #include "compiler/disassembler.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "memory/universe.hpp"
    36 #include "prims/methodHandles.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/interfaceSupport.hpp"
    39 #include "runtime/objectMonitor.hpp"
    40 #include "runtime/os.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "utilities/macros.hpp"
    44 #if INCLUDE_ALL_GCS
    45 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    46 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    47 #include "gc_implementation/g1/heapRegion.hpp"
    48 #endif // INCLUDE_ALL_GCS
    50 // Implementation of MacroAssembler
    52 intptr_t MacroAssembler::i[32] = {0};
    53 float MacroAssembler::f[32] = {0.0};
    55 void MacroAssembler::print(outputStream *s) {
    56   unsigned int k;
    57   for(k=0; k<sizeof(i)/sizeof(i[0]); k++) {
    58     s->print_cr("i%d = 0x%.16lx", k, i[k]);
    59   }
    60   s->cr();
    62   for(k=0; k<sizeof(f)/sizeof(f[0]); k++) {
    63     s->print_cr("f%d = %f", k, f[k]);
    64   }
    65   s->cr();
    66 }
    68 int MacroAssembler::i_offset(unsigned int k) { return (intptr_t)&((MacroAssembler*)0)->i[k]; }
    69 int MacroAssembler::f_offset(unsigned int k) { return (intptr_t)&((MacroAssembler*)0)->f[k]; }
    71 void MacroAssembler::save_registers(MacroAssembler *masm) {
    72 #define __ masm->
    73   for(int k=0; k<32; k++) {
    74     __ sw (as_Register(k), A0, i_offset(k));
    75   }
    77   for(int k=0; k<32; k++) {
    78     __ swc1 (as_FloatRegister(k), A0, f_offset(k));
    79   }
    80 #undef __
    81 }
    83 void MacroAssembler::restore_registers(MacroAssembler *masm) {
    84 #define __ masm->
    85   for(int k=0; k<32; k++) {
    86     __ lw (as_Register(k), A0, i_offset(k));
    87   }
    89   for(int k=0; k<32; k++) {
    90     __ lwc1 (as_FloatRegister(k), A0, f_offset(k));
    91   }
    92 #undef __
    93 }
    96 void MacroAssembler::pd_patch_instruction(address branch, address target) {
    97   jint& stub_inst = *(jint*) branch;
    99 /* *
   100   move(AT, RA); // dadd
   101   emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   102   nop();
   103         lui(T9, 0); // to be patched
   104         ori(T9, 0);
   105   daddu(T9, T9, RA);
   106   move(RA, AT);
   107   jr(T9);
   108  */
   109   if(special(stub_inst) == dadd_op) {
   110     jint *pc = (jint *)branch;
   112     assert(opcode(pc[3]) == lui_op
   113           && opcode(pc[4]) == ori_op
   114           && special(pc[5]) == daddu_op, "Not a branch label patch");
   115     if(!(opcode(pc[3]) == lui_op
   116           && opcode(pc[4]) == ori_op
   117           && special(pc[5]) == daddu_op)) { tty->print_cr("Not a branch label patch"); }
   119     int offset = target - branch;
   120     if (!is_simm16(offset))
   121     {
   122       pc[3] = (pc[3] & 0xffff0000) | high16(offset - 12);
   123       pc[4] = (pc[4] & 0xffff0000) | low16(offset - 12);
   124     }
   125     else
   126     {
   127       /* revert to "beq + nop" */
   128       CodeBuffer cb(branch, 4 * 10);
   129       MacroAssembler masm(&cb);
   130 #define __ masm.
   131       __ b(target);
   132       __ nop();
   133       __ nop();
   134       __ nop();
   135       __ nop();
   136       __ nop();
   137       __ nop();
   138       __ nop();
   139     }
   140     return;
   141   }
   143 #ifndef PRODUCT
   144   if (!is_simm16((target - branch - 4) >> 2))
   145   {
   146     tty->print_cr("Illegal patching: target=0x%lx", target);
   147     int *p = (int *)branch;
   148     for (int i = -10; i < 10; i++)
   149     {
   150        tty->print("0x%lx, ", p[i]);
   151     }
   152     tty->print_cr("");
   153   }
   154 #endif
   156   stub_inst = patched_branch(target - branch, stub_inst, 0);
   157 }
   159 static inline address first_cache_address() {
   160   return CodeCache::low_bound() + sizeof(HeapBlock::Header);
   161 }
   163 static inline address last_cache_address() {
   164   return CodeCache::high_bound() - Assembler::InstructionSize;
   165 }
   167 int MacroAssembler::call_size(address target, bool far, bool patchable) {
   168   if (patchable) return 6 << Assembler::LogInstructionSize;
   169   if (!far) return 2 << Assembler::LogInstructionSize; // jal + nop
   170   return (insts_for_set64((jlong)target) + 2) << Assembler::LogInstructionSize;
   171 }
   173 // Can we reach target using jal/j from anywhere
   174 // in the code cache (because code can be relocated)?
   175 bool MacroAssembler::reachable_from_cache(address target) {
   176   address cl = first_cache_address();
   177   address ch = last_cache_address();
   179   return fit_in_jal(target, cl) && fit_in_jal(target, ch);
   180 }
   182 void MacroAssembler::general_jump(address target) {
   183   if (reachable_from_cache(target)) {
   184     j(target);
   185     nop();
   186   } else {
   187     set64(T9, (long)target);
   188     jr(T9);
   189     nop();
   190   }
   191 }
   193 int MacroAssembler::insts_for_general_jump(address target) {
   194   if (reachable_from_cache(target)) {
   195     //j(target);
   196     //nop();
   197     return 2;
   198   } else {
   199     //set64(T9, (long)target);
   200     //jr(T9);
   201     //nop();
   202     return insts_for_set64((jlong)target) + 2;
   203   }
   204 }
   206 void MacroAssembler::patchable_jump(address target) {
   207   if (reachable_from_cache(target)) {
   208     nop();
   209     nop();
   210     nop();
   211     nop();
   212     j(target);
   213     nop();
   214   } else {
   215     patchable_set48(T9, (long)target);
   216     jr(T9);
   217     nop();
   218   }
   219 }
   221 int MacroAssembler::insts_for_patchable_jump(address target) {
   222   return 6;
   223 }
   225 void MacroAssembler::general_call(address target) {
   226   if (reachable_from_cache(target)) {
   227     jal(target);
   228     nop();
   229   } else {
   230     set64(T9, (long)target);
   231     jalr(T9);
   232     nop();
   233   }
   234 }
   236 int MacroAssembler::insts_for_general_call(address target) {
   237   if (reachable_from_cache(target)) {
   238     //jal(target);
   239     //nop();
   240     return 2;
   241   } else {
   242     //set64(T9, (long)target);
   243     //jalr(T9);
   244     //nop();
   245     return insts_for_set64((jlong)target) + 2;
   246   }
   247 }
   249 void MacroAssembler::patchable_call(address target) {
   250   if (reachable_from_cache(target)) {
   251     nop();
   252     nop();
   253     nop();
   254     nop();
   255     jal(target);
   256     nop();
   257   } else {
   258     patchable_set48(T9, (long)target);
   259     jalr(T9);
   260     nop();
   261   }
   262 }
   264 int MacroAssembler::insts_for_patchable_call(address target) {
   265   return 6;
   266 }
   268 void MacroAssembler::beq_far(Register rs, Register rt, address entry)
   269 {
   270   u_char * cur_pc = pc();
   272   /* Jin: Near/Far jump */
   273   if(is_simm16((entry - pc() - 4) / 4))
   274   {
   275     Assembler::beq(rs, rt, offset(entry));
   276   }
   277   else
   278   {
   279     Label not_jump;
   280     bne(rs, rt, not_jump);
   281     delayed()->nop();
   283     b_far(entry);
   284     delayed()->nop();
   286     bind(not_jump);
   287     has_delay_slot();
   288   }
   289 }
   291 void MacroAssembler::beq_far(Register rs, Register rt, Label& L)
   292 {
   293   if (L.is_bound()) {
   294     beq_far(rs, rt, target(L));
   295   } else {
   296     u_char * cur_pc = pc();
   297     Label not_jump;
   298     bne(rs, rt, not_jump);
   299     delayed()->nop();
   301     b_far(L);
   302     delayed()->nop();
   304     bind(not_jump);
   305     has_delay_slot();
   306   }
   307 }
   309 void MacroAssembler::bne_far(Register rs, Register rt, address entry)
   310 {
   311   u_char * cur_pc = pc();
   313   /* Jin: Near/Far jump */
   314   if(is_simm16((entry - pc() - 4) / 4))
   315   {
   316     Assembler::bne(rs, rt, offset(entry));
   317   }
   318   else
   319   {
   320     Label not_jump;
   321     beq(rs, rt, not_jump);
   322     delayed()->nop();
   324     b_far(entry);
   325     delayed()->nop();
   327     bind(not_jump);
   328     has_delay_slot();
   329   }
   330 }
   332 void MacroAssembler::bne_far(Register rs, Register rt, Label& L)
   333 {
   334   if (L.is_bound()) {
   335     bne_far(rs, rt, target(L));
   336   } else {
   337     u_char * cur_pc = pc();
   338     Label not_jump;
   339     beq(rs, rt, not_jump);
   340     delayed()->nop();
   342     b_far(L);
   343     delayed()->nop();
   345     bind(not_jump);
   346     has_delay_slot();
   347   }
   348 }
   350 void MacroAssembler::b_far(Label& L)
   351 {
   352   if (L.is_bound()) {
   353     b_far(target(L));
   354   } else {
   355   volatile address dest = target(L);
   356 /*
   357 MacroAssembler::pd_patch_instruction branch=55651ed514, target=55651ef6d8
   358    0x00000055651ed514: dadd at, ra, zero
   359    0x00000055651ed518: [4110001]bgezal zero, 0x00000055651ed520
   361    0x00000055651ed51c: sll zero, zero, 0
   362    0x00000055651ed520: lui t9, 0x0
   363    0x00000055651ed524: ori t9, t9, 0x21b8
   364    0x00000055651ed528: daddu t9, t9, ra
   365    0x00000055651ed52c: dadd ra, at, zero
   366    0x00000055651ed530: jr t9
   367    0x00000055651ed534: sll zero, zero, 0
   368 */
   369   move(AT, RA);
   370   emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   371   nop();
   372         lui(T9, 0); // to be patched
   373         ori(T9, T9, 0);
   374   daddu(T9, T9, RA);
   375   move(RA, AT);
   376   jr(T9);
   377   }
   378 }
   380 void MacroAssembler::b_far(address entry)
   381 {
   382   u_char * cur_pc = pc();
   384   /* Jin: Near/Far jump */
   385   if(is_simm16((entry - pc() - 4) / 4))
   386   {
   387     b(offset(entry));
   388   }
   389   else
   390   {
   391     /* address must be bounded */
   392     move(AT, RA);
   393      emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   394     nop();
   395     li32(T9, entry - pc());
   396     daddu(T9, T9, RA);
   397     move(RA, AT);
   398     jr(T9);
   399   }
   400 }
   402 void MacroAssembler::ld_ptr(Register rt, Register offset, Register base) {
   403   addu_long(AT, base, offset);
   404   ld_ptr(rt, 0, AT);
   405 }
   407 void MacroAssembler::st_ptr(Register rt, Register offset, Register base) {
   408   addu_long(AT, base, offset);
   409   st_ptr(rt, 0, AT);
   410 }
   412 void MacroAssembler::ld_long(Register rt, Register offset, Register base) {
   413   addu_long(AT, base, offset);
   414   ld_long(rt, 0, AT);
   415 }
   417 void MacroAssembler::st_long(Register rt, Register offset, Register base) {
   418   addu_long(AT, base, offset);
   419   st_long(rt, 0, AT);
   420 }
   422 Address MacroAssembler::as_Address(AddressLiteral adr) {
   423   return Address(adr.target(), adr.rspec());
   424 }
   426 Address MacroAssembler::as_Address(ArrayAddress adr) {
   427   return Address::make_array(adr);
   428 }
   430 // tmp_reg1 and tmp_reg2 should be saved outside of atomic_inc32 (caller saved).
   431 void MacroAssembler::atomic_inc32(address counter_addr, int inc, Register tmp_reg1, Register tmp_reg2) {
   432   Label again;
   434   li(tmp_reg1, counter_addr);
   435   bind(again);
   436   if(!Use3A2000) sync();
   437   ll(tmp_reg2, tmp_reg1, 0);
   438   addi(tmp_reg2, tmp_reg2, inc);
   439   sc(tmp_reg2, tmp_reg1, 0);
   440   beq(tmp_reg2, R0, again);
   441   delayed()->nop();
   442 }
   444 int MacroAssembler::biased_locking_enter(Register lock_reg,
   445                                          Register obj_reg,
   446                                          Register swap_reg,
   447                                          Register tmp_reg,
   448                                          bool swap_reg_contains_mark,
   449                                          Label& done,
   450                                          Label* slow_case,
   451                                          BiasedLockingCounters* counters) {
   452   assert(UseBiasedLocking, "why call this otherwise?");
   453   bool need_tmp_reg = false;
   454   if (tmp_reg == noreg) {
   455     need_tmp_reg = true;
   456     tmp_reg = T9;
   457   }
   458   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, AT);
   459   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   460   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   461   Address saved_mark_addr(lock_reg, 0);
   463   // Biased locking
   464   // See whether the lock is currently biased toward our thread and
   465   // whether the epoch is still valid
   466   // Note that the runtime guarantees sufficient alignment of JavaThread
   467   // pointers to allow age to be placed into low bits
   468   // First check to see whether biasing is even enabled for this object
   469   Label cas_label;
   470   int null_check_offset = -1;
   471   if (!swap_reg_contains_mark) {
   472     null_check_offset = offset();
   473     ld_ptr(swap_reg, mark_addr);
   474   }
   476   if (need_tmp_reg) {
   477     push(tmp_reg);
   478   }
   479   move(tmp_reg, swap_reg);
   480   andi(tmp_reg, tmp_reg, markOopDesc::biased_lock_mask_in_place);
   481 #ifdef _LP64
   482   daddi(AT, R0, markOopDesc::biased_lock_pattern);
   483   dsub(AT, AT, tmp_reg);
   484 #else
   485   addi(AT, R0, markOopDesc::biased_lock_pattern);
   486   sub(AT, AT, tmp_reg);
   487 #endif
   488   if (need_tmp_reg) {
   489     pop(tmp_reg);
   490   }
   492   bne(AT, R0, cas_label);
   493   delayed()->nop();
   496   // The bias pattern is present in the object's header. Need to check
   497   // whether the bias owner and the epoch are both still current.
   498   // Note that because there is no current thread register on MIPS we
   499   // need to store off the mark word we read out of the object to
   500   // avoid reloading it and needing to recheck invariants below. This
   501   // store is unfortunate but it makes the overall code shorter and
   502   // simpler.
   503   st_ptr(swap_reg, saved_mark_addr);
   504   if (need_tmp_reg) {
   505     push(tmp_reg);
   506   }
   507   if (swap_reg_contains_mark) {
   508     null_check_offset = offset();
   509   }
   510   load_prototype_header(tmp_reg, obj_reg);
   511   xorr(tmp_reg, tmp_reg, swap_reg);
   512   get_thread(swap_reg);
   513   xorr(swap_reg, swap_reg, tmp_reg);
   515   move(AT, ~((int) markOopDesc::age_mask_in_place));
   516   andr(swap_reg, swap_reg, AT);
   518   if (PrintBiasedLockingStatistics) {
   519     Label L;
   520     bne(swap_reg, R0, L);
   521     delayed()->nop();
   522     push(tmp_reg);
   523     push(A0);
   524     atomic_inc32((address)BiasedLocking::biased_lock_entry_count_addr(), 1, A0, tmp_reg);
   525     pop(A0);
   526     pop(tmp_reg);
   527     bind(L);
   528   }
   529   if (need_tmp_reg) {
   530     pop(tmp_reg);
   531   }
   532   beq(swap_reg, R0, done);
   533   delayed()->nop();
   534   Label try_revoke_bias;
   535   Label try_rebias;
   537   // At this point we know that the header has the bias pattern and
   538   // that we are not the bias owner in the current epoch. We need to
   539   // figure out more details about the state of the header in order to
   540   // know what operations can be legally performed on the object's
   541   // header.
   543   // If the low three bits in the xor result aren't clear, that means
   544   // the prototype header is no longer biased and we have to revoke
   545   // the bias on this object.
   547   move(AT, markOopDesc::biased_lock_mask_in_place);
   548   andr(AT, swap_reg, AT);
   549   bne(AT, R0, try_revoke_bias);
   550   delayed()->nop();
   551   // Biasing is still enabled for this data type. See whether the
   552   // epoch of the current bias is still valid, meaning that the epoch
   553   // bits of the mark word are equal to the epoch bits of the
   554   // prototype header. (Note that the prototype header's epoch bits
   555   // only change at a safepoint.) If not, attempt to rebias the object
   556   // toward the current thread. Note that we must be absolutely sure
   557   // that the current epoch is invalid in order to do this because
   558   // otherwise the manipulations it performs on the mark word are
   559   // illegal.
   561   move(AT, markOopDesc::epoch_mask_in_place);
   562   andr(AT,swap_reg, AT);
   563   bne(AT, R0, try_rebias);
   564   delayed()->nop();
   565   // The epoch of the current bias is still valid but we know nothing
   566   // about the owner; it might be set or it might be clear. Try to
   567   // acquire the bias of the object using an atomic operation. If this
   568   // fails we will go in to the runtime to revoke the object's bias.
   569   // Note that we first construct the presumed unbiased header so we
   570   // don't accidentally blow away another thread's valid bias.
   572   ld_ptr(swap_reg, saved_mark_addr);
   574   move(AT, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   575   andr(swap_reg, swap_reg, AT);
   577   if (need_tmp_reg) {
   578     push(tmp_reg);
   579   }
   580   get_thread(tmp_reg);
   581   orr(tmp_reg, tmp_reg, swap_reg);
   582   //if (os::is_MP()) {
   583   //  sync();
   584   //}
   585   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   586   if (need_tmp_reg) {
   587     pop(tmp_reg);
   588   }
   589   // If the biasing toward our thread failed, this means that
   590   // another thread succeeded in biasing it toward itself and we
   591   // need to revoke that bias. The revocation will occur in the
   592   // interpreter runtime in the slow case.
   593   if (PrintBiasedLockingStatistics) {
   594     Label L;
   595     bne(AT, R0, L);
   596     delayed()->nop();
   597     push(tmp_reg);
   598     push(A0);
   599     atomic_inc32((address)BiasedLocking::anonymously_biased_lock_entry_count_addr(), 1, A0, tmp_reg);
   600     pop(A0);
   601     pop(tmp_reg);
   602     bind(L);
   603   }
   604   if (slow_case != NULL) {
   605     beq_far(AT, R0, *slow_case);
   606     delayed()->nop();
   607   }
   608   b(done);
   609   delayed()->nop();
   611   bind(try_rebias);
   612   // At this point we know the epoch has expired, meaning that the
   613   // current "bias owner", if any, is actually invalid. Under these
   614   // circumstances _only_, we are allowed to use the current header's
   615   // value as the comparison value when doing the cas to acquire the
   616   // bias in the current epoch. In other words, we allow transfer of
   617   // the bias from one thread to another directly in this situation.
   618   //
   619   // FIXME: due to a lack of registers we currently blow away the age
   620   // bits in this situation. Should attempt to preserve them.
   621   if (need_tmp_reg) {
   622     push(tmp_reg);
   623   }
   624   load_prototype_header(tmp_reg, obj_reg);
   625   get_thread(swap_reg);
   626   orr(tmp_reg, tmp_reg, swap_reg);
   627   ld_ptr(swap_reg, saved_mark_addr);
   629   //if (os::is_MP()) {
   630   //  sync();
   631   //}
   632   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   633   if (need_tmp_reg) {
   634     pop(tmp_reg);
   635   }
   636   // If the biasing toward our thread failed, then another thread
   637   // succeeded in biasing it toward itself and we need to revoke that
   638   // bias. The revocation will occur in the runtime in the slow case.
   639   if (PrintBiasedLockingStatistics) {
   640     Label L;
   641     bne(AT, R0, L);
   642     delayed()->nop();
   643     push(AT);
   644     push(tmp_reg);
   645     atomic_inc32((address)BiasedLocking::rebiased_lock_entry_count_addr(), 1, AT, tmp_reg);
   646     pop(tmp_reg);
   647     pop(AT);
   648     bind(L);
   649   }
   650   if (slow_case != NULL) {
   651     beq_far(AT, R0, *slow_case);
   652     delayed()->nop();
   653   }
   655   b(done);
   656   delayed()->nop();
   657   bind(try_revoke_bias);
   658   // The prototype mark in the klass doesn't have the bias bit set any
   659   // more, indicating that objects of this data type are not supposed
   660   // to be biased any more. We are going to try to reset the mark of
   661   // this object to the prototype value and fall through to the
   662   // CAS-based locking scheme. Note that if our CAS fails, it means
   663   // that another thread raced us for the privilege of revoking the
   664   // bias of this particular object, so it's okay to continue in the
   665   // normal locking code.
   666   //
   667   // FIXME: due to a lack of registers we currently blow away the age
   668   // bits in this situation. Should attempt to preserve them.
   669   ld_ptr(swap_reg, saved_mark_addr);
   671   if (need_tmp_reg) {
   672     push(tmp_reg);
   673   }
   674   load_prototype_header(tmp_reg, obj_reg);
   675   //if (os::is_MP()) {
   676   // lock();
   677   //}
   678   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   679   if (need_tmp_reg) {
   680     pop(tmp_reg);
   681   }
   682   // Fall through to the normal CAS-based lock, because no matter what
   683   // the result of the above CAS, some thread must have succeeded in
   684   // removing the bias bit from the object's header.
   685   if (PrintBiasedLockingStatistics) {
   686     Label L;
   687     bne(AT, R0, L);
   688     delayed()->nop();
   689     push(AT);
   690     push(tmp_reg);
   691     atomic_inc32((address)BiasedLocking::revoked_lock_entry_count_addr(), 1, AT, tmp_reg);
   692     pop(tmp_reg);
   693     pop(AT);
   694     bind(L);
   695   }
   697   bind(cas_label);
   698   return null_check_offset;
   699 }
   701 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
   702   assert(UseBiasedLocking, "why call this otherwise?");
   704   // Check for biased locking unlock case, which is a no-op
   705   // Note: we do not have to check the thread ID for two reasons.
   706   // First, the interpreter checks for IllegalMonitorStateException at
   707   // a higher level. Second, if the bias was revoked while we held the
   708   // lock, the object could not be rebiased toward another thread, so
   709   // the bias bit would be clear.
   710 #ifdef _LP64
   711   ld(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
   712   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
   713   daddi(AT, R0, markOopDesc::biased_lock_pattern);
   714 #else
   715   lw(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
   716   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
   717   addi(AT, R0, markOopDesc::biased_lock_pattern);
   718 #endif
   720   beq(AT, temp_reg, done);
   721   delayed()->nop();
   722 }
   724 // NOTE: we dont increment the SP after call like the x86 version, maybe this is a problem, FIXME.
   725 // the stack pointer adjustment is needed. see InterpreterMacroAssembler::super_call_VM_leaf
   726 // this method will handle the stack problem, you need not to preserve the stack space for the argument now
   727 void MacroAssembler::call_VM_leaf_base(address entry_point,
   728     int number_of_arguments) {
   729   //call(RuntimeAddress(entry_point));
   730   //increment(rsp, number_of_arguments * wordSize);
   731   Label L, E;
   733   assert(number_of_arguments <= 4, "just check");
   735   andi(AT, SP, 0xf);
   736   beq(AT, R0, L);
   737   delayed()->nop();
   738   daddi(SP, SP, -8);
   739   call(entry_point, relocInfo::runtime_call_type);
   740   delayed()->nop();
   741   daddi(SP, SP, 8);
   742   b(E);
   743   delayed()->nop();
   745   bind(L);
   746   call(entry_point, relocInfo::runtime_call_type);
   747   delayed()->nop();
   748   bind(E);
   749 }
   752 void MacroAssembler::jmp(address entry) {
   753   patchable_set48(T9, (long)entry);
   754   jr(T9);
   755 }
   757 void MacroAssembler::jmp(address entry, relocInfo::relocType rtype) {
   758   switch (rtype) {
   759     case relocInfo::runtime_call_type:
   760     case relocInfo::none:
   761       jmp(entry);
   762       break;
   763     default:
   764       {
   765       InstructionMark im(this);
   766       relocate(rtype);
   767       patchable_set48(T9, (long)entry);
   768       jr(T9);
   769       }
   770       break;
   771   }
   772 }
   774 void MacroAssembler::call(address entry) {
   775 // c/c++ code assume T9 is entry point, so we just always move entry to t9
   776 // maybe there is some more graceful method to handle this. FIXME
   777 // For more info, see class NativeCall.
   778 #ifndef _LP64
   779   move(T9, (int)entry);
   780 #else
   781   patchable_set48(T9, (long)entry);
   782 #endif
   783   jalr(T9);
   784 }
   786 void MacroAssembler::call(address entry, relocInfo::relocType rtype) {
   787   switch (rtype) {
   788     case relocInfo::runtime_call_type:
   789     case relocInfo::none:
   790       call(entry);
   791       break;
   792     default:
   793       {
   794   InstructionMark im(this);
   795   relocate(rtype);
   796   call(entry);
   797       }
   798       break;
   799   }
   800 }
   802 void MacroAssembler::call(address entry, RelocationHolder& rh)
   803 {
   804   switch (rh.type()) {
   805     case relocInfo::runtime_call_type:
   806     case relocInfo::none:
   807       call(entry);
   808       break;
   809     default:
   810       {
   811   InstructionMark im(this);
   812   relocate(rh);
   813   call(entry);
   814       }
   815       break;
   816   }
   817 }
   819 void MacroAssembler::ic_call(address entry) {
   820   RelocationHolder rh = virtual_call_Relocation::spec(pc());
   821   patchable_set48(IC_Klass, (long)Universe::non_oop_word());
   822   assert(entry != NULL, "call most probably wrong");
   823   InstructionMark im(this);
   824   relocate(rh);
   825         patchable_call(entry);
   826 }
   828 void MacroAssembler::c2bool(Register r) {
   829   Label L;
   830   Assembler::beq(r, R0, L);
   831   delayed()->nop();
   832   move(r, 1);
   833   bind(L);
   834 }
   836 #ifndef PRODUCT
   837 extern "C" void findpc(intptr_t x);
   838 #endif
   840 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   841   // In order to get locks to work, we need to fake a in_VM state
   842   JavaThread* thread = JavaThread::current();
   843   JavaThreadState saved_state = thread->thread_state();
   844   thread->set_thread_state(_thread_in_vm);
   845   if (ShowMessageBoxOnError) {
   846     JavaThread* thread = JavaThread::current();
   847     JavaThreadState saved_state = thread->thread_state();
   848     thread->set_thread_state(_thread_in_vm);
   849     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   850       ttyLocker ttyl;
   851       BytecodeCounter::print();
   852     }
   853     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   854     // This is the value of eip which points to where verify_oop will return.
   855     if (os::message_box(msg, "Execution stopped, print registers?")) {
   856       ttyLocker ttyl;
   857       tty->print_cr("eip = 0x%08x", eip);
   858 #ifndef PRODUCT
   859       tty->cr();
   860       findpc(eip);
   861       tty->cr();
   862 #endif
   863       tty->print_cr("rax, = 0x%08x", rax);
   864       tty->print_cr("rbx, = 0x%08x", rbx);
   865       tty->print_cr("rcx = 0x%08x", rcx);
   866       tty->print_cr("rdx = 0x%08x", rdx);
   867       tty->print_cr("rdi = 0x%08x", rdi);
   868       tty->print_cr("rsi = 0x%08x", rsi);
   869       tty->print_cr("rbp, = 0x%08x", rbp);
   870       tty->print_cr("rsp = 0x%08x", rsp);
   871       BREAKPOINT;
   872     }
   873   } else {
   874     ttyLocker ttyl;
   875     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   876     assert(false, "DEBUG MESSAGE");
   877   }
   878   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   879 }
   881 void MacroAssembler::debug(char* msg/*, RegistersForDebugging* regs*/) {
   882   if ( ShowMessageBoxOnError ) {
   883     JavaThreadState saved_state = JavaThread::current()->thread_state();
   884     JavaThread::current()->set_thread_state(_thread_in_vm);
   885     {
   886       // In order to get locks work, we need to fake a in_VM state
   887       ttyLocker ttyl;
   888       ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
   889       if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   890   BytecodeCounter::print();
   891       }
   893       //      if (os::message_box(msg, "Execution stopped, print registers?"))
   894       //        regs->print(::tty);
   895     }
   896     ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
   897   }
   898   else
   899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   900 }
   903 void MacroAssembler::stop(const char* msg) {
   904   li(A0, (long)msg);
   905 #ifndef _LP64
   906   //reserver space for argument. added by yjl 7/10/2005
   907   addiu(SP, SP, - 1 * wordSize);
   908 #endif
   909   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   910   delayed()->nop();
   911 #ifndef _LP64
   912   //restore space for argument
   913   addiu(SP, SP, 1 * wordSize);
   914 #endif
   915   brk(17);
   916 }
   918 void MacroAssembler::warn(const char* msg) {
   919 #ifdef _LP64
   920   pushad();
   921   li(A0, (long)msg);
   922   push(S2);
   923   move(AT, -(StackAlignmentInBytes));
   924   move(S2, SP);     // use S2 as a sender SP holder
   925   andr(SP, SP, AT); // align stack as required by ABI
   926   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   927   delayed()->nop();
   928   move(SP, S2);     // use S2 as a sender SP holder
   929   pop(S2);
   930   popad();
   931 #else
   932   pushad();
   933   addi(SP, SP, -4);
   934   sw(A0, SP, -1 * wordSize);
   935   li(A0, (long)msg);
   936   addi(SP, SP, -1 * wordSize);
   937   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   938   delayed()->nop();
   939   addi(SP, SP, 1 * wordSize);
   940   lw(A0, SP, -1 * wordSize);
   941   addi(SP, SP, 4);
   942   popad();
   943 #endif
   944 }
   946 void MacroAssembler::print_reg(Register reg) {
   947 /*
   948 char *s = getenv("PRINT_REG");
   949 if (s == NULL)
   950   return;
   951 if (strcmp(s, "1") != 0)
   952   return;
   953 */
   954   void * cur_pc = pc();
   955   pushad();
   956   NOT_LP64(push(FP);)
   958   li(A0, (long)reg->name());
   959   if (reg == SP)
   960     addiu(A1, SP, wordSize * 23); //23 registers saved in pushad()
   961   else if (reg == A0)
   962     ld(A1, SP, wordSize * 19); //A0 has been modified by li(A0, (long)reg->name()). Ugly Code!
   963   else
   964     move(A1, reg);
   965   li(A2, (long)cur_pc);
   966   push(S2);
   967   move(AT, -(StackAlignmentInBytes));
   968   move(S2, SP);     // use S2 as a sender SP holder
   969   andr(SP, SP, AT); // align stack as required by ABI
   970   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_reg_with_pc),relocInfo::runtime_call_type);
   971   delayed()->nop();
   972   move(SP, S2);     // use S2 as a sender SP holder
   973   pop(S2);
   974   NOT_LP64(pop(FP);)
   975   popad();
   977 /*
   978   pushad();
   979 #ifdef _LP64
   980   if (reg == SP)
   981     addiu(A0, SP, wordSize * 23); //23 registers saved in pushad()
   982   else
   983     move(A0, reg);
   984   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_long),relocInfo::runtime_call_type);
   985   delayed()->nop();
   986 #else
   987   push(FP);
   988   move(A0, reg);
   989   dsrl32(A1, reg, 0);
   990   //call(CAST_FROM_FN_PTR(address, SharedRuntime::print_int),relocInfo::runtime_call_type);
   991   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_long),relocInfo::runtime_call_type);
   992   delayed()->nop();
   993   pop(FP);
   994 #endif
   995   popad();
   996   pushad();
   997   NOT_LP64(push(FP);)
   998   char b[50];
   999   sprintf((char *)b, " pc: %p\n",cur_pc);
  1000   li(A0, (long)(char *)b);
  1001   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1002   delayed()->nop();
  1003   NOT_LP64(pop(FP);)
  1004   popad();
  1005 */
  1008 void MacroAssembler::print_reg(FloatRegister reg) {
  1009   void * cur_pc = pc();
  1010   pushad();
  1011   NOT_LP64(push(FP);)
  1012   li(A0, (long)reg->name());
  1013   push(S2);
  1014   move(AT, -(StackAlignmentInBytes));
  1015   move(S2, SP);     // use S2 as a sender SP holder
  1016   andr(SP, SP, AT); // align stack as required by ABI
  1017   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1018   delayed()->nop();
  1019   move(SP, S2);     // use S2 as a sender SP holder
  1020   pop(S2);
  1021   NOT_LP64(pop(FP);)
  1022   popad();
  1024   pushad();
  1025   NOT_LP64(push(FP);)
  1026 #if 1
  1027   move(FP, SP);
  1028   move(AT, -(StackAlignmentInBytes));
  1029   andr(SP , SP , AT);
  1030   mov_d(F12, reg);
  1031   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_double),relocInfo::runtime_call_type);
  1032   delayed()->nop();
  1033   move(SP, FP);
  1034 #else
  1035   mov_s(F12, reg);
  1036   //call(CAST_FROM_FN_PTR(address, SharedRuntime::print_float),relocInfo::runtime_call_type);
  1037   //delayed()->nop();
  1038 #endif
  1039   NOT_LP64(pop(FP);)
  1040   popad();
  1042 #if 0
  1043   pushad();
  1044   NOT_LP64(push(FP);)
  1045   char* b = new char[50];
  1046   sprintf(b, " pc: %p\n", cur_pc);
  1047   li(A0, (long)b);
  1048   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1049   delayed()->nop();
  1050   NOT_LP64(pop(FP);)
  1051   popad();
  1052 #endif
  1055 void MacroAssembler::increment(Register reg, int imm) {
  1056   if (!imm) return;
  1057   if (is_simm16(imm)) {
  1058 #ifdef _LP64
  1059     daddiu(reg, reg, imm);
  1060 #else
  1061     addiu(reg, reg, imm);
  1062 #endif
  1063   } else {
  1064     move(AT, imm);
  1065 #ifdef _LP64
  1066     daddu(reg, reg, AT);
  1067 #else
  1068     addu(reg, reg, AT);
  1069 #endif
  1073 void MacroAssembler::decrement(Register reg, int imm) {
  1074   increment(reg, -imm);
  1078 void MacroAssembler::call_VM(Register oop_result,
  1079                              address entry_point,
  1080                              bool check_exceptions) {
  1081   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  1084 void MacroAssembler::call_VM(Register oop_result,
  1085                              address entry_point,
  1086                              Register arg_1,
  1087                              bool check_exceptions) {
  1088   if (arg_1!=A1) move(A1, arg_1);
  1089   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  1092 void MacroAssembler::call_VM(Register oop_result,
  1093                              address entry_point,
  1094                              Register arg_1,
  1095                              Register arg_2,
  1096                              bool check_exceptions) {
  1097   if (arg_1!=A1) move(A1, arg_1);
  1098   if (arg_2!=A2) move(A2, arg_2);
  1099   assert(arg_2 != A1, "smashed argument");
  1100   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  1103 void MacroAssembler::call_VM(Register oop_result,
  1104                              address entry_point,
  1105                              Register arg_1,
  1106                              Register arg_2,
  1107                              Register arg_3,
  1108                              bool check_exceptions) {
  1109   if (arg_1!=A1) move(A1, arg_1);
  1110   if (arg_2!=A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1111   if (arg_3!=A3) move(A3, arg_3); assert(arg_3 != A1 && arg_3 != A2, "smashed argument");
  1112   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  1115 void MacroAssembler::call_VM(Register oop_result,
  1116                              Register last_java_sp,
  1117                              address entry_point,
  1118                              int number_of_arguments,
  1119                              bool check_exceptions) {
  1120   call_VM_base(oop_result, NOREG, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1123 void MacroAssembler::call_VM(Register oop_result,
  1124                              Register last_java_sp,
  1125                              address entry_point,
  1126                              Register arg_1,
  1127                              bool check_exceptions) {
  1128   if (arg_1 != A1) move(A1, arg_1);
  1129   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1132 void MacroAssembler::call_VM(Register oop_result,
  1133                              Register last_java_sp,
  1134                              address entry_point,
  1135                              Register arg_1,
  1136                              Register arg_2,
  1137                              bool check_exceptions) {
  1138   if (arg_1 != A1) move(A1, arg_1);
  1139   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1140   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1143 void MacroAssembler::call_VM(Register oop_result,
  1144                              Register last_java_sp,
  1145                              address entry_point,
  1146                              Register arg_1,
  1147                              Register arg_2,
  1148                              Register arg_3,
  1149                              bool check_exceptions) {
  1150   if (arg_1 != A1) move(A1, arg_1);
  1151   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1152   if (arg_3 != A3) move(A3, arg_3); assert(arg_3 != A1 && arg_3 != A2, "smashed argument");
  1153   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1156 void MacroAssembler::call_VM_base(Register oop_result,
  1157                                   Register java_thread,
  1158                                   Register last_java_sp,
  1159                                   address  entry_point,
  1160                                   int      number_of_arguments,
  1161           bool     check_exceptions) {
  1163   address before_call_pc;
  1164   // determine java_thread register
  1165   if (!java_thread->is_valid()) {
  1166 #ifndef OPT_THREAD
  1167     java_thread = T2;
  1168     get_thread(java_thread);
  1169 #else
  1170     java_thread = TREG;
  1171 #endif
  1173   // determine last_java_sp register
  1174   if (!last_java_sp->is_valid()) {
  1175     last_java_sp = SP;
  1177   // debugging support
  1178   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1179   assert(number_of_arguments <= 4   , "cannot have negative number of arguments");
  1180   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  1181   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  1183   assert(last_java_sp != FP, "this code doesn't work for last_java_sp == fp, which currently can't portably work anyway since C2 doesn't save ebp");
  1185   // set last Java frame before call
  1186   before_call_pc = (address)pc();
  1187   set_last_Java_frame(java_thread, last_java_sp, FP, before_call_pc);
  1189   // do the call
  1190   move(A0, java_thread);
  1191   call(entry_point, relocInfo::runtime_call_type);
  1192   delayed()->nop();
  1194   // restore the thread (cannot use the pushed argument since arguments
  1195   // may be overwritten by C code generated by an optimizing compiler);
  1196   // however can use the register value directly if it is callee saved.
  1197 #ifndef OPT_THREAD
  1198   if (java_thread >=S0 && java_thread <=S7) {
  1199 #ifdef ASSERT
  1200     { Label L;
  1201       get_thread(AT);
  1202       beq(java_thread, AT, L);
  1203       delayed()->nop();
  1204       stop("MacroAssembler::call_VM_base: edi not callee saved?");
  1205       bind(L);
  1207 #endif
  1208   } else {
  1209     get_thread(java_thread);
  1211 #endif
  1213   // discard thread and arguments
  1214   ld_ptr(SP, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1215   // reset last Java frame
  1216   reset_last_Java_frame(java_thread, false, true);
  1218   check_and_handle_popframe(java_thread);
  1219   check_and_handle_earlyret(java_thread);
  1220   if (check_exceptions) {
  1221     // check for pending exceptions (java_thread is set upon return)
  1222     Label L;
  1223 #ifdef _LP64
  1224     ld(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
  1225 #else
  1226     lw(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
  1227 #endif
  1228     beq(AT, R0, L);
  1229     delayed()->nop();
  1230     li(AT, before_call_pc);
  1231     push(AT);
  1232     jmp(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1233     delayed()->nop();
  1234     bind(L);
  1237   // get oop result if there is one and reset the value in the thread
  1238   if (oop_result->is_valid()) {
  1239 #ifdef _LP64
  1240     ld(oop_result, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1241     sd(R0, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1242 #else
  1243     lw(oop_result, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1244     sw(R0, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1245 #endif
  1246     verify_oop(oop_result);
  1250 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1252   move(V0, SP);
  1253   //we also reserve space for java_thread here
  1254 #ifndef _LP64
  1255   daddi(SP, SP, (1 + number_of_arguments) * (- wordSize));
  1256 #endif
  1257   move(AT, -(StackAlignmentInBytes));
  1258   andr(SP, SP, AT);
  1259   call_VM_base(oop_result, NOREG, V0, entry_point, number_of_arguments, check_exceptions);
  1263 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  1264   call_VM_leaf_base(entry_point, number_of_arguments);
  1267 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  1268   if (arg_0 != A0) move(A0, arg_0);
  1269   call_VM_leaf(entry_point, 1);
  1272 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1273   if (arg_0 != A0) move(A0, arg_0);
  1274   if (arg_1 != A1) move(A1, arg_1); assert(arg_1 != A0, "smashed argument");
  1275   call_VM_leaf(entry_point, 2);
  1278 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1279   if (arg_0 != A0) move(A0, arg_0);
  1280   if (arg_1 != A1) move(A1, arg_1); assert(arg_1 != A0, "smashed argument");
  1281   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A0 && arg_2 != A1, "smashed argument");
  1282   call_VM_leaf(entry_point, 3);
  1284 void MacroAssembler::super_call_VM_leaf(address entry_point) {
  1285   MacroAssembler::call_VM_leaf_base(entry_point, 0);
  1289 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1290                                                    Register arg_1) {
  1291   if (arg_1 != A0) move(A0, arg_1);
  1292   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  1296 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1297                                                    Register arg_1,
  1298                                                    Register arg_2) {
  1299   if (arg_1 != A0) move(A0, arg_1);
  1300   if (arg_2 != A1) move(A1, arg_2); assert(arg_2 != A0, "smashed argument");
  1301   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  1303 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1304                                                    Register arg_1,
  1305                                                    Register arg_2,
  1306                                                    Register arg_3) {
  1307   if (arg_1 != A0) move(A0, arg_1);
  1308   if (arg_2 != A1) move(A1, arg_2); assert(arg_2 != A0, "smashed argument");
  1309   if (arg_3 != A2) move(A2, arg_3); assert(arg_3 != A0 && arg_3 != A1, "smashed argument");
  1310   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  1313 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  1316 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  1319 void MacroAssembler::null_check(Register reg, int offset) {
  1320   if (needs_explicit_null_check(offset)) {
  1321     // provoke OS NULL exception if reg = NULL by
  1322     // accessing M[reg] w/o changing any (non-CC) registers
  1323     // NOTE: cmpl is plenty here to provoke a segv
  1324     lw(AT, reg, 0);
  1325 /* Jin
  1326     nop();
  1327     nop();
  1328     nop();
  1329 */
  1330     // Note: should probably use testl(rax, Address(reg, 0));
  1331     //       may be shorter code (however, this version of
  1332     //       testl needs to be implemented first)
  1333   } else {
  1334     // nothing to do, (later) access of M[reg + offset]
  1335     // will provoke OS NULL exception if reg = NULL
  1339 void MacroAssembler::enter() {
  1340   push2(RA, FP);
  1341   move(FP, SP);
  1344 void MacroAssembler::leave() {
  1345 #ifndef _LP64
  1346   //move(SP, FP);
  1347   //pop2(FP, RA);
  1348   addi(SP, FP, 2 * wordSize);
  1349   lw(RA, SP, - 1 * wordSize);
  1350   lw(FP, SP, - 2 * wordSize);
  1351 #else
  1352   daddi(SP, FP, 2 * wordSize);
  1353   ld(RA, SP, - 1 * wordSize);
  1354   ld(FP, SP, - 2 * wordSize);
  1355 #endif
  1357 /*
  1358 void MacroAssembler::os_breakpoint() {
  1359   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  1360   // (e.g., MSVC can't call ps() otherwise)
  1361   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  1363 */
  1364 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  1365   // determine java_thread register
  1366   if (!java_thread->is_valid()) {
  1367 #ifndef OPT_THREAD
  1368     java_thread = T1;
  1369     get_thread(java_thread);
  1370 #else
  1371     java_thread = TREG;
  1372 #endif
  1374   // we must set sp to zero to clear frame
  1375   st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1376   // must clear fp, so that compiled frames are not confused; it is possible
  1377   // that we need it only for debugging
  1378   if(clear_fp)
  1379     st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1381   if (clear_pc)
  1382     st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1385 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  1386                                            bool clear_pc) {
  1387   Register thread = TREG;
  1388 #ifndef OPT_THREAD
  1389   get_thread(thread);
  1390 #endif
  1391   // we must set sp to zero to clear frame
  1392   sd(R0, Address(thread, JavaThread::last_Java_sp_offset()));
  1393   // must clear fp, so that compiled frames are not confused; it is
  1394   // possible that we need it only for debugging
  1395   if (clear_fp) {
  1396     sd(R0, Address(thread, JavaThread::last_Java_fp_offset()));
  1399   if (clear_pc) {
  1400     sd(R0, Address(thread, JavaThread::last_Java_pc_offset()));
  1404 // Write serialization page so VM thread can do a pseudo remote membar.
  1405 // We use the current thread pointer to calculate a thread specific
  1406 // offset to write to within the page. This minimizes bus traffic
  1407 // due to cache line collision.
  1408 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  1409   move(tmp, thread);
  1410   srl(tmp, tmp,os::get_serialize_page_shift_count());
  1411   move(AT, (os::vm_page_size() - sizeof(int)));
  1412   andr(tmp, tmp,AT);
  1413   sw(tmp,Address(tmp, (intptr_t)os::get_memory_serialize_page()));
  1416 // Calls to C land
  1417 //
  1418 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  1419 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  1420 // has to be reset to 0. This is required to allow proper stack traversal.
  1421 void MacroAssembler::set_last_Java_frame(Register java_thread,
  1422                                          Register last_java_sp,
  1423                                          Register last_java_fp,
  1424                                          address  last_java_pc) {
  1425   // determine java_thread register
  1426   if (!java_thread->is_valid()) {
  1427 #ifndef OPT_THREAD
  1428     java_thread = T2;
  1429     get_thread(java_thread);
  1430 #else
  1431     java_thread = TREG;
  1432 #endif
  1434   // determine last_java_sp register
  1435   if (!last_java_sp->is_valid()) {
  1436     last_java_sp = SP;
  1439   // last_java_fp is optional
  1441   if (last_java_fp->is_valid()) {
  1442     st_ptr(last_java_fp, java_thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1445   // last_java_pc is optional
  1447   if (last_java_pc != NULL) {
  1448     relocate(relocInfo::internal_pc_type);
  1449     patchable_set48(AT, (long)last_java_pc);
  1450     st_ptr(AT, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1452   st_ptr(last_java_sp, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1455 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  1456                                          Register last_java_fp,
  1457                                          address  last_java_pc) {
  1458   // determine last_java_sp register
  1459   if (!last_java_sp->is_valid()) {
  1460     last_java_sp = SP;
  1463   Register thread = TREG;
  1464 #ifndef OPT_THREAD
  1465   get_thread(thread);
  1466 #endif
  1467   // last_java_fp is optional
  1468   if (last_java_fp->is_valid()) {
  1469     sd(last_java_fp, Address(thread, JavaThread::last_Java_fp_offset()));
  1472   // last_java_pc is optional
  1473   if (last_java_pc != NULL) {
  1474     Address java_pc(thread,
  1475                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1476     li(AT, (intptr_t)(last_java_pc));
  1477     sd(AT, java_pc);
  1480   sd(last_java_sp, Address(thread, JavaThread::last_Java_sp_offset()));
  1483 //////////////////////////////////////////////////////////////////////////////////
  1484 #if INCLUDE_ALL_GCS
  1486 void MacroAssembler::g1_write_barrier_pre(Register obj,
  1487 #ifndef _LP64
  1488                                           Register thread,
  1489 #endif
  1490                                           Register tmp,
  1491                                           Register tmp2,
  1492                                           bool tosca_live) {
  1493   Unimplemented();
  1496 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  1497                                            Register new_val,
  1498 #ifndef _LP64
  1499                                            Register thread,
  1500 #endif
  1501                                            Register tmp,
  1502                                            Register tmp2) {
  1504   Unimplemented();
  1507 #endif // INCLUDE_ALL_GCS
  1508 //////////////////////////////////////////////////////////////////////////////////
  1511 void MacroAssembler::store_check(Register obj) {
  1512   // Does a store check for the oop in register obj. The content of
  1513   // register obj is destroyed afterwards.
  1514   store_check_part_1(obj);
  1515   store_check_part_2(obj);
  1518 void MacroAssembler::store_check(Register obj, Address dst) {
  1519   store_check(obj);
  1523 // split the store check operation so that other instructions can be scheduled inbetween
  1524 void MacroAssembler::store_check_part_1(Register obj) {
  1525   BarrierSet* bs = Universe::heap()->barrier_set();
  1526   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1527 #ifdef _LP64
  1528   dsrl(obj, obj, CardTableModRefBS::card_shift);
  1529 #else
  1530   shr(obj, CardTableModRefBS::card_shift);
  1531 #endif
  1534 void MacroAssembler::store_check_part_2(Register obj) {
  1535   BarrierSet* bs = Universe::heap()->barrier_set();
  1536   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1537   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1538   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1540   li(AT, (long)ct->byte_map_base);
  1541 #ifdef _LP64
  1542   dadd(AT, AT, obj);
  1543 #else
  1544   add(AT, AT, obj);
  1545 #endif
  1546   sb(R0, AT, 0);
  1547   sync();
  1550 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  1551 void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
  1552                                    Register t1, Register t2, Label& slow_case) {
  1553   assert_different_registers(obj, var_size_in_bytes, t1, t2, AT);
  1555   Register end = t2;
  1556 #ifndef OPT_THREAD
  1557   Register thread = t1;
  1558   get_thread(thread);
  1559 #else
  1560   Register thread = TREG;
  1561 #endif
  1562   verify_tlab(t1, t2);//blows t1&t2
  1564   ld_ptr(obj, thread, in_bytes(JavaThread::tlab_top_offset()));
  1566   if (var_size_in_bytes == NOREG) {
  1567     // i dont think we need move con_size_in_bytes to a register first.
  1568     // by yjl 8/17/2005
  1569     assert(is_simm16(con_size_in_bytes), "fixme by moving imm to a register first");
  1570     addi(end, obj, con_size_in_bytes);
  1571   } else {
  1572     add(end, obj, var_size_in_bytes);
  1575   ld_ptr(AT, thread, in_bytes(JavaThread::tlab_end_offset()));
  1576   sltu(AT, AT, end);
  1577   bne_far(AT, R0, slow_case);
  1578   delayed()->nop();
  1581   // update the tlab top pointer
  1582   st_ptr(end, thread, in_bytes(JavaThread::tlab_top_offset()));
  1584   // recover var_size_in_bytes if necessary
  1585   /*if (var_size_in_bytes == end) {
  1586     sub(var_size_in_bytes, end, obj);
  1587     }*/
  1589   verify_tlab(t1, t2);
  1592 // Defines obj, preserves var_size_in_bytes
  1593 void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
  1594                                    Register t1, Register t2, Label& slow_case) {
  1595   assert_different_registers(obj, var_size_in_bytes, t1, AT);
  1596   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { //by yyq
  1597     // No allocation in the shared eden.
  1598     b_far(slow_case);
  1599     delayed()->nop();
  1600   } else {
  1602 #ifndef _LP64
  1603     Address heap_top(t1, Assembler::split_low((intptr_t)Universe::heap()->top_addr()));
  1604     lui(t1, split_high((intptr_t)Universe::heap()->top_addr()));
  1605 #else
  1606     Address heap_top(t1);
  1607     li(t1, (long)Universe::heap()->top_addr());
  1608 #endif
  1609     ld_ptr(obj, heap_top);
  1611     Register end = t2;
  1612     Label retry;
  1614     bind(retry);
  1615     if (var_size_in_bytes == NOREG) {
  1616     // i dont think we need move con_size_in_bytes to a register first.
  1617       assert(is_simm16(con_size_in_bytes), "fixme by moving imm to a register first");
  1618       addi(end, obj, con_size_in_bytes);
  1619     } else {
  1620       add(end, obj, var_size_in_bytes);
  1622     // if end < obj then we wrapped around => object too long => slow case
  1623     sltu(AT, end, obj);
  1624     bne_far(AT, R0, slow_case);
  1625     delayed()->nop();
  1627     li(AT, (long)Universe::heap()->end_addr());
  1628     sltu(AT, AT, end);
  1629     bne_far(AT, R0, slow_case);
  1630     delayed()->nop();
  1631     // Compare obj with the top addr, and if still equal, store the new top addr in
  1632     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  1633     // it otherwise. Use lock prefix for atomicity on MPs.
  1634     //if (os::is_MP()) {
  1635     //  sync();
  1636     //}
  1638     // if someone beat us on the allocation, try again, otherwise continue
  1639     cmpxchg(end, heap_top, obj);
  1640     beq_far(AT, R0, retry);    //by yyq
  1641     delayed()->nop();
  1646 // C2 doesn't invoke this one.
  1647 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  1648   Register top = T0;
  1649   Register t1  = T1;
  1650 /* Jin: tlab_refill() is called in
  1652      [c1_Runtime1_mips.cpp] Runtime1::generate_code_for(new_type_array_id);
  1654   In generate_code_for(), T2 has been assigned as a register(length), which is used
  1655  after calling tlab_refill();
  1656   Therefore, tlab_refill() should not use T2.
  1658  Source:
  1660 Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException
  1661         at java.lang.System.arraycopy(Native Method)
  1662         at java.util.Arrays.copyOf(Arrays.java:2799)  <-- alloc_array
  1663         at sun.misc.Resource.getBytes(Resource.java:117)
  1664         at java.net.URLClassLoader.defineClass(URLClassLoader.java:273)
  1665         at java.net.URLClassLoader.findClass(URLClassLoader.java:205)
  1666         at java.lang.ClassLoader.loadClass(ClassLoader.java:321)
  1667  */
  1668   Register t2  = T9;
  1669   Register t3  = T3;
  1670   Register thread_reg = T8;
  1671   Label do_refill, discard_tlab;
  1672   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { //by yyq
  1673     // No allocation in the shared eden.
  1674     b(slow_case);
  1675     delayed()->nop();
  1678   get_thread(thread_reg);
  1680   ld_ptr(top, thread_reg, in_bytes(JavaThread::tlab_top_offset()));
  1681   ld_ptr(t1, thread_reg, in_bytes(JavaThread::tlab_end_offset()));
  1683   // calculate amount of free space
  1684   sub(t1, t1, top);
  1685   shr(t1, LogHeapWordSize);
  1687   // Retain tlab and allocate object in shared space if
  1688   // the amount free in the tlab is too large to discard.
  1689   ld_ptr(t2, thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  1690   slt(AT, t2, t1);
  1691   beq(AT, R0, discard_tlab);
  1692   delayed()->nop();
  1694   // Retain
  1696 #ifndef _LP64
  1697   move(AT, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  1698 #else
  1699   li(AT, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  1700 #endif
  1701   add(t2, t2, AT);
  1702   st_ptr(t2, thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  1704   if (TLABStats) {
  1705     // increment number of slow_allocations
  1706     lw(AT, thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  1707     addiu(AT, AT, 1);
  1708     sw(AT, thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  1710   b(try_eden);
  1711   delayed()->nop();
  1713   bind(discard_tlab);
  1714   if (TLABStats) {
  1715     // increment number of refills
  1716     lw(AT, thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  1717     addi(AT, AT, 1);
  1718     sw(AT, thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  1719     // accumulate wastage -- t1 is amount free in tlab
  1720     lw(AT, thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  1721     add(AT, AT, t1);
  1722     sw(AT, thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  1725   // if tlab is currently allocated (top or end != null) then
  1726   // fill [top, end + alignment_reserve) with array object
  1727   beq(top, R0, do_refill);
  1728   delayed()->nop();
  1730   // set up the mark word
  1731   li(AT, (long)markOopDesc::prototype()->copy_set_hash(0x2));
  1732   st_ptr(AT, top, oopDesc::mark_offset_in_bytes());
  1734   // set the length to the remaining space
  1735   addi(t1, t1, - typeArrayOopDesc::header_size(T_INT));
  1736   addi(t1, t1, ThreadLocalAllocBuffer::alignment_reserve());
  1737   shl(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  1738   sw(t1, top, arrayOopDesc::length_offset_in_bytes());
  1740   // set klass to intArrayKlass
  1741 #ifndef _LP64
  1742   lui(AT, split_high((intptr_t)Universe::intArrayKlassObj_addr()));
  1743   lw(t1, AT, split_low((intptr_t)Universe::intArrayKlassObj_addr()));
  1744 #else
  1745   li(AT, (intptr_t)Universe::intArrayKlassObj_addr());
  1746   ld_ptr(t1, AT, 0);
  1747 #endif
  1748   //st_ptr(t1, top, oopDesc::klass_offset_in_bytes());
  1749   store_klass(top, t1);
  1751   // refill the tlab with an eden allocation
  1752   bind(do_refill);
  1753   ld_ptr(t1, thread_reg, in_bytes(JavaThread::tlab_size_offset()));
  1754   shl(t1, LogHeapWordSize);
  1755   // add object_size ??
  1756   eden_allocate(top, t1, 0, t2, t3, slow_case);
  1758   // Check that t1 was preserved in eden_allocate.
  1759 #ifdef ASSERT
  1760   if (UseTLAB) {
  1761     Label ok;
  1762     assert_different_registers(thread_reg, t1);
  1763     ld_ptr(AT, thread_reg, in_bytes(JavaThread::tlab_size_offset()));
  1764     shl(AT, LogHeapWordSize);
  1765     beq(AT, t1, ok);
  1766     delayed()->nop();
  1767     stop("assert(t1 != tlab size)");
  1768     should_not_reach_here();
  1770     bind(ok);
  1772 #endif
  1773   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_start_offset()));
  1774   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_top_offset()));
  1775   add(top, top, t1);
  1776   addi(top, top, - ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  1777   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_end_offset()));
  1778   verify_tlab(t1, t2);
  1779   b(retry);
  1780   delayed()->nop();
  1783 static const double     pi_4 =  0.7853981633974483;
  1785 // the x86 version is to clumsy, i dont think we need that fuss. maybe i'm wrong, FIXME
  1786 // must get argument(a double) in F12/F13
  1787 //void MacroAssembler::trigfunc(char trig, bool preserve_cpu_regs, int num_fpu_regs_in_use) {
  1788 //We need to preseve the register which maybe modified during the Call @Jerome
  1789 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  1790 //save all modified register here
  1791 //  if (preserve_cpu_regs) {
  1792 //  }
  1793 //FIXME, in the disassembly of tirgfunc, only used V0,V1,T9, SP,RA,so we ony save V0,V1,T9
  1794   pushad();
  1795 //we should preserve the stack space before we call
  1796   addi(SP, SP, -wordSize * 2);
  1797         switch (trig){
  1798     case 's' :
  1799                   call( CAST_FROM_FN_PTR(address, SharedRuntime::dsin), relocInfo::runtime_call_type );
  1800       delayed()->nop();
  1801       break;
  1802     case 'c':
  1803       call( CAST_FROM_FN_PTR(address, SharedRuntime::dcos), relocInfo::runtime_call_type );
  1804       delayed()->nop();
  1805       break;
  1806     case 't':
  1807       call( CAST_FROM_FN_PTR(address, SharedRuntime::dtan), relocInfo::runtime_call_type );
  1808       delayed()->nop();
  1809       break;
  1810     default:assert (false, "bad intrinsic");
  1811     break;
  1815   addi(SP, SP, wordSize * 2);
  1816   popad();
  1817 //  if (preserve_cpu_regs) {
  1818 //  }
  1821 #ifdef _LP64
  1822 void MacroAssembler::li(Register rd, long imm) {
  1823   if (imm <= max_jint && imm >= min_jint) {
  1824     li32(rd, (int)imm);
  1825   } else if (julong(imm) <= 0xFFFFFFFF) {
  1826     assert_not_delayed();
  1827     // lui sign-extends, so we can't use that.
  1828     ori(rd, R0, julong(imm) >> 16);
  1829     dsll(rd, rd, 16);
  1830     ori(rd, rd, split_low(imm));
  1831   //aoqi_test
  1832   //} else if ((imm > 0) && ((imm >> 48) == 0)) {
  1833   } else if ((imm > 0) && is_simm16(imm >> 32)) {
  1834     /* A 48-bit address */
  1835     li48(rd, imm);
  1836   } else {
  1837     li64(rd, imm);
  1840 #else
  1841 void MacroAssembler::li(Register rd, long imm) {
  1842   li32(rd, (int)imm);
  1844 #endif
  1846 void MacroAssembler::li32(Register reg, int imm) {
  1847   if (is_simm16(imm)) {
  1848     /* Jin: for imm < 0, we should use addi instead of addiu.
  1850      *  java.lang.StringCoding$StringDecoder.decode(jobject, jint, jint)
  1852      *  78 move [int:-1|I] [a0|I]
  1853      *    : daddi a0, zero, 0xffffffff  (correct)
  1854      *    : daddiu a0, zero, 0xffffffff (incorrect)
  1855      */
  1856     if (imm >= 0)
  1857       addiu(reg, R0, imm);
  1858     else
  1859       addi(reg, R0, imm);
  1860   } else {
  1861     lui(reg, split_low(imm >> 16));
  1862     if (split_low(imm))
  1863       ori(reg, reg, split_low(imm));
  1867 #ifdef _LP64
  1868 void MacroAssembler::set64(Register d, jlong value) {
  1869   assert_not_delayed();
  1871   int hi = (int)(value >> 32);
  1872   int lo = (int)(value & ~0);
  1874   if (value == lo) {  // 32-bit integer
  1875     if (is_simm16(value)) {
  1876       daddiu(d, R0, value);
  1877     } else {
  1878       lui(d, split_low(value >> 16));
  1879       if (split_low(value)) {
  1880         ori(d, d, split_low(value));
  1883   } else if (hi == 0) {  // hardware zero-extends to upper 32
  1884       ori(d, R0, julong(value) >> 16);
  1885       dsll(d, d, 16);
  1886       if (split_low(value)) {
  1887         ori(d, d, split_low(value));
  1889   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  1890     // 4 insts
  1891     li48(d, value);
  1892   } else {  // li64
  1893     // 6 insts
  1894     li64(d, value);
  1899 int MacroAssembler::insts_for_set64(jlong value) {
  1900   int hi = (int)(value >> 32);
  1901   int lo = (int)(value & ~0);
  1903   int count = 0;
  1905   if (value == lo) {  // 32-bit integer
  1906     if (is_simm16(value)) {
  1907       //daddiu(d, R0, value);
  1908       count++;
  1909     } else {
  1910       //lui(d, split_low(value >> 16));
  1911       count++;
  1912       if (split_low(value)) {
  1913         //ori(d, d, split_low(value));
  1914         count++;
  1917   } else if (hi == 0) {  // hardware zero-extends to upper 32
  1918       //ori(d, R0, julong(value) >> 16);
  1919       //dsll(d, d, 16);
  1920       count += 2;
  1921       if (split_low(value)) {
  1922         //ori(d, d, split_low(value));
  1923         count++;
  1925   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  1926     // 4 insts
  1927     //li48(d, value);
  1928     count += 4;
  1929   } else {  // li64
  1930     // 6 insts
  1931     //li64(d, value);
  1932     count += 6;
  1935   return count;
  1938 void MacroAssembler::patchable_set48(Register d, jlong value) {
  1939   assert_not_delayed();
  1941   int hi = (int)(value >> 32);
  1942   int lo = (int)(value & ~0);
  1944   int count = 0;
  1946   if (value == lo) {  // 32-bit integer
  1947     if (is_simm16(value)) {
  1948       daddiu(d, R0, value);
  1949       count += 1;
  1950     } else {
  1951       lui(d, split_low(value >> 16));
  1952       count += 1;
  1953       if (split_low(value)) {
  1954         ori(d, d, split_low(value));
  1955         count += 1;
  1958   } else if (hi == 0) {  // hardware zero-extends to upper 32
  1959       ori(d, R0, julong(value) >> 16);
  1960       dsll(d, d, 16);
  1961       count += 2;
  1962       if (split_low(value)) {
  1963         ori(d, d, split_low(value));
  1964         count += 1;
  1966   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  1967     // 4 insts
  1968     li48(d, value);
  1969     count += 4;
  1970   } else {  // li64
  1971     tty->print_cr("value = 0x%x", value);
  1972     guarantee(false, "Not supported yet !");
  1975   for (count; count < 4; count++) {
  1976     nop();
  1980 void MacroAssembler::patchable_set32(Register d, jlong value) {
  1981   assert_not_delayed();
  1983   int hi = (int)(value >> 32);
  1984   int lo = (int)(value & ~0);
  1986   int count = 0;
  1988   if (value == lo) {  // 32-bit integer
  1989     if (is_simm16(value)) {
  1990       daddiu(d, R0, value);
  1991       count += 1;
  1992     } else {
  1993       lui(d, split_low(value >> 16));
  1994       count += 1;
  1995       if (split_low(value)) {
  1996         ori(d, d, split_low(value));
  1997         count += 1;
  2000   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2001       ori(d, R0, julong(value) >> 16);
  2002       dsll(d, d, 16);
  2003       count += 2;
  2004       if (split_low(value)) {
  2005         ori(d, d, split_low(value));
  2006         count += 1;
  2008   } else {
  2009     tty->print_cr("value = 0x%x", value);
  2010     guarantee(false, "Not supported yet !");
  2013   for (count; count < 3; count++) {
  2014     nop();
  2018 void MacroAssembler::patchable_call32(Register d, jlong value) {
  2019   assert_not_delayed();
  2021   int hi = (int)(value >> 32);
  2022   int lo = (int)(value & ~0);
  2024   int count = 0;
  2026   if (value == lo) {  // 32-bit integer
  2027     if (is_simm16(value)) {
  2028       daddiu(d, R0, value);
  2029       count += 1;
  2030     } else {
  2031       lui(d, split_low(value >> 16));
  2032       count += 1;
  2033       if (split_low(value)) {
  2034         ori(d, d, split_low(value));
  2035         count += 1;
  2038   } else {
  2039     tty->print_cr("value = 0x%x", value);
  2040     guarantee(false, "Not supported yet !");
  2043   for (count; count < 2; count++) {
  2044     nop();
  2048 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  2049   assert(UseCompressedClassPointers, "should only be used for compressed header");
  2050   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2052   int klass_index = oop_recorder()->find_index(k);
  2053   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  2054   long narrowKlass = (long)Klass::encode_klass(k);
  2056   relocate(rspec, Assembler::narrow_oop_operand);
  2057   patchable_set48(dst, narrowKlass);
  2061 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  2062   assert(UseCompressedOops, "should only be used for compressed header");
  2063   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2065   int oop_index = oop_recorder()->find_index(obj);
  2066   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  2068   relocate(rspec, Assembler::narrow_oop_operand);
  2069   patchable_set48(dst, oop_index);
  2072 void MacroAssembler::li64(Register rd, long imm) {
  2073   assert_not_delayed();
  2074   lui(rd, imm >> 48);
  2075   ori(rd, rd, split_low(imm >> 32));
  2076   dsll(rd, rd, 16);
  2077   ori(rd, rd, split_low(imm >> 16));
  2078   dsll(rd, rd, 16);
  2079   ori(rd, rd, split_low(imm));
  2082 void MacroAssembler::li48(Register rd, long imm) {
  2083   assert_not_delayed();
  2084   assert(is_simm16(imm >> 32), "Not a 48-bit address");
  2085   lui(rd, imm >> 32);
  2086   ori(rd, rd, split_low(imm >> 16));
  2087   dsll(rd, rd, 16);
  2088   ori(rd, rd, split_low(imm));
  2090 #endif
  2091 // NOTE: i dont push eax as i486.
  2092 // the x86 save eax for it use eax as the jump register
  2093 void MacroAssembler::verify_oop(Register reg, const char* s) {
  2094   /*
  2095      if (!VerifyOops) return;
  2097   // Pass register number to verify_oop_subroutine
  2098   char* b = new char[strlen(s) + 50];
  2099   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  2100   push(rax);                          // save rax,
  2101   push(reg);                          // pass register argument
  2102   ExternalAddress buffer((address) b);
  2103   // avoid using pushptr, as it modifies scratch registers
  2104   // and our contract is not to modify anything
  2105   movptr(rax, buffer.addr());
  2106   push(rax);
  2107   // call indirectly to solve generation ordering problem
  2108   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  2109   call(rax);
  2110    */
  2111   if (!VerifyOops) return;
  2112   const char * b = NULL;
  2113   stringStream ss;
  2114   ss.print("verify_oop: %s: %s", reg->name(), s);
  2115   b = code_string(ss.as_string());
  2116 #ifdef _LP64
  2117   pushad();
  2118   move(A1, reg);
  2119   li(A0, (long)b);
  2120   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2121   ld(T9, AT, 0);
  2122   jalr(T9);
  2123   delayed()->nop();
  2124   popad();
  2125 #else
  2126   // Pass register number to verify_oop_subroutine
  2127   sw(T0, SP, - wordSize);
  2128   sw(T1, SP, - 2*wordSize);
  2129   sw(RA, SP, - 3*wordSize);
  2130   sw(A0, SP ,- 4*wordSize);
  2131   sw(A1, SP ,- 5*wordSize);
  2132   sw(AT, SP ,- 6*wordSize);
  2133   sw(T9, SP ,- 7*wordSize);
  2134   addiu(SP, SP, - 7 * wordSize);
  2135   move(A1, reg);
  2136   li(A0, (long)b);
  2137   // call indirectly to solve generation ordering problem
  2138   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2139   lw(T9, AT, 0);
  2140   jalr(T9);
  2141   delayed()->nop();
  2142   lw(T0, SP, 6* wordSize);
  2143   lw(T1, SP, 5* wordSize);
  2144   lw(RA, SP, 4* wordSize);
  2145   lw(A0, SP, 3* wordSize);
  2146   lw(A1, SP, 2* wordSize);
  2147   lw(AT, SP, 1* wordSize);
  2148   lw(T9, SP, 0* wordSize);
  2149   addiu(SP, SP, 7 * wordSize);
  2150 #endif
  2154 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  2155   if (!VerifyOops) {
  2156     nop();
  2157     return;
  2159   // Pass register number to verify_oop_subroutine
  2160   const char * b = NULL;
  2161   stringStream ss;
  2162   ss.print("verify_oop_addr: %s",  s);
  2163   b = code_string(ss.as_string());
  2165   st_ptr(T0, SP, - wordSize);
  2166   st_ptr(T1, SP, - 2*wordSize);
  2167   st_ptr(RA, SP, - 3*wordSize);
  2168   st_ptr(A0, SP, - 4*wordSize);
  2169   st_ptr(A1, SP, - 5*wordSize);
  2170   st_ptr(AT, SP, - 6*wordSize);
  2171   st_ptr(T9, SP, - 7*wordSize);
  2172   ld_ptr(A1, addr);   // addr may use SP, so load from it before change SP
  2173   addiu(SP, SP, - 7 * wordSize);
  2175   li(A0, (long)b);
  2176   // call indirectly to solve generation ordering problem
  2177   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2178   ld_ptr(T9, AT, 0);
  2179   jalr(T9);
  2180   delayed()->nop();
  2181   ld_ptr(T0, SP, 6* wordSize);
  2182   ld_ptr(T1, SP, 5* wordSize);
  2183   ld_ptr(RA, SP, 4* wordSize);
  2184   ld_ptr(A0, SP, 3* wordSize);
  2185   ld_ptr(A1, SP, 2* wordSize);
  2186   ld_ptr(AT, SP, 1* wordSize);
  2187   ld_ptr(T9, SP, 0* wordSize);
  2188   addiu(SP, SP, 7 * wordSize);
  2191 // used registers :  T0, T1
  2192 void MacroAssembler::verify_oop_subroutine() {
  2193   // RA: ra
  2194   // A0: char* error message
  2195   // A1: oop   object to verify
  2197   Label exit, error;
  2198   // increment counter
  2199   li(T0, (long)StubRoutines::verify_oop_count_addr());
  2200   lw(AT, T0, 0);
  2201 #ifdef _LP64
  2202   daddi(AT, AT, 1);
  2203 #else
  2204   addi(AT, AT, 1);
  2205 #endif
  2206   sw(AT, T0, 0);
  2208   // make sure object is 'reasonable'
  2209   beq(A1, R0, exit);         // if obj is NULL it is ok
  2210   delayed()->nop();
  2212   // Check if the oop is in the right area of memory
  2213   //const int oop_mask = Universe::verify_oop_mask();
  2214   //const int oop_bits = Universe::verify_oop_bits();
  2215   const uintptr_t oop_mask = Universe::verify_oop_mask();
  2216   const uintptr_t oop_bits = Universe::verify_oop_bits();
  2217   li(AT, oop_mask);
  2218   andr(T0, A1, AT);
  2219   li(AT, oop_bits);
  2220   bne(T0, AT, error);
  2221   delayed()->nop();
  2223   // make sure klass is 'reasonable'
  2224   //add for compressedoops
  2225   reinit_heapbase();
  2226   //add for compressedoops
  2227   load_klass(T0, A1);
  2228   beq(T0, R0, error);                        // if klass is NULL it is broken
  2229   delayed()->nop();
  2230   #if 0
  2231   //FIXME:wuhui.
  2232   // Check if the klass is in the right area of memory
  2233   //const int klass_mask = Universe::verify_klass_mask();
  2234   //const int klass_bits = Universe::verify_klass_bits();
  2235   const uintptr_t klass_mask = Universe::verify_klass_mask();
  2236   const uintptr_t klass_bits = Universe::verify_klass_bits();
  2238   li(AT, klass_mask);
  2239   andr(T1, T0, AT);
  2240   li(AT, klass_bits);
  2241   bne(T1, AT, error);
  2242   delayed()->nop();
  2243   // make sure klass' klass is 'reasonable'
  2244   //add for compressedoops
  2245   load_klass(T0, T0);
  2246   beq(T0, R0, error);  // if klass' klass is NULL it is broken
  2247   delayed()->nop();
  2249   li(AT, klass_mask);
  2250   andr(T1, T0, AT);
  2251   li(AT, klass_bits);
  2252   bne(T1, AT, error);
  2253   delayed()->nop();     // if klass not in right area of memory it is broken too.
  2254 #endif
  2255   // return if everything seems ok
  2256   bind(exit);
  2258   jr(RA);
  2259   delayed()->nop();
  2261   // handle errors
  2262   bind(error);
  2263   pushad();
  2264 #ifndef _LP64
  2265   addi(SP, SP, (-1) * wordSize);
  2266 #endif
  2267   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2268   delayed()->nop();
  2269 #ifndef _LP64
  2270   addiu(SP, SP, 1 * wordSize);
  2271 #endif
  2272   popad();
  2273   jr(RA);
  2274   delayed()->nop();
  2277 void MacroAssembler::verify_tlab(Register t1, Register t2) {
  2278 #ifdef ASSERT
  2279   assert_different_registers(t1, t2, AT);
  2280   if (UseTLAB && VerifyOops) {
  2281     Label next, ok;
  2283     get_thread(t1);
  2285     ld_ptr(t2, t1, in_bytes(JavaThread::tlab_top_offset()));
  2286     ld_ptr(AT, t1, in_bytes(JavaThread::tlab_start_offset()));
  2287     sltu(AT, t2, AT);
  2288     beq(AT, R0, next);
  2289     delayed()->nop();
  2291     stop("assert(top >= start)");
  2293     bind(next);
  2294     ld_ptr(AT, t1, in_bytes(JavaThread::tlab_end_offset()));
  2295     sltu(AT, AT, t2);
  2296     beq(AT, R0, ok);
  2297     delayed()->nop();
  2299     stop("assert(top <= end)");
  2301     bind(ok);
  2304 #endif
  2306  RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2307                                                        Register tmp,
  2308                                                        int offset) {
  2309    intptr_t value = *delayed_value_addr;
  2310    if (value != 0)
  2311    return RegisterOrConstant(value + offset);
  2312    AddressLiteral a(delayed_value_addr);
  2313    // load indirectly to solve generation ordering problem
  2314    //movptr(tmp, ExternalAddress((address) delayed_value_addr));
  2315    //ld(tmp, a);
  2316    if (offset != 0)
  2317      daddi(tmp,tmp, offset);
  2319    return RegisterOrConstant(tmp);
  2322 void MacroAssembler::hswap(Register reg) {
  2323   //short
  2324   //andi(reg, reg, 0xffff);
  2325   srl(AT, reg, 8);
  2326   sll(reg, reg, 24);
  2327   sra(reg, reg, 16);
  2328   orr(reg, reg, AT);
  2331 void MacroAssembler::huswap(Register reg) {
  2332 #ifdef _LP64
  2333   dsrl(AT, reg, 8);
  2334   dsll(reg, reg, 24);
  2335   dsrl(reg, reg, 16);
  2336   orr(reg, reg, AT);
  2337   andi(reg, reg, 0xffff);
  2338 #else
  2339   //andi(reg, reg, 0xffff);
  2340   srl(AT, reg, 8);
  2341   sll(reg, reg, 24);
  2342   srl(reg, reg, 16);
  2343   orr(reg, reg, AT);
  2344 #endif
  2347 // something funny to do this will only one more register AT
  2348 // 32 bits
  2349 void MacroAssembler::swap(Register reg) {
  2350   srl(AT, reg, 8);
  2351   sll(reg, reg, 24);
  2352   orr(reg, reg, AT);
  2353   //reg : 4 1 2 3
  2354   srl(AT, AT, 16);
  2355   xorr(AT, AT, reg);
  2356   andi(AT, AT, 0xff);
  2357   //AT : 0 0 0 1^3);
  2358   xorr(reg, reg, AT);
  2359   //reg : 4 1 2 1
  2360   sll(AT, AT, 16);
  2361   xorr(reg, reg, AT);
  2362   //reg : 4 3 2 1
  2365 #ifdef _LP64
  2367 /* do 32-bit CAS using MIPS64 lld/scd
  2369   Jin: cas_int should only compare 32-bits of the memory value.
  2370        However, lld/scd will do 64-bit operation, which violates the intention of cas_int.
  2371        To simulate a 32-bit atomic operation, the value loaded with LLD should be split into
  2372        tow halves, and only the low-32 bits is compared. If equals, the low-32 bits of newval,
  2373        plus the high-32 bits or memory value, are stored togethor with SCD.
  2375 Example:
  2377       double d = 3.1415926;
  2378       System.err.println("hello" + d);
  2380   sun.misc.FloatingDecimal$1.<init>()
  2382    `- java.util.concurrent.atomic.AtomicInteger::compareAndSet()
  2384   38 cas_int [a7a7|J] [a0|I] [a6|I]
  2385 // a0: 0xffffffffe8ea9f63 pc: 0x55647f3354
  2386 // a6: 0x4ab325aa
  2388 again:
  2389    0x00000055647f3c5c: lld at, 0x0(a7)                          ; 64-bit load, "0xe8ea9f63"
  2391    0x00000055647f3c60: sll t9, at, 0                            ; t9: low-32 bits (sign extended)
  2392    0x00000055647f3c64: dsrl32 t8, at, 0                         ; t8: high-32 bits
  2393    0x00000055647f3c68: dsll32 t8, t8, 0
  2394    0x00000055647f3c6c: bne t9, a0, 0x00000055647f3c9c           ; goto nequal
  2395    0x00000055647f3c70: sll zero, zero, 0
  2397    0x00000055647f3c74: ori v1, zero, 0xffffffff                 ; v1: low-32 bits of newval (sign unextended)
  2398    0x00000055647f3c78: dsll v1, v1, 16                          ; v1 = a6 & 0xFFFFFFFF;
  2399    0x00000055647f3c7c: ori v1, v1, 0xffffffff
  2400    0x00000055647f3c80: and v1, a6, v1
  2401    0x00000055647f3c84: or at, t8, v1
  2402    0x00000055647f3c88: scd at, 0x0(a7)
  2403    0x00000055647f3c8c: beq at, zero, 0x00000055647f3c5c         ; goto again
  2404    0x00000055647f3c90: sll zero, zero, 0
  2405    0x00000055647f3c94: beq zero, zero, 0x00000055647f45ac       ; goto done
  2406    0x00000055647f3c98: sll zero, zero, 0
  2407 nequal:
  2408    0x00000055647f45a4: dadd a0, t9, zero
  2409    0x00000055647f45a8: dadd at, zero, zero
  2410 done:
  2411 */
  2413 void MacroAssembler::cmpxchg32(Register x_reg, Address dest, Register c_reg) {
  2414   /* 2012/11/11 Jin: MIPS64 can use ll/sc for 32-bit atomic memory access */
  2415   Label done, again, nequal;
  2417   bind(again);
  2419   if(!Use3A2000) sync();
  2420   ll(AT, dest);
  2421   bne(AT, c_reg, nequal);
  2422   delayed()->nop();
  2424   move(AT, x_reg);
  2425   sc(AT, dest);
  2426   beq(AT, R0, again);
  2427   delayed()->nop();
  2428   b(done);
  2429   delayed()->nop();
  2431   // not xchged
  2432   bind(nequal);
  2433   sync();
  2434   move(c_reg, AT);
  2435   move(AT, R0);
  2437   bind(done);
  2439 #endif  // cmpxchg32
  2441 void MacroAssembler::cmpxchg(Register x_reg, Address dest, Register c_reg) {
  2442   Label done, again, nequal;
  2444   bind(again);
  2445 #ifdef _LP64
  2446   if(!Use3A2000) sync();
  2447   lld(AT, dest);
  2448 #else
  2449   if(!Use3A2000) sync();
  2450   ll(AT, dest);
  2451 #endif
  2452   bne(AT, c_reg, nequal);
  2453   delayed()->nop();
  2455   move(AT, x_reg);
  2456 #ifdef _LP64
  2457   scd(AT, dest);
  2458 #else
  2459   sc(AT, dest);
  2460 #endif
  2461   beq(AT, R0, again);
  2462   delayed()->nop();
  2463   b(done);
  2464   delayed()->nop();
  2466   // not xchged
  2467   bind(nequal);
  2468   sync();
  2469   move(c_reg, AT);
  2470   move(AT, R0);
  2472   bind(done);
  2475 void MacroAssembler::cmpxchg8(Register x_regLo, Register x_regHi, Address dest, Register c_regLo, Register c_regHi) {
  2476   Label done, again, nequal;
  2478   Register x_reg = x_regLo;
  2479   dsll32(x_regHi, x_regHi, 0);
  2480   dsll32(x_regLo, x_regLo, 0);
  2481   dsrl32(x_regLo, x_regLo, 0);
  2482   orr(x_reg, x_regLo, x_regHi);
  2484   Register c_reg = c_regLo;
  2485   dsll32(c_regHi, c_regHi, 0);
  2486   dsll32(c_regLo, c_regLo, 0);
  2487   dsrl32(c_regLo, c_regLo, 0);
  2488   orr(c_reg, c_regLo, c_regHi);
  2490   bind(again);
  2492         if(!Use3A2000) sync();
  2493   lld(AT, dest);
  2494   bne(AT, c_reg, nequal);
  2495   delayed()->nop();
  2497   //move(AT, x_reg);
  2498   dadd(AT, x_reg, R0);
  2499   scd(AT, dest);
  2500   beq(AT, R0, again);
  2501   delayed()->nop();
  2502   b(done);
  2503   delayed()->nop();
  2505   // not xchged
  2506   bind(nequal);
  2507   sync();
  2508   //move(c_reg, AT);
  2509   //move(AT, R0);
  2510   dadd(c_reg, AT, R0);
  2511   dadd(AT, R0, R0);
  2512   bind(done);
  2515 // be sure the three register is different
  2516 void MacroAssembler::rem_s(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp) {
  2517   assert_different_registers(tmp, fs, ft);
  2518   div_s(tmp, fs, ft);
  2519   trunc_l_s(tmp, tmp);
  2520   cvt_s_l(tmp, tmp);
  2521   mul_s(tmp, tmp, ft);
  2522   sub_s(fd, fs, tmp);
  2525 // be sure the three register is different
  2526 void MacroAssembler::rem_d(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp) {
  2527   assert_different_registers(tmp, fs, ft);
  2528   div_d(tmp, fs, ft);
  2529   trunc_l_d(tmp, tmp);
  2530   cvt_d_l(tmp, tmp);
  2531   mul_d(tmp, tmp, ft);
  2532   sub_d(fd, fs, tmp);
  2535 // Fast_Lock and Fast_Unlock used by C2
  2537 // Because the transitions from emitted code to the runtime
  2538 // monitorenter/exit helper stubs are so slow it's critical that
  2539 // we inline both the stack-locking fast-path and the inflated fast path.
  2540 //
  2541 // See also: cmpFastLock and cmpFastUnlock.
  2542 //
  2543 // What follows is a specialized inline transliteration of the code
  2544 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2545 // another option would be to emit TrySlowEnter and TrySlowExit methods
  2546 // at startup-time.  These methods would accept arguments as
  2547 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2548 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2549 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2550 // In practice, however, the # of lock sites is bounded and is usually small.
  2551 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2552 // if the processor uses simple bimodal branch predictors keyed by EIP
  2553 // Since the helper routines would be called from multiple synchronization
  2554 // sites.
  2555 //
  2556 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2557 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2558 // to those specialized methods.  That'd give us a mostly platform-independent
  2559 // implementation that the JITs could optimize and inline at their pleasure.
  2560 // Done correctly, the only time we'd need to cross to native could would be
  2561 // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2562 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2563 // (b) explicit barriers or fence operations.
  2564 //
  2565 // TODO:
  2566 //
  2567 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2568 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2569 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2570 //    the lock operators would typically be faster than reifying Self.
  2571 //
  2572 // *  Ideally I'd define the primitives as:
  2573 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2574 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2575 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2576 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2577 //    Furthermore the register assignments are overconstrained, possibly resulting in
  2578 //    sub-optimal code near the synchronization site.
  2579 //
  2580 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2581 //    Alternately, use a better sp-proximity test.
  2582 //
  2583 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2584 //    Either one is sufficient to uniquely identify a thread.
  2585 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2586 //
  2587 // *  Intrinsify notify() and notifyAll() for the common cases where the
  2588 //    object is locked by the calling thread but the waitlist is empty.
  2589 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2590 //
  2591 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2592 //    But beware of excessive branch density on AMD Opterons.
  2593 //
  2594 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2595 //    or failure of the fast-path.  If the fast-path fails then we pass
  2596 //    control to the slow-path, typically in C.  In Fast_Lock and
  2597 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  2598 //    will emit a conditional branch immediately after the node.
  2599 //    So we have branches to branches and lots of ICC.ZF games.
  2600 //    Instead, it might be better to have C2 pass a "FailureLabel"
  2601 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  2602 //    will drop through the node.  ICC.ZF is undefined at exit.
  2603 //    In the case of failure, the node will branch directly to the
  2604 //    FailureLabel
  2607 // obj: object to lock
  2608 // box: on-stack box address (displaced header location) - KILLED
  2609 // rax,: tmp -- KILLED
  2610 // scr: tmp -- KILLED
  2611 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg, Register scrReg) {
  2613   // Ensure the register assignents are disjoint
  2614   guarantee (objReg != boxReg, "") ;
  2615   guarantee (objReg != tmpReg, "") ;
  2616   guarantee (objReg != scrReg, "") ;
  2617   guarantee (boxReg != tmpReg, "") ;
  2618   guarantee (boxReg != scrReg, "") ;
  2621   block_comment("FastLock");
  2622   /*
  2623      move(AT, 0x0);
  2624      return;
  2625      */
  2626   if (PrintBiasedLockingStatistics) {
  2627     push(tmpReg);
  2628     atomic_inc32((address)BiasedLocking::total_entry_count_addr(), 1, AT, tmpReg);
  2629     pop(tmpReg);
  2632   if (EmitSync & 1) {
  2633     move(AT, 0x0);
  2634     return;
  2635   } else
  2636     if (EmitSync & 2) {
  2637       Label DONE_LABEL ;
  2638       if (UseBiasedLocking) {
  2639         // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  2640         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL);
  2643       ld(tmpReg, Address(objReg, 0)) ;          // fetch markword
  2644       ori(tmpReg, tmpReg, 0x1);
  2645       sd(tmpReg, Address(boxReg, 0));           // Anticipate successful CAS
  2647       cmpxchg(boxReg, Address(objReg, 0), tmpReg);          // Updates tmpReg
  2648       bne(AT, R0, DONE_LABEL);
  2649       delayed()->nop();
  2651       // Recursive locking
  2652       dsubu(tmpReg, tmpReg, SP);
  2653       li(AT, (7 - os::vm_page_size() ));
  2654       andr(tmpReg, tmpReg, AT);
  2655       sd(tmpReg, Address(boxReg, 0));
  2656       bind(DONE_LABEL) ;
  2657     } else {
  2658       // Possible cases that we'll encounter in fast_lock
  2659       // ------------------------------------------------
  2660       // * Inflated
  2661       //    -- unlocked
  2662       //    -- Locked
  2663       //       = by self
  2664       //       = by other
  2665       // * biased
  2666       //    -- by Self
  2667       //    -- by other
  2668       // * neutral
  2669       // * stack-locked
  2670       //    -- by self
  2671       //       = sp-proximity test hits
  2672       //       = sp-proximity test generates false-negative
  2673       //    -- by other
  2674       //
  2676       Label IsInflated, DONE_LABEL, PopDone ;
  2678       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  2679       // order to reduce the number of conditional branches in the most common cases.
  2680       // Beware -- there's a subtle invariant that fetch of the markword
  2681       // at [FETCH], below, will never observe a biased encoding (*101b).
  2682       // If this invariant is not held we risk exclusion (safety) failure.
  2683       if (UseBiasedLocking && !UseOptoBiasInlining) {
  2684         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL);
  2687       ld(tmpReg, Address(objReg, 0)) ;         //Fetch the markword of the object.
  2688       andi(AT, tmpReg, markOopDesc::monitor_value);
  2689       bne(AT, R0, IsInflated);                      // inflated vs stack-locked|neutral|bias
  2690       delayed()->nop();
  2692       // Attempt stack-locking ...
  2693       ori (tmpReg, tmpReg, markOopDesc::unlocked_value);
  2694       sd(tmpReg, Address(boxReg, 0));          // Anticipate successful CAS
  2695       //if (os::is_MP()) {
  2696       //  sync();
  2697       //}
  2699       cmpxchg(boxReg, Address(objReg, 0), tmpReg);           // Updates tmpReg
  2700       //AT == 1: unlocked
  2702       if (PrintBiasedLockingStatistics) {
  2703         Label L;
  2704         beq(AT, R0, L);
  2705         delayed()->nop();
  2706         push(T0);
  2707         push(T1);
  2708         atomic_inc32((address)BiasedLocking::fast_path_entry_count_addr(), 1, T0, T1);
  2709         pop(T1);
  2710         pop(T0);
  2711         bind(L);
  2713       bne(AT, R0, DONE_LABEL);
  2714       delayed()->nop();
  2716       // Recursive locking
  2717       // The object is stack-locked: markword contains stack pointer to BasicLock.
  2718       // Locked by current thread if difference with current SP is less than one page.
  2719       dsubu(tmpReg, tmpReg, SP);
  2720       li(AT, 7 - os::vm_page_size() );
  2721       andr(tmpReg, tmpReg, AT);
  2722       sd(tmpReg, Address(boxReg, 0));
  2723       if (PrintBiasedLockingStatistics) {
  2724         Label L;
  2725         // tmpReg == 0 => BiasedLocking::_fast_path_entry_count++
  2726         bne(tmpReg, R0, L);
  2727         delayed()->nop();
  2728         push(T0);
  2729         push(T1);
  2730         atomic_inc32((address)BiasedLocking::fast_path_entry_count_addr(), 1, T0, T1);
  2731         pop(T1);
  2732         pop(T0);
  2733         bind(L);
  2735       sltiu(AT, tmpReg, 1); /* AT = (tmpReg == 0) ? 1 : 0 */
  2737       b(DONE_LABEL) ;
  2738       delayed()->nop();
  2740       bind(IsInflated) ;
  2741       // The object's monitor m is unlocked iff m->owner == NULL,
  2742       // otherwise m->owner may contain a thread or a stack address.
  2744       // TODO: someday avoid the ST-before-CAS penalty by
  2745       // relocating (deferring) the following ST.
  2746       // We should also think about trying a CAS without having
  2747       // fetched _owner.  If the CAS is successful we may
  2748       // avoid an RTO->RTS upgrade on the $line.
  2749       // Without cast to int32_t a movptr will destroy r10 which is typically obj
  2750       li(AT, (int32_t)intptr_t(markOopDesc::unused_mark()));
  2751       sd(AT, Address(boxReg, 0));
  2753       move(boxReg, tmpReg) ;
  2754       ld(tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  2755       // if (m->owner != 0) => AT = 0, goto slow path.
  2756       move(AT, R0);
  2757       bne(tmpReg, R0, DONE_LABEL);
  2758       delayed()->nop();
  2760 #ifndef OPT_THREAD
  2761       get_thread (TREG) ;
  2762 #endif
  2763       // It's inflated and appears unlocked
  2764       //if (os::is_MP()) {
  2765       //  sync();
  2766       //}
  2767       cmpxchg(TREG, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), tmpReg) ;
  2768       // Intentional fall-through into DONE_LABEL ...
  2771       // DONE_LABEL is a hot target - we'd really like to place it at the
  2772       // start of cache line by padding with NOPs.
  2773       // See the AMD and Intel software optimization manuals for the
  2774       // most efficient "long" NOP encodings.
  2775       // Unfortunately none of our alignment mechanisms suffice.
  2776       bind(DONE_LABEL);
  2778       // At DONE_LABEL the AT is set as follows ...
  2779       // Fast_Unlock uses the same protocol.
  2780       // AT == 1 -> Success
  2781       // AT == 0 -> Failure - force control through the slow-path
  2783       // Avoid branch-to-branch on AMD processors
  2784       // This appears to be superstition.
  2785       if (EmitSync & 32) nop() ;
  2790 // obj: object to unlock
  2791 // box: box address (displaced header location), killed.  Must be EAX.
  2792 // rbx,: killed tmp; cannot be obj nor box.
  2793 //
  2794 // Some commentary on balanced locking:
  2795 //
  2796 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  2797 // Methods that don't have provably balanced locking are forced to run in the
  2798 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  2799 // The interpreter provides two properties:
  2800 // I1:  At return-time the interpreter automatically and quietly unlocks any
  2801 //      objects acquired the current activation (frame).  Recall that the
  2802 //      interpreter maintains an on-stack list of locks currently held by
  2803 //      a frame.
  2804 // I2:  If a method attempts to unlock an object that is not held by the
  2805 //      the frame the interpreter throws IMSX.
  2806 //
  2807 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  2808 // B() doesn't have provably balanced locking so it runs in the interpreter.
  2809 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  2810 // is still locked by A().
  2811 //
  2812 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  2813 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  2814 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  2815 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  2817 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg) {
  2819   guarantee (objReg != boxReg, "") ;
  2820   guarantee (objReg != tmpReg, "") ;
  2821   guarantee (boxReg != tmpReg, "") ;
  2825   block_comment("FastUnlock");
  2828   if (EmitSync & 4) {
  2829     // Disable - inhibit all inlining.  Force control through the slow-path
  2830     move(AT, 0x0);
  2831     return;
  2832   } else
  2833     if (EmitSync & 8) {
  2834       Label DONE_LABEL ;
  2835       if (UseBiasedLocking) {
  2836         biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2838       // classic stack-locking code ...
  2839       ld(tmpReg, Address(boxReg, 0)) ;
  2840       beq(tmpReg, R0, DONE_LABEL) ;
  2841       move(AT, 0x1);  // delay slot
  2843       cmpxchg(tmpReg, Address(objReg, 0), boxReg);          // Uses EAX which is box
  2844       bind(DONE_LABEL);
  2845     } else {
  2846       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  2848       // Critically, the biased locking test must have precedence over
  2849       // and appear before the (box->dhw == 0) recursive stack-lock test.
  2850       if (UseBiasedLocking && !UseOptoBiasInlining) {
  2851         biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2854       ld(AT, Address(boxReg, 0)) ;            // Examine the displaced header
  2855       beq(AT, R0, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  2856       delayed()->daddiu(AT, R0, 0x1);
  2858       ld(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  2859       andi(AT, tmpReg, markOopDesc::monitor_value) ;                     // Inflated?
  2860       beq(AT, R0, Stacked) ;                     // Inflated?
  2861       delayed()->nop();
  2863       bind(Inflated) ;
  2864       // It's inflated.
  2865       // Despite our balanced locking property we still check that m->_owner == Self
  2866       // as java routines or native JNI code called by this thread might
  2867       // have released the lock.
  2868       // Refer to the comments in synchronizer.cpp for how we might encode extra
  2869       // state in _succ so we can avoid fetching EntryList|cxq.
  2870       //
  2871       // I'd like to add more cases in fast_lock() and fast_unlock() --
  2872       // such as recursive enter and exit -- but we have to be wary of
  2873       // I$ bloat, T$ effects and BP$ effects.
  2874       //
  2875       // If there's no contention try a 1-0 exit.  That is, exit without
  2876       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  2877       // we detect and recover from the race that the 1-0 exit admits.
  2878       //
  2879       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  2880       // before it STs null into _owner, releasing the lock.  Updates
  2881       // to data protected by the critical section must be visible before
  2882       // we drop the lock (and thus before any other thread could acquire
  2883       // the lock and observe the fields protected by the lock).
  2884       // IA32's memory-model is SPO, so STs are ordered with respect to
  2885       // each other and there's no need for an explicit barrier (fence).
  2886       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  2887 #ifndef OPT_THREAD
  2888       get_thread (TREG) ;
  2889 #endif
  2891       // It's inflated
  2892       ld(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  2893       xorr(boxReg, boxReg, TREG);
  2895       ld(AT, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  2896       orr(boxReg, boxReg, AT);
  2898       move(AT, R0);
  2899       bne(boxReg, R0, DONE_LABEL);
  2900       delayed()->nop();
  2902       ld(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
  2903       ld(AT, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
  2904       orr(boxReg, boxReg, AT);
  2906       move(AT, R0);
  2907       bne(boxReg, R0, DONE_LABEL);
  2908       delayed()->nop();
  2910       sync();
  2911       sd(R0, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  2912       move(AT, 0x1);
  2913       b(DONE_LABEL);
  2914       delayed()->nop();
  2916       bind  (Stacked);
  2917       ld(tmpReg, Address(boxReg, 0)) ;
  2918       //if (os::is_MP()) { sync(); }
  2919       cmpxchg(tmpReg, Address(objReg, 0), boxReg);
  2921       if (EmitSync & 65536) {
  2922         bind (CheckSucc);
  2925       bind(DONE_LABEL);
  2927       // Avoid branch to branch on AMD processors
  2928       if (EmitSync & 32768) { nop() ; }
  2932 void MacroAssembler::align(int modulus) {
  2933   while (offset() % modulus != 0) nop();
  2937 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  2938   //Unimplemented();
  2941 #ifdef _LP64
  2942 Register caller_saved_registers[] = {AT, V0, V1, A0, A1, A2, A3, A4, A5, A6, A7, T0, T1, T2, T3, T8, T9, GP, RA, FP};
  2944 /* FIXME: Jin: In MIPS64, F0~23 are all caller-saved registers */
  2945 FloatRegister caller_saved_fpu_registers[] = {F0, F12, F13};
  2946 #else
  2947 Register caller_saved_registers[] = {AT, V0, V1, A0, A1, A2, A3, T4, T5, T6, T7, T0, T1, T2, T3, T8, T9, GP, RA, FP};
  2949 Register caller_saved_fpu_registers[] = {};
  2950 #endif
  2952 //We preserve all caller-saved register
  2953 void  MacroAssembler::pushad(){
  2954   int i;
  2956   /* Fixed-point registers */
  2957   int len = sizeof(caller_saved_registers) / sizeof(caller_saved_registers[0]);
  2958   daddi(SP, SP, -1 * len * wordSize);
  2959   for (i = 0; i < len; i++)
  2961 #ifdef _LP64
  2962     sd(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  2963 #else
  2964     sw(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  2965 #endif
  2968   /* Floating-point registers */
  2969   len = sizeof(caller_saved_fpu_registers) / sizeof(caller_saved_fpu_registers[0]);
  2970   daddi(SP, SP, -1 * len * wordSize);
  2971   for (i = 0; i < len; i++)
  2973 #ifdef _LP64
  2974     sdc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  2975 #else
  2976     swc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  2977 #endif
  2979 };
  2981 void  MacroAssembler::popad(){
  2982   int i;
  2984   /* Floating-point registers */
  2985   int len = sizeof(caller_saved_fpu_registers) / sizeof(caller_saved_fpu_registers[0]);
  2986   for (i = 0; i < len; i++)
  2988 #ifdef _LP64
  2989     ldc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  2990 #else
  2991     lwc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  2992 #endif
  2994   daddi(SP, SP, len * wordSize);
  2996   /* Fixed-point registers */
  2997   len = sizeof(caller_saved_registers) / sizeof(caller_saved_registers[0]);
  2998   for (i = 0; i < len; i++)
  3000 #ifdef _LP64
  3001     ld(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3002 #else
  3003     lw(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3004 #endif
  3006   daddi(SP, SP, len * wordSize);
  3007 };
  3009 void MacroAssembler::push2(Register reg1, Register reg2) {
  3010 #ifdef _LP64
  3011   daddi(SP, SP, -16);
  3012   sd(reg2, SP, 0);
  3013   sd(reg1, SP, 8);
  3014 #else
  3015   addi(SP, SP, -8);
  3016   sw(reg2, SP, 0);
  3017   sw(reg1, SP, 4);
  3018 #endif
  3021 void MacroAssembler::pop2(Register reg1, Register reg2) {
  3022 #ifdef _LP64
  3023   ld(reg1, SP, 0);
  3024   ld(reg2, SP, 8);
  3025   daddi(SP, SP, 16);
  3026 #else
  3027   lw(reg1, SP, 0);
  3028   lw(reg2, SP, 4);
  3029   addi(SP, SP, 8);
  3030 #endif
  3033 //for UseCompressedOops Option
  3034 void MacroAssembler::load_klass(Register dst, Register src) {
  3035 #ifdef _LP64
  3036     if(UseCompressedClassPointers){
  3037         lwu(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  3038   decode_klass_not_null(dst);
  3039     } else
  3040 #endif
  3041         ld(dst, src, oopDesc::klass_offset_in_bytes());
  3044 void MacroAssembler::store_klass(Register dst, Register src) {
  3045 #ifdef _LP64
  3046     if(UseCompressedClassPointers){
  3047     encode_klass_not_null(src);
  3048     sw(src, dst, oopDesc::klass_offset_in_bytes());
  3049     } else {
  3050 #endif
  3051     sd(src, dst, oopDesc::klass_offset_in_bytes());
  3055 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  3056   load_klass(dst, src);
  3057   ld(dst, Address(dst, Klass::prototype_header_offset()));
  3060 #ifdef _LP64
  3061 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  3062   if (UseCompressedClassPointers) {
  3063     sw(src, dst, oopDesc::klass_gap_offset_in_bytes());
  3067 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  3068     if(UseCompressedOops){
  3069   lwu(dst, src);
  3070   decode_heap_oop(dst);
  3071     } else{
  3072   ld(dst, src);
  3076 void MacroAssembler::store_heap_oop(Address dst, Register src){
  3077     if(UseCompressedOops){
  3078        assert(!dst.uses(src), "not enough registers");
  3079        encode_heap_oop(src);
  3080        sw(src, dst);
  3081     } else{
  3082        sd(src, dst);
  3086 #ifdef ASSERT
  3087 void MacroAssembler::verify_heapbase(const char* msg) {
  3088   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
  3089   assert (Universe::heap() != NULL, "java heap should be initialized");
  3091 #endif
  3094 // Algorithm must match oop.inline.hpp encode_heap_oop.
  3095 void MacroAssembler::encode_heap_oop(Register r) {
  3096 #ifdef ASSERT
  3097   verify_heapbase("MacroAssembler::encode_heap_oop:heap base corrupted?");
  3098 #endif
  3099   verify_oop(r, "broken oop in encode_heap_oop");
  3100   if (Universe::narrow_oop_base() == NULL) {
  3101     if (Universe::narrow_oop_shift() != 0) {
  3102       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3103       shr(r, LogMinObjAlignmentInBytes);
  3105     return;
  3108     movz(r, S5_heapbase, r);
  3109     dsub(r, r, S5_heapbase);
  3110     if (Universe::narrow_oop_shift() != 0) {
  3111       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3112       shr(r, LogMinObjAlignmentInBytes);
  3116 void MacroAssembler::encode_heap_oop(Register dst, Register src) {
  3117 #ifdef ASSERT
  3118   verify_heapbase("MacroAssembler::encode_heap_oop:heap base corrupted?");
  3119 #endif
  3120   verify_oop(src, "broken oop in encode_heap_oop");
  3121   if (Universe::narrow_oop_base() == NULL) {
  3122     if (Universe::narrow_oop_shift() != 0) {
  3123       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3124       dsrl(dst, src, LogMinObjAlignmentInBytes);
  3125     } else {
  3126       if (dst != src) move(dst, src);
  3128   } else {
  3129     if (dst == src) {
  3130       movz(dst, S5_heapbase, dst);
  3131       dsub(dst, dst, S5_heapbase);
  3132       if (Universe::narrow_oop_shift() != 0) {
  3133         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3134         shr(dst, LogMinObjAlignmentInBytes);
  3136     } else {
  3137       dsub(dst, src, S5_heapbase);
  3138       if (Universe::narrow_oop_shift() != 0) {
  3139         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3140         shr(dst, LogMinObjAlignmentInBytes);
  3142       movz(dst, R0, src);
  3147 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  3148     assert (UseCompressedOops, "should be compressed");
  3149 #ifdef ASSERT
  3150     if (CheckCompressedOops) {
  3151   Label ok;
  3152   bne(r, R0, ok);
  3153   delayed()->nop();
  3154   stop("null oop passed to encode_heap_oop_not_null");
  3155   bind(ok);
  3157 #endif
  3158   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  3159   if (Universe::narrow_oop_base() != NULL) {
  3160     dsub(r, r, S5_heapbase);
  3162   if (Universe::narrow_oop_shift() != 0) {
  3163     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3164     shr(r, LogMinObjAlignmentInBytes);
  3169 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  3170     assert (UseCompressedOops, "should be compressed");
  3171 #ifdef ASSERT
  3172     if (CheckCompressedOops) {
  3173   Label ok;
  3174   bne(src, R0, ok);
  3175   delayed()->nop();
  3176   stop("null oop passed to encode_heap_oop_not_null2");
  3177   bind(ok);
  3179 #endif
  3180     verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  3182     if (Universe::narrow_oop_base() != NULL) {
  3183       dsub(dst, src, S5_heapbase);
  3184         if (Universe::narrow_oop_shift() != 0) {
  3185         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3186         shr(dst, LogMinObjAlignmentInBytes);
  3188     } else {
  3189         if (Universe::narrow_oop_shift() != 0) {
  3190         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3191           dsrl(dst, src, LogMinObjAlignmentInBytes);
  3192         } else {
  3193           if (dst != src) move(dst, src);
  3198 void  MacroAssembler::decode_heap_oop(Register r) {
  3199 #ifdef ASSERT
  3200   verify_heapbase("MacroAssembler::decode_heap_oop corrupted?");
  3201 #endif
  3202   if (Universe::narrow_oop_base() == NULL) {
  3203     if (Universe::narrow_oop_shift() != 0) {
  3204       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3205       shl(r, LogMinObjAlignmentInBytes);
  3207   } else {
  3208     move(AT, r);
  3209     if (Universe::narrow_oop_shift() != 0) {
  3210       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3211       shl(r, LogMinObjAlignmentInBytes);
  3213     dadd(r, r, S5_heapbase);
  3214     movz(r, R0, AT);
  3216   verify_oop(r, "broken oop in decode_heap_oop");
  3219 void  MacroAssembler::decode_heap_oop(Register dst, Register src) {
  3220 #ifdef ASSERT
  3221   verify_heapbase("MacroAssembler::decode_heap_oop corrupted?");
  3222 #endif
  3223   if (Universe::narrow_oop_base() == NULL) {
  3224     if (Universe::narrow_oop_shift() != 0) {
  3225       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3226       if (dst != src) nop(); // DON'T DELETE THIS GUY.
  3227       dsll(dst, src, LogMinObjAlignmentInBytes);
  3228     } else {
  3229       if (dst != src) move(dst, src);
  3231   } else {
  3232     if (dst == src) {
  3233       move(AT, dst);
  3234       if (Universe::narrow_oop_shift() != 0) {
  3235         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3236         shl(dst, LogMinObjAlignmentInBytes);
  3238       dadd(dst, dst, S5_heapbase);
  3239       movz(dst, R0, AT);
  3240     } else {
  3241       if (Universe::narrow_oop_shift() != 0) {
  3242         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3243         dsll(dst, src, LogMinObjAlignmentInBytes);
  3244         daddu(dst, dst, S5_heapbase);
  3245       } else {
  3246         daddu(dst, src, S5_heapbase);
  3248       movz(dst, R0, src);
  3251   verify_oop(dst, "broken oop in decode_heap_oop");
  3254 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  3255   // Note: it will change flags
  3256   assert (UseCompressedOops, "should only be used for compressed headers");
  3257   assert (Universe::heap() != NULL, "java heap should be initialized");
  3258   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3259   // vtableStubs also counts instructions in pd_code_size_limit.
  3260   // Also do not verify_oop as this is called by verify_oop.
  3261   if (Universe::narrow_oop_shift() != 0) {
  3262     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3263     shl(r, LogMinObjAlignmentInBytes);
  3264     if (Universe::narrow_oop_base() != NULL) {
  3265       daddu(r, r, S5_heapbase);
  3267   } else {
  3268     assert (Universe::narrow_oop_base() == NULL, "sanity");
  3272 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  3273   assert (UseCompressedOops, "should only be used for compressed headers");
  3274   assert (Universe::heap() != NULL, "java heap should be initialized");
  3276   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3277   // vtableStubs also counts instructions in pd_code_size_limit.
  3278   // Also do not verify_oop as this is called by verify_oop.
  3279   //lea(dst, Address(S5_heapbase, src, Address::times_8, 0));
  3280   if (Universe::narrow_oop_shift() != 0) {
  3281     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3282     if (LogMinObjAlignmentInBytes == Address::times_8) {
  3283       dsll(dst, src, LogMinObjAlignmentInBytes);
  3284       daddu(dst, dst, S5_heapbase);
  3285     } else {
  3286       dsll(dst, src, LogMinObjAlignmentInBytes);
  3287       if (Universe::narrow_oop_base() != NULL) {
  3288         daddu(dst, dst, S5_heapbase);
  3291   } else {
  3292     assert (Universe::narrow_oop_base() == NULL, "sanity");
  3293     if (dst != src) {
  3294       move(dst, src);
  3299 void MacroAssembler::encode_klass_not_null(Register r) {
  3300   if (Universe::narrow_klass_base() != NULL) {
  3301     assert(r != AT, "Encoding a klass in AT");
  3302     set64(AT, (int64_t)Universe::narrow_klass_base());
  3303     dsub(r, r, AT);
  3305   if (Universe::narrow_klass_shift() != 0) {
  3306     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3307     shr(r, LogKlassAlignmentInBytes);
  3309   // Not neccessary for MIPS at all.
  3310   //if (Universe::narrow_klass_base() != NULL) {
  3311   //  reinit_heapbase();
  3312   //}
  3315 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  3316   if (dst == src) {
  3317     encode_klass_not_null(src);
  3318   } else {
  3319     if (Universe::narrow_klass_base() != NULL) {
  3320       set64(dst, (int64_t)Universe::narrow_klass_base());
  3321       dsub(dst, src, dst);
  3322       if (Universe::narrow_klass_shift() != 0) {
  3323         assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3324         shr(dst, LogKlassAlignmentInBytes);
  3326     } else {
  3327       if (Universe::narrow_klass_shift() != 0) {
  3328         assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3329         dsrl(dst, src, LogKlassAlignmentInBytes);
  3330       } else {
  3331         move(dst, src);
  3337 // Function instr_size_for_decode_klass_not_null() counts the instructions
  3338 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  3339 // when (Universe::heap() != NULL).  Hence, if the instructions they
  3340 // generate change, then this method needs to be updated.
  3341 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  3342   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  3343   if (Universe::narrow_klass_base() != NULL) {
  3344     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  3345     return (Universe::narrow_klass_shift() == 0 ? 4 * 9 : 4 * 10);
  3346   } else {
  3347     // longest load decode klass function, mov64, leaq
  3348     return (Universe::narrow_klass_shift() == 0 ? 4 * 0 : 4 * 1);
  3352 void  MacroAssembler::decode_klass_not_null(Register r) {
  3353   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  3354   assert(r != AT, "Decoding a klass in AT");
  3355   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3356   // vtableStubs also counts instructions in pd_code_size_limit.
  3357   // Also do not verify_oop as this is called by verify_oop.
  3358   if (Universe::narrow_klass_shift() != 0) {
  3359     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3360     shl(r, LogKlassAlignmentInBytes);
  3362   if (Universe::narrow_klass_base() != NULL) {
  3363     set64(AT, (int64_t)Universe::narrow_klass_base());
  3364     daddu(r, r, AT);
  3365     //Not neccessary for MIPS at all.
  3366     //reinit_heapbase();
  3370 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  3371   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  3373   if (dst == src) {
  3374     decode_klass_not_null(dst);
  3375   } else {
  3376     // Cannot assert, unverified entry point counts instructions (see .ad file)
  3377     // vtableStubs also counts instructions in pd_code_size_limit.
  3378     // Also do not verify_oop as this is called by verify_oop.
  3379     set64(dst, (int64_t)Universe::narrow_klass_base());
  3380     if (Universe::narrow_klass_shift() != 0) {
  3381       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3382       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  3383       dsll(AT, src, Address::times_8);
  3384       daddu(dst, dst, AT);
  3385     } else {
  3386       daddu(dst, src, dst);
  3391 void MacroAssembler::incrementl(Register reg, int value) {
  3392   if (value == min_jint) {
  3393      move(AT, value);
  3394      LP64_ONLY(addu32(reg, reg, AT)) NOT_LP64(addu(reg, reg, AT));
  3395      return;
  3397   if (value <  0) { decrementl(reg, -value); return; }
  3398   if (value == 0) {                        ; return; }
  3400   if(Assembler::is_simm16(value)) {
  3401      NOT_LP64(addiu(reg, reg, value));
  3402      LP64_ONLY(move(AT, value); addu32(reg, reg, AT));
  3403   } else {
  3404      move(AT, value);
  3405      LP64_ONLY(addu32(reg, reg, AT)) NOT_LP64(addu(reg, reg, AT));
  3409 void MacroAssembler::decrementl(Register reg, int value) {
  3410   if (value == min_jint) {
  3411      move(AT, value);
  3412      LP64_ONLY(subu32(reg, reg, AT)) NOT_LP64(subu(reg, reg, AT));
  3413      return;
  3415   if (value <  0) { incrementl(reg, -value); return; }
  3416   if (value == 0) {                        ; return; }
  3418   if(Assembler::is_simm16(value)) {
  3419      NOT_LP64(addiu(reg, reg, -value));
  3420      LP64_ONLY(move(AT, value); subu32(reg, reg, AT));
  3421   } else {
  3422      move(AT, value);
  3423      LP64_ONLY(subu32(reg, reg, AT)) NOT_LP64(subu(reg, reg, AT));
  3427 void MacroAssembler::reinit_heapbase() {
  3428   if (UseCompressedOops || UseCompressedClassPointers) {
  3429     if (Universe::heap() != NULL) {
  3430       if (Universe::narrow_oop_base() == NULL) {
  3431         move(S5_heapbase, R0);
  3432       } else {
  3433         set64(S5_heapbase, (int64_t)Universe::narrow_ptrs_base());
  3435     } else {
  3436       set64(S5_heapbase, (intptr_t)Universe::narrow_ptrs_base_addr());
  3437       ld(S5_heapbase, S5_heapbase, 0);
  3441 #endif // _LP64
  3443 void MacroAssembler::check_klass_subtype(Register sub_klass,
  3444                            Register super_klass,
  3445                            Register temp_reg,
  3446                            Label& L_success) {
  3447 //implement ind   gen_subtype_check
  3448   Label L_failure;
  3449   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  3450   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  3451   bind(L_failure);
  3454 SkipIfEqual::SkipIfEqual(
  3455     MacroAssembler* masm, const bool* flag_addr, bool value) {
  3456   _masm = masm;
  3457   _masm->li(AT, (address)flag_addr);
  3458   _masm->lb(AT,AT,0);
  3459   _masm->addi(AT,AT,-value);
  3460   _masm->beq(AT,R0,_label);
  3461   _masm->delayed()->nop();
  3463 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  3464                                                    Register super_klass,
  3465                                                    Register temp_reg,
  3466                                                    Label* L_success,
  3467                                                    Label* L_failure,
  3468                                                    Label* L_slow_path,
  3469                                         RegisterOrConstant super_check_offset) {
  3470   assert_different_registers(sub_klass, super_klass, temp_reg);
  3471   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  3472   if (super_check_offset.is_register()) {
  3473     assert_different_registers(sub_klass, super_klass,
  3474                                super_check_offset.as_register());
  3475   } else if (must_load_sco) {
  3476     assert(temp_reg != noreg, "supply either a temp or a register offset");
  3479   Label L_fallthrough;
  3480   int label_nulls = 0;
  3481   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3482   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3483   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  3484   assert(label_nulls <= 1, "at most one NULL in the batch");
  3486   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3487   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  3488   // If the pointers are equal, we are done (e.g., String[] elements).
  3489   // This self-check enables sharing of secondary supertype arrays among
  3490   // non-primary types such as array-of-interface.  Otherwise, each such
  3491   // type would need its own customized SSA.
  3492   // We move this check to the front of the fast path because many
  3493   // type checks are in fact trivially successful in this manner,
  3494   // so we get a nicely predicted branch right at the start of the check.
  3495   //cmpptr(sub_klass, super_klass);
  3496   //local_jcc(Assembler::equal, *L_success);
  3497   beq(sub_klass, super_klass, *L_success);
  3498   delayed()->nop();
  3499   // Check the supertype display:
  3500   if (must_load_sco) {
  3501     // Positive movl does right thing on LP64.
  3502   lwu(temp_reg, super_klass, sco_offset);
  3503     super_check_offset = RegisterOrConstant(temp_reg);
  3505   dsll(AT, super_check_offset.register_or_noreg(), Address::times_1);
  3506   daddu(AT, sub_klass, AT);
  3507   ld(AT, AT, super_check_offset.constant_or_zero()*Address::times_1);
  3509   // This check has worked decisively for primary supers.
  3510   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3511   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3512   // This works in the same check above because of a tricky aliasing
  3513   // between the super_cache and the primary super display elements.
  3514   // (The 'super_check_addr' can address either, as the case requires.)
  3515   // Note that the cache is updated below if it does not help us find
  3516   // what we need immediately.
  3517   // So if it was a primary super, we can just fail immediately.
  3518   // Otherwise, it's the slow path for us (no success at this point).
  3520   if (super_check_offset.is_register()) {
  3521   beq(super_klass, AT, *L_success);
  3522   delayed()->nop();
  3523   addi(AT, super_check_offset.as_register(), -sc_offset);
  3524     if (L_failure == &L_fallthrough) {
  3525     beq(AT, R0, *L_slow_path);
  3526     delayed()->nop();
  3527     } else {
  3528     bne(AT, R0, *L_failure);
  3529     delayed()->nop();
  3530     b(*L_slow_path);
  3531     delayed()->nop();
  3533   } else if (super_check_offset.as_constant() == sc_offset) {
  3534     // Need a slow path; fast failure is impossible.
  3535     if (L_slow_path == &L_fallthrough) {
  3536     beq(super_klass, AT, *L_success);
  3537     delayed()->nop();
  3538     } else {
  3539     bne(super_klass, AT, *L_slow_path);
  3540     delayed()->nop();
  3541     b(*L_success);
  3542     delayed()->nop();
  3544   } else {
  3545     // No slow path; it's a fast decision.
  3546     if (L_failure == &L_fallthrough) {
  3547     beq(super_klass, AT, *L_success);
  3548     delayed()->nop();
  3549     } else {
  3550     bne(super_klass, AT, *L_failure);
  3551     delayed()->nop();
  3552     b(*L_success);
  3553     delayed()->nop();
  3557   bind(L_fallthrough);
  3562 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3563                                                    Register super_klass,
  3564                                                    Register temp_reg,
  3565                                                    Register temp2_reg,
  3566                                                    Label* L_success,
  3567                                                    Label* L_failure,
  3568                                                    bool set_cond_codes) {
  3569   assert_different_registers(sub_klass, super_klass, temp_reg);
  3570   if (temp2_reg != noreg)
  3571     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  3572   else
  3573     temp2_reg = T9;
  3574 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  3576   Label L_fallthrough;
  3577   int label_nulls = 0;
  3578   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3579   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3580   assert(label_nulls <= 1, "at most one NULL in the batch");
  3582   // a couple of useful fields in sub_klass:
  3583   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  3584   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3585   Address secondary_supers_addr(sub_klass, ss_offset);
  3586   Address super_cache_addr(     sub_klass, sc_offset);
  3588   // Do a linear scan of the secondary super-klass chain.
  3589   // This code is rarely used, so simplicity is a virtue here.
  3590   // The repne_scan instruction uses fixed registers, which we must spill.
  3591   // Don't worry too much about pre-existing connections with the input regs.
  3593 #if 0
  3594   assert(sub_klass != T9, "killed reg"); // killed by mov(rax, super)
  3595   assert(sub_klass != T1, "killed reg"); // killed by lea(rcx, &pst_counter)
  3596 #endif
  3598   // Get super_klass value into rax (even if it was in rdi or rcx).
  3599 #ifndef PRODUCT
  3600   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3601   ExternalAddress pst_counter_addr((address) pst_counter);
  3602   NOT_LP64(  incrementl(pst_counter_addr) );
  3603   //LP64_ONLY( lea(rcx, pst_counter_addr) );
  3604   //LP64_ONLY( incrementl(Address(rcx, 0)) );
  3605 #endif //PRODUCT
  3607   // We will consult the secondary-super array.
  3608   ld(temp_reg, secondary_supers_addr);
  3609   // Load the array length.  (Positive movl does right thing on LP64.)
  3610   lw(temp2_reg, Address(temp_reg, Array<Klass*>::length_offset_in_bytes()));
  3611   // Skip to start of data.
  3612   daddiu(temp_reg, temp_reg, Array<Klass*>::base_offset_in_bytes());
  3614   // Scan RCX words at [RDI] for an occurrence of RAX.
  3615   // Set NZ/Z based on last compare.
  3616   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  3617   // not change flags (only scas instruction which is repeated sets flags).
  3618   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  3620   /* 2013/4/3 Jin: OpenJDK8 never compresses klass pointers in secondary-super array. */
  3621   Label Loop, subtype;
  3622   bind(Loop);
  3623   beq(temp2_reg, R0, *L_failure);
  3624   delayed()->nop();
  3625   ld(AT, temp_reg, 0);
  3626   beq(AT, super_klass, subtype);
  3627   delayed()->daddi(temp_reg, temp_reg, 1 * wordSize);
  3628   b(Loop);
  3629   delayed()->daddi(temp2_reg, temp2_reg, -1);
  3631   bind(subtype);
  3632   sd(super_klass, super_cache_addr);
  3633   if (L_success != &L_fallthrough) {
  3634     b(*L_success);
  3635     delayed()->nop();
  3638   // Success.  Cache the super we found and proceed in triumph.
  3639 #undef IS_A_TEMP
  3641   bind(L_fallthrough);
  3643 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  3644   ld(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  3645   sd(R0, Address(java_thread, JavaThread::vm_result_offset()));
  3646   verify_oop(oop_result, "broken oop in call_VM_base");
  3649 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  3650   ld(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  3651   sd(R0, Address(java_thread, JavaThread::vm_result_2_offset()));
  3654 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3655                                          int extra_slot_offset) {
  3656   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3657   int stackElementSize = Interpreter::stackElementSize;
  3658   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  3659 #ifdef ASSERT
  3660   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  3661   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  3662 #endif
  3663   Register             scale_reg    = NOREG;
  3664   Address::ScaleFactor scale_factor = Address::no_scale;
  3665   if (arg_slot.is_constant()) {
  3666     offset += arg_slot.as_constant() * stackElementSize;
  3667   } else {
  3668     scale_reg    = arg_slot.as_register();
  3669     scale_factor = Address::times_8;
  3671   // 2014/07/31 Fu: We don't push RA on stack in prepare_invoke.
  3672   //  offset += wordSize;           // return PC is on stack
  3673   if(scale_reg==NOREG) return Address(SP, offset);
  3674   else {
  3675   dsll(scale_reg, scale_reg, scale_factor);
  3676   daddu(scale_reg, SP, scale_reg);
  3677   return Address(scale_reg, offset);
  3681 SkipIfEqual::~SkipIfEqual() {
  3682   _masm->bind(_label);
  3685 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  3686   switch (size_in_bytes) {
  3687 #ifndef _LP64
  3688   case  8:
  3689     assert(dst2 != noreg, "second dest register required");
  3690     lw(dst,  src);
  3691     lw(dst2, src.plus_disp(BytesPerInt));
  3692     break;
  3693 #else
  3694   case  8:  ld(dst, src); break;
  3695 #endif
  3696   case  4:  lw(dst, src); break;
  3697   case  2:  is_signed ? lh(dst, src) : lhu(dst, src); break;
  3698   case  1:  is_signed ? lb( dst, src) : lbu( dst, src); break;
  3699   default:  ShouldNotReachHere();
  3703 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  3704   switch (size_in_bytes) {
  3705 #ifndef _LP64
  3706   case  8:
  3707     assert(src2 != noreg, "second source register required");
  3708     sw(src, dst);
  3709     sw(src2, dst.plus_disp(BytesPerInt));
  3710     break;
  3711 #else
  3712   case  8:  sd(src, dst); break;
  3713 #endif
  3714   case  4:  sw(src, dst); break;
  3715   case  2:  sh(src, dst); break;
  3716   case  1:  sb(src, dst); break;
  3717   default:  ShouldNotReachHere();
  3721 // Look up the method for a megamorphic invokeinterface call.
  3722 // The target method is determined by <intf_klass, itable_index>.
  3723 // The receiver klass is in recv_klass.
  3724 // On success, the result will be in method_result, and execution falls through.
  3725 // On failure, execution transfers to the given label.
  3726 void MacroAssembler::lookup_interface_method(Register recv_klass,
  3727                                              Register intf_klass,
  3728                                              RegisterOrConstant itable_index,
  3729                                              Register method_result,
  3730                                              Register scan_temp,
  3731                                              Label& L_no_such_interface) {
  3732   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  3733   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  3734          "caller must use same register for non-constant itable index as for method");
  3736   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3737   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  3738   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  3739   int scan_step   = itableOffsetEntry::size() * wordSize;
  3740   int vte_size    = vtableEntry::size() * wordSize;
  3741   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  3742   assert(vte_size == wordSize, "else adjust times_vte_scale");
  3744   lw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  3746   // %%% Could store the aligned, prescaled offset in the klassoop.
  3747   dsll(scan_temp, scan_temp, times_vte_scale);
  3748   daddu(scan_temp, recv_klass, scan_temp);
  3749   daddiu(scan_temp, scan_temp, vtable_base);
  3750   if (HeapWordsPerLong > 1) {
  3751     // Round up to align_object_offset boundary
  3752     // see code for InstanceKlass::start_of_itable!
  3753     round_to(scan_temp, BytesPerLong);
  3756   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  3757   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  3758 //  lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  3759   if (itable_index.is_constant()) {
  3760     set64(AT, (int)itable_index.is_constant());
  3761     dsll(AT, AT, (int)Address::times_ptr);
  3762   } else {
  3763     dsll(AT, itable_index.as_register(), (int)Address::times_ptr);
  3765   daddu(AT, AT, recv_klass);
  3766   daddiu(recv_klass, AT, itentry_off);
  3768   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  3769   //   if (scan->interface() == intf) {
  3770   //     result = (klass + scan->offset() + itable_index);
  3771   //   }
  3772   // }
  3773   Label search, found_method;
  3775   for (int peel = 1; peel >= 0; peel--) {
  3776     ld(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  3778     if (peel) {
  3779       beq(intf_klass, method_result, found_method);
  3780       nop();
  3781     } else {
  3782       bne(intf_klass, method_result, search);
  3783       nop();
  3784       // (invert the test to fall through to found_method...)
  3787     if (!peel)  break;
  3789     bind(search);
  3791     // Check that the previous entry is non-null.  A null entry means that
  3792     // the receiver class doesn't implement the interface, and wasn't the
  3793     // same as when the caller was compiled.
  3794     beq(method_result, R0, L_no_such_interface);
  3795     nop();
  3796     daddiu(scan_temp, scan_temp, scan_step);
  3799   bind(found_method);
  3801   // Got a hit.
  3802   lw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  3803   //ld(method_result, Address(recv_klass, scan_temp, Address::times_1));
  3804   if(UseLoongsonISA) {
  3805     gsldx(method_result, recv_klass, scan_temp, 0);
  3806   } else {
  3807     daddu(AT, recv_klass, scan_temp);
  3808     ld(method_result, AT);
  3813 // virtual method calling
  3814 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  3815                                            RegisterOrConstant vtable_index,
  3816                                            Register method_result) {
  3817   Register tmp = GP;
  3818   push(tmp);
  3820   if (vtable_index.is_constant()) {
  3821     assert_different_registers(recv_klass, method_result, tmp);
  3822   } else {
  3823     assert_different_registers(recv_klass, method_result, vtable_index.as_register(), tmp);
  3825   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  3826   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  3827 /*
  3828   Address vtable_entry_addr(recv_klass,
  3829                             vtable_index, Address::times_ptr,
  3830                             base + vtableEntry::method_offset_in_bytes());
  3831 */
  3832   if (vtable_index.is_constant()) {
  3833     set64(AT, vtable_index.as_constant());
  3834     dsll(AT, AT, (int)Address::times_ptr);
  3835   } else {
  3836     dsll(AT, vtable_index.as_register(), (int)Address::times_ptr);
  3838   set64(tmp, base + vtableEntry::method_offset_in_bytes());
  3839   daddu(tmp, tmp, AT);
  3840   daddu(tmp, tmp, recv_klass);
  3841   ld(method_result, tmp, 0);
  3843   pop(tmp);

mercurial