src/cpu/sparc/vm/templateTable_sparc.cpp

Tue, 06 Dec 2011 18:28:51 -0500

author
coleenp
date
Tue, 06 Dec 2011 18:28:51 -0500
changeset 3368
52b5d32fbfaf
parent 3092
baf763f388e6
child 3400
22cee0ee8927
permissions
-rw-r--r--

7117052: instanceKlass::_init_state can be u1 type
Summary: Change instanceKlass::_init_state field to u1 type.
Reviewed-by: bdelsart, coleenp, dholmes, phh, never
Contributed-by: Jiangli Zhou <jiangli.zhou@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    39 #define __ _masm->
    41 // Misc helpers
    43 // Do an oop store like *(base + index + offset) = val
    44 // index can be noreg,
    45 static void do_oop_store(InterpreterMacroAssembler* _masm,
    46                          Register base,
    47                          Register index,
    48                          int offset,
    49                          Register val,
    50                          Register tmp,
    51                          BarrierSet::Name barrier,
    52                          bool precise) {
    53   assert(tmp != val && tmp != base && tmp != index, "register collision");
    54   assert(index == noreg || offset == 0, "only one offset");
    55   switch (barrier) {
    56 #ifndef SERIALGC
    57     case BarrierSet::G1SATBCT:
    58     case BarrierSet::G1SATBCTLogging:
    59       {
    60         // Load and record the previous value.
    61         __ g1_write_barrier_pre(base, index, offset,
    62                                 noreg /* pre_val */,
    63                                 tmp, true /*preserve_o_regs*/);
    65         if (index == noreg ) {
    66           assert(Assembler::is_simm13(offset), "fix this code");
    67           __ store_heap_oop(val, base, offset);
    68         } else {
    69           __ store_heap_oop(val, base, index);
    70         }
    72         // No need for post barrier if storing NULL
    73         if (val != G0) {
    74           if (precise) {
    75             if (index == noreg) {
    76               __ add(base, offset, base);
    77             } else {
    78               __ add(base, index, base);
    79             }
    80           }
    81           __ g1_write_barrier_post(base, val, tmp);
    82         }
    83       }
    84       break;
    85 #endif // SERIALGC
    86     case BarrierSet::CardTableModRef:
    87     case BarrierSet::CardTableExtension:
    88       {
    89         if (index == noreg ) {
    90           assert(Assembler::is_simm13(offset), "fix this code");
    91           __ store_heap_oop(val, base, offset);
    92         } else {
    93           __ store_heap_oop(val, base, index);
    94         }
    95         // No need for post barrier if storing NULL
    96         if (val != G0) {
    97           if (precise) {
    98             if (index == noreg) {
    99               __ add(base, offset, base);
   100             } else {
   101               __ add(base, index, base);
   102             }
   103           }
   104           __ card_write_barrier_post(base, val, tmp);
   105         }
   106       }
   107       break;
   108     case BarrierSet::ModRef:
   109     case BarrierSet::Other:
   110       ShouldNotReachHere();
   111       break;
   112     default      :
   113       ShouldNotReachHere();
   115   }
   116 }
   119 //----------------------------------------------------------------------------------------------------
   120 // Platform-dependent initialization
   122 void TemplateTable::pd_initialize() {
   123   // (none)
   124 }
   127 //----------------------------------------------------------------------------------------------------
   128 // Condition conversion
   129 Assembler::Condition ccNot(TemplateTable::Condition cc) {
   130   switch (cc) {
   131     case TemplateTable::equal        : return Assembler::notEqual;
   132     case TemplateTable::not_equal    : return Assembler::equal;
   133     case TemplateTable::less         : return Assembler::greaterEqual;
   134     case TemplateTable::less_equal   : return Assembler::greater;
   135     case TemplateTable::greater      : return Assembler::lessEqual;
   136     case TemplateTable::greater_equal: return Assembler::less;
   137   }
   138   ShouldNotReachHere();
   139   return Assembler::zero;
   140 }
   142 //----------------------------------------------------------------------------------------------------
   143 // Miscelaneous helper routines
   146 Address TemplateTable::at_bcp(int offset) {
   147   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   148   return Address(Lbcp, offset);
   149 }
   152 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   153                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   154                                    int byte_no) {
   155   // With sharing on, may need to test methodOop flag.
   156   if (!RewriteBytecodes)  return;
   157   Label L_patch_done;
   159   switch (bc) {
   160   case Bytecodes::_fast_aputfield:
   161   case Bytecodes::_fast_bputfield:
   162   case Bytecodes::_fast_cputfield:
   163   case Bytecodes::_fast_dputfield:
   164   case Bytecodes::_fast_fputfield:
   165   case Bytecodes::_fast_iputfield:
   166   case Bytecodes::_fast_lputfield:
   167   case Bytecodes::_fast_sputfield:
   168     {
   169       // We skip bytecode quickening for putfield instructions when
   170       // the put_code written to the constant pool cache is zero.
   171       // This is required so that every execution of this instruction
   172       // calls out to InterpreterRuntime::resolve_get_put to do
   173       // additional, required work.
   174       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   175       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   176       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   177       __ set(bc, bc_reg);
   178       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
   179     }
   180     break;
   181   default:
   182     assert(byte_no == -1, "sanity");
   183     if (load_bc_into_bc_reg) {
   184       __ set(bc, bc_reg);
   185     }
   186   }
   188   if (JvmtiExport::can_post_breakpoint()) {
   189     Label L_fast_patch;
   190     __ ldub(at_bcp(0), temp_reg);
   191     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
   192     // perform the quickening, slowly, in the bowels of the breakpoint table
   193     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
   194     __ ba_short(L_patch_done);
   195     __ bind(L_fast_patch);
   196   }
   198 #ifdef ASSERT
   199   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
   200   Label L_okay;
   201   __ ldub(at_bcp(0), temp_reg);
   202   __ cmp(temp_reg, orig_bytecode);
   203   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   204   __ delayed()->cmp(temp_reg, bc_reg);
   205   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   206   __ delayed()->nop();
   207   __ stop("patching the wrong bytecode");
   208   __ bind(L_okay);
   209 #endif
   211   // patch bytecode
   212   __ stb(bc_reg, at_bcp(0));
   213   __ bind(L_patch_done);
   214 }
   216 //----------------------------------------------------------------------------------------------------
   217 // Individual instructions
   219 void TemplateTable::nop() {
   220   transition(vtos, vtos);
   221   // nothing to do
   222 }
   224 void TemplateTable::shouldnotreachhere() {
   225   transition(vtos, vtos);
   226   __ stop("shouldnotreachhere bytecode");
   227 }
   229 void TemplateTable::aconst_null() {
   230   transition(vtos, atos);
   231   __ clr(Otos_i);
   232 }
   235 void TemplateTable::iconst(int value) {
   236   transition(vtos, itos);
   237   __ set(value, Otos_i);
   238 }
   241 void TemplateTable::lconst(int value) {
   242   transition(vtos, ltos);
   243   assert(value >= 0, "check this code");
   244 #ifdef _LP64
   245   __ set(value, Otos_l);
   246 #else
   247   __ set(value, Otos_l2);
   248   __ clr( Otos_l1);
   249 #endif
   250 }
   253 void TemplateTable::fconst(int value) {
   254   transition(vtos, ftos);
   255   static float zero = 0.0, one = 1.0, two = 2.0;
   256   float* p;
   257   switch( value ) {
   258    default: ShouldNotReachHere();
   259    case 0:  p = &zero;  break;
   260    case 1:  p = &one;   break;
   261    case 2:  p = &two;   break;
   262   }
   263   AddressLiteral a(p);
   264   __ sethi(a, G3_scratch);
   265   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
   266 }
   269 void TemplateTable::dconst(int value) {
   270   transition(vtos, dtos);
   271   static double zero = 0.0, one = 1.0;
   272   double* p;
   273   switch( value ) {
   274    default: ShouldNotReachHere();
   275    case 0:  p = &zero;  break;
   276    case 1:  p = &one;   break;
   277   }
   278   AddressLiteral a(p);
   279   __ sethi(a, G3_scratch);
   280   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
   281 }
   284 // %%%%% Should factore most snippet templates across platforms
   286 void TemplateTable::bipush() {
   287   transition(vtos, itos);
   288   __ ldsb( at_bcp(1), Otos_i );
   289 }
   291 void TemplateTable::sipush() {
   292   transition(vtos, itos);
   293   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
   294 }
   296 void TemplateTable::ldc(bool wide) {
   297   transition(vtos, vtos);
   298   Label call_ldc, notInt, isString, notString, notClass, exit;
   300   if (wide) {
   301     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   302   } else {
   303     __ ldub(Lbcp, 1, O1);
   304   }
   305   __ get_cpool_and_tags(O0, O2);
   307   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   308   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   310   // get type from tags
   311   __ add(O2, tags_offset, O2);
   312   __ ldub(O2, O1, O2);
   313   // unresolved string? If so, must resolve
   314   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedString, Assembler::equal, Assembler::pt, call_ldc);
   316   // unresolved class? If so, must resolve
   317   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
   319   // unresolved class in error state
   320   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
   322   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
   323   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
   324   __ delayed()->add(O0, base_offset, O0);
   326   __ bind(call_ldc);
   327   __ set(wide, O1);
   328   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
   329   __ push(atos);
   330   __ ba_short(exit);
   332   __ bind(notClass);
   333  // __ add(O0, base_offset, O0);
   334   __ sll(O1, LogBytesPerWord, O1);
   335   __ cmp(O2, JVM_CONSTANT_Integer);
   336   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
   337   __ delayed()->cmp(O2, JVM_CONSTANT_String);
   338   __ ld(O0, O1, Otos_i);
   339   __ push(itos);
   340   __ ba_short(exit);
   342   __ bind(notInt);
   343  // __ cmp(O2, JVM_CONSTANT_String);
   344   __ brx(Assembler::equal, true, Assembler::pt, isString);
   345   __ delayed()->cmp(O2, JVM_CONSTANT_Object);
   346   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
   347   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   348   __ bind(isString);
   349   __ ld_ptr(O0, O1, Otos_i);
   350   __ verify_oop(Otos_i);
   351   __ push(atos);
   352   __ ba_short(exit);
   354   __ bind(notString);
   355  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   356   __ push(ftos);
   358   __ bind(exit);
   359 }
   361 // Fast path for caching oop constants.
   362 // %%% We should use this to handle Class and String constants also.
   363 // %%% It will simplify the ldc/primitive path considerably.
   364 void TemplateTable::fast_aldc(bool wide) {
   365   transition(vtos, atos);
   367   if (!EnableInvokeDynamic) {
   368     // We should not encounter this bytecode if !EnableInvokeDynamic.
   369     // The verifier will stop it.  However, if we get past the verifier,
   370     // this will stop the thread in a reasonable way, without crashing the JVM.
   371     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   372                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   373     // the call_VM checks for exception, so we should never return here.
   374     __ should_not_reach_here();
   375     return;
   376   }
   378   Register Rcache = G3_scratch;
   379   Register Rscratch = G4_scratch;
   381   resolve_cache_and_index(f1_oop, Otos_i, Rcache, Rscratch, wide ? sizeof(u2) : sizeof(u1));
   383   __ verify_oop(Otos_i);
   385   Label L_done;
   386   const Register Rcon_klass = G3_scratch;  // same as Rcache
   387   const Register Rarray_klass = G4_scratch;  // same as Rscratch
   388   __ load_klass(Otos_i, Rcon_klass);
   389   AddressLiteral array_klass_addr((address)Universe::systemObjArrayKlassObj_addr());
   390   __ load_contents(array_klass_addr, Rarray_klass);
   391   __ cmp_and_brx_short(Rarray_klass, Rcon_klass, Assembler::notEqual, Assembler::pt, L_done);
   392   __ ld(Address(Otos_i, arrayOopDesc::length_offset_in_bytes()), Rcon_klass);
   393   __ tst(Rcon_klass);
   394   __ brx(Assembler::zero, true, Assembler::pt, L_done);
   395   __ delayed()->clr(Otos_i);    // executed only if branch is taken
   397   // Load the exception from the system-array which wraps it:
   398   __ load_heap_oop(Otos_i, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   399   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
   401   __ bind(L_done);
   402 }
   404 void TemplateTable::ldc2_w() {
   405   transition(vtos, vtos);
   406   Label retry, resolved, Long, exit;
   408   __ bind(retry);
   409   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   410   __ get_cpool_and_tags(O0, O2);
   412   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   413   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   414   // get type from tags
   415   __ add(O2, tags_offset, O2);
   416   __ ldub(O2, O1, O2);
   418   __ sll(O1, LogBytesPerWord, O1);
   419   __ add(O0, O1, G3_scratch);
   421   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
   422   // A double can be placed at word-aligned locations in the constant pool.
   423   // Check out Conversions.java for an example.
   424   // Also constantPoolOopDesc::header_size() is 20, which makes it very difficult
   425   // to double-align double on the constant pool.  SG, 11/7/97
   426 #ifdef _LP64
   427   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
   428 #else
   429   FloatRegister f = Ftos_d;
   430   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
   431   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
   432          f->successor());
   433 #endif
   434   __ push(dtos);
   435   __ ba_short(exit);
   437   __ bind(Long);
   438 #ifdef _LP64
   439   __ ldx(G3_scratch, base_offset, Otos_l);
   440 #else
   441   __ ld(G3_scratch, base_offset, Otos_l);
   442   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
   443 #endif
   444   __ push(ltos);
   446   __ bind(exit);
   447 }
   450 void TemplateTable::locals_index(Register reg, int offset) {
   451   __ ldub( at_bcp(offset), reg );
   452 }
   455 void TemplateTable::locals_index_wide(Register reg) {
   456   // offset is 2, not 1, because Lbcp points to wide prefix code
   457   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
   458 }
   460 void TemplateTable::iload() {
   461   transition(vtos, itos);
   462   // Rewrite iload,iload  pair into fast_iload2
   463   //         iload,caload pair into fast_icaload
   464   if (RewriteFrequentPairs) {
   465     Label rewrite, done;
   467     // get next byte
   468     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
   470     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   471     // last two iloads in a pair.  Comparing against fast_iload means that
   472     // the next bytecode is neither an iload or a caload, and therefore
   473     // an iload pair.
   474     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
   476     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
   477     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   478     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
   480     __ cmp(G3_scratch, (int)Bytecodes::_caload);
   481     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   482     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
   484     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
   485     // rewrite
   486     // G4_scratch: fast bytecode
   487     __ bind(rewrite);
   488     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
   489     __ bind(done);
   490   }
   492   // Get the local value into tos
   493   locals_index(G3_scratch);
   494   __ access_local_int( G3_scratch, Otos_i );
   495 }
   497 void TemplateTable::fast_iload2() {
   498   transition(vtos, itos);
   499   locals_index(G3_scratch);
   500   __ access_local_int( G3_scratch, Otos_i );
   501   __ push_i();
   502   locals_index(G3_scratch, 3);  // get next bytecode's local index.
   503   __ access_local_int( G3_scratch, Otos_i );
   504 }
   506 void TemplateTable::fast_iload() {
   507   transition(vtos, itos);
   508   locals_index(G3_scratch);
   509   __ access_local_int( G3_scratch, Otos_i );
   510 }
   512 void TemplateTable::lload() {
   513   transition(vtos, ltos);
   514   locals_index(G3_scratch);
   515   __ access_local_long( G3_scratch, Otos_l );
   516 }
   519 void TemplateTable::fload() {
   520   transition(vtos, ftos);
   521   locals_index(G3_scratch);
   522   __ access_local_float( G3_scratch, Ftos_f );
   523 }
   526 void TemplateTable::dload() {
   527   transition(vtos, dtos);
   528   locals_index(G3_scratch);
   529   __ access_local_double( G3_scratch, Ftos_d );
   530 }
   533 void TemplateTable::aload() {
   534   transition(vtos, atos);
   535   locals_index(G3_scratch);
   536   __ access_local_ptr( G3_scratch, Otos_i);
   537 }
   540 void TemplateTable::wide_iload() {
   541   transition(vtos, itos);
   542   locals_index_wide(G3_scratch);
   543   __ access_local_int( G3_scratch, Otos_i );
   544 }
   547 void TemplateTable::wide_lload() {
   548   transition(vtos, ltos);
   549   locals_index_wide(G3_scratch);
   550   __ access_local_long( G3_scratch, Otos_l );
   551 }
   554 void TemplateTable::wide_fload() {
   555   transition(vtos, ftos);
   556   locals_index_wide(G3_scratch);
   557   __ access_local_float( G3_scratch, Ftos_f );
   558 }
   561 void TemplateTable::wide_dload() {
   562   transition(vtos, dtos);
   563   locals_index_wide(G3_scratch);
   564   __ access_local_double( G3_scratch, Ftos_d );
   565 }
   568 void TemplateTable::wide_aload() {
   569   transition(vtos, atos);
   570   locals_index_wide(G3_scratch);
   571   __ access_local_ptr( G3_scratch, Otos_i );
   572   __ verify_oop(Otos_i);
   573 }
   576 void TemplateTable::iaload() {
   577   transition(itos, itos);
   578   // Otos_i: index
   579   // tos: array
   580   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   581   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
   582 }
   585 void TemplateTable::laload() {
   586   transition(itos, ltos);
   587   // Otos_i: index
   588   // O2: array
   589   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   590   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
   591 }
   594 void TemplateTable::faload() {
   595   transition(itos, ftos);
   596   // Otos_i: index
   597   // O2: array
   598   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   599   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
   600 }
   603 void TemplateTable::daload() {
   604   transition(itos, dtos);
   605   // Otos_i: index
   606   // O2: array
   607   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   608   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
   609 }
   612 void TemplateTable::aaload() {
   613   transition(itos, atos);
   614   // Otos_i: index
   615   // tos: array
   616   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
   617   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   618   __ verify_oop(Otos_i);
   619 }
   622 void TemplateTable::baload() {
   623   transition(itos, itos);
   624   // Otos_i: index
   625   // tos: array
   626   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
   627   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
   628 }
   631 void TemplateTable::caload() {
   632   transition(itos, itos);
   633   // Otos_i: index
   634   // tos: array
   635   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   636   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   637 }
   639 void TemplateTable::fast_icaload() {
   640   transition(vtos, itos);
   641   // Otos_i: index
   642   // tos: array
   643   locals_index(G3_scratch);
   644   __ access_local_int( G3_scratch, Otos_i );
   645   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   646   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   647 }
   650 void TemplateTable::saload() {
   651   transition(itos, itos);
   652   // Otos_i: index
   653   // tos: array
   654   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   655   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
   656 }
   659 void TemplateTable::iload(int n) {
   660   transition(vtos, itos);
   661   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   662 }
   665 void TemplateTable::lload(int n) {
   666   transition(vtos, ltos);
   667   assert(n+1 < Argument::n_register_parameters, "would need more code");
   668   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
   669 }
   672 void TemplateTable::fload(int n) {
   673   transition(vtos, ftos);
   674   assert(n < Argument::n_register_parameters, "would need more code");
   675   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
   676 }
   679 void TemplateTable::dload(int n) {
   680   transition(vtos, dtos);
   681   FloatRegister dst = Ftos_d;
   682   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
   683 }
   686 void TemplateTable::aload(int n) {
   687   transition(vtos, atos);
   688   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   689 }
   692 void TemplateTable::aload_0() {
   693   transition(vtos, atos);
   695   // According to bytecode histograms, the pairs:
   696   //
   697   // _aload_0, _fast_igetfield (itos)
   698   // _aload_0, _fast_agetfield (atos)
   699   // _aload_0, _fast_fgetfield (ftos)
   700   //
   701   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   702   // bytecode checks the next bytecode and then rewrites the current
   703   // bytecode into a pair bytecode; otherwise it rewrites the current
   704   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   705   //
   706   if (RewriteFrequentPairs) {
   707     Label rewrite, done;
   709     // get next byte
   710     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
   712     // do actual aload_0
   713     aload(0);
   715     // if _getfield then wait with rewrite
   716     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
   718     // if _igetfield then rewrite to _fast_iaccess_0
   719     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   720     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
   721     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   722     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
   724     // if _agetfield then rewrite to _fast_aaccess_0
   725     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   726     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
   727     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   728     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
   730     // if _fgetfield then rewrite to _fast_faccess_0
   731     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   732     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
   733     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   734     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
   736     // else rewrite to _fast_aload0
   737     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   738     __ set(Bytecodes::_fast_aload_0, G4_scratch);
   740     // rewrite
   741     // G4_scratch: fast bytecode
   742     __ bind(rewrite);
   743     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
   744     __ bind(done);
   745   } else {
   746     aload(0);
   747   }
   748 }
   751 void TemplateTable::istore() {
   752   transition(itos, vtos);
   753   locals_index(G3_scratch);
   754   __ store_local_int( G3_scratch, Otos_i );
   755 }
   758 void TemplateTable::lstore() {
   759   transition(ltos, vtos);
   760   locals_index(G3_scratch);
   761   __ store_local_long( G3_scratch, Otos_l );
   762 }
   765 void TemplateTable::fstore() {
   766   transition(ftos, vtos);
   767   locals_index(G3_scratch);
   768   __ store_local_float( G3_scratch, Ftos_f );
   769 }
   772 void TemplateTable::dstore() {
   773   transition(dtos, vtos);
   774   locals_index(G3_scratch);
   775   __ store_local_double( G3_scratch, Ftos_d );
   776 }
   779 void TemplateTable::astore() {
   780   transition(vtos, vtos);
   781   __ load_ptr(0, Otos_i);
   782   __ inc(Lesp, Interpreter::stackElementSize);
   783   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   784   locals_index(G3_scratch);
   785   __ store_local_ptr(G3_scratch, Otos_i);
   786 }
   789 void TemplateTable::wide_istore() {
   790   transition(vtos, vtos);
   791   __ pop_i();
   792   locals_index_wide(G3_scratch);
   793   __ store_local_int( G3_scratch, Otos_i );
   794 }
   797 void TemplateTable::wide_lstore() {
   798   transition(vtos, vtos);
   799   __ pop_l();
   800   locals_index_wide(G3_scratch);
   801   __ store_local_long( G3_scratch, Otos_l );
   802 }
   805 void TemplateTable::wide_fstore() {
   806   transition(vtos, vtos);
   807   __ pop_f();
   808   locals_index_wide(G3_scratch);
   809   __ store_local_float( G3_scratch, Ftos_f );
   810 }
   813 void TemplateTable::wide_dstore() {
   814   transition(vtos, vtos);
   815   __ pop_d();
   816   locals_index_wide(G3_scratch);
   817   __ store_local_double( G3_scratch, Ftos_d );
   818 }
   821 void TemplateTable::wide_astore() {
   822   transition(vtos, vtos);
   823   __ load_ptr(0, Otos_i);
   824   __ inc(Lesp, Interpreter::stackElementSize);
   825   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   826   locals_index_wide(G3_scratch);
   827   __ store_local_ptr(G3_scratch, Otos_i);
   828 }
   831 void TemplateTable::iastore() {
   832   transition(itos, vtos);
   833   __ pop_i(O2); // index
   834   // Otos_i: val
   835   // O3: array
   836   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   837   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
   838 }
   841 void TemplateTable::lastore() {
   842   transition(ltos, vtos);
   843   __ pop_i(O2); // index
   844   // Otos_l: val
   845   // O3: array
   846   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   847   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
   848 }
   851 void TemplateTable::fastore() {
   852   transition(ftos, vtos);
   853   __ pop_i(O2); // index
   854   // Ftos_f: val
   855   // O3: array
   856   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   857   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
   858 }
   861 void TemplateTable::dastore() {
   862   transition(dtos, vtos);
   863   __ pop_i(O2); // index
   864   // Fos_d: val
   865   // O3: array
   866   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   867   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
   868 }
   871 void TemplateTable::aastore() {
   872   Label store_ok, is_null, done;
   873   transition(vtos, vtos);
   874   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
   875   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
   876   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
   877   // Otos_i: val
   878   // O2: index
   879   // O3: array
   880   __ verify_oop(Otos_i);
   881   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
   883   // do array store check - check for NULL value first
   884   __ br_null_short( Otos_i, Assembler::pn, is_null );
   886   __ load_klass(O3, O4); // get array klass
   887   __ load_klass(Otos_i, O5); // get value klass
   889   // do fast instanceof cache test
   891   __ ld_ptr(O4,     sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes(),  O4);
   893   assert(Otos_i == O0, "just checking");
   895   // Otos_i:    value
   896   // O1:        addr - offset
   897   // O2:        index
   898   // O3:        array
   899   // O4:        array element klass
   900   // O5:        value klass
   902   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   904   // Generate a fast subtype check.  Branch to store_ok if no
   905   // failure.  Throw if failure.
   906   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
   908   // Not a subtype; so must throw exception
   909   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
   911   // Store is OK.
   912   __ bind(store_ok);
   913   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
   915   __ ba(done);
   916   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
   918   __ bind(is_null);
   919   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
   921   __ profile_null_seen(G3_scratch);
   922   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
   923   __ bind(done);
   924 }
   927 void TemplateTable::bastore() {
   928   transition(itos, vtos);
   929   __ pop_i(O2); // index
   930   // Otos_i: val
   931   // O3: array
   932   __ index_check(O3, O2, 0, G3_scratch, O2);
   933   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
   934 }
   937 void TemplateTable::castore() {
   938   transition(itos, vtos);
   939   __ pop_i(O2); // index
   940   // Otos_i: val
   941   // O3: array
   942   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
   943   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
   944 }
   947 void TemplateTable::sastore() {
   948   // %%%%% Factor across platform
   949   castore();
   950 }
   953 void TemplateTable::istore(int n) {
   954   transition(itos, vtos);
   955   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
   956 }
   959 void TemplateTable::lstore(int n) {
   960   transition(ltos, vtos);
   961   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
   962   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
   964 }
   967 void TemplateTable::fstore(int n) {
   968   transition(ftos, vtos);
   969   assert(n < Argument::n_register_parameters, "only handle register cases");
   970   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
   971 }
   974 void TemplateTable::dstore(int n) {
   975   transition(dtos, vtos);
   976   FloatRegister src = Ftos_d;
   977   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
   978 }
   981 void TemplateTable::astore(int n) {
   982   transition(vtos, vtos);
   983   __ load_ptr(0, Otos_i);
   984   __ inc(Lesp, Interpreter::stackElementSize);
   985   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   986   __ store_local_ptr(n, Otos_i);
   987 }
   990 void TemplateTable::pop() {
   991   transition(vtos, vtos);
   992   __ inc(Lesp, Interpreter::stackElementSize);
   993 }
   996 void TemplateTable::pop2() {
   997   transition(vtos, vtos);
   998   __ inc(Lesp, 2 * Interpreter::stackElementSize);
   999 }
  1002 void TemplateTable::dup() {
  1003   transition(vtos, vtos);
  1004   // stack: ..., a
  1005   // load a and tag
  1006   __ load_ptr(0, Otos_i);
  1007   __ push_ptr(Otos_i);
  1008   // stack: ..., a, a
  1012 void TemplateTable::dup_x1() {
  1013   transition(vtos, vtos);
  1014   // stack: ..., a, b
  1015   __ load_ptr( 1, G3_scratch);  // get a
  1016   __ load_ptr( 0, Otos_l1);     // get b
  1017   __ store_ptr(1, Otos_l1);     // put b
  1018   __ store_ptr(0, G3_scratch);  // put a - like swap
  1019   __ push_ptr(Otos_l1);         // push b
  1020   // stack: ..., b, a, b
  1024 void TemplateTable::dup_x2() {
  1025   transition(vtos, vtos);
  1026   // stack: ..., a, b, c
  1027   // get c and push on stack, reuse registers
  1028   __ load_ptr( 0, G3_scratch);  // get c
  1029   __ push_ptr(G3_scratch);      // push c with tag
  1030   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
  1031   // (stack offsets n+1 now)
  1032   __ load_ptr( 3, Otos_l1);     // get a
  1033   __ store_ptr(3, G3_scratch);  // put c at 3
  1034   // stack: ..., c, b, c, c  (a in reg)
  1035   __ load_ptr( 2, G3_scratch);  // get b
  1036   __ store_ptr(2, Otos_l1);     // put a at 2
  1037   // stack: ..., c, a, c, c  (b in reg)
  1038   __ store_ptr(1, G3_scratch);  // put b at 1
  1039   // stack: ..., c, a, b, c
  1043 void TemplateTable::dup2() {
  1044   transition(vtos, vtos);
  1045   __ load_ptr(1, G3_scratch);  // get a
  1046   __ load_ptr(0, Otos_l1);     // get b
  1047   __ push_ptr(G3_scratch);     // push a
  1048   __ push_ptr(Otos_l1);        // push b
  1049   // stack: ..., a, b, a, b
  1053 void TemplateTable::dup2_x1() {
  1054   transition(vtos, vtos);
  1055   // stack: ..., a, b, c
  1056   __ load_ptr( 1, Lscratch);    // get b
  1057   __ load_ptr( 2, Otos_l1);     // get a
  1058   __ store_ptr(2, Lscratch);    // put b at a
  1059   // stack: ..., b, b, c
  1060   __ load_ptr( 0, G3_scratch);  // get c
  1061   __ store_ptr(1, G3_scratch);  // put c at b
  1062   // stack: ..., b, c, c
  1063   __ store_ptr(0, Otos_l1);     // put a at c
  1064   // stack: ..., b, c, a
  1065   __ push_ptr(Lscratch);        // push b
  1066   __ push_ptr(G3_scratch);      // push c
  1067   // stack: ..., b, c, a, b, c
  1071 // The spec says that these types can be a mixture of category 1 (1 word)
  1072 // types and/or category 2 types (long and doubles)
  1073 void TemplateTable::dup2_x2() {
  1074   transition(vtos, vtos);
  1075   // stack: ..., a, b, c, d
  1076   __ load_ptr( 1, Lscratch);    // get c
  1077   __ load_ptr( 3, Otos_l1);     // get a
  1078   __ store_ptr(3, Lscratch);    // put c at 3
  1079   __ store_ptr(1, Otos_l1);     // put a at 1
  1080   // stack: ..., c, b, a, d
  1081   __ load_ptr( 2, G3_scratch);  // get b
  1082   __ load_ptr( 0, Otos_l1);     // get d
  1083   __ store_ptr(0, G3_scratch);  // put b at 0
  1084   __ store_ptr(2, Otos_l1);     // put d at 2
  1085   // stack: ..., c, d, a, b
  1086   __ push_ptr(Lscratch);        // push c
  1087   __ push_ptr(Otos_l1);         // push d
  1088   // stack: ..., c, d, a, b, c, d
  1092 void TemplateTable::swap() {
  1093   transition(vtos, vtos);
  1094   // stack: ..., a, b
  1095   __ load_ptr( 1, G3_scratch);  // get a
  1096   __ load_ptr( 0, Otos_l1);     // get b
  1097   __ store_ptr(0, G3_scratch);  // put b
  1098   __ store_ptr(1, Otos_l1);     // put a
  1099   // stack: ..., b, a
  1103 void TemplateTable::iop2(Operation op) {
  1104   transition(itos, itos);
  1105   __ pop_i(O1);
  1106   switch (op) {
  1107    case  add:  __  add(O1, Otos_i, Otos_i);  break;
  1108    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
  1109      // %%%%% Mul may not exist: better to call .mul?
  1110    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
  1111    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
  1112    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
  1113    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
  1114    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
  1115    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
  1116    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
  1117    default: ShouldNotReachHere();
  1122 void TemplateTable::lop2(Operation op) {
  1123   transition(ltos, ltos);
  1124   __ pop_l(O2);
  1125   switch (op) {
  1126 #ifdef _LP64
  1127    case  add:  __  add(O2, Otos_l, Otos_l);  break;
  1128    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
  1129    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
  1130    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
  1131    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
  1132 #else
  1133    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
  1134    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
  1135    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
  1136    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
  1137    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
  1138 #endif
  1139    default: ShouldNotReachHere();
  1144 void TemplateTable::idiv() {
  1145   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  1146   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
  1148   transition(itos, itos);
  1149   __ pop_i(O1); // get 1st op
  1151   // Y contains upper 32 bits of result, set it to 0 or all ones
  1152   __ wry(G0);
  1153   __ mov(~0, G3_scratch);
  1155   __ tst(O1);
  1156      Label neg;
  1157   __ br(Assembler::negative, true, Assembler::pn, neg);
  1158   __ delayed()->wry(G3_scratch);
  1159   __ bind(neg);
  1161      Label ok;
  1162   __ tst(Otos_i);
  1163   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
  1165   const int min_int = 0x80000000;
  1166   Label regular;
  1167   __ cmp(Otos_i, -1);
  1168   __ br(Assembler::notEqual, false, Assembler::pt, regular);
  1169 #ifdef _LP64
  1170   // Don't put set in delay slot
  1171   // Set will turn into multiple instructions in 64 bit mode
  1172   __ delayed()->nop();
  1173   __ set(min_int, G4_scratch);
  1174 #else
  1175   __ delayed()->set(min_int, G4_scratch);
  1176 #endif
  1177   Label done;
  1178   __ cmp(O1, G4_scratch);
  1179   __ br(Assembler::equal, true, Assembler::pt, done);
  1180   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
  1182   __ bind(regular);
  1183   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  1184   __ bind(done);
  1188 void TemplateTable::irem() {
  1189   transition(itos, itos);
  1190   __ mov(Otos_i, O2); // save divisor
  1191   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  1192   __ smul(Otos_i, O2, Otos_i);
  1193   __ sub(O1, Otos_i, Otos_i);
  1197 void TemplateTable::lmul() {
  1198   transition(ltos, ltos);
  1199   __ pop_l(O2);
  1200 #ifdef _LP64
  1201   __ mulx(Otos_l, O2, Otos_l);
  1202 #else
  1203   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
  1204 #endif
  1209 void TemplateTable::ldiv() {
  1210   transition(ltos, ltos);
  1212   // check for zero
  1213   __ pop_l(O2);
  1214 #ifdef _LP64
  1215   __ tst(Otos_l);
  1216   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1217   __ sdivx(O2, Otos_l, Otos_l);
  1218 #else
  1219   __ orcc(Otos_l1, Otos_l2, G0);
  1220   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1221   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1222 #endif
  1226 void TemplateTable::lrem() {
  1227   transition(ltos, ltos);
  1229   // check for zero
  1230   __ pop_l(O2);
  1231 #ifdef _LP64
  1232   __ tst(Otos_l);
  1233   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1234   __ sdivx(O2, Otos_l, Otos_l2);
  1235   __ mulx (Otos_l2, Otos_l, Otos_l2);
  1236   __ sub  (O2, Otos_l2, Otos_l);
  1237 #else
  1238   __ orcc(Otos_l1, Otos_l2, G0);
  1239   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1240   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1241 #endif
  1245 void TemplateTable::lshl() {
  1246   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
  1248   __ pop_l(O2);                          // shift value in O2, O3
  1249 #ifdef _LP64
  1250   __ sllx(O2, Otos_i, Otos_l);
  1251 #else
  1252   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1253 #endif
  1257 void TemplateTable::lshr() {
  1258   transition(itos, ltos); // %%%% see lshl comment
  1260   __ pop_l(O2);                          // shift value in O2, O3
  1261 #ifdef _LP64
  1262   __ srax(O2, Otos_i, Otos_l);
  1263 #else
  1264   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1265 #endif
  1270 void TemplateTable::lushr() {
  1271   transition(itos, ltos); // %%%% see lshl comment
  1273   __ pop_l(O2);                          // shift value in O2, O3
  1274 #ifdef _LP64
  1275   __ srlx(O2, Otos_i, Otos_l);
  1276 #else
  1277   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1278 #endif
  1282 void TemplateTable::fop2(Operation op) {
  1283   transition(ftos, ftos);
  1284   switch (op) {
  1285    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1286    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1287    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1288    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1289    case  rem:
  1290      assert(Ftos_f == F0, "just checking");
  1291 #ifdef _LP64
  1292      // LP64 calling conventions use F1, F3 for passing 2 floats
  1293      __ pop_f(F1);
  1294      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
  1295 #else
  1296      __ pop_i(O0);
  1297      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
  1298      __ ld( __ d_tmp, O1 );
  1299 #endif
  1300      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
  1301      assert( Ftos_f == F0, "fix this code" );
  1302      break;
  1304    default: ShouldNotReachHere();
  1309 void TemplateTable::dop2(Operation op) {
  1310   transition(dtos, dtos);
  1311   switch (op) {
  1312    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1313    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1314    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1315    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1316    case  rem:
  1317 #ifdef _LP64
  1318      // Pass arguments in D0, D2
  1319      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
  1320      __ pop_d( F0 );
  1321 #else
  1322      // Pass arguments in O0O1, O2O3
  1323      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1324      __ ldd( __ d_tmp, O2 );
  1325      __ pop_d(Ftos_f);
  1326      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1327      __ ldd( __ d_tmp, O0 );
  1328 #endif
  1329      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
  1330      assert( Ftos_d == F0, "fix this code" );
  1331      break;
  1333    default: ShouldNotReachHere();
  1338 void TemplateTable::ineg() {
  1339   transition(itos, itos);
  1340   __ neg(Otos_i);
  1344 void TemplateTable::lneg() {
  1345   transition(ltos, ltos);
  1346 #ifdef _LP64
  1347   __ sub(G0, Otos_l, Otos_l);
  1348 #else
  1349   __ lneg(Otos_l1, Otos_l2);
  1350 #endif
  1354 void TemplateTable::fneg() {
  1355   transition(ftos, ftos);
  1356   __ fneg(FloatRegisterImpl::S, Ftos_f);
  1360 void TemplateTable::dneg() {
  1361   transition(dtos, dtos);
  1362   // v8 has fnegd if source and dest are the same
  1363   __ fneg(FloatRegisterImpl::D, Ftos_f);
  1367 void TemplateTable::iinc() {
  1368   transition(vtos, vtos);
  1369   locals_index(G3_scratch);
  1370   __ ldsb(Lbcp, 2, O2);  // load constant
  1371   __ access_local_int(G3_scratch, Otos_i);
  1372   __ add(Otos_i, O2, Otos_i);
  1373   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1377 void TemplateTable::wide_iinc() {
  1378   transition(vtos, vtos);
  1379   locals_index_wide(G3_scratch);
  1380   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  1381   __ access_local_int(G3_scratch, Otos_i);
  1382   __ add(Otos_i, O3, Otos_i);
  1383   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1387 void TemplateTable::convert() {
  1388 // %%%%% Factor this first part accross platforms
  1389   #ifdef ASSERT
  1390     TosState tos_in  = ilgl;
  1391     TosState tos_out = ilgl;
  1392     switch (bytecode()) {
  1393       case Bytecodes::_i2l: // fall through
  1394       case Bytecodes::_i2f: // fall through
  1395       case Bytecodes::_i2d: // fall through
  1396       case Bytecodes::_i2b: // fall through
  1397       case Bytecodes::_i2c: // fall through
  1398       case Bytecodes::_i2s: tos_in = itos; break;
  1399       case Bytecodes::_l2i: // fall through
  1400       case Bytecodes::_l2f: // fall through
  1401       case Bytecodes::_l2d: tos_in = ltos; break;
  1402       case Bytecodes::_f2i: // fall through
  1403       case Bytecodes::_f2l: // fall through
  1404       case Bytecodes::_f2d: tos_in = ftos; break;
  1405       case Bytecodes::_d2i: // fall through
  1406       case Bytecodes::_d2l: // fall through
  1407       case Bytecodes::_d2f: tos_in = dtos; break;
  1408       default             : ShouldNotReachHere();
  1410     switch (bytecode()) {
  1411       case Bytecodes::_l2i: // fall through
  1412       case Bytecodes::_f2i: // fall through
  1413       case Bytecodes::_d2i: // fall through
  1414       case Bytecodes::_i2b: // fall through
  1415       case Bytecodes::_i2c: // fall through
  1416       case Bytecodes::_i2s: tos_out = itos; break;
  1417       case Bytecodes::_i2l: // fall through
  1418       case Bytecodes::_f2l: // fall through
  1419       case Bytecodes::_d2l: tos_out = ltos; break;
  1420       case Bytecodes::_i2f: // fall through
  1421       case Bytecodes::_l2f: // fall through
  1422       case Bytecodes::_d2f: tos_out = ftos; break;
  1423       case Bytecodes::_i2d: // fall through
  1424       case Bytecodes::_l2d: // fall through
  1425       case Bytecodes::_f2d: tos_out = dtos; break;
  1426       default             : ShouldNotReachHere();
  1428     transition(tos_in, tos_out);
  1429   #endif
  1432   // Conversion
  1433   Label done;
  1434   switch (bytecode()) {
  1435    case Bytecodes::_i2l:
  1436 #ifdef _LP64
  1437     // Sign extend the 32 bits
  1438     __ sra ( Otos_i, 0, Otos_l );
  1439 #else
  1440     __ addcc(Otos_i, 0, Otos_l2);
  1441     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
  1442     __ delayed()->clr(Otos_l1);
  1443     __ set(~0, Otos_l1);
  1444 #endif
  1445     break;
  1447    case Bytecodes::_i2f:
  1448     __ st(Otos_i, __ d_tmp );
  1449     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1450     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
  1451     break;
  1453    case Bytecodes::_i2d:
  1454     __ st(Otos_i, __ d_tmp);
  1455     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1456     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
  1457     break;
  1459    case Bytecodes::_i2b:
  1460     __ sll(Otos_i, 24, Otos_i);
  1461     __ sra(Otos_i, 24, Otos_i);
  1462     break;
  1464    case Bytecodes::_i2c:
  1465     __ sll(Otos_i, 16, Otos_i);
  1466     __ srl(Otos_i, 16, Otos_i);
  1467     break;
  1469    case Bytecodes::_i2s:
  1470     __ sll(Otos_i, 16, Otos_i);
  1471     __ sra(Otos_i, 16, Otos_i);
  1472     break;
  1474    case Bytecodes::_l2i:
  1475 #ifndef _LP64
  1476     __ mov(Otos_l2, Otos_i);
  1477 #else
  1478     // Sign-extend into the high 32 bits
  1479     __ sra(Otos_l, 0, Otos_i);
  1480 #endif
  1481     break;
  1483    case Bytecodes::_l2f:
  1484    case Bytecodes::_l2d:
  1485     __ st_long(Otos_l, __ d_tmp);
  1486     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
  1488     if (VM_Version::v9_instructions_work()) {
  1489       if (bytecode() == Bytecodes::_l2f) {
  1490         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1491       } else {
  1492         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
  1494     } else {
  1495       __ call_VM_leaf(
  1496         Lscratch,
  1497         bytecode() == Bytecodes::_l2f
  1498           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
  1499           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
  1500       );
  1502     break;
  1504   case Bytecodes::_f2i:  {
  1505       Label isNaN;
  1506       // result must be 0 if value is NaN; test by comparing value to itself
  1507       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
  1508       // According to the v8 manual, you have to have a non-fp instruction
  1509       // between fcmp and fb.
  1510       if (!VM_Version::v9_instructions_work()) {
  1511         __ nop();
  1513       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
  1514       __ delayed()->clr(Otos_i);                                     // NaN
  1515       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
  1516       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
  1517       __ ld(__ d_tmp, Otos_i);
  1518       __ bind(isNaN);
  1520     break;
  1522    case Bytecodes::_f2l:
  1523     // must uncache tos
  1524     __ push_f();
  1525 #ifdef _LP64
  1526     __ pop_f(F1);
  1527 #else
  1528     __ pop_i(O0);
  1529 #endif
  1530     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
  1531     break;
  1533    case Bytecodes::_f2d:
  1534     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1535     break;
  1537    case Bytecodes::_d2i:
  1538    case Bytecodes::_d2l:
  1539     // must uncache tos
  1540     __ push_d();
  1541 #ifdef _LP64
  1542     // LP64 calling conventions pass first double arg in D0
  1543     __ pop_d( Ftos_d );
  1544 #else
  1545     __ pop_i( O0 );
  1546     __ pop_i( O1 );
  1547 #endif
  1548     __ call_VM_leaf(Lscratch,
  1549         bytecode() == Bytecodes::_d2i
  1550           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
  1551           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1552     break;
  1554     case Bytecodes::_d2f:
  1555     if (VM_Version::v9_instructions_work()) {
  1556       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1558     else {
  1559       // must uncache tos
  1560       __ push_d();
  1561       __ pop_i(O0);
  1562       __ pop_i(O1);
  1563       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
  1565     break;
  1567     default: ShouldNotReachHere();
  1569   __ bind(done);
  1573 void TemplateTable::lcmp() {
  1574   transition(ltos, itos);
  1576 #ifdef _LP64
  1577   __ pop_l(O1); // pop off value 1, value 2 is in O0
  1578   __ lcmp( O1, Otos_l, Otos_i );
  1579 #else
  1580   __ pop_l(O2); // cmp O2,3 to O0,1
  1581   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
  1582 #endif
  1586 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1588   if (is_float) __ pop_f(F2);
  1589   else          __ pop_d(F2);
  1591   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
  1593   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
  1596 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1597   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  1598   __ verify_oop(Lmethod);
  1599   __ verify_thread();
  1601   const Register O2_bumped_count = O2;
  1602   __ profile_taken_branch(G3_scratch, O2_bumped_count);
  1604   // get (wide) offset to O1_disp
  1605   const Register O1_disp = O1;
  1606   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  1607   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
  1609   // Handle all the JSR stuff here, then exit.
  1610   // It's much shorter and cleaner than intermingling with the
  1611   // non-JSR normal-branch stuff occurring below.
  1612   if( is_jsr ) {
  1613     // compute return address as bci in Otos_i
  1614     __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1615     __ sub(Lbcp, G3_scratch, G3_scratch);
  1616     __ sub(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
  1618     // Bump Lbcp to target of JSR
  1619     __ add(Lbcp, O1_disp, Lbcp);
  1620     // Push returnAddress for "ret" on stack
  1621     __ push_ptr(Otos_i);
  1622     // And away we go!
  1623     __ dispatch_next(vtos);
  1624     return;
  1627   // Normal (non-jsr) branch handling
  1629   // Save the current Lbcp
  1630   const Register O0_cur_bcp = O0;
  1631   __ mov( Lbcp, O0_cur_bcp );
  1634   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  1635   if ( increment_invocation_counter_for_backward_branches ) {
  1636     Label Lforward;
  1637     // check branch direction
  1638     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
  1639     // Bump bytecode pointer by displacement (take the branch)
  1640     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
  1642     if (TieredCompilation) {
  1643       Label Lno_mdo, Loverflow;
  1644       int increment = InvocationCounter::count_increment;
  1645       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1646       if (ProfileInterpreter) {
  1647         // If no method data exists, go to profile_continue.
  1648         __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
  1649         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
  1651         // Increment backedge counter in the MDO
  1652         Address mdo_backedge_counter(G4_scratch, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1653                                                  in_bytes(InvocationCounter::counter_offset()));
  1654         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, Lscratch,
  1655                                    Assembler::notZero, &Lforward);
  1656         __ ba_short(Loverflow);
  1659       // If there's no MDO, increment counter in methodOop
  1660       __ bind(Lno_mdo);
  1661       Address backedge_counter(Lmethod, in_bytes(methodOopDesc::backedge_counter_offset()) +
  1662                                         in_bytes(InvocationCounter::counter_offset()));
  1663       __ increment_mask_and_jump(backedge_counter, increment, mask, G3_scratch, Lscratch,
  1664                                  Assembler::notZero, &Lforward);
  1665       __ bind(Loverflow);
  1667       // notify point for loop, pass branch bytecode
  1668       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O0_cur_bcp);
  1670       // Was an OSR adapter generated?
  1671       // O0 = osr nmethod
  1672       __ br_null_short(O0, Assembler::pn, Lforward);
  1674       // Has the nmethod been invalidated already?
  1675       __ ld(O0, nmethod::entry_bci_offset(), O2);
  1676       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
  1678       // migrate the interpreter frame off of the stack
  1680       __ mov(G2_thread, L7);
  1681       // save nmethod
  1682       __ mov(O0, L6);
  1683       __ set_last_Java_frame(SP, noreg);
  1684       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  1685       __ reset_last_Java_frame();
  1686       __ mov(L7, G2_thread);
  1688       // move OSR nmethod to I1
  1689       __ mov(L6, I1);
  1691       // OSR buffer to I0
  1692       __ mov(O0, I0);
  1694       // remove the interpreter frame
  1695       __ restore(I5_savedSP, 0, SP);
  1697       // Jump to the osr code.
  1698       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  1699       __ jmp(O2, G0);
  1700       __ delayed()->nop();
  1702     } else {
  1703       // Update Backedge branch separately from invocations
  1704       const Register G4_invoke_ctr = G4;
  1705       __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
  1706       if (ProfileInterpreter) {
  1707         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
  1708         if (UseOnStackReplacement) {
  1709           __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
  1711       } else {
  1712         if (UseOnStackReplacement) {
  1713           __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
  1718     __ bind(Lforward);
  1719   } else
  1720     // Bump bytecode pointer by displacement (take the branch)
  1721     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
  1723   // continue with bytecode @ target
  1724   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  1725   // %%%%% and changing dispatch_next to dispatch_only
  1726   __ dispatch_next(vtos);
  1730 // Note Condition in argument is TemplateTable::Condition
  1731 // arg scope is within class scope
  1733 void TemplateTable::if_0cmp(Condition cc) {
  1734   // no pointers, integer only!
  1735   transition(itos, vtos);
  1736   // assume branch is more often taken than not (loops use backward branches)
  1737   __ cmp( Otos_i, 0);
  1738   __ if_cmp(ccNot(cc), false);
  1742 void TemplateTable::if_icmp(Condition cc) {
  1743   transition(itos, vtos);
  1744   __ pop_i(O1);
  1745   __ cmp(O1, Otos_i);
  1746   __ if_cmp(ccNot(cc), false);
  1750 void TemplateTable::if_nullcmp(Condition cc) {
  1751   transition(atos, vtos);
  1752   __ tst(Otos_i);
  1753   __ if_cmp(ccNot(cc), true);
  1757 void TemplateTable::if_acmp(Condition cc) {
  1758   transition(atos, vtos);
  1759   __ pop_ptr(O1);
  1760   __ verify_oop(O1);
  1761   __ verify_oop(Otos_i);
  1762   __ cmp(O1, Otos_i);
  1763   __ if_cmp(ccNot(cc), true);
  1768 void TemplateTable::ret() {
  1769   transition(vtos, vtos);
  1770   locals_index(G3_scratch);
  1771   __ access_local_returnAddress(G3_scratch, Otos_i);
  1772   // Otos_i contains the bci, compute the bcp from that
  1774 #ifdef _LP64
  1775 #ifdef ASSERT
  1776   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  1777   // the result.  The return address (really a BCI) was stored with an
  1778   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  1779   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  1780   // loaded value.
  1781   { Label zzz ;
  1782      __ set (65536, G3_scratch) ;
  1783      __ cmp (Otos_i, G3_scratch) ;
  1784      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
  1785      __ delayed()->nop();
  1786      __ stop("BCI is in the wrong register half?");
  1787      __ bind (zzz) ;
  1789 #endif
  1790 #endif
  1792   __ profile_ret(vtos, Otos_i, G4_scratch);
  1794   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1795   __ add(G3_scratch, Otos_i, G3_scratch);
  1796   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  1797   __ dispatch_next(vtos);
  1801 void TemplateTable::wide_ret() {
  1802   transition(vtos, vtos);
  1803   locals_index_wide(G3_scratch);
  1804   __ access_local_returnAddress(G3_scratch, Otos_i);
  1805   // Otos_i contains the bci, compute the bcp from that
  1807   __ profile_ret(vtos, Otos_i, G4_scratch);
  1809   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1810   __ add(G3_scratch, Otos_i, G3_scratch);
  1811   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  1812   __ dispatch_next(vtos);
  1816 void TemplateTable::tableswitch() {
  1817   transition(itos, vtos);
  1818   Label default_case, continue_execution;
  1820   // align bcp
  1821   __ add(Lbcp, BytesPerInt, O1);
  1822   __ and3(O1, -BytesPerInt, O1);
  1823   // load lo, hi
  1824   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  1825   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
  1826 #ifdef _LP64
  1827   // Sign extend the 32 bits
  1828   __ sra ( Otos_i, 0, Otos_i );
  1829 #endif /* _LP64 */
  1831   // check against lo & hi
  1832   __ cmp( Otos_i, O2);
  1833   __ br( Assembler::less, false, Assembler::pn, default_case);
  1834   __ delayed()->cmp( Otos_i, O3 );
  1835   __ br( Assembler::greater, false, Assembler::pn, default_case);
  1836   // lookup dispatch offset
  1837   __ delayed()->sub(Otos_i, O2, O2);
  1838   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  1839   __ sll(O2, LogBytesPerInt, O2);
  1840   __ add(O2, 3 * BytesPerInt, O2);
  1841   __ ba(continue_execution);
  1842   __ delayed()->ld(O1, O2, O2);
  1843   // handle default
  1844   __ bind(default_case);
  1845   __ profile_switch_default(O3);
  1846   __ ld(O1, 0, O2); // get default offset
  1847   // continue execution
  1848   __ bind(continue_execution);
  1849   __ add(Lbcp, O2, Lbcp);
  1850   __ dispatch_next(vtos);
  1854 void TemplateTable::lookupswitch() {
  1855   transition(itos, itos);
  1856   __ stop("lookupswitch bytecode should have been rewritten");
  1859 void TemplateTable::fast_linearswitch() {
  1860   transition(itos, vtos);
  1861     Label loop_entry, loop, found, continue_execution;
  1862   // align bcp
  1863   __ add(Lbcp, BytesPerInt, O1);
  1864   __ and3(O1, -BytesPerInt, O1);
  1865  // set counter
  1866   __ ld(O1, BytesPerInt, O2);
  1867   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  1868   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  1869   __ ba(loop_entry);
  1870   __ delayed()->add(O3, O2, O2); // counter now points past last pair
  1872   // table search
  1873   __ bind(loop);
  1874   __ cmp(O4, Otos_i);
  1875   __ br(Assembler::equal, true, Assembler::pn, found);
  1876   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  1877   __ inc(O3, 2 * BytesPerInt);
  1879   __ bind(loop_entry);
  1880   __ cmp(O2, O3);
  1881   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  1882   __ delayed()->ld(O3, 0, O4);
  1884   // default case
  1885   __ ld(O1, 0, O4); // get default offset
  1886   if (ProfileInterpreter) {
  1887     __ profile_switch_default(O3);
  1888     __ ba_short(continue_execution);
  1891   // entry found -> get offset
  1892   __ bind(found);
  1893   if (ProfileInterpreter) {
  1894     __ sub(O3, O1, O3);
  1895     __ sub(O3, 2*BytesPerInt, O3);
  1896     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
  1897     __ profile_switch_case(O3, O1, O2, G3_scratch);
  1899     __ bind(continue_execution);
  1901   __ add(Lbcp, O4, Lbcp);
  1902   __ dispatch_next(vtos);
  1906 void TemplateTable::fast_binaryswitch() {
  1907   transition(itos, vtos);
  1908   // Implementation using the following core algorithm: (copied from Intel)
  1909   //
  1910   // int binary_search(int key, LookupswitchPair* array, int n) {
  1911   //   // Binary search according to "Methodik des Programmierens" by
  1912   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1913   //   int i = 0;
  1914   //   int j = n;
  1915   //   while (i+1 < j) {
  1916   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1917   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1918   //     // where a stands for the array and assuming that the (inexisting)
  1919   //     // element a[n] is infinitely big.
  1920   //     int h = (i + j) >> 1;
  1921   //     // i < h < j
  1922   //     if (key < array[h].fast_match()) {
  1923   //       j = h;
  1924   //     } else {
  1925   //       i = h;
  1926   //     }
  1927   //   }
  1928   //   // R: a[i] <= key < a[i+1] or Q
  1929   //   // (i.e., if key is within array, i is the correct index)
  1930   //   return i;
  1931   // }
  1933   // register allocation
  1934   assert(Otos_i == O0, "alias checking");
  1935   const Register Rkey     = Otos_i;                    // already set (tosca)
  1936   const Register Rarray   = O1;
  1937   const Register Ri       = O2;
  1938   const Register Rj       = O3;
  1939   const Register Rh       = O4;
  1940   const Register Rscratch = O5;
  1942   const int log_entry_size = 3;
  1943   const int entry_size = 1 << log_entry_size;
  1945   Label found;
  1946   // Find Array start
  1947   __ add(Lbcp, 3 * BytesPerInt, Rarray);
  1948   __ and3(Rarray, -BytesPerInt, Rarray);
  1949   // initialize i & j (in delay slot)
  1950   __ clr( Ri );
  1952   // and start
  1953   Label entry;
  1954   __ ba(entry);
  1955   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  1956   // (Rj is already in the native byte-ordering.)
  1958   // binary search loop
  1959   { Label loop;
  1960     __ bind( loop );
  1961     // int h = (i + j) >> 1;
  1962     __ sra( Rh, 1, Rh );
  1963     // if (key < array[h].fast_match()) {
  1964     //   j = h;
  1965     // } else {
  1966     //   i = h;
  1967     // }
  1968     __ sll( Rh, log_entry_size, Rscratch );
  1969     __ ld( Rarray, Rscratch, Rscratch );
  1970     // (Rscratch is already in the native byte-ordering.)
  1971     __ cmp( Rkey, Rscratch );
  1972     if ( VM_Version::v9_instructions_work() ) {
  1973       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
  1974       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
  1976     else {
  1977       Label end_of_if;
  1978       __ br( Assembler::less, true, Assembler::pt, end_of_if );
  1979       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
  1980       __ mov( Rh, Ri );            // else i = h
  1981       __ bind(end_of_if);          // }
  1984     // while (i+1 < j)
  1985     __ bind( entry );
  1986     __ add( Ri, 1, Rscratch );
  1987     __ cmp(Rscratch, Rj);
  1988     __ br( Assembler::less, true, Assembler::pt, loop );
  1989     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  1992   // end of binary search, result index is i (must check again!)
  1993   Label default_case;
  1994   Label continue_execution;
  1995   if (ProfileInterpreter) {
  1996     __ mov( Ri, Rh );              // Save index in i for profiling
  1998   __ sll( Ri, log_entry_size, Ri );
  1999   __ ld( Rarray, Ri, Rscratch );
  2000   // (Rscratch is already in the native byte-ordering.)
  2001   __ cmp( Rkey, Rscratch );
  2002   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  2003   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
  2005   // entry found -> j = offset
  2006   __ inc( Ri, BytesPerInt );
  2007   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  2008   __ ld( Rarray, Ri, Rj );
  2009   // (Rj is already in the native byte-ordering.)
  2011   if (ProfileInterpreter) {
  2012     __ ba_short(continue_execution);
  2015   __ bind(default_case); // fall through (if not profiling)
  2016   __ profile_switch_default(Ri);
  2018   __ bind(continue_execution);
  2019   __ add( Lbcp, Rj, Lbcp );
  2020   __ dispatch_next( vtos );
  2024 void TemplateTable::_return(TosState state) {
  2025   transition(state, state);
  2026   assert(_desc->calls_vm(), "inconsistent calls_vm information");
  2028   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2029     assert(state == vtos, "only valid state");
  2030     __ mov(G0, G3_scratch);
  2031     __ access_local_ptr(G3_scratch, Otos_i);
  2032     __ load_klass(Otos_i, O2);
  2033     __ set(JVM_ACC_HAS_FINALIZER, G3);
  2034     __ ld(O2, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), O2);
  2035     __ andcc(G3, O2, G0);
  2036     Label skip_register_finalizer;
  2037     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
  2038     __ delayed()->nop();
  2040     // Call out to do finalizer registration
  2041     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
  2043     __ bind(skip_register_finalizer);
  2046   __ remove_activation(state, /* throw_monitor_exception */ true);
  2048   // The caller's SP was adjusted upon method entry to accomodate
  2049   // the callee's non-argument locals. Undo that adjustment.
  2050   __ ret();                             // return to caller
  2051   __ delayed()->restore(I5_savedSP, G0, SP);
  2055 // ----------------------------------------------------------------------------
  2056 // Volatile variables demand their effects be made known to all CPU's in
  2057 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2058 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2059 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2060 // reorder volatile references, the hardware also must not reorder them).
  2061 //
  2062 // According to the new Java Memory Model (JMM):
  2063 // (1) All volatiles are serialized wrt to each other.
  2064 // ALSO reads & writes act as aquire & release, so:
  2065 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2066 // the read float up to before the read.  It's OK for non-volatile memory refs
  2067 // that happen before the volatile read to float down below it.
  2068 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2069 // that happen BEFORE the write float down to after the write.  It's OK for
  2070 // non-volatile memory refs that happen after the volatile write to float up
  2071 // before it.
  2072 //
  2073 // We only put in barriers around volatile refs (they are expensive), not
  2074 // _between_ memory refs (that would require us to track the flavor of the
  2075 // previous memory refs).  Requirements (2) and (3) require some barriers
  2076 // before volatile stores and after volatile loads.  These nearly cover
  2077 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2078 // case is placed after volatile-stores although it could just as well go
  2079 // before volatile-loads.
  2080 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  2081   // Helper function to insert a is-volatile test and memory barrier
  2082   // All current sparc implementations run in TSO, needing only StoreLoad
  2083   if ((order_constraint & Assembler::StoreLoad) == 0) return;
  2084   __ membar( order_constraint );
  2087 // ----------------------------------------------------------------------------
  2088 void TemplateTable::resolve_cache_and_index(int byte_no,
  2089                                             Register result,
  2090                                             Register Rcache,
  2091                                             Register index,
  2092                                             size_t index_size) {
  2093   // Depends on cpCacheOop layout!
  2094   Label resolved;
  2096   if (byte_no == f1_oop) {
  2097     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2098     // This kind of CP cache entry does not need to match the flags byte, because
  2099     // there is a 1-1 relation between bytecode type and CP entry type.
  2100     assert_different_registers(result, Rcache);
  2101     __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2102     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  2103               ConstantPoolCacheEntry::f1_offset(), result);
  2104     __ tst(result);
  2105     __ br(Assembler::notEqual, false, Assembler::pt, resolved);
  2106     __ delayed()->set((int)bytecode(), O1);
  2107   } else {
  2108     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2109     assert(result == noreg, "");  //else change code for setting result
  2110     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
  2111     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
  2112     __ br(Assembler::equal, false, Assembler::pt, resolved);
  2113     __ delayed()->set((int)bytecode(), O1);
  2116   address entry;
  2117   switch (bytecode()) {
  2118     case Bytecodes::_getstatic      : // fall through
  2119     case Bytecodes::_putstatic      : // fall through
  2120     case Bytecodes::_getfield       : // fall through
  2121     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2122     case Bytecodes::_invokevirtual  : // fall through
  2123     case Bytecodes::_invokespecial  : // fall through
  2124     case Bytecodes::_invokestatic   : // fall through
  2125     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2126     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2127     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2128     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2129     default                         : ShouldNotReachHere();                                 break;
  2131   // first time invocation - must resolve first
  2132   __ call_VM(noreg, entry, O1);
  2133   // Update registers with resolved info
  2134   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2135   if (result != noreg)
  2136     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  2137               ConstantPoolCacheEntry::f1_offset(), result);
  2138   __ bind(resolved);
  2141 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2142                                                Register Rmethod,
  2143                                                Register Ritable_index,
  2144                                                Register Rflags,
  2145                                                bool is_invokevirtual,
  2146                                                bool is_invokevfinal,
  2147                                                bool is_invokedynamic) {
  2148   // Uses both G3_scratch and G4_scratch
  2149   Register Rcache = G3_scratch;
  2150   Register Rscratch = G4_scratch;
  2151   assert_different_registers(Rcache, Rmethod, Ritable_index);
  2153   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2155   // determine constant pool cache field offsets
  2156   const int method_offset = in_bytes(
  2157     cp_base_offset +
  2158       (is_invokevirtual
  2159        ? ConstantPoolCacheEntry::f2_offset()
  2160        : ConstantPoolCacheEntry::f1_offset()
  2162     );
  2163   const int flags_offset = in_bytes(cp_base_offset +
  2164                                     ConstantPoolCacheEntry::flags_offset());
  2165   // access constant pool cache fields
  2166   const int index_offset = in_bytes(cp_base_offset +
  2167                                     ConstantPoolCacheEntry::f2_offset());
  2169   if (is_invokevfinal) {
  2170     __ get_cache_and_index_at_bcp(Rcache, Rscratch, 1);
  2171     __ ld_ptr(Rcache, method_offset, Rmethod);
  2172   } else if (byte_no == f1_oop) {
  2173     // Resolved f1_oop goes directly into 'method' register.
  2174     resolve_cache_and_index(byte_no, Rmethod, Rcache, Rscratch, sizeof(u4));
  2175   } else {
  2176     resolve_cache_and_index(byte_no, noreg, Rcache, Rscratch, sizeof(u2));
  2177     __ ld_ptr(Rcache, method_offset, Rmethod);
  2180   if (Ritable_index != noreg) {
  2181     __ ld_ptr(Rcache, index_offset, Ritable_index);
  2183   __ ld_ptr(Rcache, flags_offset, Rflags);
  2186 // The Rcache register must be set before call
  2187 void TemplateTable::load_field_cp_cache_entry(Register Robj,
  2188                                               Register Rcache,
  2189                                               Register index,
  2190                                               Register Roffset,
  2191                                               Register Rflags,
  2192                                               bool is_static) {
  2193   assert_different_registers(Rcache, Rflags, Roffset);
  2195   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2197   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2198   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2199   if (is_static) {
  2200     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  2204 // The registers Rcache and index expected to be set before call.
  2205 // Correct values of the Rcache and index registers are preserved.
  2206 void TemplateTable::jvmti_post_field_access(Register Rcache,
  2207                                             Register index,
  2208                                             bool is_static,
  2209                                             bool has_tos) {
  2210   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2212   if (JvmtiExport::can_post_field_access()) {
  2213     // Check to see if a field access watch has been set before we take
  2214     // the time to call into the VM.
  2215     Label Label1;
  2216     assert_different_registers(Rcache, index, G1_scratch);
  2217     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
  2218     __ load_contents(get_field_access_count_addr, G1_scratch);
  2219     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
  2221     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
  2223     if (is_static) {
  2224       __ clr(Otos_i);
  2225     } else {
  2226       if (has_tos) {
  2227       // save object pointer before call_VM() clobbers it
  2228         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
  2229       } else {
  2230         // Load top of stack (do not pop the value off the stack);
  2231         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  2233       __ verify_oop(Otos_i);
  2235     // Otos_i: object pointer or NULL if static
  2236     // Rcache: cache entry pointer
  2237     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2238                Otos_i, Rcache);
  2239     if (!is_static && has_tos) {
  2240       __ pop_ptr(Otos_i);  // restore object pointer
  2241       __ verify_oop(Otos_i);
  2243     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2244     __ bind(Label1);
  2248 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2249   transition(vtos, vtos);
  2251   Register Rcache = G3_scratch;
  2252   Register index  = G4_scratch;
  2253   Register Rclass = Rcache;
  2254   Register Roffset= G4_scratch;
  2255   Register Rflags = G1_scratch;
  2256   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2258   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
  2259   jvmti_post_field_access(Rcache, index, is_static, false);
  2260   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2262   if (!is_static) {
  2263     pop_and_check_object(Rclass);
  2264   } else {
  2265     __ verify_oop(Rclass);
  2268   Label exit;
  2270   Assembler::Membar_mask_bits membar_bits =
  2271     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2273   if (__ membar_has_effect(membar_bits)) {
  2274     // Get volatile flag
  2275     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2276     __ and3(Rflags, Lscratch, Lscratch);
  2279   Label checkVolatile;
  2281   // compute field type
  2282   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
  2283   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2284   // Make sure we don't need to mask Rflags for tosBits after the above shift
  2285   ConstantPoolCacheEntry::verify_tosBits();
  2287   // Check atos before itos for getstatic, more likely (in Queens at least)
  2288   __ cmp(Rflags, atos);
  2289   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2290   __ delayed() ->cmp(Rflags, itos);
  2292   // atos
  2293   __ load_heap_oop(Rclass, Roffset, Otos_i);
  2294   __ verify_oop(Otos_i);
  2295   __ push(atos);
  2296   if (!is_static) {
  2297     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  2299   __ ba(checkVolatile);
  2300   __ delayed()->tst(Lscratch);
  2302   __ bind(notObj);
  2304   // cmp(Rflags, itos);
  2305   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2306   __ delayed() ->cmp(Rflags, ltos);
  2308   // itos
  2309   __ ld(Rclass, Roffset, Otos_i);
  2310   __ push(itos);
  2311   if (!is_static) {
  2312     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  2314   __ ba(checkVolatile);
  2315   __ delayed()->tst(Lscratch);
  2317   __ bind(notInt);
  2319   // cmp(Rflags, ltos);
  2320   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2321   __ delayed() ->cmp(Rflags, btos);
  2323   // ltos
  2324   // load must be atomic
  2325   __ ld_long(Rclass, Roffset, Otos_l);
  2326   __ push(ltos);
  2327   if (!is_static) {
  2328     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  2330   __ ba(checkVolatile);
  2331   __ delayed()->tst(Lscratch);
  2333   __ bind(notLong);
  2335   // cmp(Rflags, btos);
  2336   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2337   __ delayed() ->cmp(Rflags, ctos);
  2339   // btos
  2340   __ ldsb(Rclass, Roffset, Otos_i);
  2341   __ push(itos);
  2342   if (!is_static) {
  2343     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2345   __ ba(checkVolatile);
  2346   __ delayed()->tst(Lscratch);
  2348   __ bind(notByte);
  2350   // cmp(Rflags, ctos);
  2351   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2352   __ delayed() ->cmp(Rflags, stos);
  2354   // ctos
  2355   __ lduh(Rclass, Roffset, Otos_i);
  2356   __ push(itos);
  2357   if (!is_static) {
  2358     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  2360   __ ba(checkVolatile);
  2361   __ delayed()->tst(Lscratch);
  2363   __ bind(notChar);
  2365   // cmp(Rflags, stos);
  2366   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2367   __ delayed() ->cmp(Rflags, ftos);
  2369   // stos
  2370   __ ldsh(Rclass, Roffset, Otos_i);
  2371   __ push(itos);
  2372   if (!is_static) {
  2373     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  2375   __ ba(checkVolatile);
  2376   __ delayed()->tst(Lscratch);
  2378   __ bind(notShort);
  2381   // cmp(Rflags, ftos);
  2382   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  2383   __ delayed() ->tst(Lscratch);
  2385   // ftos
  2386   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  2387   __ push(ftos);
  2388   if (!is_static) {
  2389     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  2391   __ ba(checkVolatile);
  2392   __ delayed()->tst(Lscratch);
  2394   __ bind(notFloat);
  2397   // dtos
  2398   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  2399   __ push(dtos);
  2400   if (!is_static) {
  2401     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  2404   __ bind(checkVolatile);
  2405   if (__ membar_has_effect(membar_bits)) {
  2406     // __ tst(Lscratch); executed in delay slot
  2407     __ br(Assembler::zero, false, Assembler::pt, exit);
  2408     __ delayed()->nop();
  2409     volatile_barrier(membar_bits);
  2412   __ bind(exit);
  2416 void TemplateTable::getfield(int byte_no) {
  2417   getfield_or_static(byte_no, false);
  2420 void TemplateTable::getstatic(int byte_no) {
  2421   getfield_or_static(byte_no, true);
  2425 void TemplateTable::fast_accessfield(TosState state) {
  2426   transition(atos, state);
  2427   Register Rcache  = G3_scratch;
  2428   Register index   = G4_scratch;
  2429   Register Roffset = G4_scratch;
  2430   Register Rflags  = Rcache;
  2431   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2433   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2434   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
  2436   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2438   __ null_check(Otos_i);
  2439   __ verify_oop(Otos_i);
  2441   Label exit;
  2443   Assembler::Membar_mask_bits membar_bits =
  2444     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2445   if (__ membar_has_effect(membar_bits)) {
  2446     // Get volatile flag
  2447     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
  2448     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2451   switch (bytecode()) {
  2452     case Bytecodes::_fast_bgetfield:
  2453       __ ldsb(Otos_i, Roffset, Otos_i);
  2454       break;
  2455     case Bytecodes::_fast_cgetfield:
  2456       __ lduh(Otos_i, Roffset, Otos_i);
  2457       break;
  2458     case Bytecodes::_fast_sgetfield:
  2459       __ ldsh(Otos_i, Roffset, Otos_i);
  2460       break;
  2461     case Bytecodes::_fast_igetfield:
  2462       __ ld(Otos_i, Roffset, Otos_i);
  2463       break;
  2464     case Bytecodes::_fast_lgetfield:
  2465       __ ld_long(Otos_i, Roffset, Otos_l);
  2466       break;
  2467     case Bytecodes::_fast_fgetfield:
  2468       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
  2469       break;
  2470     case Bytecodes::_fast_dgetfield:
  2471       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
  2472       break;
  2473     case Bytecodes::_fast_agetfield:
  2474       __ load_heap_oop(Otos_i, Roffset, Otos_i);
  2475       break;
  2476     default:
  2477       ShouldNotReachHere();
  2480   if (__ membar_has_effect(membar_bits)) {
  2481     __ btst(Lscratch, Rflags);
  2482     __ br(Assembler::zero, false, Assembler::pt, exit);
  2483     __ delayed()->nop();
  2484     volatile_barrier(membar_bits);
  2485     __ bind(exit);
  2488   if (state == atos) {
  2489     __ verify_oop(Otos_i);    // does not blow flags!
  2493 void TemplateTable::jvmti_post_fast_field_mod() {
  2494   if (JvmtiExport::can_post_field_modification()) {
  2495     // Check to see if a field modification watch has been set before we take
  2496     // the time to call into the VM.
  2497     Label done;
  2498     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2499     __ load_contents(get_field_modification_count_addr, G4_scratch);
  2500     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
  2501     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
  2502     __ verify_oop(G4_scratch);
  2503     __ push_ptr(G4_scratch);    // put the object pointer back on tos
  2504     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
  2505     // Save tos values before call_VM() clobbers them. Since we have
  2506     // to do it for every data type, we use the saved values as the
  2507     // jvalue object.
  2508     switch (bytecode()) {  // save tos values before call_VM() clobbers them
  2509     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
  2510     case Bytecodes::_fast_bputfield: // fall through
  2511     case Bytecodes::_fast_sputfield: // fall through
  2512     case Bytecodes::_fast_cputfield: // fall through
  2513     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
  2514     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
  2515     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
  2516     // get words in right order for use as jvalue object
  2517     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
  2519     // setup pointer to jvalue object
  2520     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
  2521     // G4_scratch:  object pointer
  2522     // G1_scratch: cache entry pointer
  2523     // G3_scratch: jvalue object on the stack
  2524     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
  2525     switch (bytecode()) {             // restore tos values
  2526     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
  2527     case Bytecodes::_fast_bputfield: // fall through
  2528     case Bytecodes::_fast_sputfield: // fall through
  2529     case Bytecodes::_fast_cputfield: // fall through
  2530     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
  2531     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
  2532     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
  2533     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
  2535     __ bind(done);
  2539 // The registers Rcache and index expected to be set before call.
  2540 // The function may destroy various registers, just not the Rcache and index registers.
  2541 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  2542   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2544   if (JvmtiExport::can_post_field_modification()) {
  2545     // Check to see if a field modification watch has been set before we take
  2546     // the time to call into the VM.
  2547     Label Label1;
  2548     assert_different_registers(Rcache, index, G1_scratch);
  2549     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2550     __ load_contents(get_field_modification_count_addr, G1_scratch);
  2551     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
  2553     // The Rcache and index registers have been already set.
  2554     // This allows to eliminate this call but the Rcache and index
  2555     // registers must be correspondingly used after this line.
  2556     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
  2558     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
  2559     if (is_static) {
  2560       // Life is simple.  Null out the object pointer.
  2561       __ clr(G4_scratch);
  2562     } else {
  2563       Register Rflags = G1_scratch;
  2564       // Life is harder. The stack holds the value on top, followed by the
  2565       // object.  We don't know the size of the value, though; it could be
  2566       // one or two words depending on its type. As a result, we must find
  2567       // the type to determine where the object is.
  2569       Label two_word, valsizeknown;
  2570       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2571       __ mov(Lesp, G4_scratch);
  2572       __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2573       // Make sure we don't need to mask Rflags for tosBits after the above shift
  2574       ConstantPoolCacheEntry::verify_tosBits();
  2575       __ cmp(Rflags, ltos);
  2576       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2577       __ delayed()->cmp(Rflags, dtos);
  2578       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2579       __ delayed()->nop();
  2580       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
  2581       __ ba_short(valsizeknown);
  2582       __ bind(two_word);
  2584       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
  2586       __ bind(valsizeknown);
  2587       // setup object pointer
  2588       __ ld_ptr(G4_scratch, 0, G4_scratch);
  2589       __ verify_oop(G4_scratch);
  2591     // setup pointer to jvalue object
  2592     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
  2593     // G4_scratch:  object pointer or NULL if static
  2594     // G3_scratch: cache entry pointer
  2595     // G1_scratch: jvalue object on the stack
  2596     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2597                G4_scratch, G3_scratch, G1_scratch);
  2598     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2599     __ bind(Label1);
  2603 void TemplateTable::pop_and_check_object(Register r) {
  2604   __ pop_ptr(r);
  2605   __ null_check(r);  // for field access must check obj.
  2606   __ verify_oop(r);
  2609 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2610   transition(vtos, vtos);
  2611   Register Rcache = G3_scratch;
  2612   Register index  = G4_scratch;
  2613   Register Rclass = Rcache;
  2614   Register Roffset= G4_scratch;
  2615   Register Rflags = G1_scratch;
  2616   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2618   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
  2619   jvmti_post_field_mod(Rcache, index, is_static);
  2620   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2622   Assembler::Membar_mask_bits read_bits =
  2623     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2624   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2626   Label notVolatile, checkVolatile, exit;
  2627   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2628     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2629     __ and3(Rflags, Lscratch, Lscratch);
  2631     if (__ membar_has_effect(read_bits)) {
  2632       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2633       volatile_barrier(read_bits);
  2634       __ bind(notVolatile);
  2638   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2639   // Make sure we don't need to mask Rflags for tosBits after the above shift
  2640   ConstantPoolCacheEntry::verify_tosBits();
  2642   // compute field type
  2643   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
  2645   if (is_static) {
  2646     // putstatic with object type most likely, check that first
  2647     __ cmp(Rflags, atos);
  2648     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2649     __ delayed()->cmp(Rflags, itos);
  2651     // atos
  2653       __ pop_ptr();
  2654       __ verify_oop(Otos_i);
  2655       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2656       __ ba(checkVolatile);
  2657       __ delayed()->tst(Lscratch);
  2660     __ bind(notObj);
  2661     // cmp(Rflags, itos);
  2662     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2663     __ delayed()->cmp(Rflags, btos);
  2665     // itos
  2667       __ pop_i();
  2668       __ st(Otos_i, Rclass, Roffset);
  2669       __ ba(checkVolatile);
  2670       __ delayed()->tst(Lscratch);
  2673     __ bind(notInt);
  2674   } else {
  2675     // putfield with int type most likely, check that first
  2676     __ cmp(Rflags, itos);
  2677     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2678     __ delayed()->cmp(Rflags, atos);
  2680     // itos
  2682       __ pop_i();
  2683       pop_and_check_object(Rclass);
  2684       __ st(Otos_i, Rclass, Roffset);
  2685       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
  2686       __ ba(checkVolatile);
  2687       __ delayed()->tst(Lscratch);
  2690     __ bind(notInt);
  2691     // cmp(Rflags, atos);
  2692     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2693     __ delayed()->cmp(Rflags, btos);
  2695     // atos
  2697       __ pop_ptr();
  2698       pop_and_check_object(Rclass);
  2699       __ verify_oop(Otos_i);
  2700       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2701       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
  2702       __ ba(checkVolatile);
  2703       __ delayed()->tst(Lscratch);
  2706     __ bind(notObj);
  2709   // cmp(Rflags, btos);
  2710   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2711   __ delayed()->cmp(Rflags, ltos);
  2713   // btos
  2715     __ pop_i();
  2716     if (!is_static) pop_and_check_object(Rclass);
  2717     __ stb(Otos_i, Rclass, Roffset);
  2718     if (!is_static) {
  2719       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
  2721     __ ba(checkVolatile);
  2722     __ delayed()->tst(Lscratch);
  2725   __ bind(notByte);
  2726   // cmp(Rflags, ltos);
  2727   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2728   __ delayed()->cmp(Rflags, ctos);
  2730   // ltos
  2732     __ pop_l();
  2733     if (!is_static) pop_and_check_object(Rclass);
  2734     __ st_long(Otos_l, Rclass, Roffset);
  2735     if (!is_static) {
  2736       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
  2738     __ ba(checkVolatile);
  2739     __ delayed()->tst(Lscratch);
  2742   __ bind(notLong);
  2743   // cmp(Rflags, ctos);
  2744   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2745   __ delayed()->cmp(Rflags, stos);
  2747   // ctos (char)
  2749     __ pop_i();
  2750     if (!is_static) pop_and_check_object(Rclass);
  2751     __ sth(Otos_i, Rclass, Roffset);
  2752     if (!is_static) {
  2753       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
  2755     __ ba(checkVolatile);
  2756     __ delayed()->tst(Lscratch);
  2759   __ bind(notChar);
  2760   // cmp(Rflags, stos);
  2761   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2762   __ delayed()->cmp(Rflags, ftos);
  2764   // stos (short)
  2766     __ pop_i();
  2767     if (!is_static) pop_and_check_object(Rclass);
  2768     __ sth(Otos_i, Rclass, Roffset);
  2769     if (!is_static) {
  2770       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
  2772     __ ba(checkVolatile);
  2773     __ delayed()->tst(Lscratch);
  2776   __ bind(notShort);
  2777   // cmp(Rflags, ftos);
  2778   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  2779   __ delayed()->nop();
  2781   // ftos
  2783     __ pop_f();
  2784     if (!is_static) pop_and_check_object(Rclass);
  2785     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2786     if (!is_static) {
  2787       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
  2789     __ ba(checkVolatile);
  2790     __ delayed()->tst(Lscratch);
  2793   __ bind(notFloat);
  2795   // dtos
  2797     __ pop_d();
  2798     if (!is_static) pop_and_check_object(Rclass);
  2799     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2800     if (!is_static) {
  2801       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
  2805   __ bind(checkVolatile);
  2806   __ tst(Lscratch);
  2808   if (__ membar_has_effect(write_bits)) {
  2809     // __ tst(Lscratch); in delay slot
  2810     __ br(Assembler::zero, false, Assembler::pt, exit);
  2811     __ delayed()->nop();
  2812     volatile_barrier(Assembler::StoreLoad);
  2813     __ bind(exit);
  2817 void TemplateTable::fast_storefield(TosState state) {
  2818   transition(state, vtos);
  2819   Register Rcache = G3_scratch;
  2820   Register Rclass = Rcache;
  2821   Register Roffset= G4_scratch;
  2822   Register Rflags = G1_scratch;
  2823   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2825   jvmti_post_fast_field_mod();
  2827   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
  2829   Assembler::Membar_mask_bits read_bits =
  2830     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2831   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2833   Label notVolatile, checkVolatile, exit;
  2834   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2835     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2836     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2837     __ and3(Rflags, Lscratch, Lscratch);
  2838     if (__ membar_has_effect(read_bits)) {
  2839       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2840       volatile_barrier(read_bits);
  2841       __ bind(notVolatile);
  2845   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2846   pop_and_check_object(Rclass);
  2848   switch (bytecode()) {
  2849     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
  2850     case Bytecodes::_fast_cputfield: /* fall through */
  2851     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
  2852     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
  2853     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
  2854     case Bytecodes::_fast_fputfield:
  2855       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2856       break;
  2857     case Bytecodes::_fast_dputfield:
  2858       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2859       break;
  2860     case Bytecodes::_fast_aputfield:
  2861       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2862       break;
  2863     default:
  2864       ShouldNotReachHere();
  2867   if (__ membar_has_effect(write_bits)) {
  2868     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
  2869     volatile_barrier(Assembler::StoreLoad);
  2870     __ bind(exit);
  2875 void TemplateTable::putfield(int byte_no) {
  2876   putfield_or_static(byte_no, false);
  2879 void TemplateTable::putstatic(int byte_no) {
  2880   putfield_or_static(byte_no, true);
  2884 void TemplateTable::fast_xaccess(TosState state) {
  2885   transition(vtos, state);
  2886   Register Rcache = G3_scratch;
  2887   Register Roffset = G4_scratch;
  2888   Register Rflags  = G4_scratch;
  2889   Register Rreceiver = Lscratch;
  2891   __ ld_ptr(Llocals, 0, Rreceiver);
  2893   // access constant pool cache  (is resolved)
  2894   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  2895   __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2896   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
  2898   __ verify_oop(Rreceiver);
  2899   __ null_check(Rreceiver);
  2900   if (state == atos) {
  2901     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  2902   } else if (state == itos) {
  2903     __ ld (Rreceiver, Roffset, Otos_i) ;
  2904   } else if (state == ftos) {
  2905     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  2906   } else {
  2907     ShouldNotReachHere();
  2910   Assembler::Membar_mask_bits membar_bits =
  2911     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2912   if (__ membar_has_effect(membar_bits)) {
  2914     // Get is_volatile value in Rflags and check if membar is needed
  2915     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2917     // Test volatile
  2918     Label notVolatile;
  2919     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2920     __ btst(Rflags, Lscratch);
  2921     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2922     __ delayed()->nop();
  2923     volatile_barrier(membar_bits);
  2924     __ bind(notVolatile);
  2927   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  2928   __ sub(Lbcp, 1, Lbcp);
  2931 //----------------------------------------------------------------------------------------------------
  2932 // Calls
  2934 void TemplateTable::count_calls(Register method, Register temp) {
  2935   // implemented elsewhere
  2936   ShouldNotReachHere();
  2939 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  2940   Register Rtemp = G4_scratch;
  2941   Register Rcall = Rindex;
  2942   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  2944   // get target methodOop & entry point
  2945   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2946   if (vtableEntry::size() % 3 == 0) {
  2947     // scale the vtable index by 12:
  2948     int one_third = vtableEntry::size() / 3;
  2949     __ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
  2950     __ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
  2951     __ add(Rindex, Rtemp, Rindex);
  2952   } else {
  2953     // scale the vtable index by 8:
  2954     __ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
  2957   __ add(Rrecv, Rindex, Rrecv);
  2958   __ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);
  2960   __ call_from_interpreter(Rcall, Gargs, Rret);
  2963 void TemplateTable::invokevirtual(int byte_no) {
  2964   transition(vtos, vtos);
  2965   assert(byte_no == f2_byte, "use this argument");
  2967   Register Rscratch = G3_scratch;
  2968   Register Rtemp = G4_scratch;
  2969   Register Rret = Lscratch;
  2970   Register Rrecv = G5_method;
  2971   Label notFinal;
  2973   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
  2974   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2976   // Check for vfinal
  2977   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch);
  2978   __ btst(Rret, G4_scratch);
  2979   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  2980   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
  2982   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
  2984   invokevfinal_helper(Rscratch, Rret);
  2986   __ bind(notFinal);
  2988   __ mov(G5_method, Rscratch);  // better scratch register
  2989   __ load_receiver(G4_scratch, O0);  // gets receiverOop
  2990   // receiver is in O0
  2991   __ verify_oop(O0);
  2993   // get return address
  2994   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2995   __ set(table, Rtemp);
  2996   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2997   // Make sure we don't need to mask Rret for tosBits after the above shift
  2998   ConstantPoolCacheEntry::verify_tosBits();
  2999   __ sll(Rret,  LogBytesPerWord, Rret);
  3000   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3002   // get receiver klass
  3003   __ null_check(O0, oopDesc::klass_offset_in_bytes());
  3004   __ load_klass(O0, Rrecv);
  3005   __ verify_oop(Rrecv);
  3007   __ profile_virtual_call(Rrecv, O4);
  3009   generate_vtable_call(Rrecv, Rscratch, Rret);
  3012 void TemplateTable::fast_invokevfinal(int byte_no) {
  3013   transition(vtos, vtos);
  3014   assert(byte_no == f2_byte, "use this argument");
  3016   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
  3017                              /*is_invokevfinal*/true, false);
  3018   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3019   invokevfinal_helper(G3_scratch, Lscratch);
  3022 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  3023   Register Rtemp = G4_scratch;
  3025   __ verify_oop(G5_method);
  3027   // Load receiver from stack slot
  3028   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  3029   __ load_receiver(G4_scratch, O0);
  3031   // receiver NULL check
  3032   __ null_check(O0);
  3034   __ profile_final_call(O4);
  3036   // get return address
  3037   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3038   __ set(table, Rtemp);
  3039   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3040   // Make sure we don't need to mask Rret for tosBits after the above shift
  3041   ConstantPoolCacheEntry::verify_tosBits();
  3042   __ sll(Rret,  LogBytesPerWord, Rret);
  3043   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3046   // do the call
  3047   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3050 void TemplateTable::invokespecial(int byte_no) {
  3051   transition(vtos, vtos);
  3052   assert(byte_no == f1_byte, "use this argument");
  3054   Register Rscratch = G3_scratch;
  3055   Register Rtemp = G4_scratch;
  3056   Register Rret = Lscratch;
  3058   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
  3059   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3061   __ verify_oop(G5_method);
  3063   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  3064   __ load_receiver(G4_scratch, O0);
  3066   // receiver NULL check
  3067   __ null_check(O0);
  3069   __ profile_call(O4);
  3071   // get return address
  3072   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3073   __ set(table, Rtemp);
  3074   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3075   // Make sure we don't need to mask Rret for tosBits after the above shift
  3076   ConstantPoolCacheEntry::verify_tosBits();
  3077   __ sll(Rret,  LogBytesPerWord, Rret);
  3078   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3080   // do the call
  3081   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3084 void TemplateTable::invokestatic(int byte_no) {
  3085   transition(vtos, vtos);
  3086   assert(byte_no == f1_byte, "use this argument");
  3088   Register Rscratch = G3_scratch;
  3089   Register Rtemp = G4_scratch;
  3090   Register Rret = Lscratch;
  3092   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
  3093   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3095   __ verify_oop(G5_method);
  3097   __ profile_call(O4);
  3099   // get return address
  3100   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3101   __ set(table, Rtemp);
  3102   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3103   // Make sure we don't need to mask Rret for tosBits after the above shift
  3104   ConstantPoolCacheEntry::verify_tosBits();
  3105   __ sll(Rret,  LogBytesPerWord, Rret);
  3106   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3108   // do the call
  3109   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3113 void TemplateTable::invokeinterface_object_method(Register RklassOop,
  3114                                                   Register Rcall,
  3115                                                   Register Rret,
  3116                                                   Register Rflags) {
  3117   Register Rscratch = G4_scratch;
  3118   Register Rindex = Lscratch;
  3120   assert_different_registers(Rscratch, Rindex, Rret);
  3122   Label notFinal;
  3124   // Check for vfinal
  3125   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch);
  3126   __ btst(Rflags, Rscratch);
  3127   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  3128   __ delayed()->nop();
  3130   __ profile_final_call(O4);
  3132   // do the call - the index (f2) contains the methodOop
  3133   assert_different_registers(G5_method, Gargs, Rcall);
  3134   __ mov(Rindex, G5_method);
  3135   __ call_from_interpreter(Rcall, Gargs, Rret);
  3136   __ bind(notFinal);
  3138   __ profile_virtual_call(RklassOop, O4);
  3139   generate_vtable_call(RklassOop, Rindex, Rret);
  3143 void TemplateTable::invokeinterface(int byte_no) {
  3144   transition(vtos, vtos);
  3145   assert(byte_no == f1_byte, "use this argument");
  3147   Register Rscratch = G4_scratch;
  3148   Register Rret = G3_scratch;
  3149   Register Rindex = Lscratch;
  3150   Register Rinterface = G1_scratch;
  3151   Register RklassOop = G5_method;
  3152   Register Rflags = O1;
  3153   assert_different_registers(Rscratch, G5_method);
  3155   load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, /*virtual*/ false, false, false);
  3156   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3158   // get receiver
  3159   __ and3(Rflags, 0xFF, Rscratch);       // gets number of parameters
  3160   __ load_receiver(Rscratch, O0);
  3161   __ verify_oop(O0);
  3163   __ mov(Rflags, Rret);
  3165   // get return address
  3166   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  3167   __ set(table, Rscratch);
  3168   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3169   // Make sure we don't need to mask Rret for tosBits after the above shift
  3170   ConstantPoolCacheEntry::verify_tosBits();
  3171   __ sll(Rret,  LogBytesPerWord, Rret);
  3172   __ ld_ptr(Rscratch, Rret, Rret);      // get return address
  3174   // get receiver klass
  3175   __ null_check(O0, oopDesc::klass_offset_in_bytes());
  3176   __ load_klass(O0, RklassOop);
  3177   __ verify_oop(RklassOop);
  3179   // Special case of invokeinterface called for virtual method of
  3180   // java.lang.Object.  See cpCacheOop.cpp for details.
  3181   // This code isn't produced by javac, but could be produced by
  3182   // another compliant java compiler.
  3183   Label notMethod;
  3184   __ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch);
  3185   __ btst(Rflags, Rscratch);
  3186   __ br(Assembler::zero, false, Assembler::pt, notMethod);
  3187   __ delayed()->nop();
  3189   invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags);
  3191   __ bind(notMethod);
  3193   __ profile_virtual_call(RklassOop, O4);
  3195   //
  3196   // find entry point to call
  3197   //
  3199   // compute start of first itableOffsetEntry (which is at end of vtable)
  3200   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3201   Label search;
  3202   Register Rtemp = Rflags;
  3204   __ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
  3205   if (align_object_offset(1) > 1) {
  3206     __ round_to(Rtemp, align_object_offset(1));
  3208   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
  3209   if (Assembler::is_simm13(base)) {
  3210     __ add(Rtemp, base, Rtemp);
  3211   } else {
  3212     __ set(base, Rscratch);
  3213     __ add(Rscratch, Rtemp, Rtemp);
  3215   __ add(RklassOop, Rtemp, Rscratch);
  3217   __ bind(search);
  3219   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
  3221     Label ok;
  3223     // Check that entry is non-null.  Null entries are probably a bytecode
  3224     // problem.  If the interface isn't implemented by the receiver class,
  3225     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
  3226     // this too but that's only if the entry isn't already resolved, so we
  3227     // need to check again.
  3228     __ br_notnull_short( Rtemp, Assembler::pt, ok);
  3229     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
  3230     __ should_not_reach_here();
  3231     __ bind(ok);
  3232     __ verify_oop(Rtemp);
  3235   __ verify_oop(Rinterface);
  3237   __ cmp(Rinterface, Rtemp);
  3238   __ brx(Assembler::notEqual, true, Assembler::pn, search);
  3239   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
  3241   // entry found and Rscratch points to it
  3242   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
  3244   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
  3245   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
  3246   __ add(Rscratch, Rindex, Rscratch);
  3247   __ ld_ptr(RklassOop, Rscratch, G5_method);
  3249   // Check for abstract method error.
  3251     Label ok;
  3252     __ br_notnull_short(G5_method, Assembler::pt, ok);
  3253     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3254     __ should_not_reach_here();
  3255     __ bind(ok);
  3258   Register Rcall = Rinterface;
  3259   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3261   __ verify_oop(G5_method);
  3262   __ call_from_interpreter(Rcall, Gargs, Rret);
  3267 void TemplateTable::invokedynamic(int byte_no) {
  3268   transition(vtos, vtos);
  3269   assert(byte_no == f1_oop, "use this argument");
  3271   if (!EnableInvokeDynamic) {
  3272     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3273     // The verifier will stop it.  However, if we get past the verifier,
  3274     // this will stop the thread in a reasonable way, without crashing the JVM.
  3275     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3276                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3277     // the call_VM checks for exception, so we should never return here.
  3278     __ should_not_reach_here();
  3279     return;
  3282   // G5: CallSite object (f1)
  3283   // XX: unused (f2)
  3284   // XX: flags (unused)
  3286   Register G5_callsite = G5_method;
  3287   Register Rscratch    = G3_scratch;
  3288   Register Rtemp       = G1_scratch;
  3289   Register Rret        = Lscratch;
  3291   load_invoke_cp_cache_entry(byte_no, G5_callsite, noreg, Rret,
  3292                              /*virtual*/ false, /*vfinal*/ false, /*indy*/ true);
  3293   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
  3295   // profile this call
  3296   __ profile_call(O4);
  3298   // get return address
  3299   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  3300   __ set(table, Rtemp);
  3301   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);  // get return type
  3302   // Make sure we don't need to mask Rret for tosBits after the above shift
  3303   ConstantPoolCacheEntry::verify_tosBits();
  3304   __ sll(Rret, LogBytesPerWord, Rret);
  3305   __ ld_ptr(Rtemp, Rret, Rret);  // get return address
  3307   __ verify_oop(G5_callsite);
  3308   __ load_heap_oop(G5_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
  3309   __ null_check(G3_method_handle);
  3310   __ verify_oop(G3_method_handle);
  3312   // Adjust Rret first so Llast_SP can be same as Rret
  3313   __ add(Rret, -frame::pc_return_offset, O7);
  3314   __ add(Lesp, BytesPerWord, Gargs);  // setup parameter pointer
  3315   __ jump_to_method_handle_entry(G3_method_handle, Rtemp, /* emit_delayed_nop */ false);
  3316   // Record SP so we can remove any stack space allocated by adapter transition
  3317   __ delayed()->mov(SP, Llast_SP);
  3321 //----------------------------------------------------------------------------------------------------
  3322 // Allocation
  3324 void TemplateTable::_new() {
  3325   transition(vtos, atos);
  3327   Label slow_case;
  3328   Label done;
  3329   Label initialize_header;
  3330   Label initialize_object;  // including clearing the fields
  3332   Register RallocatedObject = Otos_i;
  3333   Register RinstanceKlass = O1;
  3334   Register Roffset = O3;
  3335   Register Rscratch = O4;
  3337   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3338   __ get_cpool_and_tags(Rscratch, G3_scratch);
  3339   // make sure the class we're about to instantiate has been resolved
  3340   // This is done before loading instanceKlass to be consistent with the order
  3341   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3342   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3343   __ ldub(G3_scratch, Roffset, G3_scratch);
  3344   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3345   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3346   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3347   // get instanceKlass
  3348   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  3349   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3350   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
  3352   // make sure klass is fully initialized:
  3353   __ ldub(RinstanceKlass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_scratch);
  3354   __ cmp(G3_scratch, instanceKlass::fully_initialized);
  3355   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3356   __ delayed()->ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
  3358   // get instance_size in instanceKlass (already aligned)
  3359   //__ ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
  3361   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  3362   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  3363   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  3364   __ delayed()->nop();
  3366   // allocate the instance
  3367   // 1) Try to allocate in the TLAB
  3368   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  3369   // 3) if the above fails (or is not applicable), go to a slow case
  3370   // (creates a new TLAB, etc.)
  3372   const bool allow_shared_alloc =
  3373     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3375   if(UseTLAB) {
  3376     Register RoldTopValue = RallocatedObject;
  3377     Register RtlabWasteLimitValue = G3_scratch;
  3378     Register RnewTopValue = G1_scratch;
  3379     Register RendValue = Rscratch;
  3380     Register RfreeValue = RnewTopValue;
  3382     // check if we can allocate in the TLAB
  3383     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
  3384     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
  3385     __ add(RoldTopValue, Roffset, RnewTopValue);
  3387     // if there is enough space, we do not CAS and do not clear
  3388     __ cmp(RnewTopValue, RendValue);
  3389     if(ZeroTLAB) {
  3390       // the fields have already been cleared
  3391       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
  3392     } else {
  3393       // initialize both the header and fields
  3394       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
  3396     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3398     if (allow_shared_alloc) {
  3399       // Check if tlab should be discarded (refill_waste_limit >= free)
  3400       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
  3401       __ sub(RendValue, RoldTopValue, RfreeValue);
  3402 #ifdef _LP64
  3403       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
  3404 #else
  3405       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
  3406 #endif
  3407       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
  3409       // increment waste limit to prevent getting stuck on this slow path
  3410       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
  3411       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3412     } else {
  3413       // No allocation in the shared eden.
  3414       __ ba_short(slow_case);
  3418   // Allocation in the shared Eden
  3419   if (allow_shared_alloc) {
  3420     Register RoldTopValue = G1_scratch;
  3421     Register RtopAddr = G3_scratch;
  3422     Register RnewTopValue = RallocatedObject;
  3423     Register RendValue = Rscratch;
  3425     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
  3427     Label retry;
  3428     __ bind(retry);
  3429     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
  3430     __ ld_ptr(RendValue, 0, RendValue);
  3431     __ ld_ptr(RtopAddr, 0, RoldTopValue);
  3432     __ add(RoldTopValue, Roffset, RnewTopValue);
  3434     // RnewTopValue contains the top address after the new object
  3435     // has been allocated.
  3436     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
  3438     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
  3439       VM_Version::v9_instructions_work() ? NULL :
  3440       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3442     // if someone beat us on the allocation, try again, otherwise continue
  3443     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
  3445     // bump total bytes allocated by this thread
  3446     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
  3447     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
  3450   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3451     // clear object fields
  3452     __ bind(initialize_object);
  3453     __ deccc(Roffset, sizeof(oopDesc));
  3454     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
  3455     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
  3457     // initialize remaining object fields
  3458     if (UseBlockZeroing) {
  3459       // Use BIS for zeroing
  3460       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
  3461     } else {
  3462       Label loop;
  3463       __ subcc(Roffset, wordSize, Roffset);
  3464       __ bind(loop);
  3465       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
  3466       __ st_ptr(G0, G3_scratch, Roffset);
  3467       __ br(Assembler::notEqual, false, Assembler::pt, loop);
  3468       __ delayed()->subcc(Roffset, wordSize, Roffset);
  3470     __ ba_short(initialize_header);
  3473   // slow case
  3474   __ bind(slow_case);
  3475   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3476   __ get_constant_pool(O1);
  3478   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
  3480   __ ba_short(done);
  3482   // Initialize the header: mark, klass
  3483   __ bind(initialize_header);
  3485   if (UseBiasedLocking) {
  3486     __ ld_ptr(RinstanceKlass, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), G4_scratch);
  3487   } else {
  3488     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  3490   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  3491   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  3492   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
  3495     SkipIfEqual skip_if(
  3496       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
  3497     // Trigger dtrace event
  3498     __ push(atos);
  3499     __ call_VM_leaf(noreg,
  3500        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
  3501     __ pop(atos);
  3504   // continue
  3505   __ bind(done);
  3510 void TemplateTable::newarray() {
  3511   transition(itos, atos);
  3512   __ ldub(Lbcp, 1, O1);
  3513      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
  3517 void TemplateTable::anewarray() {
  3518   transition(itos, atos);
  3519   __ get_constant_pool(O1);
  3520   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3521      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
  3525 void TemplateTable::arraylength() {
  3526   transition(atos, itos);
  3527   Label ok;
  3528   __ verify_oop(Otos_i);
  3529   __ tst(Otos_i);
  3530   __ throw_if_not_1_x( Assembler::notZero, ok );
  3531   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  3532   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3536 void TemplateTable::checkcast() {
  3537   transition(atos, atos);
  3538   Label done, is_null, quicked, cast_ok, resolved;
  3539   Register Roffset = G1_scratch;
  3540   Register RobjKlass = O5;
  3541   Register RspecifiedKlass = O4;
  3543   // Check for casting a NULL
  3544   __ br_null_short(Otos_i, Assembler::pn, is_null);
  3546   // Get value klass in RobjKlass
  3547   __ load_klass(Otos_i, RobjKlass); // get value klass
  3549   // Get constant pool tag
  3550   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3552   // See if the checkcast has been quickened
  3553   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3554   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3555   __ ldub(G3_scratch, Roffset, G3_scratch);
  3556   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3557   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3558   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3560   __ push_ptr(); // save receiver for result, and for GC
  3561   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3562   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3564   __ ba_short(resolved);
  3566   // Extract target class from constant pool
  3567   __ bind(quicked);
  3568   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3569   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3570   __ bind(resolved);
  3571   __ load_klass(Otos_i, RobjKlass); // get value klass
  3573   // Generate a fast subtype check.  Branch to cast_ok if no
  3574   // failure.  Throw exception if failure.
  3575   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
  3577   // Not a subtype; so must throw exception
  3578   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
  3580   __ bind(cast_ok);
  3582   if (ProfileInterpreter) {
  3583     __ ba_short(done);
  3585   __ bind(is_null);
  3586   __ profile_null_seen(G3_scratch);
  3587   __ bind(done);
  3591 void TemplateTable::instanceof() {
  3592   Label done, is_null, quicked, resolved;
  3593   transition(atos, itos);
  3594   Register Roffset = G1_scratch;
  3595   Register RobjKlass = O5;
  3596   Register RspecifiedKlass = O4;
  3598   // Check for casting a NULL
  3599   __ br_null_short(Otos_i, Assembler::pt, is_null);
  3601   // Get value klass in RobjKlass
  3602   __ load_klass(Otos_i, RobjKlass); // get value klass
  3604   // Get constant pool tag
  3605   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3607   // See if the checkcast has been quickened
  3608   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3609   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3610   __ ldub(G3_scratch, Roffset, G3_scratch);
  3611   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3612   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3613   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3615   __ push_ptr(); // save receiver for result, and for GC
  3616   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3617   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3619   __ ba_short(resolved);
  3621   // Extract target class from constant pool
  3622   __ bind(quicked);
  3623   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3624   __ get_constant_pool(Lscratch);
  3625   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3626   __ bind(resolved);
  3627   __ load_klass(Otos_i, RobjKlass); // get value klass
  3629   // Generate a fast subtype check.  Branch to cast_ok if no
  3630   // failure.  Return 0 if failure.
  3631   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  3632   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  3633   // Not a subtype; return 0;
  3634   __ clr( Otos_i );
  3636   if (ProfileInterpreter) {
  3637     __ ba_short(done);
  3639   __ bind(is_null);
  3640   __ profile_null_seen(G3_scratch);
  3641   __ bind(done);
  3644 void TemplateTable::_breakpoint() {
  3646    // Note: We get here even if we are single stepping..
  3647    // jbug inists on setting breakpoints at every bytecode
  3648    // even if we are in single step mode.
  3650    transition(vtos, vtos);
  3651    // get the unpatched byte code
  3652    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
  3653    __ mov(O0, Lbyte_code);
  3655    // post the breakpoint event
  3656    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
  3658    // complete the execution of original bytecode
  3659    __ dispatch_normal(vtos);
  3663 //----------------------------------------------------------------------------------------------------
  3664 // Exceptions
  3666 void TemplateTable::athrow() {
  3667   transition(atos, vtos);
  3669   // This works because exception is cached in Otos_i which is same as O0,
  3670   // which is same as what throw_exception_entry_expects
  3671   assert(Otos_i == Oexception, "see explanation above");
  3673   __ verify_oop(Otos_i);
  3674   __ null_check(Otos_i);
  3675   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
  3679 //----------------------------------------------------------------------------------------------------
  3680 // Synchronization
  3683 // See frame_sparc.hpp for monitor block layout.
  3684 // Monitor elements are dynamically allocated by growing stack as needed.
  3686 void TemplateTable::monitorenter() {
  3687   transition(atos, vtos);
  3688   __ verify_oop(Otos_i);
  3689   // Try to acquire a lock on the object
  3690   // Repeat until succeeded (i.e., until
  3691   // monitorenter returns true).
  3693   {   Label ok;
  3694     __ tst(Otos_i);
  3695     __ throw_if_not_1_x( Assembler::notZero,  ok);
  3696     __ delayed()->mov(Otos_i, Lscratch); // save obj
  3697     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3700   assert(O0 == Otos_i, "Be sure where the object to lock is");
  3702   // find a free slot in the monitor block
  3705   // initialize entry pointer
  3706   __ clr(O1); // points to free slot or NULL
  3709     Label entry, loop, exit;
  3710     __ add( __ top_most_monitor(), O2 ); // last one to check
  3711     __ ba( entry );
  3712     __ delayed()->mov( Lmonitors, O3 ); // first one to check
  3715     __ bind( loop );
  3717     __ verify_oop(O4);          // verify each monitor's oop
  3718     __ tst(O4); // is this entry unused?
  3719     if (VM_Version::v9_instructions_work())
  3720       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
  3721     else {
  3722       Label L;
  3723       __ br( Assembler::zero, true, Assembler::pn, L );
  3724       __ delayed()->mov(O3, O1); // rememeber this one if match
  3725       __ bind(L);
  3728     __ cmp(O4, O0); // check if current entry is for same object
  3729     __ brx( Assembler::equal, false, Assembler::pn, exit );
  3730     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
  3732     __ bind( entry );
  3734     __ cmp( O3, O2 );
  3735     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3736     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
  3738     __ bind( exit );
  3741   { Label allocated;
  3743     // found free slot?
  3744     __ br_notnull_short(O1, Assembler::pn, allocated);
  3746     __ add_monitor_to_stack( false, O2, O3 );
  3747     __ mov(Lmonitors, O1);
  3749     __ bind(allocated);
  3752   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3753   // The object has already been poped from the stack, so the expression stack looks correct.
  3754   __ inc(Lbcp);
  3756   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  3757   __ lock_object(O1, O0);
  3759   // check if there's enough space on the stack for the monitors after locking
  3760   __ generate_stack_overflow_check(0);
  3762   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3763   __ dispatch_next(vtos);
  3767 void TemplateTable::monitorexit() {
  3768   transition(atos, vtos);
  3769   __ verify_oop(Otos_i);
  3770   __ tst(Otos_i);
  3771   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
  3773   assert(O0 == Otos_i, "just checking");
  3775   { Label entry, loop, found;
  3776     __ add( __ top_most_monitor(), O2 ); // last one to check
  3777     __ ba(entry);
  3778     // use Lscratch to hold monitor elem to check, start with most recent monitor,
  3779     // By using a local it survives the call to the C routine.
  3780     __ delayed()->mov( Lmonitors, Lscratch );
  3782     __ bind( loop );
  3784     __ verify_oop(O4);          // verify each monitor's oop
  3785     __ cmp(O4, O0); // check if current entry is for desired object
  3786     __ brx( Assembler::equal, true, Assembler::pt, found );
  3787     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
  3789     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
  3791     __ bind( entry );
  3793     __ cmp( Lscratch, O2 );
  3794     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3795     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
  3797     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3798     __ should_not_reach_here();
  3800     __ bind(found);
  3802   __ unlock_object(O1);
  3806 //----------------------------------------------------------------------------------------------------
  3807 // Wide instructions
  3809 void TemplateTable::wide() {
  3810   transition(vtos, vtos);
  3811   __ ldub(Lbcp, 1, G3_scratch);// get next bc
  3812   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  3813   AddressLiteral ep(Interpreter::_wentry_point);
  3814   __ set(ep, G4_scratch);
  3815   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  3816   __ jmp(G3_scratch, G0);
  3817   __ delayed()->nop();
  3818   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
  3822 //----------------------------------------------------------------------------------------------------
  3823 // Multi arrays
  3825 void TemplateTable::multianewarray() {
  3826   transition(vtos, atos);
  3827      // put ndims * wordSize into Lscratch
  3828   __ ldub( Lbcp,     3,               Lscratch);
  3829   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
  3830      // Lesp points past last_dim, so set to O1 to first_dim address
  3831   __ add(  Lesp,     Lscratch,        O1);
  3832      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  3833   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
  3835 #endif /* !CC_INTERP */

mercurial