src/cpu/sparc/vm/sparc.ad

Tue, 06 Dec 2011 18:28:51 -0500

author
coleenp
date
Tue, 06 Dec 2011 18:28:51 -0500
changeset 3368
52b5d32fbfaf
parent 3243
d8cb48376797
child 3310
6729bbc1fcd6
permissions
-rw-r--r--

7117052: instanceKlass::_init_state can be u1 type
Summary: Change instanceKlass::_init_state field to u1 type.
Reviewed-by: bdelsart, coleenp, dholmes, phh, never
Contributed-by: Jiangli Zhou <jiangli.zhou@oracle.com>

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedOops) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_oop_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if( Assembler::is_simm13(v_off) ) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   int bit_width = width * 8;
   682   jlong elt_val = con;
   683   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   684   jlong val = elt_val;
   685   for (int i = 0; i < count - 1; i++) {
   686     val <<= bit_width;
   687     val |= elt_val;
   688   }
   689   jdouble dval = *((jdouble*) &val);  // coerce to double type
   690   return dval;
   691 }
   693 // Standard Sparc opcode form2 field breakdown
   694 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   695   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   696   int op = (f30 << 30) |
   697            (f29 << 29) |
   698            (f25 << 25) |
   699            (f22 << 22) |
   700            (f20 << 20) |
   701            (f19 << 19) |
   702            (f0  <<  0);
   703   cbuf.insts()->emit_int32(op);
   704 }
   706 // Standard Sparc opcode form2 field breakdown
   707 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   708   f0 >>= 10;           // Drop 10 bits
   709   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   710   int op = (f30 << 30) |
   711            (f25 << 25) |
   712            (f22 << 22) |
   713            (f0  <<  0);
   714   cbuf.insts()->emit_int32(op);
   715 }
   717 // Standard Sparc opcode form3 field breakdown
   718 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   719   int op = (f30 << 30) |
   720            (f25 << 25) |
   721            (f19 << 19) |
   722            (f14 << 14) |
   723            (f5  <<  5) |
   724            (f0  <<  0);
   725   cbuf.insts()->emit_int32(op);
   726 }
   728 // Standard Sparc opcode form3 field breakdown
   729 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   730   simm13 &= (1<<13)-1; // Mask to 13 bits
   731   int op = (f30 << 30) |
   732            (f25 << 25) |
   733            (f19 << 19) |
   734            (f14 << 14) |
   735            (1   << 13) | // bit to indicate immediate-mode
   736            (simm13<<0);
   737   cbuf.insts()->emit_int32(op);
   738 }
   740 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   741   simm10 &= (1<<10)-1; // Mask to 10 bits
   742   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   743 }
   745 #ifdef ASSERT
   746 // Helper function for VerifyOops in emit_form3_mem_reg
   747 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   748   warning("VerifyOops encountered unexpected instruction:");
   749   n->dump(2);
   750   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   751 }
   752 #endif
   755 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   756                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   758 #ifdef ASSERT
   759   // The following code implements the +VerifyOops feature.
   760   // It verifies oop values which are loaded into or stored out of
   761   // the current method activation.  +VerifyOops complements techniques
   762   // like ScavengeALot, because it eagerly inspects oops in transit,
   763   // as they enter or leave the stack, as opposed to ScavengeALot,
   764   // which inspects oops "at rest", in the stack or heap, at safepoints.
   765   // For this reason, +VerifyOops can sometimes detect bugs very close
   766   // to their point of creation.  It can also serve as a cross-check
   767   // on the validity of oop maps, when used toegether with ScavengeALot.
   769   // It would be good to verify oops at other points, especially
   770   // when an oop is used as a base pointer for a load or store.
   771   // This is presently difficult, because it is hard to know when
   772   // a base address is biased or not.  (If we had such information,
   773   // it would be easy and useful to make a two-argument version of
   774   // verify_oop which unbiases the base, and performs verification.)
   776   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   777   bool is_verified_oop_base  = false;
   778   bool is_verified_oop_load  = false;
   779   bool is_verified_oop_store = false;
   780   int tmp_enc = -1;
   781   if (VerifyOops && src1_enc != R_SP_enc) {
   782     // classify the op, mainly for an assert check
   783     int st_op = 0, ld_op = 0;
   784     switch (primary) {
   785     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   786     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   787     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   788     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   789     case Assembler::std_op3:  st_op = Op_StoreL; break;
   790     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   791     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   793     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   794     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   795     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   796     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   797     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   798     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   799     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   800     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   801     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   803     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   805     default: ShouldNotReachHere();
   806     }
   807     if (tertiary == REGP_OP) {
   808       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   809       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   810       else                          ShouldNotReachHere();
   811       if (st_op) {
   812         // a store
   813         // inputs are (0:control, 1:memory, 2:address, 3:value)
   814         Node* n2 = n->in(3);
   815         if (n2 != NULL) {
   816           const Type* t = n2->bottom_type();
   817           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818         }
   819       } else {
   820         // a load
   821         const Type* t = n->bottom_type();
   822         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823       }
   824     }
   826     if (ld_op) {
   827       // a Load
   828       // inputs are (0:control, 1:memory, 2:address)
   829       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   830           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   831           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   832           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   833           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   834           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   835           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   839           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   841           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   843           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   845           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   846           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   847           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   848           !(n->rule() == loadUB_rule)) {
   849         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   850       }
   851     } else if (st_op) {
   852       // a Store
   853       // inputs are (0:control, 1:memory, 2:address, 3:value)
   854       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   855           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   856           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   857           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   858           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   860           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   862           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   863         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   864       }
   865     }
   867     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   868       Node* addr = n->in(2);
   869       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   870         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   871         if (atype != NULL) {
   872           intptr_t offset = get_offset_from_base(n, atype, disp32);
   873           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   874           if (offset != offset_2) {
   875             get_offset_from_base(n, atype, disp32);
   876             get_offset_from_base_2(n, atype, disp32);
   877           }
   878           assert(offset == offset_2, "different offsets");
   879           if (offset == disp32) {
   880             // we now know that src1 is a true oop pointer
   881             is_verified_oop_base = true;
   882             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   883               if( primary == Assembler::ldd_op3 ) {
   884                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   885               } else {
   886                 tmp_enc = dst_enc;
   887                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   888                 assert(src1_enc != dst_enc, "");
   889               }
   890             }
   891           }
   892           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   893                        || offset == oopDesc::mark_offset_in_bytes())) {
   894                       // loading the mark should not be allowed either, but
   895                       // we don't check this since it conflicts with InlineObjectHash
   896                       // usage of LoadINode to get the mark. We could keep the
   897                       // check if we create a new LoadMarkNode
   898             // but do not verify the object before its header is initialized
   899             ShouldNotReachHere();
   900           }
   901         }
   902       }
   903     }
   904   }
   905 #endif
   907   uint instr;
   908   instr = (Assembler::ldst_op << 30)
   909         | (dst_enc        << 25)
   910         | (primary        << 19)
   911         | (src1_enc       << 14);
   913   uint index = src2_enc;
   914   int disp = disp32;
   916   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   917     disp += STACK_BIAS;
   919   // We should have a compiler bailout here rather than a guarantee.
   920   // Better yet would be some mechanism to handle variable-size matches correctly.
   921   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   923   if( disp == 0 ) {
   924     // use reg-reg form
   925     // bit 13 is already zero
   926     instr |= index;
   927   } else {
   928     // use reg-imm form
   929     instr |= 0x00002000;          // set bit 13 to one
   930     instr |= disp & 0x1FFF;
   931   }
   933   cbuf.insts()->emit_int32(instr);
   935 #ifdef ASSERT
   936   {
   937     MacroAssembler _masm(&cbuf);
   938     if (is_verified_oop_base) {
   939       __ verify_oop(reg_to_register_object(src1_enc));
   940     }
   941     if (is_verified_oop_store) {
   942       __ verify_oop(reg_to_register_object(dst_enc));
   943     }
   944     if (tmp_enc != -1) {
   945       __ mov(O7, reg_to_register_object(tmp_enc));
   946     }
   947     if (is_verified_oop_load) {
   948       __ verify_oop(reg_to_register_object(dst_enc));
   949     }
   950   }
   951 #endif
   952 }
   954 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   955   // The method which records debug information at every safepoint
   956   // expects the call to be the first instruction in the snippet as
   957   // it creates a PcDesc structure which tracks the offset of a call
   958   // from the start of the codeBlob. This offset is computed as
   959   // code_end() - code_begin() of the code which has been emitted
   960   // so far.
   961   // In this particular case we have skirted around the problem by
   962   // putting the "mov" instruction in the delay slot but the problem
   963   // may bite us again at some other point and a cleaner/generic
   964   // solution using relocations would be needed.
   965   MacroAssembler _masm(&cbuf);
   966   __ set_inst_mark();
   968   // We flush the current window just so that there is a valid stack copy
   969   // the fact that the current window becomes active again instantly is
   970   // not a problem there is nothing live in it.
   972 #ifdef ASSERT
   973   int startpos = __ offset();
   974 #endif /* ASSERT */
   976   __ call((address)entry_point, rtype);
   978   if (preserve_g2)   __ delayed()->mov(G2, L7);
   979   else __ delayed()->nop();
   981   if (preserve_g2)   __ mov(L7, G2);
   983 #ifdef ASSERT
   984   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   985 #ifdef _LP64
   986     // Trash argument dump slots.
   987     __ set(0xb0b8ac0db0b8ac0d, G1);
   988     __ mov(G1, G5);
   989     __ stx(G1, SP, STACK_BIAS + 0x80);
   990     __ stx(G1, SP, STACK_BIAS + 0x88);
   991     __ stx(G1, SP, STACK_BIAS + 0x90);
   992     __ stx(G1, SP, STACK_BIAS + 0x98);
   993     __ stx(G1, SP, STACK_BIAS + 0xA0);
   994     __ stx(G1, SP, STACK_BIAS + 0xA8);
   995 #else // _LP64
   996     // this is also a native call, so smash the first 7 stack locations,
   997     // and the various registers
   999     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1000     // while [SP+0x44..0x58] are the argument dump slots.
  1001     __ set((intptr_t)0xbaadf00d, G1);
  1002     __ mov(G1, G5);
  1003     __ sllx(G1, 32, G1);
  1004     __ or3(G1, G5, G1);
  1005     __ mov(G1, G5);
  1006     __ stx(G1, SP, 0x40);
  1007     __ stx(G1, SP, 0x48);
  1008     __ stx(G1, SP, 0x50);
  1009     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1010 #endif // _LP64
  1012 #endif /*ASSERT*/
  1015 //=============================================================================
  1016 // REQUIRED FUNCTIONALITY for encoding
  1017 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1018 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1021 //=============================================================================
  1022 const bool Matcher::constant_table_absolute_addressing = false;
  1023 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
  1025 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1026   Compile* C = ra_->C;
  1027   Compile::ConstantTable& constant_table = C->constant_table();
  1028   MacroAssembler _masm(&cbuf);
  1030   Register r = as_Register(ra_->get_encode(this));
  1031   CodeSection* cs = __ code()->consts();
  1032   int consts_size = cs->align_at_start(cs->size());
  1034   if (UseRDPCForConstantTableBase) {
  1035     // For the following RDPC logic to work correctly the consts
  1036     // section must be allocated right before the insts section.  This
  1037     // assert checks for that.  The layout and the SECT_* constants
  1038     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1039     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1040     int offset = __ offset();
  1041     int disp;
  1043     // If the displacement from the current PC to the constant table
  1044     // base fits into simm13 we set the constant table base to the
  1045     // current PC.
  1046     if (__ is_simm13(-(consts_size + offset))) {
  1047       constant_table.set_table_base_offset(-(consts_size + offset));
  1048       disp = 0;
  1049     } else {
  1050       // If the offset of the top constant (last entry in the table)
  1051       // fits into simm13 we set the constant table base to the actual
  1052       // table base.
  1053       if (__ is_simm13(constant_table.top_offset())) {
  1054         constant_table.set_table_base_offset(0);
  1055         disp = consts_size + offset;
  1056       } else {
  1057         // Otherwise we set the constant table base in the middle of the
  1058         // constant table.
  1059         int half_consts_size = consts_size / 2;
  1060         assert(half_consts_size * 2 == consts_size, "sanity");
  1061         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
  1062         disp = half_consts_size + offset;
  1066     __ rdpc(r);
  1068     if (disp != 0) {
  1069       assert(r != O7, "need temporary");
  1070       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1073   else {
  1074     // Materialize the constant table base.
  1075     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1076     address baseaddr = cs->start() + -(constant_table.table_base_offset());
  1077     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1078     AddressLiteral base(baseaddr, rspec);
  1079     __ set(base, r);
  1083 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1084   if (UseRDPCForConstantTableBase) {
  1085     // This is really the worst case but generally it's only 1 instruction.
  1086     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1087   } else {
  1088     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1092 #ifndef PRODUCT
  1093 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1094   char reg[128];
  1095   ra_->dump_register(this, reg);
  1096   if (UseRDPCForConstantTableBase) {
  1097     st->print("RDPC   %s\t! constant table base", reg);
  1098   } else {
  1099     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1102 #endif
  1105 //=============================================================================
  1107 #ifndef PRODUCT
  1108 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1109   Compile* C = ra_->C;
  1111   for (int i = 0; i < OptoPrologueNops; i++) {
  1112     st->print_cr("NOP"); st->print("\t");
  1115   if( VerifyThread ) {
  1116     st->print_cr("Verify_Thread"); st->print("\t");
  1119   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1121   // Calls to C2R adapters often do not accept exceptional returns.
  1122   // We require that their callers must bang for them.  But be careful, because
  1123   // some VM calls (such as call site linkage) can use several kilobytes of
  1124   // stack.  But the stack safety zone should account for that.
  1125   // See bugs 4446381, 4468289, 4497237.
  1126   if (C->need_stack_bang(framesize)) {
  1127     st->print_cr("! stack bang"); st->print("\t");
  1130   if (Assembler::is_simm13(-framesize)) {
  1131     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1132   } else {
  1133     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1134     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1135     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1139 #endif
  1141 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1142   Compile* C = ra_->C;
  1143   MacroAssembler _masm(&cbuf);
  1145   for (int i = 0; i < OptoPrologueNops; i++) {
  1146     __ nop();
  1149   __ verify_thread();
  1151   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1152   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1153   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1155   // Calls to C2R adapters often do not accept exceptional returns.
  1156   // We require that their callers must bang for them.  But be careful, because
  1157   // some VM calls (such as call site linkage) can use several kilobytes of
  1158   // stack.  But the stack safety zone should account for that.
  1159   // See bugs 4446381, 4468289, 4497237.
  1160   if (C->need_stack_bang(framesize)) {
  1161     __ generate_stack_overflow_check(framesize);
  1164   if (Assembler::is_simm13(-framesize)) {
  1165     __ save(SP, -framesize, SP);
  1166   } else {
  1167     __ sethi(-framesize & ~0x3ff, G3);
  1168     __ add(G3, -framesize & 0x3ff, G3);
  1169     __ save(SP, G3, SP);
  1171   C->set_frame_complete( __ offset() );
  1174 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1175   return MachNode::size(ra_);
  1178 int MachPrologNode::reloc() const {
  1179   return 10; // a large enough number
  1182 //=============================================================================
  1183 #ifndef PRODUCT
  1184 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1185   Compile* C = ra_->C;
  1187   if( do_polling() && ra_->C->is_method_compilation() ) {
  1188     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1189 #ifdef _LP64
  1190     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1191 #else
  1192     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1193 #endif
  1196   if( do_polling() )
  1197     st->print("RET\n\t");
  1199   st->print("RESTORE");
  1201 #endif
  1203 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1204   MacroAssembler _masm(&cbuf);
  1205   Compile* C = ra_->C;
  1207   __ verify_thread();
  1209   // If this does safepoint polling, then do it here
  1210   if( do_polling() && ra_->C->is_method_compilation() ) {
  1211     AddressLiteral polling_page(os::get_polling_page());
  1212     __ sethi(polling_page, L0);
  1213     __ relocate(relocInfo::poll_return_type);
  1214     __ ld_ptr( L0, 0, G0 );
  1217   // If this is a return, then stuff the restore in the delay slot
  1218   if( do_polling() ) {
  1219     __ ret();
  1220     __ delayed()->restore();
  1221   } else {
  1222     __ restore();
  1226 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1227   return MachNode::size(ra_);
  1230 int MachEpilogNode::reloc() const {
  1231   return 16; // a large enough number
  1234 const Pipeline * MachEpilogNode::pipeline() const {
  1235   return MachNode::pipeline_class();
  1238 int MachEpilogNode::safepoint_offset() const {
  1239   assert( do_polling(), "no return for this epilog node");
  1240   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1243 //=============================================================================
  1245 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1246 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1247 static enum RC rc_class( OptoReg::Name reg ) {
  1248   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1249   if (OptoReg::is_stack(reg)) return rc_stack;
  1250   VMReg r = OptoReg::as_VMReg(reg);
  1251   if (r->is_Register()) return rc_int;
  1252   assert(r->is_FloatRegister(), "must be");
  1253   return rc_float;
  1256 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1257   if( cbuf ) {
  1258     // Better yet would be some mechanism to handle variable-size matches correctly
  1259     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1260       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1261     } else {
  1262       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1265 #ifndef PRODUCT
  1266   else if( !do_size ) {
  1267     if( size != 0 ) st->print("\n\t");
  1268     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1269     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1271 #endif
  1272   return size+4;
  1275 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1276   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1277 #ifndef PRODUCT
  1278   else if( !do_size ) {
  1279     if( size != 0 ) st->print("\n\t");
  1280     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1282 #endif
  1283   return size+4;
  1286 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1287                                         PhaseRegAlloc *ra_,
  1288                                         bool do_size,
  1289                                         outputStream* st ) const {
  1290   // Get registers to move
  1291   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1292   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1293   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1294   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1296   enum RC src_second_rc = rc_class(src_second);
  1297   enum RC src_first_rc = rc_class(src_first);
  1298   enum RC dst_second_rc = rc_class(dst_second);
  1299   enum RC dst_first_rc = rc_class(dst_first);
  1301   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1303   // Generate spill code!
  1304   int size = 0;
  1306   if( src_first == dst_first && src_second == dst_second )
  1307     return size;            // Self copy, no move
  1309   // --------------------------------------
  1310   // Check for mem-mem move.  Load into unused float registers and fall into
  1311   // the float-store case.
  1312   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1313     int offset = ra_->reg2offset(src_first);
  1314     // Further check for aligned-adjacent pair, so we can use a double load
  1315     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1316       src_second    = OptoReg::Name(R_F31_num);
  1317       src_second_rc = rc_float;
  1318       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1319     } else {
  1320       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1322     src_first    = OptoReg::Name(R_F30_num);
  1323     src_first_rc = rc_float;
  1326   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1327     int offset = ra_->reg2offset(src_second);
  1328     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1329     src_second    = OptoReg::Name(R_F31_num);
  1330     src_second_rc = rc_float;
  1333   // --------------------------------------
  1334   // Check for float->int copy; requires a trip through memory
  1335   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1336     int offset = frame::register_save_words*wordSize;
  1337     if (cbuf) {
  1338       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1339       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1340       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1341       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1343 #ifndef PRODUCT
  1344     else if (!do_size) {
  1345       if (size != 0) st->print("\n\t");
  1346       st->print(  "SUB    R_SP,16,R_SP\n");
  1347       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1348       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1349       st->print("\tADD    R_SP,16,R_SP\n");
  1351 #endif
  1352     size += 16;
  1355   // Check for float->int copy on T4
  1356   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1357     // Further check for aligned-adjacent pair, so we can use a double move
  1358     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1359       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1360     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1362   // Check for int->float copy on T4
  1363   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1364     // Further check for aligned-adjacent pair, so we can use a double move
  1365     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1366       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1367     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1370   // --------------------------------------
  1371   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1372   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1373   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1374   // there.  Misaligned sources only come from native-long-returns (handled
  1375   // special below).
  1376 #ifndef _LP64
  1377   if( src_first_rc == rc_int &&     // source is already big-endian
  1378       src_second_rc != rc_bad &&    // 64-bit move
  1379       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1380     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1381     // Do the big-endian flop.
  1382     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1383     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1385 #endif
  1387   // --------------------------------------
  1388   // Check for integer reg-reg copy
  1389   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1390 #ifndef _LP64
  1391     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1392       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1393       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1394       //       operand contains the least significant word of the 64-bit value and vice versa.
  1395       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1396       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1397       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1398       if( cbuf ) {
  1399         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1400         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1401         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1402 #ifndef PRODUCT
  1403       } else if( !do_size ) {
  1404         if( size != 0 ) st->print("\n\t");
  1405         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1406         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1407         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1408 #endif
  1410       return size+12;
  1412     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1413       // returning a long value in I0/I1
  1414       // a SpillCopy must be able to target a return instruction's reg_class
  1415       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1416       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1417       //       operand contains the least significant word of the 64-bit value and vice versa.
  1418       OptoReg::Name tdest = dst_first;
  1420       if (src_first == dst_first) {
  1421         tdest = OptoReg::Name(R_O7_num);
  1422         size += 4;
  1425       if( cbuf ) {
  1426         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1427         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1428         // ShrL_reg_imm6
  1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1430         // ShrR_reg_imm6  src, 0, dst
  1431         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1432         if (tdest != dst_first) {
  1433           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1436 #ifndef PRODUCT
  1437       else if( !do_size ) {
  1438         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1439         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1440         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1441         if (tdest != dst_first) {
  1442           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1445 #endif // PRODUCT
  1446       return size+8;
  1448 #endif // !_LP64
  1449     // Else normal reg-reg copy
  1450     assert( src_second != dst_first, "smashed second before evacuating it" );
  1451     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1452     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1453     // This moves an aligned adjacent pair.
  1454     // See if we are done.
  1455     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1456       return size;
  1459   // Check for integer store
  1460   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1461     int offset = ra_->reg2offset(dst_first);
  1462     // Further check for aligned-adjacent pair, so we can use a double store
  1463     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1464       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1465     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1468   // Check for integer load
  1469   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1470     int offset = ra_->reg2offset(src_first);
  1471     // Further check for aligned-adjacent pair, so we can use a double load
  1472     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1473       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1474     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1477   // Check for float reg-reg copy
  1478   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1479     // Further check for aligned-adjacent pair, so we can use a double move
  1480     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1481       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1482     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1485   // Check for float store
  1486   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1487     int offset = ra_->reg2offset(dst_first);
  1488     // Further check for aligned-adjacent pair, so we can use a double store
  1489     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1490       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1491     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1494   // Check for float load
  1495   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1496     int offset = ra_->reg2offset(src_first);
  1497     // Further check for aligned-adjacent pair, so we can use a double load
  1498     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1499       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1500     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1503   // --------------------------------------------------------------------
  1504   // Check for hi bits still needing moving.  Only happens for misaligned
  1505   // arguments to native calls.
  1506   if( src_second == dst_second )
  1507     return size;               // Self copy; no move
  1508   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1510 #ifndef _LP64
  1511   // In the LP64 build, all registers can be moved as aligned/adjacent
  1512   // pairs, so there's never any need to move the high bits separately.
  1513   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1514   // all sorts of silly alignment problems.
  1516   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1517   // 32-bits of a 64-bit register, but are needed in low bits of another
  1518   // register (else it's a hi-bits-to-hi-bits copy which should have
  1519   // happened already as part of a 64-bit move)
  1520   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1521     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1522     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1523     // Shift src_second down to dst_second's low bits.
  1524     if( cbuf ) {
  1525       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1526 #ifndef PRODUCT
  1527     } else if( !do_size ) {
  1528       if( size != 0 ) st->print("\n\t");
  1529       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1530 #endif
  1532     return size+4;
  1535   // Check for high word integer store.  Must down-shift the hi bits
  1536   // into a temp register, then fall into the case of storing int bits.
  1537   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1538     // Shift src_second down to dst_second's low bits.
  1539     if( cbuf ) {
  1540       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1541 #ifndef PRODUCT
  1542     } else if( !do_size ) {
  1543       if( size != 0 ) st->print("\n\t");
  1544       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1545 #endif
  1547     size+=4;
  1548     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1551   // Check for high word integer load
  1552   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1553     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1555   // Check for high word integer store
  1556   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1557     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1559   // Check for high word float store
  1560   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1561     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1563 #endif // !_LP64
  1565   Unimplemented();
  1568 #ifndef PRODUCT
  1569 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1570   implementation( NULL, ra_, false, st );
  1572 #endif
  1574 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1575   implementation( &cbuf, ra_, false, NULL );
  1578 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1579   return implementation( NULL, ra_, true, NULL );
  1582 //=============================================================================
  1583 #ifndef PRODUCT
  1584 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1585   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1587 #endif
  1589 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1590   MacroAssembler _masm(&cbuf);
  1591   for(int i = 0; i < _count; i += 1) {
  1592     __ nop();
  1596 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1597   return 4 * _count;
  1601 //=============================================================================
  1602 #ifndef PRODUCT
  1603 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1604   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1605   int reg = ra_->get_reg_first(this);
  1606   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1608 #endif
  1610 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1611   MacroAssembler _masm(&cbuf);
  1612   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1613   int reg = ra_->get_encode(this);
  1615   if (Assembler::is_simm13(offset)) {
  1616      __ add(SP, offset, reg_to_register_object(reg));
  1617   } else {
  1618      __ set(offset, O7);
  1619      __ add(SP, O7, reg_to_register_object(reg));
  1623 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1624   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1625   assert(ra_ == ra_->C->regalloc(), "sanity");
  1626   return ra_->C->scratch_emit_size(this);
  1629 //=============================================================================
  1631 // emit call stub, compiled java to interpretor
  1632 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1634   // Stub is fixed up when the corresponding call is converted from calling
  1635   // compiled code to calling interpreted code.
  1636   // set (empty), G5
  1637   // jmp -1
  1639   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1641   MacroAssembler _masm(&cbuf);
  1643   address base =
  1644   __ start_a_stub(Compile::MAX_stubs_size);
  1645   if (base == NULL)  return;  // CodeBuffer::expand failed
  1647   // static stub relocation stores the instruction address of the call
  1648   __ relocate(static_stub_Relocation::spec(mark));
  1650   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1652   __ set_inst_mark();
  1653   AddressLiteral addrlit(-1);
  1654   __ JUMP(addrlit, G3, 0);
  1656   __ delayed()->nop();
  1658   // Update current stubs pointer and restore code_end.
  1659   __ end_a_stub();
  1662 // size of call stub, compiled java to interpretor
  1663 uint size_java_to_interp() {
  1664   // This doesn't need to be accurate but it must be larger or equal to
  1665   // the real size of the stub.
  1666   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1667           NativeJump::instruction_size + // sethi; jmp; nop
  1668           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1670 // relocation entries for call stub, compiled java to interpretor
  1671 uint reloc_java_to_interp() {
  1672   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1676 //=============================================================================
  1677 #ifndef PRODUCT
  1678 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1679   st->print_cr("\nUEP:");
  1680 #ifdef    _LP64
  1681   if (UseCompressedOops) {
  1682     assert(Universe::heap() != NULL, "java heap should be initialized");
  1683     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1684     st->print_cr("\tSLL    R_G5,3,R_G5");
  1685     if (Universe::narrow_oop_base() != NULL)
  1686       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1687   } else {
  1688     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1690   st->print_cr("\tCMP    R_G5,R_G3" );
  1691   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1692 #else  // _LP64
  1693   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1694   st->print_cr("\tCMP    R_G5,R_G3" );
  1695   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1696 #endif // _LP64
  1698 #endif
  1700 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1701   MacroAssembler _masm(&cbuf);
  1702   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1703   Register temp_reg   = G3;
  1704   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1706   // Load klass from receiver
  1707   __ load_klass(O0, temp_reg);
  1708   // Compare against expected klass
  1709   __ cmp(temp_reg, G5_ic_reg);
  1710   // Branch to miss code, checks xcc or icc depending
  1711   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1714 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1715   return MachNode::size(ra_);
  1719 //=============================================================================
  1721 uint size_exception_handler() {
  1722   if (TraceJumps) {
  1723     return (400); // just a guess
  1725   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1728 uint size_deopt_handler() {
  1729   if (TraceJumps) {
  1730     return (400); // just a guess
  1732   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1735 // Emit exception handler code.
  1736 int emit_exception_handler(CodeBuffer& cbuf) {
  1737   Register temp_reg = G3;
  1738   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1739   MacroAssembler _masm(&cbuf);
  1741   address base =
  1742   __ start_a_stub(size_exception_handler());
  1743   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1745   int offset = __ offset();
  1747   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1748   __ delayed()->nop();
  1750   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1752   __ end_a_stub();
  1754   return offset;
  1757 int emit_deopt_handler(CodeBuffer& cbuf) {
  1758   // Can't use any of the current frame's registers as we may have deopted
  1759   // at a poll and everything (including G3) can be live.
  1760   Register temp_reg = L0;
  1761   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1762   MacroAssembler _masm(&cbuf);
  1764   address base =
  1765   __ start_a_stub(size_deopt_handler());
  1766   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1768   int offset = __ offset();
  1769   __ save_frame(0);
  1770   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1771   __ delayed()->restore();
  1773   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1775   __ end_a_stub();
  1776   return offset;
  1780 // Given a register encoding, produce a Integer Register object
  1781 static Register reg_to_register_object(int register_encoding) {
  1782   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1783   return as_Register(register_encoding);
  1786 // Given a register encoding, produce a single-precision Float Register object
  1787 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1788   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1789   return as_SingleFloatRegister(register_encoding);
  1792 // Given a register encoding, produce a double-precision Float Register object
  1793 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1794   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1795   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1796   return as_DoubleFloatRegister(register_encoding);
  1799 const bool Matcher::match_rule_supported(int opcode) {
  1800   if (!has_match_rule(opcode))
  1801     return false;
  1803   switch (opcode) {
  1804   case Op_CountLeadingZerosI:
  1805   case Op_CountLeadingZerosL:
  1806   case Op_CountTrailingZerosI:
  1807   case Op_CountTrailingZerosL:
  1808     if (!UsePopCountInstruction)
  1809       return false;
  1810     break;
  1813   return true;  // Per default match rules are supported.
  1816 int Matcher::regnum_to_fpu_offset(int regnum) {
  1817   return regnum - 32; // The FP registers are in the second chunk
  1820 #ifdef ASSERT
  1821 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1822 #endif
  1824 // Vector width in bytes
  1825 const uint Matcher::vector_width_in_bytes(void) {
  1826   return 8;
  1829 // Vector ideal reg
  1830 const uint Matcher::vector_ideal_reg(void) {
  1831   return Op_RegD;
  1834 // USII supports fxtof through the whole range of number, USIII doesn't
  1835 const bool Matcher::convL2FSupported(void) {
  1836   return VM_Version::has_fast_fxtof();
  1839 // Is this branch offset short enough that a short branch can be used?
  1840 //
  1841 // NOTE: If the platform does not provide any short branch variants, then
  1842 //       this method should return false for offset 0.
  1843 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1844   // The passed offset is relative to address of the branch.
  1845   // Don't need to adjust the offset.
  1846   return UseCBCond && Assembler::is_simm(offset, 12);
  1849 const bool Matcher::isSimpleConstant64(jlong value) {
  1850   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1851   // Depends on optimizations in MacroAssembler::setx.
  1852   int hi = (int)(value >> 32);
  1853   int lo = (int)(value & ~0);
  1854   return (hi == 0) || (hi == -1) || (lo == 0);
  1857 // No scaling for the parameter the ClearArray node.
  1858 const bool Matcher::init_array_count_is_in_bytes = true;
  1860 // Threshold size for cleararray.
  1861 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1863 // No additional cost for CMOVL.
  1864 const int Matcher::long_cmove_cost() { return 0; }
  1866 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1867 const int Matcher::float_cmove_cost() {
  1868   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1871 // Should the Matcher clone shifts on addressing modes, expecting them to
  1872 // be subsumed into complex addressing expressions or compute them into
  1873 // registers?  True for Intel but false for most RISCs
  1874 const bool Matcher::clone_shift_expressions = false;
  1876 // Do we need to mask the count passed to shift instructions or does
  1877 // the cpu only look at the lower 5/6 bits anyway?
  1878 const bool Matcher::need_masked_shift_count = false;
  1880 bool Matcher::narrow_oop_use_complex_address() {
  1881   NOT_LP64(ShouldNotCallThis());
  1882   assert(UseCompressedOops, "only for compressed oops code");
  1883   return false;
  1886 // Is it better to copy float constants, or load them directly from memory?
  1887 // Intel can load a float constant from a direct address, requiring no
  1888 // extra registers.  Most RISCs will have to materialize an address into a
  1889 // register first, so they would do better to copy the constant from stack.
  1890 const bool Matcher::rematerialize_float_constants = false;
  1892 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1893 // needed.  Else we split the double into 2 integer pieces and move it
  1894 // piece-by-piece.  Only happens when passing doubles into C code as the
  1895 // Java calling convention forces doubles to be aligned.
  1896 #ifdef _LP64
  1897 const bool Matcher::misaligned_doubles_ok = true;
  1898 #else
  1899 const bool Matcher::misaligned_doubles_ok = false;
  1900 #endif
  1902 // No-op on SPARC.
  1903 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1906 // Advertise here if the CPU requires explicit rounding operations
  1907 // to implement the UseStrictFP mode.
  1908 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1910 // Are floats conerted to double when stored to stack during deoptimization?
  1911 // Sparc does not handle callee-save floats.
  1912 bool Matcher::float_in_double() { return false; }
  1914 // Do ints take an entire long register or just half?
  1915 // Note that we if-def off of _LP64.
  1916 // The relevant question is how the int is callee-saved.  In _LP64
  1917 // the whole long is written but de-opt'ing will have to extract
  1918 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1919 #ifdef _LP64
  1920 const bool Matcher::int_in_long = true;
  1921 #else
  1922 const bool Matcher::int_in_long = false;
  1923 #endif
  1925 // Return whether or not this register is ever used as an argument.  This
  1926 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1927 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1928 // arguments in those registers not be available to the callee.
  1929 bool Matcher::can_be_java_arg( int reg ) {
  1930   // Standard sparc 6 args in registers
  1931   if( reg == R_I0_num ||
  1932       reg == R_I1_num ||
  1933       reg == R_I2_num ||
  1934       reg == R_I3_num ||
  1935       reg == R_I4_num ||
  1936       reg == R_I5_num ) return true;
  1937 #ifdef _LP64
  1938   // 64-bit builds can pass 64-bit pointers and longs in
  1939   // the high I registers
  1940   if( reg == R_I0H_num ||
  1941       reg == R_I1H_num ||
  1942       reg == R_I2H_num ||
  1943       reg == R_I3H_num ||
  1944       reg == R_I4H_num ||
  1945       reg == R_I5H_num ) return true;
  1947   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1948     return true;
  1951 #else
  1952   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1953   // Longs cannot be passed in O regs, because O regs become I regs
  1954   // after a 'save' and I regs get their high bits chopped off on
  1955   // interrupt.
  1956   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1957   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1958 #endif
  1959   // A few float args in registers
  1960   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1962   return false;
  1965 bool Matcher::is_spillable_arg( int reg ) {
  1966   return can_be_java_arg(reg);
  1969 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1970   // Use hardware SDIVX instruction when it is
  1971   // faster than a code which use multiply.
  1972   return VM_Version::has_fast_idiv();
  1975 // Register for DIVI projection of divmodI
  1976 RegMask Matcher::divI_proj_mask() {
  1977   ShouldNotReachHere();
  1978   return RegMask();
  1981 // Register for MODI projection of divmodI
  1982 RegMask Matcher::modI_proj_mask() {
  1983   ShouldNotReachHere();
  1984   return RegMask();
  1987 // Register for DIVL projection of divmodL
  1988 RegMask Matcher::divL_proj_mask() {
  1989   ShouldNotReachHere();
  1990   return RegMask();
  1993 // Register for MODL projection of divmodL
  1994 RegMask Matcher::modL_proj_mask() {
  1995   ShouldNotReachHere();
  1996   return RegMask();
  1999 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2000   return L7_REGP_mask;
  2003 %}
  2006 // The intptr_t operand types, defined by textual substitution.
  2007 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2008 #ifdef _LP64
  2009 #define immX      immL
  2010 #define immX13    immL13
  2011 #define immX13m7  immL13m7
  2012 #define iRegX     iRegL
  2013 #define g1RegX    g1RegL
  2014 #else
  2015 #define immX      immI
  2016 #define immX13    immI13
  2017 #define immX13m7  immI13m7
  2018 #define iRegX     iRegI
  2019 #define g1RegX    g1RegI
  2020 #endif
  2022 //----------ENCODING BLOCK-----------------------------------------------------
  2023 // This block specifies the encoding classes used by the compiler to output
  2024 // byte streams.  Encoding classes are parameterized macros used by
  2025 // Machine Instruction Nodes in order to generate the bit encoding of the
  2026 // instruction.  Operands specify their base encoding interface with the
  2027 // interface keyword.  There are currently supported four interfaces,
  2028 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2029 // operand to generate a function which returns its register number when
  2030 // queried.   CONST_INTER causes an operand to generate a function which
  2031 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2032 // operand to generate four functions which return the Base Register, the
  2033 // Index Register, the Scale Value, and the Offset Value of the operand when
  2034 // queried.  COND_INTER causes an operand to generate six functions which
  2035 // return the encoding code (ie - encoding bits for the instruction)
  2036 // associated with each basic boolean condition for a conditional instruction.
  2037 //
  2038 // Instructions specify two basic values for encoding.  Again, a function
  2039 // is available to check if the constant displacement is an oop. They use the
  2040 // ins_encode keyword to specify their encoding classes (which must be
  2041 // a sequence of enc_class names, and their parameters, specified in
  2042 // the encoding block), and they use the
  2043 // opcode keyword to specify, in order, their primary, secondary, and
  2044 // tertiary opcode.  Only the opcode sections which a particular instruction
  2045 // needs for encoding need to be specified.
  2046 encode %{
  2047   enc_class enc_untested %{
  2048 #ifdef ASSERT
  2049     MacroAssembler _masm(&cbuf);
  2050     __ untested("encoding");
  2051 #endif
  2052   %}
  2054   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2055     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2056                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2057   %}
  2059   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2060     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2061                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2062   %}
  2064   enc_class form3_mem_prefetch_read( memory mem ) %{
  2065     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2066                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2067   %}
  2069   enc_class form3_mem_prefetch_write( memory mem ) %{
  2070     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2071                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2072   %}
  2074   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2075     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2076     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2077     guarantee($mem$$index == R_G0_enc, "double index?");
  2078     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2079     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2080     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2081     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2082   %}
  2084   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2085     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2086     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2087     guarantee($mem$$index == R_G0_enc, "double index?");
  2088     // Load long with 2 instructions
  2089     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2090     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2091   %}
  2093   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2094   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2095     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2096     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2097   %}
  2099   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2100     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2101     if( $rs2$$reg != $rd$$reg )
  2102       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2103   %}
  2105   // Target lo half of long
  2106   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2107     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2108     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2109       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2110   %}
  2112   // Source lo half of long
  2113   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2114     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2115     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2116       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2117   %}
  2119   // Target hi half of long
  2120   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2121     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2122   %}
  2124   // Source lo half of long, and leave it sign extended.
  2125   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2126     // Sign extend low half
  2127     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2128   %}
  2130   // Source hi half of long, and leave it sign extended.
  2131   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2132     // Shift high half to low half
  2133     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2134   %}
  2136   // Source hi half of long
  2137   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2138     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2139     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2140       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2141   %}
  2143   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2144     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2145   %}
  2147   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2148     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2149     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2150   %}
  2152   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2153     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2154     // clear if nothing else is happening
  2155     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2156     // blt,a,pn done
  2157     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2158     // mov dst,-1 in delay slot
  2159     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2160   %}
  2162   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2163     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2164   %}
  2166   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2167     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2168   %}
  2170   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2171     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2172   %}
  2174   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2175     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2176   %}
  2178   enc_class move_return_pc_to_o1() %{
  2179     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2180   %}
  2182 #ifdef _LP64
  2183   /* %%% merge with enc_to_bool */
  2184   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2185     MacroAssembler _masm(&cbuf);
  2187     Register   src_reg = reg_to_register_object($src$$reg);
  2188     Register   dst_reg = reg_to_register_object($dst$$reg);
  2189     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2190   %}
  2191 #endif
  2193   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2194     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2195     MacroAssembler _masm(&cbuf);
  2197     Register   p_reg = reg_to_register_object($p$$reg);
  2198     Register   q_reg = reg_to_register_object($q$$reg);
  2199     Register   y_reg = reg_to_register_object($y$$reg);
  2200     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2202     __ subcc( p_reg, q_reg,   p_reg );
  2203     __ add  ( p_reg, y_reg, tmp_reg );
  2204     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2205   %}
  2207   enc_class form_d2i_helper(regD src, regF dst) %{
  2208     // fcmp %fcc0,$src,$src
  2209     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2210     // branch %fcc0 not-nan, predict taken
  2211     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2212     // fdtoi $src,$dst
  2213     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2214     // fitos $dst,$dst (if nan)
  2215     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2216     // clear $dst (if nan)
  2217     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2218     // carry on here...
  2219   %}
  2221   enc_class form_d2l_helper(regD src, regD dst) %{
  2222     // fcmp %fcc0,$src,$src  check for NAN
  2223     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2224     // branch %fcc0 not-nan, predict taken
  2225     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2226     // fdtox $src,$dst   convert in delay slot
  2227     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2228     // fxtod $dst,$dst  (if nan)
  2229     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2230     // clear $dst (if nan)
  2231     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2232     // carry on here...
  2233   %}
  2235   enc_class form_f2i_helper(regF src, regF dst) %{
  2236     // fcmps %fcc0,$src,$src
  2237     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2238     // branch %fcc0 not-nan, predict taken
  2239     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2240     // fstoi $src,$dst
  2241     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2242     // fitos $dst,$dst (if nan)
  2243     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2244     // clear $dst (if nan)
  2245     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2246     // carry on here...
  2247   %}
  2249   enc_class form_f2l_helper(regF src, regD dst) %{
  2250     // fcmps %fcc0,$src,$src
  2251     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2252     // branch %fcc0 not-nan, predict taken
  2253     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2254     // fstox $src,$dst
  2255     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2256     // fxtod $dst,$dst (if nan)
  2257     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2258     // clear $dst (if nan)
  2259     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2260     // carry on here...
  2261   %}
  2263   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2264   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2265   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2266   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2268   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2270   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2271   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2273   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2274     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2275   %}
  2277   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2278     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2279   %}
  2281   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2282     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2283   %}
  2285   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2286     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2287   %}
  2289   enc_class form3_convI2F(regF rs2, regF rd) %{
  2290     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2291   %}
  2293   // Encloding class for traceable jumps
  2294   enc_class form_jmpl(g3RegP dest) %{
  2295     emit_jmpl(cbuf, $dest$$reg);
  2296   %}
  2298   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2299     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2300   %}
  2302   enc_class form2_nop() %{
  2303     emit_nop(cbuf);
  2304   %}
  2306   enc_class form2_illtrap() %{
  2307     emit_illtrap(cbuf);
  2308   %}
  2311   // Compare longs and convert into -1, 0, 1.
  2312   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2313     // CMP $src1,$src2
  2314     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2315     // blt,a,pn done
  2316     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2317     // mov dst,-1 in delay slot
  2318     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2319     // bgt,a,pn done
  2320     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2321     // mov dst,1 in delay slot
  2322     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2323     // CLR    $dst
  2324     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2325   %}
  2327   enc_class enc_PartialSubtypeCheck() %{
  2328     MacroAssembler _masm(&cbuf);
  2329     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2330     __ delayed()->nop();
  2331   %}
  2333   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2334     MacroAssembler _masm(&cbuf);
  2335     Label* L = $labl$$label;
  2336     Assembler::Predict predict_taken =
  2337       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2339     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2340     __ delayed()->nop();
  2341   %}
  2343   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2344     MacroAssembler _masm(&cbuf);
  2345     Label* L = $labl$$label;
  2346     Assembler::Predict predict_taken =
  2347       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2349     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2350     __ delayed()->nop();
  2351   %}
  2353   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2354     int op = (Assembler::arith_op << 30) |
  2355              ($dst$$reg << 25) |
  2356              (Assembler::movcc_op3 << 19) |
  2357              (1 << 18) |                    // cc2 bit for 'icc'
  2358              ($cmp$$cmpcode << 14) |
  2359              (0 << 13) |                    // select register move
  2360              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2361              ($src$$reg << 0);
  2362     cbuf.insts()->emit_int32(op);
  2363   %}
  2365   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2366     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2367     int op = (Assembler::arith_op << 30) |
  2368              ($dst$$reg << 25) |
  2369              (Assembler::movcc_op3 << 19) |
  2370              (1 << 18) |                    // cc2 bit for 'icc'
  2371              ($cmp$$cmpcode << 14) |
  2372              (1 << 13) |                    // select immediate move
  2373              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2374              (simm11 << 0);
  2375     cbuf.insts()->emit_int32(op);
  2376   %}
  2378   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2379     int op = (Assembler::arith_op << 30) |
  2380              ($dst$$reg << 25) |
  2381              (Assembler::movcc_op3 << 19) |
  2382              (0 << 18) |                    // cc2 bit for 'fccX'
  2383              ($cmp$$cmpcode << 14) |
  2384              (0 << 13) |                    // select register move
  2385              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2386              ($src$$reg << 0);
  2387     cbuf.insts()->emit_int32(op);
  2388   %}
  2390   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2391     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2392     int op = (Assembler::arith_op << 30) |
  2393              ($dst$$reg << 25) |
  2394              (Assembler::movcc_op3 << 19) |
  2395              (0 << 18) |                    // cc2 bit for 'fccX'
  2396              ($cmp$$cmpcode << 14) |
  2397              (1 << 13) |                    // select immediate move
  2398              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2399              (simm11 << 0);
  2400     cbuf.insts()->emit_int32(op);
  2401   %}
  2403   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2404     int op = (Assembler::arith_op << 30) |
  2405              ($dst$$reg << 25) |
  2406              (Assembler::fpop2_op3 << 19) |
  2407              (0 << 18) |
  2408              ($cmp$$cmpcode << 14) |
  2409              (1 << 13) |                    // select register move
  2410              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2411              ($primary << 5) |              // select single, double or quad
  2412              ($src$$reg << 0);
  2413     cbuf.insts()->emit_int32(op);
  2414   %}
  2416   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2417     int op = (Assembler::arith_op << 30) |
  2418              ($dst$$reg << 25) |
  2419              (Assembler::fpop2_op3 << 19) |
  2420              (0 << 18) |
  2421              ($cmp$$cmpcode << 14) |
  2422              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2423              ($primary << 5) |              // select single, double or quad
  2424              ($src$$reg << 0);
  2425     cbuf.insts()->emit_int32(op);
  2426   %}
  2428   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2429   // the condition comes from opcode-field instead of an argument.
  2430   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2431     int op = (Assembler::arith_op << 30) |
  2432              ($dst$$reg << 25) |
  2433              (Assembler::movcc_op3 << 19) |
  2434              (1 << 18) |                    // cc2 bit for 'icc'
  2435              ($primary << 14) |
  2436              (0 << 13) |                    // select register move
  2437              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2438              ($src$$reg << 0);
  2439     cbuf.insts()->emit_int32(op);
  2440   %}
  2442   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2443     int op = (Assembler::arith_op << 30) |
  2444              ($dst$$reg << 25) |
  2445              (Assembler::movcc_op3 << 19) |
  2446              (6 << 16) |                    // cc2 bit for 'xcc'
  2447              ($primary << 14) |
  2448              (0 << 13) |                    // select register move
  2449              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2450              ($src$$reg << 0);
  2451     cbuf.insts()->emit_int32(op);
  2452   %}
  2454   enc_class Set13( immI13 src, iRegI rd ) %{
  2455     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2456   %}
  2458   enc_class SetHi22( immI src, iRegI rd ) %{
  2459     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2460   %}
  2462   enc_class Set32( immI src, iRegI rd ) %{
  2463     MacroAssembler _masm(&cbuf);
  2464     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2465   %}
  2467   enc_class call_epilog %{
  2468     if( VerifyStackAtCalls ) {
  2469       MacroAssembler _masm(&cbuf);
  2470       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2471       Register temp_reg = G3;
  2472       __ add(SP, framesize, temp_reg);
  2473       __ cmp(temp_reg, FP);
  2474       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2476   %}
  2478   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2479   // to G1 so the register allocator will not have to deal with the misaligned register
  2480   // pair.
  2481   enc_class adjust_long_from_native_call %{
  2482 #ifndef _LP64
  2483     if (returns_long()) {
  2484       //    sllx  O0,32,O0
  2485       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2486       //    srl   O1,0,O1
  2487       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2488       //    or    O0,O1,G1
  2489       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2491 #endif
  2492   %}
  2494   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2495     // CALL directly to the runtime
  2496     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2497     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2498                     /*preserve_g2=*/true);
  2499   %}
  2501   enc_class preserve_SP %{
  2502     MacroAssembler _masm(&cbuf);
  2503     __ mov(SP, L7_mh_SP_save);
  2504   %}
  2506   enc_class restore_SP %{
  2507     MacroAssembler _masm(&cbuf);
  2508     __ mov(L7_mh_SP_save, SP);
  2509   %}
  2511   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2512     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2513     // who we intended to call.
  2514     if ( !_method ) {
  2515       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2516     } else if (_optimized_virtual) {
  2517       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2518     } else {
  2519       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2521     if( _method ) {  // Emit stub for static call
  2522       emit_java_to_interp(cbuf);
  2524   %}
  2526   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2527     MacroAssembler _masm(&cbuf);
  2528     __ set_inst_mark();
  2529     int vtable_index = this->_vtable_index;
  2530     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2531     if (vtable_index < 0) {
  2532       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2533       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2534       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2535       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2536       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2537       // !!!!!
  2538       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2539       // emit_call_dynamic_prologue( cbuf );
  2540       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2542       address  virtual_call_oop_addr = __ inst_mark();
  2543       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2544       // who we intended to call.
  2545       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2546       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2547     } else {
  2548       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2549       // Just go thru the vtable
  2550       // get receiver klass (receiver already checked for non-null)
  2551       // If we end up going thru a c2i adapter interpreter expects method in G5
  2552       int off = __ offset();
  2553       __ load_klass(O0, G3_scratch);
  2554       int klass_load_size;
  2555       if (UseCompressedOops) {
  2556         assert(Universe::heap() != NULL, "java heap should be initialized");
  2557         if (Universe::narrow_oop_base() == NULL)
  2558           klass_load_size = 2*BytesPerInstWord;
  2559         else
  2560           klass_load_size = 3*BytesPerInstWord;
  2561       } else {
  2562         klass_load_size = 1*BytesPerInstWord;
  2564       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2565       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2566       if( __ is_simm13(v_off) ) {
  2567         __ ld_ptr(G3, v_off, G5_method);
  2568       } else {
  2569         // Generate 2 instructions
  2570         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2571         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2572         // ld_ptr, set_hi, set
  2573         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2574                "Unexpected instruction size(s)");
  2575         __ ld_ptr(G3, G5_method, G5_method);
  2577       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2578       // However it may very well end up in handle_wrong_method if the
  2579       // method is abstract for the particular class.
  2580       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2581       // jump to target (either compiled code or c2iadapter)
  2582       __ jmpl(G3_scratch, G0, O7);
  2583       __ delayed()->nop();
  2585   %}
  2587   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2588     MacroAssembler _masm(&cbuf);
  2590     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2591     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2592                               // we might be calling a C2I adapter which needs it.
  2594     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2595     // Load nmethod
  2596     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2598     // CALL to compiled java, indirect the contents of G3
  2599     __ set_inst_mark();
  2600     __ callr(temp_reg, G0);
  2601     __ delayed()->nop();
  2602   %}
  2604 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2605     MacroAssembler _masm(&cbuf);
  2606     Register Rdividend = reg_to_register_object($src1$$reg);
  2607     Register Rdivisor = reg_to_register_object($src2$$reg);
  2608     Register Rresult = reg_to_register_object($dst$$reg);
  2610     __ sra(Rdivisor, 0, Rdivisor);
  2611     __ sra(Rdividend, 0, Rdividend);
  2612     __ sdivx(Rdividend, Rdivisor, Rresult);
  2613 %}
  2615 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2616     MacroAssembler _masm(&cbuf);
  2618     Register Rdividend = reg_to_register_object($src1$$reg);
  2619     int divisor = $imm$$constant;
  2620     Register Rresult = reg_to_register_object($dst$$reg);
  2622     __ sra(Rdividend, 0, Rdividend);
  2623     __ sdivx(Rdividend, divisor, Rresult);
  2624 %}
  2626 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2627     MacroAssembler _masm(&cbuf);
  2628     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2629     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2630     Register Rdst  = reg_to_register_object($dst$$reg);
  2632     __ sra( Rsrc1, 0, Rsrc1 );
  2633     __ sra( Rsrc2, 0, Rsrc2 );
  2634     __ mulx( Rsrc1, Rsrc2, Rdst );
  2635     __ srlx( Rdst, 32, Rdst );
  2636 %}
  2638 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2639     MacroAssembler _masm(&cbuf);
  2640     Register Rdividend = reg_to_register_object($src1$$reg);
  2641     Register Rdivisor = reg_to_register_object($src2$$reg);
  2642     Register Rresult = reg_to_register_object($dst$$reg);
  2643     Register Rscratch = reg_to_register_object($scratch$$reg);
  2645     assert(Rdividend != Rscratch, "");
  2646     assert(Rdivisor  != Rscratch, "");
  2648     __ sra(Rdividend, 0, Rdividend);
  2649     __ sra(Rdivisor, 0, Rdivisor);
  2650     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2651     __ mulx(Rscratch, Rdivisor, Rscratch);
  2652     __ sub(Rdividend, Rscratch, Rresult);
  2653 %}
  2655 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2656     MacroAssembler _masm(&cbuf);
  2658     Register Rdividend = reg_to_register_object($src1$$reg);
  2659     int divisor = $imm$$constant;
  2660     Register Rresult = reg_to_register_object($dst$$reg);
  2661     Register Rscratch = reg_to_register_object($scratch$$reg);
  2663     assert(Rdividend != Rscratch, "");
  2665     __ sra(Rdividend, 0, Rdividend);
  2666     __ sdivx(Rdividend, divisor, Rscratch);
  2667     __ mulx(Rscratch, divisor, Rscratch);
  2668     __ sub(Rdividend, Rscratch, Rresult);
  2669 %}
  2671 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2672     MacroAssembler _masm(&cbuf);
  2674     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2675     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2677     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2678 %}
  2680 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2681     MacroAssembler _masm(&cbuf);
  2683     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2684     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2686     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2687 %}
  2689 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2690     MacroAssembler _masm(&cbuf);
  2692     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2693     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2695     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2696 %}
  2698 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2699     MacroAssembler _masm(&cbuf);
  2701     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2702     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2704     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2705 %}
  2707 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2708     MacroAssembler _masm(&cbuf);
  2710     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2711     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2713     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2714 %}
  2716 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2717     MacroAssembler _masm(&cbuf);
  2719     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2720     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2722     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2723 %}
  2725 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2726     MacroAssembler _masm(&cbuf);
  2728     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2729     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2731     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2732 %}
  2734 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2735     MacroAssembler _masm(&cbuf);
  2737     Register Roop  = reg_to_register_object($oop$$reg);
  2738     Register Rbox  = reg_to_register_object($box$$reg);
  2739     Register Rscratch = reg_to_register_object($scratch$$reg);
  2740     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2742     assert(Roop  != Rscratch, "");
  2743     assert(Roop  != Rmark, "");
  2744     assert(Rbox  != Rscratch, "");
  2745     assert(Rbox  != Rmark, "");
  2747     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2748 %}
  2750 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2751     MacroAssembler _masm(&cbuf);
  2753     Register Roop  = reg_to_register_object($oop$$reg);
  2754     Register Rbox  = reg_to_register_object($box$$reg);
  2755     Register Rscratch = reg_to_register_object($scratch$$reg);
  2756     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2758     assert(Roop  != Rscratch, "");
  2759     assert(Roop  != Rmark, "");
  2760     assert(Rbox  != Rscratch, "");
  2761     assert(Rbox  != Rmark, "");
  2763     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2764   %}
  2766   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2767     MacroAssembler _masm(&cbuf);
  2768     Register Rmem = reg_to_register_object($mem$$reg);
  2769     Register Rold = reg_to_register_object($old$$reg);
  2770     Register Rnew = reg_to_register_object($new$$reg);
  2772     // casx_under_lock picks 1 of 3 encodings:
  2773     // For 32-bit pointers you get a 32-bit CAS
  2774     // For 64-bit pointers you get a 64-bit CASX
  2775     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2776     __ cmp( Rold, Rnew );
  2777   %}
  2779   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2780     Register Rmem = reg_to_register_object($mem$$reg);
  2781     Register Rold = reg_to_register_object($old$$reg);
  2782     Register Rnew = reg_to_register_object($new$$reg);
  2784     MacroAssembler _masm(&cbuf);
  2785     __ mov(Rnew, O7);
  2786     __ casx(Rmem, Rold, O7);
  2787     __ cmp( Rold, O7 );
  2788   %}
  2790   // raw int cas, used for compareAndSwap
  2791   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2792     Register Rmem = reg_to_register_object($mem$$reg);
  2793     Register Rold = reg_to_register_object($old$$reg);
  2794     Register Rnew = reg_to_register_object($new$$reg);
  2796     MacroAssembler _masm(&cbuf);
  2797     __ mov(Rnew, O7);
  2798     __ cas(Rmem, Rold, O7);
  2799     __ cmp( Rold, O7 );
  2800   %}
  2802   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2803     Register Rres = reg_to_register_object($res$$reg);
  2805     MacroAssembler _masm(&cbuf);
  2806     __ mov(1, Rres);
  2807     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2808   %}
  2810   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2811     Register Rres = reg_to_register_object($res$$reg);
  2813     MacroAssembler _masm(&cbuf);
  2814     __ mov(1, Rres);
  2815     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2816   %}
  2818   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2819     MacroAssembler _masm(&cbuf);
  2820     Register Rdst = reg_to_register_object($dst$$reg);
  2821     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2822                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2823     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2824                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2826     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2827     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2828   %}
  2831   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2832     Label Ldone, Lloop;
  2833     MacroAssembler _masm(&cbuf);
  2835     Register   str1_reg = reg_to_register_object($str1$$reg);
  2836     Register   str2_reg = reg_to_register_object($str2$$reg);
  2837     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2838     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2839     Register result_reg = reg_to_register_object($result$$reg);
  2841     assert(result_reg != str1_reg &&
  2842            result_reg != str2_reg &&
  2843            result_reg != cnt1_reg &&
  2844            result_reg != cnt2_reg ,
  2845            "need different registers");
  2847     // Compute the minimum of the string lengths(str1_reg) and the
  2848     // difference of the string lengths (stack)
  2850     // See if the lengths are different, and calculate min in str1_reg.
  2851     // Stash diff in O7 in case we need it for a tie-breaker.
  2852     Label Lskip;
  2853     __ subcc(cnt1_reg, cnt2_reg, O7);
  2854     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2855     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2856     // cnt2 is shorter, so use its count:
  2857     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2858     __ bind(Lskip);
  2860     // reallocate cnt1_reg, cnt2_reg, result_reg
  2861     // Note:  limit_reg holds the string length pre-scaled by 2
  2862     Register limit_reg =   cnt1_reg;
  2863     Register  chr2_reg =   cnt2_reg;
  2864     Register  chr1_reg = result_reg;
  2865     // str{12} are the base pointers
  2867     // Is the minimum length zero?
  2868     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2869     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2870     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2872     // Load first characters
  2873     __ lduh(str1_reg, 0, chr1_reg);
  2874     __ lduh(str2_reg, 0, chr2_reg);
  2876     // Compare first characters
  2877     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2878     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2879     assert(chr1_reg == result_reg, "result must be pre-placed");
  2880     __ delayed()->nop();
  2883       // Check after comparing first character to see if strings are equivalent
  2884       Label LSkip2;
  2885       // Check if the strings start at same location
  2886       __ cmp(str1_reg, str2_reg);
  2887       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2888       __ delayed()->nop();
  2890       // Check if the length difference is zero (in O7)
  2891       __ cmp(G0, O7);
  2892       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2893       __ delayed()->mov(G0, result_reg);  // result is zero
  2895       // Strings might not be equal
  2896       __ bind(LSkip2);
  2899     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2900     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2901     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2903     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2904     __ add(str1_reg, limit_reg, str1_reg);
  2905     __ add(str2_reg, limit_reg, str2_reg);
  2906     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2908     // Compare the rest of the characters
  2909     __ lduh(str1_reg, limit_reg, chr1_reg);
  2910     __ bind(Lloop);
  2911     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2912     __ lduh(str2_reg, limit_reg, chr2_reg);
  2913     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2914     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2915     assert(chr1_reg == result_reg, "result must be pre-placed");
  2916     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2917     // annul LDUH if branch is not taken to prevent access past end of string
  2918     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2919     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2921     // If strings are equal up to min length, return the length difference.
  2922     __ mov(O7, result_reg);
  2924     // Otherwise, return the difference between the first mismatched chars.
  2925     __ bind(Ldone);
  2926   %}
  2928 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2929     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2930     MacroAssembler _masm(&cbuf);
  2932     Register   str1_reg = reg_to_register_object($str1$$reg);
  2933     Register   str2_reg = reg_to_register_object($str2$$reg);
  2934     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2935     Register   tmp1_reg = O7;
  2936     Register result_reg = reg_to_register_object($result$$reg);
  2938     assert(result_reg != str1_reg &&
  2939            result_reg != str2_reg &&
  2940            result_reg !=  cnt_reg &&
  2941            result_reg != tmp1_reg ,
  2942            "need different registers");
  2944     __ cmp(str1_reg, str2_reg); //same char[] ?
  2945     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2946     __ delayed()->add(G0, 1, result_reg);
  2948     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2949     __ delayed()->add(G0, 1, result_reg); // count == 0
  2951     //rename registers
  2952     Register limit_reg =    cnt_reg;
  2953     Register  chr1_reg = result_reg;
  2954     Register  chr2_reg =   tmp1_reg;
  2956     //check for alignment and position the pointers to the ends
  2957     __ or3(str1_reg, str2_reg, chr1_reg);
  2958     __ andcc(chr1_reg, 0x3, chr1_reg);
  2959     // notZero means at least one not 4-byte aligned.
  2960     // We could optimize the case when both arrays are not aligned
  2961     // but it is not frequent case and it requires additional checks.
  2962     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2963     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2965     // Compare char[] arrays aligned to 4 bytes.
  2966     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2967                           chr1_reg, chr2_reg, Ldone);
  2968     __ ba(Ldone);
  2969     __ delayed()->add(G0, 1, result_reg);
  2971     // char by char compare
  2972     __ bind(Lchar);
  2973     __ add(str1_reg, limit_reg, str1_reg);
  2974     __ add(str2_reg, limit_reg, str2_reg);
  2975     __ neg(limit_reg); //negate count
  2977     __ lduh(str1_reg, limit_reg, chr1_reg);
  2978     // Lchar_loop
  2979     __ bind(Lchar_loop);
  2980     __ lduh(str2_reg, limit_reg, chr2_reg);
  2981     __ cmp(chr1_reg, chr2_reg);
  2982     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2983     __ delayed()->mov(G0, result_reg); //not equal
  2984     __ inccc(limit_reg, sizeof(jchar));
  2985     // annul LDUH if branch is not taken to prevent access past end of string
  2986     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2987     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2989     __ add(G0, 1, result_reg);  //equal
  2991     __ bind(Ldone);
  2992   %}
  2994 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  2995     Label Lvector, Ldone, Lloop;
  2996     MacroAssembler _masm(&cbuf);
  2998     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  2999     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3000     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3001     Register   tmp2_reg = O7;
  3002     Register result_reg = reg_to_register_object($result$$reg);
  3004     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3005     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3007     // return true if the same array
  3008     __ cmp(ary1_reg, ary2_reg);
  3009     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3010     __ delayed()->add(G0, 1, result_reg); // equal
  3012     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3013     __ delayed()->mov(G0, result_reg);    // not equal
  3015     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3016     __ delayed()->mov(G0, result_reg);    // not equal
  3018     //load the lengths of arrays
  3019     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3020     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3022     // return false if the two arrays are not equal length
  3023     __ cmp(tmp1_reg, tmp2_reg);
  3024     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3025     __ delayed()->mov(G0, result_reg);     // not equal
  3027     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3028     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3030     // load array addresses
  3031     __ add(ary1_reg, base_offset, ary1_reg);
  3032     __ add(ary2_reg, base_offset, ary2_reg);
  3034     // renaming registers
  3035     Register chr1_reg  =  result_reg; // for characters in ary1
  3036     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3037     Register limit_reg =  tmp1_reg;   // length
  3039     // set byte count
  3040     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3042     // Compare char[] arrays aligned to 4 bytes.
  3043     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3044                           chr1_reg, chr2_reg, Ldone);
  3045     __ add(G0, 1, result_reg); // equals
  3047     __ bind(Ldone);
  3048   %}
  3050   enc_class enc_rethrow() %{
  3051     cbuf.set_insts_mark();
  3052     Register temp_reg = G3;
  3053     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3054     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3055     MacroAssembler _masm(&cbuf);
  3056 #ifdef ASSERT
  3057     __ save_frame(0);
  3058     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3059     __ sethi(last_rethrow_addrlit, L1);
  3060     Address addr(L1, last_rethrow_addrlit.low10());
  3061     __ get_pc(L2);
  3062     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3063     __ st_ptr(L2, addr);
  3064     __ restore();
  3065 #endif
  3066     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3067     __ delayed()->nop();
  3068   %}
  3070   enc_class emit_mem_nop() %{
  3071     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3072     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3073   %}
  3075   enc_class emit_fadd_nop() %{
  3076     // Generates the instruction FMOVS f31,f31
  3077     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3078   %}
  3080   enc_class emit_br_nop() %{
  3081     // Generates the instruction BPN,PN .
  3082     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3083   %}
  3085   enc_class enc_membar_acquire %{
  3086     MacroAssembler _masm(&cbuf);
  3087     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3088   %}
  3090   enc_class enc_membar_release %{
  3091     MacroAssembler _masm(&cbuf);
  3092     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3093   %}
  3095   enc_class enc_membar_volatile %{
  3096     MacroAssembler _masm(&cbuf);
  3097     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3098   %}
  3100   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3101     MacroAssembler _masm(&cbuf);
  3102     Register src_reg = reg_to_register_object($src$$reg);
  3103     Register dst_reg = reg_to_register_object($dst$$reg);
  3104     __ sllx(src_reg, 56, dst_reg);
  3105     __ srlx(dst_reg,  8, O7);
  3106     __ or3 (dst_reg, O7, dst_reg);
  3107     __ srlx(dst_reg, 16, O7);
  3108     __ or3 (dst_reg, O7, dst_reg);
  3109     __ srlx(dst_reg, 32, O7);
  3110     __ or3 (dst_reg, O7, dst_reg);
  3111   %}
  3113   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3114     MacroAssembler _masm(&cbuf);
  3115     Register src_reg = reg_to_register_object($src$$reg);
  3116     Register dst_reg = reg_to_register_object($dst$$reg);
  3117     __ sll(src_reg, 24, dst_reg);
  3118     __ srl(dst_reg,  8, O7);
  3119     __ or3(dst_reg, O7, dst_reg);
  3120     __ srl(dst_reg, 16, O7);
  3121     __ or3(dst_reg, O7, dst_reg);
  3122   %}
  3124   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3125     MacroAssembler _masm(&cbuf);
  3126     Register src_reg = reg_to_register_object($src$$reg);
  3127     Register dst_reg = reg_to_register_object($dst$$reg);
  3128     __ sllx(src_reg, 48, dst_reg);
  3129     __ srlx(dst_reg, 16, O7);
  3130     __ or3 (dst_reg, O7, dst_reg);
  3131     __ srlx(dst_reg, 32, O7);
  3132     __ or3 (dst_reg, O7, dst_reg);
  3133   %}
  3135   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3136     MacroAssembler _masm(&cbuf);
  3137     Register src_reg = reg_to_register_object($src$$reg);
  3138     Register dst_reg = reg_to_register_object($dst$$reg);
  3139     __ sllx(src_reg, 32, dst_reg);
  3140     __ srlx(dst_reg, 32, O7);
  3141     __ or3 (dst_reg, O7, dst_reg);
  3142   %}
  3144 %}
  3146 //----------FRAME--------------------------------------------------------------
  3147 // Definition of frame structure and management information.
  3148 //
  3149 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3150 //                             |   (to get allocators register number
  3151 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3152 //  r   CALLER     |        |
  3153 //  o     |        +--------+      pad to even-align allocators stack-slot
  3154 //  w     V        |  pad0  |        numbers; owned by CALLER
  3155 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3156 //  h     ^        |   in   |  5
  3157 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3158 //  |     |        |        |  3
  3159 //  |     |        +--------+
  3160 //  V     |        | old out|      Empty on Intel, window on Sparc
  3161 //        |    old |preserve|      Must be even aligned.
  3162 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3163 //        |        |   in   |  3   area for Intel ret address
  3164 //     Owned by    |preserve|      Empty on Sparc.
  3165 //       SELF      +--------+
  3166 //        |        |  pad2  |  2   pad to align old SP
  3167 //        |        +--------+  1
  3168 //        |        | locks  |  0
  3169 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3170 //        |        |  pad1  | 11   pad to align new SP
  3171 //        |        +--------+
  3172 //        |        |        | 10
  3173 //        |        | spills |  9   spills
  3174 //        V        |        |  8   (pad0 slot for callee)
  3175 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3176 //        ^        |  out   |  7
  3177 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3178 //     Owned by    +--------+
  3179 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3180 //        |    new |preserve|      Must be even-aligned.
  3181 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3182 //        |        |        |
  3183 //
  3184 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3185 //         known from SELF's arguments and the Java calling convention.
  3186 //         Region 6-7 is determined per call site.
  3187 // Note 2: If the calling convention leaves holes in the incoming argument
  3188 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3189 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3190 //         incoming area, as the Java calling convention is completely under
  3191 //         the control of the AD file.  Doubles can be sorted and packed to
  3192 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3193 //         varargs C calling conventions.
  3194 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3195 //         even aligned with pad0 as needed.
  3196 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3197 //         region 6-11 is even aligned; it may be padded out more so that
  3198 //         the region from SP to FP meets the minimum stack alignment.
  3200 frame %{
  3201   // What direction does stack grow in (assumed to be same for native & Java)
  3202   stack_direction(TOWARDS_LOW);
  3204   // These two registers define part of the calling convention
  3205   // between compiled code and the interpreter.
  3206   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3207   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3209   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3210   cisc_spilling_operand_name(indOffset);
  3212   // Number of stack slots consumed by a Monitor enter
  3213 #ifdef _LP64
  3214   sync_stack_slots(2);
  3215 #else
  3216   sync_stack_slots(1);
  3217 #endif
  3219   // Compiled code's Frame Pointer
  3220   frame_pointer(R_SP);
  3222   // Stack alignment requirement
  3223   stack_alignment(StackAlignmentInBytes);
  3224   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3225   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3227   // Number of stack slots between incoming argument block and the start of
  3228   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3229   // EPILOG must remove this many slots.
  3230   in_preserve_stack_slots(0);
  3232   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3233   // for calls to C.  Supports the var-args backing area for register parms.
  3234   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3235 #ifdef _LP64
  3236   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3237   varargs_C_out_slots_killed(12);
  3238 #else
  3239   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3240   varargs_C_out_slots_killed( 7);
  3241 #endif
  3243   // The after-PROLOG location of the return address.  Location of
  3244   // return address specifies a type (REG or STACK) and a number
  3245   // representing the register number (i.e. - use a register name) or
  3246   // stack slot.
  3247   return_addr(REG R_I7);          // Ret Addr is in register I7
  3249   // Body of function which returns an OptoRegs array locating
  3250   // arguments either in registers or in stack slots for calling
  3251   // java
  3252   calling_convention %{
  3253     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3255   %}
  3257   // Body of function which returns an OptoRegs array locating
  3258   // arguments either in registers or in stack slots for callin
  3259   // C.
  3260   c_calling_convention %{
  3261     // This is obviously always outgoing
  3262     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3263   %}
  3265   // Location of native (C/C++) and interpreter return values.  This is specified to
  3266   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3267   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3268   // to and from the register pairs is done by the appropriate call and epilog
  3269   // opcodes.  This simplifies the register allocator.
  3270   c_return_value %{
  3271     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3272 #ifdef     _LP64
  3273     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3274     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3275     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3276     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3277 #else  // !_LP64
  3278     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3279     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3280     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3281     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3282 #endif
  3283     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3284                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3285   %}
  3287   // Location of compiled Java return values.  Same as C
  3288   return_value %{
  3289     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3290 #ifdef     _LP64
  3291     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3292     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3293     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3294     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3295 #else  // !_LP64
  3296     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3297     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3298     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3299     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3300 #endif
  3301     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3302                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3303   %}
  3305 %}
  3308 //----------ATTRIBUTES---------------------------------------------------------
  3309 //----------Operand Attributes-------------------------------------------------
  3310 op_attrib op_cost(1);          // Required cost attribute
  3312 //----------Instruction Attributes---------------------------------------------
  3313 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3314 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3315 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3316 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3317                                    // non-matching short branch variant of some
  3318                                                             // long branch?
  3320 //----------OPERANDS-----------------------------------------------------------
  3321 // Operand definitions must precede instruction definitions for correct parsing
  3322 // in the ADLC because operands constitute user defined types which are used in
  3323 // instruction definitions.
  3325 //----------Simple Operands----------------------------------------------------
  3326 // Immediate Operands
  3327 // Integer Immediate: 32-bit
  3328 operand immI() %{
  3329   match(ConI);
  3331   op_cost(0);
  3332   // formats are generated automatically for constants and base registers
  3333   format %{ %}
  3334   interface(CONST_INTER);
  3335 %}
  3337 // Integer Immediate: 8-bit
  3338 operand immI8() %{
  3339   predicate(Assembler::is_simm(n->get_int(), 8));
  3340   match(ConI);
  3341   op_cost(0);
  3342   format %{ %}
  3343   interface(CONST_INTER);
  3344 %}
  3346 // Integer Immediate: 13-bit
  3347 operand immI13() %{
  3348   predicate(Assembler::is_simm13(n->get_int()));
  3349   match(ConI);
  3350   op_cost(0);
  3352   format %{ %}
  3353   interface(CONST_INTER);
  3354 %}
  3356 // Integer Immediate: 13-bit minus 7
  3357 operand immI13m7() %{
  3358   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3359   match(ConI);
  3360   op_cost(0);
  3362   format %{ %}
  3363   interface(CONST_INTER);
  3364 %}
  3366 // Integer Immediate: 16-bit
  3367 operand immI16() %{
  3368   predicate(Assembler::is_simm(n->get_int(), 16));
  3369   match(ConI);
  3370   op_cost(0);
  3371   format %{ %}
  3372   interface(CONST_INTER);
  3373 %}
  3375 // Unsigned (positive) Integer Immediate: 13-bit
  3376 operand immU13() %{
  3377   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3378   match(ConI);
  3379   op_cost(0);
  3381   format %{ %}
  3382   interface(CONST_INTER);
  3383 %}
  3385 // Integer Immediate: 6-bit
  3386 operand immU6() %{
  3387   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3388   match(ConI);
  3389   op_cost(0);
  3390   format %{ %}
  3391   interface(CONST_INTER);
  3392 %}
  3394 // Integer Immediate: 11-bit
  3395 operand immI11() %{
  3396   predicate(Assembler::is_simm(n->get_int(),11));
  3397   match(ConI);
  3398   op_cost(0);
  3399   format %{ %}
  3400   interface(CONST_INTER);
  3401 %}
  3403 // Integer Immediate: 5-bit
  3404 operand immI5() %{
  3405   predicate(Assembler::is_simm(n->get_int(), 5));
  3406   match(ConI);
  3407   op_cost(0);
  3408   format %{ %}
  3409   interface(CONST_INTER);
  3410 %}
  3412 // Integer Immediate: 0-bit
  3413 operand immI0() %{
  3414   predicate(n->get_int() == 0);
  3415   match(ConI);
  3416   op_cost(0);
  3418   format %{ %}
  3419   interface(CONST_INTER);
  3420 %}
  3422 // Integer Immediate: the value 10
  3423 operand immI10() %{
  3424   predicate(n->get_int() == 10);
  3425   match(ConI);
  3426   op_cost(0);
  3428   format %{ %}
  3429   interface(CONST_INTER);
  3430 %}
  3432 // Integer Immediate: the values 0-31
  3433 operand immU5() %{
  3434   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3435   match(ConI);
  3436   op_cost(0);
  3438   format %{ %}
  3439   interface(CONST_INTER);
  3440 %}
  3442 // Integer Immediate: the values 1-31
  3443 operand immI_1_31() %{
  3444   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3445   match(ConI);
  3446   op_cost(0);
  3448   format %{ %}
  3449   interface(CONST_INTER);
  3450 %}
  3452 // Integer Immediate: the values 32-63
  3453 operand immI_32_63() %{
  3454   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3455   match(ConI);
  3456   op_cost(0);
  3458   format %{ %}
  3459   interface(CONST_INTER);
  3460 %}
  3462 // Immediates for special shifts (sign extend)
  3464 // Integer Immediate: the value 16
  3465 operand immI_16() %{
  3466   predicate(n->get_int() == 16);
  3467   match(ConI);
  3468   op_cost(0);
  3470   format %{ %}
  3471   interface(CONST_INTER);
  3472 %}
  3474 // Integer Immediate: the value 24
  3475 operand immI_24() %{
  3476   predicate(n->get_int() == 24);
  3477   match(ConI);
  3478   op_cost(0);
  3480   format %{ %}
  3481   interface(CONST_INTER);
  3482 %}
  3484 // Integer Immediate: the value 255
  3485 operand immI_255() %{
  3486   predicate( n->get_int() == 255 );
  3487   match(ConI);
  3488   op_cost(0);
  3490   format %{ %}
  3491   interface(CONST_INTER);
  3492 %}
  3494 // Integer Immediate: the value 65535
  3495 operand immI_65535() %{
  3496   predicate(n->get_int() == 65535);
  3497   match(ConI);
  3498   op_cost(0);
  3500   format %{ %}
  3501   interface(CONST_INTER);
  3502 %}
  3504 // Long Immediate: the value FF
  3505 operand immL_FF() %{
  3506   predicate( n->get_long() == 0xFFL );
  3507   match(ConL);
  3508   op_cost(0);
  3510   format %{ %}
  3511   interface(CONST_INTER);
  3512 %}
  3514 // Long Immediate: the value FFFF
  3515 operand immL_FFFF() %{
  3516   predicate( n->get_long() == 0xFFFFL );
  3517   match(ConL);
  3518   op_cost(0);
  3520   format %{ %}
  3521   interface(CONST_INTER);
  3522 %}
  3524 // Pointer Immediate: 32 or 64-bit
  3525 operand immP() %{
  3526   match(ConP);
  3528   op_cost(5);
  3529   // formats are generated automatically for constants and base registers
  3530   format %{ %}
  3531   interface(CONST_INTER);
  3532 %}
  3534 #ifdef _LP64
  3535 // Pointer Immediate: 64-bit
  3536 operand immP_set() %{
  3537   predicate(!VM_Version::is_niagara_plus());
  3538   match(ConP);
  3540   op_cost(5);
  3541   // formats are generated automatically for constants and base registers
  3542   format %{ %}
  3543   interface(CONST_INTER);
  3544 %}
  3546 // Pointer Immediate: 64-bit
  3547 // From Niagara2 processors on a load should be better than materializing.
  3548 operand immP_load() %{
  3549   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3550   match(ConP);
  3552   op_cost(5);
  3553   // formats are generated automatically for constants and base registers
  3554   format %{ %}
  3555   interface(CONST_INTER);
  3556 %}
  3558 // Pointer Immediate: 64-bit
  3559 operand immP_no_oop_cheap() %{
  3560   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3561   match(ConP);
  3563   op_cost(5);
  3564   // formats are generated automatically for constants and base registers
  3565   format %{ %}
  3566   interface(CONST_INTER);
  3567 %}
  3568 #endif
  3570 operand immP13() %{
  3571   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3572   match(ConP);
  3573   op_cost(0);
  3575   format %{ %}
  3576   interface(CONST_INTER);
  3577 %}
  3579 operand immP0() %{
  3580   predicate(n->get_ptr() == 0);
  3581   match(ConP);
  3582   op_cost(0);
  3584   format %{ %}
  3585   interface(CONST_INTER);
  3586 %}
  3588 operand immP_poll() %{
  3589   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3590   match(ConP);
  3592   // formats are generated automatically for constants and base registers
  3593   format %{ %}
  3594   interface(CONST_INTER);
  3595 %}
  3597 // Pointer Immediate
  3598 operand immN()
  3599 %{
  3600   match(ConN);
  3602   op_cost(10);
  3603   format %{ %}
  3604   interface(CONST_INTER);
  3605 %}
  3607 // NULL Pointer Immediate
  3608 operand immN0()
  3609 %{
  3610   predicate(n->get_narrowcon() == 0);
  3611   match(ConN);
  3613   op_cost(0);
  3614   format %{ %}
  3615   interface(CONST_INTER);
  3616 %}
  3618 operand immL() %{
  3619   match(ConL);
  3620   op_cost(40);
  3621   // formats are generated automatically for constants and base registers
  3622   format %{ %}
  3623   interface(CONST_INTER);
  3624 %}
  3626 operand immL0() %{
  3627   predicate(n->get_long() == 0L);
  3628   match(ConL);
  3629   op_cost(0);
  3630   // formats are generated automatically for constants and base registers
  3631   format %{ %}
  3632   interface(CONST_INTER);
  3633 %}
  3635 // Integer Immediate: 5-bit
  3636 operand immL5() %{
  3637   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm((int)n->get_long(), 5));
  3638   match(ConL);
  3639   op_cost(0);
  3640   format %{ %}
  3641   interface(CONST_INTER);
  3642 %}
  3644 // Long Immediate: 13-bit
  3645 operand immL13() %{
  3646   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3647   match(ConL);
  3648   op_cost(0);
  3650   format %{ %}
  3651   interface(CONST_INTER);
  3652 %}
  3654 // Long Immediate: 13-bit minus 7
  3655 operand immL13m7() %{
  3656   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3657   match(ConL);
  3658   op_cost(0);
  3660   format %{ %}
  3661   interface(CONST_INTER);
  3662 %}
  3664 // Long Immediate: low 32-bit mask
  3665 operand immL_32bits() %{
  3666   predicate(n->get_long() == 0xFFFFFFFFL);
  3667   match(ConL);
  3668   op_cost(0);
  3670   format %{ %}
  3671   interface(CONST_INTER);
  3672 %}
  3674 // Long Immediate: cheap (materialize in <= 3 instructions)
  3675 operand immL_cheap() %{
  3676   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3677   match(ConL);
  3678   op_cost(0);
  3680   format %{ %}
  3681   interface(CONST_INTER);
  3682 %}
  3684 // Long Immediate: expensive (materialize in > 3 instructions)
  3685 operand immL_expensive() %{
  3686   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3687   match(ConL);
  3688   op_cost(0);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 // Double Immediate
  3695 operand immD() %{
  3696   match(ConD);
  3698   op_cost(40);
  3699   format %{ %}
  3700   interface(CONST_INTER);
  3701 %}
  3703 operand immD0() %{
  3704 #ifdef _LP64
  3705   // on 64-bit architectures this comparision is faster
  3706   predicate(jlong_cast(n->getd()) == 0);
  3707 #else
  3708   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3709 #endif
  3710   match(ConD);
  3712   op_cost(0);
  3713   format %{ %}
  3714   interface(CONST_INTER);
  3715 %}
  3717 // Float Immediate
  3718 operand immF() %{
  3719   match(ConF);
  3721   op_cost(20);
  3722   format %{ %}
  3723   interface(CONST_INTER);
  3724 %}
  3726 // Float Immediate: 0
  3727 operand immF0() %{
  3728   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3729   match(ConF);
  3731   op_cost(0);
  3732   format %{ %}
  3733   interface(CONST_INTER);
  3734 %}
  3736 // Integer Register Operands
  3737 // Integer Register
  3738 operand iRegI() %{
  3739   constraint(ALLOC_IN_RC(int_reg));
  3740   match(RegI);
  3742   match(notemp_iRegI);
  3743   match(g1RegI);
  3744   match(o0RegI);
  3745   match(iRegIsafe);
  3747   format %{ %}
  3748   interface(REG_INTER);
  3749 %}
  3751 operand notemp_iRegI() %{
  3752   constraint(ALLOC_IN_RC(notemp_int_reg));
  3753   match(RegI);
  3755   match(o0RegI);
  3757   format %{ %}
  3758   interface(REG_INTER);
  3759 %}
  3761 operand o0RegI() %{
  3762   constraint(ALLOC_IN_RC(o0_regI));
  3763   match(iRegI);
  3765   format %{ %}
  3766   interface(REG_INTER);
  3767 %}
  3769 // Pointer Register
  3770 operand iRegP() %{
  3771   constraint(ALLOC_IN_RC(ptr_reg));
  3772   match(RegP);
  3774   match(lock_ptr_RegP);
  3775   match(g1RegP);
  3776   match(g2RegP);
  3777   match(g3RegP);
  3778   match(g4RegP);
  3779   match(i0RegP);
  3780   match(o0RegP);
  3781   match(o1RegP);
  3782   match(l7RegP);
  3784   format %{ %}
  3785   interface(REG_INTER);
  3786 %}
  3788 operand sp_ptr_RegP() %{
  3789   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3790   match(RegP);
  3791   match(iRegP);
  3793   format %{ %}
  3794   interface(REG_INTER);
  3795 %}
  3797 operand lock_ptr_RegP() %{
  3798   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3799   match(RegP);
  3800   match(i0RegP);
  3801   match(o0RegP);
  3802   match(o1RegP);
  3803   match(l7RegP);
  3805   format %{ %}
  3806   interface(REG_INTER);
  3807 %}
  3809 operand g1RegP() %{
  3810   constraint(ALLOC_IN_RC(g1_regP));
  3811   match(iRegP);
  3813   format %{ %}
  3814   interface(REG_INTER);
  3815 %}
  3817 operand g2RegP() %{
  3818   constraint(ALLOC_IN_RC(g2_regP));
  3819   match(iRegP);
  3821   format %{ %}
  3822   interface(REG_INTER);
  3823 %}
  3825 operand g3RegP() %{
  3826   constraint(ALLOC_IN_RC(g3_regP));
  3827   match(iRegP);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand g1RegI() %{
  3834   constraint(ALLOC_IN_RC(g1_regI));
  3835   match(iRegI);
  3837   format %{ %}
  3838   interface(REG_INTER);
  3839 %}
  3841 operand g3RegI() %{
  3842   constraint(ALLOC_IN_RC(g3_regI));
  3843   match(iRegI);
  3845   format %{ %}
  3846   interface(REG_INTER);
  3847 %}
  3849 operand g4RegI() %{
  3850   constraint(ALLOC_IN_RC(g4_regI));
  3851   match(iRegI);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand g4RegP() %{
  3858   constraint(ALLOC_IN_RC(g4_regP));
  3859   match(iRegP);
  3861   format %{ %}
  3862   interface(REG_INTER);
  3863 %}
  3865 operand i0RegP() %{
  3866   constraint(ALLOC_IN_RC(i0_regP));
  3867   match(iRegP);
  3869   format %{ %}
  3870   interface(REG_INTER);
  3871 %}
  3873 operand o0RegP() %{
  3874   constraint(ALLOC_IN_RC(o0_regP));
  3875   match(iRegP);
  3877   format %{ %}
  3878   interface(REG_INTER);
  3879 %}
  3881 operand o1RegP() %{
  3882   constraint(ALLOC_IN_RC(o1_regP));
  3883   match(iRegP);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 operand o2RegP() %{
  3890   constraint(ALLOC_IN_RC(o2_regP));
  3891   match(iRegP);
  3893   format %{ %}
  3894   interface(REG_INTER);
  3895 %}
  3897 operand o7RegP() %{
  3898   constraint(ALLOC_IN_RC(o7_regP));
  3899   match(iRegP);
  3901   format %{ %}
  3902   interface(REG_INTER);
  3903 %}
  3905 operand l7RegP() %{
  3906   constraint(ALLOC_IN_RC(l7_regP));
  3907   match(iRegP);
  3909   format %{ %}
  3910   interface(REG_INTER);
  3911 %}
  3913 operand o7RegI() %{
  3914   constraint(ALLOC_IN_RC(o7_regI));
  3915   match(iRegI);
  3917   format %{ %}
  3918   interface(REG_INTER);
  3919 %}
  3921 operand iRegN() %{
  3922   constraint(ALLOC_IN_RC(int_reg));
  3923   match(RegN);
  3925   format %{ %}
  3926   interface(REG_INTER);
  3927 %}
  3929 // Long Register
  3930 operand iRegL() %{
  3931   constraint(ALLOC_IN_RC(long_reg));
  3932   match(RegL);
  3934   format %{ %}
  3935   interface(REG_INTER);
  3936 %}
  3938 operand o2RegL() %{
  3939   constraint(ALLOC_IN_RC(o2_regL));
  3940   match(iRegL);
  3942   format %{ %}
  3943   interface(REG_INTER);
  3944 %}
  3946 operand o7RegL() %{
  3947   constraint(ALLOC_IN_RC(o7_regL));
  3948   match(iRegL);
  3950   format %{ %}
  3951   interface(REG_INTER);
  3952 %}
  3954 operand g1RegL() %{
  3955   constraint(ALLOC_IN_RC(g1_regL));
  3956   match(iRegL);
  3958   format %{ %}
  3959   interface(REG_INTER);
  3960 %}
  3962 operand g3RegL() %{
  3963   constraint(ALLOC_IN_RC(g3_regL));
  3964   match(iRegL);
  3966   format %{ %}
  3967   interface(REG_INTER);
  3968 %}
  3970 // Int Register safe
  3971 // This is 64bit safe
  3972 operand iRegIsafe() %{
  3973   constraint(ALLOC_IN_RC(long_reg));
  3975   match(iRegI);
  3977   format %{ %}
  3978   interface(REG_INTER);
  3979 %}
  3981 // Condition Code Flag Register
  3982 operand flagsReg() %{
  3983   constraint(ALLOC_IN_RC(int_flags));
  3984   match(RegFlags);
  3986   format %{ "ccr" %} // both ICC and XCC
  3987   interface(REG_INTER);
  3988 %}
  3990 // Condition Code Register, unsigned comparisons.
  3991 operand flagsRegU() %{
  3992   constraint(ALLOC_IN_RC(int_flags));
  3993   match(RegFlags);
  3995   format %{ "icc_U" %}
  3996   interface(REG_INTER);
  3997 %}
  3999 // Condition Code Register, pointer comparisons.
  4000 operand flagsRegP() %{
  4001   constraint(ALLOC_IN_RC(int_flags));
  4002   match(RegFlags);
  4004 #ifdef _LP64
  4005   format %{ "xcc_P" %}
  4006 #else
  4007   format %{ "icc_P" %}
  4008 #endif
  4009   interface(REG_INTER);
  4010 %}
  4012 // Condition Code Register, long comparisons.
  4013 operand flagsRegL() %{
  4014   constraint(ALLOC_IN_RC(int_flags));
  4015   match(RegFlags);
  4017   format %{ "xcc_L" %}
  4018   interface(REG_INTER);
  4019 %}
  4021 // Condition Code Register, floating comparisons, unordered same as "less".
  4022 operand flagsRegF() %{
  4023   constraint(ALLOC_IN_RC(float_flags));
  4024   match(RegFlags);
  4025   match(flagsRegF0);
  4027   format %{ %}
  4028   interface(REG_INTER);
  4029 %}
  4031 operand flagsRegF0() %{
  4032   constraint(ALLOC_IN_RC(float_flag0));
  4033   match(RegFlags);
  4035   format %{ %}
  4036   interface(REG_INTER);
  4037 %}
  4040 // Condition Code Flag Register used by long compare
  4041 operand flagsReg_long_LTGE() %{
  4042   constraint(ALLOC_IN_RC(int_flags));
  4043   match(RegFlags);
  4044   format %{ "icc_LTGE" %}
  4045   interface(REG_INTER);
  4046 %}
  4047 operand flagsReg_long_EQNE() %{
  4048   constraint(ALLOC_IN_RC(int_flags));
  4049   match(RegFlags);
  4050   format %{ "icc_EQNE" %}
  4051   interface(REG_INTER);
  4052 %}
  4053 operand flagsReg_long_LEGT() %{
  4054   constraint(ALLOC_IN_RC(int_flags));
  4055   match(RegFlags);
  4056   format %{ "icc_LEGT" %}
  4057   interface(REG_INTER);
  4058 %}
  4061 operand regD() %{
  4062   constraint(ALLOC_IN_RC(dflt_reg));
  4063   match(RegD);
  4065   match(regD_low);
  4067   format %{ %}
  4068   interface(REG_INTER);
  4069 %}
  4071 operand regF() %{
  4072   constraint(ALLOC_IN_RC(sflt_reg));
  4073   match(RegF);
  4075   format %{ %}
  4076   interface(REG_INTER);
  4077 %}
  4079 operand regD_low() %{
  4080   constraint(ALLOC_IN_RC(dflt_low_reg));
  4081   match(regD);
  4083   format %{ %}
  4084   interface(REG_INTER);
  4085 %}
  4087 // Special Registers
  4089 // Method Register
  4090 operand inline_cache_regP(iRegP reg) %{
  4091   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4092   match(reg);
  4093   format %{ %}
  4094   interface(REG_INTER);
  4095 %}
  4097 operand interpreter_method_oop_regP(iRegP reg) %{
  4098   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4099   match(reg);
  4100   format %{ %}
  4101   interface(REG_INTER);
  4102 %}
  4105 //----------Complex Operands---------------------------------------------------
  4106 // Indirect Memory Reference
  4107 operand indirect(sp_ptr_RegP reg) %{
  4108   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4109   match(reg);
  4111   op_cost(100);
  4112   format %{ "[$reg]" %}
  4113   interface(MEMORY_INTER) %{
  4114     base($reg);
  4115     index(0x0);
  4116     scale(0x0);
  4117     disp(0x0);
  4118   %}
  4119 %}
  4121 // Indirect with simm13 Offset
  4122 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4123   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4124   match(AddP reg offset);
  4126   op_cost(100);
  4127   format %{ "[$reg + $offset]" %}
  4128   interface(MEMORY_INTER) %{
  4129     base($reg);
  4130     index(0x0);
  4131     scale(0x0);
  4132     disp($offset);
  4133   %}
  4134 %}
  4136 // Indirect with simm13 Offset minus 7
  4137 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4138   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4139   match(AddP reg offset);
  4141   op_cost(100);
  4142   format %{ "[$reg + $offset]" %}
  4143   interface(MEMORY_INTER) %{
  4144     base($reg);
  4145     index(0x0);
  4146     scale(0x0);
  4147     disp($offset);
  4148   %}
  4149 %}
  4151 // Note:  Intel has a swapped version also, like this:
  4152 //operand indOffsetX(iRegI reg, immP offset) %{
  4153 //  constraint(ALLOC_IN_RC(int_reg));
  4154 //  match(AddP offset reg);
  4155 //
  4156 //  op_cost(100);
  4157 //  format %{ "[$reg + $offset]" %}
  4158 //  interface(MEMORY_INTER) %{
  4159 //    base($reg);
  4160 //    index(0x0);
  4161 //    scale(0x0);
  4162 //    disp($offset);
  4163 //  %}
  4164 //%}
  4165 //// However, it doesn't make sense for SPARC, since
  4166 // we have no particularly good way to embed oops in
  4167 // single instructions.
  4169 // Indirect with Register Index
  4170 operand indIndex(iRegP addr, iRegX index) %{
  4171   constraint(ALLOC_IN_RC(ptr_reg));
  4172   match(AddP addr index);
  4174   op_cost(100);
  4175   format %{ "[$addr + $index]" %}
  4176   interface(MEMORY_INTER) %{
  4177     base($addr);
  4178     index($index);
  4179     scale(0x0);
  4180     disp(0x0);
  4181   %}
  4182 %}
  4184 //----------Special Memory Operands--------------------------------------------
  4185 // Stack Slot Operand - This operand is used for loading and storing temporary
  4186 //                      values on the stack where a match requires a value to
  4187 //                      flow through memory.
  4188 operand stackSlotI(sRegI reg) %{
  4189   constraint(ALLOC_IN_RC(stack_slots));
  4190   op_cost(100);
  4191   //match(RegI);
  4192   format %{ "[$reg]" %}
  4193   interface(MEMORY_INTER) %{
  4194     base(0xE);   // R_SP
  4195     index(0x0);
  4196     scale(0x0);
  4197     disp($reg);  // Stack Offset
  4198   %}
  4199 %}
  4201 operand stackSlotP(sRegP reg) %{
  4202   constraint(ALLOC_IN_RC(stack_slots));
  4203   op_cost(100);
  4204   //match(RegP);
  4205   format %{ "[$reg]" %}
  4206   interface(MEMORY_INTER) %{
  4207     base(0xE);   // R_SP
  4208     index(0x0);
  4209     scale(0x0);
  4210     disp($reg);  // Stack Offset
  4211   %}
  4212 %}
  4214 operand stackSlotF(sRegF reg) %{
  4215   constraint(ALLOC_IN_RC(stack_slots));
  4216   op_cost(100);
  4217   //match(RegF);
  4218   format %{ "[$reg]" %}
  4219   interface(MEMORY_INTER) %{
  4220     base(0xE);   // R_SP
  4221     index(0x0);
  4222     scale(0x0);
  4223     disp($reg);  // Stack Offset
  4224   %}
  4225 %}
  4226 operand stackSlotD(sRegD reg) %{
  4227   constraint(ALLOC_IN_RC(stack_slots));
  4228   op_cost(100);
  4229   //match(RegD);
  4230   format %{ "[$reg]" %}
  4231   interface(MEMORY_INTER) %{
  4232     base(0xE);   // R_SP
  4233     index(0x0);
  4234     scale(0x0);
  4235     disp($reg);  // Stack Offset
  4236   %}
  4237 %}
  4238 operand stackSlotL(sRegL reg) %{
  4239   constraint(ALLOC_IN_RC(stack_slots));
  4240   op_cost(100);
  4241   //match(RegL);
  4242   format %{ "[$reg]" %}
  4243   interface(MEMORY_INTER) %{
  4244     base(0xE);   // R_SP
  4245     index(0x0);
  4246     scale(0x0);
  4247     disp($reg);  // Stack Offset
  4248   %}
  4249 %}
  4251 // Operands for expressing Control Flow
  4252 // NOTE:  Label is a predefined operand which should not be redefined in
  4253 //        the AD file.  It is generically handled within the ADLC.
  4255 //----------Conditional Branch Operands----------------------------------------
  4256 // Comparison Op  - This is the operation of the comparison, and is limited to
  4257 //                  the following set of codes:
  4258 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4259 //
  4260 // Other attributes of the comparison, such as unsignedness, are specified
  4261 // by the comparison instruction that sets a condition code flags register.
  4262 // That result is represented by a flags operand whose subtype is appropriate
  4263 // to the unsignedness (etc.) of the comparison.
  4264 //
  4265 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4266 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4267 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4269 operand cmpOp() %{
  4270   match(Bool);
  4272   format %{ "" %}
  4273   interface(COND_INTER) %{
  4274     equal(0x1);
  4275     not_equal(0x9);
  4276     less(0x3);
  4277     greater_equal(0xB);
  4278     less_equal(0x2);
  4279     greater(0xA);
  4280   %}
  4281 %}
  4283 // Comparison Op, unsigned
  4284 operand cmpOpU() %{
  4285   match(Bool);
  4287   format %{ "u" %}
  4288   interface(COND_INTER) %{
  4289     equal(0x1);
  4290     not_equal(0x9);
  4291     less(0x5);
  4292     greater_equal(0xD);
  4293     less_equal(0x4);
  4294     greater(0xC);
  4295   %}
  4296 %}
  4298 // Comparison Op, pointer (same as unsigned)
  4299 operand cmpOpP() %{
  4300   match(Bool);
  4302   format %{ "p" %}
  4303   interface(COND_INTER) %{
  4304     equal(0x1);
  4305     not_equal(0x9);
  4306     less(0x5);
  4307     greater_equal(0xD);
  4308     less_equal(0x4);
  4309     greater(0xC);
  4310   %}
  4311 %}
  4313 // Comparison Op, branch-register encoding
  4314 operand cmpOp_reg() %{
  4315   match(Bool);
  4317   format %{ "" %}
  4318   interface(COND_INTER) %{
  4319     equal        (0x1);
  4320     not_equal    (0x5);
  4321     less         (0x3);
  4322     greater_equal(0x7);
  4323     less_equal   (0x2);
  4324     greater      (0x6);
  4325   %}
  4326 %}
  4328 // Comparison Code, floating, unordered same as less
  4329 operand cmpOpF() %{
  4330   match(Bool);
  4332   format %{ "fl" %}
  4333   interface(COND_INTER) %{
  4334     equal(0x9);
  4335     not_equal(0x1);
  4336     less(0x3);
  4337     greater_equal(0xB);
  4338     less_equal(0xE);
  4339     greater(0x6);
  4340   %}
  4341 %}
  4343 // Used by long compare
  4344 operand cmpOp_commute() %{
  4345   match(Bool);
  4347   format %{ "" %}
  4348   interface(COND_INTER) %{
  4349     equal(0x1);
  4350     not_equal(0x9);
  4351     less(0xA);
  4352     greater_equal(0x2);
  4353     less_equal(0xB);
  4354     greater(0x3);
  4355   %}
  4356 %}
  4358 //----------OPERAND CLASSES----------------------------------------------------
  4359 // Operand Classes are groups of operands that are used to simplify
  4360 // instruction definitions by not requiring the AD writer to specify separate
  4361 // instructions for every form of operand when the instruction accepts
  4362 // multiple operand types with the same basic encoding and format.  The classic
  4363 // case of this is memory operands.
  4364 opclass memory( indirect, indOffset13, indIndex );
  4365 opclass indIndexMemory( indIndex );
  4367 //----------PIPELINE-----------------------------------------------------------
  4368 pipeline %{
  4370 //----------ATTRIBUTES---------------------------------------------------------
  4371 attributes %{
  4372   fixed_size_instructions;           // Fixed size instructions
  4373   branch_has_delay_slot;             // Branch has delay slot following
  4374   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4375   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4376   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4377   instruction_fetch_units = 1;       // of 16 bytes
  4379   // List of nop instructions
  4380   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4381 %}
  4383 //----------RESOURCES----------------------------------------------------------
  4384 // Resources are the functional units available to the machine
  4385 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4387 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4388 // Pipeline Description specifies the stages in the machine's pipeline
  4390 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4392 //----------PIPELINE CLASSES---------------------------------------------------
  4393 // Pipeline Classes describe the stages in which input and output are
  4394 // referenced by the hardware pipeline.
  4396 // Integer ALU reg-reg operation
  4397 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4398     single_instruction;
  4399     dst   : E(write);
  4400     src1  : R(read);
  4401     src2  : R(read);
  4402     IALU  : R;
  4403 %}
  4405 // Integer ALU reg-reg long operation
  4406 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4407     instruction_count(2);
  4408     dst   : E(write);
  4409     src1  : R(read);
  4410     src2  : R(read);
  4411     IALU  : R;
  4412     IALU  : R;
  4413 %}
  4415 // Integer ALU reg-reg long dependent operation
  4416 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4417     instruction_count(1); multiple_bundles;
  4418     dst   : E(write);
  4419     src1  : R(read);
  4420     src2  : R(read);
  4421     cr    : E(write);
  4422     IALU  : R(2);
  4423 %}
  4425 // Integer ALU reg-imm operaion
  4426 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4427     single_instruction;
  4428     dst   : E(write);
  4429     src1  : R(read);
  4430     IALU  : R;
  4431 %}
  4433 // Integer ALU reg-reg operation with condition code
  4434 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4435     single_instruction;
  4436     dst   : E(write);
  4437     cr    : E(write);
  4438     src1  : R(read);
  4439     src2  : R(read);
  4440     IALU  : R;
  4441 %}
  4443 // Integer ALU reg-imm operation with condition code
  4444 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4445     single_instruction;
  4446     dst   : E(write);
  4447     cr    : E(write);
  4448     src1  : R(read);
  4449     IALU  : R;
  4450 %}
  4452 // Integer ALU zero-reg operation
  4453 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4454     single_instruction;
  4455     dst   : E(write);
  4456     src2  : R(read);
  4457     IALU  : R;
  4458 %}
  4460 // Integer ALU zero-reg operation with condition code only
  4461 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4462     single_instruction;
  4463     cr    : E(write);
  4464     src   : R(read);
  4465     IALU  : R;
  4466 %}
  4468 // Integer ALU reg-reg operation with condition code only
  4469 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4470     single_instruction;
  4471     cr    : E(write);
  4472     src1  : R(read);
  4473     src2  : R(read);
  4474     IALU  : R;
  4475 %}
  4477 // Integer ALU reg-imm operation with condition code only
  4478 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4479     single_instruction;
  4480     cr    : E(write);
  4481     src1  : R(read);
  4482     IALU  : R;
  4483 %}
  4485 // Integer ALU reg-reg-zero operation with condition code only
  4486 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4487     single_instruction;
  4488     cr    : E(write);
  4489     src1  : R(read);
  4490     src2  : R(read);
  4491     IALU  : R;
  4492 %}
  4494 // Integer ALU reg-imm-zero operation with condition code only
  4495 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4496     single_instruction;
  4497     cr    : E(write);
  4498     src1  : R(read);
  4499     IALU  : R;
  4500 %}
  4502 // Integer ALU reg-reg operation with condition code, src1 modified
  4503 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4504     single_instruction;
  4505     cr    : E(write);
  4506     src1  : E(write);
  4507     src1  : R(read);
  4508     src2  : R(read);
  4509     IALU  : R;
  4510 %}
  4512 // Integer ALU reg-imm operation with condition code, src1 modified
  4513 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4514     single_instruction;
  4515     cr    : E(write);
  4516     src1  : E(write);
  4517     src1  : R(read);
  4518     IALU  : R;
  4519 %}
  4521 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4522     multiple_bundles;
  4523     dst   : E(write)+4;
  4524     cr    : E(write);
  4525     src1  : R(read);
  4526     src2  : R(read);
  4527     IALU  : R(3);
  4528     BR    : R(2);
  4529 %}
  4531 // Integer ALU operation
  4532 pipe_class ialu_none(iRegI dst) %{
  4533     single_instruction;
  4534     dst   : E(write);
  4535     IALU  : R;
  4536 %}
  4538 // Integer ALU reg operation
  4539 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4540     single_instruction; may_have_no_code;
  4541     dst   : E(write);
  4542     src   : R(read);
  4543     IALU  : R;
  4544 %}
  4546 // Integer ALU reg conditional operation
  4547 // This instruction has a 1 cycle stall, and cannot execute
  4548 // in the same cycle as the instruction setting the condition
  4549 // code. We kludge this by pretending to read the condition code
  4550 // 1 cycle earlier, and by marking the functional units as busy
  4551 // for 2 cycles with the result available 1 cycle later than
  4552 // is really the case.
  4553 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4554     single_instruction;
  4555     op2_out : C(write);
  4556     op1     : R(read);
  4557     cr      : R(read);       // This is really E, with a 1 cycle stall
  4558     BR      : R(2);
  4559     MS      : R(2);
  4560 %}
  4562 #ifdef _LP64
  4563 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4564     instruction_count(1); multiple_bundles;
  4565     dst     : C(write)+1;
  4566     src     : R(read)+1;
  4567     IALU    : R(1);
  4568     BR      : E(2);
  4569     MS      : E(2);
  4570 %}
  4571 #endif
  4573 // Integer ALU reg operation
  4574 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4575     single_instruction; may_have_no_code;
  4576     dst   : E(write);
  4577     src   : R(read);
  4578     IALU  : R;
  4579 %}
  4580 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4581     single_instruction; may_have_no_code;
  4582     dst   : E(write);
  4583     src   : R(read);
  4584     IALU  : R;
  4585 %}
  4587 // Two integer ALU reg operations
  4588 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4589     instruction_count(2);
  4590     dst   : E(write);
  4591     src   : R(read);
  4592     A0    : R;
  4593     A1    : R;
  4594 %}
  4596 // Two integer ALU reg operations
  4597 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4598     instruction_count(2); may_have_no_code;
  4599     dst   : E(write);
  4600     src   : R(read);
  4601     A0    : R;
  4602     A1    : R;
  4603 %}
  4605 // Integer ALU imm operation
  4606 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4607     single_instruction;
  4608     dst   : E(write);
  4609     IALU  : R;
  4610 %}
  4612 // Integer ALU reg-reg with carry operation
  4613 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4614     single_instruction;
  4615     dst   : E(write);
  4616     src1  : R(read);
  4617     src2  : R(read);
  4618     IALU  : R;
  4619 %}
  4621 // Integer ALU cc operation
  4622 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4623     single_instruction;
  4624     dst   : E(write);
  4625     cc    : R(read);
  4626     IALU  : R;
  4627 %}
  4629 // Integer ALU cc / second IALU operation
  4630 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4631     instruction_count(1); multiple_bundles;
  4632     dst   : E(write)+1;
  4633     src   : R(read);
  4634     IALU  : R;
  4635 %}
  4637 // Integer ALU cc / second IALU operation
  4638 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4639     instruction_count(1); multiple_bundles;
  4640     dst   : E(write)+1;
  4641     p     : R(read);
  4642     q     : R(read);
  4643     IALU  : R;
  4644 %}
  4646 // Integer ALU hi-lo-reg operation
  4647 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4648     instruction_count(1); multiple_bundles;
  4649     dst   : E(write)+1;
  4650     IALU  : R(2);
  4651 %}
  4653 // Float ALU hi-lo-reg operation (with temp)
  4654 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4655     instruction_count(1); multiple_bundles;
  4656     dst   : E(write)+1;
  4657     IALU  : R(2);
  4658 %}
  4660 // Long Constant
  4661 pipe_class loadConL( iRegL dst, immL src ) %{
  4662     instruction_count(2); multiple_bundles;
  4663     dst   : E(write)+1;
  4664     IALU  : R(2);
  4665     IALU  : R(2);
  4666 %}
  4668 // Pointer Constant
  4669 pipe_class loadConP( iRegP dst, immP src ) %{
  4670     instruction_count(0); multiple_bundles;
  4671     fixed_latency(6);
  4672 %}
  4674 // Polling Address
  4675 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4676 #ifdef _LP64
  4677     instruction_count(0); multiple_bundles;
  4678     fixed_latency(6);
  4679 #else
  4680     dst   : E(write);
  4681     IALU  : R;
  4682 #endif
  4683 %}
  4685 // Long Constant small
  4686 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4687     instruction_count(2);
  4688     dst   : E(write);
  4689     IALU  : R;
  4690     IALU  : R;
  4691 %}
  4693 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4694 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4695     instruction_count(1); multiple_bundles;
  4696     src   : R(read);
  4697     dst   : M(write)+1;
  4698     IALU  : R;
  4699     MS    : E;
  4700 %}
  4702 // Integer ALU nop operation
  4703 pipe_class ialu_nop() %{
  4704     single_instruction;
  4705     IALU  : R;
  4706 %}
  4708 // Integer ALU nop operation
  4709 pipe_class ialu_nop_A0() %{
  4710     single_instruction;
  4711     A0    : R;
  4712 %}
  4714 // Integer ALU nop operation
  4715 pipe_class ialu_nop_A1() %{
  4716     single_instruction;
  4717     A1    : R;
  4718 %}
  4720 // Integer Multiply reg-reg operation
  4721 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4722     single_instruction;
  4723     dst   : E(write);
  4724     src1  : R(read);
  4725     src2  : R(read);
  4726     MS    : R(5);
  4727 %}
  4729 // Integer Multiply reg-imm operation
  4730 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4731     single_instruction;
  4732     dst   : E(write);
  4733     src1  : R(read);
  4734     MS    : R(5);
  4735 %}
  4737 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4738     single_instruction;
  4739     dst   : E(write)+4;
  4740     src1  : R(read);
  4741     src2  : R(read);
  4742     MS    : R(6);
  4743 %}
  4745 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4746     single_instruction;
  4747     dst   : E(write)+4;
  4748     src1  : R(read);
  4749     MS    : R(6);
  4750 %}
  4752 // Integer Divide reg-reg
  4753 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4754     instruction_count(1); multiple_bundles;
  4755     dst   : E(write);
  4756     temp  : E(write);
  4757     src1  : R(read);
  4758     src2  : R(read);
  4759     temp  : R(read);
  4760     MS    : R(38);
  4761 %}
  4763 // Integer Divide reg-imm
  4764 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4765     instruction_count(1); multiple_bundles;
  4766     dst   : E(write);
  4767     temp  : E(write);
  4768     src1  : R(read);
  4769     temp  : R(read);
  4770     MS    : R(38);
  4771 %}
  4773 // Long Divide
  4774 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4775     dst  : E(write)+71;
  4776     src1 : R(read);
  4777     src2 : R(read)+1;
  4778     MS   : R(70);
  4779 %}
  4781 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4782     dst  : E(write)+71;
  4783     src1 : R(read);
  4784     MS   : R(70);
  4785 %}
  4787 // Floating Point Add Float
  4788 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4789     single_instruction;
  4790     dst   : X(write);
  4791     src1  : E(read);
  4792     src2  : E(read);
  4793     FA    : R;
  4794 %}
  4796 // Floating Point Add Double
  4797 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4798     single_instruction;
  4799     dst   : X(write);
  4800     src1  : E(read);
  4801     src2  : E(read);
  4802     FA    : R;
  4803 %}
  4805 // Floating Point Conditional Move based on integer flags
  4806 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4807     single_instruction;
  4808     dst   : X(write);
  4809     src   : E(read);
  4810     cr    : R(read);
  4811     FA    : R(2);
  4812     BR    : R(2);
  4813 %}
  4815 // Floating Point Conditional Move based on integer flags
  4816 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4817     single_instruction;
  4818     dst   : X(write);
  4819     src   : E(read);
  4820     cr    : R(read);
  4821     FA    : R(2);
  4822     BR    : R(2);
  4823 %}
  4825 // Floating Point Multiply Float
  4826 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4827     single_instruction;
  4828     dst   : X(write);
  4829     src1  : E(read);
  4830     src2  : E(read);
  4831     FM    : R;
  4832 %}
  4834 // Floating Point Multiply Double
  4835 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4836     single_instruction;
  4837     dst   : X(write);
  4838     src1  : E(read);
  4839     src2  : E(read);
  4840     FM    : R;
  4841 %}
  4843 // Floating Point Divide Float
  4844 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4845     single_instruction;
  4846     dst   : X(write);
  4847     src1  : E(read);
  4848     src2  : E(read);
  4849     FM    : R;
  4850     FDIV  : C(14);
  4851 %}
  4853 // Floating Point Divide Double
  4854 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4855     single_instruction;
  4856     dst   : X(write);
  4857     src1  : E(read);
  4858     src2  : E(read);
  4859     FM    : R;
  4860     FDIV  : C(17);
  4861 %}
  4863 // Floating Point Move/Negate/Abs Float
  4864 pipe_class faddF_reg(regF dst, regF src) %{
  4865     single_instruction;
  4866     dst   : W(write);
  4867     src   : E(read);
  4868     FA    : R(1);
  4869 %}
  4871 // Floating Point Move/Negate/Abs Double
  4872 pipe_class faddD_reg(regD dst, regD src) %{
  4873     single_instruction;
  4874     dst   : W(write);
  4875     src   : E(read);
  4876     FA    : R;
  4877 %}
  4879 // Floating Point Convert F->D
  4880 pipe_class fcvtF2D(regD dst, regF src) %{
  4881     single_instruction;
  4882     dst   : X(write);
  4883     src   : E(read);
  4884     FA    : R;
  4885 %}
  4887 // Floating Point Convert I->D
  4888 pipe_class fcvtI2D(regD dst, regF src) %{
  4889     single_instruction;
  4890     dst   : X(write);
  4891     src   : E(read);
  4892     FA    : R;
  4893 %}
  4895 // Floating Point Convert LHi->D
  4896 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4897     single_instruction;
  4898     dst   : X(write);
  4899     src   : E(read);
  4900     FA    : R;
  4901 %}
  4903 // Floating Point Convert L->D
  4904 pipe_class fcvtL2D(regD dst, regF src) %{
  4905     single_instruction;
  4906     dst   : X(write);
  4907     src   : E(read);
  4908     FA    : R;
  4909 %}
  4911 // Floating Point Convert L->F
  4912 pipe_class fcvtL2F(regD dst, regF src) %{
  4913     single_instruction;
  4914     dst   : X(write);
  4915     src   : E(read);
  4916     FA    : R;
  4917 %}
  4919 // Floating Point Convert D->F
  4920 pipe_class fcvtD2F(regD dst, regF src) %{
  4921     single_instruction;
  4922     dst   : X(write);
  4923     src   : E(read);
  4924     FA    : R;
  4925 %}
  4927 // Floating Point Convert I->L
  4928 pipe_class fcvtI2L(regD dst, regF src) %{
  4929     single_instruction;
  4930     dst   : X(write);
  4931     src   : E(read);
  4932     FA    : R;
  4933 %}
  4935 // Floating Point Convert D->F
  4936 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4937     instruction_count(1); multiple_bundles;
  4938     dst   : X(write)+6;
  4939     src   : E(read);
  4940     FA    : R;
  4941 %}
  4943 // Floating Point Convert D->L
  4944 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4945     instruction_count(1); multiple_bundles;
  4946     dst   : X(write)+6;
  4947     src   : E(read);
  4948     FA    : R;
  4949 %}
  4951 // Floating Point Convert F->I
  4952 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4953     instruction_count(1); multiple_bundles;
  4954     dst   : X(write)+6;
  4955     src   : E(read);
  4956     FA    : R;
  4957 %}
  4959 // Floating Point Convert F->L
  4960 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4961     instruction_count(1); multiple_bundles;
  4962     dst   : X(write)+6;
  4963     src   : E(read);
  4964     FA    : R;
  4965 %}
  4967 // Floating Point Convert I->F
  4968 pipe_class fcvtI2F(regF dst, regF src) %{
  4969     single_instruction;
  4970     dst   : X(write);
  4971     src   : E(read);
  4972     FA    : R;
  4973 %}
  4975 // Floating Point Compare
  4976 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4977     single_instruction;
  4978     cr    : X(write);
  4979     src1  : E(read);
  4980     src2  : E(read);
  4981     FA    : R;
  4982 %}
  4984 // Floating Point Compare
  4985 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4986     single_instruction;
  4987     cr    : X(write);
  4988     src1  : E(read);
  4989     src2  : E(read);
  4990     FA    : R;
  4991 %}
  4993 // Floating Add Nop
  4994 pipe_class fadd_nop() %{
  4995     single_instruction;
  4996     FA  : R;
  4997 %}
  4999 // Integer Store to Memory
  5000 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5001     single_instruction;
  5002     mem   : R(read);
  5003     src   : C(read);
  5004     MS    : R;
  5005 %}
  5007 // Integer Store to Memory
  5008 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5009     single_instruction;
  5010     mem   : R(read);
  5011     src   : C(read);
  5012     MS    : R;
  5013 %}
  5015 // Integer Store Zero to Memory
  5016 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5017     single_instruction;
  5018     mem   : R(read);
  5019     MS    : R;
  5020 %}
  5022 // Special Stack Slot Store
  5023 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5024     single_instruction;
  5025     stkSlot : R(read);
  5026     src     : C(read);
  5027     MS      : R;
  5028 %}
  5030 // Special Stack Slot Store
  5031 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5032     instruction_count(2); multiple_bundles;
  5033     stkSlot : R(read);
  5034     src     : C(read);
  5035     MS      : R(2);
  5036 %}
  5038 // Float Store
  5039 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5040     single_instruction;
  5041     mem : R(read);
  5042     src : C(read);
  5043     MS  : R;
  5044 %}
  5046 // Float Store
  5047 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5048     single_instruction;
  5049     mem : R(read);
  5050     MS  : R;
  5051 %}
  5053 // Double Store
  5054 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5055     instruction_count(1);
  5056     mem : R(read);
  5057     src : C(read);
  5058     MS  : R;
  5059 %}
  5061 // Double Store
  5062 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5063     single_instruction;
  5064     mem : R(read);
  5065     MS  : R;
  5066 %}
  5068 // Special Stack Slot Float Store
  5069 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5070     single_instruction;
  5071     stkSlot : R(read);
  5072     src     : C(read);
  5073     MS      : R;
  5074 %}
  5076 // Special Stack Slot Double Store
  5077 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5078     single_instruction;
  5079     stkSlot : R(read);
  5080     src     : C(read);
  5081     MS      : R;
  5082 %}
  5084 // Integer Load (when sign bit propagation not needed)
  5085 pipe_class iload_mem(iRegI dst, memory mem) %{
  5086     single_instruction;
  5087     mem : R(read);
  5088     dst : C(write);
  5089     MS  : R;
  5090 %}
  5092 // Integer Load from stack operand
  5093 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5094     single_instruction;
  5095     mem : R(read);
  5096     dst : C(write);
  5097     MS  : R;
  5098 %}
  5100 // Integer Load (when sign bit propagation or masking is needed)
  5101 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5102     single_instruction;
  5103     mem : R(read);
  5104     dst : M(write);
  5105     MS  : R;
  5106 %}
  5108 // Float Load
  5109 pipe_class floadF_mem(regF dst, memory mem) %{
  5110     single_instruction;
  5111     mem : R(read);
  5112     dst : M(write);
  5113     MS  : R;
  5114 %}
  5116 // Float Load
  5117 pipe_class floadD_mem(regD dst, memory mem) %{
  5118     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5119     mem : R(read);
  5120     dst : M(write);
  5121     MS  : R;
  5122 %}
  5124 // Float Load
  5125 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5126     single_instruction;
  5127     stkSlot : R(read);
  5128     dst : M(write);
  5129     MS  : R;
  5130 %}
  5132 // Float Load
  5133 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5134     single_instruction;
  5135     stkSlot : R(read);
  5136     dst : M(write);
  5137     MS  : R;
  5138 %}
  5140 // Memory Nop
  5141 pipe_class mem_nop() %{
  5142     single_instruction;
  5143     MS  : R;
  5144 %}
  5146 pipe_class sethi(iRegP dst, immI src) %{
  5147     single_instruction;
  5148     dst  : E(write);
  5149     IALU : R;
  5150 %}
  5152 pipe_class loadPollP(iRegP poll) %{
  5153     single_instruction;
  5154     poll : R(read);
  5155     MS   : R;
  5156 %}
  5158 pipe_class br(Universe br, label labl) %{
  5159     single_instruction_with_delay_slot;
  5160     BR  : R;
  5161 %}
  5163 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5164     single_instruction_with_delay_slot;
  5165     cr    : E(read);
  5166     BR    : R;
  5167 %}
  5169 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5170     single_instruction_with_delay_slot;
  5171     op1 : E(read);
  5172     BR  : R;
  5173     MS  : R;
  5174 %}
  5176 // Compare and branch
  5177 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5178     instruction_count(2); has_delay_slot;
  5179     cr    : E(write);
  5180     src1  : R(read);
  5181     src2  : R(read);
  5182     IALU  : R;
  5183     BR    : R;
  5184 %}
  5186 // Compare and branch
  5187 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5188     instruction_count(2); has_delay_slot;
  5189     cr    : E(write);
  5190     src1  : R(read);
  5191     IALU  : R;
  5192     BR    : R;
  5193 %}
  5195 // Compare and branch using cbcond
  5196 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5197     single_instruction;
  5198     src1  : E(read);
  5199     src2  : E(read);
  5200     IALU  : R;
  5201     BR    : R;
  5202 %}
  5204 // Compare and branch using cbcond
  5205 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5206     single_instruction;
  5207     src1  : E(read);
  5208     IALU  : R;
  5209     BR    : R;
  5210 %}
  5212 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5213     single_instruction_with_delay_slot;
  5214     cr    : E(read);
  5215     BR    : R;
  5216 %}
  5218 pipe_class br_nop() %{
  5219     single_instruction;
  5220     BR  : R;
  5221 %}
  5223 pipe_class simple_call(method meth) %{
  5224     instruction_count(2); multiple_bundles; force_serialization;
  5225     fixed_latency(100);
  5226     BR  : R(1);
  5227     MS  : R(1);
  5228     A0  : R(1);
  5229 %}
  5231 pipe_class compiled_call(method meth) %{
  5232     instruction_count(1); multiple_bundles; force_serialization;
  5233     fixed_latency(100);
  5234     MS  : R(1);
  5235 %}
  5237 pipe_class call(method meth) %{
  5238     instruction_count(0); multiple_bundles; force_serialization;
  5239     fixed_latency(100);
  5240 %}
  5242 pipe_class tail_call(Universe ignore, label labl) %{
  5243     single_instruction; has_delay_slot;
  5244     fixed_latency(100);
  5245     BR  : R(1);
  5246     MS  : R(1);
  5247 %}
  5249 pipe_class ret(Universe ignore) %{
  5250     single_instruction; has_delay_slot;
  5251     BR  : R(1);
  5252     MS  : R(1);
  5253 %}
  5255 pipe_class ret_poll(g3RegP poll) %{
  5256     instruction_count(3); has_delay_slot;
  5257     poll : E(read);
  5258     MS   : R;
  5259 %}
  5261 // The real do-nothing guy
  5262 pipe_class empty( ) %{
  5263     instruction_count(0);
  5264 %}
  5266 pipe_class long_memory_op() %{
  5267     instruction_count(0); multiple_bundles; force_serialization;
  5268     fixed_latency(25);
  5269     MS  : R(1);
  5270 %}
  5272 // Check-cast
  5273 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5274     array : R(read);
  5275     match  : R(read);
  5276     IALU   : R(2);
  5277     BR     : R(2);
  5278     MS     : R;
  5279 %}
  5281 // Convert FPU flags into +1,0,-1
  5282 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5283     src1  : E(read);
  5284     src2  : E(read);
  5285     dst   : E(write);
  5286     FA    : R;
  5287     MS    : R(2);
  5288     BR    : R(2);
  5289 %}
  5291 // Compare for p < q, and conditionally add y
  5292 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5293     p     : E(read);
  5294     q     : E(read);
  5295     y     : E(read);
  5296     IALU  : R(3)
  5297 %}
  5299 // Perform a compare, then move conditionally in a branch delay slot.
  5300 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5301     src2   : E(read);
  5302     srcdst : E(read);
  5303     IALU   : R;
  5304     BR     : R;
  5305 %}
  5307 // Define the class for the Nop node
  5308 define %{
  5309    MachNop = ialu_nop;
  5310 %}
  5312 %}
  5314 //----------INSTRUCTIONS-------------------------------------------------------
  5316 //------------Special Stack Slot instructions - no match rules-----------------
  5317 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5318   // No match rule to avoid chain rule match.
  5319   effect(DEF dst, USE src);
  5320   ins_cost(MEMORY_REF_COST);
  5321   size(4);
  5322   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5323   opcode(Assembler::ldf_op3);
  5324   ins_encode(simple_form3_mem_reg(src, dst));
  5325   ins_pipe(floadF_stk);
  5326 %}
  5328 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5329   // No match rule to avoid chain rule match.
  5330   effect(DEF dst, USE src);
  5331   ins_cost(MEMORY_REF_COST);
  5332   size(4);
  5333   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5334   opcode(Assembler::lddf_op3);
  5335   ins_encode(simple_form3_mem_reg(src, dst));
  5336   ins_pipe(floadD_stk);
  5337 %}
  5339 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5340   // No match rule to avoid chain rule match.
  5341   effect(DEF dst, USE src);
  5342   ins_cost(MEMORY_REF_COST);
  5343   size(4);
  5344   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5345   opcode(Assembler::stf_op3);
  5346   ins_encode(simple_form3_mem_reg(dst, src));
  5347   ins_pipe(fstoreF_stk_reg);
  5348 %}
  5350 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5351   // No match rule to avoid chain rule match.
  5352   effect(DEF dst, USE src);
  5353   ins_cost(MEMORY_REF_COST);
  5354   size(4);
  5355   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5356   opcode(Assembler::stdf_op3);
  5357   ins_encode(simple_form3_mem_reg(dst, src));
  5358   ins_pipe(fstoreD_stk_reg);
  5359 %}
  5361 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5362   effect(DEF dst, USE src);
  5363   ins_cost(MEMORY_REF_COST*2);
  5364   size(8);
  5365   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5366             "STW    R_G0,$dst.lo" %}
  5367   opcode(Assembler::stw_op3);
  5368   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5369   ins_pipe(lstoreI_stk_reg);
  5370 %}
  5372 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5373   // No match rule to avoid chain rule match.
  5374   effect(DEF dst, USE src);
  5375   ins_cost(MEMORY_REF_COST);
  5376   size(4);
  5377   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5378   opcode(Assembler::stx_op3);
  5379   ins_encode(simple_form3_mem_reg( dst, src ) );
  5380   ins_pipe(istore_stk_reg);
  5381 %}
  5383 //---------- Chain stack slots between similar types --------
  5385 // Load integer from stack slot
  5386 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5387   match(Set dst src);
  5388   ins_cost(MEMORY_REF_COST);
  5390   size(4);
  5391   format %{ "LDUW   $src,$dst\t!stk" %}
  5392   opcode(Assembler::lduw_op3);
  5393   ins_encode(simple_form3_mem_reg( src, dst ) );
  5394   ins_pipe(iload_mem);
  5395 %}
  5397 // Store integer to stack slot
  5398 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5399   match(Set dst src);
  5400   ins_cost(MEMORY_REF_COST);
  5402   size(4);
  5403   format %{ "STW    $src,$dst\t!stk" %}
  5404   opcode(Assembler::stw_op3);
  5405   ins_encode(simple_form3_mem_reg( dst, src ) );
  5406   ins_pipe(istore_mem_reg);
  5407 %}
  5409 // Load long from stack slot
  5410 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5411   match(Set dst src);
  5413   ins_cost(MEMORY_REF_COST);
  5414   size(4);
  5415   format %{ "LDX    $src,$dst\t! long" %}
  5416   opcode(Assembler::ldx_op3);
  5417   ins_encode(simple_form3_mem_reg( src, dst ) );
  5418   ins_pipe(iload_mem);
  5419 %}
  5421 // Store long to stack slot
  5422 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5423   match(Set dst src);
  5425   ins_cost(MEMORY_REF_COST);
  5426   size(4);
  5427   format %{ "STX    $src,$dst\t! long" %}
  5428   opcode(Assembler::stx_op3);
  5429   ins_encode(simple_form3_mem_reg( dst, src ) );
  5430   ins_pipe(istore_mem_reg);
  5431 %}
  5433 #ifdef _LP64
  5434 // Load pointer from stack slot, 64-bit encoding
  5435 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5436   match(Set dst src);
  5437   ins_cost(MEMORY_REF_COST);
  5438   size(4);
  5439   format %{ "LDX    $src,$dst\t!ptr" %}
  5440   opcode(Assembler::ldx_op3);
  5441   ins_encode(simple_form3_mem_reg( src, dst ) );
  5442   ins_pipe(iload_mem);
  5443 %}
  5445 // Store pointer to stack slot
  5446 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5447   match(Set dst src);
  5448   ins_cost(MEMORY_REF_COST);
  5449   size(4);
  5450   format %{ "STX    $src,$dst\t!ptr" %}
  5451   opcode(Assembler::stx_op3);
  5452   ins_encode(simple_form3_mem_reg( dst, src ) );
  5453   ins_pipe(istore_mem_reg);
  5454 %}
  5455 #else // _LP64
  5456 // Load pointer from stack slot, 32-bit encoding
  5457 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5458   match(Set dst src);
  5459   ins_cost(MEMORY_REF_COST);
  5460   format %{ "LDUW   $src,$dst\t!ptr" %}
  5461   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5462   ins_encode(simple_form3_mem_reg( src, dst ) );
  5463   ins_pipe(iload_mem);
  5464 %}
  5466 // Store pointer to stack slot
  5467 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5468   match(Set dst src);
  5469   ins_cost(MEMORY_REF_COST);
  5470   format %{ "STW    $src,$dst\t!ptr" %}
  5471   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5472   ins_encode(simple_form3_mem_reg( dst, src ) );
  5473   ins_pipe(istore_mem_reg);
  5474 %}
  5475 #endif // _LP64
  5477 //------------Special Nop instructions for bundling - no match rules-----------
  5478 // Nop using the A0 functional unit
  5479 instruct Nop_A0() %{
  5480   ins_cost(0);
  5482   format %{ "NOP    ! Alu Pipeline" %}
  5483   opcode(Assembler::or_op3, Assembler::arith_op);
  5484   ins_encode( form2_nop() );
  5485   ins_pipe(ialu_nop_A0);
  5486 %}
  5488 // Nop using the A1 functional unit
  5489 instruct Nop_A1( ) %{
  5490   ins_cost(0);
  5492   format %{ "NOP    ! Alu Pipeline" %}
  5493   opcode(Assembler::or_op3, Assembler::arith_op);
  5494   ins_encode( form2_nop() );
  5495   ins_pipe(ialu_nop_A1);
  5496 %}
  5498 // Nop using the memory functional unit
  5499 instruct Nop_MS( ) %{
  5500   ins_cost(0);
  5502   format %{ "NOP    ! Memory Pipeline" %}
  5503   ins_encode( emit_mem_nop );
  5504   ins_pipe(mem_nop);
  5505 %}
  5507 // Nop using the floating add functional unit
  5508 instruct Nop_FA( ) %{
  5509   ins_cost(0);
  5511   format %{ "NOP    ! Floating Add Pipeline" %}
  5512   ins_encode( emit_fadd_nop );
  5513   ins_pipe(fadd_nop);
  5514 %}
  5516 // Nop using the branch functional unit
  5517 instruct Nop_BR( ) %{
  5518   ins_cost(0);
  5520   format %{ "NOP    ! Branch Pipeline" %}
  5521   ins_encode( emit_br_nop );
  5522   ins_pipe(br_nop);
  5523 %}
  5525 //----------Load/Store/Move Instructions---------------------------------------
  5526 //----------Load Instructions--------------------------------------------------
  5527 // Load Byte (8bit signed)
  5528 instruct loadB(iRegI dst, memory mem) %{
  5529   match(Set dst (LoadB mem));
  5530   ins_cost(MEMORY_REF_COST);
  5532   size(4);
  5533   format %{ "LDSB   $mem,$dst\t! byte" %}
  5534   ins_encode %{
  5535     __ ldsb($mem$$Address, $dst$$Register);
  5536   %}
  5537   ins_pipe(iload_mask_mem);
  5538 %}
  5540 // Load Byte (8bit signed) into a Long Register
  5541 instruct loadB2L(iRegL dst, memory mem) %{
  5542   match(Set dst (ConvI2L (LoadB mem)));
  5543   ins_cost(MEMORY_REF_COST);
  5545   size(4);
  5546   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5547   ins_encode %{
  5548     __ ldsb($mem$$Address, $dst$$Register);
  5549   %}
  5550   ins_pipe(iload_mask_mem);
  5551 %}
  5553 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5554 instruct loadUB(iRegI dst, memory mem) %{
  5555   match(Set dst (LoadUB mem));
  5556   ins_cost(MEMORY_REF_COST);
  5558   size(4);
  5559   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5560   ins_encode %{
  5561     __ ldub($mem$$Address, $dst$$Register);
  5562   %}
  5563   ins_pipe(iload_mem);
  5564 %}
  5566 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5567 instruct loadUB2L(iRegL dst, memory mem) %{
  5568   match(Set dst (ConvI2L (LoadUB mem)));
  5569   ins_cost(MEMORY_REF_COST);
  5571   size(4);
  5572   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5573   ins_encode %{
  5574     __ ldub($mem$$Address, $dst$$Register);
  5575   %}
  5576   ins_pipe(iload_mem);
  5577 %}
  5579 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5580 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5581   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5582   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5584   size(2*4);
  5585   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5586             "AND    $dst,$mask,$dst" %}
  5587   ins_encode %{
  5588     __ ldub($mem$$Address, $dst$$Register);
  5589     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5590   %}
  5591   ins_pipe(iload_mem);
  5592 %}
  5594 // Load Short (16bit signed)
  5595 instruct loadS(iRegI dst, memory mem) %{
  5596   match(Set dst (LoadS mem));
  5597   ins_cost(MEMORY_REF_COST);
  5599   size(4);
  5600   format %{ "LDSH   $mem,$dst\t! short" %}
  5601   ins_encode %{
  5602     __ ldsh($mem$$Address, $dst$$Register);
  5603   %}
  5604   ins_pipe(iload_mask_mem);
  5605 %}
  5607 // Load Short (16 bit signed) to Byte (8 bit signed)
  5608 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5609   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5610   ins_cost(MEMORY_REF_COST);
  5612   size(4);
  5614   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5615   ins_encode %{
  5616     __ ldsb($mem$$Address, $dst$$Register, 1);
  5617   %}
  5618   ins_pipe(iload_mask_mem);
  5619 %}
  5621 // Load Short (16bit signed) into a Long Register
  5622 instruct loadS2L(iRegL dst, memory mem) %{
  5623   match(Set dst (ConvI2L (LoadS mem)));
  5624   ins_cost(MEMORY_REF_COST);
  5626   size(4);
  5627   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5628   ins_encode %{
  5629     __ ldsh($mem$$Address, $dst$$Register);
  5630   %}
  5631   ins_pipe(iload_mask_mem);
  5632 %}
  5634 // Load Unsigned Short/Char (16bit UNsigned)
  5635 instruct loadUS(iRegI dst, memory mem) %{
  5636   match(Set dst (LoadUS mem));
  5637   ins_cost(MEMORY_REF_COST);
  5639   size(4);
  5640   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5641   ins_encode %{
  5642     __ lduh($mem$$Address, $dst$$Register);
  5643   %}
  5644   ins_pipe(iload_mem);
  5645 %}
  5647 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5648 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5649   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5650   ins_cost(MEMORY_REF_COST);
  5652   size(4);
  5653   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5654   ins_encode %{
  5655     __ ldsb($mem$$Address, $dst$$Register, 1);
  5656   %}
  5657   ins_pipe(iload_mask_mem);
  5658 %}
  5660 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5661 instruct loadUS2L(iRegL dst, memory mem) %{
  5662   match(Set dst (ConvI2L (LoadUS mem)));
  5663   ins_cost(MEMORY_REF_COST);
  5665   size(4);
  5666   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5667   ins_encode %{
  5668     __ lduh($mem$$Address, $dst$$Register);
  5669   %}
  5670   ins_pipe(iload_mem);
  5671 %}
  5673 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5674 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5675   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5676   ins_cost(MEMORY_REF_COST);
  5678   size(4);
  5679   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5680   ins_encode %{
  5681     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5682   %}
  5683   ins_pipe(iload_mem);
  5684 %}
  5686 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5687 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5688   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5689   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5691   size(2*4);
  5692   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5693             "AND    $dst,$mask,$dst" %}
  5694   ins_encode %{
  5695     Register Rdst = $dst$$Register;
  5696     __ lduh($mem$$Address, Rdst);
  5697     __ and3(Rdst, $mask$$constant, Rdst);
  5698   %}
  5699   ins_pipe(iload_mem);
  5700 %}
  5702 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5703 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5704   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5705   effect(TEMP dst, TEMP tmp);
  5706   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5708   size((3+1)*4);  // set may use two instructions.
  5709   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5710             "SET    $mask,$tmp\n\t"
  5711             "AND    $dst,$tmp,$dst" %}
  5712   ins_encode %{
  5713     Register Rdst = $dst$$Register;
  5714     Register Rtmp = $tmp$$Register;
  5715     __ lduh($mem$$Address, Rdst);
  5716     __ set($mask$$constant, Rtmp);
  5717     __ and3(Rdst, Rtmp, Rdst);
  5718   %}
  5719   ins_pipe(iload_mem);
  5720 %}
  5722 // Load Integer
  5723 instruct loadI(iRegI dst, memory mem) %{
  5724   match(Set dst (LoadI mem));
  5725   ins_cost(MEMORY_REF_COST);
  5727   size(4);
  5728   format %{ "LDUW   $mem,$dst\t! int" %}
  5729   ins_encode %{
  5730     __ lduw($mem$$Address, $dst$$Register);
  5731   %}
  5732   ins_pipe(iload_mem);
  5733 %}
  5735 // Load Integer to Byte (8 bit signed)
  5736 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5737   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5738   ins_cost(MEMORY_REF_COST);
  5740   size(4);
  5742   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5743   ins_encode %{
  5744     __ ldsb($mem$$Address, $dst$$Register, 3);
  5745   %}
  5746   ins_pipe(iload_mask_mem);
  5747 %}
  5749 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5750 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5751   match(Set dst (AndI (LoadI mem) mask));
  5752   ins_cost(MEMORY_REF_COST);
  5754   size(4);
  5756   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5757   ins_encode %{
  5758     __ ldub($mem$$Address, $dst$$Register, 3);
  5759   %}
  5760   ins_pipe(iload_mask_mem);
  5761 %}
  5763 // Load Integer to Short (16 bit signed)
  5764 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5765   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5766   ins_cost(MEMORY_REF_COST);
  5768   size(4);
  5770   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5771   ins_encode %{
  5772     __ ldsh($mem$$Address, $dst$$Register, 2);
  5773   %}
  5774   ins_pipe(iload_mask_mem);
  5775 %}
  5777 // Load Integer to Unsigned Short (16 bit UNsigned)
  5778 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5779   match(Set dst (AndI (LoadI mem) mask));
  5780   ins_cost(MEMORY_REF_COST);
  5782   size(4);
  5784   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5785   ins_encode %{
  5786     __ lduh($mem$$Address, $dst$$Register, 2);
  5787   %}
  5788   ins_pipe(iload_mask_mem);
  5789 %}
  5791 // Load Integer into a Long Register
  5792 instruct loadI2L(iRegL dst, memory mem) %{
  5793   match(Set dst (ConvI2L (LoadI mem)));
  5794   ins_cost(MEMORY_REF_COST);
  5796   size(4);
  5797   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5798   ins_encode %{
  5799     __ ldsw($mem$$Address, $dst$$Register);
  5800   %}
  5801   ins_pipe(iload_mask_mem);
  5802 %}
  5804 // Load Integer with mask 0xFF into a Long Register
  5805 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5806   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5807   ins_cost(MEMORY_REF_COST);
  5809   size(4);
  5810   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5811   ins_encode %{
  5812     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5813   %}
  5814   ins_pipe(iload_mem);
  5815 %}
  5817 // Load Integer with mask 0xFFFF into a Long Register
  5818 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5819   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5820   ins_cost(MEMORY_REF_COST);
  5822   size(4);
  5823   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5824   ins_encode %{
  5825     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5826   %}
  5827   ins_pipe(iload_mem);
  5828 %}
  5830 // Load Integer with a 13-bit mask into a Long Register
  5831 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5832   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5833   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5835   size(2*4);
  5836   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5837             "AND    $dst,$mask,$dst" %}
  5838   ins_encode %{
  5839     Register Rdst = $dst$$Register;
  5840     __ lduw($mem$$Address, Rdst);
  5841     __ and3(Rdst, $mask$$constant, Rdst);
  5842   %}
  5843   ins_pipe(iload_mem);
  5844 %}
  5846 // Load Integer with a 32-bit mask into a Long Register
  5847 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5848   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5849   effect(TEMP dst, TEMP tmp);
  5850   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5852   size((3+1)*4);  // set may use two instructions.
  5853   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5854             "SET    $mask,$tmp\n\t"
  5855             "AND    $dst,$tmp,$dst" %}
  5856   ins_encode %{
  5857     Register Rdst = $dst$$Register;
  5858     Register Rtmp = $tmp$$Register;
  5859     __ lduw($mem$$Address, Rdst);
  5860     __ set($mask$$constant, Rtmp);
  5861     __ and3(Rdst, Rtmp, Rdst);
  5862   %}
  5863   ins_pipe(iload_mem);
  5864 %}
  5866 // Load Unsigned Integer into a Long Register
  5867 instruct loadUI2L(iRegL dst, memory mem) %{
  5868   match(Set dst (LoadUI2L mem));
  5869   ins_cost(MEMORY_REF_COST);
  5871   size(4);
  5872   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5873   ins_encode %{
  5874     __ lduw($mem$$Address, $dst$$Register);
  5875   %}
  5876   ins_pipe(iload_mem);
  5877 %}
  5879 // Load Long - aligned
  5880 instruct loadL(iRegL dst, memory mem ) %{
  5881   match(Set dst (LoadL mem));
  5882   ins_cost(MEMORY_REF_COST);
  5884   size(4);
  5885   format %{ "LDX    $mem,$dst\t! long" %}
  5886   ins_encode %{
  5887     __ ldx($mem$$Address, $dst$$Register);
  5888   %}
  5889   ins_pipe(iload_mem);
  5890 %}
  5892 // Load Long - UNaligned
  5893 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5894   match(Set dst (LoadL_unaligned mem));
  5895   effect(KILL tmp);
  5896   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5897   size(16);
  5898   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5899           "\tLDUW   $mem  ,$dst\n"
  5900           "\tSLLX   #32, $dst, $dst\n"
  5901           "\tOR     $dst, R_O7, $dst" %}
  5902   opcode(Assembler::lduw_op3);
  5903   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5904   ins_pipe(iload_mem);
  5905 %}
  5907 // Load Aligned Packed Byte into a Double Register
  5908 instruct loadA8B(regD dst, memory mem) %{
  5909   match(Set dst (Load8B mem));
  5910   ins_cost(MEMORY_REF_COST);
  5911   size(4);
  5912   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5913   opcode(Assembler::lddf_op3);
  5914   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5915   ins_pipe(floadD_mem);
  5916 %}
  5918 // Load Aligned Packed Char into a Double Register
  5919 instruct loadA4C(regD dst, memory mem) %{
  5920   match(Set dst (Load4C mem));
  5921   ins_cost(MEMORY_REF_COST);
  5922   size(4);
  5923   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5924   opcode(Assembler::lddf_op3);
  5925   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5926   ins_pipe(floadD_mem);
  5927 %}
  5929 // Load Aligned Packed Short into a Double Register
  5930 instruct loadA4S(regD dst, memory mem) %{
  5931   match(Set dst (Load4S mem));
  5932   ins_cost(MEMORY_REF_COST);
  5933   size(4);
  5934   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5935   opcode(Assembler::lddf_op3);
  5936   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5937   ins_pipe(floadD_mem);
  5938 %}
  5940 // Load Aligned Packed Int into a Double Register
  5941 instruct loadA2I(regD dst, memory mem) %{
  5942   match(Set dst (Load2I mem));
  5943   ins_cost(MEMORY_REF_COST);
  5944   size(4);
  5945   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5946   opcode(Assembler::lddf_op3);
  5947   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5948   ins_pipe(floadD_mem);
  5949 %}
  5951 // Load Range
  5952 instruct loadRange(iRegI dst, memory mem) %{
  5953   match(Set dst (LoadRange mem));
  5954   ins_cost(MEMORY_REF_COST);
  5956   size(4);
  5957   format %{ "LDUW   $mem,$dst\t! range" %}
  5958   opcode(Assembler::lduw_op3);
  5959   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5960   ins_pipe(iload_mem);
  5961 %}
  5963 // Load Integer into %f register (for fitos/fitod)
  5964 instruct loadI_freg(regF dst, memory mem) %{
  5965   match(Set dst (LoadI mem));
  5966   ins_cost(MEMORY_REF_COST);
  5967   size(4);
  5969   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5970   opcode(Assembler::ldf_op3);
  5971   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5972   ins_pipe(floadF_mem);
  5973 %}
  5975 // Load Pointer
  5976 instruct loadP(iRegP dst, memory mem) %{
  5977   match(Set dst (LoadP mem));
  5978   ins_cost(MEMORY_REF_COST);
  5979   size(4);
  5981 #ifndef _LP64
  5982   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5983   ins_encode %{
  5984     __ lduw($mem$$Address, $dst$$Register);
  5985   %}
  5986 #else
  5987   format %{ "LDX    $mem,$dst\t! ptr" %}
  5988   ins_encode %{
  5989     __ ldx($mem$$Address, $dst$$Register);
  5990   %}
  5991 #endif
  5992   ins_pipe(iload_mem);
  5993 %}
  5995 // Load Compressed Pointer
  5996 instruct loadN(iRegN dst, memory mem) %{
  5997   match(Set dst (LoadN mem));
  5998   ins_cost(MEMORY_REF_COST);
  5999   size(4);
  6001   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  6002   ins_encode %{
  6003     __ lduw($mem$$Address, $dst$$Register);
  6004   %}
  6005   ins_pipe(iload_mem);
  6006 %}
  6008 // Load Klass Pointer
  6009 instruct loadKlass(iRegP dst, memory mem) %{
  6010   match(Set dst (LoadKlass mem));
  6011   ins_cost(MEMORY_REF_COST);
  6012   size(4);
  6014 #ifndef _LP64
  6015   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6016   ins_encode %{
  6017     __ lduw($mem$$Address, $dst$$Register);
  6018   %}
  6019 #else
  6020   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6021   ins_encode %{
  6022     __ ldx($mem$$Address, $dst$$Register);
  6023   %}
  6024 #endif
  6025   ins_pipe(iload_mem);
  6026 %}
  6028 // Load narrow Klass Pointer
  6029 instruct loadNKlass(iRegN dst, memory mem) %{
  6030   match(Set dst (LoadNKlass mem));
  6031   ins_cost(MEMORY_REF_COST);
  6032   size(4);
  6034   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6035   ins_encode %{
  6036     __ lduw($mem$$Address, $dst$$Register);
  6037   %}
  6038   ins_pipe(iload_mem);
  6039 %}
  6041 // Load Double
  6042 instruct loadD(regD dst, memory mem) %{
  6043   match(Set dst (LoadD mem));
  6044   ins_cost(MEMORY_REF_COST);
  6046   size(4);
  6047   format %{ "LDDF   $mem,$dst" %}
  6048   opcode(Assembler::lddf_op3);
  6049   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6050   ins_pipe(floadD_mem);
  6051 %}
  6053 // Load Double - UNaligned
  6054 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6055   match(Set dst (LoadD_unaligned mem));
  6056   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6057   size(8);
  6058   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6059           "\tLDF    $mem+4,$dst.lo\t!" %}
  6060   opcode(Assembler::ldf_op3);
  6061   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6062   ins_pipe(iload_mem);
  6063 %}
  6065 // Load Float
  6066 instruct loadF(regF dst, memory mem) %{
  6067   match(Set dst (LoadF mem));
  6068   ins_cost(MEMORY_REF_COST);
  6070   size(4);
  6071   format %{ "LDF    $mem,$dst" %}
  6072   opcode(Assembler::ldf_op3);
  6073   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6074   ins_pipe(floadF_mem);
  6075 %}
  6077 // Load Constant
  6078 instruct loadConI( iRegI dst, immI src ) %{
  6079   match(Set dst src);
  6080   ins_cost(DEFAULT_COST * 3/2);
  6081   format %{ "SET    $src,$dst" %}
  6082   ins_encode( Set32(src, dst) );
  6083   ins_pipe(ialu_hi_lo_reg);
  6084 %}
  6086 instruct loadConI13( iRegI dst, immI13 src ) %{
  6087   match(Set dst src);
  6089   size(4);
  6090   format %{ "MOV    $src,$dst" %}
  6091   ins_encode( Set13( src, dst ) );
  6092   ins_pipe(ialu_imm);
  6093 %}
  6095 #ifndef _LP64
  6096 instruct loadConP(iRegP dst, immP con) %{
  6097   match(Set dst con);
  6098   ins_cost(DEFAULT_COST * 3/2);
  6099   format %{ "SET    $con,$dst\t!ptr" %}
  6100   ins_encode %{
  6101     // [RGV] This next line should be generated from ADLC
  6102     if (_opnds[1]->constant_is_oop()) {
  6103       intptr_t val = $con$$constant;
  6104       __ set_oop_constant((jobject) val, $dst$$Register);
  6105     } else {          // non-oop pointers, e.g. card mark base, heap top
  6106       __ set($con$$constant, $dst$$Register);
  6108   %}
  6109   ins_pipe(loadConP);
  6110 %}
  6111 #else
  6112 instruct loadConP_set(iRegP dst, immP_set con) %{
  6113   match(Set dst con);
  6114   ins_cost(DEFAULT_COST * 3/2);
  6115   format %{ "SET    $con,$dst\t! ptr" %}
  6116   ins_encode %{
  6117     // [RGV] This next line should be generated from ADLC
  6118     if (_opnds[1]->constant_is_oop()) {
  6119       intptr_t val = $con$$constant;
  6120       __ set_oop_constant((jobject) val, $dst$$Register);
  6121     } else {          // non-oop pointers, e.g. card mark base, heap top
  6122       __ set($con$$constant, $dst$$Register);
  6124   %}
  6125   ins_pipe(loadConP);
  6126 %}
  6128 instruct loadConP_load(iRegP dst, immP_load con) %{
  6129   match(Set dst con);
  6130   ins_cost(MEMORY_REF_COST);
  6131   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6132   ins_encode %{
  6133     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6134     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6135   %}
  6136   ins_pipe(loadConP);
  6137 %}
  6139 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6140   match(Set dst con);
  6141   ins_cost(DEFAULT_COST * 3/2);
  6142   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6143   ins_encode %{
  6144     __ set($con$$constant, $dst$$Register);
  6145   %}
  6146   ins_pipe(loadConP);
  6147 %}
  6148 #endif // _LP64
  6150 instruct loadConP0(iRegP dst, immP0 src) %{
  6151   match(Set dst src);
  6153   size(4);
  6154   format %{ "CLR    $dst\t!ptr" %}
  6155   ins_encode %{
  6156     __ clr($dst$$Register);
  6157   %}
  6158   ins_pipe(ialu_imm);
  6159 %}
  6161 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6162   match(Set dst src);
  6163   ins_cost(DEFAULT_COST);
  6164   format %{ "SET    $src,$dst\t!ptr" %}
  6165   ins_encode %{
  6166     AddressLiteral polling_page(os::get_polling_page());
  6167     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6168   %}
  6169   ins_pipe(loadConP_poll);
  6170 %}
  6172 instruct loadConN0(iRegN dst, immN0 src) %{
  6173   match(Set dst src);
  6175   size(4);
  6176   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6177   ins_encode %{
  6178     __ clr($dst$$Register);
  6179   %}
  6180   ins_pipe(ialu_imm);
  6181 %}
  6183 instruct loadConN(iRegN dst, immN src) %{
  6184   match(Set dst src);
  6185   ins_cost(DEFAULT_COST * 3/2);
  6186   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6187   ins_encode %{
  6188     Register dst = $dst$$Register;
  6189     __ set_narrow_oop((jobject)$src$$constant, dst);
  6190   %}
  6191   ins_pipe(ialu_hi_lo_reg);
  6192 %}
  6194 // Materialize long value (predicated by immL_cheap).
  6195 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6196   match(Set dst con);
  6197   effect(KILL tmp);
  6198   ins_cost(DEFAULT_COST * 3);
  6199   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6200   ins_encode %{
  6201     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6202   %}
  6203   ins_pipe(loadConL);
  6204 %}
  6206 // Load long value from constant table (predicated by immL_expensive).
  6207 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6208   match(Set dst con);
  6209   ins_cost(MEMORY_REF_COST);
  6210   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6211   ins_encode %{
  6212       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6213     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6214   %}
  6215   ins_pipe(loadConL);
  6216 %}
  6218 instruct loadConL0( iRegL dst, immL0 src ) %{
  6219   match(Set dst src);
  6220   ins_cost(DEFAULT_COST);
  6221   size(4);
  6222   format %{ "CLR    $dst\t! long" %}
  6223   ins_encode( Set13( src, dst ) );
  6224   ins_pipe(ialu_imm);
  6225 %}
  6227 instruct loadConL13( iRegL dst, immL13 src ) %{
  6228   match(Set dst src);
  6229   ins_cost(DEFAULT_COST * 2);
  6231   size(4);
  6232   format %{ "MOV    $src,$dst\t! long" %}
  6233   ins_encode( Set13( src, dst ) );
  6234   ins_pipe(ialu_imm);
  6235 %}
  6237 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6238   match(Set dst con);
  6239   effect(KILL tmp);
  6240   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6241   ins_encode %{
  6242       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6243     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6244   %}
  6245   ins_pipe(loadConFD);
  6246 %}
  6248 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6249   match(Set dst con);
  6250   effect(KILL tmp);
  6251   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6252   ins_encode %{
  6253     // XXX This is a quick fix for 6833573.
  6254     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6255     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6256     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6257   %}
  6258   ins_pipe(loadConFD);
  6259 %}
  6261 // Prefetch instructions.
  6262 // Must be safe to execute with invalid address (cannot fault).
  6264 instruct prefetchr( memory mem ) %{
  6265   match( PrefetchRead mem );
  6266   ins_cost(MEMORY_REF_COST);
  6267   size(4);
  6269   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6270   opcode(Assembler::prefetch_op3);
  6271   ins_encode( form3_mem_prefetch_read( mem ) );
  6272   ins_pipe(iload_mem);
  6273 %}
  6275 instruct prefetchw( memory mem ) %{
  6276   match( PrefetchWrite mem );
  6277   ins_cost(MEMORY_REF_COST);
  6278   size(4);
  6280   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6281   opcode(Assembler::prefetch_op3);
  6282   ins_encode( form3_mem_prefetch_write( mem ) );
  6283   ins_pipe(iload_mem);
  6284 %}
  6286 // Prefetch instructions for allocation.
  6288 instruct prefetchAlloc( memory mem ) %{
  6289   predicate(AllocatePrefetchInstr == 0);
  6290   match( PrefetchAllocation mem );
  6291   ins_cost(MEMORY_REF_COST);
  6292   size(4);
  6294   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6295   opcode(Assembler::prefetch_op3);
  6296   ins_encode( form3_mem_prefetch_write( mem ) );
  6297   ins_pipe(iload_mem);
  6298 %}
  6300 // Use BIS instruction to prefetch for allocation.
  6301 // Could fault, need space at the end of TLAB.
  6302 instruct prefetchAlloc_bis( iRegP dst ) %{
  6303   predicate(AllocatePrefetchInstr == 1);
  6304   match( PrefetchAllocation dst );
  6305   ins_cost(MEMORY_REF_COST);
  6306   size(4);
  6308   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6309   ins_encode %{
  6310     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6311   %}
  6312   ins_pipe(istore_mem_reg);
  6313 %}
  6315 // Next code is used for finding next cache line address to prefetch.
  6316 #ifndef _LP64
  6317 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6318   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6319   ins_cost(DEFAULT_COST);
  6320   size(4);
  6322   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6323   ins_encode %{
  6324     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6325   %}
  6326   ins_pipe(ialu_reg_imm);
  6327 %}
  6328 #else
  6329 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6330   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6331   ins_cost(DEFAULT_COST);
  6332   size(4);
  6334   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6335   ins_encode %{
  6336     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6337   %}
  6338   ins_pipe(ialu_reg_imm);
  6339 %}
  6340 #endif
  6342 //----------Store Instructions-------------------------------------------------
  6343 // Store Byte
  6344 instruct storeB(memory mem, iRegI src) %{
  6345   match(Set mem (StoreB mem src));
  6346   ins_cost(MEMORY_REF_COST);
  6348   size(4);
  6349   format %{ "STB    $src,$mem\t! byte" %}
  6350   opcode(Assembler::stb_op3);
  6351   ins_encode(simple_form3_mem_reg( mem, src ) );
  6352   ins_pipe(istore_mem_reg);
  6353 %}
  6355 instruct storeB0(memory mem, immI0 src) %{
  6356   match(Set mem (StoreB mem src));
  6357   ins_cost(MEMORY_REF_COST);
  6359   size(4);
  6360   format %{ "STB    $src,$mem\t! byte" %}
  6361   opcode(Assembler::stb_op3);
  6362   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6363   ins_pipe(istore_mem_zero);
  6364 %}
  6366 instruct storeCM0(memory mem, immI0 src) %{
  6367   match(Set mem (StoreCM mem src));
  6368   ins_cost(MEMORY_REF_COST);
  6370   size(4);
  6371   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6372   opcode(Assembler::stb_op3);
  6373   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6374   ins_pipe(istore_mem_zero);
  6375 %}
  6377 // Store Char/Short
  6378 instruct storeC(memory mem, iRegI src) %{
  6379   match(Set mem (StoreC mem src));
  6380   ins_cost(MEMORY_REF_COST);
  6382   size(4);
  6383   format %{ "STH    $src,$mem\t! short" %}
  6384   opcode(Assembler::sth_op3);
  6385   ins_encode(simple_form3_mem_reg( mem, src ) );
  6386   ins_pipe(istore_mem_reg);
  6387 %}
  6389 instruct storeC0(memory mem, immI0 src) %{
  6390   match(Set mem (StoreC mem src));
  6391   ins_cost(MEMORY_REF_COST);
  6393   size(4);
  6394   format %{ "STH    $src,$mem\t! short" %}
  6395   opcode(Assembler::sth_op3);
  6396   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6397   ins_pipe(istore_mem_zero);
  6398 %}
  6400 // Store Integer
  6401 instruct storeI(memory mem, iRegI src) %{
  6402   match(Set mem (StoreI mem src));
  6403   ins_cost(MEMORY_REF_COST);
  6405   size(4);
  6406   format %{ "STW    $src,$mem" %}
  6407   opcode(Assembler::stw_op3);
  6408   ins_encode(simple_form3_mem_reg( mem, src ) );
  6409   ins_pipe(istore_mem_reg);
  6410 %}
  6412 // Store Long
  6413 instruct storeL(memory mem, iRegL src) %{
  6414   match(Set mem (StoreL mem src));
  6415   ins_cost(MEMORY_REF_COST);
  6416   size(4);
  6417   format %{ "STX    $src,$mem\t! long" %}
  6418   opcode(Assembler::stx_op3);
  6419   ins_encode(simple_form3_mem_reg( mem, src ) );
  6420   ins_pipe(istore_mem_reg);
  6421 %}
  6423 instruct storeI0(memory mem, immI0 src) %{
  6424   match(Set mem (StoreI mem src));
  6425   ins_cost(MEMORY_REF_COST);
  6427   size(4);
  6428   format %{ "STW    $src,$mem" %}
  6429   opcode(Assembler::stw_op3);
  6430   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6431   ins_pipe(istore_mem_zero);
  6432 %}
  6434 instruct storeL0(memory mem, immL0 src) %{
  6435   match(Set mem (StoreL mem src));
  6436   ins_cost(MEMORY_REF_COST);
  6438   size(4);
  6439   format %{ "STX    $src,$mem" %}
  6440   opcode(Assembler::stx_op3);
  6441   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6442   ins_pipe(istore_mem_zero);
  6443 %}
  6445 // Store Integer from float register (used after fstoi)
  6446 instruct storeI_Freg(memory mem, regF src) %{
  6447   match(Set mem (StoreI mem src));
  6448   ins_cost(MEMORY_REF_COST);
  6450   size(4);
  6451   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6452   opcode(Assembler::stf_op3);
  6453   ins_encode(simple_form3_mem_reg( mem, src ) );
  6454   ins_pipe(fstoreF_mem_reg);
  6455 %}
  6457 // Store Pointer
  6458 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6459   match(Set dst (StoreP dst src));
  6460   ins_cost(MEMORY_REF_COST);
  6461   size(4);
  6463 #ifndef _LP64
  6464   format %{ "STW    $src,$dst\t! ptr" %}
  6465   opcode(Assembler::stw_op3, 0, REGP_OP);
  6466 #else
  6467   format %{ "STX    $src,$dst\t! ptr" %}
  6468   opcode(Assembler::stx_op3, 0, REGP_OP);
  6469 #endif
  6470   ins_encode( form3_mem_reg( dst, src ) );
  6471   ins_pipe(istore_mem_spORreg);
  6472 %}
  6474 instruct storeP0(memory dst, immP0 src) %{
  6475   match(Set dst (StoreP dst src));
  6476   ins_cost(MEMORY_REF_COST);
  6477   size(4);
  6479 #ifndef _LP64
  6480   format %{ "STW    $src,$dst\t! ptr" %}
  6481   opcode(Assembler::stw_op3, 0, REGP_OP);
  6482 #else
  6483   format %{ "STX    $src,$dst\t! ptr" %}
  6484   opcode(Assembler::stx_op3, 0, REGP_OP);
  6485 #endif
  6486   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6487   ins_pipe(istore_mem_zero);
  6488 %}
  6490 // Store Compressed Pointer
  6491 instruct storeN(memory dst, iRegN src) %{
  6492    match(Set dst (StoreN dst src));
  6493    ins_cost(MEMORY_REF_COST);
  6494    size(4);
  6496    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6497    ins_encode %{
  6498      Register base = as_Register($dst$$base);
  6499      Register index = as_Register($dst$$index);
  6500      Register src = $src$$Register;
  6501      if (index != G0) {
  6502        __ stw(src, base, index);
  6503      } else {
  6504        __ stw(src, base, $dst$$disp);
  6506    %}
  6507    ins_pipe(istore_mem_spORreg);
  6508 %}
  6510 instruct storeN0(memory dst, immN0 src) %{
  6511    match(Set dst (StoreN dst src));
  6512    ins_cost(MEMORY_REF_COST);
  6513    size(4);
  6515    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6516    ins_encode %{
  6517      Register base = as_Register($dst$$base);
  6518      Register index = as_Register($dst$$index);
  6519      if (index != G0) {
  6520        __ stw(0, base, index);
  6521      } else {
  6522        __ stw(0, base, $dst$$disp);
  6524    %}
  6525    ins_pipe(istore_mem_zero);
  6526 %}
  6528 // Store Double
  6529 instruct storeD( memory mem, regD src) %{
  6530   match(Set mem (StoreD mem src));
  6531   ins_cost(MEMORY_REF_COST);
  6533   size(4);
  6534   format %{ "STDF   $src,$mem" %}
  6535   opcode(Assembler::stdf_op3);
  6536   ins_encode(simple_form3_mem_reg( mem, src ) );
  6537   ins_pipe(fstoreD_mem_reg);
  6538 %}
  6540 instruct storeD0( memory mem, immD0 src) %{
  6541   match(Set mem (StoreD mem src));
  6542   ins_cost(MEMORY_REF_COST);
  6544   size(4);
  6545   format %{ "STX    $src,$mem" %}
  6546   opcode(Assembler::stx_op3);
  6547   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6548   ins_pipe(fstoreD_mem_zero);
  6549 %}
  6551 // Store Float
  6552 instruct storeF( memory mem, regF src) %{
  6553   match(Set mem (StoreF mem src));
  6554   ins_cost(MEMORY_REF_COST);
  6556   size(4);
  6557   format %{ "STF    $src,$mem" %}
  6558   opcode(Assembler::stf_op3);
  6559   ins_encode(simple_form3_mem_reg( mem, src ) );
  6560   ins_pipe(fstoreF_mem_reg);
  6561 %}
  6563 instruct storeF0( memory mem, immF0 src) %{
  6564   match(Set mem (StoreF mem src));
  6565   ins_cost(MEMORY_REF_COST);
  6567   size(4);
  6568   format %{ "STW    $src,$mem\t! storeF0" %}
  6569   opcode(Assembler::stw_op3);
  6570   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6571   ins_pipe(fstoreF_mem_zero);
  6572 %}
  6574 // Store Aligned Packed Bytes in Double register to memory
  6575 instruct storeA8B(memory mem, regD src) %{
  6576   match(Set mem (Store8B mem src));
  6577   ins_cost(MEMORY_REF_COST);
  6578   size(4);
  6579   format %{ "STDF   $src,$mem\t! packed8B" %}
  6580   opcode(Assembler::stdf_op3);
  6581   ins_encode(simple_form3_mem_reg( mem, src ) );
  6582   ins_pipe(fstoreD_mem_reg);
  6583 %}
  6585 // Convert oop pointer into compressed form
  6586 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6587   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6588   match(Set dst (EncodeP src));
  6589   format %{ "encode_heap_oop $src, $dst" %}
  6590   ins_encode %{
  6591     __ encode_heap_oop($src$$Register, $dst$$Register);
  6592   %}
  6593   ins_pipe(ialu_reg);
  6594 %}
  6596 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6597   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6598   match(Set dst (EncodeP src));
  6599   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6600   ins_encode %{
  6601     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6602   %}
  6603   ins_pipe(ialu_reg);
  6604 %}
  6606 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6607   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6608             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6609   match(Set dst (DecodeN src));
  6610   format %{ "decode_heap_oop $src, $dst" %}
  6611   ins_encode %{
  6612     __ decode_heap_oop($src$$Register, $dst$$Register);
  6613   %}
  6614   ins_pipe(ialu_reg);
  6615 %}
  6617 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6618   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6619             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6620   match(Set dst (DecodeN src));
  6621   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6622   ins_encode %{
  6623     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6624   %}
  6625   ins_pipe(ialu_reg);
  6626 %}
  6629 // Store Zero into Aligned Packed Bytes
  6630 instruct storeA8B0(memory mem, immI0 zero) %{
  6631   match(Set mem (Store8B mem zero));
  6632   ins_cost(MEMORY_REF_COST);
  6633   size(4);
  6634   format %{ "STX    $zero,$mem\t! packed8B" %}
  6635   opcode(Assembler::stx_op3);
  6636   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6637   ins_pipe(fstoreD_mem_zero);
  6638 %}
  6640 // Store Aligned Packed Chars/Shorts in Double register to memory
  6641 instruct storeA4C(memory mem, regD src) %{
  6642   match(Set mem (Store4C mem src));
  6643   ins_cost(MEMORY_REF_COST);
  6644   size(4);
  6645   format %{ "STDF   $src,$mem\t! packed4C" %}
  6646   opcode(Assembler::stdf_op3);
  6647   ins_encode(simple_form3_mem_reg( mem, src ) );
  6648   ins_pipe(fstoreD_mem_reg);
  6649 %}
  6651 // Store Zero into Aligned Packed Chars/Shorts
  6652 instruct storeA4C0(memory mem, immI0 zero) %{
  6653   match(Set mem (Store4C mem (Replicate4C zero)));
  6654   ins_cost(MEMORY_REF_COST);
  6655   size(4);
  6656   format %{ "STX    $zero,$mem\t! packed4C" %}
  6657   opcode(Assembler::stx_op3);
  6658   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6659   ins_pipe(fstoreD_mem_zero);
  6660 %}
  6662 // Store Aligned Packed Ints in Double register to memory
  6663 instruct storeA2I(memory mem, regD src) %{
  6664   match(Set mem (Store2I mem src));
  6665   ins_cost(MEMORY_REF_COST);
  6666   size(4);
  6667   format %{ "STDF   $src,$mem\t! packed2I" %}
  6668   opcode(Assembler::stdf_op3);
  6669   ins_encode(simple_form3_mem_reg( mem, src ) );
  6670   ins_pipe(fstoreD_mem_reg);
  6671 %}
  6673 // Store Zero into Aligned Packed Ints
  6674 instruct storeA2I0(memory mem, immI0 zero) %{
  6675   match(Set mem (Store2I mem zero));
  6676   ins_cost(MEMORY_REF_COST);
  6677   size(4);
  6678   format %{ "STX    $zero,$mem\t! packed2I" %}
  6679   opcode(Assembler::stx_op3);
  6680   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6681   ins_pipe(fstoreD_mem_zero);
  6682 %}
  6685 //----------MemBar Instructions-----------------------------------------------
  6686 // Memory barrier flavors
  6688 instruct membar_acquire() %{
  6689   match(MemBarAcquire);
  6690   ins_cost(4*MEMORY_REF_COST);
  6692   size(0);
  6693   format %{ "MEMBAR-acquire" %}
  6694   ins_encode( enc_membar_acquire );
  6695   ins_pipe(long_memory_op);
  6696 %}
  6698 instruct membar_acquire_lock() %{
  6699   match(MemBarAcquireLock);
  6700   ins_cost(0);
  6702   size(0);
  6703   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6704   ins_encode( );
  6705   ins_pipe(empty);
  6706 %}
  6708 instruct membar_release() %{
  6709   match(MemBarRelease);
  6710   ins_cost(4*MEMORY_REF_COST);
  6712   size(0);
  6713   format %{ "MEMBAR-release" %}
  6714   ins_encode( enc_membar_release );
  6715   ins_pipe(long_memory_op);
  6716 %}
  6718 instruct membar_release_lock() %{
  6719   match(MemBarReleaseLock);
  6720   ins_cost(0);
  6722   size(0);
  6723   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6724   ins_encode( );
  6725   ins_pipe(empty);
  6726 %}
  6728 instruct membar_volatile() %{
  6729   match(MemBarVolatile);
  6730   ins_cost(4*MEMORY_REF_COST);
  6732   size(4);
  6733   format %{ "MEMBAR-volatile" %}
  6734   ins_encode( enc_membar_volatile );
  6735   ins_pipe(long_memory_op);
  6736 %}
  6738 instruct unnecessary_membar_volatile() %{
  6739   match(MemBarVolatile);
  6740   predicate(Matcher::post_store_load_barrier(n));
  6741   ins_cost(0);
  6743   size(0);
  6744   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6745   ins_encode( );
  6746   ins_pipe(empty);
  6747 %}
  6749 //----------Register Move Instructions-----------------------------------------
  6750 instruct roundDouble_nop(regD dst) %{
  6751   match(Set dst (RoundDouble dst));
  6752   ins_cost(0);
  6753   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6754   ins_encode( );
  6755   ins_pipe(empty);
  6756 %}
  6759 instruct roundFloat_nop(regF dst) %{
  6760   match(Set dst (RoundFloat dst));
  6761   ins_cost(0);
  6762   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6763   ins_encode( );
  6764   ins_pipe(empty);
  6765 %}
  6768 // Cast Index to Pointer for unsafe natives
  6769 instruct castX2P(iRegX src, iRegP dst) %{
  6770   match(Set dst (CastX2P src));
  6772   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6773   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6774   ins_pipe(ialu_reg);
  6775 %}
  6777 // Cast Pointer to Index for unsafe natives
  6778 instruct castP2X(iRegP src, iRegX dst) %{
  6779   match(Set dst (CastP2X src));
  6781   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6782   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6783   ins_pipe(ialu_reg);
  6784 %}
  6786 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6787   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6788   match(Set stkSlot src);   // chain rule
  6789   ins_cost(MEMORY_REF_COST);
  6790   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6791   opcode(Assembler::stdf_op3);
  6792   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6793   ins_pipe(fstoreD_stk_reg);
  6794 %}
  6796 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6797   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6798   match(Set dst stkSlot);   // chain rule
  6799   ins_cost(MEMORY_REF_COST);
  6800   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6801   opcode(Assembler::lddf_op3);
  6802   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6803   ins_pipe(floadD_stk);
  6804 %}
  6806 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6807   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6808   match(Set stkSlot src);   // chain rule
  6809   ins_cost(MEMORY_REF_COST);
  6810   format %{ "STF   $src,$stkSlot\t!stk" %}
  6811   opcode(Assembler::stf_op3);
  6812   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6813   ins_pipe(fstoreF_stk_reg);
  6814 %}
  6816 //----------Conditional Move---------------------------------------------------
  6817 // Conditional move
  6818 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6819   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6820   ins_cost(150);
  6821   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6822   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6823   ins_pipe(ialu_reg);
  6824 %}
  6826 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6827   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6828   ins_cost(140);
  6829   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6830   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6831   ins_pipe(ialu_imm);
  6832 %}
  6834 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6835   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6836   ins_cost(150);
  6837   size(4);
  6838   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6839   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6840   ins_pipe(ialu_reg);
  6841 %}
  6843 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6844   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6845   ins_cost(140);
  6846   size(4);
  6847   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6848   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6849   ins_pipe(ialu_imm);
  6850 %}
  6852 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6853   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6854   ins_cost(150);
  6855   size(4);
  6856   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6857   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6858   ins_pipe(ialu_reg);
  6859 %}
  6861 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6862   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6863   ins_cost(140);
  6864   size(4);
  6865   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6866   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6867   ins_pipe(ialu_imm);
  6868 %}
  6870 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6871   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6872   ins_cost(150);
  6873   size(4);
  6874   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6875   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6876   ins_pipe(ialu_reg);
  6877 %}
  6879 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6880   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6881   ins_cost(140);
  6882   size(4);
  6883   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6884   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6885   ins_pipe(ialu_imm);
  6886 %}
  6888 // Conditional move for RegN. Only cmov(reg,reg).
  6889 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6890   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6891   ins_cost(150);
  6892   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6893   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6894   ins_pipe(ialu_reg);
  6895 %}
  6897 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6898 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6899   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6900   ins_cost(150);
  6901   size(4);
  6902   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6903   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6904   ins_pipe(ialu_reg);
  6905 %}
  6907 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6908 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6909   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6910   ins_cost(150);
  6911   size(4);
  6912   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6913   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6914   ins_pipe(ialu_reg);
  6915 %}
  6917 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6918   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6919   ins_cost(150);
  6920   size(4);
  6921   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6922   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6923   ins_pipe(ialu_reg);
  6924 %}
  6926 // Conditional move
  6927 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6928   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6929   ins_cost(150);
  6930   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6931   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6932   ins_pipe(ialu_reg);
  6933 %}
  6935 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6936   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6937   ins_cost(140);
  6938   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6939   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6940   ins_pipe(ialu_imm);
  6941 %}
  6943 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6944 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6945   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6946   ins_cost(150);
  6948   size(4);
  6949   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6950   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6951   ins_pipe(ialu_reg);
  6952 %}
  6954 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6955   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6956   ins_cost(150);
  6958   size(4);
  6959   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6960   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6961   ins_pipe(ialu_reg);
  6962 %}
  6964 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6965   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6966   ins_cost(140);
  6968   size(4);
  6969   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6970   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6971   ins_pipe(ialu_imm);
  6972 %}
  6974 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6975   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6976   ins_cost(140);
  6978   size(4);
  6979   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6980   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6981   ins_pipe(ialu_imm);
  6982 %}
  6984 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6985   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6986   ins_cost(150);
  6987   size(4);
  6988   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6989   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6990   ins_pipe(ialu_imm);
  6991 %}
  6993 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6994   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6995   ins_cost(140);
  6996   size(4);
  6997   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6998   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6999   ins_pipe(ialu_imm);
  7000 %}
  7002 // Conditional move
  7003 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  7004   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  7005   ins_cost(150);
  7006   opcode(0x101);
  7007   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7008   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7009   ins_pipe(int_conditional_float_move);
  7010 %}
  7012 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7013   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7014   ins_cost(150);
  7016   size(4);
  7017   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7018   opcode(0x101);
  7019   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7020   ins_pipe(int_conditional_float_move);
  7021 %}
  7023 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7024   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7025   ins_cost(150);
  7027   size(4);
  7028   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7029   opcode(0x101);
  7030   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7031   ins_pipe(int_conditional_float_move);
  7032 %}
  7034 // Conditional move,
  7035 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7036   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7037   ins_cost(150);
  7038   size(4);
  7039   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7040   opcode(0x1);
  7041   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7042   ins_pipe(int_conditional_double_move);
  7043 %}
  7045 // Conditional move
  7046 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7047   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7048   ins_cost(150);
  7049   size(4);
  7050   opcode(0x102);
  7051   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7052   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7053   ins_pipe(int_conditional_double_move);
  7054 %}
  7056 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7057   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7058   ins_cost(150);
  7060   size(4);
  7061   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7062   opcode(0x102);
  7063   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7064   ins_pipe(int_conditional_double_move);
  7065 %}
  7067 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7068   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7069   ins_cost(150);
  7071   size(4);
  7072   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7073   opcode(0x102);
  7074   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7075   ins_pipe(int_conditional_double_move);
  7076 %}
  7078 // Conditional move,
  7079 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7080   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7081   ins_cost(150);
  7082   size(4);
  7083   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7084   opcode(0x2);
  7085   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7086   ins_pipe(int_conditional_double_move);
  7087 %}
  7089 // Conditional move
  7090 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7091   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7092   ins_cost(150);
  7093   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7094   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7095   ins_pipe(ialu_reg);
  7096 %}
  7098 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7099   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7100   ins_cost(140);
  7101   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7102   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7103   ins_pipe(ialu_imm);
  7104 %}
  7106 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7107   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7108   ins_cost(150);
  7110   size(4);
  7111   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7112   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7113   ins_pipe(ialu_reg);
  7114 %}
  7117 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7118   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7119   ins_cost(150);
  7121   size(4);
  7122   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7123   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7124   ins_pipe(ialu_reg);
  7125 %}
  7128 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7129   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7130   ins_cost(150);
  7132   size(4);
  7133   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7134   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7135   ins_pipe(ialu_reg);
  7136 %}
  7140 //----------OS and Locking Instructions----------------------------------------
  7142 // This name is KNOWN by the ADLC and cannot be changed.
  7143 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7144 // for this guy.
  7145 instruct tlsLoadP(g2RegP dst) %{
  7146   match(Set dst (ThreadLocal));
  7148   size(0);
  7149   ins_cost(0);
  7150   format %{ "# TLS is in G2" %}
  7151   ins_encode( /*empty encoding*/ );
  7152   ins_pipe(ialu_none);
  7153 %}
  7155 instruct checkCastPP( iRegP dst ) %{
  7156   match(Set dst (CheckCastPP dst));
  7158   size(0);
  7159   format %{ "# checkcastPP of $dst" %}
  7160   ins_encode( /*empty encoding*/ );
  7161   ins_pipe(empty);
  7162 %}
  7165 instruct castPP( iRegP dst ) %{
  7166   match(Set dst (CastPP dst));
  7167   format %{ "# castPP of $dst" %}
  7168   ins_encode( /*empty encoding*/ );
  7169   ins_pipe(empty);
  7170 %}
  7172 instruct castII( iRegI dst ) %{
  7173   match(Set dst (CastII dst));
  7174   format %{ "# castII of $dst" %}
  7175   ins_encode( /*empty encoding*/ );
  7176   ins_cost(0);
  7177   ins_pipe(empty);
  7178 %}
  7180 //----------Arithmetic Instructions--------------------------------------------
  7181 // Addition Instructions
  7182 // Register Addition
  7183 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7184   match(Set dst (AddI src1 src2));
  7186   size(4);
  7187   format %{ "ADD    $src1,$src2,$dst" %}
  7188   ins_encode %{
  7189     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7190   %}
  7191   ins_pipe(ialu_reg_reg);
  7192 %}
  7194 // Immediate Addition
  7195 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7196   match(Set dst (AddI src1 src2));
  7198   size(4);
  7199   format %{ "ADD    $src1,$src2,$dst" %}
  7200   opcode(Assembler::add_op3, Assembler::arith_op);
  7201   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7202   ins_pipe(ialu_reg_imm);
  7203 %}
  7205 // Pointer Register Addition
  7206 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7207   match(Set dst (AddP src1 src2));
  7209   size(4);
  7210   format %{ "ADD    $src1,$src2,$dst" %}
  7211   opcode(Assembler::add_op3, Assembler::arith_op);
  7212   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7213   ins_pipe(ialu_reg_reg);
  7214 %}
  7216 // Pointer Immediate Addition
  7217 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7218   match(Set dst (AddP src1 src2));
  7220   size(4);
  7221   format %{ "ADD    $src1,$src2,$dst" %}
  7222   opcode(Assembler::add_op3, Assembler::arith_op);
  7223   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7224   ins_pipe(ialu_reg_imm);
  7225 %}
  7227 // Long Addition
  7228 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7229   match(Set dst (AddL src1 src2));
  7231   size(4);
  7232   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7233   opcode(Assembler::add_op3, Assembler::arith_op);
  7234   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7235   ins_pipe(ialu_reg_reg);
  7236 %}
  7238 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7239   match(Set dst (AddL src1 con));
  7241   size(4);
  7242   format %{ "ADD    $src1,$con,$dst" %}
  7243   opcode(Assembler::add_op3, Assembler::arith_op);
  7244   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7245   ins_pipe(ialu_reg_imm);
  7246 %}
  7248 //----------Conditional_store--------------------------------------------------
  7249 // Conditional-store of the updated heap-top.
  7250 // Used during allocation of the shared heap.
  7251 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7253 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7254 instruct loadPLocked(iRegP dst, memory mem) %{
  7255   match(Set dst (LoadPLocked mem));
  7256   ins_cost(MEMORY_REF_COST);
  7258 #ifndef _LP64
  7259   size(4);
  7260   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7261   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7262 #else
  7263   format %{ "LDX    $mem,$dst\t! ptr" %}
  7264   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7265 #endif
  7266   ins_encode( form3_mem_reg( mem, dst ) );
  7267   ins_pipe(iload_mem);
  7268 %}
  7270 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7271 instruct loadLLocked(iRegL dst, memory mem) %{
  7272   match(Set dst (LoadLLocked mem));
  7273   ins_cost(MEMORY_REF_COST);
  7274   size(4);
  7275   format %{ "LDX    $mem,$dst\t! long" %}
  7276   opcode(Assembler::ldx_op3);
  7277   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7278   ins_pipe(iload_mem);
  7279 %}
  7281 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7282   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7283   effect( KILL newval );
  7284   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7285             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7286   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7287   ins_pipe( long_memory_op );
  7288 %}
  7290 // Conditional-store of an int value.
  7291 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7292   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7293   effect( KILL newval );
  7294   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7295             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7296   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7297   ins_pipe( long_memory_op );
  7298 %}
  7300 // Conditional-store of a long value.
  7301 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7302   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7303   effect( KILL newval );
  7304   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7305             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7306   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7307   ins_pipe( long_memory_op );
  7308 %}
  7310 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7312 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7313   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7314   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7315   format %{
  7316             "MOV    $newval,O7\n\t"
  7317             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7318             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7319             "MOV    1,$res\n\t"
  7320             "MOVne  xcc,R_G0,$res"
  7321   %}
  7322   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7323               enc_lflags_ne_to_boolean(res) );
  7324   ins_pipe( long_memory_op );
  7325 %}
  7328 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7329   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7330   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7331   format %{
  7332             "MOV    $newval,O7\n\t"
  7333             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7334             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7335             "MOV    1,$res\n\t"
  7336             "MOVne  icc,R_G0,$res"
  7337   %}
  7338   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7339               enc_iflags_ne_to_boolean(res) );
  7340   ins_pipe( long_memory_op );
  7341 %}
  7343 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7344   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7345   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7346   format %{
  7347             "MOV    $newval,O7\n\t"
  7348             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7349             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7350             "MOV    1,$res\n\t"
  7351             "MOVne  xcc,R_G0,$res"
  7352   %}
  7353 #ifdef _LP64
  7354   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7355               enc_lflags_ne_to_boolean(res) );
  7356 #else
  7357   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7358               enc_iflags_ne_to_boolean(res) );
  7359 #endif
  7360   ins_pipe( long_memory_op );
  7361 %}
  7363 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7364   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7365   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7366   format %{
  7367             "MOV    $newval,O7\n\t"
  7368             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7369             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7370             "MOV    1,$res\n\t"
  7371             "MOVne  icc,R_G0,$res"
  7372   %}
  7373   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7374               enc_iflags_ne_to_boolean(res) );
  7375   ins_pipe( long_memory_op );
  7376 %}
  7378 //---------------------
  7379 // Subtraction Instructions
  7380 // Register Subtraction
  7381 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7382   match(Set dst (SubI src1 src2));
  7384   size(4);
  7385   format %{ "SUB    $src1,$src2,$dst" %}
  7386   opcode(Assembler::sub_op3, Assembler::arith_op);
  7387   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7388   ins_pipe(ialu_reg_reg);
  7389 %}
  7391 // Immediate Subtraction
  7392 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7393   match(Set dst (SubI src1 src2));
  7395   size(4);
  7396   format %{ "SUB    $src1,$src2,$dst" %}
  7397   opcode(Assembler::sub_op3, Assembler::arith_op);
  7398   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7399   ins_pipe(ialu_reg_imm);
  7400 %}
  7402 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7403   match(Set dst (SubI zero src2));
  7405   size(4);
  7406   format %{ "NEG    $src2,$dst" %}
  7407   opcode(Assembler::sub_op3, Assembler::arith_op);
  7408   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7409   ins_pipe(ialu_zero_reg);
  7410 %}
  7412 // Long subtraction
  7413 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7414   match(Set dst (SubL src1 src2));
  7416   size(4);
  7417   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7418   opcode(Assembler::sub_op3, Assembler::arith_op);
  7419   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7420   ins_pipe(ialu_reg_reg);
  7421 %}
  7423 // Immediate Subtraction
  7424 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7425   match(Set dst (SubL src1 con));
  7427   size(4);
  7428   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7429   opcode(Assembler::sub_op3, Assembler::arith_op);
  7430   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7431   ins_pipe(ialu_reg_imm);
  7432 %}
  7434 // Long negation
  7435 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7436   match(Set dst (SubL zero src2));
  7438   size(4);
  7439   format %{ "NEG    $src2,$dst\t! long" %}
  7440   opcode(Assembler::sub_op3, Assembler::arith_op);
  7441   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7442   ins_pipe(ialu_zero_reg);
  7443 %}
  7445 // Multiplication Instructions
  7446 // Integer Multiplication
  7447 // Register Multiplication
  7448 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7449   match(Set dst (MulI src1 src2));
  7451   size(4);
  7452   format %{ "MULX   $src1,$src2,$dst" %}
  7453   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7454   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7455   ins_pipe(imul_reg_reg);
  7456 %}
  7458 // Immediate Multiplication
  7459 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7460   match(Set dst (MulI src1 src2));
  7462   size(4);
  7463   format %{ "MULX   $src1,$src2,$dst" %}
  7464   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7465   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7466   ins_pipe(imul_reg_imm);
  7467 %}
  7469 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7470   match(Set dst (MulL src1 src2));
  7471   ins_cost(DEFAULT_COST * 5);
  7472   size(4);
  7473   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7474   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7475   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7476   ins_pipe(mulL_reg_reg);
  7477 %}
  7479 // Immediate Multiplication
  7480 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7481   match(Set dst (MulL src1 src2));
  7482   ins_cost(DEFAULT_COST * 5);
  7483   size(4);
  7484   format %{ "MULX   $src1,$src2,$dst" %}
  7485   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7486   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7487   ins_pipe(mulL_reg_imm);
  7488 %}
  7490 // Integer Division
  7491 // Register Division
  7492 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7493   match(Set dst (DivI src1 src2));
  7494   ins_cost((2+71)*DEFAULT_COST);
  7496   format %{ "SRA     $src2,0,$src2\n\t"
  7497             "SRA     $src1,0,$src1\n\t"
  7498             "SDIVX   $src1,$src2,$dst" %}
  7499   ins_encode( idiv_reg( src1, src2, dst ) );
  7500   ins_pipe(sdiv_reg_reg);
  7501 %}
  7503 // Immediate Division
  7504 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7505   match(Set dst (DivI src1 src2));
  7506   ins_cost((2+71)*DEFAULT_COST);
  7508   format %{ "SRA     $src1,0,$src1\n\t"
  7509             "SDIVX   $src1,$src2,$dst" %}
  7510   ins_encode( idiv_imm( src1, src2, dst ) );
  7511   ins_pipe(sdiv_reg_imm);
  7512 %}
  7514 //----------Div-By-10-Expansion------------------------------------------------
  7515 // Extract hi bits of a 32x32->64 bit multiply.
  7516 // Expand rule only, not matched
  7517 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7518   effect( DEF dst, USE src1, USE src2 );
  7519   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7520             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7521   ins_encode( enc_mul_hi(dst,src1,src2));
  7522   ins_pipe(sdiv_reg_reg);
  7523 %}
  7525 // Magic constant, reciprocal of 10
  7526 instruct loadConI_x66666667(iRegIsafe dst) %{
  7527   effect( DEF dst );
  7529   size(8);
  7530   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7531   ins_encode( Set32(0x66666667, dst) );
  7532   ins_pipe(ialu_hi_lo_reg);
  7533 %}
  7535 // Register Shift Right Arithmetic Long by 32-63
  7536 instruct sra_31( iRegI dst, iRegI src ) %{
  7537   effect( DEF dst, USE src );
  7538   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7539   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7540   ins_pipe(ialu_reg_reg);
  7541 %}
  7543 // Arithmetic Shift Right by 8-bit immediate
  7544 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7545   effect( DEF dst, USE src );
  7546   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7547   opcode(Assembler::sra_op3, Assembler::arith_op);
  7548   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7549   ins_pipe(ialu_reg_imm);
  7550 %}
  7552 // Integer DIV with 10
  7553 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7554   match(Set dst (DivI src div));
  7555   ins_cost((6+6)*DEFAULT_COST);
  7556   expand %{
  7557     iRegIsafe tmp1;               // Killed temps;
  7558     iRegIsafe tmp2;               // Killed temps;
  7559     iRegI tmp3;                   // Killed temps;
  7560     iRegI tmp4;                   // Killed temps;
  7561     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7562     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7563     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7564     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7565     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7566   %}
  7567 %}
  7569 // Register Long Division
  7570 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7571   match(Set dst (DivL src1 src2));
  7572   ins_cost(DEFAULT_COST*71);
  7573   size(4);
  7574   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7575   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7576   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7577   ins_pipe(divL_reg_reg);
  7578 %}
  7580 // Register Long Division
  7581 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7582   match(Set dst (DivL src1 src2));
  7583   ins_cost(DEFAULT_COST*71);
  7584   size(4);
  7585   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7586   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7587   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7588   ins_pipe(divL_reg_imm);
  7589 %}
  7591 // Integer Remainder
  7592 // Register Remainder
  7593 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7594   match(Set dst (ModI src1 src2));
  7595   effect( KILL ccr, KILL temp);
  7597   format %{ "SREM   $src1,$src2,$dst" %}
  7598   ins_encode( irem_reg(src1, src2, dst, temp) );
  7599   ins_pipe(sdiv_reg_reg);
  7600 %}
  7602 // Immediate Remainder
  7603 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7604   match(Set dst (ModI src1 src2));
  7605   effect( KILL ccr, KILL temp);
  7607   format %{ "SREM   $src1,$src2,$dst" %}
  7608   ins_encode( irem_imm(src1, src2, dst, temp) );
  7609   ins_pipe(sdiv_reg_imm);
  7610 %}
  7612 // Register Long Remainder
  7613 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7614   effect(DEF dst, USE src1, USE src2);
  7615   size(4);
  7616   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7617   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7618   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7619   ins_pipe(divL_reg_reg);
  7620 %}
  7622 // Register Long Division
  7623 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7624   effect(DEF dst, USE src1, USE src2);
  7625   size(4);
  7626   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7627   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7628   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7629   ins_pipe(divL_reg_imm);
  7630 %}
  7632 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7633   effect(DEF dst, USE src1, USE src2);
  7634   size(4);
  7635   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7636   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7637   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7638   ins_pipe(mulL_reg_reg);
  7639 %}
  7641 // Immediate Multiplication
  7642 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7643   effect(DEF dst, USE src1, USE src2);
  7644   size(4);
  7645   format %{ "MULX   $src1,$src2,$dst" %}
  7646   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7647   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7648   ins_pipe(mulL_reg_imm);
  7649 %}
  7651 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7652   effect(DEF dst, USE src1, USE src2);
  7653   size(4);
  7654   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7655   opcode(Assembler::sub_op3, Assembler::arith_op);
  7656   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7657   ins_pipe(ialu_reg_reg);
  7658 %}
  7660 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7661   effect(DEF dst, USE src1, USE src2);
  7662   size(4);
  7663   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7664   opcode(Assembler::sub_op3, Assembler::arith_op);
  7665   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7666   ins_pipe(ialu_reg_reg);
  7667 %}
  7669 // Register Long Remainder
  7670 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7671   match(Set dst (ModL src1 src2));
  7672   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7673   expand %{
  7674     iRegL tmp1;
  7675     iRegL tmp2;
  7676     divL_reg_reg_1(tmp1, src1, src2);
  7677     mulL_reg_reg_1(tmp2, tmp1, src2);
  7678     subL_reg_reg_1(dst,  src1, tmp2);
  7679   %}
  7680 %}
  7682 // Register Long Remainder
  7683 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7684   match(Set dst (ModL src1 src2));
  7685   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7686   expand %{
  7687     iRegL tmp1;
  7688     iRegL tmp2;
  7689     divL_reg_imm13_1(tmp1, src1, src2);
  7690     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7691     subL_reg_reg_2  (dst,  src1, tmp2);
  7692   %}
  7693 %}
  7695 // Integer Shift Instructions
  7696 // Register Shift Left
  7697 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7698   match(Set dst (LShiftI src1 src2));
  7700   size(4);
  7701   format %{ "SLL    $src1,$src2,$dst" %}
  7702   opcode(Assembler::sll_op3, Assembler::arith_op);
  7703   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7704   ins_pipe(ialu_reg_reg);
  7705 %}
  7707 // Register Shift Left Immediate
  7708 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7709   match(Set dst (LShiftI src1 src2));
  7711   size(4);
  7712   format %{ "SLL    $src1,$src2,$dst" %}
  7713   opcode(Assembler::sll_op3, Assembler::arith_op);
  7714   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7715   ins_pipe(ialu_reg_imm);
  7716 %}
  7718 // Register Shift Left
  7719 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7720   match(Set dst (LShiftL src1 src2));
  7722   size(4);
  7723   format %{ "SLLX   $src1,$src2,$dst" %}
  7724   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7725   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7726   ins_pipe(ialu_reg_reg);
  7727 %}
  7729 // Register Shift Left Immediate
  7730 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7731   match(Set dst (LShiftL src1 src2));
  7733   size(4);
  7734   format %{ "SLLX   $src1,$src2,$dst" %}
  7735   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7736   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7737   ins_pipe(ialu_reg_imm);
  7738 %}
  7740 // Register Arithmetic Shift Right
  7741 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7742   match(Set dst (RShiftI src1 src2));
  7743   size(4);
  7744   format %{ "SRA    $src1,$src2,$dst" %}
  7745   opcode(Assembler::sra_op3, Assembler::arith_op);
  7746   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7747   ins_pipe(ialu_reg_reg);
  7748 %}
  7750 // Register Arithmetic Shift Right Immediate
  7751 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7752   match(Set dst (RShiftI src1 src2));
  7754   size(4);
  7755   format %{ "SRA    $src1,$src2,$dst" %}
  7756   opcode(Assembler::sra_op3, Assembler::arith_op);
  7757   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7758   ins_pipe(ialu_reg_imm);
  7759 %}
  7761 // Register Shift Right Arithmatic Long
  7762 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7763   match(Set dst (RShiftL src1 src2));
  7765   size(4);
  7766   format %{ "SRAX   $src1,$src2,$dst" %}
  7767   opcode(Assembler::srax_op3, Assembler::arith_op);
  7768   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7769   ins_pipe(ialu_reg_reg);
  7770 %}
  7772 // Register Shift Left Immediate
  7773 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7774   match(Set dst (RShiftL src1 src2));
  7776   size(4);
  7777   format %{ "SRAX   $src1,$src2,$dst" %}
  7778   opcode(Assembler::srax_op3, Assembler::arith_op);
  7779   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7780   ins_pipe(ialu_reg_imm);
  7781 %}
  7783 // Register Shift Right
  7784 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7785   match(Set dst (URShiftI src1 src2));
  7787   size(4);
  7788   format %{ "SRL    $src1,$src2,$dst" %}
  7789   opcode(Assembler::srl_op3, Assembler::arith_op);
  7790   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7791   ins_pipe(ialu_reg_reg);
  7792 %}
  7794 // Register Shift Right Immediate
  7795 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7796   match(Set dst (URShiftI src1 src2));
  7798   size(4);
  7799   format %{ "SRL    $src1,$src2,$dst" %}
  7800   opcode(Assembler::srl_op3, Assembler::arith_op);
  7801   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7802   ins_pipe(ialu_reg_imm);
  7803 %}
  7805 // Register Shift Right
  7806 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7807   match(Set dst (URShiftL src1 src2));
  7809   size(4);
  7810   format %{ "SRLX   $src1,$src2,$dst" %}
  7811   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7812   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7813   ins_pipe(ialu_reg_reg);
  7814 %}
  7816 // Register Shift Right Immediate
  7817 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7818   match(Set dst (URShiftL src1 src2));
  7820   size(4);
  7821   format %{ "SRLX   $src1,$src2,$dst" %}
  7822   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7823   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7824   ins_pipe(ialu_reg_imm);
  7825 %}
  7827 // Register Shift Right Immediate with a CastP2X
  7828 #ifdef _LP64
  7829 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7830   match(Set dst (URShiftL (CastP2X src1) src2));
  7831   size(4);
  7832   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7833   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7834   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7835   ins_pipe(ialu_reg_imm);
  7836 %}
  7837 #else
  7838 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7839   match(Set dst (URShiftI (CastP2X src1) src2));
  7840   size(4);
  7841   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7842   opcode(Assembler::srl_op3, Assembler::arith_op);
  7843   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7844   ins_pipe(ialu_reg_imm);
  7845 %}
  7846 #endif
  7849 //----------Floating Point Arithmetic Instructions-----------------------------
  7851 //  Add float single precision
  7852 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7853   match(Set dst (AddF src1 src2));
  7855   size(4);
  7856   format %{ "FADDS  $src1,$src2,$dst" %}
  7857   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7858   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7859   ins_pipe(faddF_reg_reg);
  7860 %}
  7862 //  Add float double precision
  7863 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7864   match(Set dst (AddD src1 src2));
  7866   size(4);
  7867   format %{ "FADDD  $src1,$src2,$dst" %}
  7868   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7869   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7870   ins_pipe(faddD_reg_reg);
  7871 %}
  7873 //  Sub float single precision
  7874 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7875   match(Set dst (SubF src1 src2));
  7877   size(4);
  7878   format %{ "FSUBS  $src1,$src2,$dst" %}
  7879   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7880   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7881   ins_pipe(faddF_reg_reg);
  7882 %}
  7884 //  Sub float double precision
  7885 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7886   match(Set dst (SubD src1 src2));
  7888   size(4);
  7889   format %{ "FSUBD  $src1,$src2,$dst" %}
  7890   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7891   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7892   ins_pipe(faddD_reg_reg);
  7893 %}
  7895 //  Mul float single precision
  7896 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7897   match(Set dst (MulF src1 src2));
  7899   size(4);
  7900   format %{ "FMULS  $src1,$src2,$dst" %}
  7901   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7902   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7903   ins_pipe(fmulF_reg_reg);
  7904 %}
  7906 //  Mul float double precision
  7907 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7908   match(Set dst (MulD src1 src2));
  7910   size(4);
  7911   format %{ "FMULD  $src1,$src2,$dst" %}
  7912   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7913   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7914   ins_pipe(fmulD_reg_reg);
  7915 %}
  7917 //  Div float single precision
  7918 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7919   match(Set dst (DivF src1 src2));
  7921   size(4);
  7922   format %{ "FDIVS  $src1,$src2,$dst" %}
  7923   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7924   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7925   ins_pipe(fdivF_reg_reg);
  7926 %}
  7928 //  Div float double precision
  7929 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7930   match(Set dst (DivD src1 src2));
  7932   size(4);
  7933   format %{ "FDIVD  $src1,$src2,$dst" %}
  7934   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7935   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7936   ins_pipe(fdivD_reg_reg);
  7937 %}
  7939 //  Absolute float double precision
  7940 instruct absD_reg(regD dst, regD src) %{
  7941   match(Set dst (AbsD src));
  7943   format %{ "FABSd  $src,$dst" %}
  7944   ins_encode(fabsd(dst, src));
  7945   ins_pipe(faddD_reg);
  7946 %}
  7948 //  Absolute float single precision
  7949 instruct absF_reg(regF dst, regF src) %{
  7950   match(Set dst (AbsF src));
  7952   format %{ "FABSs  $src,$dst" %}
  7953   ins_encode(fabss(dst, src));
  7954   ins_pipe(faddF_reg);
  7955 %}
  7957 instruct negF_reg(regF dst, regF src) %{
  7958   match(Set dst (NegF src));
  7960   size(4);
  7961   format %{ "FNEGs  $src,$dst" %}
  7962   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7963   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7964   ins_pipe(faddF_reg);
  7965 %}
  7967 instruct negD_reg(regD dst, regD src) %{
  7968   match(Set dst (NegD src));
  7970   format %{ "FNEGd  $src,$dst" %}
  7971   ins_encode(fnegd(dst, src));
  7972   ins_pipe(faddD_reg);
  7973 %}
  7975 //  Sqrt float double precision
  7976 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7977   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7979   size(4);
  7980   format %{ "FSQRTS $src,$dst" %}
  7981   ins_encode(fsqrts(dst, src));
  7982   ins_pipe(fdivF_reg_reg);
  7983 %}
  7985 //  Sqrt float double precision
  7986 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7987   match(Set dst (SqrtD src));
  7989   size(4);
  7990   format %{ "FSQRTD $src,$dst" %}
  7991   ins_encode(fsqrtd(dst, src));
  7992   ins_pipe(fdivD_reg_reg);
  7993 %}
  7995 //----------Logical Instructions-----------------------------------------------
  7996 // And Instructions
  7997 // Register And
  7998 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7999   match(Set dst (AndI src1 src2));
  8001   size(4);
  8002   format %{ "AND    $src1,$src2,$dst" %}
  8003   opcode(Assembler::and_op3, Assembler::arith_op);
  8004   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8005   ins_pipe(ialu_reg_reg);
  8006 %}
  8008 // Immediate And
  8009 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8010   match(Set dst (AndI src1 src2));
  8012   size(4);
  8013   format %{ "AND    $src1,$src2,$dst" %}
  8014   opcode(Assembler::and_op3, Assembler::arith_op);
  8015   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8016   ins_pipe(ialu_reg_imm);
  8017 %}
  8019 // Register And Long
  8020 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8021   match(Set dst (AndL src1 src2));
  8023   ins_cost(DEFAULT_COST);
  8024   size(4);
  8025   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8026   opcode(Assembler::and_op3, Assembler::arith_op);
  8027   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8028   ins_pipe(ialu_reg_reg);
  8029 %}
  8031 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8032   match(Set dst (AndL src1 con));
  8034   ins_cost(DEFAULT_COST);
  8035   size(4);
  8036   format %{ "AND    $src1,$con,$dst\t! long" %}
  8037   opcode(Assembler::and_op3, Assembler::arith_op);
  8038   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8039   ins_pipe(ialu_reg_imm);
  8040 %}
  8042 // Or Instructions
  8043 // Register Or
  8044 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8045   match(Set dst (OrI src1 src2));
  8047   size(4);
  8048   format %{ "OR     $src1,$src2,$dst" %}
  8049   opcode(Assembler::or_op3, Assembler::arith_op);
  8050   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8051   ins_pipe(ialu_reg_reg);
  8052 %}
  8054 // Immediate Or
  8055 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8056   match(Set dst (OrI src1 src2));
  8058   size(4);
  8059   format %{ "OR     $src1,$src2,$dst" %}
  8060   opcode(Assembler::or_op3, Assembler::arith_op);
  8061   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8062   ins_pipe(ialu_reg_imm);
  8063 %}
  8065 // Register Or Long
  8066 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8067   match(Set dst (OrL src1 src2));
  8069   ins_cost(DEFAULT_COST);
  8070   size(4);
  8071   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8072   opcode(Assembler::or_op3, Assembler::arith_op);
  8073   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8074   ins_pipe(ialu_reg_reg);
  8075 %}
  8077 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8078   match(Set dst (OrL src1 con));
  8079   ins_cost(DEFAULT_COST*2);
  8081   ins_cost(DEFAULT_COST);
  8082   size(4);
  8083   format %{ "OR     $src1,$con,$dst\t! long" %}
  8084   opcode(Assembler::or_op3, Assembler::arith_op);
  8085   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8086   ins_pipe(ialu_reg_imm);
  8087 %}
  8089 #ifndef _LP64
  8091 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8092 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8093   match(Set dst (OrI src1 (CastP2X src2)));
  8095   size(4);
  8096   format %{ "OR     $src1,$src2,$dst" %}
  8097   opcode(Assembler::or_op3, Assembler::arith_op);
  8098   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8099   ins_pipe(ialu_reg_reg);
  8100 %}
  8102 #else
  8104 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8105   match(Set dst (OrL src1 (CastP2X src2)));
  8107   ins_cost(DEFAULT_COST);
  8108   size(4);
  8109   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8110   opcode(Assembler::or_op3, Assembler::arith_op);
  8111   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8112   ins_pipe(ialu_reg_reg);
  8113 %}
  8115 #endif
  8117 // Xor Instructions
  8118 // Register Xor
  8119 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8120   match(Set dst (XorI src1 src2));
  8122   size(4);
  8123   format %{ "XOR    $src1,$src2,$dst" %}
  8124   opcode(Assembler::xor_op3, Assembler::arith_op);
  8125   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8126   ins_pipe(ialu_reg_reg);
  8127 %}
  8129 // Immediate Xor
  8130 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8131   match(Set dst (XorI src1 src2));
  8133   size(4);
  8134   format %{ "XOR    $src1,$src2,$dst" %}
  8135   opcode(Assembler::xor_op3, Assembler::arith_op);
  8136   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8137   ins_pipe(ialu_reg_imm);
  8138 %}
  8140 // Register Xor Long
  8141 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8142   match(Set dst (XorL src1 src2));
  8144   ins_cost(DEFAULT_COST);
  8145   size(4);
  8146   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8147   opcode(Assembler::xor_op3, Assembler::arith_op);
  8148   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8149   ins_pipe(ialu_reg_reg);
  8150 %}
  8152 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8153   match(Set dst (XorL src1 con));
  8155   ins_cost(DEFAULT_COST);
  8156   size(4);
  8157   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8158   opcode(Assembler::xor_op3, Assembler::arith_op);
  8159   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8160   ins_pipe(ialu_reg_imm);
  8161 %}
  8163 //----------Convert to Boolean-------------------------------------------------
  8164 // Nice hack for 32-bit tests but doesn't work for
  8165 // 64-bit pointers.
  8166 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8167   match(Set dst (Conv2B src));
  8168   effect( KILL ccr );
  8169   ins_cost(DEFAULT_COST*2);
  8170   format %{ "CMP    R_G0,$src\n\t"
  8171             "ADDX   R_G0,0,$dst" %}
  8172   ins_encode( enc_to_bool( src, dst ) );
  8173   ins_pipe(ialu_reg_ialu);
  8174 %}
  8176 #ifndef _LP64
  8177 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8178   match(Set dst (Conv2B src));
  8179   effect( KILL ccr );
  8180   ins_cost(DEFAULT_COST*2);
  8181   format %{ "CMP    R_G0,$src\n\t"
  8182             "ADDX   R_G0,0,$dst" %}
  8183   ins_encode( enc_to_bool( src, dst ) );
  8184   ins_pipe(ialu_reg_ialu);
  8185 %}
  8186 #else
  8187 instruct convP2B( iRegI dst, iRegP src ) %{
  8188   match(Set dst (Conv2B src));
  8189   ins_cost(DEFAULT_COST*2);
  8190   format %{ "MOV    $src,$dst\n\t"
  8191             "MOVRNZ $src,1,$dst" %}
  8192   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8193   ins_pipe(ialu_clr_and_mover);
  8194 %}
  8195 #endif
  8197 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8198   match(Set dst (CmpLTMask src zero));
  8199   effect(KILL ccr);
  8200   size(4);
  8201   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8202   ins_encode %{
  8203     __ sra($src$$Register, 31, $dst$$Register);
  8204   %}
  8205   ins_pipe(ialu_reg_imm);
  8206 %}
  8208 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8209   match(Set dst (CmpLTMask p q));
  8210   effect( KILL ccr );
  8211   ins_cost(DEFAULT_COST*4);
  8212   format %{ "CMP    $p,$q\n\t"
  8213             "MOV    #0,$dst\n\t"
  8214             "BLT,a  .+8\n\t"
  8215             "MOV    #-1,$dst" %}
  8216   ins_encode( enc_ltmask(p,q,dst) );
  8217   ins_pipe(ialu_reg_reg_ialu);
  8218 %}
  8220 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8221   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8222   effect(KILL ccr, TEMP tmp);
  8223   ins_cost(DEFAULT_COST*3);
  8225   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8226             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8227             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8228   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8229   ins_pipe( cadd_cmpltmask );
  8230 %}
  8233 //-----------------------------------------------------------------
  8234 // Direct raw moves between float and general registers using VIS3.
  8236 //  ins_pipe(faddF_reg);
  8237 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8238   predicate(UseVIS >= 3);
  8239   match(Set dst (MoveF2I src));
  8241   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8242   ins_encode %{
  8243     __ movstouw($src$$FloatRegister, $dst$$Register);
  8244   %}
  8245   ins_pipe(ialu_reg_reg);
  8246 %}
  8248 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8249   predicate(UseVIS >= 3);
  8250   match(Set dst (MoveI2F src));
  8252   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8253   ins_encode %{
  8254     __ movwtos($src$$Register, $dst$$FloatRegister);
  8255   %}
  8256   ins_pipe(ialu_reg_reg);
  8257 %}
  8259 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8260   predicate(UseVIS >= 3);
  8261   match(Set dst (MoveD2L src));
  8263   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8264   ins_encode %{
  8265     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8266   %}
  8267   ins_pipe(ialu_reg_reg);
  8268 %}
  8270 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8271   predicate(UseVIS >= 3);
  8272   match(Set dst (MoveL2D src));
  8274   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8275   ins_encode %{
  8276     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8277   %}
  8278   ins_pipe(ialu_reg_reg);
  8279 %}
  8282 // Raw moves between float and general registers using stack.
  8284 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8285   match(Set dst (MoveF2I src));
  8286   effect(DEF dst, USE src);
  8287   ins_cost(MEMORY_REF_COST);
  8289   size(4);
  8290   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8291   opcode(Assembler::lduw_op3);
  8292   ins_encode(simple_form3_mem_reg( src, dst ) );
  8293   ins_pipe(iload_mem);
  8294 %}
  8296 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8297   match(Set dst (MoveI2F src));
  8298   effect(DEF dst, USE src);
  8299   ins_cost(MEMORY_REF_COST);
  8301   size(4);
  8302   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8303   opcode(Assembler::ldf_op3);
  8304   ins_encode(simple_form3_mem_reg(src, dst));
  8305   ins_pipe(floadF_stk);
  8306 %}
  8308 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8309   match(Set dst (MoveD2L src));
  8310   effect(DEF dst, USE src);
  8311   ins_cost(MEMORY_REF_COST);
  8313   size(4);
  8314   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8315   opcode(Assembler::ldx_op3);
  8316   ins_encode(simple_form3_mem_reg( src, dst ) );
  8317   ins_pipe(iload_mem);
  8318 %}
  8320 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8321   match(Set dst (MoveL2D src));
  8322   effect(DEF dst, USE src);
  8323   ins_cost(MEMORY_REF_COST);
  8325   size(4);
  8326   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8327   opcode(Assembler::lddf_op3);
  8328   ins_encode(simple_form3_mem_reg(src, dst));
  8329   ins_pipe(floadD_stk);
  8330 %}
  8332 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8333   match(Set dst (MoveF2I src));
  8334   effect(DEF dst, USE src);
  8335   ins_cost(MEMORY_REF_COST);
  8337   size(4);
  8338   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8339   opcode(Assembler::stf_op3);
  8340   ins_encode(simple_form3_mem_reg(dst, src));
  8341   ins_pipe(fstoreF_stk_reg);
  8342 %}
  8344 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8345   match(Set dst (MoveI2F src));
  8346   effect(DEF dst, USE src);
  8347   ins_cost(MEMORY_REF_COST);
  8349   size(4);
  8350   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8351   opcode(Assembler::stw_op3);
  8352   ins_encode(simple_form3_mem_reg( dst, src ) );
  8353   ins_pipe(istore_mem_reg);
  8354 %}
  8356 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8357   match(Set dst (MoveD2L src));
  8358   effect(DEF dst, USE src);
  8359   ins_cost(MEMORY_REF_COST);
  8361   size(4);
  8362   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8363   opcode(Assembler::stdf_op3);
  8364   ins_encode(simple_form3_mem_reg(dst, src));
  8365   ins_pipe(fstoreD_stk_reg);
  8366 %}
  8368 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8369   match(Set dst (MoveL2D src));
  8370   effect(DEF dst, USE src);
  8371   ins_cost(MEMORY_REF_COST);
  8373   size(4);
  8374   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8375   opcode(Assembler::stx_op3);
  8376   ins_encode(simple_form3_mem_reg( dst, src ) );
  8377   ins_pipe(istore_mem_reg);
  8378 %}
  8381 //----------Arithmetic Conversion Instructions---------------------------------
  8382 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8384 instruct convD2F_reg(regF dst, regD src) %{
  8385   match(Set dst (ConvD2F src));
  8386   size(4);
  8387   format %{ "FDTOS  $src,$dst" %}
  8388   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8389   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8390   ins_pipe(fcvtD2F);
  8391 %}
  8394 // Convert a double to an int in a float register.
  8395 // If the double is a NAN, stuff a zero in instead.
  8396 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8397   effect(DEF dst, USE src, KILL fcc0);
  8398   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8399             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8400             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8401             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8402             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8403       "skip:" %}
  8404   ins_encode(form_d2i_helper(src,dst));
  8405   ins_pipe(fcvtD2I);
  8406 %}
  8408 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8409   match(Set dst (ConvD2I src));
  8410   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8411   expand %{
  8412     regF tmp;
  8413     convD2I_helper(tmp, src);
  8414     regF_to_stkI(dst, tmp);
  8415   %}
  8416 %}
  8418 instruct convD2I_reg(iRegI dst, regD src) %{
  8419   predicate(UseVIS >= 3);
  8420   match(Set dst (ConvD2I src));
  8421   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8422   expand %{
  8423     regF tmp;
  8424     convD2I_helper(tmp, src);
  8425     MoveF2I_reg_reg(dst, tmp);
  8426   %}
  8427 %}
  8430 // Convert a double to a long in a double register.
  8431 // If the double is a NAN, stuff a zero in instead.
  8432 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8433   effect(DEF dst, USE src, KILL fcc0);
  8434   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8435             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8436             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8437             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8438             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8439       "skip:" %}
  8440   ins_encode(form_d2l_helper(src,dst));
  8441   ins_pipe(fcvtD2L);
  8442 %}
  8444 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8445   match(Set dst (ConvD2L src));
  8446   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8447   expand %{
  8448     regD tmp;
  8449     convD2L_helper(tmp, src);
  8450     regD_to_stkL(dst, tmp);
  8451   %}
  8452 %}
  8454 instruct convD2L_reg(iRegL dst, regD src) %{
  8455   predicate(UseVIS >= 3);
  8456   match(Set dst (ConvD2L src));
  8457   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8458   expand %{
  8459     regD tmp;
  8460     convD2L_helper(tmp, src);
  8461     MoveD2L_reg_reg(dst, tmp);
  8462   %}
  8463 %}
  8466 instruct convF2D_reg(regD dst, regF src) %{
  8467   match(Set dst (ConvF2D src));
  8468   format %{ "FSTOD  $src,$dst" %}
  8469   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8470   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8471   ins_pipe(fcvtF2D);
  8472 %}
  8475 // Convert a float to an int in a float register.
  8476 // If the float is a NAN, stuff a zero in instead.
  8477 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8478   effect(DEF dst, USE src, KILL fcc0);
  8479   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8480             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8481             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8482             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8483             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8484       "skip:" %}
  8485   ins_encode(form_f2i_helper(src,dst));
  8486   ins_pipe(fcvtF2I);
  8487 %}
  8489 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8490   match(Set dst (ConvF2I src));
  8491   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8492   expand %{
  8493     regF tmp;
  8494     convF2I_helper(tmp, src);
  8495     regF_to_stkI(dst, tmp);
  8496   %}
  8497 %}
  8499 instruct convF2I_reg(iRegI dst, regF src) %{
  8500   predicate(UseVIS >= 3);
  8501   match(Set dst (ConvF2I src));
  8502   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8503   expand %{
  8504     regF tmp;
  8505     convF2I_helper(tmp, src);
  8506     MoveF2I_reg_reg(dst, tmp);
  8507   %}
  8508 %}
  8511 // Convert a float to a long in a float register.
  8512 // If the float is a NAN, stuff a zero in instead.
  8513 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8514   effect(DEF dst, USE src, KILL fcc0);
  8515   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8516             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8517             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8518             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8519             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8520       "skip:" %}
  8521   ins_encode(form_f2l_helper(src,dst));
  8522   ins_pipe(fcvtF2L);
  8523 %}
  8525 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8526   match(Set dst (ConvF2L src));
  8527   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8528   expand %{
  8529     regD tmp;
  8530     convF2L_helper(tmp, src);
  8531     regD_to_stkL(dst, tmp);
  8532   %}
  8533 %}
  8535 instruct convF2L_reg(iRegL dst, regF src) %{
  8536   predicate(UseVIS >= 3);
  8537   match(Set dst (ConvF2L src));
  8538   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8539   expand %{
  8540     regD tmp;
  8541     convF2L_helper(tmp, src);
  8542     MoveD2L_reg_reg(dst, tmp);
  8543   %}
  8544 %}
  8547 instruct convI2D_helper(regD dst, regF tmp) %{
  8548   effect(USE tmp, DEF dst);
  8549   format %{ "FITOD  $tmp,$dst" %}
  8550   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8551   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8552   ins_pipe(fcvtI2D);
  8553 %}
  8555 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8556   match(Set dst (ConvI2D src));
  8557   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8558   expand %{
  8559     regF tmp;
  8560     stkI_to_regF(tmp, src);
  8561     convI2D_helper(dst, tmp);
  8562   %}
  8563 %}
  8565 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8566   predicate(UseVIS >= 3);
  8567   match(Set dst (ConvI2D src));
  8568   expand %{
  8569     regF tmp;
  8570     MoveI2F_reg_reg(tmp, src);
  8571     convI2D_helper(dst, tmp);
  8572   %}
  8573 %}
  8575 instruct convI2D_mem(regD_low dst, memory mem) %{
  8576   match(Set dst (ConvI2D (LoadI mem)));
  8577   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8578   size(8);
  8579   format %{ "LDF    $mem,$dst\n\t"
  8580             "FITOD  $dst,$dst" %}
  8581   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8582   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8583   ins_pipe(floadF_mem);
  8584 %}
  8587 instruct convI2F_helper(regF dst, regF tmp) %{
  8588   effect(DEF dst, USE tmp);
  8589   format %{ "FITOS  $tmp,$dst" %}
  8590   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8591   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8592   ins_pipe(fcvtI2F);
  8593 %}
  8595 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8596   match(Set dst (ConvI2F src));
  8597   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8598   expand %{
  8599     regF tmp;
  8600     stkI_to_regF(tmp,src);
  8601     convI2F_helper(dst, tmp);
  8602   %}
  8603 %}
  8605 instruct convI2F_reg(regF dst, iRegI src) %{
  8606   predicate(UseVIS >= 3);
  8607   match(Set dst (ConvI2F src));
  8608   ins_cost(DEFAULT_COST);
  8609   expand %{
  8610     regF tmp;
  8611     MoveI2F_reg_reg(tmp, src);
  8612     convI2F_helper(dst, tmp);
  8613   %}
  8614 %}
  8616 instruct convI2F_mem( regF dst, memory mem ) %{
  8617   match(Set dst (ConvI2F (LoadI mem)));
  8618   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8619   size(8);
  8620   format %{ "LDF    $mem,$dst\n\t"
  8621             "FITOS  $dst,$dst" %}
  8622   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8623   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8624   ins_pipe(floadF_mem);
  8625 %}
  8628 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8629   match(Set dst (ConvI2L src));
  8630   size(4);
  8631   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8632   opcode(Assembler::sra_op3, Assembler::arith_op);
  8633   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8634   ins_pipe(ialu_reg_reg);
  8635 %}
  8637 // Zero-extend convert int to long
  8638 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8639   match(Set dst (AndL (ConvI2L src) mask) );
  8640   size(4);
  8641   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8642   opcode(Assembler::srl_op3, Assembler::arith_op);
  8643   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8644   ins_pipe(ialu_reg_reg);
  8645 %}
  8647 // Zero-extend long
  8648 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8649   match(Set dst (AndL src mask) );
  8650   size(4);
  8651   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8652   opcode(Assembler::srl_op3, Assembler::arith_op);
  8653   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8654   ins_pipe(ialu_reg_reg);
  8655 %}
  8658 //-----------
  8659 // Long to Double conversion using V8 opcodes.
  8660 // Still useful because cheetah traps and becomes
  8661 // amazingly slow for some common numbers.
  8663 // Magic constant, 0x43300000
  8664 instruct loadConI_x43300000(iRegI dst) %{
  8665   effect(DEF dst);
  8666   size(4);
  8667   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8668   ins_encode(SetHi22(0x43300000, dst));
  8669   ins_pipe(ialu_none);
  8670 %}
  8672 // Magic constant, 0x41f00000
  8673 instruct loadConI_x41f00000(iRegI dst) %{
  8674   effect(DEF dst);
  8675   size(4);
  8676   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8677   ins_encode(SetHi22(0x41f00000, dst));
  8678   ins_pipe(ialu_none);
  8679 %}
  8681 // Construct a double from two float halves
  8682 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8683   effect(DEF dst, USE src1, USE src2);
  8684   size(8);
  8685   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8686             "FMOVS  $src2.lo,$dst.lo" %}
  8687   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8688   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8689   ins_pipe(faddD_reg_reg);
  8690 %}
  8692 // Convert integer in high half of a double register (in the lower half of
  8693 // the double register file) to double
  8694 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8695   effect(DEF dst, USE src);
  8696   size(4);
  8697   format %{ "FITOD  $src,$dst" %}
  8698   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8699   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8700   ins_pipe(fcvtLHi2D);
  8701 %}
  8703 // Add float double precision
  8704 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8705   effect(DEF dst, USE src1, USE src2);
  8706   size(4);
  8707   format %{ "FADDD  $src1,$src2,$dst" %}
  8708   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8709   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8710   ins_pipe(faddD_reg_reg);
  8711 %}
  8713 // Sub float double precision
  8714 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8715   effect(DEF dst, USE src1, USE src2);
  8716   size(4);
  8717   format %{ "FSUBD  $src1,$src2,$dst" %}
  8718   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8719   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8720   ins_pipe(faddD_reg_reg);
  8721 %}
  8723 // Mul float double precision
  8724 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8725   effect(DEF dst, USE src1, USE src2);
  8726   size(4);
  8727   format %{ "FMULD  $src1,$src2,$dst" %}
  8728   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8729   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8730   ins_pipe(fmulD_reg_reg);
  8731 %}
  8733 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8734   match(Set dst (ConvL2D src));
  8735   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8737   expand %{
  8738     regD_low   tmpsrc;
  8739     iRegI      ix43300000;
  8740     iRegI      ix41f00000;
  8741     stackSlotL lx43300000;
  8742     stackSlotL lx41f00000;
  8743     regD_low   dx43300000;
  8744     regD       dx41f00000;
  8745     regD       tmp1;
  8746     regD_low   tmp2;
  8747     regD       tmp3;
  8748     regD       tmp4;
  8750     stkL_to_regD(tmpsrc, src);
  8752     loadConI_x43300000(ix43300000);
  8753     loadConI_x41f00000(ix41f00000);
  8754     regI_to_stkLHi(lx43300000, ix43300000);
  8755     regI_to_stkLHi(lx41f00000, ix41f00000);
  8756     stkL_to_regD(dx43300000, lx43300000);
  8757     stkL_to_regD(dx41f00000, lx41f00000);
  8759     convI2D_regDHi_regD(tmp1, tmpsrc);
  8760     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8761     subD_regD_regD(tmp3, tmp2, dx43300000);
  8762     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8763     addD_regD_regD(dst, tmp3, tmp4);
  8764   %}
  8765 %}
  8767 // Long to Double conversion using fast fxtof
  8768 instruct convL2D_helper(regD dst, regD tmp) %{
  8769   effect(DEF dst, USE tmp);
  8770   size(4);
  8771   format %{ "FXTOD  $tmp,$dst" %}
  8772   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8773   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8774   ins_pipe(fcvtL2D);
  8775 %}
  8777 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8778   predicate(VM_Version::has_fast_fxtof());
  8779   match(Set dst (ConvL2D src));
  8780   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8781   expand %{
  8782     regD tmp;
  8783     stkL_to_regD(tmp, src);
  8784     convL2D_helper(dst, tmp);
  8785   %}
  8786 %}
  8788 instruct convL2D_reg(regD dst, iRegL src) %{
  8789   predicate(UseVIS >= 3);
  8790   match(Set dst (ConvL2D src));
  8791   expand %{
  8792     regD tmp;
  8793     MoveL2D_reg_reg(tmp, src);
  8794     convL2D_helper(dst, tmp);
  8795   %}
  8796 %}
  8798 // Long to Float conversion using fast fxtof
  8799 instruct convL2F_helper(regF dst, regD tmp) %{
  8800   effect(DEF dst, USE tmp);
  8801   size(4);
  8802   format %{ "FXTOS  $tmp,$dst" %}
  8803   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8804   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8805   ins_pipe(fcvtL2F);
  8806 %}
  8808 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8809   match(Set dst (ConvL2F src));
  8810   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8811   expand %{
  8812     regD tmp;
  8813     stkL_to_regD(tmp, src);
  8814     convL2F_helper(dst, tmp);
  8815   %}
  8816 %}
  8818 instruct convL2F_reg(regF dst, iRegL src) %{
  8819   predicate(UseVIS >= 3);
  8820   match(Set dst (ConvL2F src));
  8821   ins_cost(DEFAULT_COST);
  8822   expand %{
  8823     regD tmp;
  8824     MoveL2D_reg_reg(tmp, src);
  8825     convL2F_helper(dst, tmp);
  8826   %}
  8827 %}
  8829 //-----------
  8831 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8832   match(Set dst (ConvL2I src));
  8833 #ifndef _LP64
  8834   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8835   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8836   ins_pipe(ialu_move_reg_I_to_L);
  8837 #else
  8838   size(4);
  8839   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8840   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8841   ins_pipe(ialu_reg);
  8842 #endif
  8843 %}
  8845 // Register Shift Right Immediate
  8846 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8847   match(Set dst (ConvL2I (RShiftL src cnt)));
  8849   size(4);
  8850   format %{ "SRAX   $src,$cnt,$dst" %}
  8851   opcode(Assembler::srax_op3, Assembler::arith_op);
  8852   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8853   ins_pipe(ialu_reg_imm);
  8854 %}
  8856 // Replicate scalar to packed byte values in Double register
  8857 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8858   effect(DEF dst, USE src);
  8859   format %{ "SLLX  $src,56,$dst\n\t"
  8860             "SRLX  $dst, 8,O7\n\t"
  8861             "OR    $dst,O7,$dst\n\t"
  8862             "SRLX  $dst,16,O7\n\t"
  8863             "OR    $dst,O7,$dst\n\t"
  8864             "SRLX  $dst,32,O7\n\t"
  8865             "OR    $dst,O7,$dst\t! replicate8B" %}
  8866   ins_encode( enc_repl8b(src, dst));
  8867   ins_pipe(ialu_reg);
  8868 %}
  8870 // Replicate scalar to packed byte values in Double register
  8871 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8872   match(Set dst (Replicate8B src));
  8873   expand %{
  8874     iRegL tmp;
  8875     Repl8B_reg_helper(tmp, src);
  8876     regL_to_stkD(dst, tmp);
  8877   %}
  8878 %}
  8880 // Replicate scalar constant to packed byte values in Double register
  8881 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8882   match(Set dst (Replicate8B con));
  8883   effect(KILL tmp);
  8884   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8885   ins_encode %{
  8886     // XXX This is a quick fix for 6833573.
  8887     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8888     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8889     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8890   %}
  8891   ins_pipe(loadConFD);
  8892 %}
  8894 // Replicate scalar to packed char values into stack slot
  8895 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8896   effect(DEF dst, USE src);
  8897   format %{ "SLLX  $src,48,$dst\n\t"
  8898             "SRLX  $dst,16,O7\n\t"
  8899             "OR    $dst,O7,$dst\n\t"
  8900             "SRLX  $dst,32,O7\n\t"
  8901             "OR    $dst,O7,$dst\t! replicate4C" %}
  8902   ins_encode( enc_repl4s(src, dst) );
  8903   ins_pipe(ialu_reg);
  8904 %}
  8906 // Replicate scalar to packed char values into stack slot
  8907 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8908   match(Set dst (Replicate4C src));
  8909   expand %{
  8910     iRegL tmp;
  8911     Repl4C_reg_helper(tmp, src);
  8912     regL_to_stkD(dst, tmp);
  8913   %}
  8914 %}
  8916 // Replicate scalar constant to packed char values in Double register
  8917 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8918   match(Set dst (Replicate4C con));
  8919   effect(KILL tmp);
  8920   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8921   ins_encode %{
  8922     // XXX This is a quick fix for 6833573.
  8923     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8924     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8925     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8926   %}
  8927   ins_pipe(loadConFD);
  8928 %}
  8930 // Replicate scalar to packed short values into stack slot
  8931 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8932   effect(DEF dst, USE src);
  8933   format %{ "SLLX  $src,48,$dst\n\t"
  8934             "SRLX  $dst,16,O7\n\t"
  8935             "OR    $dst,O7,$dst\n\t"
  8936             "SRLX  $dst,32,O7\n\t"
  8937             "OR    $dst,O7,$dst\t! replicate4S" %}
  8938   ins_encode( enc_repl4s(src, dst) );
  8939   ins_pipe(ialu_reg);
  8940 %}
  8942 // Replicate scalar to packed short values into stack slot
  8943 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8944   match(Set dst (Replicate4S src));
  8945   expand %{
  8946     iRegL tmp;
  8947     Repl4S_reg_helper(tmp, src);
  8948     regL_to_stkD(dst, tmp);
  8949   %}
  8950 %}
  8952 // Replicate scalar constant to packed short values in Double register
  8953 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8954   match(Set dst (Replicate4S con));
  8955   effect(KILL tmp);
  8956   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8957   ins_encode %{
  8958     // XXX This is a quick fix for 6833573.
  8959     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8960     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8961     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8962   %}
  8963   ins_pipe(loadConFD);
  8964 %}
  8966 // Replicate scalar to packed int values in Double register
  8967 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8968   effect(DEF dst, USE src);
  8969   format %{ "SLLX  $src,32,$dst\n\t"
  8970             "SRLX  $dst,32,O7\n\t"
  8971             "OR    $dst,O7,$dst\t! replicate2I" %}
  8972   ins_encode( enc_repl2i(src, dst));
  8973   ins_pipe(ialu_reg);
  8974 %}
  8976 // Replicate scalar to packed int values in Double register
  8977 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8978   match(Set dst (Replicate2I src));
  8979   expand %{
  8980     iRegL tmp;
  8981     Repl2I_reg_helper(tmp, src);
  8982     regL_to_stkD(dst, tmp);
  8983   %}
  8984 %}
  8986 // Replicate scalar zero constant to packed int values in Double register
  8987 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  8988   match(Set dst (Replicate2I con));
  8989   effect(KILL tmp);
  8990   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  8991   ins_encode %{
  8992     // XXX This is a quick fix for 6833573.
  8993     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  8994     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  8995     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8996   %}
  8997   ins_pipe(loadConFD);
  8998 %}
  9000 //----------Control Flow Instructions------------------------------------------
  9001 // Compare Instructions
  9002 // Compare Integers
  9003 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  9004   match(Set icc (CmpI op1 op2));
  9005   effect( DEF icc, USE op1, USE op2 );
  9007   size(4);
  9008   format %{ "CMP    $op1,$op2" %}
  9009   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9010   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9011   ins_pipe(ialu_cconly_reg_reg);
  9012 %}
  9014 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  9015   match(Set icc (CmpU op1 op2));
  9017   size(4);
  9018   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9019   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9020   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9021   ins_pipe(ialu_cconly_reg_reg);
  9022 %}
  9024 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  9025   match(Set icc (CmpI op1 op2));
  9026   effect( DEF icc, USE op1 );
  9028   size(4);
  9029   format %{ "CMP    $op1,$op2" %}
  9030   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9031   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9032   ins_pipe(ialu_cconly_reg_imm);
  9033 %}
  9035 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  9036   match(Set icc (CmpI (AndI op1 op2) zero));
  9038   size(4);
  9039   format %{ "BTST   $op2,$op1" %}
  9040   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9041   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9042   ins_pipe(ialu_cconly_reg_reg_zero);
  9043 %}
  9045 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  9046   match(Set icc (CmpI (AndI op1 op2) zero));
  9048   size(4);
  9049   format %{ "BTST   $op2,$op1" %}
  9050   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9051   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9052   ins_pipe(ialu_cconly_reg_imm_zero);
  9053 %}
  9055 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  9056   match(Set xcc (CmpL op1 op2));
  9057   effect( DEF xcc, USE op1, USE op2 );
  9059   size(4);
  9060   format %{ "CMP    $op1,$op2\t\t! long" %}
  9061   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9062   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9063   ins_pipe(ialu_cconly_reg_reg);
  9064 %}
  9066 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  9067   match(Set xcc (CmpL op1 con));
  9068   effect( DEF xcc, USE op1, USE con );
  9070   size(4);
  9071   format %{ "CMP    $op1,$con\t\t! long" %}
  9072   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9073   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9074   ins_pipe(ialu_cconly_reg_reg);
  9075 %}
  9077 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9078   match(Set xcc (CmpL (AndL op1 op2) zero));
  9079   effect( DEF xcc, USE op1, USE op2 );
  9081   size(4);
  9082   format %{ "BTST   $op1,$op2\t\t! long" %}
  9083   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9084   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9085   ins_pipe(ialu_cconly_reg_reg);
  9086 %}
  9088 // useful for checking the alignment of a pointer:
  9089 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9090   match(Set xcc (CmpL (AndL op1 con) zero));
  9091   effect( DEF xcc, USE op1, USE con );
  9093   size(4);
  9094   format %{ "BTST   $op1,$con\t\t! long" %}
  9095   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9096   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9097   ins_pipe(ialu_cconly_reg_reg);
  9098 %}
  9100 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  9101   match(Set icc (CmpU op1 op2));
  9103   size(4);
  9104   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9105   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9106   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9107   ins_pipe(ialu_cconly_reg_imm);
  9108 %}
  9110 // Compare Pointers
  9111 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9112   match(Set pcc (CmpP op1 op2));
  9114   size(4);
  9115   format %{ "CMP    $op1,$op2\t! ptr" %}
  9116   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9117   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9118   ins_pipe(ialu_cconly_reg_reg);
  9119 %}
  9121 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9122   match(Set pcc (CmpP op1 op2));
  9124   size(4);
  9125   format %{ "CMP    $op1,$op2\t! ptr" %}
  9126   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9127   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9128   ins_pipe(ialu_cconly_reg_imm);
  9129 %}
  9131 // Compare Narrow oops
  9132 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9133   match(Set icc (CmpN op1 op2));
  9135   size(4);
  9136   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9137   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9138   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9139   ins_pipe(ialu_cconly_reg_reg);
  9140 %}
  9142 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9143   match(Set icc (CmpN op1 op2));
  9145   size(4);
  9146   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9147   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9148   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9149   ins_pipe(ialu_cconly_reg_imm);
  9150 %}
  9152 //----------Max and Min--------------------------------------------------------
  9153 // Min Instructions
  9154 // Conditional move for min
  9155 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9156   effect( USE_DEF op2, USE op1, USE icc );
  9158   size(4);
  9159   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9160   opcode(Assembler::less);
  9161   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9162   ins_pipe(ialu_reg_flags);
  9163 %}
  9165 // Min Register with Register.
  9166 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9167   match(Set op2 (MinI op1 op2));
  9168   ins_cost(DEFAULT_COST*2);
  9169   expand %{
  9170     flagsReg icc;
  9171     compI_iReg(icc,op1,op2);
  9172     cmovI_reg_lt(op2,op1,icc);
  9173   %}
  9174 %}
  9176 // Max Instructions
  9177 // Conditional move for max
  9178 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9179   effect( USE_DEF op2, USE op1, USE icc );
  9180   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9181   opcode(Assembler::greater);
  9182   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9183   ins_pipe(ialu_reg_flags);
  9184 %}
  9186 // Max Register with Register
  9187 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9188   match(Set op2 (MaxI op1 op2));
  9189   ins_cost(DEFAULT_COST*2);
  9190   expand %{
  9191     flagsReg icc;
  9192     compI_iReg(icc,op1,op2);
  9193     cmovI_reg_gt(op2,op1,icc);
  9194   %}
  9195 %}
  9198 //----------Float Compares----------------------------------------------------
  9199 // Compare floating, generate condition code
  9200 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9201   match(Set fcc (CmpF src1 src2));
  9203   size(4);
  9204   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9205   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9206   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9207   ins_pipe(faddF_fcc_reg_reg_zero);
  9208 %}
  9210 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9211   match(Set fcc (CmpD src1 src2));
  9213   size(4);
  9214   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9215   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9216   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9217   ins_pipe(faddD_fcc_reg_reg_zero);
  9218 %}
  9221 // Compare floating, generate -1,0,1
  9222 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9223   match(Set dst (CmpF3 src1 src2));
  9224   effect(KILL fcc0);
  9225   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9226   format %{ "fcmpl  $dst,$src1,$src2" %}
  9227   // Primary = float
  9228   opcode( true );
  9229   ins_encode( floating_cmp( dst, src1, src2 ) );
  9230   ins_pipe( floating_cmp );
  9231 %}
  9233 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9234   match(Set dst (CmpD3 src1 src2));
  9235   effect(KILL fcc0);
  9236   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9237   format %{ "dcmpl  $dst,$src1,$src2" %}
  9238   // Primary = double (not float)
  9239   opcode( false );
  9240   ins_encode( floating_cmp( dst, src1, src2 ) );
  9241   ins_pipe( floating_cmp );
  9242 %}
  9244 //----------Branches---------------------------------------------------------
  9245 // Jump
  9246 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9247 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9248   match(Jump switch_val);
  9250   ins_cost(350);
  9252   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9253              "LD     [O7 + $switch_val], O7\n\t"
  9254              "JUMP   O7"
  9255          %}
  9256   ins_encode %{
  9257     // Calculate table address into a register.
  9258     Register table_reg;
  9259     Register label_reg = O7;
  9260     if (constant_offset() == 0) {
  9261       table_reg = $constanttablebase;
  9262     } else {
  9263       table_reg = O7;
  9264       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9265       __ add($constanttablebase, con_offset, table_reg);
  9268     // Jump to base address + switch value
  9269     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9270     __ jmp(label_reg, G0);
  9271     __ delayed()->nop();
  9272   %}
  9273   ins_pipe(ialu_reg_reg);
  9274 %}
  9276 // Direct Branch.  Use V8 version with longer range.
  9277 instruct branch(label labl) %{
  9278   match(Goto);
  9279   effect(USE labl);
  9281   size(8);
  9282   ins_cost(BRANCH_COST);
  9283   format %{ "BA     $labl" %}
  9284   ins_encode %{
  9285     Label* L = $labl$$label;
  9286     __ ba(*L);
  9287     __ delayed()->nop();
  9288   %}
  9289   ins_pipe(br);
  9290 %}
  9292 // Direct Branch, short with no delay slot
  9293 instruct branch_short(label labl) %{
  9294   match(Goto);
  9295   predicate(UseCBCond);
  9296   effect(USE labl);
  9298   size(4);
  9299   ins_cost(BRANCH_COST);
  9300   format %{ "BA     $labl\t! short branch" %}
  9301   ins_encode %{ 
  9302     Label* L = $labl$$label;
  9303     assert(__ use_cbcond(*L), "back to back cbcond");
  9304     __ ba_short(*L);
  9305   %}
  9306   ins_short_branch(1);
  9307   ins_avoid_back_to_back(1);
  9308   ins_pipe(cbcond_reg_imm);
  9309 %}
  9311 // Conditional Direct Branch
  9312 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9313   match(If cmp icc);
  9314   effect(USE labl);
  9316   size(8);
  9317   ins_cost(BRANCH_COST);
  9318   format %{ "BP$cmp   $icc,$labl" %}
  9319   // Prim = bits 24-22, Secnd = bits 31-30
  9320   ins_encode( enc_bp( labl, cmp, icc ) );
  9321   ins_pipe(br_cc);
  9322 %}
  9324 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9325   match(If cmp icc);
  9326   effect(USE labl);
  9328   ins_cost(BRANCH_COST);
  9329   format %{ "BP$cmp  $icc,$labl" %}
  9330   // Prim = bits 24-22, Secnd = bits 31-30
  9331   ins_encode( enc_bp( labl, cmp, icc ) );
  9332   ins_pipe(br_cc);
  9333 %}
  9335 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9336   match(If cmp pcc);
  9337   effect(USE labl);
  9339   size(8);
  9340   ins_cost(BRANCH_COST);
  9341   format %{ "BP$cmp  $pcc,$labl" %}
  9342   ins_encode %{
  9343     Label* L = $labl$$label;
  9344     Assembler::Predict predict_taken =
  9345       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9347     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9348     __ delayed()->nop();
  9349   %}
  9350   ins_pipe(br_cc);
  9351 %}
  9353 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9354   match(If cmp fcc);
  9355   effect(USE labl);
  9357   size(8);
  9358   ins_cost(BRANCH_COST);
  9359   format %{ "FBP$cmp $fcc,$labl" %}
  9360   ins_encode %{
  9361     Label* L = $labl$$label;
  9362     Assembler::Predict predict_taken =
  9363       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9365     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9366     __ delayed()->nop();
  9367   %}
  9368   ins_pipe(br_fcc);
  9369 %}
  9371 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9372   match(CountedLoopEnd cmp icc);
  9373   effect(USE labl);
  9375   size(8);
  9376   ins_cost(BRANCH_COST);
  9377   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9378   // Prim = bits 24-22, Secnd = bits 31-30
  9379   ins_encode( enc_bp( labl, cmp, icc ) );
  9380   ins_pipe(br_cc);
  9381 %}
  9383 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9384   match(CountedLoopEnd cmp icc);
  9385   effect(USE labl);
  9387   size(8);
  9388   ins_cost(BRANCH_COST);
  9389   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9390   // Prim = bits 24-22, Secnd = bits 31-30
  9391   ins_encode( enc_bp( labl, cmp, icc ) );
  9392   ins_pipe(br_cc);
  9393 %}
  9395 // Compare and branch instructions
  9396 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9397   match(If cmp (CmpI op1 op2));
  9398   effect(USE labl, KILL icc);
  9400   size(12);
  9401   ins_cost(BRANCH_COST);
  9402   format %{ "CMP    $op1,$op2\t! int\n\t"
  9403             "BP$cmp   $labl" %}
  9404   ins_encode %{
  9405     Label* L = $labl$$label;
  9406     Assembler::Predict predict_taken =
  9407       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9408     __ cmp($op1$$Register, $op2$$Register);
  9409     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9410     __ delayed()->nop();
  9411   %}
  9412   ins_pipe(cmp_br_reg_reg);
  9413 %}
  9415 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9416   match(If cmp (CmpI op1 op2));
  9417   effect(USE labl, KILL icc);
  9419   size(12);
  9420   ins_cost(BRANCH_COST);
  9421   format %{ "CMP    $op1,$op2\t! int\n\t"
  9422             "BP$cmp   $labl" %}
  9423   ins_encode %{
  9424     Label* L = $labl$$label;
  9425     Assembler::Predict predict_taken =
  9426       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9427     __ cmp($op1$$Register, $op2$$constant);
  9428     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9429     __ delayed()->nop();
  9430   %}
  9431   ins_pipe(cmp_br_reg_imm);
  9432 %}
  9434 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9435   match(If cmp (CmpU op1 op2));
  9436   effect(USE labl, KILL icc);
  9438   size(12);
  9439   ins_cost(BRANCH_COST);
  9440   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9441             "BP$cmp  $labl" %}
  9442   ins_encode %{
  9443     Label* L = $labl$$label;
  9444     Assembler::Predict predict_taken =
  9445       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9446     __ cmp($op1$$Register, $op2$$Register);
  9447     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9448     __ delayed()->nop();
  9449   %}
  9450   ins_pipe(cmp_br_reg_reg);
  9451 %}
  9453 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9454   match(If cmp (CmpU op1 op2));
  9455   effect(USE labl, KILL icc);
  9457   size(12);
  9458   ins_cost(BRANCH_COST);
  9459   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9460             "BP$cmp  $labl" %}
  9461   ins_encode %{
  9462     Label* L = $labl$$label;
  9463     Assembler::Predict predict_taken =
  9464       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9465     __ cmp($op1$$Register, $op2$$constant);
  9466     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9467     __ delayed()->nop();
  9468   %}
  9469   ins_pipe(cmp_br_reg_imm);
  9470 %}
  9472 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9473   match(If cmp (CmpL op1 op2));
  9474   effect(USE labl, KILL xcc);
  9476   size(12);
  9477   ins_cost(BRANCH_COST);
  9478   format %{ "CMP    $op1,$op2\t! long\n\t"
  9479             "BP$cmp   $labl" %}
  9480   ins_encode %{
  9481     Label* L = $labl$$label;
  9482     Assembler::Predict predict_taken =
  9483       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9484     __ cmp($op1$$Register, $op2$$Register);
  9485     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9486     __ delayed()->nop();
  9487   %}
  9488   ins_pipe(cmp_br_reg_reg);
  9489 %}
  9491 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9492   match(If cmp (CmpL op1 op2));
  9493   effect(USE labl, KILL xcc);
  9495   size(12);
  9496   ins_cost(BRANCH_COST);
  9497   format %{ "CMP    $op1,$op2\t! long\n\t"
  9498             "BP$cmp   $labl" %}
  9499   ins_encode %{
  9500     Label* L = $labl$$label;
  9501     Assembler::Predict predict_taken =
  9502       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9503     __ cmp($op1$$Register, $op2$$constant);
  9504     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9505     __ delayed()->nop();
  9506   %}
  9507   ins_pipe(cmp_br_reg_imm);
  9508 %}
  9510 // Compare Pointers and branch
  9511 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9512   match(If cmp (CmpP op1 op2));
  9513   effect(USE labl, KILL pcc);
  9515   size(12);
  9516   ins_cost(BRANCH_COST);
  9517   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9518             "B$cmp   $labl" %}
  9519   ins_encode %{
  9520     Label* L = $labl$$label;
  9521     Assembler::Predict predict_taken =
  9522       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9523     __ cmp($op1$$Register, $op2$$Register);
  9524     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9525     __ delayed()->nop();
  9526   %}
  9527   ins_pipe(cmp_br_reg_reg);
  9528 %}
  9530 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9531   match(If cmp (CmpP op1 null));
  9532   effect(USE labl, KILL pcc);
  9534   size(12);
  9535   ins_cost(BRANCH_COST);
  9536   format %{ "CMP    $op1,0\t! ptr\n\t"
  9537             "B$cmp   $labl" %}
  9538   ins_encode %{
  9539     Label* L = $labl$$label;
  9540     Assembler::Predict predict_taken =
  9541       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9542     __ cmp($op1$$Register, G0);
  9543     // bpr() is not used here since it has shorter distance.
  9544     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9545     __ delayed()->nop();
  9546   %}
  9547   ins_pipe(cmp_br_reg_reg);
  9548 %}
  9550 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9551   match(If cmp (CmpN op1 op2));
  9552   effect(USE labl, KILL icc);
  9554   size(12);
  9555   ins_cost(BRANCH_COST);
  9556   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9557             "BP$cmp   $labl" %}
  9558   ins_encode %{
  9559     Label* L = $labl$$label;
  9560     Assembler::Predict predict_taken =
  9561       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9562     __ cmp($op1$$Register, $op2$$Register);
  9563     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9564     __ delayed()->nop();
  9565   %}
  9566   ins_pipe(cmp_br_reg_reg);
  9567 %}
  9569 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9570   match(If cmp (CmpN op1 null));
  9571   effect(USE labl, KILL icc);
  9573   size(12);
  9574   ins_cost(BRANCH_COST);
  9575   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9576             "BP$cmp   $labl" %}
  9577   ins_encode %{
  9578     Label* L = $labl$$label;
  9579     Assembler::Predict predict_taken =
  9580       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9581     __ cmp($op1$$Register, G0);
  9582     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9583     __ delayed()->nop();
  9584   %}
  9585   ins_pipe(cmp_br_reg_reg);
  9586 %}
  9588 // Loop back branch
  9589 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9590   match(CountedLoopEnd cmp (CmpI op1 op2));
  9591   effect(USE labl, KILL icc);
  9593   size(12);
  9594   ins_cost(BRANCH_COST);
  9595   format %{ "CMP    $op1,$op2\t! int\n\t"
  9596             "BP$cmp   $labl\t! Loop end" %}
  9597   ins_encode %{
  9598     Label* L = $labl$$label;
  9599     Assembler::Predict predict_taken =
  9600       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9601     __ cmp($op1$$Register, $op2$$Register);
  9602     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9603     __ delayed()->nop();
  9604   %}
  9605   ins_pipe(cmp_br_reg_reg);
  9606 %}
  9608 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9609   match(CountedLoopEnd cmp (CmpI op1 op2));
  9610   effect(USE labl, KILL icc);
  9612   size(12);
  9613   ins_cost(BRANCH_COST);
  9614   format %{ "CMP    $op1,$op2\t! int\n\t"
  9615             "BP$cmp   $labl\t! Loop end" %}
  9616   ins_encode %{
  9617     Label* L = $labl$$label;
  9618     Assembler::Predict predict_taken =
  9619       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9620     __ cmp($op1$$Register, $op2$$constant);
  9621     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9622     __ delayed()->nop();
  9623   %}
  9624   ins_pipe(cmp_br_reg_imm);
  9625 %}
  9627 // Short compare and branch instructions
  9628 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9629   match(If cmp (CmpI op1 op2));
  9630   predicate(UseCBCond);
  9631   effect(USE labl, KILL icc);
  9633   size(4);
  9634   ins_cost(BRANCH_COST);
  9635   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9636   ins_encode %{
  9637     Label* L = $labl$$label;
  9638     assert(__ use_cbcond(*L), "back to back cbcond");
  9639     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9640   %}
  9641   ins_short_branch(1);
  9642   ins_avoid_back_to_back(1);
  9643   ins_pipe(cbcond_reg_reg);
  9644 %}
  9646 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9647   match(If cmp (CmpI op1 op2));
  9648   predicate(UseCBCond);
  9649   effect(USE labl, KILL icc);
  9651   size(4);
  9652   ins_cost(BRANCH_COST);
  9653   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9654   ins_encode %{
  9655     Label* L = $labl$$label;
  9656     assert(__ use_cbcond(*L), "back to back cbcond");
  9657     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9658   %}
  9659   ins_short_branch(1);
  9660   ins_avoid_back_to_back(1);
  9661   ins_pipe(cbcond_reg_imm);
  9662 %}
  9664 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9665   match(If cmp (CmpU op1 op2));
  9666   predicate(UseCBCond);
  9667   effect(USE labl, KILL icc);
  9669   size(4);
  9670   ins_cost(BRANCH_COST);
  9671   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9672   ins_encode %{
  9673     Label* L = $labl$$label;
  9674     assert(__ use_cbcond(*L), "back to back cbcond");
  9675     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9676   %}
  9677   ins_short_branch(1);
  9678   ins_avoid_back_to_back(1);
  9679   ins_pipe(cbcond_reg_reg);
  9680 %}
  9682 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9683   match(If cmp (CmpU op1 op2));
  9684   predicate(UseCBCond);
  9685   effect(USE labl, KILL icc);
  9687   size(4);
  9688   ins_cost(BRANCH_COST);
  9689   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9690   ins_encode %{
  9691     Label* L = $labl$$label;
  9692     assert(__ use_cbcond(*L), "back to back cbcond");
  9693     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9694   %}
  9695   ins_short_branch(1);
  9696   ins_avoid_back_to_back(1);
  9697   ins_pipe(cbcond_reg_imm);
  9698 %}
  9700 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9701   match(If cmp (CmpL op1 op2));
  9702   predicate(UseCBCond);
  9703   effect(USE labl, KILL xcc);
  9705   size(4);
  9706   ins_cost(BRANCH_COST);
  9707   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9708   ins_encode %{
  9709     Label* L = $labl$$label;
  9710     assert(__ use_cbcond(*L), "back to back cbcond");
  9711     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9712   %}
  9713   ins_short_branch(1);
  9714   ins_avoid_back_to_back(1);
  9715   ins_pipe(cbcond_reg_reg);
  9716 %}
  9718 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9719   match(If cmp (CmpL op1 op2));
  9720   predicate(UseCBCond);
  9721   effect(USE labl, KILL xcc);
  9723   size(4);
  9724   ins_cost(BRANCH_COST);
  9725   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9726   ins_encode %{
  9727     Label* L = $labl$$label;
  9728     assert(__ use_cbcond(*L), "back to back cbcond");
  9729     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9730   %}
  9731   ins_short_branch(1);
  9732   ins_avoid_back_to_back(1);
  9733   ins_pipe(cbcond_reg_imm);
  9734 %}
  9736 // Compare Pointers and branch
  9737 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9738   match(If cmp (CmpP op1 op2));
  9739   predicate(UseCBCond);
  9740   effect(USE labl, KILL pcc);
  9742   size(4);
  9743   ins_cost(BRANCH_COST);
  9744 #ifdef _LP64
  9745   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9746 #else
  9747   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9748 #endif
  9749   ins_encode %{
  9750     Label* L = $labl$$label;
  9751     assert(__ use_cbcond(*L), "back to back cbcond");
  9752     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9753   %}
  9754   ins_short_branch(1);
  9755   ins_avoid_back_to_back(1);
  9756   ins_pipe(cbcond_reg_reg);
  9757 %}
  9759 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9760   match(If cmp (CmpP op1 null));
  9761   predicate(UseCBCond);
  9762   effect(USE labl, KILL pcc);
  9764   size(4);
  9765   ins_cost(BRANCH_COST);
  9766 #ifdef _LP64
  9767   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9768 #else
  9769   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9770 #endif
  9771   ins_encode %{
  9772     Label* L = $labl$$label;
  9773     assert(__ use_cbcond(*L), "back to back cbcond");
  9774     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9775   %}
  9776   ins_short_branch(1);
  9777   ins_avoid_back_to_back(1);
  9778   ins_pipe(cbcond_reg_reg);
  9779 %}
  9781 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9782   match(If cmp (CmpN op1 op2));
  9783   predicate(UseCBCond);
  9784   effect(USE labl, KILL icc);
  9786   size(4);
  9787   ins_cost(BRANCH_COST);
  9788   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9789   ins_encode %{
  9790     Label* L = $labl$$label;
  9791     assert(__ use_cbcond(*L), "back to back cbcond");
  9792     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9793   %}
  9794   ins_short_branch(1);
  9795   ins_avoid_back_to_back(1);
  9796   ins_pipe(cbcond_reg_reg);
  9797 %}
  9799 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9800   match(If cmp (CmpN op1 null));
  9801   predicate(UseCBCond);
  9802   effect(USE labl, KILL icc);
  9804   size(4);
  9805   ins_cost(BRANCH_COST);
  9806   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9807   ins_encode %{
  9808     Label* L = $labl$$label;
  9809     assert(__ use_cbcond(*L), "back to back cbcond");
  9810     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9811   %}
  9812   ins_short_branch(1);
  9813   ins_avoid_back_to_back(1);
  9814   ins_pipe(cbcond_reg_reg);
  9815 %}
  9817 // Loop back branch
  9818 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9819   match(CountedLoopEnd cmp (CmpI op1 op2));
  9820   predicate(UseCBCond);
  9821   effect(USE labl, KILL icc);
  9823   size(4);
  9824   ins_cost(BRANCH_COST);
  9825   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9826   ins_encode %{
  9827     Label* L = $labl$$label;
  9828     assert(__ use_cbcond(*L), "back to back cbcond");
  9829     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9830   %}
  9831   ins_short_branch(1);
  9832   ins_avoid_back_to_back(1);
  9833   ins_pipe(cbcond_reg_reg);
  9834 %}
  9836 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9837   match(CountedLoopEnd cmp (CmpI op1 op2));
  9838   predicate(UseCBCond);
  9839   effect(USE labl, KILL icc);
  9841   size(4);
  9842   ins_cost(BRANCH_COST);
  9843   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9844   ins_encode %{
  9845     Label* L = $labl$$label;
  9846     assert(__ use_cbcond(*L), "back to back cbcond");
  9847     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9848   %}
  9849   ins_short_branch(1);
  9850   ins_avoid_back_to_back(1);
  9851   ins_pipe(cbcond_reg_imm);
  9852 %}
  9854 // Branch-on-register tests all 64 bits.  We assume that values
  9855 // in 64-bit registers always remains zero or sign extended
  9856 // unless our code munges the high bits.  Interrupts can chop
  9857 // the high order bits to zero or sign at any time.
  9858 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9859   match(If cmp (CmpI op1 zero));
  9860   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9861   effect(USE labl);
  9863   size(8);
  9864   ins_cost(BRANCH_COST);
  9865   format %{ "BR$cmp   $op1,$labl" %}
  9866   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9867   ins_pipe(br_reg);
  9868 %}
  9870 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9871   match(If cmp (CmpP op1 null));
  9872   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9873   effect(USE labl);
  9875   size(8);
  9876   ins_cost(BRANCH_COST);
  9877   format %{ "BR$cmp   $op1,$labl" %}
  9878   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9879   ins_pipe(br_reg);
  9880 %}
  9882 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9883   match(If cmp (CmpL op1 zero));
  9884   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9885   effect(USE labl);
  9887   size(8);
  9888   ins_cost(BRANCH_COST);
  9889   format %{ "BR$cmp   $op1,$labl" %}
  9890   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9891   ins_pipe(br_reg);
  9892 %}
  9895 // ============================================================================
  9896 // Long Compare
  9897 //
  9898 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9899 // is tricky.  The flavor of compare used depends on whether we are testing
  9900 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9901 // The GE test is the negated LT test.  The LE test can be had by commuting
  9902 // the operands (yielding a GE test) and then negating; negate again for the
  9903 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9904 // NE test is negated from that.
  9906 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9907 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9908 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9909 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9910 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9911 // foo match ends up with the wrong leaf.  One fix is to not match both
  9912 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9913 // both forms beat the trinary form of long-compare and both are very useful
  9914 // on Intel which has so few registers.
  9916 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9917   match(If cmp xcc);
  9918   effect(USE labl);
  9920   size(8);
  9921   ins_cost(BRANCH_COST);
  9922   format %{ "BP$cmp   $xcc,$labl" %}
  9923   ins_encode %{
  9924     Label* L = $labl$$label;
  9925     Assembler::Predict predict_taken =
  9926       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9928     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9929     __ delayed()->nop();
  9930   %}
  9931   ins_pipe(br_cc);
  9932 %}
  9934 // Manifest a CmpL3 result in an integer register.  Very painful.
  9935 // This is the test to avoid.
  9936 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9937   match(Set dst (CmpL3 src1 src2) );
  9938   effect( KILL ccr );
  9939   ins_cost(6*DEFAULT_COST);
  9940   size(24);
  9941   format %{ "CMP    $src1,$src2\t\t! long\n"
  9942           "\tBLT,a,pn done\n"
  9943           "\tMOV    -1,$dst\t! delay slot\n"
  9944           "\tBGT,a,pn done\n"
  9945           "\tMOV    1,$dst\t! delay slot\n"
  9946           "\tCLR    $dst\n"
  9947     "done:"     %}
  9948   ins_encode( cmpl_flag(src1,src2,dst) );
  9949   ins_pipe(cmpL_reg);
  9950 %}
  9952 // Conditional move
  9953 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9954   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9955   ins_cost(150);
  9956   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9957   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9958   ins_pipe(ialu_reg);
  9959 %}
  9961 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9962   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9963   ins_cost(140);
  9964   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9965   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9966   ins_pipe(ialu_imm);
  9967 %}
  9969 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9970   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9971   ins_cost(150);
  9972   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9973   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9974   ins_pipe(ialu_reg);
  9975 %}
  9977 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9978   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9979   ins_cost(140);
  9980   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9981   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9982   ins_pipe(ialu_imm);
  9983 %}
  9985 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9986   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9987   ins_cost(150);
  9988   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9989   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9990   ins_pipe(ialu_reg);
  9991 %}
  9993 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9994   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9995   ins_cost(150);
  9996   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9997   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9998   ins_pipe(ialu_reg);
  9999 %}
 10001 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
 10002   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
 10003   ins_cost(140);
 10004   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10005   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
 10006   ins_pipe(ialu_imm);
 10007 %}
 10009 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
 10010   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
 10011   ins_cost(150);
 10012   opcode(0x101);
 10013   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
 10014   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10015   ins_pipe(int_conditional_float_move);
 10016 %}
 10018 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
 10019   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
 10020   ins_cost(150);
 10021   opcode(0x102);
 10022   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
 10023   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10024   ins_pipe(int_conditional_float_move);
 10025 %}
 10027 // ============================================================================
 10028 // Safepoint Instruction
 10029 instruct safePoint_poll(iRegP poll) %{
 10030   match(SafePoint poll);
 10031   effect(USE poll);
 10033   size(4);
 10034 #ifdef _LP64
 10035   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
 10036 #else
 10037   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
 10038 #endif
 10039   ins_encode %{
 10040     __ relocate(relocInfo::poll_type);
 10041     __ ld_ptr($poll$$Register, 0, G0);
 10042   %}
 10043   ins_pipe(loadPollP);
 10044 %}
 10046 // ============================================================================
 10047 // Call Instructions
 10048 // Call Java Static Instruction
 10049 instruct CallStaticJavaDirect( method meth ) %{
 10050   match(CallStaticJava);
 10051   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10052   effect(USE meth);
 10054   size(8);
 10055   ins_cost(CALL_COST);
 10056   format %{ "CALL,static  ; NOP ==> " %}
 10057   ins_encode( Java_Static_Call( meth ), call_epilog );
 10058   ins_pipe(simple_call);
 10059 %}
 10061 // Call Java Static Instruction (method handle version)
 10062 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
 10063   match(CallStaticJava);
 10064   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10065   effect(USE meth, KILL l7_mh_SP_save);
 10067   size(16);
 10068   ins_cost(CALL_COST);
 10069   format %{ "CALL,static/MethodHandle" %}
 10070   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
 10071   ins_pipe(simple_call);
 10072 %}
 10074 // Call Java Dynamic Instruction
 10075 instruct CallDynamicJavaDirect( method meth ) %{
 10076   match(CallDynamicJava);
 10077   effect(USE meth);
 10079   ins_cost(CALL_COST);
 10080   format %{ "SET    (empty),R_G5\n\t"
 10081             "CALL,dynamic  ; NOP ==> " %}
 10082   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10083   ins_pipe(call);
 10084 %}
 10086 // Call Runtime Instruction
 10087 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10088   match(CallRuntime);
 10089   effect(USE meth, KILL l7);
 10090   ins_cost(CALL_COST);
 10091   format %{ "CALL,runtime" %}
 10092   ins_encode( Java_To_Runtime( meth ),
 10093               call_epilog, adjust_long_from_native_call );
 10094   ins_pipe(simple_call);
 10095 %}
 10097 // Call runtime without safepoint - same as CallRuntime
 10098 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10099   match(CallLeaf);
 10100   effect(USE meth, KILL l7);
 10101   ins_cost(CALL_COST);
 10102   format %{ "CALL,runtime leaf" %}
 10103   ins_encode( Java_To_Runtime( meth ),
 10104               call_epilog,
 10105               adjust_long_from_native_call );
 10106   ins_pipe(simple_call);
 10107 %}
 10109 // Call runtime without safepoint - same as CallLeaf
 10110 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10111   match(CallLeafNoFP);
 10112   effect(USE meth, KILL l7);
 10113   ins_cost(CALL_COST);
 10114   format %{ "CALL,runtime leaf nofp" %}
 10115   ins_encode( Java_To_Runtime( meth ),
 10116               call_epilog,
 10117               adjust_long_from_native_call );
 10118   ins_pipe(simple_call);
 10119 %}
 10121 // Tail Call; Jump from runtime stub to Java code.
 10122 // Also known as an 'interprocedural jump'.
 10123 // Target of jump will eventually return to caller.
 10124 // TailJump below removes the return address.
 10125 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10126   match(TailCall jump_target method_oop );
 10128   ins_cost(CALL_COST);
 10129   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10130   ins_encode(form_jmpl(jump_target));
 10131   ins_pipe(tail_call);
 10132 %}
 10135 // Return Instruction
 10136 instruct Ret() %{
 10137   match(Return);
 10139   // The epilogue node did the ret already.
 10140   size(0);
 10141   format %{ "! return" %}
 10142   ins_encode();
 10143   ins_pipe(empty);
 10144 %}
 10147 // Tail Jump; remove the return address; jump to target.
 10148 // TailCall above leaves the return address around.
 10149 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10150 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10151 // "restore" before this instruction (in Epilogue), we need to materialize it
 10152 // in %i0.
 10153 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10154   match( TailJump jump_target ex_oop );
 10155   ins_cost(CALL_COST);
 10156   format %{ "! discard R_O7\n\t"
 10157             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10158   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10159   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10160   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10161   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10162   ins_pipe(tail_call);
 10163 %}
 10165 // Create exception oop: created by stack-crawling runtime code.
 10166 // Created exception is now available to this handler, and is setup
 10167 // just prior to jumping to this handler.  No code emitted.
 10168 instruct CreateException( o0RegP ex_oop )
 10169 %{
 10170   match(Set ex_oop (CreateEx));
 10171   ins_cost(0);
 10173   size(0);
 10174   // use the following format syntax
 10175   format %{ "! exception oop is in R_O0; no code emitted" %}
 10176   ins_encode();
 10177   ins_pipe(empty);
 10178 %}
 10181 // Rethrow exception:
 10182 // The exception oop will come in the first argument position.
 10183 // Then JUMP (not call) to the rethrow stub code.
 10184 instruct RethrowException()
 10185 %{
 10186   match(Rethrow);
 10187   ins_cost(CALL_COST);
 10189   // use the following format syntax
 10190   format %{ "Jmp    rethrow_stub" %}
 10191   ins_encode(enc_rethrow);
 10192   ins_pipe(tail_call);
 10193 %}
 10196 // Die now
 10197 instruct ShouldNotReachHere( )
 10198 %{
 10199   match(Halt);
 10200   ins_cost(CALL_COST);
 10202   size(4);
 10203   // Use the following format syntax
 10204   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10205   ins_encode( form2_illtrap() );
 10206   ins_pipe(tail_call);
 10207 %}
 10209 // ============================================================================
 10210 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10211 // array for an instance of the superklass.  Set a hidden internal cache on a
 10212 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10213 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10214 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10215   match(Set index (PartialSubtypeCheck sub super));
 10216   effect( KILL pcc, KILL o7 );
 10217   ins_cost(DEFAULT_COST*10);
 10218   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10219   ins_encode( enc_PartialSubtypeCheck() );
 10220   ins_pipe(partial_subtype_check_pipe);
 10221 %}
 10223 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10224   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10225   effect( KILL idx, KILL o7 );
 10226   ins_cost(DEFAULT_COST*10);
 10227   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10228   ins_encode( enc_PartialSubtypeCheck() );
 10229   ins_pipe(partial_subtype_check_pipe);
 10230 %}
 10233 // ============================================================================
 10234 // inlined locking and unlocking
 10236 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
 10237   match(Set pcc (FastLock object box));
 10239   effect(KILL scratch, TEMP scratch2);
 10240   ins_cost(100);
 10242   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
 10243   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10244   ins_pipe(long_memory_op);
 10245 %}
 10248 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
 10249   match(Set pcc (FastUnlock object box));
 10250   effect(KILL scratch, TEMP scratch2);
 10251   ins_cost(100);
 10253   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
 10254   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10255   ins_pipe(long_memory_op);
 10256 %}
 10258 // The encodings are generic.
 10259 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10260   predicate(!use_block_zeroing(n->in(2)) );
 10261   match(Set dummy (ClearArray cnt base));
 10262   effect(TEMP temp, KILL ccr);
 10263   ins_cost(300);
 10264   format %{ "MOV    $cnt,$temp\n"
 10265     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10266     "        BRge   loop\t\t! Clearing loop\n"
 10267     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10269   ins_encode %{
 10270     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10271     Register nof_bytes_arg    = $cnt$$Register;
 10272     Register nof_bytes_tmp    = $temp$$Register;
 10273     Register base_pointer_arg = $base$$Register;
 10275     Label loop;
 10276     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10278     // Loop and clear, walking backwards through the array.
 10279     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10280     __ bind(loop);
 10281     __ deccc(nof_bytes_tmp, 8);
 10282     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10283     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10284     // %%%% this mini-loop must not cross a cache boundary!
 10285   %}
 10286   ins_pipe(long_memory_op);
 10287 %}
 10289 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10290   predicate(use_block_zeroing(n->in(2)));
 10291   match(Set dummy (ClearArray cnt base));
 10292   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10293   ins_cost(300);
 10294   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10296   ins_encode %{
 10298     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10299     Register to    = $base$$Register;
 10300     Register count = $cnt$$Register;
 10302     Label Ldone;
 10303     __ nop(); // Separate short branches
 10304     // Use BIS for zeroing (temp is not used).
 10305     __ bis_zeroing(to, count, G0, Ldone);
 10306     __ bind(Ldone);
 10308   %}
 10309   ins_pipe(long_memory_op);
 10310 %}
 10312 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10313   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10314   match(Set dummy (ClearArray cnt base));
 10315   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10316   ins_cost(300);
 10317   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10319   ins_encode %{
 10321     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10322     Register to    = $base$$Register;
 10323     Register count = $cnt$$Register;
 10324     Register temp  = $tmp$$Register;
 10326     Label Ldone;
 10327     __ nop(); // Separate short branches
 10328     // Use BIS for zeroing
 10329     __ bis_zeroing(to, count, temp, Ldone);
 10330     __ bind(Ldone);
 10332   %}
 10333   ins_pipe(long_memory_op);
 10334 %}
 10336 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10337                         o7RegI tmp, flagsReg ccr) %{
 10338   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10339   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10340   ins_cost(300);
 10341   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10342   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10343   ins_pipe(long_memory_op);
 10344 %}
 10346 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10347                        o7RegI tmp, flagsReg ccr) %{
 10348   match(Set result (StrEquals (Binary str1 str2) cnt));
 10349   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10350   ins_cost(300);
 10351   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10352   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10353   ins_pipe(long_memory_op);
 10354 %}
 10356 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10357                       o7RegI tmp2, flagsReg ccr) %{
 10358   match(Set result (AryEq ary1 ary2));
 10359   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10360   ins_cost(300);
 10361   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10362   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10363   ins_pipe(long_memory_op);
 10364 %}
 10367 //---------- Zeros Count Instructions ------------------------------------------
 10369 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10370   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10371   match(Set dst (CountLeadingZerosI src));
 10372   effect(TEMP dst, TEMP tmp, KILL cr);
 10374   // x |= (x >> 1);
 10375   // x |= (x >> 2);
 10376   // x |= (x >> 4);
 10377   // x |= (x >> 8);
 10378   // x |= (x >> 16);
 10379   // return (WORDBITS - popc(x));
 10380   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10381             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10382             "OR      $dst,$tmp,$dst\n\t"
 10383             "SRL     $dst,2,$tmp\n\t"
 10384             "OR      $dst,$tmp,$dst\n\t"
 10385             "SRL     $dst,4,$tmp\n\t"
 10386             "OR      $dst,$tmp,$dst\n\t"
 10387             "SRL     $dst,8,$tmp\n\t"
 10388             "OR      $dst,$tmp,$dst\n\t"
 10389             "SRL     $dst,16,$tmp\n\t"
 10390             "OR      $dst,$tmp,$dst\n\t"
 10391             "POPC    $dst,$dst\n\t"
 10392             "MOV     32,$tmp\n\t"
 10393             "SUB     $tmp,$dst,$dst" %}
 10394   ins_encode %{
 10395     Register Rdst = $dst$$Register;
 10396     Register Rsrc = $src$$Register;
 10397     Register Rtmp = $tmp$$Register;
 10398     __ srl(Rsrc, 1,    Rtmp);
 10399     __ srl(Rsrc, 0,    Rdst);
 10400     __ or3(Rdst, Rtmp, Rdst);
 10401     __ srl(Rdst, 2,    Rtmp);
 10402     __ or3(Rdst, Rtmp, Rdst);
 10403     __ srl(Rdst, 4,    Rtmp);
 10404     __ or3(Rdst, Rtmp, Rdst);
 10405     __ srl(Rdst, 8,    Rtmp);
 10406     __ or3(Rdst, Rtmp, Rdst);
 10407     __ srl(Rdst, 16,   Rtmp);
 10408     __ or3(Rdst, Rtmp, Rdst);
 10409     __ popc(Rdst, Rdst);
 10410     __ mov(BitsPerInt, Rtmp);
 10411     __ sub(Rtmp, Rdst, Rdst);
 10412   %}
 10413   ins_pipe(ialu_reg);
 10414 %}
 10416 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10417   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10418   match(Set dst (CountLeadingZerosL src));
 10419   effect(TEMP dst, TEMP tmp, KILL cr);
 10421   // x |= (x >> 1);
 10422   // x |= (x >> 2);
 10423   // x |= (x >> 4);
 10424   // x |= (x >> 8);
 10425   // x |= (x >> 16);
 10426   // x |= (x >> 32);
 10427   // return (WORDBITS - popc(x));
 10428   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10429             "OR      $src,$tmp,$dst\n\t"
 10430             "SRLX    $dst,2,$tmp\n\t"
 10431             "OR      $dst,$tmp,$dst\n\t"
 10432             "SRLX    $dst,4,$tmp\n\t"
 10433             "OR      $dst,$tmp,$dst\n\t"
 10434             "SRLX    $dst,8,$tmp\n\t"
 10435             "OR      $dst,$tmp,$dst\n\t"
 10436             "SRLX    $dst,16,$tmp\n\t"
 10437             "OR      $dst,$tmp,$dst\n\t"
 10438             "SRLX    $dst,32,$tmp\n\t"
 10439             "OR      $dst,$tmp,$dst\n\t"
 10440             "POPC    $dst,$dst\n\t"
 10441             "MOV     64,$tmp\n\t"
 10442             "SUB     $tmp,$dst,$dst" %}
 10443   ins_encode %{
 10444     Register Rdst = $dst$$Register;
 10445     Register Rsrc = $src$$Register;
 10446     Register Rtmp = $tmp$$Register;
 10447     __ srlx(Rsrc, 1,    Rtmp);
 10448     __ or3( Rsrc, Rtmp, Rdst);
 10449     __ srlx(Rdst, 2,    Rtmp);
 10450     __ or3( Rdst, Rtmp, Rdst);
 10451     __ srlx(Rdst, 4,    Rtmp);
 10452     __ or3( Rdst, Rtmp, Rdst);
 10453     __ srlx(Rdst, 8,    Rtmp);
 10454     __ or3( Rdst, Rtmp, Rdst);
 10455     __ srlx(Rdst, 16,   Rtmp);
 10456     __ or3( Rdst, Rtmp, Rdst);
 10457     __ srlx(Rdst, 32,   Rtmp);
 10458     __ or3( Rdst, Rtmp, Rdst);
 10459     __ popc(Rdst, Rdst);
 10460     __ mov(BitsPerLong, Rtmp);
 10461     __ sub(Rtmp, Rdst, Rdst);
 10462   %}
 10463   ins_pipe(ialu_reg);
 10464 %}
 10466 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10467   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10468   match(Set dst (CountTrailingZerosI src));
 10469   effect(TEMP dst, KILL cr);
 10471   // return popc(~x & (x - 1));
 10472   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10473             "ANDN    $dst,$src,$dst\n\t"
 10474             "SRL     $dst,R_G0,$dst\n\t"
 10475             "POPC    $dst,$dst" %}
 10476   ins_encode %{
 10477     Register Rdst = $dst$$Register;
 10478     Register Rsrc = $src$$Register;
 10479     __ sub(Rsrc, 1, Rdst);
 10480     __ andn(Rdst, Rsrc, Rdst);
 10481     __ srl(Rdst, G0, Rdst);
 10482     __ popc(Rdst, Rdst);
 10483   %}
 10484   ins_pipe(ialu_reg);
 10485 %}
 10487 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10488   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10489   match(Set dst (CountTrailingZerosL src));
 10490   effect(TEMP dst, KILL cr);
 10492   // return popc(~x & (x - 1));
 10493   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10494             "ANDN    $dst,$src,$dst\n\t"
 10495             "POPC    $dst,$dst" %}
 10496   ins_encode %{
 10497     Register Rdst = $dst$$Register;
 10498     Register Rsrc = $src$$Register;
 10499     __ sub(Rsrc, 1, Rdst);
 10500     __ andn(Rdst, Rsrc, Rdst);
 10501     __ popc(Rdst, Rdst);
 10502   %}
 10503   ins_pipe(ialu_reg);
 10504 %}
 10507 //---------- Population Count Instructions -------------------------------------
 10509 instruct popCountI(iRegI dst, iRegI src) %{
 10510   predicate(UsePopCountInstruction);
 10511   match(Set dst (PopCountI src));
 10513   format %{ "POPC   $src, $dst" %}
 10514   ins_encode %{
 10515     __ popc($src$$Register, $dst$$Register);
 10516   %}
 10517   ins_pipe(ialu_reg);
 10518 %}
 10520 // Note: Long.bitCount(long) returns an int.
 10521 instruct popCountL(iRegI dst, iRegL src) %{
 10522   predicate(UsePopCountInstruction);
 10523   match(Set dst (PopCountL src));
 10525   format %{ "POPC   $src, $dst" %}
 10526   ins_encode %{
 10527     __ popc($src$$Register, $dst$$Register);
 10528   %}
 10529   ins_pipe(ialu_reg);
 10530 %}
 10533 // ============================================================================
 10534 //------------Bytes reverse--------------------------------------------------
 10536 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10537   match(Set dst (ReverseBytesI src));
 10539   // Op cost is artificially doubled to make sure that load or store
 10540   // instructions are preferred over this one which requires a spill
 10541   // onto a stack slot.
 10542   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10543   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10545   ins_encode %{
 10546     __ set($src$$disp + STACK_BIAS, O7);
 10547     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10548   %}
 10549   ins_pipe( iload_mem );
 10550 %}
 10552 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10553   match(Set dst (ReverseBytesL src));
 10555   // Op cost is artificially doubled to make sure that load or store
 10556   // instructions are preferred over this one which requires a spill
 10557   // onto a stack slot.
 10558   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10559   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10561   ins_encode %{
 10562     __ set($src$$disp + STACK_BIAS, O7);
 10563     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10564   %}
 10565   ins_pipe( iload_mem );
 10566 %}
 10568 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10569   match(Set dst (ReverseBytesUS src));
 10571   // Op cost is artificially doubled to make sure that load or store
 10572   // instructions are preferred over this one which requires a spill
 10573   // onto a stack slot.
 10574   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10575   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10577   ins_encode %{
 10578     // the value was spilled as an int so bias the load
 10579     __ set($src$$disp + STACK_BIAS + 2, O7);
 10580     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10581   %}
 10582   ins_pipe( iload_mem );
 10583 %}
 10585 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10586   match(Set dst (ReverseBytesS src));
 10588   // Op cost is artificially doubled to make sure that load or store
 10589   // instructions are preferred over this one which requires a spill
 10590   // onto a stack slot.
 10591   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10592   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10594   ins_encode %{
 10595     // the value was spilled as an int so bias the load
 10596     __ set($src$$disp + STACK_BIAS + 2, O7);
 10597     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10598   %}
 10599   ins_pipe( iload_mem );
 10600 %}
 10602 // Load Integer reversed byte order
 10603 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10604   match(Set dst (ReverseBytesI (LoadI src)));
 10606   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10607   size(4);
 10608   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10610   ins_encode %{
 10611     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10612   %}
 10613   ins_pipe(iload_mem);
 10614 %}
 10616 // Load Long - aligned and reversed
 10617 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10618   match(Set dst (ReverseBytesL (LoadL src)));
 10620   ins_cost(MEMORY_REF_COST);
 10621   size(4);
 10622   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10624   ins_encode %{
 10625     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10626   %}
 10627   ins_pipe(iload_mem);
 10628 %}
 10630 // Load unsigned short / char reversed byte order
 10631 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10632   match(Set dst (ReverseBytesUS (LoadUS src)));
 10634   ins_cost(MEMORY_REF_COST);
 10635   size(4);
 10636   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10638   ins_encode %{
 10639     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10640   %}
 10641   ins_pipe(iload_mem);
 10642 %}
 10644 // Load short reversed byte order
 10645 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10646   match(Set dst (ReverseBytesS (LoadS src)));
 10648   ins_cost(MEMORY_REF_COST);
 10649   size(4);
 10650   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10652   ins_encode %{
 10653     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10654   %}
 10655   ins_pipe(iload_mem);
 10656 %}
 10658 // Store Integer reversed byte order
 10659 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10660   match(Set dst (StoreI dst (ReverseBytesI src)));
 10662   ins_cost(MEMORY_REF_COST);
 10663   size(4);
 10664   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10666   ins_encode %{
 10667     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10668   %}
 10669   ins_pipe(istore_mem_reg);
 10670 %}
 10672 // Store Long reversed byte order
 10673 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10674   match(Set dst (StoreL dst (ReverseBytesL src)));
 10676   ins_cost(MEMORY_REF_COST);
 10677   size(4);
 10678   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10680   ins_encode %{
 10681     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10682   %}
 10683   ins_pipe(istore_mem_reg);
 10684 %}
 10686 // Store unsighed short/char reversed byte order
 10687 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10688   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10690   ins_cost(MEMORY_REF_COST);
 10691   size(4);
 10692   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10694   ins_encode %{
 10695     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10696   %}
 10697   ins_pipe(istore_mem_reg);
 10698 %}
 10700 // Store short reversed byte order
 10701 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10702   match(Set dst (StoreC dst (ReverseBytesS src)));
 10704   ins_cost(MEMORY_REF_COST);
 10705   size(4);
 10706   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10708   ins_encode %{
 10709     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10710   %}
 10711   ins_pipe(istore_mem_reg);
 10712 %}
 10714 //----------PEEPHOLE RULES-----------------------------------------------------
 10715 // These must follow all instruction definitions as they use the names
 10716 // defined in the instructions definitions.
 10717 //
 10718 // peepmatch ( root_instr_name [preceding_instruction]* );
 10719 //
 10720 // peepconstraint %{
 10721 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10722 //  [, ...] );
 10723 // // instruction numbers are zero-based using left to right order in peepmatch
 10724 //
 10725 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10726 // // provide an instruction_number.operand_name for each operand that appears
 10727 // // in the replacement instruction's match rule
 10728 //
 10729 // ---------VM FLAGS---------------------------------------------------------
 10730 //
 10731 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10732 //
 10733 // Each peephole rule is given an identifying number starting with zero and
 10734 // increasing by one in the order seen by the parser.  An individual peephole
 10735 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10736 // on the command-line.
 10737 //
 10738 // ---------CURRENT LIMITATIONS----------------------------------------------
 10739 //
 10740 // Only match adjacent instructions in same basic block
 10741 // Only equality constraints
 10742 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10743 // Only one replacement instruction
 10744 //
 10745 // ---------EXAMPLE----------------------------------------------------------
 10746 //
 10747 // // pertinent parts of existing instructions in architecture description
 10748 // instruct movI(eRegI dst, eRegI src) %{
 10749 //   match(Set dst (CopyI src));
 10750 // %}
 10751 //
 10752 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10753 //   match(Set dst (AddI dst src));
 10754 //   effect(KILL cr);
 10755 // %}
 10756 //
 10757 // // Change (inc mov) to lea
 10758 // peephole %{
 10759 //   // increment preceeded by register-register move
 10760 //   peepmatch ( incI_eReg movI );
 10761 //   // require that the destination register of the increment
 10762 //   // match the destination register of the move
 10763 //   peepconstraint ( 0.dst == 1.dst );
 10764 //   // construct a replacement instruction that sets
 10765 //   // the destination to ( move's source register + one )
 10766 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10767 // %}
 10768 //
 10770 // // Change load of spilled value to only a spill
 10771 // instruct storeI(memory mem, eRegI src) %{
 10772 //   match(Set mem (StoreI mem src));
 10773 // %}
 10774 //
 10775 // instruct loadI(eRegI dst, memory mem) %{
 10776 //   match(Set dst (LoadI mem));
 10777 // %}
 10778 //
 10779 // peephole %{
 10780 //   peepmatch ( loadI storeI );
 10781 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10782 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10783 // %}
 10785 //----------SMARTSPILL RULES---------------------------------------------------
 10786 // These must follow all instruction definitions as they use the names
 10787 // defined in the instructions definitions.
 10788 //
 10789 // SPARC will probably not have any of these rules due to RISC instruction set.
 10791 //----------PIPELINE-----------------------------------------------------------
 10792 // Rules which define the behavior of the target architectures pipeline.

mercurial