src/cpu/x86/vm/macroAssembler_x86.cpp

Wed, 09 Apr 2014 11:18:02 -0700

author
kvn
date
Wed, 09 Apr 2014 11:18:02 -0700
changeset 6557
526acaf3626f
parent 6429
606acabe7b5c
child 6665
400709e275c1
permissions
-rw-r--r--

8038939: Some options related to RTM locking optimization works inconsistently
Summary: Switch UseRTMXendForLockBusy flag ON by default and change code to retry RTM locking on lock busy condition by default.
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "compiler/disassembler.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "memory/resourceArea.hpp"
    33 #include "memory/universe.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/biasedLocking.hpp"
    36 #include "runtime/interfaceSupport.hpp"
    37 #include "runtime/objectMonitor.hpp"
    38 #include "runtime/os.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    40 #include "runtime/stubRoutines.hpp"
    41 #include "utilities/macros.hpp"
    42 #if INCLUDE_ALL_GCS
    43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    45 #include "gc_implementation/g1/heapRegion.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 #ifdef PRODUCT
    49 #define BLOCK_COMMENT(str) /* nothing */
    50 #define STOP(error) stop(error)
    51 #else
    52 #define BLOCK_COMMENT(str) block_comment(str)
    53 #define STOP(error) block_comment(error); stop(error)
    54 #endif
    56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    59 #ifdef ASSERT
    60 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
    61 #endif
    63 static Assembler::Condition reverse[] = {
    64     Assembler::noOverflow     /* overflow      = 0x0 */ ,
    65     Assembler::overflow       /* noOverflow    = 0x1 */ ,
    66     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    67     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    68     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    69     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    70     Assembler::above          /* belowEqual    = 0x6 */ ,
    71     Assembler::belowEqual     /* above         = 0x7 */ ,
    72     Assembler::positive       /* negative      = 0x8 */ ,
    73     Assembler::negative       /* positive      = 0x9 */ ,
    74     Assembler::noParity       /* parity        = 0xa */ ,
    75     Assembler::parity         /* noParity      = 0xb */ ,
    76     Assembler::greaterEqual   /* less          = 0xc */ ,
    77     Assembler::less           /* greaterEqual  = 0xd */ ,
    78     Assembler::greater        /* lessEqual     = 0xe */ ,
    79     Assembler::lessEqual      /* greater       = 0xf, */
    81 };
    84 // Implementation of MacroAssembler
    86 // First all the versions that have distinct versions depending on 32/64 bit
    87 // Unless the difference is trivial (1 line or so).
    89 #ifndef _LP64
    91 // 32bit versions
    93 Address MacroAssembler::as_Address(AddressLiteral adr) {
    94   return Address(adr.target(), adr.rspec());
    95 }
    97 Address MacroAssembler::as_Address(ArrayAddress adr) {
    98   return Address::make_array(adr);
    99 }
   101 void MacroAssembler::call_VM_leaf_base(address entry_point,
   102                                        int number_of_arguments) {
   103   call(RuntimeAddress(entry_point));
   104   increment(rsp, number_of_arguments * wordSize);
   105 }
   107 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
   108   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   109 }
   111 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
   112   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   113 }
   115 void MacroAssembler::cmpoop(Address src1, jobject obj) {
   116   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   117 }
   119 void MacroAssembler::cmpoop(Register src1, jobject obj) {
   120   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   121 }
   123 void MacroAssembler::extend_sign(Register hi, Register lo) {
   124   // According to Intel Doc. AP-526, "Integer Divide", p.18.
   125   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
   126     cdql();
   127   } else {
   128     movl(hi, lo);
   129     sarl(hi, 31);
   130   }
   131 }
   133 void MacroAssembler::jC2(Register tmp, Label& L) {
   134   // set parity bit if FPU flag C2 is set (via rax)
   135   save_rax(tmp);
   136   fwait(); fnstsw_ax();
   137   sahf();
   138   restore_rax(tmp);
   139   // branch
   140   jcc(Assembler::parity, L);
   141 }
   143 void MacroAssembler::jnC2(Register tmp, Label& L) {
   144   // set parity bit if FPU flag C2 is set (via rax)
   145   save_rax(tmp);
   146   fwait(); fnstsw_ax();
   147   sahf();
   148   restore_rax(tmp);
   149   // branch
   150   jcc(Assembler::noParity, L);
   151 }
   153 // 32bit can do a case table jump in one instruction but we no longer allow the base
   154 // to be installed in the Address class
   155 void MacroAssembler::jump(ArrayAddress entry) {
   156   jmp(as_Address(entry));
   157 }
   159 // Note: y_lo will be destroyed
   160 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   161   // Long compare for Java (semantics as described in JVM spec.)
   162   Label high, low, done;
   164   cmpl(x_hi, y_hi);
   165   jcc(Assembler::less, low);
   166   jcc(Assembler::greater, high);
   167   // x_hi is the return register
   168   xorl(x_hi, x_hi);
   169   cmpl(x_lo, y_lo);
   170   jcc(Assembler::below, low);
   171   jcc(Assembler::equal, done);
   173   bind(high);
   174   xorl(x_hi, x_hi);
   175   increment(x_hi);
   176   jmp(done);
   178   bind(low);
   179   xorl(x_hi, x_hi);
   180   decrementl(x_hi);
   182   bind(done);
   183 }
   185 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   186     mov_literal32(dst, (int32_t)src.target(), src.rspec());
   187 }
   189 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   190   // leal(dst, as_Address(adr));
   191   // see note in movl as to why we must use a move
   192   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
   193 }
   195 void MacroAssembler::leave() {
   196   mov(rsp, rbp);
   197   pop(rbp);
   198 }
   200 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
   201   // Multiplication of two Java long values stored on the stack
   202   // as illustrated below. Result is in rdx:rax.
   203   //
   204   // rsp ---> [  ??  ] \               \
   205   //            ....    | y_rsp_offset  |
   206   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
   207   //          [ y_hi ]                  | (in bytes)
   208   //            ....                    |
   209   //          [ x_lo ]                 /
   210   //          [ x_hi ]
   211   //            ....
   212   //
   213   // Basic idea: lo(result) = lo(x_lo * y_lo)
   214   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
   215   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
   216   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
   217   Label quick;
   218   // load x_hi, y_hi and check if quick
   219   // multiplication is possible
   220   movl(rbx, x_hi);
   221   movl(rcx, y_hi);
   222   movl(rax, rbx);
   223   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
   224   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
   225   // do full multiplication
   226   // 1st step
   227   mull(y_lo);                                    // x_hi * y_lo
   228   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
   229   // 2nd step
   230   movl(rax, x_lo);
   231   mull(rcx);                                     // x_lo * y_hi
   232   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
   233   // 3rd step
   234   bind(quick);                                   // note: rbx, = 0 if quick multiply!
   235   movl(rax, x_lo);
   236   mull(y_lo);                                    // x_lo * y_lo
   237   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
   238 }
   240 void MacroAssembler::lneg(Register hi, Register lo) {
   241   negl(lo);
   242   adcl(hi, 0);
   243   negl(hi);
   244 }
   246 void MacroAssembler::lshl(Register hi, Register lo) {
   247   // Java shift left long support (semantics as described in JVM spec., p.305)
   248   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
   249   // shift value is in rcx !
   250   assert(hi != rcx, "must not use rcx");
   251   assert(lo != rcx, "must not use rcx");
   252   const Register s = rcx;                        // shift count
   253   const int      n = BitsPerWord;
   254   Label L;
   255   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   256   cmpl(s, n);                                    // if (s < n)
   257   jcc(Assembler::less, L);                       // else (s >= n)
   258   movl(hi, lo);                                  // x := x << n
   259   xorl(lo, lo);
   260   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   261   bind(L);                                       // s (mod n) < n
   262   shldl(hi, lo);                                 // x := x << s
   263   shll(lo);
   264 }
   267 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
   268   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
   269   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
   270   assert(hi != rcx, "must not use rcx");
   271   assert(lo != rcx, "must not use rcx");
   272   const Register s = rcx;                        // shift count
   273   const int      n = BitsPerWord;
   274   Label L;
   275   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   276   cmpl(s, n);                                    // if (s < n)
   277   jcc(Assembler::less, L);                       // else (s >= n)
   278   movl(lo, hi);                                  // x := x >> n
   279   if (sign_extension) sarl(hi, 31);
   280   else                xorl(hi, hi);
   281   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   282   bind(L);                                       // s (mod n) < n
   283   shrdl(lo, hi);                                 // x := x >> s
   284   if (sign_extension) sarl(hi);
   285   else                shrl(hi);
   286 }
   288 void MacroAssembler::movoop(Register dst, jobject obj) {
   289   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   290 }
   292 void MacroAssembler::movoop(Address dst, jobject obj) {
   293   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   294 }
   296 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   297   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   298 }
   300 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   301   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   302 }
   304 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
   305   // scratch register is not used,
   306   // it is defined to match parameters of 64-bit version of this method.
   307   if (src.is_lval()) {
   308     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
   309   } else {
   310     movl(dst, as_Address(src));
   311   }
   312 }
   314 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   315   movl(as_Address(dst), src);
   316 }
   318 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   319   movl(dst, as_Address(src));
   320 }
   322 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   323 void MacroAssembler::movptr(Address dst, intptr_t src) {
   324   movl(dst, src);
   325 }
   328 void MacroAssembler::pop_callee_saved_registers() {
   329   pop(rcx);
   330   pop(rdx);
   331   pop(rdi);
   332   pop(rsi);
   333 }
   335 void MacroAssembler::pop_fTOS() {
   336   fld_d(Address(rsp, 0));
   337   addl(rsp, 2 * wordSize);
   338 }
   340 void MacroAssembler::push_callee_saved_registers() {
   341   push(rsi);
   342   push(rdi);
   343   push(rdx);
   344   push(rcx);
   345 }
   347 void MacroAssembler::push_fTOS() {
   348   subl(rsp, 2 * wordSize);
   349   fstp_d(Address(rsp, 0));
   350 }
   353 void MacroAssembler::pushoop(jobject obj) {
   354   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
   355 }
   357 void MacroAssembler::pushklass(Metadata* obj) {
   358   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
   359 }
   361 void MacroAssembler::pushptr(AddressLiteral src) {
   362   if (src.is_lval()) {
   363     push_literal32((int32_t)src.target(), src.rspec());
   364   } else {
   365     pushl(as_Address(src));
   366   }
   367 }
   369 void MacroAssembler::set_word_if_not_zero(Register dst) {
   370   xorl(dst, dst);
   371   set_byte_if_not_zero(dst);
   372 }
   374 static void pass_arg0(MacroAssembler* masm, Register arg) {
   375   masm->push(arg);
   376 }
   378 static void pass_arg1(MacroAssembler* masm, Register arg) {
   379   masm->push(arg);
   380 }
   382 static void pass_arg2(MacroAssembler* masm, Register arg) {
   383   masm->push(arg);
   384 }
   386 static void pass_arg3(MacroAssembler* masm, Register arg) {
   387   masm->push(arg);
   388 }
   390 #ifndef PRODUCT
   391 extern "C" void findpc(intptr_t x);
   392 #endif
   394 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   395   // In order to get locks to work, we need to fake a in_VM state
   396   JavaThread* thread = JavaThread::current();
   397   JavaThreadState saved_state = thread->thread_state();
   398   thread->set_thread_state(_thread_in_vm);
   399   if (ShowMessageBoxOnError) {
   400     JavaThread* thread = JavaThread::current();
   401     JavaThreadState saved_state = thread->thread_state();
   402     thread->set_thread_state(_thread_in_vm);
   403     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   404       ttyLocker ttyl;
   405       BytecodeCounter::print();
   406     }
   407     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   408     // This is the value of eip which points to where verify_oop will return.
   409     if (os::message_box(msg, "Execution stopped, print registers?")) {
   410       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
   411       BREAKPOINT;
   412     }
   413   } else {
   414     ttyLocker ttyl;
   415     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   416   }
   417   // Don't assert holding the ttyLock
   418     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   419   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   420 }
   422 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
   423   ttyLocker ttyl;
   424   FlagSetting fs(Debugging, true);
   425   tty->print_cr("eip = 0x%08x", eip);
   426 #ifndef PRODUCT
   427   if ((WizardMode || Verbose) && PrintMiscellaneous) {
   428     tty->cr();
   429     findpc(eip);
   430     tty->cr();
   431   }
   432 #endif
   433 #define PRINT_REG(rax) \
   434   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
   435   PRINT_REG(rax);
   436   PRINT_REG(rbx);
   437   PRINT_REG(rcx);
   438   PRINT_REG(rdx);
   439   PRINT_REG(rdi);
   440   PRINT_REG(rsi);
   441   PRINT_REG(rbp);
   442   PRINT_REG(rsp);
   443 #undef PRINT_REG
   444   // Print some words near top of staack.
   445   int* dump_sp = (int*) rsp;
   446   for (int col1 = 0; col1 < 8; col1++) {
   447     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   448     os::print_location(tty, *dump_sp++);
   449   }
   450   for (int row = 0; row < 16; row++) {
   451     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   452     for (int col = 0; col < 8; col++) {
   453       tty->print(" 0x%08x", *dump_sp++);
   454     }
   455     tty->cr();
   456   }
   457   // Print some instructions around pc:
   458   Disassembler::decode((address)eip-64, (address)eip);
   459   tty->print_cr("--------");
   460   Disassembler::decode((address)eip, (address)eip+32);
   461 }
   463 void MacroAssembler::stop(const char* msg) {
   464   ExternalAddress message((address)msg);
   465   // push address of message
   466   pushptr(message.addr());
   467   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   468   pusha();                                            // push registers
   469   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   470   hlt();
   471 }
   473 void MacroAssembler::warn(const char* msg) {
   474   push_CPU_state();
   476   ExternalAddress message((address) msg);
   477   // push address of message
   478   pushptr(message.addr());
   480   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
   481   addl(rsp, wordSize);       // discard argument
   482   pop_CPU_state();
   483 }
   485 void MacroAssembler::print_state() {
   486   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   487   pusha();                                            // push registers
   489   push_CPU_state();
   490   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
   491   pop_CPU_state();
   493   popa();
   494   addl(rsp, wordSize);
   495 }
   497 #else // _LP64
   499 // 64 bit versions
   501 Address MacroAssembler::as_Address(AddressLiteral adr) {
   502   // amd64 always does this as a pc-rel
   503   // we can be absolute or disp based on the instruction type
   504   // jmp/call are displacements others are absolute
   505   assert(!adr.is_lval(), "must be rval");
   506   assert(reachable(adr), "must be");
   507   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
   509 }
   511 Address MacroAssembler::as_Address(ArrayAddress adr) {
   512   AddressLiteral base = adr.base();
   513   lea(rscratch1, base);
   514   Address index = adr.index();
   515   assert(index._disp == 0, "must not have disp"); // maybe it can?
   516   Address array(rscratch1, index._index, index._scale, index._disp);
   517   return array;
   518 }
   520 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
   521   Label L, E;
   523 #ifdef _WIN64
   524   // Windows always allocates space for it's register args
   525   assert(num_args <= 4, "only register arguments supported");
   526   subq(rsp,  frame::arg_reg_save_area_bytes);
   527 #endif
   529   // Align stack if necessary
   530   testl(rsp, 15);
   531   jcc(Assembler::zero, L);
   533   subq(rsp, 8);
   534   {
   535     call(RuntimeAddress(entry_point));
   536   }
   537   addq(rsp, 8);
   538   jmp(E);
   540   bind(L);
   541   {
   542     call(RuntimeAddress(entry_point));
   543   }
   545   bind(E);
   547 #ifdef _WIN64
   548   // restore stack pointer
   549   addq(rsp, frame::arg_reg_save_area_bytes);
   550 #endif
   552 }
   554 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
   555   assert(!src2.is_lval(), "should use cmpptr");
   557   if (reachable(src2)) {
   558     cmpq(src1, as_Address(src2));
   559   } else {
   560     lea(rscratch1, src2);
   561     Assembler::cmpq(src1, Address(rscratch1, 0));
   562   }
   563 }
   565 int MacroAssembler::corrected_idivq(Register reg) {
   566   // Full implementation of Java ldiv and lrem; checks for special
   567   // case as described in JVM spec., p.243 & p.271.  The function
   568   // returns the (pc) offset of the idivl instruction - may be needed
   569   // for implicit exceptions.
   570   //
   571   //         normal case                           special case
   572   //
   573   // input : rax: dividend                         min_long
   574   //         reg: divisor   (may not be eax/edx)   -1
   575   //
   576   // output: rax: quotient  (= rax idiv reg)       min_long
   577   //         rdx: remainder (= rax irem reg)       0
   578   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
   579   static const int64_t min_long = 0x8000000000000000;
   580   Label normal_case, special_case;
   582   // check for special case
   583   cmp64(rax, ExternalAddress((address) &min_long));
   584   jcc(Assembler::notEqual, normal_case);
   585   xorl(rdx, rdx); // prepare rdx for possible special case (where
   586                   // remainder = 0)
   587   cmpq(reg, -1);
   588   jcc(Assembler::equal, special_case);
   590   // handle normal case
   591   bind(normal_case);
   592   cdqq();
   593   int idivq_offset = offset();
   594   idivq(reg);
   596   // normal and special case exit
   597   bind(special_case);
   599   return idivq_offset;
   600 }
   602 void MacroAssembler::decrementq(Register reg, int value) {
   603   if (value == min_jint) { subq(reg, value); return; }
   604   if (value <  0) { incrementq(reg, -value); return; }
   605   if (value == 0) {                        ; return; }
   606   if (value == 1 && UseIncDec) { decq(reg) ; return; }
   607   /* else */      { subq(reg, value)       ; return; }
   608 }
   610 void MacroAssembler::decrementq(Address dst, int value) {
   611   if (value == min_jint) { subq(dst, value); return; }
   612   if (value <  0) { incrementq(dst, -value); return; }
   613   if (value == 0) {                        ; return; }
   614   if (value == 1 && UseIncDec) { decq(dst) ; return; }
   615   /* else */      { subq(dst, value)       ; return; }
   616 }
   618 void MacroAssembler::incrementq(AddressLiteral dst) {
   619   if (reachable(dst)) {
   620     incrementq(as_Address(dst));
   621   } else {
   622     lea(rscratch1, dst);
   623     incrementq(Address(rscratch1, 0));
   624   }
   625 }
   627 void MacroAssembler::incrementq(Register reg, int value) {
   628   if (value == min_jint) { addq(reg, value); return; }
   629   if (value <  0) { decrementq(reg, -value); return; }
   630   if (value == 0) {                        ; return; }
   631   if (value == 1 && UseIncDec) { incq(reg) ; return; }
   632   /* else */      { addq(reg, value)       ; return; }
   633 }
   635 void MacroAssembler::incrementq(Address dst, int value) {
   636   if (value == min_jint) { addq(dst, value); return; }
   637   if (value <  0) { decrementq(dst, -value); return; }
   638   if (value == 0) {                        ; return; }
   639   if (value == 1 && UseIncDec) { incq(dst) ; return; }
   640   /* else */      { addq(dst, value)       ; return; }
   641 }
   643 // 32bit can do a case table jump in one instruction but we no longer allow the base
   644 // to be installed in the Address class
   645 void MacroAssembler::jump(ArrayAddress entry) {
   646   lea(rscratch1, entry.base());
   647   Address dispatch = entry.index();
   648   assert(dispatch._base == noreg, "must be");
   649   dispatch._base = rscratch1;
   650   jmp(dispatch);
   651 }
   653 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   654   ShouldNotReachHere(); // 64bit doesn't use two regs
   655   cmpq(x_lo, y_lo);
   656 }
   658 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   659     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
   660 }
   662 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   663   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
   664   movptr(dst, rscratch1);
   665 }
   667 void MacroAssembler::leave() {
   668   // %%% is this really better? Why not on 32bit too?
   669   emit_int8((unsigned char)0xC9); // LEAVE
   670 }
   672 void MacroAssembler::lneg(Register hi, Register lo) {
   673   ShouldNotReachHere(); // 64bit doesn't use two regs
   674   negq(lo);
   675 }
   677 void MacroAssembler::movoop(Register dst, jobject obj) {
   678   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
   679 }
   681 void MacroAssembler::movoop(Address dst, jobject obj) {
   682   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
   683   movq(dst, rscratch1);
   684 }
   686 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   687   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
   688 }
   690 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   691   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
   692   movq(dst, rscratch1);
   693 }
   695 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
   696   if (src.is_lval()) {
   697     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
   698   } else {
   699     if (reachable(src)) {
   700       movq(dst, as_Address(src));
   701     } else {
   702       lea(scratch, src);
   703       movq(dst, Address(scratch, 0));
   704     }
   705   }
   706 }
   708 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   709   movq(as_Address(dst), src);
   710 }
   712 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   713   movq(dst, as_Address(src));
   714 }
   716 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   717 void MacroAssembler::movptr(Address dst, intptr_t src) {
   718   mov64(rscratch1, src);
   719   movq(dst, rscratch1);
   720 }
   722 // These are mostly for initializing NULL
   723 void MacroAssembler::movptr(Address dst, int32_t src) {
   724   movslq(dst, src);
   725 }
   727 void MacroAssembler::movptr(Register dst, int32_t src) {
   728   mov64(dst, (intptr_t)src);
   729 }
   731 void MacroAssembler::pushoop(jobject obj) {
   732   movoop(rscratch1, obj);
   733   push(rscratch1);
   734 }
   736 void MacroAssembler::pushklass(Metadata* obj) {
   737   mov_metadata(rscratch1, obj);
   738   push(rscratch1);
   739 }
   741 void MacroAssembler::pushptr(AddressLiteral src) {
   742   lea(rscratch1, src);
   743   if (src.is_lval()) {
   744     push(rscratch1);
   745   } else {
   746     pushq(Address(rscratch1, 0));
   747   }
   748 }
   750 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
   751                                            bool clear_pc) {
   752   // we must set sp to zero to clear frame
   753   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
   754   // must clear fp, so that compiled frames are not confused; it is
   755   // possible that we need it only for debugging
   756   if (clear_fp) {
   757     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
   758   }
   760   if (clear_pc) {
   761     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
   762   }
   763 }
   765 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
   766                                          Register last_java_fp,
   767                                          address  last_java_pc) {
   768   // determine last_java_sp register
   769   if (!last_java_sp->is_valid()) {
   770     last_java_sp = rsp;
   771   }
   773   // last_java_fp is optional
   774   if (last_java_fp->is_valid()) {
   775     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
   776            last_java_fp);
   777   }
   779   // last_java_pc is optional
   780   if (last_java_pc != NULL) {
   781     Address java_pc(r15_thread,
   782                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
   783     lea(rscratch1, InternalAddress(last_java_pc));
   784     movptr(java_pc, rscratch1);
   785   }
   787   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
   788 }
   790 static void pass_arg0(MacroAssembler* masm, Register arg) {
   791   if (c_rarg0 != arg ) {
   792     masm->mov(c_rarg0, arg);
   793   }
   794 }
   796 static void pass_arg1(MacroAssembler* masm, Register arg) {
   797   if (c_rarg1 != arg ) {
   798     masm->mov(c_rarg1, arg);
   799   }
   800 }
   802 static void pass_arg2(MacroAssembler* masm, Register arg) {
   803   if (c_rarg2 != arg ) {
   804     masm->mov(c_rarg2, arg);
   805   }
   806 }
   808 static void pass_arg3(MacroAssembler* masm, Register arg) {
   809   if (c_rarg3 != arg ) {
   810     masm->mov(c_rarg3, arg);
   811   }
   812 }
   814 void MacroAssembler::stop(const char* msg) {
   815   address rip = pc();
   816   pusha(); // get regs on stack
   817   lea(c_rarg0, ExternalAddress((address) msg));
   818   lea(c_rarg1, InternalAddress(rip));
   819   movq(c_rarg2, rsp); // pass pointer to regs array
   820   andq(rsp, -16); // align stack as required by ABI
   821   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
   822   hlt();
   823 }
   825 void MacroAssembler::warn(const char* msg) {
   826   push(rbp);
   827   movq(rbp, rsp);
   828   andq(rsp, -16);     // align stack as required by push_CPU_state and call
   829   push_CPU_state();   // keeps alignment at 16 bytes
   830   lea(c_rarg0, ExternalAddress((address) msg));
   831   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
   832   pop_CPU_state();
   833   mov(rsp, rbp);
   834   pop(rbp);
   835 }
   837 void MacroAssembler::print_state() {
   838   address rip = pc();
   839   pusha();            // get regs on stack
   840   push(rbp);
   841   movq(rbp, rsp);
   842   andq(rsp, -16);     // align stack as required by push_CPU_state and call
   843   push_CPU_state();   // keeps alignment at 16 bytes
   845   lea(c_rarg0, InternalAddress(rip));
   846   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
   847   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
   849   pop_CPU_state();
   850   mov(rsp, rbp);
   851   pop(rbp);
   852   popa();
   853 }
   855 #ifndef PRODUCT
   856 extern "C" void findpc(intptr_t x);
   857 #endif
   859 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
   860   // In order to get locks to work, we need to fake a in_VM state
   861   if (ShowMessageBoxOnError) {
   862     JavaThread* thread = JavaThread::current();
   863     JavaThreadState saved_state = thread->thread_state();
   864     thread->set_thread_state(_thread_in_vm);
   865 #ifndef PRODUCT
   866     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   867       ttyLocker ttyl;
   868       BytecodeCounter::print();
   869     }
   870 #endif
   871     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   872     // XXX correct this offset for amd64
   873     // This is the value of eip which points to where verify_oop will return.
   874     if (os::message_box(msg, "Execution stopped, print registers?")) {
   875       print_state64(pc, regs);
   876       BREAKPOINT;
   877       assert(false, "start up GDB");
   878     }
   879     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   880   } else {
   881     ttyLocker ttyl;
   882     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
   883                     msg);
   884     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   885   }
   886 }
   888 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
   889   ttyLocker ttyl;
   890   FlagSetting fs(Debugging, true);
   891   tty->print_cr("rip = 0x%016lx", pc);
   892 #ifndef PRODUCT
   893   tty->cr();
   894   findpc(pc);
   895   tty->cr();
   896 #endif
   897 #define PRINT_REG(rax, value) \
   898   { tty->print("%s = ", #rax); os::print_location(tty, value); }
   899   PRINT_REG(rax, regs[15]);
   900   PRINT_REG(rbx, regs[12]);
   901   PRINT_REG(rcx, regs[14]);
   902   PRINT_REG(rdx, regs[13]);
   903   PRINT_REG(rdi, regs[8]);
   904   PRINT_REG(rsi, regs[9]);
   905   PRINT_REG(rbp, regs[10]);
   906   PRINT_REG(rsp, regs[11]);
   907   PRINT_REG(r8 , regs[7]);
   908   PRINT_REG(r9 , regs[6]);
   909   PRINT_REG(r10, regs[5]);
   910   PRINT_REG(r11, regs[4]);
   911   PRINT_REG(r12, regs[3]);
   912   PRINT_REG(r13, regs[2]);
   913   PRINT_REG(r14, regs[1]);
   914   PRINT_REG(r15, regs[0]);
   915 #undef PRINT_REG
   916   // Print some words near top of staack.
   917   int64_t* rsp = (int64_t*) regs[11];
   918   int64_t* dump_sp = rsp;
   919   for (int col1 = 0; col1 < 8; col1++) {
   920     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
   921     os::print_location(tty, *dump_sp++);
   922   }
   923   for (int row = 0; row < 25; row++) {
   924     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
   925     for (int col = 0; col < 4; col++) {
   926       tty->print(" 0x%016lx", *dump_sp++);
   927     }
   928     tty->cr();
   929   }
   930   // Print some instructions around pc:
   931   Disassembler::decode((address)pc-64, (address)pc);
   932   tty->print_cr("--------");
   933   Disassembler::decode((address)pc, (address)pc+32);
   934 }
   936 #endif // _LP64
   938 // Now versions that are common to 32/64 bit
   940 void MacroAssembler::addptr(Register dst, int32_t imm32) {
   941   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
   942 }
   944 void MacroAssembler::addptr(Register dst, Register src) {
   945   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
   946 }
   948 void MacroAssembler::addptr(Address dst, Register src) {
   949   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
   950 }
   952 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
   953   if (reachable(src)) {
   954     Assembler::addsd(dst, as_Address(src));
   955   } else {
   956     lea(rscratch1, src);
   957     Assembler::addsd(dst, Address(rscratch1, 0));
   958   }
   959 }
   961 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
   962   if (reachable(src)) {
   963     addss(dst, as_Address(src));
   964   } else {
   965     lea(rscratch1, src);
   966     addss(dst, Address(rscratch1, 0));
   967   }
   968 }
   970 void MacroAssembler::align(int modulus) {
   971   if (offset() % modulus != 0) {
   972     nop(modulus - (offset() % modulus));
   973   }
   974 }
   976 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
   977   // Used in sign-masking with aligned address.
   978   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
   979   if (reachable(src)) {
   980     Assembler::andpd(dst, as_Address(src));
   981   } else {
   982     lea(rscratch1, src);
   983     Assembler::andpd(dst, Address(rscratch1, 0));
   984   }
   985 }
   987 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
   988   // Used in sign-masking with aligned address.
   989   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
   990   if (reachable(src)) {
   991     Assembler::andps(dst, as_Address(src));
   992   } else {
   993     lea(rscratch1, src);
   994     Assembler::andps(dst, Address(rscratch1, 0));
   995   }
   996 }
   998 void MacroAssembler::andptr(Register dst, int32_t imm32) {
   999   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  1002 void MacroAssembler::atomic_incl(Address counter_addr) {
  1003   if (os::is_MP())
  1004     lock();
  1005   incrementl(counter_addr);
  1008 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
  1009   if (reachable(counter_addr)) {
  1010     atomic_incl(as_Address(counter_addr));
  1011   } else {
  1012     lea(scr, counter_addr);
  1013     atomic_incl(Address(scr, 0));
  1017 #ifdef _LP64
  1018 void MacroAssembler::atomic_incq(Address counter_addr) {
  1019   if (os::is_MP())
  1020     lock();
  1021   incrementq(counter_addr);
  1024 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
  1025   if (reachable(counter_addr)) {
  1026     atomic_incq(as_Address(counter_addr));
  1027   } else {
  1028     lea(scr, counter_addr);
  1029     atomic_incq(Address(scr, 0));
  1032 #endif
  1034 // Writes to stack successive pages until offset reached to check for
  1035 // stack overflow + shadow pages.  This clobbers tmp.
  1036 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  1037   movptr(tmp, rsp);
  1038   // Bang stack for total size given plus shadow page size.
  1039   // Bang one page at a time because large size can bang beyond yellow and
  1040   // red zones.
  1041   Label loop;
  1042   bind(loop);
  1043   movl(Address(tmp, (-os::vm_page_size())), size );
  1044   subptr(tmp, os::vm_page_size());
  1045   subl(size, os::vm_page_size());
  1046   jcc(Assembler::greater, loop);
  1048   // Bang down shadow pages too.
  1049   // At this point, (tmp-0) is the last address touched, so don't
  1050   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
  1051   // was post-decremented.)  Skip this address by starting at i=1, and
  1052   // touch a few more pages below.  N.B.  It is important to touch all
  1053   // the way down to and including i=StackShadowPages.
  1054   for (int i = 1; i <= StackShadowPages; i++) {
  1055     // this could be any sized move but this is can be a debugging crumb
  1056     // so the bigger the better.
  1057     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  1061 int MacroAssembler::biased_locking_enter(Register lock_reg,
  1062                                          Register obj_reg,
  1063                                          Register swap_reg,
  1064                                          Register tmp_reg,
  1065                                          bool swap_reg_contains_mark,
  1066                                          Label& done,
  1067                                          Label* slow_case,
  1068                                          BiasedLockingCounters* counters) {
  1069   assert(UseBiasedLocking, "why call this otherwise?");
  1070   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  1071   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
  1072   bool need_tmp_reg = false;
  1073   if (tmp_reg == noreg) {
  1074     need_tmp_reg = true;
  1075     tmp_reg = lock_reg;
  1076     assert_different_registers(lock_reg, obj_reg, swap_reg);
  1077   } else {
  1078     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  1080   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  1081   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  1082   Address saved_mark_addr(lock_reg, 0);
  1084   if (PrintBiasedLockingStatistics && counters == NULL) {
  1085     counters = BiasedLocking::counters();
  1087   // Biased locking
  1088   // See whether the lock is currently biased toward our thread and
  1089   // whether the epoch is still valid
  1090   // Note that the runtime guarantees sufficient alignment of JavaThread
  1091   // pointers to allow age to be placed into low bits
  1092   // First check to see whether biasing is even enabled for this object
  1093   Label cas_label;
  1094   int null_check_offset = -1;
  1095   if (!swap_reg_contains_mark) {
  1096     null_check_offset = offset();
  1097     movptr(swap_reg, mark_addr);
  1099   if (need_tmp_reg) {
  1100     push(tmp_reg);
  1102   movptr(tmp_reg, swap_reg);
  1103   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  1104   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
  1105   if (need_tmp_reg) {
  1106     pop(tmp_reg);
  1108   jcc(Assembler::notEqual, cas_label);
  1109   // The bias pattern is present in the object's header. Need to check
  1110   // whether the bias owner and the epoch are both still current.
  1111 #ifndef _LP64
  1112   // Note that because there is no current thread register on x86_32 we
  1113   // need to store off the mark word we read out of the object to
  1114   // avoid reloading it and needing to recheck invariants below. This
  1115   // store is unfortunate but it makes the overall code shorter and
  1116   // simpler.
  1117   movptr(saved_mark_addr, swap_reg);
  1118 #endif
  1119   if (need_tmp_reg) {
  1120     push(tmp_reg);
  1122   if (swap_reg_contains_mark) {
  1123     null_check_offset = offset();
  1125   load_prototype_header(tmp_reg, obj_reg);
  1126 #ifdef _LP64
  1127   orptr(tmp_reg, r15_thread);
  1128   xorptr(tmp_reg, swap_reg);
  1129   Register header_reg = tmp_reg;
  1130 #else
  1131   xorptr(tmp_reg, swap_reg);
  1132   get_thread(swap_reg);
  1133   xorptr(swap_reg, tmp_reg);
  1134   Register header_reg = swap_reg;
  1135 #endif
  1136   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
  1137   if (need_tmp_reg) {
  1138     pop(tmp_reg);
  1140   if (counters != NULL) {
  1141     cond_inc32(Assembler::zero,
  1142                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
  1144   jcc(Assembler::equal, done);
  1146   Label try_revoke_bias;
  1147   Label try_rebias;
  1149   // At this point we know that the header has the bias pattern and
  1150   // that we are not the bias owner in the current epoch. We need to
  1151   // figure out more details about the state of the header in order to
  1152   // know what operations can be legally performed on the object's
  1153   // header.
  1155   // If the low three bits in the xor result aren't clear, that means
  1156   // the prototype header is no longer biased and we have to revoke
  1157   // the bias on this object.
  1158   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
  1159   jccb(Assembler::notZero, try_revoke_bias);
  1161   // Biasing is still enabled for this data type. See whether the
  1162   // epoch of the current bias is still valid, meaning that the epoch
  1163   // bits of the mark word are equal to the epoch bits of the
  1164   // prototype header. (Note that the prototype header's epoch bits
  1165   // only change at a safepoint.) If not, attempt to rebias the object
  1166   // toward the current thread. Note that we must be absolutely sure
  1167   // that the current epoch is invalid in order to do this because
  1168   // otherwise the manipulations it performs on the mark word are
  1169   // illegal.
  1170   testptr(header_reg, markOopDesc::epoch_mask_in_place);
  1171   jccb(Assembler::notZero, try_rebias);
  1173   // The epoch of the current bias is still valid but we know nothing
  1174   // about the owner; it might be set or it might be clear. Try to
  1175   // acquire the bias of the object using an atomic operation. If this
  1176   // fails we will go in to the runtime to revoke the object's bias.
  1177   // Note that we first construct the presumed unbiased header so we
  1178   // don't accidentally blow away another thread's valid bias.
  1179   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
  1180   andptr(swap_reg,
  1181          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  1182   if (need_tmp_reg) {
  1183     push(tmp_reg);
  1185 #ifdef _LP64
  1186   movptr(tmp_reg, swap_reg);
  1187   orptr(tmp_reg, r15_thread);
  1188 #else
  1189   get_thread(tmp_reg);
  1190   orptr(tmp_reg, swap_reg);
  1191 #endif
  1192   if (os::is_MP()) {
  1193     lock();
  1195   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1196   if (need_tmp_reg) {
  1197     pop(tmp_reg);
  1199   // If the biasing toward our thread failed, this means that
  1200   // another thread succeeded in biasing it toward itself and we
  1201   // need to revoke that bias. The revocation will occur in the
  1202   // interpreter runtime in the slow case.
  1203   if (counters != NULL) {
  1204     cond_inc32(Assembler::zero,
  1205                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  1207   if (slow_case != NULL) {
  1208     jcc(Assembler::notZero, *slow_case);
  1210   jmp(done);
  1212   bind(try_rebias);
  1213   // At this point we know the epoch has expired, meaning that the
  1214   // current "bias owner", if any, is actually invalid. Under these
  1215   // circumstances _only_, we are allowed to use the current header's
  1216   // value as the comparison value when doing the cas to acquire the
  1217   // bias in the current epoch. In other words, we allow transfer of
  1218   // the bias from one thread to another directly in this situation.
  1219   //
  1220   // FIXME: due to a lack of registers we currently blow away the age
  1221   // bits in this situation. Should attempt to preserve them.
  1222   if (need_tmp_reg) {
  1223     push(tmp_reg);
  1225   load_prototype_header(tmp_reg, obj_reg);
  1226 #ifdef _LP64
  1227   orptr(tmp_reg, r15_thread);
  1228 #else
  1229   get_thread(swap_reg);
  1230   orptr(tmp_reg, swap_reg);
  1231   movptr(swap_reg, saved_mark_addr);
  1232 #endif
  1233   if (os::is_MP()) {
  1234     lock();
  1236   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1237   if (need_tmp_reg) {
  1238     pop(tmp_reg);
  1240   // If the biasing toward our thread failed, then another thread
  1241   // succeeded in biasing it toward itself and we need to revoke that
  1242   // bias. The revocation will occur in the runtime in the slow case.
  1243   if (counters != NULL) {
  1244     cond_inc32(Assembler::zero,
  1245                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  1247   if (slow_case != NULL) {
  1248     jcc(Assembler::notZero, *slow_case);
  1250   jmp(done);
  1252   bind(try_revoke_bias);
  1253   // The prototype mark in the klass doesn't have the bias bit set any
  1254   // more, indicating that objects of this data type are not supposed
  1255   // to be biased any more. We are going to try to reset the mark of
  1256   // this object to the prototype value and fall through to the
  1257   // CAS-based locking scheme. Note that if our CAS fails, it means
  1258   // that another thread raced us for the privilege of revoking the
  1259   // bias of this particular object, so it's okay to continue in the
  1260   // normal locking code.
  1261   //
  1262   // FIXME: due to a lack of registers we currently blow away the age
  1263   // bits in this situation. Should attempt to preserve them.
  1264   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
  1265   if (need_tmp_reg) {
  1266     push(tmp_reg);
  1268   load_prototype_header(tmp_reg, obj_reg);
  1269   if (os::is_MP()) {
  1270     lock();
  1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1273   if (need_tmp_reg) {
  1274     pop(tmp_reg);
  1276   // Fall through to the normal CAS-based lock, because no matter what
  1277   // the result of the above CAS, some thread must have succeeded in
  1278   // removing the bias bit from the object's header.
  1279   if (counters != NULL) {
  1280     cond_inc32(Assembler::zero,
  1281                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  1284   bind(cas_label);
  1286   return null_check_offset;
  1289 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  1290   assert(UseBiasedLocking, "why call this otherwise?");
  1292   // Check for biased locking unlock case, which is a no-op
  1293   // Note: we do not have to check the thread ID for two reasons.
  1294   // First, the interpreter checks for IllegalMonitorStateException at
  1295   // a higher level. Second, if the bias was revoked while we held the
  1296   // lock, the object could not be rebiased toward another thread, so
  1297   // the bias bit would be clear.
  1298   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  1299   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  1300   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  1301   jcc(Assembler::equal, done);
  1304 #ifdef COMPILER2
  1306 #if INCLUDE_RTM_OPT
  1308 // Update rtm_counters based on abort status
  1309 // input: abort_status
  1310 //        rtm_counters (RTMLockingCounters*)
  1311 // flags are killed
  1312 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
  1314   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
  1315   if (PrintPreciseRTMLockingStatistics) {
  1316     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
  1317       Label check_abort;
  1318       testl(abort_status, (1<<i));
  1319       jccb(Assembler::equal, check_abort);
  1320       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
  1321       bind(check_abort);
  1326 // Branch if (random & (count-1) != 0), count is 2^n
  1327 // tmp, scr and flags are killed
  1328 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
  1329   assert(tmp == rax, "");
  1330   assert(scr == rdx, "");
  1331   rdtsc(); // modifies EDX:EAX
  1332   andptr(tmp, count-1);
  1333   jccb(Assembler::notZero, brLabel);
  1336 // Perform abort ratio calculation, set no_rtm bit if high ratio
  1337 // input:  rtm_counters_Reg (RTMLockingCounters* address)
  1338 // tmpReg, rtm_counters_Reg and flags are killed
  1339 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
  1340                                                  Register rtm_counters_Reg,
  1341                                                  RTMLockingCounters* rtm_counters,
  1342                                                  Metadata* method_data) {
  1343   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
  1345   if (RTMLockingCalculationDelay > 0) {
  1346     // Delay calculation
  1347     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
  1348     testptr(tmpReg, tmpReg);
  1349     jccb(Assembler::equal, L_done);
  1351   // Abort ratio calculation only if abort_count > RTMAbortThreshold
  1352   //   Aborted transactions = abort_count * 100
  1353   //   All transactions = total_count *  RTMTotalCountIncrRate
  1354   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
  1356   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
  1357   cmpptr(tmpReg, RTMAbortThreshold);
  1358   jccb(Assembler::below, L_check_always_rtm2);
  1359   imulptr(tmpReg, tmpReg, 100);
  1361   Register scrReg = rtm_counters_Reg;
  1362   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
  1363   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
  1364   imulptr(scrReg, scrReg, RTMAbortRatio);
  1365   cmpptr(tmpReg, scrReg);
  1366   jccb(Assembler::below, L_check_always_rtm1);
  1367   if (method_data != NULL) {
  1368     // set rtm_state to "no rtm" in MDO
  1369     mov_metadata(tmpReg, method_data);
  1370     if (os::is_MP()) {
  1371       lock();
  1373     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
  1375   jmpb(L_done);
  1376   bind(L_check_always_rtm1);
  1377   // Reload RTMLockingCounters* address
  1378   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
  1379   bind(L_check_always_rtm2);
  1380   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
  1381   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
  1382   jccb(Assembler::below, L_done);
  1383   if (method_data != NULL) {
  1384     // set rtm_state to "always rtm" in MDO
  1385     mov_metadata(tmpReg, method_data);
  1386     if (os::is_MP()) {
  1387       lock();
  1389     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
  1391   bind(L_done);
  1394 // Update counters and perform abort ratio calculation
  1395 // input:  abort_status_Reg
  1396 // rtm_counters_Reg, flags are killed
  1397 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
  1398                                    Register rtm_counters_Reg,
  1399                                    RTMLockingCounters* rtm_counters,
  1400                                    Metadata* method_data,
  1401                                    bool profile_rtm) {
  1403   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1404   // update rtm counters based on rax value at abort
  1405   // reads abort_status_Reg, updates flags
  1406   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
  1407   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
  1408   if (profile_rtm) {
  1409     // Save abort status because abort_status_Reg is used by following code.
  1410     if (RTMRetryCount > 0) {
  1411       push(abort_status_Reg);
  1413     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1414     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
  1415     // restore abort status
  1416     if (RTMRetryCount > 0) {
  1417       pop(abort_status_Reg);
  1422 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
  1423 // inputs: retry_count_Reg
  1424 //       : abort_status_Reg
  1425 // output: retry_count_Reg decremented by 1
  1426 // flags are killed
  1427 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
  1428   Label doneRetry;
  1429   assert(abort_status_Reg == rax, "");
  1430   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
  1431   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
  1432   // if reason is in 0x6 and retry count != 0 then retry
  1433   andptr(abort_status_Reg, 0x6);
  1434   jccb(Assembler::zero, doneRetry);
  1435   testl(retry_count_Reg, retry_count_Reg);
  1436   jccb(Assembler::zero, doneRetry);
  1437   pause();
  1438   decrementl(retry_count_Reg);
  1439   jmp(retryLabel);
  1440   bind(doneRetry);
  1443 // Spin and retry if lock is busy,
  1444 // inputs: box_Reg (monitor address)
  1445 //       : retry_count_Reg
  1446 // output: retry_count_Reg decremented by 1
  1447 //       : clear z flag if retry count exceeded
  1448 // tmp_Reg, scr_Reg, flags are killed
  1449 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
  1450                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
  1451   Label SpinLoop, SpinExit, doneRetry;
  1452   // Clean monitor_value bit to get valid pointer
  1453   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  1455   testl(retry_count_Reg, retry_count_Reg);
  1456   jccb(Assembler::zero, doneRetry);
  1457   decrementl(retry_count_Reg);
  1458   movptr(scr_Reg, RTMSpinLoopCount);
  1460   bind(SpinLoop);
  1461   pause();
  1462   decrementl(scr_Reg);
  1463   jccb(Assembler::lessEqual, SpinExit);
  1464   movptr(tmp_Reg, Address(box_Reg, owner_offset));
  1465   testptr(tmp_Reg, tmp_Reg);
  1466   jccb(Assembler::notZero, SpinLoop);
  1468   bind(SpinExit);
  1469   jmp(retryLabel);
  1470   bind(doneRetry);
  1471   incrementl(retry_count_Reg); // clear z flag
  1474 // Use RTM for normal stack locks
  1475 // Input: objReg (object to lock)
  1476 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
  1477                                        Register retry_on_abort_count_Reg,
  1478                                        RTMLockingCounters* stack_rtm_counters,
  1479                                        Metadata* method_data, bool profile_rtm,
  1480                                        Label& DONE_LABEL, Label& IsInflated) {
  1481   assert(UseRTMForStackLocks, "why call this otherwise?");
  1482   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
  1483   assert(tmpReg == rax, "");
  1484   assert(scrReg == rdx, "");
  1485   Label L_rtm_retry, L_decrement_retry, L_on_abort;
  1487   if (RTMRetryCount > 0) {
  1488     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
  1489     bind(L_rtm_retry);
  1491   movptr(tmpReg, Address(objReg, 0));
  1492   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
  1493   jcc(Assembler::notZero, IsInflated);
  1495   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1496     Label L_noincrement;
  1497     if (RTMTotalCountIncrRate > 1) {
  1498       // tmpReg, scrReg and flags are killed
  1499       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
  1501     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
  1502     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
  1503     bind(L_noincrement);
  1505   xbegin(L_on_abort);
  1506   movptr(tmpReg, Address(objReg, 0));       // fetch markword
  1507   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
  1508   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
  1509   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
  1511   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
  1512   if (UseRTMXendForLockBusy) {
  1513     xend();
  1514     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
  1515     jmp(L_decrement_retry);
  1517   else {
  1518     xabort(0);
  1520   bind(L_on_abort);
  1521   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1522     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
  1524   bind(L_decrement_retry);
  1525   if (RTMRetryCount > 0) {
  1526     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
  1527     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  1531 // Use RTM for inflating locks
  1532 // inputs: objReg (object to lock)
  1533 //         boxReg (on-stack box address (displaced header location) - KILLED)
  1534 //         tmpReg (ObjectMonitor address + 2(monitor_value))
  1535 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
  1536                                           Register scrReg, Register retry_on_busy_count_Reg,
  1537                                           Register retry_on_abort_count_Reg,
  1538                                           RTMLockingCounters* rtm_counters,
  1539                                           Metadata* method_data, bool profile_rtm,
  1540                                           Label& DONE_LABEL) {
  1541   assert(UseRTMLocking, "why call this otherwise?");
  1542   assert(tmpReg == rax, "");
  1543   assert(scrReg == rdx, "");
  1544   Label L_rtm_retry, L_decrement_retry, L_on_abort;
  1545   // Clean monitor_value bit to get valid pointer
  1546   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  1548   // Without cast to int32_t a movptr will destroy r10 which is typically obj
  1549   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1550   movptr(boxReg, tmpReg); // Save ObjectMonitor address
  1552   if (RTMRetryCount > 0) {
  1553     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
  1554     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
  1555     bind(L_rtm_retry);
  1557   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1558     Label L_noincrement;
  1559     if (RTMTotalCountIncrRate > 1) {
  1560       // tmpReg, scrReg and flags are killed
  1561       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
  1563     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1564     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
  1565     bind(L_noincrement);
  1567   xbegin(L_on_abort);
  1568   movptr(tmpReg, Address(objReg, 0));
  1569   movptr(tmpReg, Address(tmpReg, owner_offset));
  1570   testptr(tmpReg, tmpReg);
  1571   jcc(Assembler::zero, DONE_LABEL);
  1572   if (UseRTMXendForLockBusy) {
  1573     xend();
  1574     jmp(L_decrement_retry);
  1576   else {
  1577     xabort(0);
  1579   bind(L_on_abort);
  1580   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
  1581   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1582     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
  1584   if (RTMRetryCount > 0) {
  1585     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
  1586     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  1589   movptr(tmpReg, Address(boxReg, owner_offset)) ;
  1590   testptr(tmpReg, tmpReg) ;
  1591   jccb(Assembler::notZero, L_decrement_retry) ;
  1593   // Appears unlocked - try to swing _owner from null to non-null.
  1594   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1595 #ifdef _LP64
  1596   Register threadReg = r15_thread;
  1597 #else
  1598   get_thread(scrReg);
  1599   Register threadReg = scrReg;
  1600 #endif
  1601   if (os::is_MP()) {
  1602     lock();
  1604   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
  1606   if (RTMRetryCount > 0) {
  1607     // success done else retry
  1608     jccb(Assembler::equal, DONE_LABEL) ;
  1609     bind(L_decrement_retry);
  1610     // Spin and retry if lock is busy.
  1611     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
  1613   else {
  1614     bind(L_decrement_retry);
  1618 #endif //  INCLUDE_RTM_OPT
  1620 // Fast_Lock and Fast_Unlock used by C2
  1622 // Because the transitions from emitted code to the runtime
  1623 // monitorenter/exit helper stubs are so slow it's critical that
  1624 // we inline both the stack-locking fast-path and the inflated fast path.
  1625 //
  1626 // See also: cmpFastLock and cmpFastUnlock.
  1627 //
  1628 // What follows is a specialized inline transliteration of the code
  1629 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  1630 // another option would be to emit TrySlowEnter and TrySlowExit methods
  1631 // at startup-time.  These methods would accept arguments as
  1632 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  1633 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  1634 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  1635 // In practice, however, the # of lock sites is bounded and is usually small.
  1636 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  1637 // if the processor uses simple bimodal branch predictors keyed by EIP
  1638 // Since the helper routines would be called from multiple synchronization
  1639 // sites.
  1640 //
  1641 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  1642 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  1643 // to those specialized methods.  That'd give us a mostly platform-independent
  1644 // implementation that the JITs could optimize and inline at their pleasure.
  1645 // Done correctly, the only time we'd need to cross to native could would be
  1646 // to park() or unpark() threads.  We'd also need a few more unsafe operators
  1647 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  1648 // (b) explicit barriers or fence operations.
  1649 //
  1650 // TODO:
  1651 //
  1652 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  1653 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  1654 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  1655 //    the lock operators would typically be faster than reifying Self.
  1656 //
  1657 // *  Ideally I'd define the primitives as:
  1658 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  1659 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  1660 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  1661 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  1662 //    Furthermore the register assignments are overconstrained, possibly resulting in
  1663 //    sub-optimal code near the synchronization site.
  1664 //
  1665 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  1666 //    Alternately, use a better sp-proximity test.
  1667 //
  1668 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  1669 //    Either one is sufficient to uniquely identify a thread.
  1670 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  1671 //
  1672 // *  Intrinsify notify() and notifyAll() for the common cases where the
  1673 //    object is locked by the calling thread but the waitlist is empty.
  1674 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  1675 //
  1676 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  1677 //    But beware of excessive branch density on AMD Opterons.
  1678 //
  1679 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  1680 //    or failure of the fast-path.  If the fast-path fails then we pass
  1681 //    control to the slow-path, typically in C.  In Fast_Lock and
  1682 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  1683 //    will emit a conditional branch immediately after the node.
  1684 //    So we have branches to branches and lots of ICC.ZF games.
  1685 //    Instead, it might be better to have C2 pass a "FailureLabel"
  1686 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  1687 //    will drop through the node.  ICC.ZF is undefined at exit.
  1688 //    In the case of failure, the node will branch directly to the
  1689 //    FailureLabel
  1692 // obj: object to lock
  1693 // box: on-stack box address (displaced header location) - KILLED
  1694 // rax,: tmp -- KILLED
  1695 // scr: tmp -- KILLED
  1696 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
  1697                                Register scrReg, Register cx1Reg, Register cx2Reg,
  1698                                BiasedLockingCounters* counters,
  1699                                RTMLockingCounters* rtm_counters,
  1700                                RTMLockingCounters* stack_rtm_counters,
  1701                                Metadata* method_data,
  1702                                bool use_rtm, bool profile_rtm) {
  1703   // Ensure the register assignents are disjoint
  1704   assert(tmpReg == rax, "");
  1706   if (use_rtm) {
  1707     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
  1708   } else {
  1709     assert(cx1Reg == noreg, "");
  1710     assert(cx2Reg == noreg, "");
  1711     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
  1714   if (counters != NULL) {
  1715     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
  1717   if (EmitSync & 1) {
  1718       // set box->dhw = unused_mark (3)
  1719       // Force all sync thru slow-path: slow_enter() and slow_exit()
  1720       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1721       cmpptr (rsp, (int32_t)NULL_WORD);
  1722   } else
  1723   if (EmitSync & 2) {
  1724       Label DONE_LABEL ;
  1725       if (UseBiasedLocking) {
  1726          // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  1727          biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
  1730       movptr(tmpReg, Address(objReg, 0));           // fetch markword
  1731       orptr (tmpReg, 0x1);
  1732       movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
  1733       if (os::is_MP()) {
  1734         lock();
  1736       cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
  1737       jccb(Assembler::equal, DONE_LABEL);
  1738       // Recursive locking
  1739       subptr(tmpReg, rsp);
  1740       andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
  1741       movptr(Address(boxReg, 0), tmpReg);
  1742       bind(DONE_LABEL);
  1743   } else {
  1744     // Possible cases that we'll encounter in fast_lock
  1745     // ------------------------------------------------
  1746     // * Inflated
  1747     //    -- unlocked
  1748     //    -- Locked
  1749     //       = by self
  1750     //       = by other
  1751     // * biased
  1752     //    -- by Self
  1753     //    -- by other
  1754     // * neutral
  1755     // * stack-locked
  1756     //    -- by self
  1757     //       = sp-proximity test hits
  1758     //       = sp-proximity test generates false-negative
  1759     //    -- by other
  1760     //
  1762     Label IsInflated, DONE_LABEL;
  1764     // it's stack-locked, biased or neutral
  1765     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  1766     // order to reduce the number of conditional branches in the most common cases.
  1767     // Beware -- there's a subtle invariant that fetch of the markword
  1768     // at [FETCH], below, will never observe a biased encoding (*101b).
  1769     // If this invariant is not held we risk exclusion (safety) failure.
  1770     if (UseBiasedLocking && !UseOptoBiasInlining) {
  1771       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, counters);
  1774 #if INCLUDE_RTM_OPT
  1775     if (UseRTMForStackLocks && use_rtm) {
  1776       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
  1777                         stack_rtm_counters, method_data, profile_rtm,
  1778                         DONE_LABEL, IsInflated);
  1780 #endif // INCLUDE_RTM_OPT
  1782     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
  1783     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
  1784     jccb(Assembler::notZero, IsInflated);
  1786     // Attempt stack-locking ...
  1787     orptr (tmpReg, markOopDesc::unlocked_value);
  1788     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  1789     if (os::is_MP()) {
  1790       lock();
  1792     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
  1793     if (counters != NULL) {
  1794       cond_inc32(Assembler::equal,
  1795                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
  1797     jcc(Assembler::equal, DONE_LABEL);           // Success
  1799     // Recursive locking.
  1800     // The object is stack-locked: markword contains stack pointer to BasicLock.
  1801     // Locked by current thread if difference with current SP is less than one page.
  1802     subptr(tmpReg, rsp);
  1803     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
  1804     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
  1805     movptr(Address(boxReg, 0), tmpReg);
  1806     if (counters != NULL) {
  1807       cond_inc32(Assembler::equal,
  1808                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
  1810     jmp(DONE_LABEL);
  1812     bind(IsInflated);
  1813     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)
  1815 #if INCLUDE_RTM_OPT
  1816     // Use the same RTM locking code in 32- and 64-bit VM.
  1817     if (use_rtm) {
  1818       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
  1819                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
  1820     } else {
  1821 #endif // INCLUDE_RTM_OPT
  1823 #ifndef _LP64
  1824     // The object is inflated.
  1825     //
  1826     // TODO-FIXME: eliminate the ugly use of manifest constants:
  1827     //   Use markOopDesc::monitor_value instead of "2".
  1828     //   use markOop::unused_mark() instead of "3".
  1829     // The tmpReg value is an objectMonitor reference ORed with
  1830     // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  1831     // objectmonitor pointer by masking off the "2" bit or we can just
  1832     // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  1833     // field offsets with "-2" to compensate for and annul the low-order tag bit.
  1834     //
  1835     // I use the latter as it avoids AGI stalls.
  1836     // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  1837     // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  1838     //
  1839     #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  1841     // boxReg refers to the on-stack BasicLock in the current frame.
  1842     // We'd like to write:
  1843     //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  1844     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  1845     // additional latency as we have another ST in the store buffer that must drain.
  1847     if (EmitSync & 8192) {
  1848        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
  1849        get_thread (scrReg);
  1850        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
  1851        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  1852        if (os::is_MP()) {
  1853          lock();
  1855        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1856     } else
  1857     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  1858        movptr(scrReg, boxReg);
  1859        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
  1861        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  1862        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  1863           // prefetchw [eax + Offset(_owner)-2]
  1864           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1867        if ((EmitSync & 64) == 0) {
  1868          // Optimistic form: consider XORL tmpReg,tmpReg
  1869          movptr(tmpReg, NULL_WORD);
  1870        } else {
  1871          // Can suffer RTS->RTO upgrades on shared or cold $ lines
  1872          // Test-And-CAS instead of CAS
  1873          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
  1874          testptr(tmpReg, tmpReg);                   // Locked ?
  1875          jccb  (Assembler::notZero, DONE_LABEL);
  1878        // Appears unlocked - try to swing _owner from null to non-null.
  1879        // Ideally, I'd manifest "Self" with get_thread and then attempt
  1880        // to CAS the register containing Self into m->Owner.
  1881        // But we don't have enough registers, so instead we can either try to CAS
  1882        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  1883        // we later store "Self" into m->Owner.  Transiently storing a stack address
  1884        // (rsp or the address of the box) into  m->owner is harmless.
  1885        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1886        if (os::is_MP()) {
  1887          lock();
  1889        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1890        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
  1891        jccb  (Assembler::notZero, DONE_LABEL);
  1892        get_thread (scrReg);                    // beware: clobbers ICCs
  1893        movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg);
  1894        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
  1896        // If the CAS fails we can either retry or pass control to the slow-path.
  1897        // We use the latter tactic.
  1898        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  1899        // If the CAS was successful ...
  1900        //   Self has acquired the lock
  1901        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  1902        // Intentional fall-through into DONE_LABEL ...
  1903     } else {
  1904        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
  1905        movptr(boxReg, tmpReg);
  1907        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  1908        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  1909           // prefetchw [eax + Offset(_owner)-2]
  1910           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1913        if ((EmitSync & 64) == 0) {
  1914          // Optimistic form
  1915          xorptr  (tmpReg, tmpReg);
  1916        } else {
  1917          // Can suffer RTS->RTO upgrades on shared or cold $ lines
  1918          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
  1919          testptr(tmpReg, tmpReg);                   // Locked ?
  1920          jccb  (Assembler::notZero, DONE_LABEL);
  1923        // Appears unlocked - try to swing _owner from null to non-null.
  1924        // Use either "Self" (in scr) or rsp as thread identity in _owner.
  1925        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1926        get_thread (scrReg);
  1927        if (os::is_MP()) {
  1928          lock();
  1930        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1932        // If the CAS fails we can either retry or pass control to the slow-path.
  1933        // We use the latter tactic.
  1934        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  1935        // If the CAS was successful ...
  1936        //   Self has acquired the lock
  1937        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  1938        // Intentional fall-through into DONE_LABEL ...
  1940 #else // _LP64
  1941     // It's inflated
  1943     // TODO: someday avoid the ST-before-CAS penalty by
  1944     // relocating (deferring) the following ST.
  1945     // We should also think about trying a CAS without having
  1946     // fetched _owner.  If the CAS is successful we may
  1947     // avoid an RTO->RTS upgrade on the $line.
  1949     // Without cast to int32_t a movptr will destroy r10 which is typically obj
  1950     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1952     movptr (boxReg, tmpReg);
  1953     movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1954     testptr(tmpReg, tmpReg);
  1955     jccb   (Assembler::notZero, DONE_LABEL);
  1957     // It's inflated and appears unlocked
  1958     if (os::is_MP()) {
  1959       lock();
  1961     cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1962     // Intentional fall-through into DONE_LABEL ...
  1963 #endif // _LP64
  1965 #if INCLUDE_RTM_OPT
  1966     } // use_rtm()
  1967 #endif
  1968     // DONE_LABEL is a hot target - we'd really like to place it at the
  1969     // start of cache line by padding with NOPs.
  1970     // See the AMD and Intel software optimization manuals for the
  1971     // most efficient "long" NOP encodings.
  1972     // Unfortunately none of our alignment mechanisms suffice.
  1973     bind(DONE_LABEL);
  1975     // At DONE_LABEL the icc ZFlag is set as follows ...
  1976     // Fast_Unlock uses the same protocol.
  1977     // ZFlag == 1 -> Success
  1978     // ZFlag == 0 -> Failure - force control through the slow-path
  1982 // obj: object to unlock
  1983 // box: box address (displaced header location), killed.  Must be EAX.
  1984 // tmp: killed, cannot be obj nor box.
  1985 //
  1986 // Some commentary on balanced locking:
  1987 //
  1988 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  1989 // Methods that don't have provably balanced locking are forced to run in the
  1990 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  1991 // The interpreter provides two properties:
  1992 // I1:  At return-time the interpreter automatically and quietly unlocks any
  1993 //      objects acquired the current activation (frame).  Recall that the
  1994 //      interpreter maintains an on-stack list of locks currently held by
  1995 //      a frame.
  1996 // I2:  If a method attempts to unlock an object that is not held by the
  1997 //      the frame the interpreter throws IMSX.
  1998 //
  1999 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  2000 // B() doesn't have provably balanced locking so it runs in the interpreter.
  2001 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  2002 // is still locked by A().
  2003 //
  2004 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  2005 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  2006 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  2007 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  2009 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
  2010   assert(boxReg == rax, "");
  2011   assert_different_registers(objReg, boxReg, tmpReg);
  2013   if (EmitSync & 4) {
  2014     // Disable - inhibit all inlining.  Force control through the slow-path
  2015     cmpptr (rsp, 0);
  2016   } else
  2017   if (EmitSync & 8) {
  2018     Label DONE_LABEL;
  2019     if (UseBiasedLocking) {
  2020        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2022     // Classic stack-locking code ...
  2023     // Check whether the displaced header is 0
  2024     //(=> recursive unlock)
  2025     movptr(tmpReg, Address(boxReg, 0));
  2026     testptr(tmpReg, tmpReg);
  2027     jccb(Assembler::zero, DONE_LABEL);
  2028     // If not recursive lock, reset the header to displaced header
  2029     if (os::is_MP()) {
  2030       lock();
  2032     cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
  2033     bind(DONE_LABEL);
  2034   } else {
  2035     Label DONE_LABEL, Stacked, CheckSucc;
  2037     // Critically, the biased locking test must have precedence over
  2038     // and appear before the (box->dhw == 0) recursive stack-lock test.
  2039     if (UseBiasedLocking && !UseOptoBiasInlining) {
  2040        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2043 #if INCLUDE_RTM_OPT
  2044     if (UseRTMForStackLocks && use_rtm) {
  2045       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
  2046       Label L_regular_unlock;
  2047       movptr(tmpReg, Address(objReg, 0));           // fetch markword
  2048       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
  2049       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
  2050       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
  2051       xend();                                       // otherwise end...
  2052       jmp(DONE_LABEL);                              // ... and we're done
  2053       bind(L_regular_unlock);
  2055 #endif
  2057     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
  2058     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
  2059     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
  2060     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
  2061     jccb  (Assembler::zero, Stacked);
  2063     // It's inflated.
  2064 #if INCLUDE_RTM_OPT
  2065     if (use_rtm) {
  2066       Label L_regular_inflated_unlock;
  2067       // Clean monitor_value bit to get valid pointer
  2068       int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  2069       movptr(boxReg, Address(tmpReg, owner_offset));
  2070       testptr(boxReg, boxReg);
  2071       jccb(Assembler::notZero, L_regular_inflated_unlock);
  2072       xend();
  2073       jmpb(DONE_LABEL);
  2074       bind(L_regular_inflated_unlock);
  2076 #endif
  2078     // Despite our balanced locking property we still check that m->_owner == Self
  2079     // as java routines or native JNI code called by this thread might
  2080     // have released the lock.
  2081     // Refer to the comments in synchronizer.cpp for how we might encode extra
  2082     // state in _succ so we can avoid fetching EntryList|cxq.
  2083     //
  2084     // I'd like to add more cases in fast_lock() and fast_unlock() --
  2085     // such as recursive enter and exit -- but we have to be wary of
  2086     // I$ bloat, T$ effects and BP$ effects.
  2087     //
  2088     // If there's no contention try a 1-0 exit.  That is, exit without
  2089     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  2090     // we detect and recover from the race that the 1-0 exit admits.
  2091     //
  2092     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  2093     // before it STs null into _owner, releasing the lock.  Updates
  2094     // to data protected by the critical section must be visible before
  2095     // we drop the lock (and thus before any other thread could acquire
  2096     // the lock and observe the fields protected by the lock).
  2097     // IA32's memory-model is SPO, so STs are ordered with respect to
  2098     // each other and there's no need for an explicit barrier (fence).
  2099     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  2100 #ifndef _LP64
  2101     get_thread (boxReg);
  2102     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  2103       // prefetchw [ebx + Offset(_owner)-2]
  2104       prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2107     // Note that we could employ various encoding schemes to reduce
  2108     // the number of loads below (currently 4) to just 2 or 3.
  2109     // Refer to the comments in synchronizer.cpp.
  2110     // In practice the chain of fetches doesn't seem to impact performance, however.
  2111     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  2112        // Attempt to reduce branch density - AMD's branch predictor.
  2113        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2114        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2115        orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2116        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2117        jccb  (Assembler::notZero, DONE_LABEL);
  2118        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2119        jmpb  (DONE_LABEL);
  2120     } else {
  2121        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2122        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2123        jccb  (Assembler::notZero, DONE_LABEL);
  2124        movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2125        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2126        jccb  (Assembler::notZero, CheckSucc);
  2127        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2128        jmpb  (DONE_LABEL);
  2131     // The Following code fragment (EmitSync & 65536) improves the performance of
  2132     // contended applications and contended synchronization microbenchmarks.
  2133     // Unfortunately the emission of the code - even though not executed - causes regressions
  2134     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  2135     // with an equal number of never-executed NOPs results in the same regression.
  2136     // We leave it off by default.
  2138     if ((EmitSync & 65536) != 0) {
  2139        Label LSuccess, LGoSlowPath ;
  2141        bind  (CheckSucc);
  2143        // Optional pre-test ... it's safe to elide this
  2144        if ((EmitSync & 16) == 0) {
  2145           cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2146           jccb  (Assembler::zero, LGoSlowPath);
  2149        // We have a classic Dekker-style idiom:
  2150        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  2151        // There are a number of ways to implement the barrier:
  2152        // (1) lock:andl &m->_owner, 0
  2153        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  2154        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  2155        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  2156        // (2) If supported, an explicit MFENCE is appealing.
  2157        //     In older IA32 processors MFENCE is slower than lock:add or xchg
  2158        //     particularly if the write-buffer is full as might be the case if
  2159        //     if stores closely precede the fence or fence-equivalent instruction.
  2160        //     In more modern implementations MFENCE appears faster, however.
  2161        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  2162        //     The $lines underlying the top-of-stack should be in M-state.
  2163        //     The locked add instruction is serializing, of course.
  2164        // (4) Use xchg, which is serializing
  2165        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  2166        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  2167        //     The integer condition codes will tell us if succ was 0.
  2168        //     Since _succ and _owner should reside in the same $line and
  2169        //     we just stored into _owner, it's likely that the $line
  2170        //     remains in M-state for the lock:orl.
  2171        //
  2172        // We currently use (3), although it's likely that switching to (2)
  2173        // is correct for the future.
  2175        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2176        if (os::is_MP()) {
  2177           if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
  2178             mfence();
  2179           } else {
  2180             lock (); addptr(Address(rsp, 0), 0);
  2183        // Ratify _succ remains non-null
  2184        cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0);
  2185        jccb  (Assembler::notZero, LSuccess);
  2187        xorptr(boxReg, boxReg);                  // box is really EAX
  2188        if (os::is_MP()) { lock(); }
  2189        cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2190        jccb  (Assembler::notEqual, LSuccess);
  2191        // Since we're low on registers we installed rsp as a placeholding in _owner.
  2192        // Now install Self over rsp.  This is safe as we're transitioning from
  2193        // non-null to non=null
  2194        get_thread (boxReg);
  2195        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg);
  2196        // Intentional fall-through into LGoSlowPath ...
  2198        bind  (LGoSlowPath);
  2199        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
  2200        jmpb  (DONE_LABEL);
  2202        bind  (LSuccess);
  2203        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
  2204        jmpb  (DONE_LABEL);
  2207     bind (Stacked);
  2208     // It's not inflated and it's not recursively stack-locked and it's not biased.
  2209     // It must be stack-locked.
  2210     // Try to reset the header to displaced header.
  2211     // The "box" value on the stack is stable, so we can reload
  2212     // and be assured we observe the same value as above.
  2213     movptr(tmpReg, Address(boxReg, 0));
  2214     if (os::is_MP()) {
  2215       lock();
  2217     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  2218     // Intention fall-thru into DONE_LABEL
  2220     // DONE_LABEL is a hot target - we'd really like to place it at the
  2221     // start of cache line by padding with NOPs.
  2222     // See the AMD and Intel software optimization manuals for the
  2223     // most efficient "long" NOP encodings.
  2224     // Unfortunately none of our alignment mechanisms suffice.
  2225     if ((EmitSync & 65536) == 0) {
  2226        bind (CheckSucc);
  2228 #else // _LP64
  2229     // It's inflated
  2230     movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2231     xorptr(boxReg, r15_thread);
  2232     orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2233     jccb  (Assembler::notZero, DONE_LABEL);
  2234     movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2235     orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2236     jccb  (Assembler::notZero, CheckSucc);
  2237     movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2238     jmpb  (DONE_LABEL);
  2240     if ((EmitSync & 65536) == 0) {
  2241       Label LSuccess, LGoSlowPath ;
  2242       bind  (CheckSucc);
  2243       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2244       jccb  (Assembler::zero, LGoSlowPath);
  2246       // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
  2247       // the explicit ST;MEMBAR combination, but masm doesn't currently support
  2248       // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
  2249       // are all faster when the write buffer is populated.
  2250       movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2251       if (os::is_MP()) {
  2252          lock (); addl (Address(rsp, 0), 0);
  2254       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2255       jccb  (Assembler::notZero, LSuccess);
  2257       movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
  2258       if (os::is_MP()) { lock(); }
  2259       cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2260       jccb  (Assembler::notEqual, LSuccess);
  2261       // Intentional fall-through into slow-path
  2263       bind  (LGoSlowPath);
  2264       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
  2265       jmpb  (DONE_LABEL);
  2267       bind  (LSuccess);
  2268       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
  2269       jmpb  (DONE_LABEL);
  2272     bind  (Stacked);
  2273     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
  2274     if (os::is_MP()) { lock(); }
  2275     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  2277     if (EmitSync & 65536) {
  2278        bind (CheckSucc);
  2280 #endif
  2281     bind(DONE_LABEL);
  2282     // Avoid branch to branch on AMD processors
  2283     if (EmitSync & 32768) {
  2284        nop();
  2288 #endif // COMPILER2
  2290 void MacroAssembler::c2bool(Register x) {
  2291   // implements x == 0 ? 0 : 1
  2292   // note: must only look at least-significant byte of x
  2293   //       since C-style booleans are stored in one byte
  2294   //       only! (was bug)
  2295   andl(x, 0xFF);
  2296   setb(Assembler::notZero, x);
  2299 // Wouldn't need if AddressLiteral version had new name
  2300 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  2301   Assembler::call(L, rtype);
  2304 void MacroAssembler::call(Register entry) {
  2305   Assembler::call(entry);
  2308 void MacroAssembler::call(AddressLiteral entry) {
  2309   if (reachable(entry)) {
  2310     Assembler::call_literal(entry.target(), entry.rspec());
  2311   } else {
  2312     lea(rscratch1, entry);
  2313     Assembler::call(rscratch1);
  2317 void MacroAssembler::ic_call(address entry) {
  2318   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2319   movptr(rax, (intptr_t)Universe::non_oop_word());
  2320   call(AddressLiteral(entry, rh));
  2323 // Implementation of call_VM versions
  2325 void MacroAssembler::call_VM(Register oop_result,
  2326                              address entry_point,
  2327                              bool check_exceptions) {
  2328   Label C, E;
  2329   call(C, relocInfo::none);
  2330   jmp(E);
  2332   bind(C);
  2333   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  2334   ret(0);
  2336   bind(E);
  2339 void MacroAssembler::call_VM(Register oop_result,
  2340                              address entry_point,
  2341                              Register arg_1,
  2342                              bool check_exceptions) {
  2343   Label C, E;
  2344   call(C, relocInfo::none);
  2345   jmp(E);
  2347   bind(C);
  2348   pass_arg1(this, arg_1);
  2349   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  2350   ret(0);
  2352   bind(E);
  2355 void MacroAssembler::call_VM(Register oop_result,
  2356                              address entry_point,
  2357                              Register arg_1,
  2358                              Register arg_2,
  2359                              bool check_exceptions) {
  2360   Label C, E;
  2361   call(C, relocInfo::none);
  2362   jmp(E);
  2364   bind(C);
  2366   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2368   pass_arg2(this, arg_2);
  2369   pass_arg1(this, arg_1);
  2370   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  2371   ret(0);
  2373   bind(E);
  2376 void MacroAssembler::call_VM(Register oop_result,
  2377                              address entry_point,
  2378                              Register arg_1,
  2379                              Register arg_2,
  2380                              Register arg_3,
  2381                              bool check_exceptions) {
  2382   Label C, E;
  2383   call(C, relocInfo::none);
  2384   jmp(E);
  2386   bind(C);
  2388   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2389   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2390   pass_arg3(this, arg_3);
  2392   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2393   pass_arg2(this, arg_2);
  2395   pass_arg1(this, arg_1);
  2396   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  2397   ret(0);
  2399   bind(E);
  2402 void MacroAssembler::call_VM(Register oop_result,
  2403                              Register last_java_sp,
  2404                              address entry_point,
  2405                              int number_of_arguments,
  2406                              bool check_exceptions) {
  2407   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  2408   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  2411 void MacroAssembler::call_VM(Register oop_result,
  2412                              Register last_java_sp,
  2413                              address entry_point,
  2414                              Register arg_1,
  2415                              bool check_exceptions) {
  2416   pass_arg1(this, arg_1);
  2417   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  2420 void MacroAssembler::call_VM(Register oop_result,
  2421                              Register last_java_sp,
  2422                              address entry_point,
  2423                              Register arg_1,
  2424                              Register arg_2,
  2425                              bool check_exceptions) {
  2427   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2428   pass_arg2(this, arg_2);
  2429   pass_arg1(this, arg_1);
  2430   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  2433 void MacroAssembler::call_VM(Register oop_result,
  2434                              Register last_java_sp,
  2435                              address entry_point,
  2436                              Register arg_1,
  2437                              Register arg_2,
  2438                              Register arg_3,
  2439                              bool check_exceptions) {
  2440   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2441   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2442   pass_arg3(this, arg_3);
  2443   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2444   pass_arg2(this, arg_2);
  2445   pass_arg1(this, arg_1);
  2446   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  2449 void MacroAssembler::super_call_VM(Register oop_result,
  2450                                    Register last_java_sp,
  2451                                    address entry_point,
  2452                                    int number_of_arguments,
  2453                                    bool check_exceptions) {
  2454   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  2455   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  2458 void MacroAssembler::super_call_VM(Register oop_result,
  2459                                    Register last_java_sp,
  2460                                    address entry_point,
  2461                                    Register arg_1,
  2462                                    bool check_exceptions) {
  2463   pass_arg1(this, arg_1);
  2464   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  2467 void MacroAssembler::super_call_VM(Register oop_result,
  2468                                    Register last_java_sp,
  2469                                    address entry_point,
  2470                                    Register arg_1,
  2471                                    Register arg_2,
  2472                                    bool check_exceptions) {
  2474   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2475   pass_arg2(this, arg_2);
  2476   pass_arg1(this, arg_1);
  2477   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  2480 void MacroAssembler::super_call_VM(Register oop_result,
  2481                                    Register last_java_sp,
  2482                                    address entry_point,
  2483                                    Register arg_1,
  2484                                    Register arg_2,
  2485                                    Register arg_3,
  2486                                    bool check_exceptions) {
  2487   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2488   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2489   pass_arg3(this, arg_3);
  2490   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2491   pass_arg2(this, arg_2);
  2492   pass_arg1(this, arg_1);
  2493   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  2496 void MacroAssembler::call_VM_base(Register oop_result,
  2497                                   Register java_thread,
  2498                                   Register last_java_sp,
  2499                                   address  entry_point,
  2500                                   int      number_of_arguments,
  2501                                   bool     check_exceptions) {
  2502   // determine java_thread register
  2503   if (!java_thread->is_valid()) {
  2504 #ifdef _LP64
  2505     java_thread = r15_thread;
  2506 #else
  2507     java_thread = rdi;
  2508     get_thread(java_thread);
  2509 #endif // LP64
  2511   // determine last_java_sp register
  2512   if (!last_java_sp->is_valid()) {
  2513     last_java_sp = rsp;
  2515   // debugging support
  2516   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  2517   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  2518 #ifdef ASSERT
  2519   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  2520   // r12 is the heapbase.
  2521   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
  2522 #endif // ASSERT
  2524   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  2525   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  2527   // push java thread (becomes first argument of C function)
  2529   NOT_LP64(push(java_thread); number_of_arguments++);
  2530   LP64_ONLY(mov(c_rarg0, r15_thread));
  2532   // set last Java frame before call
  2533   assert(last_java_sp != rbp, "can't use ebp/rbp");
  2535   // Only interpreter should have to set fp
  2536   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  2538   // do the call, remove parameters
  2539   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  2541   // restore the thread (cannot use the pushed argument since arguments
  2542   // may be overwritten by C code generated by an optimizing compiler);
  2543   // however can use the register value directly if it is callee saved.
  2544   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  2545     // rdi & rsi (also r15) are callee saved -> nothing to do
  2546 #ifdef ASSERT
  2547     guarantee(java_thread != rax, "change this code");
  2548     push(rax);
  2549     { Label L;
  2550       get_thread(rax);
  2551       cmpptr(java_thread, rax);
  2552       jcc(Assembler::equal, L);
  2553       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  2554       bind(L);
  2556     pop(rax);
  2557 #endif
  2558   } else {
  2559     get_thread(java_thread);
  2561   // reset last Java frame
  2562   // Only interpreter should have to clear fp
  2563   reset_last_Java_frame(java_thread, true, false);
  2565 #ifndef CC_INTERP
  2566    // C++ interp handles this in the interpreter
  2567   check_and_handle_popframe(java_thread);
  2568   check_and_handle_earlyret(java_thread);
  2569 #endif /* CC_INTERP */
  2571   if (check_exceptions) {
  2572     // check for pending exceptions (java_thread is set upon return)
  2573     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  2574 #ifndef _LP64
  2575     jump_cc(Assembler::notEqual,
  2576             RuntimeAddress(StubRoutines::forward_exception_entry()));
  2577 #else
  2578     // This used to conditionally jump to forward_exception however it is
  2579     // possible if we relocate that the branch will not reach. So we must jump
  2580     // around so we can always reach
  2582     Label ok;
  2583     jcc(Assembler::equal, ok);
  2584     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2585     bind(ok);
  2586 #endif // LP64
  2589   // get oop result if there is one and reset the value in the thread
  2590   if (oop_result->is_valid()) {
  2591     get_vm_result(oop_result, java_thread);
  2595 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  2597   // Calculate the value for last_Java_sp
  2598   // somewhat subtle. call_VM does an intermediate call
  2599   // which places a return address on the stack just under the
  2600   // stack pointer as the user finsihed with it. This allows
  2601   // use to retrieve last_Java_pc from last_Java_sp[-1].
  2602   // On 32bit we then have to push additional args on the stack to accomplish
  2603   // the actual requested call. On 64bit call_VM only can use register args
  2604   // so the only extra space is the return address that call_VM created.
  2605   // This hopefully explains the calculations here.
  2607 #ifdef _LP64
  2608   // We've pushed one address, correct last_Java_sp
  2609   lea(rax, Address(rsp, wordSize));
  2610 #else
  2611   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  2612 #endif // LP64
  2614   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  2618 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  2619   call_VM_leaf_base(entry_point, number_of_arguments);
  2622 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  2623   pass_arg0(this, arg_0);
  2624   call_VM_leaf(entry_point, 1);
  2627 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  2629   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2630   pass_arg1(this, arg_1);
  2631   pass_arg0(this, arg_0);
  2632   call_VM_leaf(entry_point, 2);
  2635 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  2636   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2637   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2638   pass_arg2(this, arg_2);
  2639   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2640   pass_arg1(this, arg_1);
  2641   pass_arg0(this, arg_0);
  2642   call_VM_leaf(entry_point, 3);
  2645 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  2646   pass_arg0(this, arg_0);
  2647   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  2650 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  2652   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2653   pass_arg1(this, arg_1);
  2654   pass_arg0(this, arg_0);
  2655   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  2658 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  2659   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2660   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2661   pass_arg2(this, arg_2);
  2662   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2663   pass_arg1(this, arg_1);
  2664   pass_arg0(this, arg_0);
  2665   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  2668 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  2669   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  2670   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2671   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2672   pass_arg3(this, arg_3);
  2673   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2674   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2675   pass_arg2(this, arg_2);
  2676   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2677   pass_arg1(this, arg_1);
  2678   pass_arg0(this, arg_0);
  2679   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  2682 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  2683   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  2684   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  2685   verify_oop(oop_result, "broken oop in call_VM_base");
  2688 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  2689   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  2690   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  2693 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  2696 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  2699 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  2700   if (reachable(src1)) {
  2701     cmpl(as_Address(src1), imm);
  2702   } else {
  2703     lea(rscratch1, src1);
  2704     cmpl(Address(rscratch1, 0), imm);
  2708 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  2709   assert(!src2.is_lval(), "use cmpptr");
  2710   if (reachable(src2)) {
  2711     cmpl(src1, as_Address(src2));
  2712   } else {
  2713     lea(rscratch1, src2);
  2714     cmpl(src1, Address(rscratch1, 0));
  2718 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  2719   Assembler::cmpl(src1, imm);
  2722 void MacroAssembler::cmp32(Register src1, Address src2) {
  2723   Assembler::cmpl(src1, src2);
  2726 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  2727   ucomisd(opr1, opr2);
  2729   Label L;
  2730   if (unordered_is_less) {
  2731     movl(dst, -1);
  2732     jcc(Assembler::parity, L);
  2733     jcc(Assembler::below , L);
  2734     movl(dst, 0);
  2735     jcc(Assembler::equal , L);
  2736     increment(dst);
  2737   } else { // unordered is greater
  2738     movl(dst, 1);
  2739     jcc(Assembler::parity, L);
  2740     jcc(Assembler::above , L);
  2741     movl(dst, 0);
  2742     jcc(Assembler::equal , L);
  2743     decrementl(dst);
  2745   bind(L);
  2748 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  2749   ucomiss(opr1, opr2);
  2751   Label L;
  2752   if (unordered_is_less) {
  2753     movl(dst, -1);
  2754     jcc(Assembler::parity, L);
  2755     jcc(Assembler::below , L);
  2756     movl(dst, 0);
  2757     jcc(Assembler::equal , L);
  2758     increment(dst);
  2759   } else { // unordered is greater
  2760     movl(dst, 1);
  2761     jcc(Assembler::parity, L);
  2762     jcc(Assembler::above , L);
  2763     movl(dst, 0);
  2764     jcc(Assembler::equal , L);
  2765     decrementl(dst);
  2767   bind(L);
  2771 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  2772   if (reachable(src1)) {
  2773     cmpb(as_Address(src1), imm);
  2774   } else {
  2775     lea(rscratch1, src1);
  2776     cmpb(Address(rscratch1, 0), imm);
  2780 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  2781 #ifdef _LP64
  2782   if (src2.is_lval()) {
  2783     movptr(rscratch1, src2);
  2784     Assembler::cmpq(src1, rscratch1);
  2785   } else if (reachable(src2)) {
  2786     cmpq(src1, as_Address(src2));
  2787   } else {
  2788     lea(rscratch1, src2);
  2789     Assembler::cmpq(src1, Address(rscratch1, 0));
  2791 #else
  2792   if (src2.is_lval()) {
  2793     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  2794   } else {
  2795     cmpl(src1, as_Address(src2));
  2797 #endif // _LP64
  2800 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  2801   assert(src2.is_lval(), "not a mem-mem compare");
  2802 #ifdef _LP64
  2803   // moves src2's literal address
  2804   movptr(rscratch1, src2);
  2805   Assembler::cmpq(src1, rscratch1);
  2806 #else
  2807   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  2808 #endif // _LP64
  2811 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  2812   if (reachable(adr)) {
  2813     if (os::is_MP())
  2814       lock();
  2815     cmpxchgptr(reg, as_Address(adr));
  2816   } else {
  2817     lea(rscratch1, adr);
  2818     if (os::is_MP())
  2819       lock();
  2820     cmpxchgptr(reg, Address(rscratch1, 0));
  2824 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  2825   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  2828 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  2829   if (reachable(src)) {
  2830     Assembler::comisd(dst, as_Address(src));
  2831   } else {
  2832     lea(rscratch1, src);
  2833     Assembler::comisd(dst, Address(rscratch1, 0));
  2837 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  2838   if (reachable(src)) {
  2839     Assembler::comiss(dst, as_Address(src));
  2840   } else {
  2841     lea(rscratch1, src);
  2842     Assembler::comiss(dst, Address(rscratch1, 0));
  2847 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  2848   Condition negated_cond = negate_condition(cond);
  2849   Label L;
  2850   jcc(negated_cond, L);
  2851   pushf(); // Preserve flags
  2852   atomic_incl(counter_addr);
  2853   popf();
  2854   bind(L);
  2857 int MacroAssembler::corrected_idivl(Register reg) {
  2858   // Full implementation of Java idiv and irem; checks for
  2859   // special case as described in JVM spec., p.243 & p.271.
  2860   // The function returns the (pc) offset of the idivl
  2861   // instruction - may be needed for implicit exceptions.
  2862   //
  2863   //         normal case                           special case
  2864   //
  2865   // input : rax,: dividend                         min_int
  2866   //         reg: divisor   (may not be rax,/rdx)   -1
  2867   //
  2868   // output: rax,: quotient  (= rax, idiv reg)       min_int
  2869   //         rdx: remainder (= rax, irem reg)       0
  2870   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  2871   const int min_int = 0x80000000;
  2872   Label normal_case, special_case;
  2874   // check for special case
  2875   cmpl(rax, min_int);
  2876   jcc(Assembler::notEqual, normal_case);
  2877   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  2878   cmpl(reg, -1);
  2879   jcc(Assembler::equal, special_case);
  2881   // handle normal case
  2882   bind(normal_case);
  2883   cdql();
  2884   int idivl_offset = offset();
  2885   idivl(reg);
  2887   // normal and special case exit
  2888   bind(special_case);
  2890   return idivl_offset;
  2895 void MacroAssembler::decrementl(Register reg, int value) {
  2896   if (value == min_jint) {subl(reg, value) ; return; }
  2897   if (value <  0) { incrementl(reg, -value); return; }
  2898   if (value == 0) {                        ; return; }
  2899   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  2900   /* else */      { subl(reg, value)       ; return; }
  2903 void MacroAssembler::decrementl(Address dst, int value) {
  2904   if (value == min_jint) {subl(dst, value) ; return; }
  2905   if (value <  0) { incrementl(dst, -value); return; }
  2906   if (value == 0) {                        ; return; }
  2907   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  2908   /* else */      { subl(dst, value)       ; return; }
  2911 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  2912   assert (shift_value > 0, "illegal shift value");
  2913   Label _is_positive;
  2914   testl (reg, reg);
  2915   jcc (Assembler::positive, _is_positive);
  2916   int offset = (1 << shift_value) - 1 ;
  2918   if (offset == 1) {
  2919     incrementl(reg);
  2920   } else {
  2921     addl(reg, offset);
  2924   bind (_is_positive);
  2925   sarl(reg, shift_value);
  2928 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  2929   if (reachable(src)) {
  2930     Assembler::divsd(dst, as_Address(src));
  2931   } else {
  2932     lea(rscratch1, src);
  2933     Assembler::divsd(dst, Address(rscratch1, 0));
  2937 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  2938   if (reachable(src)) {
  2939     Assembler::divss(dst, as_Address(src));
  2940   } else {
  2941     lea(rscratch1, src);
  2942     Assembler::divss(dst, Address(rscratch1, 0));
  2946 // !defined(COMPILER2) is because of stupid core builds
  2947 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  2948 void MacroAssembler::empty_FPU_stack() {
  2949   if (VM_Version::supports_mmx()) {
  2950     emms();
  2951   } else {
  2952     for (int i = 8; i-- > 0; ) ffree(i);
  2955 #endif // !LP64 || C1 || !C2
  2958 // Defines obj, preserves var_size_in_bytes
  2959 void MacroAssembler::eden_allocate(Register obj,
  2960                                    Register var_size_in_bytes,
  2961                                    int con_size_in_bytes,
  2962                                    Register t1,
  2963                                    Label& slow_case) {
  2964   assert(obj == rax, "obj must be in rax, for cmpxchg");
  2965   assert_different_registers(obj, var_size_in_bytes, t1);
  2966   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  2967     jmp(slow_case);
  2968   } else {
  2969     Register end = t1;
  2970     Label retry;
  2971     bind(retry);
  2972     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  2973     movptr(obj, heap_top);
  2974     if (var_size_in_bytes == noreg) {
  2975       lea(end, Address(obj, con_size_in_bytes));
  2976     } else {
  2977       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  2979     // if end < obj then we wrapped around => object too long => slow case
  2980     cmpptr(end, obj);
  2981     jcc(Assembler::below, slow_case);
  2982     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  2983     jcc(Assembler::above, slow_case);
  2984     // Compare obj with the top addr, and if still equal, store the new top addr in
  2985     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  2986     // it otherwise. Use lock prefix for atomicity on MPs.
  2987     locked_cmpxchgptr(end, heap_top);
  2988     jcc(Assembler::notEqual, retry);
  2992 void MacroAssembler::enter() {
  2993   push(rbp);
  2994   mov(rbp, rsp);
  2997 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  2998 void MacroAssembler::fat_nop() {
  2999   if (UseAddressNop) {
  3000     addr_nop_5();
  3001   } else {
  3002     emit_int8(0x26); // es:
  3003     emit_int8(0x2e); // cs:
  3004     emit_int8(0x64); // fs:
  3005     emit_int8(0x65); // gs:
  3006     emit_int8((unsigned char)0x90);
  3010 void MacroAssembler::fcmp(Register tmp) {
  3011   fcmp(tmp, 1, true, true);
  3014 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  3015   assert(!pop_right || pop_left, "usage error");
  3016   if (VM_Version::supports_cmov()) {
  3017     assert(tmp == noreg, "unneeded temp");
  3018     if (pop_left) {
  3019       fucomip(index);
  3020     } else {
  3021       fucomi(index);
  3023     if (pop_right) {
  3024       fpop();
  3026   } else {
  3027     assert(tmp != noreg, "need temp");
  3028     if (pop_left) {
  3029       if (pop_right) {
  3030         fcompp();
  3031       } else {
  3032         fcomp(index);
  3034     } else {
  3035       fcom(index);
  3037     // convert FPU condition into eflags condition via rax,
  3038     save_rax(tmp);
  3039     fwait(); fnstsw_ax();
  3040     sahf();
  3041     restore_rax(tmp);
  3043   // condition codes set as follows:
  3044   //
  3045   // CF (corresponds to C0) if x < y
  3046   // PF (corresponds to C2) if unordered
  3047   // ZF (corresponds to C3) if x = y
  3050 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  3051   fcmp2int(dst, unordered_is_less, 1, true, true);
  3054 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  3055   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  3056   Label L;
  3057   if (unordered_is_less) {
  3058     movl(dst, -1);
  3059     jcc(Assembler::parity, L);
  3060     jcc(Assembler::below , L);
  3061     movl(dst, 0);
  3062     jcc(Assembler::equal , L);
  3063     increment(dst);
  3064   } else { // unordered is greater
  3065     movl(dst, 1);
  3066     jcc(Assembler::parity, L);
  3067     jcc(Assembler::above , L);
  3068     movl(dst, 0);
  3069     jcc(Assembler::equal , L);
  3070     decrementl(dst);
  3072   bind(L);
  3075 void MacroAssembler::fld_d(AddressLiteral src) {
  3076   fld_d(as_Address(src));
  3079 void MacroAssembler::fld_s(AddressLiteral src) {
  3080   fld_s(as_Address(src));
  3083 void MacroAssembler::fld_x(AddressLiteral src) {
  3084   Assembler::fld_x(as_Address(src));
  3087 void MacroAssembler::fldcw(AddressLiteral src) {
  3088   Assembler::fldcw(as_Address(src));
  3091 void MacroAssembler::pow_exp_core_encoding() {
  3092   // kills rax, rcx, rdx
  3093   subptr(rsp,sizeof(jdouble));
  3094   // computes 2^X. Stack: X ...
  3095   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  3096   // keep it on the thread's stack to compute 2^int(X) later
  3097   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  3098   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  3099   fld_s(0);                 // Stack: X X ...
  3100   frndint();                // Stack: int(X) X ...
  3101   fsuba(1);                 // Stack: int(X) X-int(X) ...
  3102   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  3103   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  3104   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  3105   faddp(1);                 // Stack: 2^(X-int(X))
  3106   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  3107   // shift int(X)+1023 to exponent position.
  3108   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  3109   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  3110   // values so detect them and set result to NaN.
  3111   movl(rax,Address(rsp,0));
  3112   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  3113   addl(rax, 1023);
  3114   movl(rdx,rax);
  3115   shll(rax,20);
  3116   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  3117   addl(rdx,1);
  3118   // Check that 1 < int(X)+1023+1 < 2048
  3119   // in 3 steps:
  3120   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  3121   // 2- (int(X)+1023+1)&-2048 != 0
  3122   // 3- (int(X)+1023+1)&-2048 != 1
  3123   // Do 2- first because addl just updated the flags.
  3124   cmov32(Assembler::equal,rax,rcx);
  3125   cmpl(rdx,1);
  3126   cmov32(Assembler::equal,rax,rcx);
  3127   testl(rdx,rcx);
  3128   cmov32(Assembler::notEqual,rax,rcx);
  3129   movl(Address(rsp,4),rax);
  3130   movl(Address(rsp,0),0);
  3131   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  3132   addptr(rsp,sizeof(jdouble));
  3135 void MacroAssembler::increase_precision() {
  3136   subptr(rsp, BytesPerWord);
  3137   fnstcw(Address(rsp, 0));
  3138   movl(rax, Address(rsp, 0));
  3139   orl(rax, 0x300);
  3140   push(rax);
  3141   fldcw(Address(rsp, 0));
  3142   pop(rax);
  3145 void MacroAssembler::restore_precision() {
  3146   fldcw(Address(rsp, 0));
  3147   addptr(rsp, BytesPerWord);
  3150 void MacroAssembler::fast_pow() {
  3151   // computes X^Y = 2^(Y * log2(X))
  3152   // if fast computation is not possible, result is NaN. Requires
  3153   // fallback from user of this macro.
  3154   // increase precision for intermediate steps of the computation
  3155   increase_precision();
  3156   fyl2x();                 // Stack: (Y*log2(X)) ...
  3157   pow_exp_core_encoding(); // Stack: exp(X) ...
  3158   restore_precision();
  3161 void MacroAssembler::fast_exp() {
  3162   // computes exp(X) = 2^(X * log2(e))
  3163   // if fast computation is not possible, result is NaN. Requires
  3164   // fallback from user of this macro.
  3165   // increase precision for intermediate steps of the computation
  3166   increase_precision();
  3167   fldl2e();                // Stack: log2(e) X ...
  3168   fmulp(1);                // Stack: (X*log2(e)) ...
  3169   pow_exp_core_encoding(); // Stack: exp(X) ...
  3170   restore_precision();
  3173 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  3174   // kills rax, rcx, rdx
  3175   // pow and exp needs 2 extra registers on the fpu stack.
  3176   Label slow_case, done;
  3177   Register tmp = noreg;
  3178   if (!VM_Version::supports_cmov()) {
  3179     // fcmp needs a temporary so preserve rdx,
  3180     tmp = rdx;
  3182   Register tmp2 = rax;
  3183   Register tmp3 = rcx;
  3185   if (is_exp) {
  3186     // Stack: X
  3187     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  3188     fast_exp();                 // Stack: exp(X) X
  3189     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  3190     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  3191     jcc(Assembler::parity, slow_case);
  3192     // get rid of duplicate argument. Stack: exp(X)
  3193     if (num_fpu_regs_in_use > 0) {
  3194       fxch();
  3195       fpop();
  3196     } else {
  3197       ffree(1);
  3199     jmp(done);
  3200   } else {
  3201     // Stack: X Y
  3202     Label x_negative, y_odd;
  3204     fldz();                     // Stack: 0 X Y
  3205     fcmp(tmp, 1, true, false);  // Stack: X Y
  3206     jcc(Assembler::above, x_negative);
  3208     // X >= 0
  3210     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  3211     fld_s(1);                   // Stack: X Y X Y
  3212     fast_pow();                 // Stack: X^Y X Y
  3213     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  3214     // X^Y not equal to itself: X^Y is NaN go to slow case.
  3215     jcc(Assembler::parity, slow_case);
  3216     // get rid of duplicate arguments. Stack: X^Y
  3217     if (num_fpu_regs_in_use > 0) {
  3218       fxch(); fpop();
  3219       fxch(); fpop();
  3220     } else {
  3221       ffree(2);
  3222       ffree(1);
  3224     jmp(done);
  3226     // X <= 0
  3227     bind(x_negative);
  3229     fld_s(1);                   // Stack: Y X Y
  3230     frndint();                  // Stack: int(Y) X Y
  3231     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  3232     jcc(Assembler::notEqual, slow_case);
  3234     subptr(rsp, 8);
  3236     // For X^Y, when X < 0, Y has to be an integer and the final
  3237     // result depends on whether it's odd or even. We just checked
  3238     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  3239     // integer to test its parity. If int(Y) is huge and doesn't fit
  3240     // in the 64 bit integer range, the integer indefinite value will
  3241     // end up in the gp registers. Huge numbers are all even, the
  3242     // integer indefinite number is even so it's fine.
  3244 #ifdef ASSERT
  3245     // Let's check we don't end up with an integer indefinite number
  3246     // when not expected. First test for huge numbers: check whether
  3247     // int(Y)+1 == int(Y) which is true for very large numbers and
  3248     // those are all even. A 64 bit integer is guaranteed to not
  3249     // overflow for numbers where y+1 != y (when precision is set to
  3250     // double precision).
  3251     Label y_not_huge;
  3253     fld1();                     // Stack: 1 int(Y) X Y
  3254     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  3256 #ifdef _LP64
  3257     // trip to memory to force the precision down from double extended
  3258     // precision
  3259     fstp_d(Address(rsp, 0));
  3260     fld_d(Address(rsp, 0));
  3261 #endif
  3263     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  3264 #endif
  3266     // move int(Y) as 64 bit integer to thread's stack
  3267     fistp_d(Address(rsp,0));    // Stack: X Y
  3269 #ifdef ASSERT
  3270     jcc(Assembler::notEqual, y_not_huge);
  3272     // Y is huge so we know it's even. It may not fit in a 64 bit
  3273     // integer and we don't want the debug code below to see the
  3274     // integer indefinite value so overwrite int(Y) on the thread's
  3275     // stack with 0.
  3276     movl(Address(rsp, 0), 0);
  3277     movl(Address(rsp, 4), 0);
  3279     bind(y_not_huge);
  3280 #endif
  3282     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  3283     fld_s(1);                   // Stack: X Y X Y
  3284     fabs();                     // Stack: abs(X) Y X Y
  3285     fast_pow();                 // Stack: abs(X)^Y X Y
  3286     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  3287     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  3289     pop(tmp2);
  3290     NOT_LP64(pop(tmp3));
  3291     jcc(Assembler::parity, slow_case);
  3293 #ifdef ASSERT
  3294     // Check that int(Y) is not integer indefinite value (int
  3295     // overflow). Shouldn't happen because for values that would
  3296     // overflow, 1+int(Y)==Y which was tested earlier.
  3297 #ifndef _LP64
  3299       Label integer;
  3300       testl(tmp2, tmp2);
  3301       jcc(Assembler::notZero, integer);
  3302       cmpl(tmp3, 0x80000000);
  3303       jcc(Assembler::notZero, integer);
  3304       STOP("integer indefinite value shouldn't be seen here");
  3305       bind(integer);
  3307 #else
  3309       Label integer;
  3310       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  3311       shlq(tmp3, 1);
  3312       jcc(Assembler::carryClear, integer);
  3313       jcc(Assembler::notZero, integer);
  3314       STOP("integer indefinite value shouldn't be seen here");
  3315       bind(integer);
  3317 #endif
  3318 #endif
  3320     // get rid of duplicate arguments. Stack: X^Y
  3321     if (num_fpu_regs_in_use > 0) {
  3322       fxch(); fpop();
  3323       fxch(); fpop();
  3324     } else {
  3325       ffree(2);
  3326       ffree(1);
  3329     testl(tmp2, 1);
  3330     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  3331     // X <= 0, Y even: X^Y = -abs(X)^Y
  3333     fchs();                     // Stack: -abs(X)^Y Y
  3334     jmp(done);
  3337   // slow case: runtime call
  3338   bind(slow_case);
  3340   fpop();                       // pop incorrect result or int(Y)
  3342   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  3343                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  3345   // Come here with result in F-TOS
  3346   bind(done);
  3349 void MacroAssembler::fpop() {
  3350   ffree();
  3351   fincstp();
  3354 void MacroAssembler::fremr(Register tmp) {
  3355   save_rax(tmp);
  3356   { Label L;
  3357     bind(L);
  3358     fprem();
  3359     fwait(); fnstsw_ax();
  3360 #ifdef _LP64
  3361     testl(rax, 0x400);
  3362     jcc(Assembler::notEqual, L);
  3363 #else
  3364     sahf();
  3365     jcc(Assembler::parity, L);
  3366 #endif // _LP64
  3368   restore_rax(tmp);
  3369   // Result is in ST0.
  3370   // Note: fxch & fpop to get rid of ST1
  3371   // (otherwise FPU stack could overflow eventually)
  3372   fxch(1);
  3373   fpop();
  3377 void MacroAssembler::incrementl(AddressLiteral dst) {
  3378   if (reachable(dst)) {
  3379     incrementl(as_Address(dst));
  3380   } else {
  3381     lea(rscratch1, dst);
  3382     incrementl(Address(rscratch1, 0));
  3386 void MacroAssembler::incrementl(ArrayAddress dst) {
  3387   incrementl(as_Address(dst));
  3390 void MacroAssembler::incrementl(Register reg, int value) {
  3391   if (value == min_jint) {addl(reg, value) ; return; }
  3392   if (value <  0) { decrementl(reg, -value); return; }
  3393   if (value == 0) {                        ; return; }
  3394   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  3395   /* else */      { addl(reg, value)       ; return; }
  3398 void MacroAssembler::incrementl(Address dst, int value) {
  3399   if (value == min_jint) {addl(dst, value) ; return; }
  3400   if (value <  0) { decrementl(dst, -value); return; }
  3401   if (value == 0) {                        ; return; }
  3402   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  3403   /* else */      { addl(dst, value)       ; return; }
  3406 void MacroAssembler::jump(AddressLiteral dst) {
  3407   if (reachable(dst)) {
  3408     jmp_literal(dst.target(), dst.rspec());
  3409   } else {
  3410     lea(rscratch1, dst);
  3411     jmp(rscratch1);
  3415 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  3416   if (reachable(dst)) {
  3417     InstructionMark im(this);
  3418     relocate(dst.reloc());
  3419     const int short_size = 2;
  3420     const int long_size = 6;
  3421     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
  3422     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  3423       // 0111 tttn #8-bit disp
  3424       emit_int8(0x70 | cc);
  3425       emit_int8((offs - short_size) & 0xFF);
  3426     } else {
  3427       // 0000 1111 1000 tttn #32-bit disp
  3428       emit_int8(0x0F);
  3429       emit_int8((unsigned char)(0x80 | cc));
  3430       emit_int32(offs - long_size);
  3432   } else {
  3433 #ifdef ASSERT
  3434     warning("reversing conditional branch");
  3435 #endif /* ASSERT */
  3436     Label skip;
  3437     jccb(reverse[cc], skip);
  3438     lea(rscratch1, dst);
  3439     Assembler::jmp(rscratch1);
  3440     bind(skip);
  3444 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  3445   if (reachable(src)) {
  3446     Assembler::ldmxcsr(as_Address(src));
  3447   } else {
  3448     lea(rscratch1, src);
  3449     Assembler::ldmxcsr(Address(rscratch1, 0));
  3453 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  3454   int off;
  3455   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3456     off = offset();
  3457     movsbl(dst, src); // movsxb
  3458   } else {
  3459     off = load_unsigned_byte(dst, src);
  3460     shll(dst, 24);
  3461     sarl(dst, 24);
  3463   return off;
  3466 // Note: load_signed_short used to be called load_signed_word.
  3467 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  3468 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  3469 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  3470 int MacroAssembler::load_signed_short(Register dst, Address src) {
  3471   int off;
  3472   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3473     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  3474     // version but this is what 64bit has always done. This seems to imply
  3475     // that users are only using 32bits worth.
  3476     off = offset();
  3477     movswl(dst, src); // movsxw
  3478   } else {
  3479     off = load_unsigned_short(dst, src);
  3480     shll(dst, 16);
  3481     sarl(dst, 16);
  3483   return off;
  3486 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  3487   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  3488   // and "3.9 Partial Register Penalties", p. 22).
  3489   int off;
  3490   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  3491     off = offset();
  3492     movzbl(dst, src); // movzxb
  3493   } else {
  3494     xorl(dst, dst);
  3495     off = offset();
  3496     movb(dst, src);
  3498   return off;
  3501 // Note: load_unsigned_short used to be called load_unsigned_word.
  3502 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  3503   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  3504   // and "3.9 Partial Register Penalties", p. 22).
  3505   int off;
  3506   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  3507     off = offset();
  3508     movzwl(dst, src); // movzxw
  3509   } else {
  3510     xorl(dst, dst);
  3511     off = offset();
  3512     movw(dst, src);
  3514   return off;
  3517 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  3518   switch (size_in_bytes) {
  3519 #ifndef _LP64
  3520   case  8:
  3521     assert(dst2 != noreg, "second dest register required");
  3522     movl(dst,  src);
  3523     movl(dst2, src.plus_disp(BytesPerInt));
  3524     break;
  3525 #else
  3526   case  8:  movq(dst, src); break;
  3527 #endif
  3528   case  4:  movl(dst, src); break;
  3529   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  3530   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  3531   default:  ShouldNotReachHere();
  3535 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  3536   switch (size_in_bytes) {
  3537 #ifndef _LP64
  3538   case  8:
  3539     assert(src2 != noreg, "second source register required");
  3540     movl(dst,                        src);
  3541     movl(dst.plus_disp(BytesPerInt), src2);
  3542     break;
  3543 #else
  3544   case  8:  movq(dst, src); break;
  3545 #endif
  3546   case  4:  movl(dst, src); break;
  3547   case  2:  movw(dst, src); break;
  3548   case  1:  movb(dst, src); break;
  3549   default:  ShouldNotReachHere();
  3553 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  3554   if (reachable(dst)) {
  3555     movl(as_Address(dst), src);
  3556   } else {
  3557     lea(rscratch1, dst);
  3558     movl(Address(rscratch1, 0), src);
  3562 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  3563   if (reachable(src)) {
  3564     movl(dst, as_Address(src));
  3565   } else {
  3566     lea(rscratch1, src);
  3567     movl(dst, Address(rscratch1, 0));
  3571 // C++ bool manipulation
  3573 void MacroAssembler::movbool(Register dst, Address src) {
  3574   if(sizeof(bool) == 1)
  3575     movb(dst, src);
  3576   else if(sizeof(bool) == 2)
  3577     movw(dst, src);
  3578   else if(sizeof(bool) == 4)
  3579     movl(dst, src);
  3580   else
  3581     // unsupported
  3582     ShouldNotReachHere();
  3585 void MacroAssembler::movbool(Address dst, bool boolconst) {
  3586   if(sizeof(bool) == 1)
  3587     movb(dst, (int) boolconst);
  3588   else if(sizeof(bool) == 2)
  3589     movw(dst, (int) boolconst);
  3590   else if(sizeof(bool) == 4)
  3591     movl(dst, (int) boolconst);
  3592   else
  3593     // unsupported
  3594     ShouldNotReachHere();
  3597 void MacroAssembler::movbool(Address dst, Register src) {
  3598   if(sizeof(bool) == 1)
  3599     movb(dst, src);
  3600   else if(sizeof(bool) == 2)
  3601     movw(dst, src);
  3602   else if(sizeof(bool) == 4)
  3603     movl(dst, src);
  3604   else
  3605     // unsupported
  3606     ShouldNotReachHere();
  3609 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  3610   movb(as_Address(dst), src);
  3613 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  3614   if (reachable(src)) {
  3615     movdl(dst, as_Address(src));
  3616   } else {
  3617     lea(rscratch1, src);
  3618     movdl(dst, Address(rscratch1, 0));
  3622 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  3623   if (reachable(src)) {
  3624     movq(dst, as_Address(src));
  3625   } else {
  3626     lea(rscratch1, src);
  3627     movq(dst, Address(rscratch1, 0));
  3631 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  3632   if (reachable(src)) {
  3633     if (UseXmmLoadAndClearUpper) {
  3634       movsd (dst, as_Address(src));
  3635     } else {
  3636       movlpd(dst, as_Address(src));
  3638   } else {
  3639     lea(rscratch1, src);
  3640     if (UseXmmLoadAndClearUpper) {
  3641       movsd (dst, Address(rscratch1, 0));
  3642     } else {
  3643       movlpd(dst, Address(rscratch1, 0));
  3648 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  3649   if (reachable(src)) {
  3650     movss(dst, as_Address(src));
  3651   } else {
  3652     lea(rscratch1, src);
  3653     movss(dst, Address(rscratch1, 0));
  3657 void MacroAssembler::movptr(Register dst, Register src) {
  3658   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3661 void MacroAssembler::movptr(Register dst, Address src) {
  3662   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3665 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  3666 void MacroAssembler::movptr(Register dst, intptr_t src) {
  3667   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  3670 void MacroAssembler::movptr(Address dst, Register src) {
  3671   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3674 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  3675   if (reachable(src)) {
  3676     Assembler::movdqu(dst, as_Address(src));
  3677   } else {
  3678     lea(rscratch1, src);
  3679     Assembler::movdqu(dst, Address(rscratch1, 0));
  3683 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
  3684   if (reachable(src)) {
  3685     Assembler::movdqa(dst, as_Address(src));
  3686   } else {
  3687     lea(rscratch1, src);
  3688     Assembler::movdqa(dst, Address(rscratch1, 0));
  3692 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  3693   if (reachable(src)) {
  3694     Assembler::movsd(dst, as_Address(src));
  3695   } else {
  3696     lea(rscratch1, src);
  3697     Assembler::movsd(dst, Address(rscratch1, 0));
  3701 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  3702   if (reachable(src)) {
  3703     Assembler::movss(dst, as_Address(src));
  3704   } else {
  3705     lea(rscratch1, src);
  3706     Assembler::movss(dst, Address(rscratch1, 0));
  3710 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  3711   if (reachable(src)) {
  3712     Assembler::mulsd(dst, as_Address(src));
  3713   } else {
  3714     lea(rscratch1, src);
  3715     Assembler::mulsd(dst, Address(rscratch1, 0));
  3719 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  3720   if (reachable(src)) {
  3721     Assembler::mulss(dst, as_Address(src));
  3722   } else {
  3723     lea(rscratch1, src);
  3724     Assembler::mulss(dst, Address(rscratch1, 0));
  3728 void MacroAssembler::null_check(Register reg, int offset) {
  3729   if (needs_explicit_null_check(offset)) {
  3730     // provoke OS NULL exception if reg = NULL by
  3731     // accessing M[reg] w/o changing any (non-CC) registers
  3732     // NOTE: cmpl is plenty here to provoke a segv
  3733     cmpptr(rax, Address(reg, 0));
  3734     // Note: should probably use testl(rax, Address(reg, 0));
  3735     //       may be shorter code (however, this version of
  3736     //       testl needs to be implemented first)
  3737   } else {
  3738     // nothing to do, (later) access of M[reg + offset]
  3739     // will provoke OS NULL exception if reg = NULL
  3743 void MacroAssembler::os_breakpoint() {
  3744   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  3745   // (e.g., MSVC can't call ps() otherwise)
  3746   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  3749 void MacroAssembler::pop_CPU_state() {
  3750   pop_FPU_state();
  3751   pop_IU_state();
  3754 void MacroAssembler::pop_FPU_state() {
  3755   NOT_LP64(frstor(Address(rsp, 0));)
  3756   LP64_ONLY(fxrstor(Address(rsp, 0));)
  3757   addptr(rsp, FPUStateSizeInWords * wordSize);
  3760 void MacroAssembler::pop_IU_state() {
  3761   popa();
  3762   LP64_ONLY(addq(rsp, 8));
  3763   popf();
  3766 // Save Integer and Float state
  3767 // Warning: Stack must be 16 byte aligned (64bit)
  3768 void MacroAssembler::push_CPU_state() {
  3769   push_IU_state();
  3770   push_FPU_state();
  3773 void MacroAssembler::push_FPU_state() {
  3774   subptr(rsp, FPUStateSizeInWords * wordSize);
  3775 #ifndef _LP64
  3776   fnsave(Address(rsp, 0));
  3777   fwait();
  3778 #else
  3779   fxsave(Address(rsp, 0));
  3780 #endif // LP64
  3783 void MacroAssembler::push_IU_state() {
  3784   // Push flags first because pusha kills them
  3785   pushf();
  3786   // Make sure rsp stays 16-byte aligned
  3787   LP64_ONLY(subq(rsp, 8));
  3788   pusha();
  3791 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  3792   // determine java_thread register
  3793   if (!java_thread->is_valid()) {
  3794     java_thread = rdi;
  3795     get_thread(java_thread);
  3797   // we must set sp to zero to clear frame
  3798   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  3799   if (clear_fp) {
  3800     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  3803   if (clear_pc)
  3804     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  3808 void MacroAssembler::restore_rax(Register tmp) {
  3809   if (tmp == noreg) pop(rax);
  3810   else if (tmp != rax) mov(rax, tmp);
  3813 void MacroAssembler::round_to(Register reg, int modulus) {
  3814   addptr(reg, modulus - 1);
  3815   andptr(reg, -modulus);
  3818 void MacroAssembler::save_rax(Register tmp) {
  3819   if (tmp == noreg) push(rax);
  3820   else if (tmp != rax) mov(tmp, rax);
  3823 // Write serialization page so VM thread can do a pseudo remote membar.
  3824 // We use the current thread pointer to calculate a thread specific
  3825 // offset to write to within the page. This minimizes bus traffic
  3826 // due to cache line collision.
  3827 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  3828   movl(tmp, thread);
  3829   shrl(tmp, os::get_serialize_page_shift_count());
  3830   andl(tmp, (os::vm_page_size() - sizeof(int)));
  3832   Address index(noreg, tmp, Address::times_1);
  3833   ExternalAddress page(os::get_memory_serialize_page());
  3835   // Size of store must match masking code above
  3836   movl(as_Address(ArrayAddress(page, index)), tmp);
  3839 // Calls to C land
  3840 //
  3841 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  3842 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  3843 // has to be reset to 0. This is required to allow proper stack traversal.
  3844 void MacroAssembler::set_last_Java_frame(Register java_thread,
  3845                                          Register last_java_sp,
  3846                                          Register last_java_fp,
  3847                                          address  last_java_pc) {
  3848   // determine java_thread register
  3849   if (!java_thread->is_valid()) {
  3850     java_thread = rdi;
  3851     get_thread(java_thread);
  3853   // determine last_java_sp register
  3854   if (!last_java_sp->is_valid()) {
  3855     last_java_sp = rsp;
  3858   // last_java_fp is optional
  3860   if (last_java_fp->is_valid()) {
  3861     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  3864   // last_java_pc is optional
  3866   if (last_java_pc != NULL) {
  3867     lea(Address(java_thread,
  3868                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  3869         InternalAddress(last_java_pc));
  3872   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  3875 void MacroAssembler::shlptr(Register dst, int imm8) {
  3876   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  3879 void MacroAssembler::shrptr(Register dst, int imm8) {
  3880   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  3883 void MacroAssembler::sign_extend_byte(Register reg) {
  3884   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  3885     movsbl(reg, reg); // movsxb
  3886   } else {
  3887     shll(reg, 24);
  3888     sarl(reg, 24);
  3892 void MacroAssembler::sign_extend_short(Register reg) {
  3893   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3894     movswl(reg, reg); // movsxw
  3895   } else {
  3896     shll(reg, 16);
  3897     sarl(reg, 16);
  3901 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  3902   assert(reachable(src), "Address should be reachable");
  3903   testl(dst, as_Address(src));
  3906 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  3907   if (reachable(src)) {
  3908     Assembler::sqrtsd(dst, as_Address(src));
  3909   } else {
  3910     lea(rscratch1, src);
  3911     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  3915 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  3916   if (reachable(src)) {
  3917     Assembler::sqrtss(dst, as_Address(src));
  3918   } else {
  3919     lea(rscratch1, src);
  3920     Assembler::sqrtss(dst, Address(rscratch1, 0));
  3924 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  3925   if (reachable(src)) {
  3926     Assembler::subsd(dst, as_Address(src));
  3927   } else {
  3928     lea(rscratch1, src);
  3929     Assembler::subsd(dst, Address(rscratch1, 0));
  3933 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  3934   if (reachable(src)) {
  3935     Assembler::subss(dst, as_Address(src));
  3936   } else {
  3937     lea(rscratch1, src);
  3938     Assembler::subss(dst, Address(rscratch1, 0));
  3942 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  3943   if (reachable(src)) {
  3944     Assembler::ucomisd(dst, as_Address(src));
  3945   } else {
  3946     lea(rscratch1, src);
  3947     Assembler::ucomisd(dst, Address(rscratch1, 0));
  3951 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  3952   if (reachable(src)) {
  3953     Assembler::ucomiss(dst, as_Address(src));
  3954   } else {
  3955     lea(rscratch1, src);
  3956     Assembler::ucomiss(dst, Address(rscratch1, 0));
  3960 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3961   // Used in sign-bit flipping with aligned address.
  3962   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3963   if (reachable(src)) {
  3964     Assembler::xorpd(dst, as_Address(src));
  3965   } else {
  3966     lea(rscratch1, src);
  3967     Assembler::xorpd(dst, Address(rscratch1, 0));
  3971 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3972   // Used in sign-bit flipping with aligned address.
  3973   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3974   if (reachable(src)) {
  3975     Assembler::xorps(dst, as_Address(src));
  3976   } else {
  3977     lea(rscratch1, src);
  3978     Assembler::xorps(dst, Address(rscratch1, 0));
  3982 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  3983   // Used in sign-bit flipping with aligned address.
  3984   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
  3985   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
  3986   if (reachable(src)) {
  3987     Assembler::pshufb(dst, as_Address(src));
  3988   } else {
  3989     lea(rscratch1, src);
  3990     Assembler::pshufb(dst, Address(rscratch1, 0));
  3994 // AVX 3-operands instructions
  3996 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3997   if (reachable(src)) {
  3998     vaddsd(dst, nds, as_Address(src));
  3999   } else {
  4000     lea(rscratch1, src);
  4001     vaddsd(dst, nds, Address(rscratch1, 0));
  4005 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4006   if (reachable(src)) {
  4007     vaddss(dst, nds, as_Address(src));
  4008   } else {
  4009     lea(rscratch1, src);
  4010     vaddss(dst, nds, Address(rscratch1, 0));
  4014 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4015   if (reachable(src)) {
  4016     vandpd(dst, nds, as_Address(src), vector256);
  4017   } else {
  4018     lea(rscratch1, src);
  4019     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  4023 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4024   if (reachable(src)) {
  4025     vandps(dst, nds, as_Address(src), vector256);
  4026   } else {
  4027     lea(rscratch1, src);
  4028     vandps(dst, nds, Address(rscratch1, 0), vector256);
  4032 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4033   if (reachable(src)) {
  4034     vdivsd(dst, nds, as_Address(src));
  4035   } else {
  4036     lea(rscratch1, src);
  4037     vdivsd(dst, nds, Address(rscratch1, 0));
  4041 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4042   if (reachable(src)) {
  4043     vdivss(dst, nds, as_Address(src));
  4044   } else {
  4045     lea(rscratch1, src);
  4046     vdivss(dst, nds, Address(rscratch1, 0));
  4050 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4051   if (reachable(src)) {
  4052     vmulsd(dst, nds, as_Address(src));
  4053   } else {
  4054     lea(rscratch1, src);
  4055     vmulsd(dst, nds, Address(rscratch1, 0));
  4059 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4060   if (reachable(src)) {
  4061     vmulss(dst, nds, as_Address(src));
  4062   } else {
  4063     lea(rscratch1, src);
  4064     vmulss(dst, nds, Address(rscratch1, 0));
  4068 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4069   if (reachable(src)) {
  4070     vsubsd(dst, nds, as_Address(src));
  4071   } else {
  4072     lea(rscratch1, src);
  4073     vsubsd(dst, nds, Address(rscratch1, 0));
  4077 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4078   if (reachable(src)) {
  4079     vsubss(dst, nds, as_Address(src));
  4080   } else {
  4081     lea(rscratch1, src);
  4082     vsubss(dst, nds, Address(rscratch1, 0));
  4086 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4087   if (reachable(src)) {
  4088     vxorpd(dst, nds, as_Address(src), vector256);
  4089   } else {
  4090     lea(rscratch1, src);
  4091     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  4095 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4096   if (reachable(src)) {
  4097     vxorps(dst, nds, as_Address(src), vector256);
  4098   } else {
  4099     lea(rscratch1, src);
  4100     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  4105 //////////////////////////////////////////////////////////////////////////////////
  4106 #if INCLUDE_ALL_GCS
  4108 void MacroAssembler::g1_write_barrier_pre(Register obj,
  4109                                           Register pre_val,
  4110                                           Register thread,
  4111                                           Register tmp,
  4112                                           bool tosca_live,
  4113                                           bool expand_call) {
  4115   // If expand_call is true then we expand the call_VM_leaf macro
  4116   // directly to skip generating the check by
  4117   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  4119 #ifdef _LP64
  4120   assert(thread == r15_thread, "must be");
  4121 #endif // _LP64
  4123   Label done;
  4124   Label runtime;
  4126   assert(pre_val != noreg, "check this code");
  4128   if (obj != noreg) {
  4129     assert_different_registers(obj, pre_val, tmp);
  4130     assert(pre_val != rax, "check this code");
  4133   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4134                                        PtrQueue::byte_offset_of_active()));
  4135   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4136                                        PtrQueue::byte_offset_of_index()));
  4137   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4138                                        PtrQueue::byte_offset_of_buf()));
  4141   // Is marking active?
  4142   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4143     cmpl(in_progress, 0);
  4144   } else {
  4145     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  4146     cmpb(in_progress, 0);
  4148   jcc(Assembler::equal, done);
  4150   // Do we need to load the previous value?
  4151   if (obj != noreg) {
  4152     load_heap_oop(pre_val, Address(obj, 0));
  4155   // Is the previous value null?
  4156   cmpptr(pre_val, (int32_t) NULL_WORD);
  4157   jcc(Assembler::equal, done);
  4159   // Can we store original value in the thread's buffer?
  4160   // Is index == 0?
  4161   // (The index field is typed as size_t.)
  4163   movptr(tmp, index);                   // tmp := *index_adr
  4164   cmpptr(tmp, 0);                       // tmp == 0?
  4165   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  4167   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  4168   movptr(index, tmp);                   // *index_adr := tmp
  4169   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  4171   // Record the previous value
  4172   movptr(Address(tmp, 0), pre_val);
  4173   jmp(done);
  4175   bind(runtime);
  4176   // save the live input values
  4177   if(tosca_live) push(rax);
  4179   if (obj != noreg && obj != rax)
  4180     push(obj);
  4182   if (pre_val != rax)
  4183     push(pre_val);
  4185   // Calling the runtime using the regular call_VM_leaf mechanism generates
  4186   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  4187   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  4188   //
  4189   // If we care generating the pre-barrier without a frame (e.g. in the
  4190   // intrinsified Reference.get() routine) then ebp might be pointing to
  4191   // the caller frame and so this check will most likely fail at runtime.
  4192   //
  4193   // Expanding the call directly bypasses the generation of the check.
  4194   // So when we do not have have a full interpreter frame on the stack
  4195   // expand_call should be passed true.
  4197   NOT_LP64( push(thread); )
  4199   if (expand_call) {
  4200     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  4201     pass_arg1(this, thread);
  4202     pass_arg0(this, pre_val);
  4203     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  4204   } else {
  4205     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  4208   NOT_LP64( pop(thread); )
  4210   // save the live input values
  4211   if (pre_val != rax)
  4212     pop(pre_val);
  4214   if (obj != noreg && obj != rax)
  4215     pop(obj);
  4217   if(tosca_live) pop(rax);
  4219   bind(done);
  4222 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  4223                                            Register new_val,
  4224                                            Register thread,
  4225                                            Register tmp,
  4226                                            Register tmp2) {
  4227 #ifdef _LP64
  4228   assert(thread == r15_thread, "must be");
  4229 #endif // _LP64
  4231   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  4232                                        PtrQueue::byte_offset_of_index()));
  4233   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  4234                                        PtrQueue::byte_offset_of_buf()));
  4236   BarrierSet* bs = Universe::heap()->barrier_set();
  4237   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  4238   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  4240   Label done;
  4241   Label runtime;
  4243   // Does store cross heap regions?
  4245   movptr(tmp, store_addr);
  4246   xorptr(tmp, new_val);
  4247   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  4248   jcc(Assembler::equal, done);
  4250   // crosses regions, storing NULL?
  4252   cmpptr(new_val, (int32_t) NULL_WORD);
  4253   jcc(Assembler::equal, done);
  4255   // storing region crossing non-NULL, is card already dirty?
  4257   const Register card_addr = tmp;
  4258   const Register cardtable = tmp2;
  4260   movptr(card_addr, store_addr);
  4261   shrptr(card_addr, CardTableModRefBS::card_shift);
  4262   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
  4263   // a valid address and therefore is not properly handled by the relocation code.
  4264   movptr(cardtable, (intptr_t)ct->byte_map_base);
  4265   addptr(card_addr, cardtable);
  4267   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
  4268   jcc(Assembler::equal, done);
  4270   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  4271   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  4272   jcc(Assembler::equal, done);
  4275   // storing a region crossing, non-NULL oop, card is clean.
  4276   // dirty card and log.
  4278   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  4280   cmpl(queue_index, 0);
  4281   jcc(Assembler::equal, runtime);
  4282   subl(queue_index, wordSize);
  4283   movptr(tmp2, buffer);
  4284 #ifdef _LP64
  4285   movslq(rscratch1, queue_index);
  4286   addq(tmp2, rscratch1);
  4287   movq(Address(tmp2, 0), card_addr);
  4288 #else
  4289   addl(tmp2, queue_index);
  4290   movl(Address(tmp2, 0), card_addr);
  4291 #endif
  4292   jmp(done);
  4294   bind(runtime);
  4295   // save the live input values
  4296   push(store_addr);
  4297   push(new_val);
  4298 #ifdef _LP64
  4299   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  4300 #else
  4301   push(thread);
  4302   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  4303   pop(thread);
  4304 #endif
  4305   pop(new_val);
  4306   pop(store_addr);
  4308   bind(done);
  4311 #endif // INCLUDE_ALL_GCS
  4312 //////////////////////////////////////////////////////////////////////////////////
  4315 void MacroAssembler::store_check(Register obj) {
  4316   // Does a store check for the oop in register obj. The content of
  4317   // register obj is destroyed afterwards.
  4318   store_check_part_1(obj);
  4319   store_check_part_2(obj);
  4322 void MacroAssembler::store_check(Register obj, Address dst) {
  4323   store_check(obj);
  4327 // split the store check operation so that other instructions can be scheduled inbetween
  4328 void MacroAssembler::store_check_part_1(Register obj) {
  4329   BarrierSet* bs = Universe::heap()->barrier_set();
  4330   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4331   shrptr(obj, CardTableModRefBS::card_shift);
  4334 void MacroAssembler::store_check_part_2(Register obj) {
  4335   BarrierSet* bs = Universe::heap()->barrier_set();
  4336   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4337   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  4338   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  4340   // The calculation for byte_map_base is as follows:
  4341   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  4342   // So this essentially converts an address to a displacement and it will
  4343   // never need to be relocated. On 64bit however the value may be too
  4344   // large for a 32bit displacement.
  4345   intptr_t disp = (intptr_t) ct->byte_map_base;
  4346   if (is_simm32(disp)) {
  4347     Address cardtable(noreg, obj, Address::times_1, disp);
  4348     movb(cardtable, 0);
  4349   } else {
  4350     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
  4351     // displacement and done in a single instruction given favorable mapping and a
  4352     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
  4353     // entry and that entry is not properly handled by the relocation code.
  4354     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
  4355     Address index(noreg, obj, Address::times_1);
  4356     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  4360 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  4361   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  4364 // Force generation of a 4 byte immediate value even if it fits into 8bit
  4365 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  4366   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  4369 void MacroAssembler::subptr(Register dst, Register src) {
  4370   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  4373 // C++ bool manipulation
  4374 void MacroAssembler::testbool(Register dst) {
  4375   if(sizeof(bool) == 1)
  4376     testb(dst, 0xff);
  4377   else if(sizeof(bool) == 2) {
  4378     // testw implementation needed for two byte bools
  4379     ShouldNotReachHere();
  4380   } else if(sizeof(bool) == 4)
  4381     testl(dst, dst);
  4382   else
  4383     // unsupported
  4384     ShouldNotReachHere();
  4387 void MacroAssembler::testptr(Register dst, Register src) {
  4388   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  4391 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  4392 void MacroAssembler::tlab_allocate(Register obj,
  4393                                    Register var_size_in_bytes,
  4394                                    int con_size_in_bytes,
  4395                                    Register t1,
  4396                                    Register t2,
  4397                                    Label& slow_case) {
  4398   assert_different_registers(obj, t1, t2);
  4399   assert_different_registers(obj, var_size_in_bytes, t1);
  4400   Register end = t2;
  4401   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  4403   verify_tlab();
  4405   NOT_LP64(get_thread(thread));
  4407   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  4408   if (var_size_in_bytes == noreg) {
  4409     lea(end, Address(obj, con_size_in_bytes));
  4410   } else {
  4411     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  4413   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  4414   jcc(Assembler::above, slow_case);
  4416   // update the tlab top pointer
  4417   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  4419   // recover var_size_in_bytes if necessary
  4420   if (var_size_in_bytes == end) {
  4421     subptr(var_size_in_bytes, obj);
  4423   verify_tlab();
  4426 // Preserves rbx, and rdx.
  4427 Register MacroAssembler::tlab_refill(Label& retry,
  4428                                      Label& try_eden,
  4429                                      Label& slow_case) {
  4430   Register top = rax;
  4431   Register t1  = rcx;
  4432   Register t2  = rsi;
  4433   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  4434   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  4435   Label do_refill, discard_tlab;
  4437   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4438     // No allocation in the shared eden.
  4439     jmp(slow_case);
  4442   NOT_LP64(get_thread(thread_reg));
  4444   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4445   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4447   // calculate amount of free space
  4448   subptr(t1, top);
  4449   shrptr(t1, LogHeapWordSize);
  4451   // Retain tlab and allocate object in shared space if
  4452   // the amount free in the tlab is too large to discard.
  4453   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  4454   jcc(Assembler::lessEqual, discard_tlab);
  4456   // Retain
  4457   // %%% yuck as movptr...
  4458   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  4459   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  4460   if (TLABStats) {
  4461     // increment number of slow_allocations
  4462     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  4464   jmp(try_eden);
  4466   bind(discard_tlab);
  4467   if (TLABStats) {
  4468     // increment number of refills
  4469     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  4470     // accumulate wastage -- t1 is amount free in tlab
  4471     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  4474   // if tlab is currently allocated (top or end != null) then
  4475   // fill [top, end + alignment_reserve) with array object
  4476   testptr(top, top);
  4477   jcc(Assembler::zero, do_refill);
  4479   // set up the mark word
  4480   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  4481   // set the length to the remaining space
  4482   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  4483   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  4484   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  4485   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  4486   // set klass to intArrayKlass
  4487   // dubious reloc why not an oop reloc?
  4488   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  4489   // store klass last.  concurrent gcs assumes klass length is valid if
  4490   // klass field is not null.
  4491   store_klass(top, t1);
  4493   movptr(t1, top);
  4494   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  4495   incr_allocated_bytes(thread_reg, t1, 0);
  4497   // refill the tlab with an eden allocation
  4498   bind(do_refill);
  4499   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4500   shlptr(t1, LogHeapWordSize);
  4501   // allocate new tlab, address returned in top
  4502   eden_allocate(top, t1, 0, t2, slow_case);
  4504   // Check that t1 was preserved in eden_allocate.
  4505 #ifdef ASSERT
  4506   if (UseTLAB) {
  4507     Label ok;
  4508     Register tsize = rsi;
  4509     assert_different_registers(tsize, thread_reg, t1);
  4510     push(tsize);
  4511     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4512     shlptr(tsize, LogHeapWordSize);
  4513     cmpptr(t1, tsize);
  4514     jcc(Assembler::equal, ok);
  4515     STOP("assert(t1 != tlab size)");
  4516     should_not_reach_here();
  4518     bind(ok);
  4519     pop(tsize);
  4521 #endif
  4522   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  4523   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  4524   addptr(top, t1);
  4525   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  4526   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  4527   verify_tlab();
  4528   jmp(retry);
  4530   return thread_reg; // for use by caller
  4533 void MacroAssembler::incr_allocated_bytes(Register thread,
  4534                                           Register var_size_in_bytes,
  4535                                           int con_size_in_bytes,
  4536                                           Register t1) {
  4537   if (!thread->is_valid()) {
  4538 #ifdef _LP64
  4539     thread = r15_thread;
  4540 #else
  4541     assert(t1->is_valid(), "need temp reg");
  4542     thread = t1;
  4543     get_thread(thread);
  4544 #endif
  4547 #ifdef _LP64
  4548   if (var_size_in_bytes->is_valid()) {
  4549     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  4550   } else {
  4551     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  4553 #else
  4554   if (var_size_in_bytes->is_valid()) {
  4555     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  4556   } else {
  4557     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  4559   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  4560 #endif
  4563 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  4564   pusha();
  4566   // if we are coming from c1, xmm registers may be live
  4567   int off = 0;
  4568   if (UseSSE == 1)  {
  4569     subptr(rsp, sizeof(jdouble)*8);
  4570     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  4571     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  4572     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  4573     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  4574     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  4575     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  4576     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  4577     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  4578   } else if (UseSSE >= 2)  {
  4579 #ifdef COMPILER2
  4580     if (MaxVectorSize > 16) {
  4581       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  4582       // Save upper half of YMM registes
  4583       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4584       vextractf128h(Address(rsp,  0),xmm0);
  4585       vextractf128h(Address(rsp, 16),xmm1);
  4586       vextractf128h(Address(rsp, 32),xmm2);
  4587       vextractf128h(Address(rsp, 48),xmm3);
  4588       vextractf128h(Address(rsp, 64),xmm4);
  4589       vextractf128h(Address(rsp, 80),xmm5);
  4590       vextractf128h(Address(rsp, 96),xmm6);
  4591       vextractf128h(Address(rsp,112),xmm7);
  4592 #ifdef _LP64
  4593       vextractf128h(Address(rsp,128),xmm8);
  4594       vextractf128h(Address(rsp,144),xmm9);
  4595       vextractf128h(Address(rsp,160),xmm10);
  4596       vextractf128h(Address(rsp,176),xmm11);
  4597       vextractf128h(Address(rsp,192),xmm12);
  4598       vextractf128h(Address(rsp,208),xmm13);
  4599       vextractf128h(Address(rsp,224),xmm14);
  4600       vextractf128h(Address(rsp,240),xmm15);
  4601 #endif
  4603 #endif
  4604     // Save whole 128bit (16 bytes) XMM regiters
  4605     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4606     movdqu(Address(rsp,off++*16),xmm0);
  4607     movdqu(Address(rsp,off++*16),xmm1);
  4608     movdqu(Address(rsp,off++*16),xmm2);
  4609     movdqu(Address(rsp,off++*16),xmm3);
  4610     movdqu(Address(rsp,off++*16),xmm4);
  4611     movdqu(Address(rsp,off++*16),xmm5);
  4612     movdqu(Address(rsp,off++*16),xmm6);
  4613     movdqu(Address(rsp,off++*16),xmm7);
  4614 #ifdef _LP64
  4615     movdqu(Address(rsp,off++*16),xmm8);
  4616     movdqu(Address(rsp,off++*16),xmm9);
  4617     movdqu(Address(rsp,off++*16),xmm10);
  4618     movdqu(Address(rsp,off++*16),xmm11);
  4619     movdqu(Address(rsp,off++*16),xmm12);
  4620     movdqu(Address(rsp,off++*16),xmm13);
  4621     movdqu(Address(rsp,off++*16),xmm14);
  4622     movdqu(Address(rsp,off++*16),xmm15);
  4623 #endif
  4626   // Preserve registers across runtime call
  4627   int incoming_argument_and_return_value_offset = -1;
  4628   if (num_fpu_regs_in_use > 1) {
  4629     // Must preserve all other FPU regs (could alternatively convert
  4630     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  4631     // FPU state, but can not trust C compiler)
  4632     NEEDS_CLEANUP;
  4633     // NOTE that in this case we also push the incoming argument(s) to
  4634     // the stack and restore it later; we also use this stack slot to
  4635     // hold the return value from dsin, dcos etc.
  4636     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  4637       subptr(rsp, sizeof(jdouble));
  4638       fstp_d(Address(rsp, 0));
  4640     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  4641     for (int i = nb_args-1; i >= 0; i--) {
  4642       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  4646   subptr(rsp, nb_args*sizeof(jdouble));
  4647   for (int i = 0; i < nb_args; i++) {
  4648     fstp_d(Address(rsp, i*sizeof(jdouble)));
  4651 #ifdef _LP64
  4652   if (nb_args > 0) {
  4653     movdbl(xmm0, Address(rsp, 0));
  4655   if (nb_args > 1) {
  4656     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  4658   assert(nb_args <= 2, "unsupported number of args");
  4659 #endif // _LP64
  4661   // NOTE: we must not use call_VM_leaf here because that requires a
  4662   // complete interpreter frame in debug mode -- same bug as 4387334
  4663   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  4664   // do proper 64bit abi
  4666   NEEDS_CLEANUP;
  4667   // Need to add stack banging before this runtime call if it needs to
  4668   // be taken; however, there is no generic stack banging routine at
  4669   // the MacroAssembler level
  4671   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  4673 #ifdef _LP64
  4674   movsd(Address(rsp, 0), xmm0);
  4675   fld_d(Address(rsp, 0));
  4676 #endif // _LP64
  4677   addptr(rsp, sizeof(jdouble) * nb_args);
  4678   if (num_fpu_regs_in_use > 1) {
  4679     // Must save return value to stack and then restore entire FPU
  4680     // stack except incoming arguments
  4681     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  4682     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  4683       fld_d(Address(rsp, 0));
  4684       addptr(rsp, sizeof(jdouble));
  4686     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  4687     addptr(rsp, sizeof(jdouble) * nb_args);
  4690   off = 0;
  4691   if (UseSSE == 1)  {
  4692     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  4693     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  4694     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  4695     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  4696     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  4697     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  4698     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  4699     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  4700     addptr(rsp, sizeof(jdouble)*8);
  4701   } else if (UseSSE >= 2)  {
  4702     // Restore whole 128bit (16 bytes) XMM regiters
  4703     movdqu(xmm0, Address(rsp,off++*16));
  4704     movdqu(xmm1, Address(rsp,off++*16));
  4705     movdqu(xmm2, Address(rsp,off++*16));
  4706     movdqu(xmm3, Address(rsp,off++*16));
  4707     movdqu(xmm4, Address(rsp,off++*16));
  4708     movdqu(xmm5, Address(rsp,off++*16));
  4709     movdqu(xmm6, Address(rsp,off++*16));
  4710     movdqu(xmm7, Address(rsp,off++*16));
  4711 #ifdef _LP64
  4712     movdqu(xmm8, Address(rsp,off++*16));
  4713     movdqu(xmm9, Address(rsp,off++*16));
  4714     movdqu(xmm10, Address(rsp,off++*16));
  4715     movdqu(xmm11, Address(rsp,off++*16));
  4716     movdqu(xmm12, Address(rsp,off++*16));
  4717     movdqu(xmm13, Address(rsp,off++*16));
  4718     movdqu(xmm14, Address(rsp,off++*16));
  4719     movdqu(xmm15, Address(rsp,off++*16));
  4720 #endif
  4721     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4722 #ifdef COMPILER2
  4723     if (MaxVectorSize > 16) {
  4724       // Restore upper half of YMM registes.
  4725       vinsertf128h(xmm0, Address(rsp,  0));
  4726       vinsertf128h(xmm1, Address(rsp, 16));
  4727       vinsertf128h(xmm2, Address(rsp, 32));
  4728       vinsertf128h(xmm3, Address(rsp, 48));
  4729       vinsertf128h(xmm4, Address(rsp, 64));
  4730       vinsertf128h(xmm5, Address(rsp, 80));
  4731       vinsertf128h(xmm6, Address(rsp, 96));
  4732       vinsertf128h(xmm7, Address(rsp,112));
  4733 #ifdef _LP64
  4734       vinsertf128h(xmm8, Address(rsp,128));
  4735       vinsertf128h(xmm9, Address(rsp,144));
  4736       vinsertf128h(xmm10, Address(rsp,160));
  4737       vinsertf128h(xmm11, Address(rsp,176));
  4738       vinsertf128h(xmm12, Address(rsp,192));
  4739       vinsertf128h(xmm13, Address(rsp,208));
  4740       vinsertf128h(xmm14, Address(rsp,224));
  4741       vinsertf128h(xmm15, Address(rsp,240));
  4742 #endif
  4743       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4745 #endif
  4747   popa();
  4750 static const double     pi_4 =  0.7853981633974483;
  4752 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  4753   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  4754   // was attempted in this code; unfortunately it appears that the
  4755   // switch to 80-bit precision and back causes this to be
  4756   // unprofitable compared with simply performing a runtime call if
  4757   // the argument is out of the (-pi/4, pi/4) range.
  4759   Register tmp = noreg;
  4760   if (!VM_Version::supports_cmov()) {
  4761     // fcmp needs a temporary so preserve rbx,
  4762     tmp = rbx;
  4763     push(tmp);
  4766   Label slow_case, done;
  4768   ExternalAddress pi4_adr = (address)&pi_4;
  4769   if (reachable(pi4_adr)) {
  4770     // x ?<= pi/4
  4771     fld_d(pi4_adr);
  4772     fld_s(1);                // Stack:  X  PI/4  X
  4773     fabs();                  // Stack: |X| PI/4  X
  4774     fcmp(tmp);
  4775     jcc(Assembler::above, slow_case);
  4777     // fastest case: -pi/4 <= x <= pi/4
  4778     switch(trig) {
  4779     case 's':
  4780       fsin();
  4781       break;
  4782     case 'c':
  4783       fcos();
  4784       break;
  4785     case 't':
  4786       ftan();
  4787       break;
  4788     default:
  4789       assert(false, "bad intrinsic");
  4790       break;
  4792     jmp(done);
  4795   // slow case: runtime call
  4796   bind(slow_case);
  4798   switch(trig) {
  4799   case 's':
  4801       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  4803     break;
  4804   case 'c':
  4806       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  4808     break;
  4809   case 't':
  4811       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  4813     break;
  4814   default:
  4815     assert(false, "bad intrinsic");
  4816     break;
  4819   // Come here with result in F-TOS
  4820   bind(done);
  4822   if (tmp != noreg) {
  4823     pop(tmp);
  4828 // Look up the method for a megamorphic invokeinterface call.
  4829 // The target method is determined by <intf_klass, itable_index>.
  4830 // The receiver klass is in recv_klass.
  4831 // On success, the result will be in method_result, and execution falls through.
  4832 // On failure, execution transfers to the given label.
  4833 void MacroAssembler::lookup_interface_method(Register recv_klass,
  4834                                              Register intf_klass,
  4835                                              RegisterOrConstant itable_index,
  4836                                              Register method_result,
  4837                                              Register scan_temp,
  4838                                              Label& L_no_such_interface) {
  4839   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  4840   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  4841          "caller must use same register for non-constant itable index as for method");
  4843   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  4844   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  4845   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  4846   int scan_step   = itableOffsetEntry::size() * wordSize;
  4847   int vte_size    = vtableEntry::size() * wordSize;
  4848   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  4849   assert(vte_size == wordSize, "else adjust times_vte_scale");
  4851   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  4853   // %%% Could store the aligned, prescaled offset in the klassoop.
  4854   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  4855   if (HeapWordsPerLong > 1) {
  4856     // Round up to align_object_offset boundary
  4857     // see code for InstanceKlass::start_of_itable!
  4858     round_to(scan_temp, BytesPerLong);
  4861   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  4862   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  4863   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  4865   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  4866   //   if (scan->interface() == intf) {
  4867   //     result = (klass + scan->offset() + itable_index);
  4868   //   }
  4869   // }
  4870   Label search, found_method;
  4872   for (int peel = 1; peel >= 0; peel--) {
  4873     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  4874     cmpptr(intf_klass, method_result);
  4876     if (peel) {
  4877       jccb(Assembler::equal, found_method);
  4878     } else {
  4879       jccb(Assembler::notEqual, search);
  4880       // (invert the test to fall through to found_method...)
  4883     if (!peel)  break;
  4885     bind(search);
  4887     // Check that the previous entry is non-null.  A null entry means that
  4888     // the receiver class doesn't implement the interface, and wasn't the
  4889     // same as when the caller was compiled.
  4890     testptr(method_result, method_result);
  4891     jcc(Assembler::zero, L_no_such_interface);
  4892     addptr(scan_temp, scan_step);
  4895   bind(found_method);
  4897   // Got a hit.
  4898   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4899   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  4903 // virtual method calling
  4904 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4905                                            RegisterOrConstant vtable_index,
  4906                                            Register method_result) {
  4907   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4908   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4909   Address vtable_entry_addr(recv_klass,
  4910                             vtable_index, Address::times_ptr,
  4911                             base + vtableEntry::method_offset_in_bytes());
  4912   movptr(method_result, vtable_entry_addr);
  4916 void MacroAssembler::check_klass_subtype(Register sub_klass,
  4917                            Register super_klass,
  4918                            Register temp_reg,
  4919                            Label& L_success) {
  4920   Label L_failure;
  4921   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  4922   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  4923   bind(L_failure);
  4927 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  4928                                                    Register super_klass,
  4929                                                    Register temp_reg,
  4930                                                    Label* L_success,
  4931                                                    Label* L_failure,
  4932                                                    Label* L_slow_path,
  4933                                         RegisterOrConstant super_check_offset) {
  4934   assert_different_registers(sub_klass, super_klass, temp_reg);
  4935   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  4936   if (super_check_offset.is_register()) {
  4937     assert_different_registers(sub_klass, super_klass,
  4938                                super_check_offset.as_register());
  4939   } else if (must_load_sco) {
  4940     assert(temp_reg != noreg, "supply either a temp or a register offset");
  4943   Label L_fallthrough;
  4944   int label_nulls = 0;
  4945   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4946   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4947   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  4948   assert(label_nulls <= 1, "at most one NULL in the batch");
  4950   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4951   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  4952   Address super_check_offset_addr(super_klass, sco_offset);
  4954   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  4955   // range of a jccb.  If this routine grows larger, reconsider at
  4956   // least some of these.
  4957 #define local_jcc(assembler_cond, label)                                \
  4958   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  4959   else                             jcc( assembler_cond, label) /*omit semi*/
  4961   // Hacked jmp, which may only be used just before L_fallthrough.
  4962 #define final_jmp(label)                                                \
  4963   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  4964   else                            jmp(label)                /*omit semi*/
  4966   // If the pointers are equal, we are done (e.g., String[] elements).
  4967   // This self-check enables sharing of secondary supertype arrays among
  4968   // non-primary types such as array-of-interface.  Otherwise, each such
  4969   // type would need its own customized SSA.
  4970   // We move this check to the front of the fast path because many
  4971   // type checks are in fact trivially successful in this manner,
  4972   // so we get a nicely predicted branch right at the start of the check.
  4973   cmpptr(sub_klass, super_klass);
  4974   local_jcc(Assembler::equal, *L_success);
  4976   // Check the supertype display:
  4977   if (must_load_sco) {
  4978     // Positive movl does right thing on LP64.
  4979     movl(temp_reg, super_check_offset_addr);
  4980     super_check_offset = RegisterOrConstant(temp_reg);
  4982   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  4983   cmpptr(super_klass, super_check_addr); // load displayed supertype
  4985   // This check has worked decisively for primary supers.
  4986   // Secondary supers are sought in the super_cache ('super_cache_addr').
  4987   // (Secondary supers are interfaces and very deeply nested subtypes.)
  4988   // This works in the same check above because of a tricky aliasing
  4989   // between the super_cache and the primary super display elements.
  4990   // (The 'super_check_addr' can address either, as the case requires.)
  4991   // Note that the cache is updated below if it does not help us find
  4992   // what we need immediately.
  4993   // So if it was a primary super, we can just fail immediately.
  4994   // Otherwise, it's the slow path for us (no success at this point).
  4996   if (super_check_offset.is_register()) {
  4997     local_jcc(Assembler::equal, *L_success);
  4998     cmpl(super_check_offset.as_register(), sc_offset);
  4999     if (L_failure == &L_fallthrough) {
  5000       local_jcc(Assembler::equal, *L_slow_path);
  5001     } else {
  5002       local_jcc(Assembler::notEqual, *L_failure);
  5003       final_jmp(*L_slow_path);
  5005   } else if (super_check_offset.as_constant() == sc_offset) {
  5006     // Need a slow path; fast failure is impossible.
  5007     if (L_slow_path == &L_fallthrough) {
  5008       local_jcc(Assembler::equal, *L_success);
  5009     } else {
  5010       local_jcc(Assembler::notEqual, *L_slow_path);
  5011       final_jmp(*L_success);
  5013   } else {
  5014     // No slow path; it's a fast decision.
  5015     if (L_failure == &L_fallthrough) {
  5016       local_jcc(Assembler::equal, *L_success);
  5017     } else {
  5018       local_jcc(Assembler::notEqual, *L_failure);
  5019       final_jmp(*L_success);
  5023   bind(L_fallthrough);
  5025 #undef local_jcc
  5026 #undef final_jmp
  5030 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  5031                                                    Register super_klass,
  5032                                                    Register temp_reg,
  5033                                                    Register temp2_reg,
  5034                                                    Label* L_success,
  5035                                                    Label* L_failure,
  5036                                                    bool set_cond_codes) {
  5037   assert_different_registers(sub_klass, super_klass, temp_reg);
  5038   if (temp2_reg != noreg)
  5039     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  5040 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  5042   Label L_fallthrough;
  5043   int label_nulls = 0;
  5044   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  5045   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  5046   assert(label_nulls <= 1, "at most one NULL in the batch");
  5048   // a couple of useful fields in sub_klass:
  5049   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  5050   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  5051   Address secondary_supers_addr(sub_klass, ss_offset);
  5052   Address super_cache_addr(     sub_klass, sc_offset);
  5054   // Do a linear scan of the secondary super-klass chain.
  5055   // This code is rarely used, so simplicity is a virtue here.
  5056   // The repne_scan instruction uses fixed registers, which we must spill.
  5057   // Don't worry too much about pre-existing connections with the input regs.
  5059   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  5060   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  5062   // Get super_klass value into rax (even if it was in rdi or rcx).
  5063   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  5064   if (super_klass != rax || UseCompressedOops) {
  5065     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  5066     mov(rax, super_klass);
  5068   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  5069   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  5071 #ifndef PRODUCT
  5072   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  5073   ExternalAddress pst_counter_addr((address) pst_counter);
  5074   NOT_LP64(  incrementl(pst_counter_addr) );
  5075   LP64_ONLY( lea(rcx, pst_counter_addr) );
  5076   LP64_ONLY( incrementl(Address(rcx, 0)) );
  5077 #endif //PRODUCT
  5079   // We will consult the secondary-super array.
  5080   movptr(rdi, secondary_supers_addr);
  5081   // Load the array length.  (Positive movl does right thing on LP64.)
  5082   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  5083   // Skip to start of data.
  5084   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  5086   // Scan RCX words at [RDI] for an occurrence of RAX.
  5087   // Set NZ/Z based on last compare.
  5088   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  5089   // not change flags (only scas instruction which is repeated sets flags).
  5090   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  5092     testptr(rax,rax); // Set Z = 0
  5093     repne_scan();
  5095   // Unspill the temp. registers:
  5096   if (pushed_rdi)  pop(rdi);
  5097   if (pushed_rcx)  pop(rcx);
  5098   if (pushed_rax)  pop(rax);
  5100   if (set_cond_codes) {
  5101     // Special hack for the AD files:  rdi is guaranteed non-zero.
  5102     assert(!pushed_rdi, "rdi must be left non-NULL");
  5103     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  5106   if (L_failure == &L_fallthrough)
  5107         jccb(Assembler::notEqual, *L_failure);
  5108   else  jcc(Assembler::notEqual, *L_failure);
  5110   // Success.  Cache the super we found and proceed in triumph.
  5111   movptr(super_cache_addr, super_klass);
  5113   if (L_success != &L_fallthrough) {
  5114     jmp(*L_success);
  5117 #undef IS_A_TEMP
  5119   bind(L_fallthrough);
  5123 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  5124   if (VM_Version::supports_cmov()) {
  5125     cmovl(cc, dst, src);
  5126   } else {
  5127     Label L;
  5128     jccb(negate_condition(cc), L);
  5129     movl(dst, src);
  5130     bind(L);
  5134 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  5135   if (VM_Version::supports_cmov()) {
  5136     cmovl(cc, dst, src);
  5137   } else {
  5138     Label L;
  5139     jccb(negate_condition(cc), L);
  5140     movl(dst, src);
  5141     bind(L);
  5145 void MacroAssembler::verify_oop(Register reg, const char* s) {
  5146   if (!VerifyOops) return;
  5148   // Pass register number to verify_oop_subroutine
  5149   const char* b = NULL;
  5151     ResourceMark rm;
  5152     stringStream ss;
  5153     ss.print("verify_oop: %s: %s", reg->name(), s);
  5154     b = code_string(ss.as_string());
  5156   BLOCK_COMMENT("verify_oop {");
  5157 #ifdef _LP64
  5158   push(rscratch1);                    // save r10, trashed by movptr()
  5159 #endif
  5160   push(rax);                          // save rax,
  5161   push(reg);                          // pass register argument
  5162   ExternalAddress buffer((address) b);
  5163   // avoid using pushptr, as it modifies scratch registers
  5164   // and our contract is not to modify anything
  5165   movptr(rax, buffer.addr());
  5166   push(rax);
  5167   // call indirectly to solve generation ordering problem
  5168   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  5169   call(rax);
  5170   // Caller pops the arguments (oop, message) and restores rax, r10
  5171   BLOCK_COMMENT("} verify_oop");
  5175 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  5176                                                       Register tmp,
  5177                                                       int offset) {
  5178   intptr_t value = *delayed_value_addr;
  5179   if (value != 0)
  5180     return RegisterOrConstant(value + offset);
  5182   // load indirectly to solve generation ordering problem
  5183   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  5185 #ifdef ASSERT
  5186   { Label L;
  5187     testptr(tmp, tmp);
  5188     if (WizardMode) {
  5189       const char* buf = NULL;
  5191         ResourceMark rm;
  5192         stringStream ss;
  5193         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  5194         buf = code_string(ss.as_string());
  5196       jcc(Assembler::notZero, L);
  5197       STOP(buf);
  5198     } else {
  5199       jccb(Assembler::notZero, L);
  5200       hlt();
  5202     bind(L);
  5204 #endif
  5206   if (offset != 0)
  5207     addptr(tmp, offset);
  5209   return RegisterOrConstant(tmp);
  5213 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  5214                                          int extra_slot_offset) {
  5215   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  5216   int stackElementSize = Interpreter::stackElementSize;
  5217   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  5218 #ifdef ASSERT
  5219   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  5220   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  5221 #endif
  5222   Register             scale_reg    = noreg;
  5223   Address::ScaleFactor scale_factor = Address::no_scale;
  5224   if (arg_slot.is_constant()) {
  5225     offset += arg_slot.as_constant() * stackElementSize;
  5226   } else {
  5227     scale_reg    = arg_slot.as_register();
  5228     scale_factor = Address::times(stackElementSize);
  5230   offset += wordSize;           // return PC is on stack
  5231   return Address(rsp, scale_reg, scale_factor, offset);
  5235 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  5236   if (!VerifyOops) return;
  5238   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  5239   // Pass register number to verify_oop_subroutine
  5240   const char* b = NULL;
  5242     ResourceMark rm;
  5243     stringStream ss;
  5244     ss.print("verify_oop_addr: %s", s);
  5245     b = code_string(ss.as_string());
  5247 #ifdef _LP64
  5248   push(rscratch1);                    // save r10, trashed by movptr()
  5249 #endif
  5250   push(rax);                          // save rax,
  5251   // addr may contain rsp so we will have to adjust it based on the push
  5252   // we just did (and on 64 bit we do two pushes)
  5253   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  5254   // stores rax into addr which is backwards of what was intended.
  5255   if (addr.uses(rsp)) {
  5256     lea(rax, addr);
  5257     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  5258   } else {
  5259     pushptr(addr);
  5262   ExternalAddress buffer((address) b);
  5263   // pass msg argument
  5264   // avoid using pushptr, as it modifies scratch registers
  5265   // and our contract is not to modify anything
  5266   movptr(rax, buffer.addr());
  5267   push(rax);
  5269   // call indirectly to solve generation ordering problem
  5270   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  5271   call(rax);
  5272   // Caller pops the arguments (addr, message) and restores rax, r10.
  5275 void MacroAssembler::verify_tlab() {
  5276 #ifdef ASSERT
  5277   if (UseTLAB && VerifyOops) {
  5278     Label next, ok;
  5279     Register t1 = rsi;
  5280     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  5282     push(t1);
  5283     NOT_LP64(push(thread_reg));
  5284     NOT_LP64(get_thread(thread_reg));
  5286     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  5287     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  5288     jcc(Assembler::aboveEqual, next);
  5289     STOP("assert(top >= start)");
  5290     should_not_reach_here();
  5292     bind(next);
  5293     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  5294     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  5295     jcc(Assembler::aboveEqual, ok);
  5296     STOP("assert(top <= end)");
  5297     should_not_reach_here();
  5299     bind(ok);
  5300     NOT_LP64(pop(thread_reg));
  5301     pop(t1);
  5303 #endif
  5306 class ControlWord {
  5307  public:
  5308   int32_t _value;
  5310   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  5311   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  5312   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  5313   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  5314   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  5315   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  5316   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  5317   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  5319   void print() const {
  5320     // rounding control
  5321     const char* rc;
  5322     switch (rounding_control()) {
  5323       case 0: rc = "round near"; break;
  5324       case 1: rc = "round down"; break;
  5325       case 2: rc = "round up  "; break;
  5326       case 3: rc = "chop      "; break;
  5327     };
  5328     // precision control
  5329     const char* pc;
  5330     switch (precision_control()) {
  5331       case 0: pc = "24 bits "; break;
  5332       case 1: pc = "reserved"; break;
  5333       case 2: pc = "53 bits "; break;
  5334       case 3: pc = "64 bits "; break;
  5335     };
  5336     // flags
  5337     char f[9];
  5338     f[0] = ' ';
  5339     f[1] = ' ';
  5340     f[2] = (precision   ()) ? 'P' : 'p';
  5341     f[3] = (underflow   ()) ? 'U' : 'u';
  5342     f[4] = (overflow    ()) ? 'O' : 'o';
  5343     f[5] = (zero_divide ()) ? 'Z' : 'z';
  5344     f[6] = (denormalized()) ? 'D' : 'd';
  5345     f[7] = (invalid     ()) ? 'I' : 'i';
  5346     f[8] = '\x0';
  5347     // output
  5348     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  5351 };
  5353 class StatusWord {
  5354  public:
  5355   int32_t _value;
  5357   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  5358   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  5359   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  5360   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  5361   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  5362   int  top() const                     { return  (_value >> 11) & 7      ; }
  5363   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  5364   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  5365   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  5366   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  5367   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  5368   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  5369   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  5370   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  5372   void print() const {
  5373     // condition codes
  5374     char c[5];
  5375     c[0] = (C3()) ? '3' : '-';
  5376     c[1] = (C2()) ? '2' : '-';
  5377     c[2] = (C1()) ? '1' : '-';
  5378     c[3] = (C0()) ? '0' : '-';
  5379     c[4] = '\x0';
  5380     // flags
  5381     char f[9];
  5382     f[0] = (error_status()) ? 'E' : '-';
  5383     f[1] = (stack_fault ()) ? 'S' : '-';
  5384     f[2] = (precision   ()) ? 'P' : '-';
  5385     f[3] = (underflow   ()) ? 'U' : '-';
  5386     f[4] = (overflow    ()) ? 'O' : '-';
  5387     f[5] = (zero_divide ()) ? 'Z' : '-';
  5388     f[6] = (denormalized()) ? 'D' : '-';
  5389     f[7] = (invalid     ()) ? 'I' : '-';
  5390     f[8] = '\x0';
  5391     // output
  5392     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  5395 };
  5397 class TagWord {
  5398  public:
  5399   int32_t _value;
  5401   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  5403   void print() const {
  5404     printf("%04x", _value & 0xFFFF);
  5407 };
  5409 class FPU_Register {
  5410  public:
  5411   int32_t _m0;
  5412   int32_t _m1;
  5413   int16_t _ex;
  5415   bool is_indefinite() const           {
  5416     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  5419   void print() const {
  5420     char  sign = (_ex < 0) ? '-' : '+';
  5421     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  5422     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  5423   };
  5425 };
  5427 class FPU_State {
  5428  public:
  5429   enum {
  5430     register_size       = 10,
  5431     number_of_registers =  8,
  5432     register_mask       =  7
  5433   };
  5435   ControlWord  _control_word;
  5436   StatusWord   _status_word;
  5437   TagWord      _tag_word;
  5438   int32_t      _error_offset;
  5439   int32_t      _error_selector;
  5440   int32_t      _data_offset;
  5441   int32_t      _data_selector;
  5442   int8_t       _register[register_size * number_of_registers];
  5444   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  5445   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  5447   const char* tag_as_string(int tag) const {
  5448     switch (tag) {
  5449       case 0: return "valid";
  5450       case 1: return "zero";
  5451       case 2: return "special";
  5452       case 3: return "empty";
  5454     ShouldNotReachHere();
  5455     return NULL;
  5458   void print() const {
  5459     // print computation registers
  5460     { int t = _status_word.top();
  5461       for (int i = 0; i < number_of_registers; i++) {
  5462         int j = (i - t) & register_mask;
  5463         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  5464         st(j)->print();
  5465         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  5468     printf("\n");
  5469     // print control registers
  5470     printf("ctrl = "); _control_word.print(); printf("\n");
  5471     printf("stat = "); _status_word .print(); printf("\n");
  5472     printf("tags = "); _tag_word    .print(); printf("\n");
  5475 };
  5477 class Flag_Register {
  5478  public:
  5479   int32_t _value;
  5481   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  5482   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  5483   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  5484   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  5485   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  5486   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  5487   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  5489   void print() const {
  5490     // flags
  5491     char f[8];
  5492     f[0] = (overflow       ()) ? 'O' : '-';
  5493     f[1] = (direction      ()) ? 'D' : '-';
  5494     f[2] = (sign           ()) ? 'S' : '-';
  5495     f[3] = (zero           ()) ? 'Z' : '-';
  5496     f[4] = (auxiliary_carry()) ? 'A' : '-';
  5497     f[5] = (parity         ()) ? 'P' : '-';
  5498     f[6] = (carry          ()) ? 'C' : '-';
  5499     f[7] = '\x0';
  5500     // output
  5501     printf("%08x  flags = %s", _value, f);
  5504 };
  5506 class IU_Register {
  5507  public:
  5508   int32_t _value;
  5510   void print() const {
  5511     printf("%08x  %11d", _value, _value);
  5514 };
  5516 class IU_State {
  5517  public:
  5518   Flag_Register _eflags;
  5519   IU_Register   _rdi;
  5520   IU_Register   _rsi;
  5521   IU_Register   _rbp;
  5522   IU_Register   _rsp;
  5523   IU_Register   _rbx;
  5524   IU_Register   _rdx;
  5525   IU_Register   _rcx;
  5526   IU_Register   _rax;
  5528   void print() const {
  5529     // computation registers
  5530     printf("rax,  = "); _rax.print(); printf("\n");
  5531     printf("rbx,  = "); _rbx.print(); printf("\n");
  5532     printf("rcx  = "); _rcx.print(); printf("\n");
  5533     printf("rdx  = "); _rdx.print(); printf("\n");
  5534     printf("rdi  = "); _rdi.print(); printf("\n");
  5535     printf("rsi  = "); _rsi.print(); printf("\n");
  5536     printf("rbp,  = "); _rbp.print(); printf("\n");
  5537     printf("rsp  = "); _rsp.print(); printf("\n");
  5538     printf("\n");
  5539     // control registers
  5540     printf("flgs = "); _eflags.print(); printf("\n");
  5542 };
  5545 class CPU_State {
  5546  public:
  5547   FPU_State _fpu_state;
  5548   IU_State  _iu_state;
  5550   void print() const {
  5551     printf("--------------------------------------------------\n");
  5552     _iu_state .print();
  5553     printf("\n");
  5554     _fpu_state.print();
  5555     printf("--------------------------------------------------\n");
  5558 };
  5561 static void _print_CPU_state(CPU_State* state) {
  5562   state->print();
  5563 };
  5566 void MacroAssembler::print_CPU_state() {
  5567   push_CPU_state();
  5568   push(rsp);                // pass CPU state
  5569   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  5570   addptr(rsp, wordSize);       // discard argument
  5571   pop_CPU_state();
  5575 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  5576   static int counter = 0;
  5577   FPU_State* fs = &state->_fpu_state;
  5578   counter++;
  5579   // For leaf calls, only verify that the top few elements remain empty.
  5580   // We only need 1 empty at the top for C2 code.
  5581   if( stack_depth < 0 ) {
  5582     if( fs->tag_for_st(7) != 3 ) {
  5583       printf("FPR7 not empty\n");
  5584       state->print();
  5585       assert(false, "error");
  5586       return false;
  5588     return true;                // All other stack states do not matter
  5591   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  5592          "bad FPU control word");
  5594   // compute stack depth
  5595   int i = 0;
  5596   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  5597   int d = i;
  5598   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  5599   // verify findings
  5600   if (i != FPU_State::number_of_registers) {
  5601     // stack not contiguous
  5602     printf("%s: stack not contiguous at ST%d\n", s, i);
  5603     state->print();
  5604     assert(false, "error");
  5605     return false;
  5607   // check if computed stack depth corresponds to expected stack depth
  5608   if (stack_depth < 0) {
  5609     // expected stack depth is -stack_depth or less
  5610     if (d > -stack_depth) {
  5611       // too many elements on the stack
  5612       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  5613       state->print();
  5614       assert(false, "error");
  5615       return false;
  5617   } else {
  5618     // expected stack depth is stack_depth
  5619     if (d != stack_depth) {
  5620       // wrong stack depth
  5621       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  5622       state->print();
  5623       assert(false, "error");
  5624       return false;
  5627   // everything is cool
  5628   return true;
  5632 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  5633   if (!VerifyFPU) return;
  5634   push_CPU_state();
  5635   push(rsp);                // pass CPU state
  5636   ExternalAddress msg((address) s);
  5637   // pass message string s
  5638   pushptr(msg.addr());
  5639   push(stack_depth);        // pass stack depth
  5640   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  5641   addptr(rsp, 3 * wordSize);   // discard arguments
  5642   // check for error
  5643   { Label L;
  5644     testl(rax, rax);
  5645     jcc(Assembler::notZero, L);
  5646     int3();                  // break if error condition
  5647     bind(L);
  5649   pop_CPU_state();
  5652 void MacroAssembler::restore_cpu_control_state_after_jni() {
  5653   // Either restore the MXCSR register after returning from the JNI Call
  5654   // or verify that it wasn't changed (with -Xcheck:jni flag).
  5655   if (VM_Version::supports_sse()) {
  5656     if (RestoreMXCSROnJNICalls) {
  5657       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  5658     } else if (CheckJNICalls) {
  5659       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  5662   if (VM_Version::supports_avx()) {
  5663     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
  5664     vzeroupper();
  5667 #ifndef _LP64
  5668   // Either restore the x87 floating pointer control word after returning
  5669   // from the JNI call or verify that it wasn't changed.
  5670   if (CheckJNICalls) {
  5671     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  5673 #endif // _LP64
  5677 void MacroAssembler::load_klass(Register dst, Register src) {
  5678 #ifdef _LP64
  5679   if (UseCompressedClassPointers) {
  5680     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5681     decode_klass_not_null(dst);
  5682   } else
  5683 #endif
  5684     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5687 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  5688   load_klass(dst, src);
  5689   movptr(dst, Address(dst, Klass::prototype_header_offset()));
  5692 void MacroAssembler::store_klass(Register dst, Register src) {
  5693 #ifdef _LP64
  5694   if (UseCompressedClassPointers) {
  5695     encode_klass_not_null(src);
  5696     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5697   } else
  5698 #endif
  5699     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5702 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  5703 #ifdef _LP64
  5704   // FIXME: Must change all places where we try to load the klass.
  5705   if (UseCompressedOops) {
  5706     movl(dst, src);
  5707     decode_heap_oop(dst);
  5708   } else
  5709 #endif
  5710     movptr(dst, src);
  5713 // Doesn't do verfication, generates fixed size code
  5714 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  5715 #ifdef _LP64
  5716   if (UseCompressedOops) {
  5717     movl(dst, src);
  5718     decode_heap_oop_not_null(dst);
  5719   } else
  5720 #endif
  5721     movptr(dst, src);
  5724 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  5725 #ifdef _LP64
  5726   if (UseCompressedOops) {
  5727     assert(!dst.uses(src), "not enough registers");
  5728     encode_heap_oop(src);
  5729     movl(dst, src);
  5730   } else
  5731 #endif
  5732     movptr(dst, src);
  5735 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  5736   assert_different_registers(src1, tmp);
  5737 #ifdef _LP64
  5738   if (UseCompressedOops) {
  5739     bool did_push = false;
  5740     if (tmp == noreg) {
  5741       tmp = rax;
  5742       push(tmp);
  5743       did_push = true;
  5744       assert(!src2.uses(rsp), "can't push");
  5746     load_heap_oop(tmp, src2);
  5747     cmpptr(src1, tmp);
  5748     if (did_push)  pop(tmp);
  5749   } else
  5750 #endif
  5751     cmpptr(src1, src2);
  5754 // Used for storing NULLs.
  5755 void MacroAssembler::store_heap_oop_null(Address dst) {
  5756 #ifdef _LP64
  5757   if (UseCompressedOops) {
  5758     movl(dst, (int32_t)NULL_WORD);
  5759   } else {
  5760     movslq(dst, (int32_t)NULL_WORD);
  5762 #else
  5763   movl(dst, (int32_t)NULL_WORD);
  5764 #endif
  5767 #ifdef _LP64
  5768 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  5769   if (UseCompressedClassPointers) {
  5770     // Store to klass gap in destination
  5771     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  5775 #ifdef ASSERT
  5776 void MacroAssembler::verify_heapbase(const char* msg) {
  5777   assert (UseCompressedOops, "should be compressed");
  5778   assert (Universe::heap() != NULL, "java heap should be initialized");
  5779   if (CheckCompressedOops) {
  5780     Label ok;
  5781     push(rscratch1); // cmpptr trashes rscratch1
  5782     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  5783     jcc(Assembler::equal, ok);
  5784     STOP(msg);
  5785     bind(ok);
  5786     pop(rscratch1);
  5789 #endif
  5791 // Algorithm must match oop.inline.hpp encode_heap_oop.
  5792 void MacroAssembler::encode_heap_oop(Register r) {
  5793 #ifdef ASSERT
  5794   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  5795 #endif
  5796   verify_oop(r, "broken oop in encode_heap_oop");
  5797   if (Universe::narrow_oop_base() == NULL) {
  5798     if (Universe::narrow_oop_shift() != 0) {
  5799       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5800       shrq(r, LogMinObjAlignmentInBytes);
  5802     return;
  5804   testq(r, r);
  5805   cmovq(Assembler::equal, r, r12_heapbase);
  5806   subq(r, r12_heapbase);
  5807   shrq(r, LogMinObjAlignmentInBytes);
  5810 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  5811 #ifdef ASSERT
  5812   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  5813   if (CheckCompressedOops) {
  5814     Label ok;
  5815     testq(r, r);
  5816     jcc(Assembler::notEqual, ok);
  5817     STOP("null oop passed to encode_heap_oop_not_null");
  5818     bind(ok);
  5820 #endif
  5821   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  5822   if (Universe::narrow_oop_base() != NULL) {
  5823     subq(r, r12_heapbase);
  5825   if (Universe::narrow_oop_shift() != 0) {
  5826     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5827     shrq(r, LogMinObjAlignmentInBytes);
  5831 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  5832 #ifdef ASSERT
  5833   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  5834   if (CheckCompressedOops) {
  5835     Label ok;
  5836     testq(src, src);
  5837     jcc(Assembler::notEqual, ok);
  5838     STOP("null oop passed to encode_heap_oop_not_null2");
  5839     bind(ok);
  5841 #endif
  5842   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  5843   if (dst != src) {
  5844     movq(dst, src);
  5846   if (Universe::narrow_oop_base() != NULL) {
  5847     subq(dst, r12_heapbase);
  5849   if (Universe::narrow_oop_shift() != 0) {
  5850     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5851     shrq(dst, LogMinObjAlignmentInBytes);
  5855 void  MacroAssembler::decode_heap_oop(Register r) {
  5856 #ifdef ASSERT
  5857   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  5858 #endif
  5859   if (Universe::narrow_oop_base() == NULL) {
  5860     if (Universe::narrow_oop_shift() != 0) {
  5861       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5862       shlq(r, LogMinObjAlignmentInBytes);
  5864   } else {
  5865     Label done;
  5866     shlq(r, LogMinObjAlignmentInBytes);
  5867     jccb(Assembler::equal, done);
  5868     addq(r, r12_heapbase);
  5869     bind(done);
  5871   verify_oop(r, "broken oop in decode_heap_oop");
  5874 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  5875   // Note: it will change flags
  5876   assert (UseCompressedOops, "should only be used for compressed headers");
  5877   assert (Universe::heap() != NULL, "java heap should be initialized");
  5878   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5879   // vtableStubs also counts instructions in pd_code_size_limit.
  5880   // Also do not verify_oop as this is called by verify_oop.
  5881   if (Universe::narrow_oop_shift() != 0) {
  5882     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5883     shlq(r, LogMinObjAlignmentInBytes);
  5884     if (Universe::narrow_oop_base() != NULL) {
  5885       addq(r, r12_heapbase);
  5887   } else {
  5888     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5892 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  5893   // Note: it will change flags
  5894   assert (UseCompressedOops, "should only be used for compressed headers");
  5895   assert (Universe::heap() != NULL, "java heap should be initialized");
  5896   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5897   // vtableStubs also counts instructions in pd_code_size_limit.
  5898   // Also do not verify_oop as this is called by verify_oop.
  5899   if (Universe::narrow_oop_shift() != 0) {
  5900     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5901     if (LogMinObjAlignmentInBytes == Address::times_8) {
  5902       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5903     } else {
  5904       if (dst != src) {
  5905         movq(dst, src);
  5907       shlq(dst, LogMinObjAlignmentInBytes);
  5908       if (Universe::narrow_oop_base() != NULL) {
  5909         addq(dst, r12_heapbase);
  5912   } else {
  5913     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5914     if (dst != src) {
  5915       movq(dst, src);
  5920 void MacroAssembler::encode_klass_not_null(Register r) {
  5921   if (Universe::narrow_klass_base() != NULL) {
  5922     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5923     assert(r != r12_heapbase, "Encoding a klass in r12");
  5924     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5925     subq(r, r12_heapbase);
  5927   if (Universe::narrow_klass_shift() != 0) {
  5928     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5929     shrq(r, LogKlassAlignmentInBytes);
  5931   if (Universe::narrow_klass_base() != NULL) {
  5932     reinit_heapbase();
  5936 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  5937   if (dst == src) {
  5938     encode_klass_not_null(src);
  5939   } else {
  5940     if (Universe::narrow_klass_base() != NULL) {
  5941       mov64(dst, (int64_t)Universe::narrow_klass_base());
  5942       negq(dst);
  5943       addq(dst, src);
  5944     } else {
  5945       movptr(dst, src);
  5947     if (Universe::narrow_klass_shift() != 0) {
  5948       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5949       shrq(dst, LogKlassAlignmentInBytes);
  5954 // Function instr_size_for_decode_klass_not_null() counts the instructions
  5955 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  5956 // when (Universe::heap() != NULL).  Hence, if the instructions they
  5957 // generate change, then this method needs to be updated.
  5958 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  5959   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  5960   if (Universe::narrow_klass_base() != NULL) {
  5961     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  5962     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
  5963   } else {
  5964     // longest load decode klass function, mov64, leaq
  5965     return 16;
  5969 // !!! If the instructions that get generated here change then function
  5970 // instr_size_for_decode_klass_not_null() needs to get updated.
  5971 void  MacroAssembler::decode_klass_not_null(Register r) {
  5972   // Note: it will change flags
  5973   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5974   assert(r != r12_heapbase, "Decoding a klass in r12");
  5975   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5976   // vtableStubs also counts instructions in pd_code_size_limit.
  5977   // Also do not verify_oop as this is called by verify_oop.
  5978   if (Universe::narrow_klass_shift() != 0) {
  5979     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5980     shlq(r, LogKlassAlignmentInBytes);
  5982   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5983   if (Universe::narrow_klass_base() != NULL) {
  5984     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5985     addq(r, r12_heapbase);
  5986     reinit_heapbase();
  5990 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  5991   // Note: it will change flags
  5992   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5993   if (dst == src) {
  5994     decode_klass_not_null(dst);
  5995   } else {
  5996     // Cannot assert, unverified entry point counts instructions (see .ad file)
  5997     // vtableStubs also counts instructions in pd_code_size_limit.
  5998     // Also do not verify_oop as this is called by verify_oop.
  5999     mov64(dst, (int64_t)Universe::narrow_klass_base());
  6000     if (Universe::narrow_klass_shift() != 0) {
  6001       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  6002       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  6003       leaq(dst, Address(dst, src, Address::times_8, 0));
  6004     } else {
  6005       addq(dst, src);
  6010 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  6011   assert (UseCompressedOops, "should only be used for compressed headers");
  6012   assert (Universe::heap() != NULL, "java heap should be initialized");
  6013   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6014   int oop_index = oop_recorder()->find_index(obj);
  6015   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6016   mov_narrow_oop(dst, oop_index, rspec);
  6019 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  6020   assert (UseCompressedOops, "should only be used for compressed headers");
  6021   assert (Universe::heap() != NULL, "java heap should be initialized");
  6022   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6023   int oop_index = oop_recorder()->find_index(obj);
  6024   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6025   mov_narrow_oop(dst, oop_index, rspec);
  6028 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  6029   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6030   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6031   int klass_index = oop_recorder()->find_index(k);
  6032   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6033   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6036 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
  6037   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6038   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6039   int klass_index = oop_recorder()->find_index(k);
  6040   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6041   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6044 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  6045   assert (UseCompressedOops, "should only be used for compressed headers");
  6046   assert (Universe::heap() != NULL, "java heap should be initialized");
  6047   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6048   int oop_index = oop_recorder()->find_index(obj);
  6049   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6050   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  6053 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  6054   assert (UseCompressedOops, "should only be used for compressed headers");
  6055   assert (Universe::heap() != NULL, "java heap should be initialized");
  6056   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6057   int oop_index = oop_recorder()->find_index(obj);
  6058   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6059   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  6062 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
  6063   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6064   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6065   int klass_index = oop_recorder()->find_index(k);
  6066   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6067   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6070 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
  6071   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6072   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6073   int klass_index = oop_recorder()->find_index(k);
  6074   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6075   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6078 void MacroAssembler::reinit_heapbase() {
  6079   if (UseCompressedOops || UseCompressedClassPointers) {
  6080     if (Universe::heap() != NULL) {
  6081       if (Universe::narrow_oop_base() == NULL) {
  6082         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
  6083       } else {
  6084         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
  6086     } else {
  6087       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  6092 #endif // _LP64
  6095 // C2 compiled method's prolog code.
  6096 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  6098   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  6099   // NativeJump::patch_verified_entry will be able to patch out the entry
  6100   // code safely. The push to verify stack depth is ok at 5 bytes,
  6101   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  6102   // stack bang then we must use the 6 byte frame allocation even if
  6103   // we have no frame. :-(
  6105   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  6106   // Remove word for return addr
  6107   framesize -= wordSize;
  6109   // Calls to C2R adapters often do not accept exceptional returns.
  6110   // We require that their callers must bang for them.  But be careful, because
  6111   // some VM calls (such as call site linkage) can use several kilobytes of
  6112   // stack.  But the stack safety zone should account for that.
  6113   // See bugs 4446381, 4468289, 4497237.
  6114   if (stack_bang) {
  6115     generate_stack_overflow_check(framesize);
  6117     // We always push rbp, so that on return to interpreter rbp, will be
  6118     // restored correctly and we can correct the stack.
  6119     push(rbp);
  6120     // Remove word for ebp
  6121     framesize -= wordSize;
  6123     // Create frame
  6124     if (framesize) {
  6125       subptr(rsp, framesize);
  6127   } else {
  6128     // Create frame (force generation of a 4 byte immediate value)
  6129     subptr_imm32(rsp, framesize);
  6131     // Save RBP register now.
  6132     framesize -= wordSize;
  6133     movptr(Address(rsp, framesize), rbp);
  6136   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  6137     framesize -= wordSize;
  6138     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  6141 #ifndef _LP64
  6142   // If method sets FPU control word do it now
  6143   if (fp_mode_24b) {
  6144     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  6146   if (UseSSE >= 2 && VerifyFPU) {
  6147     verify_FPU(0, "FPU stack must be clean on entry");
  6149 #endif
  6151 #ifdef ASSERT
  6152   if (VerifyStackAtCalls) {
  6153     Label L;
  6154     push(rax);
  6155     mov(rax, rsp);
  6156     andptr(rax, StackAlignmentInBytes-1);
  6157     cmpptr(rax, StackAlignmentInBytes-wordSize);
  6158     pop(rax);
  6159     jcc(Assembler::equal, L);
  6160     STOP("Stack is not properly aligned!");
  6161     bind(L);
  6163 #endif
  6167 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
  6168   // cnt - number of qwords (8-byte words).
  6169   // base - start address, qword aligned.
  6170   assert(base==rdi, "base register must be edi for rep stos");
  6171   assert(tmp==rax,   "tmp register must be eax for rep stos");
  6172   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
  6174   xorptr(tmp, tmp);
  6175   if (UseFastStosb) {
  6176     shlptr(cnt,3); // convert to number of bytes
  6177     rep_stosb();
  6178   } else {
  6179     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
  6180     rep_stos();
  6184 // IndexOf for constant substrings with size >= 8 chars
  6185 // which don't need to be loaded through stack.
  6186 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  6187                                       Register cnt1, Register cnt2,
  6188                                       int int_cnt2,  Register result,
  6189                                       XMMRegister vec, Register tmp) {
  6190   ShortBranchVerifier sbv(this);
  6191   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  6193   // This method uses pcmpestri inxtruction with bound registers
  6194   //   inputs:
  6195   //     xmm - substring
  6196   //     rax - substring length (elements count)
  6197   //     mem - scanned string
  6198   //     rdx - string length (elements count)
  6199   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  6200   //   outputs:
  6201   //     rcx - matched index in string
  6202   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6204   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  6205         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  6206         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  6208   // Note, inline_string_indexOf() generates checks:
  6209   // if (substr.count > string.count) return -1;
  6210   // if (substr.count == 0) return 0;
  6211   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  6213   // Load substring.
  6214   movdqu(vec, Address(str2, 0));
  6215   movl(cnt2, int_cnt2);
  6216   movptr(result, str1); // string addr
  6218   if (int_cnt2 > 8) {
  6219     jmpb(SCAN_TO_SUBSTR);
  6221     // Reload substr for rescan, this code
  6222     // is executed only for large substrings (> 8 chars)
  6223     bind(RELOAD_SUBSTR);
  6224     movdqu(vec, Address(str2, 0));
  6225     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  6227     bind(RELOAD_STR);
  6228     // We came here after the beginning of the substring was
  6229     // matched but the rest of it was not so we need to search
  6230     // again. Start from the next element after the previous match.
  6232     // cnt2 is number of substring reminding elements and
  6233     // cnt1 is number of string reminding elements when cmp failed.
  6234     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  6235     subl(cnt1, cnt2);
  6236     addl(cnt1, int_cnt2);
  6237     movl(cnt2, int_cnt2); // Now restore cnt2
  6239     decrementl(cnt1);     // Shift to next element
  6240     cmpl(cnt1, cnt2);
  6241     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6243     addptr(result, 2);
  6245   } // (int_cnt2 > 8)
  6247   // Scan string for start of substr in 16-byte vectors
  6248   bind(SCAN_TO_SUBSTR);
  6249   pcmpestri(vec, Address(result, 0), 0x0d);
  6250   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  6251   subl(cnt1, 8);
  6252   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  6253   cmpl(cnt1, cnt2);
  6254   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6255   addptr(result, 16);
  6256   jmpb(SCAN_TO_SUBSTR);
  6258   // Found a potential substr
  6259   bind(FOUND_CANDIDATE);
  6260   // Matched whole vector if first element matched (tmp(rcx) == 0).
  6261   if (int_cnt2 == 8) {
  6262     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  6263   } else { // int_cnt2 > 8
  6264     jccb(Assembler::overflow, FOUND_SUBSTR);
  6266   // After pcmpestri tmp(rcx) contains matched element index
  6267   // Compute start addr of substr
  6268   lea(result, Address(result, tmp, Address::times_2));
  6270   // Make sure string is still long enough
  6271   subl(cnt1, tmp);
  6272   cmpl(cnt1, cnt2);
  6273   if (int_cnt2 == 8) {
  6274     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  6275   } else { // int_cnt2 > 8
  6276     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  6278   // Left less then substring.
  6280   bind(RET_NOT_FOUND);
  6281   movl(result, -1);
  6282   jmpb(EXIT);
  6284   if (int_cnt2 > 8) {
  6285     // This code is optimized for the case when whole substring
  6286     // is matched if its head is matched.
  6287     bind(MATCH_SUBSTR_HEAD);
  6288     pcmpestri(vec, Address(result, 0), 0x0d);
  6289     // Reload only string if does not match
  6290     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  6292     Label CONT_SCAN_SUBSTR;
  6293     // Compare the rest of substring (> 8 chars).
  6294     bind(FOUND_SUBSTR);
  6295     // First 8 chars are already matched.
  6296     negptr(cnt2);
  6297     addptr(cnt2, 8);
  6299     bind(SCAN_SUBSTR);
  6300     subl(cnt1, 8);
  6301     cmpl(cnt2, -8); // Do not read beyond substring
  6302     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  6303     // Back-up strings to avoid reading beyond substring:
  6304     // cnt1 = cnt1 - cnt2 + 8
  6305     addl(cnt1, cnt2); // cnt2 is negative
  6306     addl(cnt1, 8);
  6307     movl(cnt2, 8); negptr(cnt2);
  6308     bind(CONT_SCAN_SUBSTR);
  6309     if (int_cnt2 < (int)G) {
  6310       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  6311       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  6312     } else {
  6313       // calculate index in register to avoid integer overflow (int_cnt2*2)
  6314       movl(tmp, int_cnt2);
  6315       addptr(tmp, cnt2);
  6316       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  6317       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  6319     // Need to reload strings pointers if not matched whole vector
  6320     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  6321     addptr(cnt2, 8);
  6322     jcc(Assembler::negative, SCAN_SUBSTR);
  6323     // Fall through if found full substring
  6325   } // (int_cnt2 > 8)
  6327   bind(RET_FOUND);
  6328   // Found result if we matched full small substring.
  6329   // Compute substr offset
  6330   subptr(result, str1);
  6331   shrl(result, 1); // index
  6332   bind(EXIT);
  6334 } // string_indexofC8
  6336 // Small strings are loaded through stack if they cross page boundary.
  6337 void MacroAssembler::string_indexof(Register str1, Register str2,
  6338                                     Register cnt1, Register cnt2,
  6339                                     int int_cnt2,  Register result,
  6340                                     XMMRegister vec, Register tmp) {
  6341   ShortBranchVerifier sbv(this);
  6342   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  6343   //
  6344   // int_cnt2 is length of small (< 8 chars) constant substring
  6345   // or (-1) for non constant substring in which case its length
  6346   // is in cnt2 register.
  6347   //
  6348   // Note, inline_string_indexOf() generates checks:
  6349   // if (substr.count > string.count) return -1;
  6350   // if (substr.count == 0) return 0;
  6351   //
  6352   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  6354   // This method uses pcmpestri inxtruction with bound registers
  6355   //   inputs:
  6356   //     xmm - substring
  6357   //     rax - substring length (elements count)
  6358   //     mem - scanned string
  6359   //     rdx - string length (elements count)
  6360   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  6361   //   outputs:
  6362   //     rcx - matched index in string
  6363   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6365   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  6366         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  6367         FOUND_CANDIDATE;
  6369   { //========================================================
  6370     // We don't know where these strings are located
  6371     // and we can't read beyond them. Load them through stack.
  6372     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  6374     movptr(tmp, rsp); // save old SP
  6376     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  6377       if (int_cnt2 == 1) {  // One char
  6378         load_unsigned_short(result, Address(str2, 0));
  6379         movdl(vec, result); // move 32 bits
  6380       } else if (int_cnt2 == 2) { // Two chars
  6381         movdl(vec, Address(str2, 0)); // move 32 bits
  6382       } else if (int_cnt2 == 4) { // Four chars
  6383         movq(vec, Address(str2, 0));  // move 64 bits
  6384       } else { // cnt2 = { 3, 5, 6, 7 }
  6385         // Array header size is 12 bytes in 32-bit VM
  6386         // + 6 bytes for 3 chars == 18 bytes,
  6387         // enough space to load vec and shift.
  6388         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
  6389         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  6390         psrldq(vec, 16-(int_cnt2*2));
  6392     } else { // not constant substring
  6393       cmpl(cnt2, 8);
  6394       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  6396       // We can read beyond string if srt+16 does not cross page boundary
  6397       // since heaps are aligned and mapped by pages.
  6398       assert(os::vm_page_size() < (int)G, "default page should be small");
  6399       movl(result, str2); // We need only low 32 bits
  6400       andl(result, (os::vm_page_size()-1));
  6401       cmpl(result, (os::vm_page_size()-16));
  6402       jccb(Assembler::belowEqual, CHECK_STR);
  6404       // Move small strings to stack to allow load 16 bytes into vec.
  6405       subptr(rsp, 16);
  6406       int stk_offset = wordSize-2;
  6407       push(cnt2);
  6409       bind(COPY_SUBSTR);
  6410       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  6411       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  6412       decrement(cnt2);
  6413       jccb(Assembler::notZero, COPY_SUBSTR);
  6415       pop(cnt2);
  6416       movptr(str2, rsp);  // New substring address
  6417     } // non constant
  6419     bind(CHECK_STR);
  6420     cmpl(cnt1, 8);
  6421     jccb(Assembler::aboveEqual, BIG_STRINGS);
  6423     // Check cross page boundary.
  6424     movl(result, str1); // We need only low 32 bits
  6425     andl(result, (os::vm_page_size()-1));
  6426     cmpl(result, (os::vm_page_size()-16));
  6427     jccb(Assembler::belowEqual, BIG_STRINGS);
  6429     subptr(rsp, 16);
  6430     int stk_offset = -2;
  6431     if (int_cnt2 < 0) { // not constant
  6432       push(cnt2);
  6433       stk_offset += wordSize;
  6435     movl(cnt2, cnt1);
  6437     bind(COPY_STR);
  6438     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  6439     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  6440     decrement(cnt2);
  6441     jccb(Assembler::notZero, COPY_STR);
  6443     if (int_cnt2 < 0) { // not constant
  6444       pop(cnt2);
  6446     movptr(str1, rsp);  // New string address
  6448     bind(BIG_STRINGS);
  6449     // Load substring.
  6450     if (int_cnt2 < 0) { // -1
  6451       movdqu(vec, Address(str2, 0));
  6452       push(cnt2);       // substr count
  6453       push(str2);       // substr addr
  6454       push(str1);       // string addr
  6455     } else {
  6456       // Small (< 8 chars) constant substrings are loaded already.
  6457       movl(cnt2, int_cnt2);
  6459     push(tmp);  // original SP
  6461   } // Finished loading
  6463   //========================================================
  6464   // Start search
  6465   //
  6467   movptr(result, str1); // string addr
  6469   if (int_cnt2  < 0) {  // Only for non constant substring
  6470     jmpb(SCAN_TO_SUBSTR);
  6472     // SP saved at sp+0
  6473     // String saved at sp+1*wordSize
  6474     // Substr saved at sp+2*wordSize
  6475     // Substr count saved at sp+3*wordSize
  6477     // Reload substr for rescan, this code
  6478     // is executed only for large substrings (> 8 chars)
  6479     bind(RELOAD_SUBSTR);
  6480     movptr(str2, Address(rsp, 2*wordSize));
  6481     movl(cnt2, Address(rsp, 3*wordSize));
  6482     movdqu(vec, Address(str2, 0));
  6483     // We came here after the beginning of the substring was
  6484     // matched but the rest of it was not so we need to search
  6485     // again. Start from the next element after the previous match.
  6486     subptr(str1, result); // Restore counter
  6487     shrl(str1, 1);
  6488     addl(cnt1, str1);
  6489     decrementl(cnt1);   // Shift to next element
  6490     cmpl(cnt1, cnt2);
  6491     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6493     addptr(result, 2);
  6494   } // non constant
  6496   // Scan string for start of substr in 16-byte vectors
  6497   bind(SCAN_TO_SUBSTR);
  6498   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6499   pcmpestri(vec, Address(result, 0), 0x0d);
  6500   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  6501   subl(cnt1, 8);
  6502   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  6503   cmpl(cnt1, cnt2);
  6504   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6505   addptr(result, 16);
  6507   bind(ADJUST_STR);
  6508   cmpl(cnt1, 8); // Do not read beyond string
  6509   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  6510   // Back-up string to avoid reading beyond string.
  6511   lea(result, Address(result, cnt1, Address::times_2, -16));
  6512   movl(cnt1, 8);
  6513   jmpb(SCAN_TO_SUBSTR);
  6515   // Found a potential substr
  6516   bind(FOUND_CANDIDATE);
  6517   // After pcmpestri tmp(rcx) contains matched element index
  6519   // Make sure string is still long enough
  6520   subl(cnt1, tmp);
  6521   cmpl(cnt1, cnt2);
  6522   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  6523   // Left less then substring.
  6525   bind(RET_NOT_FOUND);
  6526   movl(result, -1);
  6527   jmpb(CLEANUP);
  6529   bind(FOUND_SUBSTR);
  6530   // Compute start addr of substr
  6531   lea(result, Address(result, tmp, Address::times_2));
  6533   if (int_cnt2 > 0) { // Constant substring
  6534     // Repeat search for small substring (< 8 chars)
  6535     // from new point without reloading substring.
  6536     // Have to check that we don't read beyond string.
  6537     cmpl(tmp, 8-int_cnt2);
  6538     jccb(Assembler::greater, ADJUST_STR);
  6539     // Fall through if matched whole substring.
  6540   } else { // non constant
  6541     assert(int_cnt2 == -1, "should be != 0");
  6543     addl(tmp, cnt2);
  6544     // Found result if we matched whole substring.
  6545     cmpl(tmp, 8);
  6546     jccb(Assembler::lessEqual, RET_FOUND);
  6548     // Repeat search for small substring (<= 8 chars)
  6549     // from new point 'str1' without reloading substring.
  6550     cmpl(cnt2, 8);
  6551     // Have to check that we don't read beyond string.
  6552     jccb(Assembler::lessEqual, ADJUST_STR);
  6554     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  6555     // Compare the rest of substring (> 8 chars).
  6556     movptr(str1, result);
  6558     cmpl(tmp, cnt2);
  6559     // First 8 chars are already matched.
  6560     jccb(Assembler::equal, CHECK_NEXT);
  6562     bind(SCAN_SUBSTR);
  6563     pcmpestri(vec, Address(str1, 0), 0x0d);
  6564     // Need to reload strings pointers if not matched whole vector
  6565     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  6567     bind(CHECK_NEXT);
  6568     subl(cnt2, 8);
  6569     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  6570     addptr(str1, 16);
  6571     addptr(str2, 16);
  6572     subl(cnt1, 8);
  6573     cmpl(cnt2, 8); // Do not read beyond substring
  6574     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  6575     // Back-up strings to avoid reading beyond substring.
  6576     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  6577     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  6578     subl(cnt1, cnt2);
  6579     movl(cnt2, 8);
  6580     addl(cnt1, 8);
  6581     bind(CONT_SCAN_SUBSTR);
  6582     movdqu(vec, Address(str2, 0));
  6583     jmpb(SCAN_SUBSTR);
  6585     bind(RET_FOUND_LONG);
  6586     movptr(str1, Address(rsp, wordSize));
  6587   } // non constant
  6589   bind(RET_FOUND);
  6590   // Compute substr offset
  6591   subptr(result, str1);
  6592   shrl(result, 1); // index
  6594   bind(CLEANUP);
  6595   pop(rsp); // restore SP
  6597 } // string_indexof
  6599 // Compare strings.
  6600 void MacroAssembler::string_compare(Register str1, Register str2,
  6601                                     Register cnt1, Register cnt2, Register result,
  6602                                     XMMRegister vec1) {
  6603   ShortBranchVerifier sbv(this);
  6604   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  6606   // Compute the minimum of the string lengths and the
  6607   // difference of the string lengths (stack).
  6608   // Do the conditional move stuff
  6609   movl(result, cnt1);
  6610   subl(cnt1, cnt2);
  6611   push(cnt1);
  6612   cmov32(Assembler::lessEqual, cnt2, result);
  6614   // Is the minimum length zero?
  6615   testl(cnt2, cnt2);
  6616   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  6618   // Compare first characters
  6619   load_unsigned_short(result, Address(str1, 0));
  6620   load_unsigned_short(cnt1, Address(str2, 0));
  6621   subl(result, cnt1);
  6622   jcc(Assembler::notZero,  POP_LABEL);
  6623   cmpl(cnt2, 1);
  6624   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  6626   // Check if the strings start at the same location.
  6627   cmpptr(str1, str2);
  6628   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  6630   Address::ScaleFactor scale = Address::times_2;
  6631   int stride = 8;
  6633   if (UseAVX >= 2 && UseSSE42Intrinsics) {
  6634     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
  6635     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
  6636     Label COMPARE_TAIL_LONG;
  6637     int pcmpmask = 0x19;
  6639     // Setup to compare 16-chars (32-bytes) vectors,
  6640     // start from first character again because it has aligned address.
  6641     int stride2 = 16;
  6642     int adr_stride  = stride  << scale;
  6643     int adr_stride2 = stride2 << scale;
  6645     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  6646     // rax and rdx are used by pcmpestri as elements counters
  6647     movl(result, cnt2);
  6648     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
  6649     jcc(Assembler::zero, COMPARE_TAIL_LONG);
  6651     // fast path : compare first 2 8-char vectors.
  6652     bind(COMPARE_16_CHARS);
  6653     movdqu(vec1, Address(str1, 0));
  6654     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  6655     jccb(Assembler::below, COMPARE_INDEX_CHAR);
  6657     movdqu(vec1, Address(str1, adr_stride));
  6658     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
  6659     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
  6660     addl(cnt1, stride);
  6662     // Compare the characters at index in cnt1
  6663     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
  6664     load_unsigned_short(result, Address(str1, cnt1, scale));
  6665     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  6666     subl(result, cnt2);
  6667     jmp(POP_LABEL);
  6669     // Setup the registers to start vector comparison loop
  6670     bind(COMPARE_WIDE_VECTORS);
  6671     lea(str1, Address(str1, result, scale));
  6672     lea(str2, Address(str2, result, scale));
  6673     subl(result, stride2);
  6674     subl(cnt2, stride2);
  6675     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
  6676     negptr(result);
  6678     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
  6679     bind(COMPARE_WIDE_VECTORS_LOOP);
  6680     vmovdqu(vec1, Address(str1, result, scale));
  6681     vpxor(vec1, Address(str2, result, scale));
  6682     vptest(vec1, vec1);
  6683     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  6684     addptr(result, stride2);
  6685     subl(cnt2, stride2);
  6686     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
  6687     // clean upper bits of YMM registers
  6688     vzeroupper();
  6690     // compare wide vectors tail
  6691     bind(COMPARE_WIDE_TAIL);
  6692     testptr(result, result);
  6693     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6695     movl(result, stride2);
  6696     movl(cnt2, result);
  6697     negptr(result);
  6698     jmpb(COMPARE_WIDE_VECTORS_LOOP);
  6700     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
  6701     bind(VECTOR_NOT_EQUAL);
  6702     // clean upper bits of YMM registers
  6703     vzeroupper();
  6704     lea(str1, Address(str1, result, scale));
  6705     lea(str2, Address(str2, result, scale));
  6706     jmp(COMPARE_16_CHARS);
  6708     // Compare tail chars, length between 1 to 15 chars
  6709     bind(COMPARE_TAIL_LONG);
  6710     movl(cnt2, result);
  6711     cmpl(cnt2, stride);
  6712     jccb(Assembler::less, COMPARE_SMALL_STR);
  6714     movdqu(vec1, Address(str1, 0));
  6715     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  6716     jcc(Assembler::below, COMPARE_INDEX_CHAR);
  6717     subptr(cnt2, stride);
  6718     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6719     lea(str1, Address(str1, result, scale));
  6720     lea(str2, Address(str2, result, scale));
  6721     negptr(cnt2);
  6722     jmpb(WHILE_HEAD_LABEL);
  6724     bind(COMPARE_SMALL_STR);
  6725   } else if (UseSSE42Intrinsics) {
  6726     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  6727     int pcmpmask = 0x19;
  6728     // Setup to compare 8-char (16-byte) vectors,
  6729     // start from first character again because it has aligned address.
  6730     movl(result, cnt2);
  6731     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  6732     jccb(Assembler::zero, COMPARE_TAIL);
  6734     lea(str1, Address(str1, result, scale));
  6735     lea(str2, Address(str2, result, scale));
  6736     negptr(result);
  6738     // pcmpestri
  6739     //   inputs:
  6740     //     vec1- substring
  6741     //     rax - negative string length (elements count)
  6742     //     mem - scaned string
  6743     //     rdx - string length (elements count)
  6744     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  6745     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  6746     //   outputs:
  6747     //     rcx - first mismatched element index
  6748     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  6750     bind(COMPARE_WIDE_VECTORS);
  6751     movdqu(vec1, Address(str1, result, scale));
  6752     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  6753     // After pcmpestri cnt1(rcx) contains mismatched element index
  6755     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  6756     addptr(result, stride);
  6757     subptr(cnt2, stride);
  6758     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6760     // compare wide vectors tail
  6761     testptr(result, result);
  6762     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6764     movl(cnt2, stride);
  6765     movl(result, stride);
  6766     negptr(result);
  6767     movdqu(vec1, Address(str1, result, scale));
  6768     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  6769     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  6771     // Mismatched characters in the vectors
  6772     bind(VECTOR_NOT_EQUAL);
  6773     addptr(cnt1, result);
  6774     load_unsigned_short(result, Address(str1, cnt1, scale));
  6775     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  6776     subl(result, cnt2);
  6777     jmpb(POP_LABEL);
  6779     bind(COMPARE_TAIL); // limit is zero
  6780     movl(cnt2, result);
  6781     // Fallthru to tail compare
  6783   // Shift str2 and str1 to the end of the arrays, negate min
  6784   lea(str1, Address(str1, cnt2, scale));
  6785   lea(str2, Address(str2, cnt2, scale));
  6786   decrementl(cnt2);  // first character was compared already
  6787   negptr(cnt2);
  6789   // Compare the rest of the elements
  6790   bind(WHILE_HEAD_LABEL);
  6791   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  6792   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  6793   subl(result, cnt1);
  6794   jccb(Assembler::notZero, POP_LABEL);
  6795   increment(cnt2);
  6796   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  6798   // Strings are equal up to min length.  Return the length difference.
  6799   bind(LENGTH_DIFF_LABEL);
  6800   pop(result);
  6801   jmpb(DONE_LABEL);
  6803   // Discard the stored length difference
  6804   bind(POP_LABEL);
  6805   pop(cnt1);
  6807   // That's it
  6808   bind(DONE_LABEL);
  6811 // Compare char[] arrays aligned to 4 bytes or substrings.
  6812 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  6813                                         Register limit, Register result, Register chr,
  6814                                         XMMRegister vec1, XMMRegister vec2) {
  6815   ShortBranchVerifier sbv(this);
  6816   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  6818   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  6819   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  6821   // Check the input args
  6822   cmpptr(ary1, ary2);
  6823   jcc(Assembler::equal, TRUE_LABEL);
  6825   if (is_array_equ) {
  6826     // Need additional checks for arrays_equals.
  6827     testptr(ary1, ary1);
  6828     jcc(Assembler::zero, FALSE_LABEL);
  6829     testptr(ary2, ary2);
  6830     jcc(Assembler::zero, FALSE_LABEL);
  6832     // Check the lengths
  6833     movl(limit, Address(ary1, length_offset));
  6834     cmpl(limit, Address(ary2, length_offset));
  6835     jcc(Assembler::notEqual, FALSE_LABEL);
  6838   // count == 0
  6839   testl(limit, limit);
  6840   jcc(Assembler::zero, TRUE_LABEL);
  6842   if (is_array_equ) {
  6843     // Load array address
  6844     lea(ary1, Address(ary1, base_offset));
  6845     lea(ary2, Address(ary2, base_offset));
  6848   shll(limit, 1);      // byte count != 0
  6849   movl(result, limit); // copy
  6851   if (UseAVX >= 2) {
  6852     // With AVX2, use 32-byte vector compare
  6853     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6855     // Compare 32-byte vectors
  6856     andl(result, 0x0000001e);  //   tail count (in bytes)
  6857     andl(limit, 0xffffffe0);   // vector count (in bytes)
  6858     jccb(Assembler::zero, COMPARE_TAIL);
  6860     lea(ary1, Address(ary1, limit, Address::times_1));
  6861     lea(ary2, Address(ary2, limit, Address::times_1));
  6862     negptr(limit);
  6864     bind(COMPARE_WIDE_VECTORS);
  6865     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
  6866     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
  6867     vpxor(vec1, vec2);
  6869     vptest(vec1, vec1);
  6870     jccb(Assembler::notZero, FALSE_LABEL);
  6871     addptr(limit, 32);
  6872     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6874     testl(result, result);
  6875     jccb(Assembler::zero, TRUE_LABEL);
  6877     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
  6878     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
  6879     vpxor(vec1, vec2);
  6881     vptest(vec1, vec1);
  6882     jccb(Assembler::notZero, FALSE_LABEL);
  6883     jmpb(TRUE_LABEL);
  6885     bind(COMPARE_TAIL); // limit is zero
  6886     movl(limit, result);
  6887     // Fallthru to tail compare
  6888   } else if (UseSSE42Intrinsics) {
  6889     // With SSE4.2, use double quad vector compare
  6890     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6892     // Compare 16-byte vectors
  6893     andl(result, 0x0000000e);  //   tail count (in bytes)
  6894     andl(limit, 0xfffffff0);   // vector count (in bytes)
  6895     jccb(Assembler::zero, COMPARE_TAIL);
  6897     lea(ary1, Address(ary1, limit, Address::times_1));
  6898     lea(ary2, Address(ary2, limit, Address::times_1));
  6899     negptr(limit);
  6901     bind(COMPARE_WIDE_VECTORS);
  6902     movdqu(vec1, Address(ary1, limit, Address::times_1));
  6903     movdqu(vec2, Address(ary2, limit, Address::times_1));
  6904     pxor(vec1, vec2);
  6906     ptest(vec1, vec1);
  6907     jccb(Assembler::notZero, FALSE_LABEL);
  6908     addptr(limit, 16);
  6909     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6911     testl(result, result);
  6912     jccb(Assembler::zero, TRUE_LABEL);
  6914     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  6915     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  6916     pxor(vec1, vec2);
  6918     ptest(vec1, vec1);
  6919     jccb(Assembler::notZero, FALSE_LABEL);
  6920     jmpb(TRUE_LABEL);
  6922     bind(COMPARE_TAIL); // limit is zero
  6923     movl(limit, result);
  6924     // Fallthru to tail compare
  6927   // Compare 4-byte vectors
  6928   andl(limit, 0xfffffffc); // vector count (in bytes)
  6929   jccb(Assembler::zero, COMPARE_CHAR);
  6931   lea(ary1, Address(ary1, limit, Address::times_1));
  6932   lea(ary2, Address(ary2, limit, Address::times_1));
  6933   negptr(limit);
  6935   bind(COMPARE_VECTORS);
  6936   movl(chr, Address(ary1, limit, Address::times_1));
  6937   cmpl(chr, Address(ary2, limit, Address::times_1));
  6938   jccb(Assembler::notEqual, FALSE_LABEL);
  6939   addptr(limit, 4);
  6940   jcc(Assembler::notZero, COMPARE_VECTORS);
  6942   // Compare trailing char (final 2 bytes), if any
  6943   bind(COMPARE_CHAR);
  6944   testl(result, 0x2);   // tail  char
  6945   jccb(Assembler::zero, TRUE_LABEL);
  6946   load_unsigned_short(chr, Address(ary1, 0));
  6947   load_unsigned_short(limit, Address(ary2, 0));
  6948   cmpl(chr, limit);
  6949   jccb(Assembler::notEqual, FALSE_LABEL);
  6951   bind(TRUE_LABEL);
  6952   movl(result, 1);   // return true
  6953   jmpb(DONE);
  6955   bind(FALSE_LABEL);
  6956   xorl(result, result); // return false
  6958   // That's it
  6959   bind(DONE);
  6960   if (UseAVX >= 2) {
  6961     // clean upper bits of YMM registers
  6962     vzeroupper();
  6966 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  6967                                    Register to, Register value, Register count,
  6968                                    Register rtmp, XMMRegister xtmp) {
  6969   ShortBranchVerifier sbv(this);
  6970   assert_different_registers(to, value, count, rtmp);
  6971   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  6972   Label L_fill_2_bytes, L_fill_4_bytes;
  6974   int shift = -1;
  6975   switch (t) {
  6976     case T_BYTE:
  6977       shift = 2;
  6978       break;
  6979     case T_SHORT:
  6980       shift = 1;
  6981       break;
  6982     case T_INT:
  6983       shift = 0;
  6984       break;
  6985     default: ShouldNotReachHere();
  6988   if (t == T_BYTE) {
  6989     andl(value, 0xff);
  6990     movl(rtmp, value);
  6991     shll(rtmp, 8);
  6992     orl(value, rtmp);
  6994   if (t == T_SHORT) {
  6995     andl(value, 0xffff);
  6997   if (t == T_BYTE || t == T_SHORT) {
  6998     movl(rtmp, value);
  6999     shll(rtmp, 16);
  7000     orl(value, rtmp);
  7003   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  7004   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  7005   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  7006     // align source address at 4 bytes address boundary
  7007     if (t == T_BYTE) {
  7008       // One byte misalignment happens only for byte arrays
  7009       testptr(to, 1);
  7010       jccb(Assembler::zero, L_skip_align1);
  7011       movb(Address(to, 0), value);
  7012       increment(to);
  7013       decrement(count);
  7014       BIND(L_skip_align1);
  7016     // Two bytes misalignment happens only for byte and short (char) arrays
  7017     testptr(to, 2);
  7018     jccb(Assembler::zero, L_skip_align2);
  7019     movw(Address(to, 0), value);
  7020     addptr(to, 2);
  7021     subl(count, 1<<(shift-1));
  7022     BIND(L_skip_align2);
  7024   if (UseSSE < 2) {
  7025     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  7026     // Fill 32-byte chunks
  7027     subl(count, 8 << shift);
  7028     jcc(Assembler::less, L_check_fill_8_bytes);
  7029     align(16);
  7031     BIND(L_fill_32_bytes_loop);
  7033     for (int i = 0; i < 32; i += 4) {
  7034       movl(Address(to, i), value);
  7037     addptr(to, 32);
  7038     subl(count, 8 << shift);
  7039     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  7040     BIND(L_check_fill_8_bytes);
  7041     addl(count, 8 << shift);
  7042     jccb(Assembler::zero, L_exit);
  7043     jmpb(L_fill_8_bytes);
  7045     //
  7046     // length is too short, just fill qwords
  7047     //
  7048     BIND(L_fill_8_bytes_loop);
  7049     movl(Address(to, 0), value);
  7050     movl(Address(to, 4), value);
  7051     addptr(to, 8);
  7052     BIND(L_fill_8_bytes);
  7053     subl(count, 1 << (shift + 1));
  7054     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  7055     // fall through to fill 4 bytes
  7056   } else {
  7057     Label L_fill_32_bytes;
  7058     if (!UseUnalignedLoadStores) {
  7059       // align to 8 bytes, we know we are 4 byte aligned to start
  7060       testptr(to, 4);
  7061       jccb(Assembler::zero, L_fill_32_bytes);
  7062       movl(Address(to, 0), value);
  7063       addptr(to, 4);
  7064       subl(count, 1<<shift);
  7066     BIND(L_fill_32_bytes);
  7068       assert( UseSSE >= 2, "supported cpu only" );
  7069       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  7070       movdl(xtmp, value);
  7071       if (UseAVX >= 2 && UseUnalignedLoadStores) {
  7072         // Fill 64-byte chunks
  7073         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
  7074         vpbroadcastd(xtmp, xtmp);
  7076         subl(count, 16 << shift);
  7077         jcc(Assembler::less, L_check_fill_32_bytes);
  7078         align(16);
  7080         BIND(L_fill_64_bytes_loop);
  7081         vmovdqu(Address(to, 0), xtmp);
  7082         vmovdqu(Address(to, 32), xtmp);
  7083         addptr(to, 64);
  7084         subl(count, 16 << shift);
  7085         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
  7087         BIND(L_check_fill_32_bytes);
  7088         addl(count, 8 << shift);
  7089         jccb(Assembler::less, L_check_fill_8_bytes);
  7090         vmovdqu(Address(to, 0), xtmp);
  7091         addptr(to, 32);
  7092         subl(count, 8 << shift);
  7094         BIND(L_check_fill_8_bytes);
  7095         // clean upper bits of YMM registers
  7096         vzeroupper();
  7097       } else {
  7098         // Fill 32-byte chunks
  7099         pshufd(xtmp, xtmp, 0);
  7101         subl(count, 8 << shift);
  7102         jcc(Assembler::less, L_check_fill_8_bytes);
  7103         align(16);
  7105         BIND(L_fill_32_bytes_loop);
  7107         if (UseUnalignedLoadStores) {
  7108           movdqu(Address(to, 0), xtmp);
  7109           movdqu(Address(to, 16), xtmp);
  7110         } else {
  7111           movq(Address(to, 0), xtmp);
  7112           movq(Address(to, 8), xtmp);
  7113           movq(Address(to, 16), xtmp);
  7114           movq(Address(to, 24), xtmp);
  7117         addptr(to, 32);
  7118         subl(count, 8 << shift);
  7119         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  7121         BIND(L_check_fill_8_bytes);
  7123       addl(count, 8 << shift);
  7124       jccb(Assembler::zero, L_exit);
  7125       jmpb(L_fill_8_bytes);
  7127       //
  7128       // length is too short, just fill qwords
  7129       //
  7130       BIND(L_fill_8_bytes_loop);
  7131       movq(Address(to, 0), xtmp);
  7132       addptr(to, 8);
  7133       BIND(L_fill_8_bytes);
  7134       subl(count, 1 << (shift + 1));
  7135       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  7138   // fill trailing 4 bytes
  7139   BIND(L_fill_4_bytes);
  7140   testl(count, 1<<shift);
  7141   jccb(Assembler::zero, L_fill_2_bytes);
  7142   movl(Address(to, 0), value);
  7143   if (t == T_BYTE || t == T_SHORT) {
  7144     addptr(to, 4);
  7145     BIND(L_fill_2_bytes);
  7146     // fill trailing 2 bytes
  7147     testl(count, 1<<(shift-1));
  7148     jccb(Assembler::zero, L_fill_byte);
  7149     movw(Address(to, 0), value);
  7150     if (t == T_BYTE) {
  7151       addptr(to, 2);
  7152       BIND(L_fill_byte);
  7153       // fill trailing byte
  7154       testl(count, 1);
  7155       jccb(Assembler::zero, L_exit);
  7156       movb(Address(to, 0), value);
  7157     } else {
  7158       BIND(L_fill_byte);
  7160   } else {
  7161     BIND(L_fill_2_bytes);
  7163   BIND(L_exit);
  7166 // encode char[] to byte[] in ISO_8859_1
  7167 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
  7168                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
  7169                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
  7170                                       Register tmp5, Register result) {
  7171   // rsi: src
  7172   // rdi: dst
  7173   // rdx: len
  7174   // rcx: tmp5
  7175   // rax: result
  7176   ShortBranchVerifier sbv(this);
  7177   assert_different_registers(src, dst, len, tmp5, result);
  7178   Label L_done, L_copy_1_char, L_copy_1_char_exit;
  7180   // set result
  7181   xorl(result, result);
  7182   // check for zero length
  7183   testl(len, len);
  7184   jcc(Assembler::zero, L_done);
  7185   movl(result, len);
  7187   // Setup pointers
  7188   lea(src, Address(src, len, Address::times_2)); // char[]
  7189   lea(dst, Address(dst, len, Address::times_1)); // byte[]
  7190   negptr(len);
  7192   if (UseSSE42Intrinsics || UseAVX >= 2) {
  7193     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
  7194     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
  7196     if (UseAVX >= 2) {
  7197       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
  7198       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  7199       movdl(tmp1Reg, tmp5);
  7200       vpbroadcastd(tmp1Reg, tmp1Reg);
  7201       jmpb(L_chars_32_check);
  7203       bind(L_copy_32_chars);
  7204       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
  7205       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
  7206       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  7207       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  7208       jccb(Assembler::notZero, L_copy_32_chars_exit);
  7209       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  7210       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
  7211       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
  7213       bind(L_chars_32_check);
  7214       addptr(len, 32);
  7215       jccb(Assembler::lessEqual, L_copy_32_chars);
  7217       bind(L_copy_32_chars_exit);
  7218       subptr(len, 16);
  7219       jccb(Assembler::greater, L_copy_16_chars_exit);
  7221     } else if (UseSSE42Intrinsics) {
  7222       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  7223       movdl(tmp1Reg, tmp5);
  7224       pshufd(tmp1Reg, tmp1Reg, 0);
  7225       jmpb(L_chars_16_check);
  7228     bind(L_copy_16_chars);
  7229     if (UseAVX >= 2) {
  7230       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
  7231       vptest(tmp2Reg, tmp1Reg);
  7232       jccb(Assembler::notZero, L_copy_16_chars_exit);
  7233       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
  7234       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
  7235     } else {
  7236       if (UseAVX > 0) {
  7237         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  7238         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  7239         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
  7240       } else {
  7241         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  7242         por(tmp2Reg, tmp3Reg);
  7243         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  7244         por(tmp2Reg, tmp4Reg);
  7246       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  7247       jccb(Assembler::notZero, L_copy_16_chars_exit);
  7248       packuswb(tmp3Reg, tmp4Reg);
  7250     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
  7252     bind(L_chars_16_check);
  7253     addptr(len, 16);
  7254     jccb(Assembler::lessEqual, L_copy_16_chars);
  7256     bind(L_copy_16_chars_exit);
  7257     if (UseAVX >= 2) {
  7258       // clean upper bits of YMM registers
  7259       vzeroupper();
  7261     subptr(len, 8);
  7262     jccb(Assembler::greater, L_copy_8_chars_exit);
  7264     bind(L_copy_8_chars);
  7265     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
  7266     ptest(tmp3Reg, tmp1Reg);
  7267     jccb(Assembler::notZero, L_copy_8_chars_exit);
  7268     packuswb(tmp3Reg, tmp1Reg);
  7269     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
  7270     addptr(len, 8);
  7271     jccb(Assembler::lessEqual, L_copy_8_chars);
  7273     bind(L_copy_8_chars_exit);
  7274     subptr(len, 8);
  7275     jccb(Assembler::zero, L_done);
  7278   bind(L_copy_1_char);
  7279   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
  7280   testl(tmp5, 0xff00);      // check if Unicode char
  7281   jccb(Assembler::notZero, L_copy_1_char_exit);
  7282   movb(Address(dst, len, Address::times_1, 0), tmp5);
  7283   addptr(len, 1);
  7284   jccb(Assembler::less, L_copy_1_char);
  7286   bind(L_copy_1_char_exit);
  7287   addptr(result, len); // len is negative count of not processed elements
  7288   bind(L_done);
  7291 /**
  7292  * Emits code to update CRC-32 with a byte value according to constants in table
  7294  * @param [in,out]crc   Register containing the crc.
  7295  * @param [in]val       Register containing the byte to fold into the CRC.
  7296  * @param [in]table     Register containing the table of crc constants.
  7298  * uint32_t crc;
  7299  * val = crc_table[(val ^ crc) & 0xFF];
  7300  * crc = val ^ (crc >> 8);
  7302  */
  7303 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
  7304   xorl(val, crc);
  7305   andl(val, 0xFF);
  7306   shrl(crc, 8); // unsigned shift
  7307   xorl(crc, Address(table, val, Address::times_4, 0));
  7310 /**
  7311  * Fold 128-bit data chunk
  7312  */
  7313 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
  7314   vpclmulhdq(xtmp, xK, xcrc); // [123:64]
  7315   vpclmulldq(xcrc, xK, xcrc); // [63:0]
  7316   vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
  7317   pxor(xcrc, xtmp);
  7320 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
  7321   vpclmulhdq(xtmp, xK, xcrc);
  7322   vpclmulldq(xcrc, xK, xcrc);
  7323   pxor(xcrc, xbuf);
  7324   pxor(xcrc, xtmp);
  7327 /**
  7328  * 8-bit folds to compute 32-bit CRC
  7330  * uint64_t xcrc;
  7331  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
  7332  */
  7333 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
  7334   movdl(tmp, xcrc);
  7335   andl(tmp, 0xFF);
  7336   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
  7337   psrldq(xcrc, 1); // unsigned shift one byte
  7338   pxor(xcrc, xtmp);
  7341 /**
  7342  * uint32_t crc;
  7343  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
  7344  */
  7345 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
  7346   movl(tmp, crc);
  7347   andl(tmp, 0xFF);
  7348   shrl(crc, 8);
  7349   xorl(crc, Address(table, tmp, Address::times_4, 0));
  7352 /**
  7353  * @param crc   register containing existing CRC (32-bit)
  7354  * @param buf   register pointing to input byte buffer (byte*)
  7355  * @param len   register containing number of bytes
  7356  * @param table register that will contain address of CRC table
  7357  * @param tmp   scratch register
  7358  */
  7359 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
  7360   assert_different_registers(crc, buf, len, table, tmp, rax);
  7362   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
  7363   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
  7365   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
  7366   notl(crc); // ~crc
  7367   cmpl(len, 16);
  7368   jcc(Assembler::less, L_tail);
  7370   // Align buffer to 16 bytes
  7371   movl(tmp, buf);
  7372   andl(tmp, 0xF);
  7373   jccb(Assembler::zero, L_aligned);
  7374   subl(tmp,  16);
  7375   addl(len, tmp);
  7377   align(4);
  7378   BIND(L_align_loop);
  7379   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  7380   update_byte_crc32(crc, rax, table);
  7381   increment(buf);
  7382   incrementl(tmp);
  7383   jccb(Assembler::less, L_align_loop);
  7385   BIND(L_aligned);
  7386   movl(tmp, len); // save
  7387   shrl(len, 4);
  7388   jcc(Assembler::zero, L_tail_restore);
  7390   // Fold crc into first bytes of vector
  7391   movdqa(xmm1, Address(buf, 0));
  7392   movdl(rax, xmm1);
  7393   xorl(crc, rax);
  7394   pinsrd(xmm1, crc, 0);
  7395   addptr(buf, 16);
  7396   subl(len, 4); // len > 0
  7397   jcc(Assembler::less, L_fold_tail);
  7399   movdqa(xmm2, Address(buf,  0));
  7400   movdqa(xmm3, Address(buf, 16));
  7401   movdqa(xmm4, Address(buf, 32));
  7402   addptr(buf, 48);
  7403   subl(len, 3);
  7404   jcc(Assembler::lessEqual, L_fold_512b);
  7406   // Fold total 512 bits of polynomial on each iteration,
  7407   // 128 bits per each of 4 parallel streams.
  7408   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
  7410   align(32);
  7411   BIND(L_fold_512b_loop);
  7412   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  7413   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
  7414   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
  7415   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
  7416   addptr(buf, 64);
  7417   subl(len, 4);
  7418   jcc(Assembler::greater, L_fold_512b_loop);
  7420   // Fold 512 bits to 128 bits.
  7421   BIND(L_fold_512b);
  7422   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  7423   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
  7424   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
  7425   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
  7427   // Fold the rest of 128 bits data chunks
  7428   BIND(L_fold_tail);
  7429   addl(len, 3);
  7430   jccb(Assembler::lessEqual, L_fold_128b);
  7431   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  7433   BIND(L_fold_tail_loop);
  7434   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  7435   addptr(buf, 16);
  7436   decrementl(len);
  7437   jccb(Assembler::greater, L_fold_tail_loop);
  7439   // Fold 128 bits in xmm1 down into 32 bits in crc register.
  7440   BIND(L_fold_128b);
  7441   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
  7442   vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
  7443   vpand(xmm3, xmm0, xmm2, false /* vector256 */);
  7444   vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
  7445   psrldq(xmm1, 8);
  7446   psrldq(xmm2, 4);
  7447   pxor(xmm0, xmm1);
  7448   pxor(xmm0, xmm2);
  7450   // 8 8-bit folds to compute 32-bit CRC.
  7451   for (int j = 0; j < 4; j++) {
  7452     fold_8bit_crc32(xmm0, table, xmm1, rax);
  7454   movdl(crc, xmm0); // mov 32 bits to general register
  7455   for (int j = 0; j < 4; j++) {
  7456     fold_8bit_crc32(crc, table, rax);
  7459   BIND(L_tail_restore);
  7460   movl(len, tmp); // restore
  7461   BIND(L_tail);
  7462   andl(len, 0xf);
  7463   jccb(Assembler::zero, L_exit);
  7465   // Fold the rest of bytes
  7466   align(4);
  7467   BIND(L_tail_loop);
  7468   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  7469   update_byte_crc32(crc, rax, table);
  7470   increment(buf);
  7471   decrementl(len);
  7472   jccb(Assembler::greater, L_tail_loop);
  7474   BIND(L_exit);
  7475   notl(crc); // ~c
  7478 #undef BIND
  7479 #undef BLOCK_COMMENT
  7482 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  7483   switch (cond) {
  7484     // Note some conditions are synonyms for others
  7485     case Assembler::zero:         return Assembler::notZero;
  7486     case Assembler::notZero:      return Assembler::zero;
  7487     case Assembler::less:         return Assembler::greaterEqual;
  7488     case Assembler::lessEqual:    return Assembler::greater;
  7489     case Assembler::greater:      return Assembler::lessEqual;
  7490     case Assembler::greaterEqual: return Assembler::less;
  7491     case Assembler::below:        return Assembler::aboveEqual;
  7492     case Assembler::belowEqual:   return Assembler::above;
  7493     case Assembler::above:        return Assembler::belowEqual;
  7494     case Assembler::aboveEqual:   return Assembler::below;
  7495     case Assembler::overflow:     return Assembler::noOverflow;
  7496     case Assembler::noOverflow:   return Assembler::overflow;
  7497     case Assembler::negative:     return Assembler::positive;
  7498     case Assembler::positive:     return Assembler::negative;
  7499     case Assembler::parity:       return Assembler::noParity;
  7500     case Assembler::noParity:     return Assembler::parity;
  7502   ShouldNotReachHere(); return Assembler::overflow;
  7505 SkipIfEqual::SkipIfEqual(
  7506     MacroAssembler* masm, const bool* flag_addr, bool value) {
  7507   _masm = masm;
  7508   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  7509   _masm->jcc(Assembler::equal, _label);
  7512 SkipIfEqual::~SkipIfEqual() {
  7513   _masm->bind(_label);

mercurial